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A FAIR and AI-ready Higgs boson 
decay dataset
Yifan Chen   1,2, E. A. Huerta   2,3 ✉, Javier Duarte   4, Philip Harris5, Daniel S. Katz   1, 
Mark S. Neubauer   1, Daniel Diaz   4, Farouk Mokhtar   4, Raghav Kansal   4,5,  
Sang Eon Park   6, Volodymyr V. Kindratenko   1, Zhizhen Zhao1 & Roger Rusack   7

To enable the reusability of massive scientific datasets by humans and machines, researchers aim to 
adhere to the principles of findability, accessibility, interoperability, and reusability (FAIR) for data  
and artificial intelligence (AI) models. This article provides a domain-agnostic, step-by-step assessment 
guide to evaluate whether or not a given dataset meets these principles. We demonstrate how to use 
this guide to evaluate the FAIRness of an open simulated dataset produced by the CMS Collaboration 
at the CERN Large Hadron Collider. This dataset consists of Higgs boson decays and quark and gluon 
background, and is available through the CERN Open Data Portal. We use additional available tools to 
assess the FAIRness of this dataset, and incorporate feedback from members of the FAIR community 
to validate our results. This article is accompanied by a Jupyter notebook to visualize and explore this 
dataset. This study marks the first in a planned series of articles that will guide scientists in the creation 
of FAIR AI models and datasets in high energy particle physics.

Introduction
Much of the success of applications of artificial intelligence (AI) to a broad range of scientific problems1,2 has 
been due to the availability of well-documented, high-quality datasets3; open source, state-of-the-art neural 
network models4,5; highly efficient and parallelizable numerical optimization methods6; and the advent of 
innovative hardware architectures7.

Across science and engineering disciplines, the rate of adoption of AI and modern computing methods has 
been varied2. Throughout the process of harnessing AI and advanced computing, researchers have realized that 
the lack of an agreed upon set of best practices to produce, collect, and curate datasets has limited the combina-
tion of disparate datasets that with AI may reveal new correlations or patterns8,9.

From 2014 to 2016, a set of data principles, or best practices, based on findability, accessibility, interoperabil-
ity, and reusability (FAIR) were defined so that scientific datasets could be readily reused by both humans and 
machines. The FAIR principles can be applied to address these limitations and increase the potential of AI for 
discovery in science and engineering. Using high energy physics (HEP) as an example, this article provides a 
domain-agnostic, step-by-step set of checks to guide in the process of making a dataset FAIR (“FAIRification”).

In HEP, there is a long history of the application of machine learning (ML) techniques to find small signals 
in the presence of large backgrounds. The observation of the Higgs boson at the CERN Large Hadron Collider 
(LHC) in 201210,11 was the result of the extensive use of ML algorithms based on boosted decision trees. Since 
then, as ML techniques have developed, their use in HEP has become ubiquitous. However, these developments 
have been largely the result of physicists adopting AI tools developed outside of their field of research.

The authors of this paper are members of the FAIR4HEP collaboration which has representation from the AI 
community and two of the large LHC collaborations, ATLAS and CMS. We are collaborating to prepare datasets 
from HEP experiments that meet FAIR data principles12. There are several major impediments to this strategy, 
including, among others, the lack of jargon-free documentation, difficulty of access to, and poor structure of 
the dataset, and the lack of clear metrics with which to benchmark and compare AI models. A consequence 
of the FAIR data principles is that they promote the use of open datasets, which in turn supports collaboration 
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between practitioners of different disciplines (in this case, high-energy physicists and AI researchers) who have 
overlapping interests in particular datasets. We note that these impediments are common to many disciplines.

The FAIR guiding principles12, published in 2016, provide guidelines to improve the “FAIRness” of digi-
tal assets, such as datasets, code, and research objects. While the principles are valuable for the scientific and 
engineering fields, they do not include exemplar metrics13 or define ways to measure how well the FAIR data 
principles are met for the digital asset.

In HEP, there are currently several efforts available for creating, indexing, and sharing open, public datasets. 
The CERN Open Data Portal provides access to data and resources from the four major LHC collaborations, 
ALICE, ATLAS, CMS and LHCb, for both education and research. Previous data releases have already yielded 
publications using LHC data authored by external researchers unaffiliated with an LHC collaboration14–19. 
However, despite being a repository of LHC open data, it does not allow general members of the HEP research 
community to upload their own datasets. Zenodo is another platform launched in May 2013, which is part of 
the OpenAIRE project, in partnership with CERN, that is a catch-all repository for European Commission 
funded research and is used widely. It allows the community at large to upload data, software, and other artefacts 
in support of publications, as well as material associated with conferences, projects, or institutions. Citation 
information is also passed to DataCite and other scholarly aggregators. Zenodo has been used to host sev-
eral high-profile public HEP datasets including the top quark tagging reference dataset20, LHC Olympics 2020 
Anomaly Detection Challenge dataset21, hls4ml jet substructure dataset, and the Anomaly Detection Data 
Challenge 2021 dataset22. Other services like Kaggle and Codalab have been used to host HEP challenges like 
the TrackML accuracy phase23 and TrackML throughput phase24. The Durham High-Energy Physics Database 
(HEPData)25 is an open-access repository established for sharing scattering data from experimental particle 
physics. It mainly comprises the data points from plots and tables related to several thousand publications 
including those from the LHC.

Despite the widespread availability of public datasets in HEP, these services, and the datasets they host, do 
not follow FAIR principles. In particular, the interpretation of the FAIR principles in the context of the large 
datasets available and the specific computing infrastructure needs in HEP is not clear. For instance, the CERN 
Open Data Portal hosts datasets with sizes approaching 100 TB26, requiring special versions of software (pro-
vided through a virtual machine image) to read and analyze the data. Given these stringent computational, 
storage, and domain knowledge requirements, the accessibility of these datasets to non-experts and those lack-
ing resources is not completely obvious. To explore how to address these difficulties, we present an analysis of the 
FAIRness of one of these datasets, the CMS H(bb) dataset.

This simulated collider dataset contains a selection of proton-proton interactions (events) in which a Higgs 
boson is produced and decays to two bottom quarks H(bb) (signal events) as well as background events com-
prised uniquely of “jets” of particles produced through the strong interaction, referred to as quantum chromo-
dynamics (QCD) multijet events. This dataset was released in the CERN Open Data Portal. By providing the 
details of the how we evaluate FAIRness of this dataset and the steps taken to meet the FAIR data principles, we 
can help researchers in other fields create FAIR datasets in a similar manner. To ensure the reliability of our 
results we have conducted a similar study using the ARDC FAIR self assessment tool. We have found that the 
steps we have followed and the ARDC assessment tool provide consistent results.

In the following sections we describe how the FAIRness of this dataset is evaluated and present the result in 
the format of a set of checks. We also describe methods to improve FAIRness, provide a detailed data descrip-
tion, and discuss how we interpret FAIR principles for HEP.

Results
We have assessed the FAIRness of the target dataset, described in the previous section and in more detail below 
using the related FAIR metrics13. The results of this analysis are summarized in Tables 1 and 2. The following 
subsections summarize the results for each principle, and discuss steps that were, or will be, take to increase the 
FAIRness of the dataset. We also highlight the difficulties inherent in interpreting and applying these principles 
to HEP datasets, due to their unique properties of size, complexity, data format, and required domain knowledge.

Findable.  The findable principle requires that metadata and data should be easy to find for both humans and 
machines. For this specific dataset: 1) both data and metadata are registered with globally unique and persistent 
identifiers; 2) the association between metadata and the dataset itself is explicitly described in its metadata, and 3) 
the dataset is registered as a searchable resource and is searchable on a commonly used search engine. However, 
though searchable, the metadata fields are fairly sparse and information is lacking. Enriching the metadata with 
additional fields to include references that cite this dataset, or links to related or derived datasets, would make the 
data more readily available.

Accessible.  To meet the FAIR accessible principle, data are required to be kept in a storage facility where they 
may be easily accessed or downloaded, with well-defined license and access conditions, which should be open 
access whenever possible, either at the level of metadata, or at the level of the actual data content.

The CMS H(bb) dataset is retrievable using standard HTTP communication protocols, is open access, and is 
under the Creative Commons public domain dedication (license). Since the DOI has formal metadata, it satisfies 
the metadata longevity plan.

Interoperable.  The interoperable principle requires that the data can be readily combined with other 
datasets by humans as well as by computer systems. For this dataset, (meta)data are represented using a for-
mal and broadly applicable representation language. To improve the interoperability, the data descriptions were 
rewritten to be human-readable, removing jargon to make it accessible not only for domain experts, but also 
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non-HEP researchers. The (meta)data use a set of FAIR vocabularies defined for both general purpose and HEP 
domain-related purpose. Although not all terms are findable in FAIR vocabularies, those that are not findable 
are well-defined and referenced. Lastly, the description of this dataset provides references to other datasets from 
which it is derived. However, a more extensive set of references that elaborate on the paper describing this dataset, 
and more information about the methods used to derive this dataset, could be added to aid in the comprehension 
of the problem to be addressed with this dataset.

Reusable.  Reusability requires the data to be readily usable for future research and to be able to be pro-
cessed further using different computational methods. We found that the metadata and data of this dataset are 
well-described with accurate and relevant attributes. Thus, we anticipate that the dataset will be reusable and can 
be integrated with additional data in future studies.

Methods
In this section we describe our approach to evaluate FAIRness of the CMS H(bb) dataset, and provide a 
human-readable description of the HEP dataset contents and its overall structure. These two complementary 
aspects of the dataset are critical elements in any pursuit of data FAIRification.

Dataset FAIRification.  We have created a set of ready-to-use, domain-agnostic checks to facilitate the eval-
uation of how well a dataset meets the FAIR guiding principles12, and applied them them to the H(bb) dataset. 
These checks provide researchers with a tool that can be used to assess the FAIRness of scientific datasets, and 
thus will streamline the use of such datasets for AI-driven analyses.

We have used the ARDC FAIR self assessment tools, developed by other researchers in the FAIR community, 
to validate our findings. We have also incorporated human-in-the-loop expertise in this process in the form of 
feedback from FAIR experts, who independently validated our results.

Dataset description.  The CMS H(bb) Open Dataset consists of two data samples that have been a critical 
part of the understanding of physical phenomena associated with the Higgs boson. The Higgs boson, first 
observed at the LHC in 201210,11, is an elementary particle that is related to the Higgs mechanism for electroweak 
symmetry breaking, responsible generating the masses of the elementary particles.

Metric Evaluation

F1. (Meta)data are assigned globally unique and persistent identifiers.

Identifier Uniqueness: this metric measures whether 
there is a scheme to uniquely identify the digital resource.

Pass. The DOI for the data (which resolves to a URL29) follows a registered 
identifier scheme.

Identifier Persistence: this measures whether there is 
a policy that describes what the provider will do in the 
event an identifier scheme becomes deprecated.

Pass. The use of a DOI provide a persistent interoperable identifier.

F2. Data are described with rich metadata.

Machine-readability of Metadata: to meet this metric, 
a URL to a document containing machine-readable 
metadata for the digital resource must be provided.

Pass. The URL for the metadata57 in JSON Schema with REST API is available. 
The use of JSON Schema provides clear human and machine readable 
documentation. Also, running the URL through the Rich Result Test shows the 
data page contains rich results.

Richness of Metadata: data are described with rich 
metadata

Partially pass. Reviewing the DataCite metadata for the DOI shows a fairly 
sparse record. The metadata can be improved with richer fields.

F3. Metadata clearly and explicitly include the identifier of the data they describe.

Resource Identifier in Metadata: this measures if the 
metadata document contains the identifier for the digital 
resource that meets F1 principle.

Pass. The association between the metadata and the dataset is made explicit 
because the dataset’s globally unique and persistent identifier can be found in 
the metadata. Specifically, the DOI is a top-level and a mandatory field in the 
metadata record.

F4. (Meta)data are registered or indexed in a searchable resource

Index in a searchable resource: this measures the degree 
to which the digital resource can be found using web-
based search engines

Pass. The dataset is indexed by Google Dataset Search engine.

A1. (Meta)data are retrievable by their identifier using a standardized communications protocol

A1.1: The protocol is open, free and universally implementable

Access Protocol: it measures whether the URL is open 
access and free. Pass. HTTP get on the identifier’s URL returns a valid document

A1.2. The protocol allows for an authentication and authorization where necessary

Access Authorization: it requires specification of a 
protocol to access restricted content.

Pass. This is an open dataset, accessible to everyone on the internet. The data is 
non-profit and privacy-unrelated, so no access authorization is needed.

A2. Metadata should be accessible even when the data is no longer available

Metadata Longevity: it requires metadata to be present 
even in the absence of data

Pass. Metadata is stored separately in the CERN Open Data server. As per FAIR 
Principle F3, this metadata remains discoverable, even in the absence of the 
data, because it contains an explicit reference to the DOI of the data. Data and 
metadata will be retained for the lifetime of the repository. The host laboratory 
CERN, currently plans to support the repository for at least the next 20 years.

Table 1.  Findable and Accessible principle assessment checks for the CMS H(bb) Open Dataset.
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One consequence of the Higgs mechanism is that the Higgs boson, which has a lifetime of only ≈10−22 sec-
onds, couples to other particles in proportion to their mass and therefore will decay preferentially to elementary 
particles with comparatively higher masses. The H(bb) decay process is particularly important because the b 
quark is the most massive quark to which the Higgs boson can decay. By measuring precisely the rate of this 
decay process, the physics of the coupling between the Higgs boson and ordinary matter can be tested. Any 
significant deviations from the predicted values would be an indication of physics beyond the standard model of 
particle physics.

When a Higgs boson decays to b quarks, the quarks, which cannot be free in nature, are detected as clusters 
of particles moving away from the interaction vertex (jets) and recognized by a secondary decay vertex from a 
particle containing a b quark a short distance from the interaction. Collisions, or interactions between protons 
in the two circulating beams (events) occur at a rate of about 1 GHz, while the rate of production of Higgs bos-
ons is only 0.001 Hz, about one every hour. The challenge of identifying Higgs bosons decaying to bb is to find 
them amid the much larger number of collisions (background) where a Higgs boson is not produced. In these 
background events, typically referred to as quantum chromodynamics (QCD) multijet events, a large number of 
particles are produced, which may include jets from b quarks, and can combine to resemble H(bb) events, which 
are the “signal” events.

To identify Higgs boson decays and separate them from the much larger QCD background, we use several 
key reconstructed components of proton-proton collisions. In particular, we reconstruct jets and analyze their 
characteristics which include tracks, secondary vertices (SVs), and substructure features. We also employ a 
particle-flow (PF) algorithm27 to provide a comprehensive list of final-state particles that are identified and 
reconstructed via combination of information from multiple detector subsystems.

The following defines these elements:

•	 Jets are sprays of elementary particles in a cone-shaped pattern that radiate out from the collision vertex. They 
may be characterized by their substructure, including features like the jet mass, charge, and shape28. In total, 
the dataset contains 64 reconstructed jet features. These features are not necessarily independent from one 
another, and they may be derived from lower-level features related to the tracks, PF candidates, and secondary 
vertices.

Metric Evaluation

I1. (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.

Use a Knowledge Representation (programming) 
Language: use a formal, accessible, shared, 
and broadly applicable language for knowledge 
representation

Pass. As described in Section 3, this dataset is represented based on the ROOT 
framework with Python interface. The notebook we release with this manuscript 
provides the required tools to handle this dataset using HDF5. The metadata is 
represented following the JSON Schema draft 4. Both are widely used formats in 
Physics.

Provide Human-readable descriptions Pass. The description and data semantics of this dataset provides rich information 
on how to use the dataset.

I2. (Meta)data use vocabularies that follow FAIR principles.

Use FAIR Vocabularies: it requires the metadata 
values and qualified relations should be FAIR 
themselves, that is, terms should be findable from 
open, community-accepted vocabularies.

Partially pass. I2 requires the controlled vocabulary used to describe datasets to 
be documented and resolvable using globally unique and persistent identifiers. For 
domain-specific terms, we leverage a vocabulary PhySH (Physics Subject Headings), 
a physics classification scheme developed by American Physical Society (APS). Some 
terms in dataset descriptions and semantics are registered in PhySH. However, since 
PhySH is still under development, there is not very good coverage of the narrower 
experimental concepts. For the terms not covered, references and hover definitions 
are provided. For general terms, the metadata follows the vocabulary from JSON 
Schema and a minimal set of FAIR terms are used.

I3. (Meta)data include qualified references to other (meta)data.

Use Qualified References: The goal is to create as 
many meaningful links as possible between (meta)data 
resources to enrich the contextual knowledge about 
the data.

Partially pass. There are connections with other datasets. A list of derived datasets is 
available at the dataset site [27]. Each referenced external piece of dataset is qualified 
by a resolvable URL and a unique CERN data identifier in metadata. To improve, the 
papers of these related data can be provided, from which more information about 
methods and workflow used to derive this dataset can be retrieved, and external 
datasets should be references by permanent identifiers rather than URLs.

R1.1. (Meta)data are released with a clear and accessible data usage license.

Accessible Usage License: the existence of license 
document for (meta)data are being measured

Pass. This dataset is released under Creative Commons CC0 dedication. The license 
field is present in the metadata.

R1.2. (Meta)data are associated with detailed provenance.

Detailed Provenance: Who / What / When produced 
the data? Why / How was the data produced?

Pass. The dataset is derived from other data, e.g.58,59, using public software60 that was 
made public to process and reduce it. We are able to track the original authors and 
data sources. But ideally, this workflow would be described in a machine-readable 
format.

R1.3. (Meta)data meet domain-relevant community standards.

Meet Community Standards: it measures whether 
a certification of the resource meeting community 
standards exists.

Pass. Both metadata and data meet the CERN Open Data community standards and 
thus have been released on the CERN Open Data repository.

Table 2.  Interoperable and Reusable principle assessment checks for CMS H(bb) Open Dataset.
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•	 Tracks are the reconstructed helical paths of charged particles as they move away from the collision vertex 
in the magnetic field at the detector. Each charged particle leaves a characteristic set of hits in the tracking 
detector of CMS, which are used to reconstruct the track. In total, there are 45 track features.

•	 Secondary vertices are collections of tracks that originate from a particle decay that is not at the collision 
vertex. Secondary vertices are a interesting set of candidate features that discriminate between different 
classes of jets, because they are dominant signatures in bottom-quark decays. In total, there are 18 SV features.

•	 Particle-flow candidates are formed by combining tracks and clusters from other detectors outside of the 
tracking detector. The PF algorithm27 is used to provide a complete event description through the generation 
of a comprehensive list of the particles produced in the collision. For each PF candidate, there are 24 features.

This dataset consists of particle jets extracted from simulated proton-proton collision events generated with a 
center-of-mass energy of 13 TeV. Each element of the dataset corresponds to a single jet, containing information 
about the jet, from jet-level features to track-level features (see later for the full details on the dataset).

The outcome of the default CMS reconstruction workflow is provided in the open simulation29. In particular, 
particle candidates are reconstructed using the particle-flow (PF) algorithm27. Particles produced nearly simul-
taneously with the events that leave extra hits in the detector (pileup) are removed with an algorithm developed 
for that purpose30. Jets are clustered from the remaining reconstructed particles31,32 with a jet-size parameter 
R = 0.8 (AK8 jets). The standard CMS jet energy corrections are applied to the jets. In order to remove soft, 
wide-angle radiation from the jet, the soft-drop (SD) algorithm33,34 is applied, with angular exponent β = 0, soft 
cutoff threshold zcut < 0.1, and characteristic radius R0 = 0.835. The SD mass (mSD) is then computed from the 
four-momenta of the remaining constituents.

The dataset is reduced by requiring the AK8 jets to have 300 < pT < 2400 GeV, |η| < 2.4, and 40 < mSD  
< 200 GeV. After this reduction, the dataset consists of 3.9 million H(bb) jets and 1.9 million QCD jets. Charged 
particles are required to have pT > 0.95Ge and reconstructed secondary vertices (SVs) are associated with the 
AK8 jet using φ ηΔ = Δ + Δ < .R 0 82 2 . The dataset is divided into blocks of features, referring to different 
objects: tracks, secondary vertices, and particle candidates. See the CERN Open Data Portal for a complete list 
of features.

A typical use case for this dataset is the development of a machine-learning classifier to distinguish the H(bb) 
signal from the QCD background jets, which in ML terms, can be done via a binary-classification task. However, 
it is often useful to further classify the QCD jets, thereby, the task becomes multi-class classification with the 
following six jet classes: H_bb, QCD_bb, QCD_cc, QCD_b, QCD_c, and QCD_others. The labeling is per-
formed sequentially. If a ‘generator-level’ Higgs boson is geometrically matched to the AK8 jet (ΔR < 0.8) and 
the two bottom quark decay products are also matched to the jet, then it is labeled as H_bb. If instead, only two 
bottom (charm) quarks are found, the jet is labeled as QCD_bb(QCD_cc). If only a single bottom (charm) 
quark is found, it is labeled as QCD_b(QCD_c). Finally, if none of the above conditions are met, it is labeled as 
QCD_others. The distribution of labels is shown in Fig. 1. The large class imbalance is a common feature of 
classification problems in high energy physics: background jets occur at much larger rates than signal jets.

Specific signatures of b quark decays can be used in a ML algorithm to differentiate between H(bb) and QCD 
jets. For instance, one of the distinct signatures of b quarks is its long lifetime, which in a high energy collision 
translates to a particle that decays with a displacement with respect to the collision. The model can learn this 
information to improve the accuracy of the inference. An illustration of some of key features that can be used for 
H(bb) jet tagging are shown in Fig. 2. The distributions of some salient jet features are shown in Fig. 3.

Many different deep learning architectures have been developed and studied for the task of jet classification, 
such as: interaction networks (INs)36, dynamic graph convolutional neural networks37, and Lorentz-group equi-
variant networks38. The first was applied to this data39 as a comparison with another ML model called the deep 
double-b (DDB) tagger created by the CMS Collaboration40 that uses a smaller subset of the input features. In 
addition to jet classification40–43, a further challenge within this dataset is a regression task, whereby one attempts 
to reconstruct the true energy of the Higgs boson. To perform this task, a regression loss needs to be constructed 
targeting the true Higgs boson energy. This promotes the exploration of physics-motivated loss functions, such 
as the earth (or energy) mover’s distance (EMD)18.

Dataset structure.  Particle physics uses a variety of data formats (and analysis ecosystems), including the 
ROOT library44. ROOT is a framework for data processing, created at CERN that is widely used by the high-energy 
physics community. A ROOT file is a compressed binary file where objects of any type can be saved. There are 
Python bindings built into ROOT, which are called PyROOT. Recently, an additional library called uproot45 has 
been developed that allows Python users to perform ROOT I/O directly. Unlike the standard C++ ROOT imple-
mentation, uproot is only an I/O library, primarily intended to stream data into machine learning libraries in 
Python. It can also make jagged or awkward arrays46.

Trees are a data structure in ROOT that are tables of information. Trees are composed of branches, which are 
the columns of the table. In this dataset, each row represents a jet. Some branches contain only a single floating 
point number per entry (jet). Other branches contain a vector of floating point numbers, where the length of the 
vector varies for each entry. The former means there is only one number per jet (or event); the latter means there 
may be a variable number per jet.

In addition to the ROOT format, this dataset is also released in HDF5 format. The HDF5 files contain different 
arrays for each output variable, with only information for up to 100 particle candidates, 60 tracks, and 5 second-
ary vertices stored in zero-padded arrays.
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Discussion
The motivation of our work to adopt FAIR principles for the production, collection and curation of scientific 
datasets is to streamline and facilitate their use in the design, training, validation and testing of AI models. 
This approach is particularly relevant for ongoing efforts that aim to automate the inference of massive sci-
entific datasets through the convergence of AI and modern computing environments47,48. It is often the case 
that AI models are trained with (abundant and easy to produce) synthetic data, large scale simulations, and 
first-principles mathematical models, although these may only provide an incomplete description of complex 
and highly nonlinear real-world phenomena. Thus, when AI models are used to extract new knowledge from 
realistic, experimental datasets, it is a common occurrence that AI predictions are off-target. However, once AI 
models are calibrated against experimental data, their predictions become increasingly accurate49. Given that 
this is a trend reported across many disciplines, it is useful to streamline the development of AI models with real, 
experimental datasets. This can be accomplished if synthetic and experimental datasets are produced, collected 
and curated following a common set of standards or, in this case, FAIR guiding principles.

Another motivation to understand and adopt FAIR principles to create AI-ready datasets is that some disci-
plines are subject to restrictive regulations that prevent data fusion and centralized analyses. This is a common 
issue in multi-modal biomedical datasets that are governed by federal regulations, consortium-specific data 
usage agreements, and institutional review boards. These restrictions have catalyzed the development of fed-
erated learning approaches, and the development of privacy-preserving methods and the use of secure data 
enclaves. It is clear that developing AI models by harnessing disparate data enclaves will only be feasible if 
datasets adhere to a common set of rules, or FAIR principles.

In this study we have shown that open source datasets may not be FAIR or AI-ready. The domain-agnostic 
checks that we provide in this article will provide researchers with a starting point, and guidance to FAIRify 
their datasets. The FAIR principles are comprehensive and can be used by AI and domain experts to enable the 

Fig. 1  The distribution of labels is shown for a representative file in the training dataset.

Fig. 2  Illustration of a H(bb) jet with two secondary vertices (SVs) from the decay of two b hadrons resulting in 
charged-particle tracks (including a low-energy, or soft, lepton) that are displaced with respect to the primary 
collision vertex (PV), and hence with a large impact parameter (IP) value.
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reusability of massive scientific datasets that will enable the creation of next-generation AI models leading to a 
digitally accurate, interpretable and reproducible description of natural phenomena.

Researchers who create FAIR datasets should keep in mind that this work aims to automate end-to-end AI 
studies, from data collection to inference. This will only be accomplished if datasets contain all the information 
needed to interpret, verify, and reproduce new findings. To accomplish this goal, we recommend that datasets 
are stored using formats that are widely available in modern computing environments, such as HDF5 or ROOT. 
Using such data formats simplify the handling of large datasets, will allow experimental and synthetic data-
sets to be on the same footing, and will make accessible more datasets for widely used APIs for AI research,  
e.g., TensorFlow or PyTorch. In future work, we plan to introduce tools to automate the evaluation of FAIR 
metrics for datasets and to gain a better understanding of the relationship between data and AI models.

Data Formatting
The technical details of the simulation of the events and their selection for inclusion in the dataset are described 
in this section. The dataset consists of a signal model containing H(bb) jets available from simulated events 
containing the postulated Randall-Sundrum gravitons50 that decay to two Higgs bosons, and thence to bb pairs.

The event generation was done by the CMS Collaboration with MADGRAPH5_aMCATNLO 2.2.2 at leading 
order, with graviton masses ranging between 0.6 and 4.5 TeV. Generation of this process enables better sampling 
of events where the Higgs boson is produced with a large lateral momentum component (pT). The background 
dataset was generated with pythia 8.20551 in different bins of the average pT of the final-state partons (�pT). The 
parton showering and hadronization was also performed with pythia 8.205, using the CMS underlying event 
tune CUETP8M152 and the NNPDF 2.353 parton distribution functions. Pileup interactions are modeled by over-
laying each simulated event with additional minimum bias collisions, also generated with pythia 8.205. The CMS 
detector response is modeled by Geant454.

Fig. 3  The distributions of some salient jet features: (a) the soft-drop jet mass; (b) number of particle 
candidates; (c) number of secondary vertices; and (d) number of tracks, are shown for one file in the training 
dataset.
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Data are composed of a set of characteristic variables relating to several broad types of objects consisting 
of event-level identifiers, features of charged particle tracks, secondary vertices, and particle-flow candidates, 
high level jet observables, and additional generator-level information, such as jet labels. There are 3 event-level 
features, 45 charged particle features, 18 secondary vertex features, 24 particle-flow candidate features, 64 high-
level jet features, and 18 generator-level identifiers. For each of these variables, a detailed description is present on 
the CERN Open Data Portal. For the HDF5 format, information is stored for up to 100 particle-flow candidates, 
with a maximum of 60 charged particle tracks, and up to 5 secondary vertices. In the instance where there are less 
candidates, inputs are zero-padded.

Data availability
The H(bb) data for this work is available on the CERN Open Data Portal29, in both ROOT and HDF5 formats.

Code availability
To make the CMS H(bb) Open Dataset more accessible, we provide notebooks55 from the course “Particle Physics 
and Machine Learning” at University of California San Diego. The course notebooks provide a guide for the use 
of the ROOT format dataset. We also have released a second set of interactive Jupyter Notebooks on GitHub56, 
where we visualize feature distributions and feature correlations, and provide machine learning examples on 
low-level features in this dataset. The Jupyter notebooks that we released show how the HDF5-formatted data can 
be accessed.
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