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E D I T O R I A L

Improving transparency and scientific rigor in academic 
publishing

ABSTRACT
Progress in basic and clinical research is slowed when researchers 
fail to provide a complete and accurate report of how a study was 
designed, executed, and the results analyzed. Publishing rigorous 
scientific research involves a full description of the methods, materi‐
als, procedures, and outcomes. Investigators may fail to provide a 
complete description of how their study was designed and executed 
because they may not know how to accurately report the informa‐
tion or the mechanisms are not in place to facilitate transparent 
reporting. Here, we provide an overview of how authors can write 
manuscripts in a transparent and thorough manner. We introduce 
a set of reporting criteria that can be used for publishing, including 
recommendations on reporting the experimental design and statisti‐
cal approaches. We also discuss how to accurately visualize the re‐
sults and provide recommendations for peer reviewers to enhance 
rigor and transparency. Incorporating transparency practices into 
research manuscripts will significantly improve the reproducibility 
of the results by independent laboratories.

SIGNIFIC ANCE

Failure to replicate research findings often arises from errors in 
the experimental design and statistical approaches. By providing a 
full account of the experimental design, procedures, and statistical 
approaches, researchers can address the reproducibility crisis and 
improve the sustainability of research outcomes. In this piece, we 
discuss the key issues leading to irreproducibility and provide gen‐
eral approaches to improving transparency and rigor in reporting, 
which could assist in making research more reproducible.

1  | INTRODUC TION

Progress in basic and clinical research is strongly dependent upon 
asking important research questions, attempting to answer those 
questions with robust methods, and then communicating the find‐
ings. Persuading colleagues that scientific results are objectively ob‐
tained and valid involves a willingness to report accurate, robust, and 

transparent descriptions of the methods, procedures, and outcomes, 
which will allow for the independent replication, or reproducibility, 
of those findings (see Box 1 for definitions).

Publishers have the responsibility of providing a platform for the 
exchange of scientific information, while at the same time, it is the 
responsibility of the authors, journal editors, and peer reviewers to 
ensure that the published manuscripts are accurate. While many 
editors and peer reviewers expect that research published in their 
journals should be potentially reproducible, there are no set proce‐
dures to empirically test whether a finding can be independently re‐
produced. What’s more, other barriers to reproducing results exist, 
including the laboratory environment, apparatus and test proto‐
cols, and animal strain (Crabbe, Wahlsten, & Dudek, 1999). A major 
source of irreproducibility also includes substantial systematic error, 
which can occur while scientists are conducting the experiments or 
during statistical analyses (Goodman et al., 2016). Systematic error 
can occur for a variety of reasons, including lack of scientific skill 
(e.g., two people performing the same experiment may not have the 
same level of experience) or variability in subject populations or re‐
agents (Capes‐Davis & Neve, 2016). In addition, when a researcher 
has inadequate statistical knowledge or there are honest flaws in 
the experimental design and statistical output, the errors generated 
might inappropriately influence the interpretation of the results 
(Baker, 2016; Steen, Casadevall, & Fang, 2013).

Efforts to improve research transparency (and, subsequently, 
reproducibility) by funders, researchers, and publishers have led 
to the development of checklists and new author guidelines (see, 
e.g., Cell Press’ Structured Transparent Accessible Reporting [STAR] 
Methods and the Journal of Neuroscience Research (JNR) Transparent 
Science Questionnaire). However, checklists often go unchecked or 
unenforced by the publishers, editors, and/or peer reviewers (Baker, 
Lidster, Sottomayor, & Amor, 2014) and compliance by the authors 
is not always wholehearted (M. Macleod personal communication). 
Publishers cannot always ensure that the results are reproducible, 
but they can help the authors to present a transparent account of 
their work, including providing full details of the experimental and 
statistical procedures and results. Transparent and rigorous ac‐
counts of how an experiment was performed, why the authors used 
specific statistical approaches, and what limitations arise from such 
work will allow the reviewers, editors, and subsequently readers to 
better judge the quality of the science.
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In this commentary, we offer an update to basic approaches in re‐
porting a thorough account of the experimental design and statistical 
approaches and provide an overview of data visualization techniques 
(Weissgerber, Garovic, Winham, Milic, & Prager, 2016). It is our hope, 
as publishers and editors, that these guidelines will help the authors ad‐
here to specific reporting guidelines that promote rigor and transpar‐
ency in scientific research, which will ensure an accurate and complete 
account throughout their experiments and discourage publication bias. 
This, in turn, will promote better, more reproducible science.

2  | BARRIERS TO REPRODUCIBILIT Y

Many factors can lead to irreproducibility of scientific results. 
Oftentimes, these trace back to flaws in the experimental design, 
statistical analyses (and a lack of understanding of fundamental 
statistical principles), including low statistical power or inadequate 
sample sizes, basic reporting of the information essential for labo‐
ratories to independently reproduce results (e.g., biological rea‐
gents and reference material), and selective reporting of data/
results (e.g., p‐hacking) (Baker, 2016; Forstmeier, Wagenmakers, 
& Parker, 2017; Freedman, Cockburn, & Simcoe, 2015). These 
factors and others might contribute to between 50% and 90% of 

the published papers being irreproducible (Begley & Ellis, 2012; 
Glasziou et al., 2014; Hartshorne & Schachner, 2012; Kilkenny 
et al., 2009; Macleod et al., 2014, 2015; Moher & Altman, 2015; 
van der Worp & Macleod, 2011). Attempts to reproduce pub‐
lished results cost the United States approximately $28B annually 
(Freedman et al., 2015; Freedman, Venugopalan, & Wisman, 2017), 
yet poor descriptions of the published studies lead to a majority of 
studies becoming non‐replicable (Glasziou et al., 2014). The next 
subsections will break down some of the more common barriers 
to reproducibility.

2.1 | Neglecting the methods and materials section 
in manuscripts

The materials and methods section of the manuscript is an often ne‐
glected area. Journals and authors often limit the methods section to 
brief descriptions of the procedures or place more complete meth‐
ods into supplemental materials, or for journals moving away from 
supplemental material, to online methods that are separate from the 
article; these are not often critically reviewed by referees and can 
go unread by the experimenters. Furthermore, reviewers might not 
be able to adequately review methods and tools and subsequently 
might fail to notice that key details are missing. This can lead to a lack 
of complete and transparent reporting of the information required 
for another researcher to repeat protocols and methods (Goodman 
et al., 2016). Similarly, journals requiring a subsection on statistical 
analyses rarely ask the authors to provide a full account of the sta‐
tistical approaches, and the authors may also fail to include a full 
account of the statistical outputs in the results section. Without a 
rigorous description of the methods, materials, and statistical ap‐
proaches, experimenters lack the necessary information to indepen‐
dently replicate or nearly replicate results with the same protocol 
under similar conditions (Goodman et al., 2016; Kilkenny et al., 2009).

2.2 | Aiming for novelty and impact

Current publication trends place emphasis on the pursuit of novelty 
and innovation (Cohen, 2017), which leads to a collection of report‐
ing problems in how data were obtained (Forstmeier et al., 2017). 
At the most extreme, pressure to publish may lead individuals to 
rush their experiments, cut corners, make unintentional errors in 
statistical outputs, or overinterpret the findings (Alberts, Kirschner, 
Tilghman, & Varmus, 2014), which can lead to irreproducibility of the 
scientific findings.

To publish in “high impact” journals, scientists may resort to sub‐
mitting only their most novel and impactful findings and avoid pre‐
senting nonsignificant or incremental findings (Cohen, 2017), though 
the latter also have important implications in driving scientific prog‐
ress. The pressure to publish sensational findings has even led some 
“high impact” journals to state in their submission forms: “negative 
results are not accepted” (Matosin, Frank, Engel, Lum, & Newell, 
2014). This emphasis might encourage scientists to pursue nonlin‐
ear lines of investigation in search of statistical significance (e.g., 

Box 1 Definitions

1. Open Science—the process of making the content and pro‐
cess of producing evidence and claims transparent and ac‐
cessible to others (Munafo et al., 2017).

2. Methods Reproducibility—complete and transparent report‐
ing of information required for another researcher to re‐
peat protocols and methods (Goodman, Fanelli, & Ioannidis, 
2016).

3. Results reproducibility—independent attempts to reproduce 
the same or nearly identical results with the same protocols 
under slightly different conditions.

4. Rigor—applying the scientific method in the strictest sense 
to ensure an unbiased experimental design, analysis, inter‐
pretation, and reporting of results.

5. Transparency—the process by which the methodology, in‐
cluding the experimental design, data collection, coding, 
analysis, and tools used in data analysis, is clearly visible to 
all readers.

6. Randomization—the random allocation of participants/sub‐
jects to different experimental conditions or the order of 
sample collection to minimize the possibility of subjective 
influence in the assignment of subjects or unmeasured vari‐
ables that might influence the outcome.

7. Blinding—the investigator and study staff are unaware of 
the group to which the subject was allocated from study 
onset through data analysis.
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p‐hacking), and may be one driver of scientific misconduct, including 
falsifying and fabricating data to increase its impact or statistical sig‐
nificance (Steen et al., 2013). At the very least, it leads researchers 
to omit nonsignificant or incremental findings leading to a bias in 
the literature, and reinforces the perception that negative findings 
carry a low priority for publication (Capuano, Coats, Scavone, Rossi, 
& Rosano, 2015; Dickersin, Min, & Meinert, 1992). This publication 
bias has led science reporters and the public to declare that it has be‐
come more difficult to trust scientific findings (Bosman, 2006; Laine, 
Goodman, Griswold, & Sox, 2007).

2.3 | Inadequate training in experimental design, 
manuscript writing, and reporting tools

Even with the most rigorous reporting guidelines and stringent pub‐
lication standards, including the precise application of the scientific 
method to ensure robust and unbiased experimental design, method‐
ology, analysis, interpretation, and reporting of the results (Rigor and 
Reproducibility, 2017), it is not guaranteed the authors will fully com‐
ply. Reporting guidelines cannot overcome poor training in experimen‐
tal design and statistics, both of which may be responsible for many 
of the challenges leading to irreproducibility (Collins & Tabak, 2014; 
Weissgerber, Garovic, Milin‐Lazovic, et al., 2016). Indeed, investigators 
all too often make errors in designing and performing their research, in 
selecting statistical tests, and in reporting the results (Steward, 2016; 
Yamada & Hall, 2015). The problem can be exacerbated by errors 
being passed down by the primary investigator to students, by review‐
ers not catching these mistakes, and by editors not having the exper‐
tise to catch specific errors. However, tools to reeducate scientists at 
all levels in the experimental design and to employ correct data visu‐
alization techniques (Weissgerber et al., 2017; Weissgerber, Garovic, 
Savic, Winham, & Milic, 2016) are available (see the National Institutes 
of Health education modules designed to train students or retrain 
scientists on the responsible conduct of research, https://www.nih.
gov/research‐training/rigor‐reproducibility/training or the National 
Postdoctoral Association's Responsible Conduct of Research Toolkit). 
Moreover, many institutions have statistical consultation available to 
investigators, which should be used; JNR and Brain and Behavior both 
hired statistical editors to review the submitted manuscripts for statis‐
tical accuracy, and Current Protocols in Neuroscience recently released 
a statistical guide that provides general guidelines regarding when, 
how, and why certain improved statistical techniques might be used in 
neuroscience research (Wilcox & Rousselet, 2018; see also Motulsky, 
2014). These tools help the authors improve statistical reporting in 
manuscripts and ensure that the correct approach was used, though 
statistical reviews may be limited by how much raw data are available.

In addition to the above tools, editorials and commentaries pub‐
lished in various journals attempt to help the authors improve the de‐
scriptions of their experimental procedures and results to ensure that 
the published research is transparently and accurately reported (Bravo 
et al., 2015; Collins, Reitsma, Altman, & Moons, 2015; Hooijmans, 
Leenaars, & Ritskes‐Hoitinga, 2010; Kilkenny, Browne, Cuthill, 
Emerson, & Altman, 2010a; Landis et al., 2012; Shamseer et al., 2015). 

Unfortunately, the authors often fail to incorporate these guidelines 
into their articles and most journals do not enforce or penalize the 
authors for not including specific criteria (Baker et al., 2014). Refining 
the steps necessary to ensure quality control during the peer review 
and publication processes is essential in order to improve transpar‐
ency and scientific rigor. Adopting the approaches discussed below 
will better ensure that the experimental designs are accurate and 
deviations from that design are explained, with the ultimate goal of 
increasing the reproducibility of the published data. Journals and 
publishers should continue to provide detailed guidelines to help 
the authors during the submission process, but if researchers do not 
adopt a rigorous and transparent approach to scientific design and 
reporting from the onset of training, these requirements will con‐
tinue to fall short.

In the following sections, we outline the key steps to improve 
transparency and scientific rigor that should be considered during 
the designing stages of experiments, not just before submission for 
publication. These requirements can be broadly broken down into 
(a) reporting criteria to ensure rigor and transparency; (b) transpar‐
ent account of experimental design; (c) improving statistical rigor 
and transparency; and (d) peer review to enhance rigor and trans‐
parency. Encouraging specific descriptions and a full account of the 
study will ensure transparency and could improve reproducibility 
efforts. The next four sections will break down these components 
to elaborate on how each can improve transparency and rigor in sci‐
entific reporting.

3  | REPORTING CRITERIA TO ENSURE 
RIGOR AND TR ANSPARENCY

The following points describe the key characteristics that must be 
included in any research design to assess the internal validity, relia‐
bility, and potential for reproducibility of scientific findings. Many of 
these recommendations have been discussed in various venues (e.g., 
ARRIVE guidelines; Freedman et al., 2017; Kilkenny et al., 2010a; 
Munafo et al., 2017; Weissgerber, Garovic, Winham, et al., 2016; 
Weissgerber, Milic, Winham, & Garovic, 2015), and some might only 
be appropriate to specific sciences. However, we feel that inclusion 
of these criteria, when applicable, into research manuscripts will im‐
prove rigor and transparency of the experimental design and statisti‐
cal approaches.

3.1 | Appropriately describing the 
experimental subjects

The methods section of each published study begins with a descrip‐
tion of the experimental unit; however, in many cases, the informa‐
tion provided falls short. The experimental units are the entity that 
is randomly and independently assigned to the treatment conditions 
(e.g., human subject, animal, littler, cage, fish tank, culture dish; Lazic, 
Clarke‐Williams, & Munafo, 2018). The sample size is equal to the 
number of experimental units. In considering the sample size, one 

https://www.nih.gov/research-training/rigor-reproducibility/training
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must ensure that the experimental units are independently allocated 
to the experimental condition, the application of the condition is ap‐
plied independently to the unit, and the experimental units do not 
influence one another (Lazic et al., 2018). A significant concern in 
cell biology is determining whether cells or sections, for example, 
can be considered an experimental unit. In cases where an animal is 
treated and subsequent testing occurs postmortem (e.g., immuno‐
histochemistry or electrophysiology), then the histological sections, 
neurons per section, spines per neuron, tumor cells per section, etc., 
are all subsamples of the experimental unit, which is the animal, and 
should be considered an n of 1 (Galbraith, Daniel, & Vissel, 2010; 
Lazic et al., 2018). If data are not independent, one strategy is to ana‐
lyze clustered data (e.g., convert the replicates from a single subject 
into a single summary statistic; Galbraith et al., 2010). Alternatively, 
there are also procedures to accurately model the true variability in 
data sets using modern statistical techniques (e.g., handling nested 
data such as cells/animals, littermates; Wilson, Sethi, Lein, & Keil, 
2017). As Stanley Lazic so eloquently concluded in his recent paper 
(Lazic, 2018),

...a few simple alterations to a design or analysis can 
dramatically increase the information obtained with‐
out increasing the sample size. In the interest of mini‐
mizing animal usage and reducing waste in biomedical 
research (Ioannidis et al., 2014; Macleod et al., 2014), 
researchers should aim to maximize power by design‐
ing confirmatory experiments around key questions, 
use focused hypothesis tests, and avoid dichotomiz‐
ing and nesting that ultimately reduce power and pro‐
vide no other benefits.

An appropriately written section describing the experimental 
subjects must include a statement of ethical approval (Institutional 
Review Board approval for human research or Institutional Animal 
Care and Use Committee approval for animals), followed by the 
total number of participants involved in each experiment. The au‐
thors must also include a clear description of the inclusion and 
exclusion criteria, which should be prespecified prior to the start 
of the experiments. Reporting the number of experimental units 
(i.e., subjects, animals, cells) excluded as well as the reason for 
exclusion is necessary to prevent the researcher from introduc‐
ing selection bias that favors positive outcomes and distorts true 
effects (Holman et al., 2016). Crucially, studies involving human 
subjects must not reveal individual identifying information but 
must contain a full description of the participants’ demograph‐
ics as variations in the demographics can lead to confounding 
variables if not appropriately controlled. When designing an ex‐
periment, one must also account for sex as a biological variable 
(see below). One should carefully review the extant literature 
to determine whether sex differences might be observed in the 
study, and if so, design and power the study to test for sex differ‐
ences. Omitting this step could compromise the rigor of the study 
(Clayton, 2016, 2018).

3.2 | Randomization and blinding procedures

Choices made by investigators during the design and execution of 
experiments can introduce bias, which may result in the authors 
reporting false positives (Kilkenny et al., 2009; Kilkenny, Browne, 
Cuthill, Emerson, & Altman, 2010b; Landis et al., 2012). For example, 
when investigators are aware of which animals belong to one condi‐
tion or know that a given treatment should have a specific effect, 
or human subjects become aware of the conditions they are in, the 
researchers and participants may inadvertently be biased toward 
specific findings or alterations in a specific behavior (Karanicolas, 
Farrokhyar, & Bhandari, 2010; Schulz & Grimes, 2002). To reduce 
bias in subject and outcome selection, the authors should report 
randomization and blinding procedures (Festing & Altman, 2002). 
Implementing and reporting randomization and blinding procedures 
are simple and can be followed using a basic guide (Karanicolas et al., 
2010; Smith, Morrow, & Ross, 2015), but to reduce bias, it is essen‐
tial to report the method of participant randomization to the vari‐
ous experimental groups as well as on random sample processing 
and collection of data (Kilkenny et al., 2010a; Landis et al., 2012). 
Moreover, investigators should report whether experimenters are 
blind to the allocation sequence and also, in animal studies, report 
whether controls are true littermates of the test group (Galbraith et 
al., 2010). Similarly, once the investigator is blind to the conditions, 
they should remain unaware of the group in which the subject is al‐
located and the assessment outcome (Landis et al., 2012). Blinding 
is not always possible. In these cases, procedures to standardize the 
interventions and outcomes should be implemented and reported 
so groups are treated as equally as possible. In addition, researchers 
should consider duplicate assessment outcomes to ensure objectiv‐
ity (Karanicolas et al., 2010). Attention to reporting these details 
will reduce bias, will avoid mistaking batch effects for treatment ef‐
fects, and will improve the transparency of how the research was 
conducted.

3.3 | Animal housing and husbandry

Many life science disciplines use animal models to test their hy‐
potheses. Few studies provide detailed information regarding hous‐
ing and husbandry, and those reports that contain the information 
typically do not provide any level of detail that could allow for oth‐
ers to follow similar housing procedures. When using animals, care 
should be taken to adequately describe the housing and husbandry 
conditions as these conditions could have profound implications on 
the experimental results (Prager, Bergstrom, Grunberg, & Johnson, 
2011). At a minimum, the authors should introduce in the abstract 
the race, sex, species, cell lines, etc., so that the reader will be aware 
of the population/sample being studied. However, in the methods 
section, the authors should carefully describe all animal housing and 
husbandry procedures. For example, it is normally unclear whether 
animals were single‐ or group‐housed, and in most journals, the age 
and/or weight of the animals are commonly omitted (Florez‐Vargas 
et al., 2016). Other factors that are not commonly reported include 
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information on how the animals were transported from a breeder to 
the experimenter vivarium (see Good practices in the Transportation 
of Research Animals, 2006), vivarium temperature, humidity, day/
night schedules, how often cages are cleaned, how often animals are 
handled, whether enrichment is provided in a cage, and cage sizes 
(Prager et al., 2011). Requiring a full description of housing and hus‐
bandry procedures will be essential to the rigor and transparency of 
the published studies and could help determine why some studies 
are not reproducible.

3.4 | Sex as a biological variable

Sex/gender plays an influential role in experimental outcomes. A 
common practice within research is that findings in one sex (usu‐
ally males) are generalized to the other sex (usually females). Yet, 
research consistently demonstrates that sex differences are present 
across disciplines. For example, as evidence reveals in a recent issue 
of JNR (see Sex Influences on Nervous System Function), sex not 
only matters at the macroscopic level, where male and female brains 
have been found to differ in connectivity (Ingalhalikar et al., 2014), 
but at the microscopic level too (Jazin & Cahill, 2010). The National 
Institutes of Health as well as a number of funding agencies man‐
dates the inclusion of sex as a biological variable, yet this mandate 
is not enforced by most journals. Starting at the study design, the 
authors must review whether the extant literature suggests that sex 
differences might be observed in the study, and if so, then design 
and power the study to test for sex differences. Otherwise, the rigor 
of the study could be compromised. When publishing the results, the 
authors must account for sex as a biological variable, whenever pos‐
sible. At a minimum, the authors should state the sex of the subjects 
studied in the title and/or abstract of the manuscript. The rationale 
for choosing only one sex if a single‐sex study is conducted should 
also be provided, though discussed as a limitation to the generaliz‐
ability of the findings. Investigators must also justify excluding either 
males or females. The assumptions that females are more variable 
than males or that females must be tested across the estrous cycle 
are not appropriate as these are not major sources of variability 
(Beery, 2018). This policy is not a mandate to specifically investi‐
gate sex differences, but requires investigators to consider sex from 
the design of the research question through reporting the results 
(Clayton, 2016, 2018). In some instances, sex might not influence 
the outcomes (e.g., Fritz, Amrein, & Wolfer, 2017; Segarra, Modamio, 
Fernandez, & Marino, 2017), but balancing sex in animal and cellular 
models will distinctly inform the various levels of research (Clayton, 
2016). More specific guidelines for applying the policy of consid‐
ering sex as a biological variable are also available (Clayton, 2018; 
McCarthy, Woolley, & Arnold, 2017), but shifting the experimental 
group composition should be done in the context of appropriate a 
priori power analyses. One concern is that sample sizes need to be 
doubled to identify effects using both female and male subjects, but 
factorial designs can evaluate the main effects of the treatment and 
subject sex without increasing the sample size (Collins, Dziek, Kugler, 
& Trall, 2014). While the risk of false‐positive errors associated with 

testing sex differences in this way is present, reporting that these 
differences may or may not be present is imperative to understand‐
ing how sex influences the function of the nervous system. This 
practice should be extended to all scientific journals using animal/
human subjects.

3.5 | Transparent account of the experimental 
design and statistical approaches

A transparent experimental design, meaning how the experiment is 
planned to meet the specified objectives, describes all the factors 
that are to be tested in an experiment, including the order of testing 
and the experimental conditions. As studies become more complex 
and interconnected, planning the experimental procedures prior 
to the onset of experiments becomes essential. Yet even when the 
experiments are planned prior to their initiation, the experimental 
designs are often poorly described and rarely account for alterations 
in procedures that were used in the study under consideration. To 
provide a more transparent and rigorous approach to describing the 
experimental design, a new section should be placed after the “sub‐
jects” paragraph describing, in detail, the experimental design and 
deviations made from the original design.

The experimental design section should consist of two main 
components: (a) a list of the experimental procedures that were 
used to conduct the study, including the sequence and timing of ma‐
nipulation; and (b) an open discussion of any deviations made from 
the original design. The description should include an explanation 
of the question(s) being tested, whether this is a parameter estima‐
tion, model comparison, exploratory study, etc.; the dependent and 
independent variables; replicates (how often the experiments were 
performed and how the data were nested); and the type of design 
considered (e.g., completely randomized design, randomized com‐
plete block design, and factorial design; see Lin, Zhu, & Su, 2015; 
Suresh, 2011) for definitions and procedures to implement these de‐
signs. Assuming the authors planned the analysis prior to data collec‐
tion, the authors should describe the specific a priori consideration 
of the statistical methods and planned comparisons (Weissgerber, 
Garovic, Winham, et al., 2016) or report that no a priori statistical 
planning was carried out. If the statistical approach deviated from 
how it was originally designed (see, e.g., Registered Reports below), 
the authors should also report the justification for this change. This 
open description could help to improve independent research repro‐
ducibility efforts and assist reviewers and readers in understanding 
the rationale for specific approaches.

A precise description of how methodological tools and proce‐
dures are prepared and used should also be provided in the exper‐
imental design section. Oftentimes, methodological procedures are 
truncated, forcing the authors to omit critical steps. Alternatively, 
the authors may report that the methods were previously described 
but might have modified those procedures without reporting those 
changes. Due to current publishing constraints, various caveats that 
go into the methodological descriptions remain unknown. However, 
this can be remedied easily by journals requiring a full description or 

http://onlinelibrary.wiley.com/doi/10.1002/jnr.v95.1-2/issuetoc
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step‐by‐step procedure of the experimental protocol used to test 
the dependent variables. Two options are available for publishing full 
protocols. First, the protocol could be published in the manuscript, 
with the reviewers verifying that the procedures are appropriately 
followed; second, a truncated version of the methods could be 
published in the manuscript, but the extended methods must be re‐
quired as supplemental material (the extended methods will be peer‐
reviewed during the submission process). An alternative approach is 
to deposit step‐by‐step protocols into a database or a data reposi‐
tory such as Dryad, Figshare, or with the Center for Open Science, 
where they will receive a DOI and can be linked back to the original 
research article, which will contain the truncated procedures.

3.5.1 | Materials

Rigorous descriptions of the experimental protocols not only require 
a level of detail in the description of the experimental design, but 
also require a full account of the resources and how they were pre‐
pared and used. A contributing factor to irreproducibility is the poor 
or inaccurate description of materials. In order for researchers to 
replicate and build upon published research findings, they must have 
confidence in knowing that materials specified in a publication can 
be correctly identified so that they might obtain the same materi‐
als and/or find out more about those materials. Most studies do not 
include sufficient detail to uniquely identify key research resources, 
including model organisms, cell lines, and antibodies, to name a few 
(Vasilevsky et al., 2013). While most author guidelines request that 
the authors provide the company name, city in which the company is 
located, and the catalog number of the material, (a) many authors do 
not include this information; (b) the particular product may no longer 
be available; or (c) the catalog number or lot number is reported in‐
correctly, thus rendering the materials unattainable.

A new system is laying the foundation to report research re‐
sources with a unique identification number that can be deposited 
in a database for quick access. The Resource Identification Initiative 
standardizes the materials necessary to conduct research by assign‐
ing research resource identifiers (RRIDs; Bandrowski et al., 2016). To 
make it as simple as possible to obtain RRIDs, a platform was devel‐
oped (www.scicrunch.org/resources) to aggregate data about anti‐
bodies, cell lines, model organisms, and software into a community 
database that is automatically updated on a weekly basis and pro‐
vides the most recent articles that contain RRIDs. While SciCrunch 
is among the founding platforms, these identifiers can also be found 
on other sites, including antibodyregistry.org, benchsci.com, and 
others. Similarly, though more involved, PubChem offers identifica‐
tion for various compounds such as agonists and antagonists. Simply 
find the chemical abstract service (CAS) number from the chemical 
safety data sheet (SDS), input that number into PubChem, and re‐
ceive the PubChem Chemical Identifier (CID). RRIDs have been suc‐
cessfully implemented in many titles throughout Wiley and are also 
in use by Cell Press and a number of other publishers. The authors 
should provide RRIDs and CIDs when describing resources such as 
antibodies, software (including statistical software used, as this is 

rarely reported), and model organisms, or compounds used, allowing 
for easy verification by peer reviewers and experimenters.

3.5.2 | Statistical rigor and transparency

With most statistical software having a user‐friendly interface, stu‐
dents quickly learn how to perform basic statistical tests. However, 
users all too often choose inadequate and incorrect statistical meth‐
ods or approaches or cannot reproduce their analyses since they have 
only a rudimentary understanding to each test and when to use them 
(Baker et al., 2014; Lazic, 2010; Strasak, Zaman, Marinell, Pfeiffer, 
& Ulmer, 2007; Weissgerber, Garovic, Milin‐Lazovic, et al., 2016). 
What’s more, the authors do not appropriately describe their statis‐
tical approaches in text, partially because tests are performed only 
after the study is executed. In designing and reporting the experi‐
ments, the authors should report normalization procedures, tests for 
assumptions, exclusion criteria, and why statistical approaches might 
differ from what the authors originally proposed, if they developed 
these approaches prior to the onset of data collection. In addition, the 
authors must also include the statistical software and specific version 
thereof, descriptive statistics, and a full account of the statistical out‐
puts in the results section.

Errors in statistical outputs often arise when the authors (a) do 
not conduct and report a power calculation (Strasak et al., 2007) or 
do not distinguish between exploratory and confirmatory analyses 
(Kimmelman, Mogil, & Dirnagl, 2014); (b) fail to state which statistical 
tests are used or provide adequate detail about the tests, including 
the descriptive statistics and a full account of the statistical output; 
(c) fail to state whether assumptions were examined (Weissgerber 
et al., 2015); or (d) fail to describe how replicates were analyzed 
(Lazic, 2010). Moreover, it might be difficult to reproduce statisti‐
cal output when the authors do not report the statistical software 
and specific version thereof, fail to include in the manuscript the ex‐
clusion criteria or code used to generate analyses, or explain how 
modifications to the experimental design might lead to changes in 
how statistical analyses are approached (e.g., independent vs. non‐
independent groups; additional details about these common mis‐
takes can be found in Refs: Weissgerber, Garovic, Milin‐Lazovic, et 
al., 2016; Weissgerber, Garovic, Winham, et al., 2016; Weissgerber 
et al., 2017), but it is important to emphasize that failure to report 
these variables can lead to errors in data interpretation.

Choosing the correct statistical analyses first depends on an 
appropriate experimental design and mode of investigation (explor‐
atory vs. confirmatory; Kimmelman et al., 2014). One must decide 
whether experimental conditions are independent, meaning that no 
subjects or specimens are related to each other (Weissgerber et al., 
2017; Weissgerber, Garovic, Winham, et al., 2016), whether the con‐
ditions are non‐independent or paired, and whether there are any 
associations between variables (Nayak & Hazra, 2011). The second 
step is that statistical analyses must include specific details about 
the test statistics, rationale for choosing each test, a description 
of whether normal distribution patterns are obtained, and a state‐
ment about which p‐value level is deemed statistically significant. In 

www.scicrunch.org/resources
https://pubchem.ncbi.nlm.nih.gov/


     |  7 of 13EDITORIAL

addition, a transparent and rigorous statistical analysis section must 
include the following:

• Power analysis calculations or sample size justification for ex‐
ploratory research, including accuracy in parameter estimation 
(Maxwell, Kelley, & Rausch, 2008).

• Statement of the factors tested, types of analyses, and what post 
hoc comparisons were made.

• Statement of the statistical tests used and details as to why those 
tests were chosen, including how the authors choose between 
parametric and nonparametric tests (assumptions aside).1

• Statement of an assessment of assumptions.
• Statement of how replicates were analyzed. (e.g., are western 

blots performed in duplicate and band pixels averaged?)
• Data point exclusion criteria.
• Statement of how outliers were determined and how they were 

handled.
• Descriptions of raw data, including transformation procedures.
• Within the results, a full account of the test statistic, and where 

applicable, the degrees of freedom, p‐values reported to a con‐
sistent number of decimal places (usually three), and statement of 
whether the test was one‐ or two‐sided.

3.5.3 | Power analysis

Many studies are rejected for publication because of criticism that 
a study is underpowered, though many more studies are published 
despite this (Button et al., 2013). Reporting how a sample size was 
predetermined based on power analyses conducted during the 
experimental design stage is a good way to avoid this criticism. 
Researchers are taught to perform these analyses prior to the start 
of their experiments, but evidence suggests that researchers and 
peer reviewers do not fully understand the concept of statistical 
power, have not been given adequate education about the concept, 
or do not consider the measurement important in designing the ex‐
periments (Onwuegbuzie & Leech, 2004).

Reviewers and journal editors are beginning to ask authors to ad‐
dress the question of what the power of the study was to detect the 
observed effect (Goodman & Berlin, 1994; Levine & Ensom, 2001). 
Determining whether a study is appropriately powered a priori or 
post hoc is a matter of debate (Levine & Ensom, 2001). Many argue 
that post hoc power analyses are inappropriate, especially for non‐
significant findings, while others argue that post hoc power analyses 
are appropriate since a priori power analyses do not represent the 
power of the ensuring effect, but rather the hypothesized effect 
(Onwuegbuzie & Leech, 2004).

The a priori power analysis is the most common way of deter‐
mining the sample size for simple experiments and can be easily 

computed using freely available software such as G*Power. The 
sample size depends on a mathematical relationship among the (a) 
effect size of interest; (b) standard deviation (SD); (c) chosen signifi‐
cance level; (d) chosen power; and (e) alternative hypothesis (Festing 
& Altman, 2002). Yet, as more parameters come into play (e.g., 
within mixed‐effects modeling), power analysis software becomes 
more complex (see Power Analysis for Mixed Effect Models in R). 
Conducting these analyses allows researchers to confidently select 
a sample size large enough to lead to a rejection of the null hypoth‐
esis for a given effect size (Onwuegbuzie & Leech, 2004). However, 
one limitation to a priori power analyses is that effect sizes and SDs 
may not be known prior to the research being conducted and may 
lead to observed effects that are smaller or larger than the hypoth‐
esized effects (Wilkinson & Inference, 1999; see also Nuzzo, 2014). 
Alternatively, if it is conventional to use a specific number of sub‐
jects for a particular test, then one can report the calculated effect 
size for that particular sample size and decide whether more samples 
would be warranted. Either way, power and sample size calculations 
provide a single estimate, ignoring variability and uncertainty as such 
simulations are highly encouraged (see Lazic, 2016).

An alternative to the a priori power analysis is a post hoc power 
analysis (SPSS calls this “observed power”) or confidence intervals. 
The post hoc power analysis takes the observed effect size as the 
assumed population effect, though this computation might be dif‐
ferent from a true population effect size, which might culminate in a 
misleading evaluation of power (Onwuegbuzie & Leech, 2004). Post 
hoc power analyses always show there is low power with respect to 
nonsignificant findings (Levine & Ensom, 2001). Thus, utilizing the 
post hoc power analysis must be done with extreme care and should 
never be a substitute for the a priori power analysis. In fact, many 
in the statistical community see post hoc analyses as a waste of ef‐
fort and recommend abandoning this approach (Hoenig & Heisey, 
2001); see also https://dirnagl.com/2014/07/14/why‐post‐hoc‐
power‐calculation‐does‐not‐help/ and https://daniellakens.blog‐
spot.com/2014/12/observed‐power‐and‐what‐to‐do‐if‐your.html). 
If a reviewer or journal requests a power analysis, we recommend 
that rather than using post hoc power analyses, report confidence 
intervals to estimate the magnitude of effects that are consistent 
with the statistical data reported (Goodman & Berlin, 1994; Levine 
& Ensom, 2001; Smith & Bates, 1992). Alternatively, if increasing 
power is a necessity and/or sample sizes are already at their limits 
for financial or logistic reasons, one should consider alternative ap‐
proaches, which are well described by Lazic; these include (a) using 
fewer factor values for continuous predictors; (b) having a more fo‐
cused and specific hypothesis test; (c) not dichotomizing or binning 
continuous variables; (d) using a crossed or factorial design rather 
than a nested arrangement (Lazic, 2018).

We also advise authors to determine whether a parametric or 
nonparametric test is the most appropriate for the obtained data. 
Analogues to ordinary parametric tests (e.g., t test or ANOVA, etc.) 
can be performed even if data are skewed or have nonnormal dis‐
tributions; multiple robust analytics are available for these circum‐
stances (see Wilcox, 2013) as long as the sample size is sufficient. 

When describing the data, it is important to differentiate between an exploratory and 
confirmatory study, as this could have profound implications as to how data are presented. 
Exploratory analyses are meant to identify patterns in the data without much emphasis on 
hypothesis testing, but most studies publish confirmatory experiments to test one or a 
few stated hypotheses. 

http://www.gpower.hhu.de/en.htm
https://www.r-bloggers.com/power-analysis-for-mixed-effect-models-in-r/
https://dirnagl.com/2014/07/14/why-post-hoc-power-calculation-does-not-help/
https://dirnagl.com/2014/07/14/why-post-hoc-power-calculation-does-not-help/
https://daniellakens.blogspot.com/2014/12/observed-power-and-what-to-do-if-your.html
https://daniellakens.blogspot.com/2014/12/observed-power-and-what-to-do-if-your.html
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Importantly, parametric tests also generally have somewhat more 
statistical power than nonparametric tests and are more likely to de‐
tect a significant effect if one exists. Alternatively, when one’s data 
are better represented by the median, nonparametric tests may be 
more appropriate, especially when data are skewed enough that a 
mean might be strongly affected by the distribution tail, whereas 
the median estimates the center of the distribution. Nonparametric 
tests may also be more appropriate when the obtained sample size is 
small, as occurs in many fields where sample sizes average less than 
eight per group (Holman et al., 2016) or when the data obtained are 
ordinal, ranked, or there are outliers that cannot be removed (Frost, 
2015). Beware, however, that meaningful nonparametric testing 
with sample sizes too low (e.g., n < 5) contains very little appreciable 
power to reveal an effect, if indeed one is present; difficulties due to 
violations of the underlying statistical assumptions of the particular 
test being used might be present. Bayesian analyses with small sam‐
ple sizes are also possible, though estimates are highly sensitive to 
the specification of the prior distribution.

3.5.4 | Graphical representation of data

Figures illustrate the most important findings from a study by con‐
veying information about the study design in addition to showing the 
data and statistical outputs (Weissgerber et al., 2017; Weissgerber, 
Garovic, Winham, et al., 2016). Simplistic representations to visu‐
alize the data are commonly used and are often inappropriate. For 
example, bar graphs are designed for categorical data; when used to 
display continuous data, bar graphs with error bars omit key informa‐
tion about the data distribution (see also Rousselet, Foxe, & Bolam, 
2016). To change standard practices for presenting data, continu‐
ous data should be visualized by emphasizing the individual points; 
dot plots (e.g., univariate scatterplots) are strongly recommended 
for small samples, along with plots such as violin plots (or overlaid 
points on the plots) to provide far more informative views of the data 
distributions when samples are sufficiently large. Bar graphs should 
be reserved for categorical data only. Moreover, graphic data plots 
involving multiple groups are often shown as overlaid, but should 
be “jittered” across the x‐axis so that each discrete data point can 
be visualized. The use of jittering means that when there are fewer 
unique combinations of data points than total observations, the 
totality of the data distribution is not obscured. By adopting these 
practices, readers will be better able to detect gross violations of the 
statistical assumptions and determine whether results would be dif‐
ferent using alternate strategies (Weissgerber et al., 2015).

When plotting data, it is important to also report the variability of 
the data. Typically, this is expressed as the SD or standard error of the 
mean (SEM), but it is important to note that SEM does indicate vari‐
ability (Motulsky, 2014). The SD is calculated as part of an estimate 
of the variability of the population from which the sample was drawn 
(Altman & Bland, 2005; Nagele, 2003). The SEM, on the other hand, 
describes the SD of the sample mean as an estimate of the accuracy of 
the population mean. In other words, the SD shows how many points 
within the sample differ from the sample mean, whereas the SEM 

shows how close the sample mean is to the population mean (Nagele, 
2003). The main function of SEM is to help construct confidence in‐
tervals, which are a range of values that take into account the true 
population value (usually an unknown), so that one can quantify the 
proximity of the experimental mean to the population mean (Barde 
& Barde, 2012). Yet, deriving confidence intervals around one’s data 
(using SD) or the mean (using SEM) is premised on those data being 
normally distributed. Robust estimators are increasingly important as 
heteroskedasticity (having subpopulations with differing variability) 
is a frequent consequence of real‐world measurement. Traditional 
data transformations are an attempt to cope with this phenomenon, 
but for many, such transformations may not actually serve to resolve 
anything and may add a layer of unnecessary complexity.

In determining which estimate of variability to depict graphically, it 
is important to remember that the SD is used when one wants to know 
how widely scattered measurements are or the variability within the 
sample, but if one is interested in the uncertainty around the estimate 
of the mean measurement or the proximity of the mean to the popu‐
lation mean, SEM is more appropriate (Nagele, 2003). When plotting 
data variability, it is important to consider that when SEM bars do not 
overlap, the viewer cannot be sure that the difference between the 
two means is statistically significant (see Motulsky, 2014). We also 
note that it is misleading to report SDs in the narrative and tables but 
plot SEMs. Furthermore, unless an author specifically wants to inform 
the reader about the precision of the study, SD should be reported 
as it quantifies variability within the sample (Altman & Bland, 2005; 
Barde & Barde, 2012; Nagele, 2003). Therefore, the optimal method 
to visualize data variability is to display the raw data, but if that makes 
the graph too difficult to read, instead show a box–whisker plot, fre‐
quency distribution, or the mean ± SD (Motulsky, 2014).

3.5.5 | Inclusion of statistically 
significant and nonsignificant data

The probability that a scientific research article is published tradition‐
ally depends on the novelty or inferred impact of the conclusion, the 
size of the effect measured, and the statistical confidence in that re‐
sult (Matosin et al., 2014; Scargle, 2000). The consequence of obtain‐
ing negative results can lead to a file‐drawer effect; scientists ignore 
negative evidence that does not reach significance and intentionally 
or unintentionally select the subsets of data that show statistical sig‐
nificance as the outcomes of interest (Munafo et al., 2017). This publi‐
cation bias skews scientific knowledge toward statistically significant 
or “positive” results, meaning that the results of thousands of experi‐
ments that fail to confirm a result are filed away (Scargle, 2000). These 
data‐contingent analysis decisions, also known as p‐hacking (Simmons, 
Nelson, & Simonsohn, 2011), can inflate spurious findings and lead to 
misestimates that might have consequences for public health. To com‐
bat the stigma of reporting negative results, we encourage authors to 
provide a full account of the experiment, to explicitly state both sta‐
tistically significant and nonsignificant results, and to publish papers 
that have been rigorously designed and conducted, irrespective of 
their statistical outcomes. In addition, some organizations such as the 
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European College of Neuropsychopharmacology are offering prizes 
in neuroscience research to encourage publication of data where the 
results do not confirm the expected outcome or original hypothesis 
(see ECNP Preclinical Network Data Prize). Published reports of both 
significant and nonsignificant findings will result in better scientific 
communication among and between colleagues.

3.5.6 | Real and perceived conflicts of interest

Though objectivity of a researcher or group is assumed, conflicts of 
interest may exist and could be a potential source of bias. Conflicts of 
interest largely focus on financial conflicts (Als‐Nielsen, Chen, Gluud, 
& Kjaergard, 2003; Thompson, 1993), but they can also occur when 
an individual’s personal interests are in conflict with professional ob‐
ligations, including industrial relationships (Young, 2009). Conflicts, 
whether real or perceived, arise when one recognizes an interest as 
influencing an author’s objectivity. This can occur when an author 
owns a patent, or has stock ownership, or is a member of a company, 
for example. All participants in a paper must disclose all relationships 
that could be viewed as presenting a real or perceived conflict of in‐
terest. When considering whether a conflict is present, one should 
ask whether a reasonable reader could feel misled or deceived. While 
beyond the scope of this article, the Committee on Publication Ethics 
offers a number of resources on conflicts of interest.

3.5.7 | Registered reports and open 
practices badges

One possible way to incorporate all the information listed above 
and to combat the stigma against papers that report nonsignifi‐
cant findings is through the implementation of Registered Reports 
or rewarding transparent research practices. Registered Reports 
are empirical articles designed to eliminate publication bias and in‐
centivize best scientific practice. Registered Reports are a form of 
empirical article in which the methods and the proposed analyses 
are preregistered and reviewed prior to research being conducted. 
This format is designed to minimize bias, while also allowing com‐
plete flexibility to conduct exploratory (unregistered) analyses and 
report serendipitous findings. The cornerstone of the Registered 
Reports format is that the authors submit as a Stage 1 manuscript an 
introduction, complete and transparent methods, and the results of 
any pilot experiments (where applicable) that motivate the research 
proposal, written in the future tense. These proposals will include a 
description of the key research question and background literature, 
hypotheses, experimental design and procedures, analysis pipeline, 
a statistical power analysis, and full description of the planned com‐
parisons. Submissions, which are reviewed by editors, peer review‐
ers, and in some journals, statistical editors, meeting the rigorous 
and transparent requirements for conducting the research proposed 
are offered an in‐principle acceptance, meaning that the journal 
guarantees publication if the authors conduct the experiment in ac‐
cordance with their approved protocol. Many journals often publish 
the Stage 1 report, which could be beneficial not only for citations, 

but also for the authors’ progress reports and tenure packages. 
Following data collection, the authors prepare and resubmit a Stage 
2 manuscript that includes the introduction and methods from the 
original submission plus their obtained results and discussion. The 
manuscript will undergo full review; referees will consider whether 
the data test the authors’ proposed hypotheses by satisfying the ap‐
proved outcome‐neutral conditions, will ensure the authors adhered 
precisely to the registered experimental procedures, and will review 
any unregistered post hoc analyses added by the authors to con‐
firm they are justified, methodologically sound, and informative. At 
this stage, the authors must also share their data (see also Wiley’s 
Data Sharing and Citation Policy) and analysis scripts on a public and 
freely accessible archive such as Figshare and Dryad or at the Open 
Science Framework. Additional details, including template reviewer 
and author guidelines, can be found by clicking the link to the Open 
Science Framework from the Center for Open Science (see also 
Chambers, Feredoes, Muthukumaraswamy, & Etchells, 2014).

The authors who practice transparent and rigorous science 
should be recognized for this work. Funders can encourage and 
reward open practice in significant ways (see https://wellcome.
ac.uk/what‐we‐do/our‐work/open‐research). One way journals 
can support this is to award badges to the authors in recognition 
of these open scientific practices. Badges certify that a particular 
practice was followed, but do not define good practice. As defined 
by the Open Science Framework, three badges can be earned. 
The Open Data badge is earned for making publicly available the 
digitally shareable data necessary to reproduce the reported re‐
sults. These data must be accessible via an open‐access repository 
and must be permanent (e.g., a registration on the Open Science 
Framework or an independent repository at www.re3data.org). 
The Open Materials badge is earned when the components of the 
research methodology needed to reproduce the reported proce‐
dure and analysis are made publicly available. The Preregistered 
badge is earned for having a preregistered design, whereas the 
Preregistered+Analysis Plan badge is earned for having both a pre‐
registered research design and an analysis plan for the research; 
the authors must report results according to that plan. Additional 
information about the badges, including the necessary informa‐
tion to be awarded a badge, can be found by clicking this link to 
the Open Science Framework from the Center for Open Science.

4  | PEER RE VIE W TO ENHANCE RIGOR 
AND TR ANSPARENCY

The process of peer review is designed to evaluate the valid‐
ity, quality, and originality of the articles for publication. Yet, 
peer reviewers are not immune to making mistakes. For exam‐
ple, several studies were conducted where major errors were 
inserted into papers. In these studies, no reviewer ever found all 
the errors and some reviewers did not spot any errors (Godlee, 
Gale, & Martyn, 1998; Schroter et al., 2004). While it is beyond 
the scope of this article to discuss many of the defects of peer 

https://www.ecnp.eu/research-innovation/ECNP-Preclinical-Network-Data-Prize.aspx
https://publicationethics.org/competinginterests
https://authorservices.wiley.com/author-resources/Journal-Authors/licensing-open-access/open-access/data-sharing.html
https://osf.io/pukzy/?_ga=2.102532100.406932645.1503674950-1224771655.1503674950
https://osf.io/pukzy/?_ga=2.102532100.406932645.1503674950-1224771655.1503674950
https://wellcome.ac.uk/what-we-do/our-work/open-research
https://wellcome.ac.uk/what-we-do/our-work/open-research
http://osf.io
http://osf.io
www.re3data.org
https://osf.io/tvyxz/wiki/home/
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review (see Smith, 2006), it is important to note that the changes 
to the peer review process are ongoing (Tennant et al., 2017) 
and publishers are working to develop more formal training pro‐
cesses. However, to quickly improve rigor and transparency in 
scientific research, peer review should emphasize the design 
and execution of the experiment. We are not saying that review‐
ers should focus solely on the experimental design; it is impor‐
tant for reviewers to weigh in on the novel insights of a study 
and how study results may or may not contribute to the field. 
However, to help ensure the accuracy and the validity of a study, 
emphasis should first be on the experimental design. To assist 
the reviewers, the authors should submit as part of their manu‐
script a Transparent Science Questionnaire (TSQ), or something 
equivalent, which identifies where in the manuscript specific el‐
ements that could aid in reproducibility efforts are found. The 
reviewers use this form to verify that the authors have included 
the relevant information and ensure that the study was designed 
and executed objectively, ensuring the study’s validity and re‐
liability. Using this or similar forms will also help reviewers to 
find the relevant information necessary to ensure the appropri‐
ateness of the design, which can then allow them to focus on 
the experimental outcomes. Adopting forms such as the TSQ or 
using services such as those offered by Research Square could 
also speed up the peer review process and reduce the cost in 
time committed by unpaid reviewers (which, in 2008, was es‐
timated to cost $2.3 billion) (https://scholarlykitchen.sspnet.
org/2010/08/31/the‐burden‐of‐peer‐review/).

A multistage review where different parties are concerned with 
different aspects of the review may be optimal. Because many er‐
rors in manuscripts are found in the statistical output, one stage of 
review should be a statistical review, whereby a statistical editor re‐
views the statistical analyses of the manuscript to ensure accuracy, 
but also verifies that the most appropriate statistical tests for that 
design were used. Upon completion, the editor will then make a de‐
cision as to whether the approach and execution are sufficient and 
are in line with the reported statistical output. By having experts 
focus on specific aspects of a research report, journal editors will 
become more confident that the research published is valid and of 
high quality and integrity.

5  | CONCLUSIONS

A challenge in science is for scientists to be open and transparent 
about the procedures used to obtain results. A major source of ir‐
reproducibility is substantial human error, which can occur while 
scientists are conducting the experiments or during data/statisti‐
cal analysis. Groups are continuing to develop systems that help 
researchers cover every aspect of the experimental design (e.g., 
EQIPD or XDA), but education and awareness of the key elements 
in research design and analysis are essential to transparent and 
reproducible research. By incorporating the specific elements dis‐
cussed in this document into research manuscripts, researchers 

can reduce subjective bias, while actively improving methods’ 
reproducibility, which will increase the likelihood of research re‐
producibility as the two are closely linked (Goodman et al., 2016). 
While variability in results is inevitable, ensuring that every sali‐
ent aspect of a study is reported will help others understand the 
procedures involved and potential sources of errors during the ex‐
perimentation process, which will ultimately lead to greater trans‐
parency in science.
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