
UC Davis
UC Davis Previously Published Works

Title
BETA: a comprehensive benchmark for computational drug–target prediction

Permalink
https://escholarship.org/uc/item/28v7g2wt

Journal
Briefings in Bioinformatics, 23(4)

ISSN
1467-5463

Authors
Zong, Nansu
Li, Ning
Wen, Andrew
et al.

Publication Date
2022-07-18

DOI
10.1093/bib/bbac199
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/28v7g2wt
https://escholarship.org/uc/item/28v7g2wt#author
https://escholarship.org
http://www.cdlib.org/


Nansu Zong is an assistant professor at the Department of Artificial Intelligence and Informatics Research, Mayo Clinic. He works on computational drug
development based on knowledge base and deep learning algorithms.
Ning Li is a research fellow at the Center for Structural Biology (CSB) of the National Cancer Institute, NIH. He works on the structural and functional study of
protein kinase A involving the method of X-ray crystallography and cryo-EM.
Andrew Wen is a bioinformatician from Mayo Clinic. He is interested in utilizing informatics tools to build diverse applications in the health care area. He is an
expert on natural language processing (NLP).
Victoria Ngo is a postdoctoral research fellow at VA Palo Alto Health System and Stanford Health Policy. Ngo is a health informaticist, and her research focuses on
health equity and the optimization of information technology to improve the delivery and coordination of care in the community.
Yue Yu is a bioinformatician from Mayo Clinic, who is mainly working in the medical data standardization field. Yu is also interested in using artificial intelligence
methods to solve biomedical problems.
Ming Huang is an assistant professor in the Department of AI and Informatics at Mayo Clinic. He is an expert in topic modeling and deep learning.
Shaika Chowdhury is a research fellow with the Mayo Clinic AI & Informatics, who studies deep learning-based precision medicine. Chowdhury is interested in
utilizing knowledge graphs to improve the performance of deep learning models.
Chao Jiang is a PhD student at Auburn University. He works on diverse deep learning models and is particularly focused on graph neural networks.
Sunyang Fu is a senior data science analyst and biomedical informatics researcher at the Mayo Clinic. His research focuses on (i) designing and validating NLP
techniques for clinical information extraction, (ii) developing informatics frameworks and processes to accelerate the secondary use of electronic health records
(EHRs) for clinical research and (iii) discovering EHR heterogeneity and information quality through quantitative and qualitative methods.
Richard Weinshilboum is a professor at the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic. He studies
pharmacogenomics—the role of inheritance and individual variation in DNA sequence or structure in drug response.
Guoqian Jiang is a professor at the Department of Artificial Intelligence and Informatics Research, Mayo Clinic. He researches biomedical terminologies and
ontologies, data standards, common data elements and common data models for clinical studies.
Lawrence Hunter is a professor of pharmacology and computer science at the University of Colorado. He focuses on the knowledge-driven extraction of
information from the primary biomedical literature, the semantic integration of knowledge resources in molecular biology and the use of knowledge in the
analysis of high-throughput data.
Hongfang Liu is a professor at the Department of Artificial Intelligence and Informatics Research, Mayo Clinic. The primary research focus of Hongfang Liu is to
facilitate the secondary use of clinical data for clinical and translational science research and health care delivery improvement using data science, artificial
intelligence and informatics approaches.
Mayo Clinic is a charitable, nonprofit academic medical center that provides comprehensive patient care and education in clinical medicine and medical sciences
as well as extensive programs in research. Mayo Clinic includes Mayo Medical School, Mayo Graduate School, Mayo School of Graduate Medical Education, Mayo
School of Continuous Professional Development and Mayo School of Health Sciences.
Received: January 14, 2022. Revised: April 10, 2022. Accepted: April 29, 2022
© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/
by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial
re-use, please contact journals.permissions@oup.com

Briefings in Bioinformatics, 2022, 23(4), 1–16

https://doi.org/10.1093/bib/bbac199
Advance access publication date: 2 June 2022

Case Study

BETA: a comprehensive benchmark for computational
drug–target prediction
Nansu Zong , Ning Li, Andrew Wen, Victoria Ngo, Yue Yu, Ming Huang, Shaika Chowdhury, Chao Jiang, Sunyang Fu,

Richard Weinshilboum, Guoqian Jiang, Lawrence Hunter and Hongfang Liu

Corresponding author. Nansu Zong, Department of Artificial Intelligence and Informatics Research, Mayo Clinic, Rochester, MN, USA.
E-mail: Zong.nansu@mayo.edu

Abstract

Internal validation is the most popular evaluation strategy used for drug–target predictive models. The simple random shuffling in
the cross-validation, however, is not always ideal to handle large, diverse and copious datasets as it could potentially introduce bias.
Hence, these predictive models cannot be comprehensively evaluated to provide insight into their general performance on a variety of
use-cases (e.g. permutations of different levels of connectiveness and categories in drug and target space, as well as validations based
on different data sources). In this work, we introduce a benchmark, BETA, that aims to address this gap by (i) providing an extensive
multipartite network consisting of 0.97 million biomedical concepts and 8.5 million associations, in addition to 62 million drug–drug
and protein–protein similarities and (ii) presenting evaluation strategies that reflect seven cases (i.e. general, screening with different
connectivity, target and drug screening based on categories, searching for specific drugs and targets and drug repurposing for specific
diseases), a total of seven Tests (consisting of 344 Tasks in total) across multiple sampling and validation strategies. Six state-of-the-art
methods covering two broad input data types (chemical structure- and gene sequence-based and network-based) were tested across
all the developed Tasks. The best-worst performing cases have been analyzed to demonstrate the ability of the proposed benchmark
to identify limitations of the tested methods for running over the benchmark tasks. The results highlight BETA as a benchmark in the
selection of computational strategies for drug repurposing and target discovery.
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Introduction
Critical to the drug discovery process is the ability
to define, identify, screen and understand potential
candidate pairs among small molecules (i.e. drugs) and
proteins (i.e. targets) [1–3]. Despite advancements in
the use of biological assays to experimentally validate
drug–target interactions (DTIs), these early steps of
drug development remain expensive to accomplish [3,
4]. The use of current experimental screening (in vitro)
methods to cover all the possible combinations of DTIs
is infeasible, and the tendency to only focus on particular
families of ‘druggable’ proteins or ‘preferable’ drugs
greatly limits the systematic screening of the potentially
larger number of compounds, small molecules and
proteins available [5, 6]. The adoption of computational
(in silico) methods has therefore been suggested to
provide a more efficient means for prescreening [7–14].

Computational methods historically began with early
attempts of docking simulations and ligand matching
[2, 3, 15, 16] and have recently progressed to machine
learning-based solutions [14, 17–20]. Although it is desir-
able to validate the discoveries with biological assays,
known as external validation, it is infeasible for most
computational labs. Therefore, internal validation, such
as cross-validation, is the most popular validation strat-
egy for the existing methods, where some of the drug–
target associations remain for testing during the training
process. The datasets in internal validations are either
small-scale datasets developed from very early attempts
[21–25] or tailored sets generated from diverse biomedi-
cal databases that contain drug–target associations [14].
For example, among the 87 investigated computational
papers published in a recent survey [14], 79 (91%) and
66 (77%) papers conducted the experiments based on the
biomedical databases Drugbank [26] and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) [27], and 54 (62%)
used small-scale drug–target associations based on a
protein category in the target space developed for cross-
validation in 2008 [28]. Bias may still exist in these exper-
iments with simple random suffering as the patterns
of connectiveness and categories in the drug and target
space with a large number of associations will be favored.
A gold standard that provides large datasets, as well as
sophisticated validation methods with a minimized risk
of bias (e.g. permutations of different levels of connec-
tiveness and categories in the drug and target space, as
well as validations based on different data sources), does
not exist. The complexity in selecting suitable compu-
tational solutions during the drug development phase is
an ongoing challenge [21, 23, 29, 30], and without such a
standard benchmark to evaluate predictive models in an
equitable and comprehensive manner, the adoptability
of developed computational methods is hindered.

In this work, we fill this gap by providing a large-scale
benchmark that enables a comprehensive evaluation
of drug–target predictive models to facilitate a selec-
tion of computational strategies for drug and target

prescreening. This benchmark provides an extensive
multipartite network consisting of 0.97 million biomed-
ical concepts including 59 000 drugs and 95 000 targets,
and 8.5 million associations including 817 thousand
drug–target associations, as well as 62 million drug–drug
and protein–protein similarities based on drug chemical
structures and gene sequences that can be used to
comprehensively evaluate the prescreening strategies
that reflect seven use-cases (i.e. general, screening with
different connectivity, target and drug screening based
on categories, searching for specific drugs and targets
and drug repurposing for specific diseases), a total of
seven Tests (consisting of 344 Tasks in total) that cover
two types of training/testing sampling strategies based
on drug–target space as well as six types of validation
strategies. To demonstrate the use of our benchmark,
six state-of-the-art predictive models have been selected
and categorized based on the input types (i.e. structure-
and sequence-based and network-based methods) and
evaluated as use-cases. The best-worst performing
diseases (e.g. spinal muscular atrophy versus obesity for
a versioning-based Job and human immunodeficiency
virus (HIV) versus myocardial infarction for a trial-based
Job) have been analyzed. The results highlighted BETA as
a benchmark in the selection of drug–target prediction
methods for drug repurposing and target discovery
applications when a pair of drugs and targets are given
as the input.

Methods
Our proposed benchmark consists of two major compo-
nents: (i) datasets and (ii) evaluation Tasks.

With respect to datasets, a multipartite network was
constructed based on an integration of 11 existing
biomedical repositories (Diseasome [31], Drugbank
[26], Gene Ontology Annotation (GOA) [32], Interaction
Reference Index (iRefindex) [33], KEGG [27], Linked Struc-
tured Product Label (Linkedspl) [34], Online Mendelian
Inheritance in Man (OMIM) [35], Pharmacogenomics
Knowledge Base (Pharmgkb) [36], Side Effect Resource
(SIDER) [37] and STRING [38]), which incorporated
971 874 entities and 8 530 037 associations in total. We
defined a common ‘drug–target–disease’ node space that
consisted of the entities from Drugbank (6250 drugs and
2838 targets) and OMIM (52 187 diseases) (see Table 1(a)
for details). This graph also incorporated 46 million
drug–drug and 16 million protein–protein similarities
computed based on the chemical structures and gene
sequence obtained from Drugbank.

For the evaluation component, we designed seven
main Tests (344 Tasks in total) based on the Perspectives
(i.e. Perspectives of validation and data spaces) that were
used for the generation of training and testing sets (see
Table 1(b)). Specifically, Tests 0–4 (i.e. internally validated
Jobs) generated existent associations (i.e. positives) based
on internal validation, in which the random selection
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of the entire drug–target space was used to generate
nonexistent (i.e. negative) testing associations for Test 0
(10 Tasks), connectivity spaces were used for Test 1 (90
Tasks), category spaces were used for Tests 2 and 3 (144
Tasks) and a search of drug–target space was used for Test
4 (20 Tasks). Tests 5–6 (i.e. external validated Jobs) gener-
ated positive associations based on external validation,
in which versioning- and clinical trial-based validation
was used to generate the positive training and testing
sets for Tests 5 (40 Tasks) and 6 (40 Tasks), respectively, and
disease-based categories were used to generate negative
associations for testing.

Data collection and processing
To generate the full datasets, we collected the linked data
version of the human disease network [31], diseasome.
The Drugbank, GOA, iRefindex, KEGG [27], linkedspl
[33], OMIM [35], Pharmgkb [36] and SIDER [37] were
collected from Bio2rdf release 4 [40]. STRING V11 [38]
was directly downloaded. To integrate the databases,
we defined the common node spaces for drugs, targets
and diseases, in which Drugbank drugs and targets
were for drugs and targets, and OMIM was for diseases
(see Supplementary Figure 1, see Supplementary Data
available online at https://academic.oup.com/bib). The
common entity identifiers (IDs) were used for mapping.
Specially, the identifiers from Unified Medical Language
System (UMLS) [41], DBpedia and Wikipedia [42], KEGG,
PubChem [43] and Pharmgkb are used for mapping
in drug space; UniPort Knowledgebase [44], HUGO
Gene Nomenclature Committee [45], GenAtlas [46]
and OMIM were for target space, whereas DBpedia,
UMLS and Systematized nomenclature of medicine
clinical terms (SNOMED CT) [47] are for disease space.
We utilized owl:sameAs to provide a mapping across
different datasets and kept the original entities and the
associations in each dataset without integrating similar
concepts from different datasets into one data point
(i.e. entity). We obtained the drug chemical structure
formatted in the Simplified Molecular Input Line Entry
System [48] and gene sequence from Drugbank. Targeting
the drugs and targets from Drugbank in the common
node spaces, we generated the drug–drug similarity
and protein–protein similarity matrices based on the
Tanimoto similarity with Chemistry Development Kit [49]
and Smith–Waterman algorithm [50]. The quantitative
values in other datasets were not incorporated or
computed in the proposed benchmark as it is challenging
to normalize the quantitative values across the different
datasets for the computation. In practice, an Resource
Description Framework (RDF) triple store, GraphDB [51],
was adopted to manage the network.

Benchmark design
In general, the purpose of the evaluation was to assess
how well a model can predict drug–target associations
by separating existent associations (i.e. positives) from a

highly imbalanced large number of nonexistent associa-
tions (i.e. negatives). Conventionally, three characteristics
of datasets were widely used for evaluations: (i) the con-
nectivity pattern of the drugs and targets that underlie
topological context and inherent connection profiles [21,
52, 53], (ii) the categories of drugs and targets in real
scenarios [54–56] and (iii) the validation of the associ-
ations internally and externally [55, 57, 58]. As such,
we designed the seven evaluation Tests that generated
the training and testing associations based on the two
Perspectives—validations and data spaces. It should be
noted that to distinguish the hierarchical level of logic
used for the evaluation tasks, we used Tests, Perspectives,
Jobs, Scenarios and Tasks to represent the evaluation task
in each logic layer, in which each child concept was
considered to be the subtask of its respective parent
(e.g. Perspective of validation contains internal validation-
based Jobs and external validation-based Jobs).

Perspective of validation

Two types of validations, consisting of both internal and
external validation-based Jobs, were designed to generate
positive training and testing associations.

Internal validation-based jobs

Three validations were used: (i) k-fold cross validation-
based, in which the original drug–target associations
were randomly partitioned into k equal-sized subsam-
ples (without resulting in any isolated nodes in the net-
work being built by any of the remaining K-1 subsam-
ples), and then included in repeated k independent exper-
iments conducted using each subsample for testing (i.e.
positives testing set) and the remaining k – 1 subsam-
ples for training (i.e. positives training set) [4]; (ii) drug
category-based, in which the drug–target associations
were partitioned for training and testing, included pairs
with similar drugs from two different category systems
for drugs, drug categories from Drugbank and pharma-
cologic class from DailyMed [60] and (iii) target category-
based, where the drug–target associations were parti-
tioned for training and testing based on different cate-
gory systems for targets, family and protein class from
Panther [61].

External validation-based jobs

Two validations were used to evaluate the algorithms’
ability in predicting new associations that existed in the
newer version of training data and recently conducted
clinical trials: (i) versioning-based, in which novel drug–
target associations in the latest version of Drugbank
were tested with the older version used as the training
data and (ii) clinical trial-based, in which novel drug–
target associations obtained from the latest clinical tri-
als at ClinicalTrials.gov were tested based on the entire
datasets in the benchmark used as the training data.
Specifically, for a particular target of a disease, the drugs
tested for clinical trial interventions under ‘recruiting’

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac199#supplementary-data
https://academic.oup.com/bib
ClinicalTrials.gov
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Figure 1. Organization of the proposed benchmark. The evaluation Tasks were generated based on a multipartite network and publicly available third-
party resources (e.g. Drugbank [26] and ClinicalTrials.gov [39]). Two Perspectives, validation and data spaces, were used to generate the training and testing
associations. Specifically, there were two types of validation: internal validation (e.g. K-fold cross-validation, drug category- and target category-based)
and external validation (e.g. versioning- and clinical trial-based), used to generate the positive training and testing associations. Additionally, two types
of data spaces, connectivity space (e.g. Scenario 1—default, 2—semicold start and 3—cold start) and category space [e.g. Test End Only (TEO), Train End
Only (TRO), Test End Excluded (TEE) and Train End Excluded (TRE)], were designed to generate the negative testing associations. In total, seven main
Tests comprising 344 Tasks were provided in the benchmark based on the two Perspectives, in which Test 0 was for general drug–target prediction (10
Tasks), Test 1 for screening for drug–target associations with connectivity spaces (90 Tasks), Tests 2–3 for target and drug screening with category space
(144 Tasks), Test 4 for drug and target searching (20 Tasks) and Tests 5–6 for drug repurposing (40 Tasks).

status were considered a novel drug–target pair for test-
ing. For the two external validation, the targets were
categorized by the associated diseases.

Perspective of data space

Two types of data spaces were designed to generate
negative drug–target associations for testing: topological

ClinicalTrials.gov
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Figure 2. Logistics of two Perspectives (i.e. data spaces and validation) in the proposed benchmark. For the Perspective of data space, connectivity space-
and category space-based Jobs were proposed to generate the nonexistent associations (i.e. negatives) associations for testing. Specifically, three Scenarios
reflected the connectivity for nodes used for training, which were Scenario 3—cold start (i.e. a pair of nodes was isolated if the association was removed),
Scenario 2—semicold start (i.e. one of the nodes in a pair was isolated if the association was removed) and Scenario 1—default (i.e. none of the nodes
in a pair was isolated if the association was removed). There were nine Jobs for connectivity space-based Jobs, which included TT space, TC space, TA
node space, CC space, CA node space, and AA node space for Scenario 1, SS and SU for Scenario 2 and DI in testing space for Scenario 3. Four Jobs were
designed for category space-based Jobs, which were TEO, TRO, TEE, and TRE. For the Perspective of validation, both internal and external validation
were used. Three Jobs were used for internal validation, which were k-fold cross-validation-based, drug category-based and target category-based Jobs.
For a demonstration example, the heat maps in the two latter Jobs showed similarities among and between the different categories (e.g. dopamine
antagonists and gaba modulators) and protein family (e.g. cell division protein kinase and sodium/chloride-dependent transporter). Two Jobs were used
for external validation, which included versioning-based and clinical trial-based Jobs. For a demonstration example, six targets were allocated based on
a query of breast cancers. The proteins phosphatidylinositol 4,5-bisphosphate 3kinase catalytic subunit alpha isoform, androgen receptor and cellular
tumor antigen p53 were associated with the drugs adenosine triphosphate, diethylstilbestrol and triethyl phosphate based on validation with a newer
version of Drugbank. The genes DNA repair protein RAD51 homolog 1 and serine/threonine-protein kinase Chk2 were associated with drugs fulvestrant,
capecitabine and cyclophosphamide-based on validation with ClinicalTrials.gov. The structures of drugs and proteins were obtained from Drugbank
and Protein Data Bank [59], respectively.

structures in the drug–target space and in the node
category space.

Connectivity space-based jobs

The permutations of connectiveness levels between the
nodes supplied to an algorithm for predictive purposes
were tested in the evaluation. Specifically, the nodes
associated with the drug–target associations were classi-
fied into three spaces: (i) Test Node Space (TNS), (ii) Con-
nected Node Space (CNS) and (iii) All Node Space (ANS).
TNS consisted of all the drug and target nodes used for
testing. CNS consisted of all drug and target nodes with
a drug target association existing between them. ANS
consisted of all drug and target nodes. Consequently, nine
types of negative associations were designed based on
three Scenarios, which reflected the connectivity of drugs
and targets. Scenario 1 (default) was defined as ‘given
a pair of drug and target, neither of the nodes (a drug
or target) are isolated if the association is removed for
testing’. In Scenario 1, testing nodes were those nodes
in the CNS. Six Jobs can be generated, which included
Test–Test space-based (TT, a pair of nodes both coming
from TNS), Test-Connected space-based (TC, a pair of
nodes coming from TNS and CNS), Test-All node space-

based (TA, a pair of nodes coming from TNS and ANS),
Connected-Connected space-based (CC, a pair of nodes
both coming from CNS), Connected-All node space-based
(CA, a pair of nodes coming from CNS and ANS) and All-
All node space-based (AA, a pair of nodes both coming
from ANS). Scenario 2 (semi-cold start) was defined as
‘given a pair of drug and target, one of the two nodes
(either a drug or target) is isolated if the association is
removed for testing’. In Scenario 2, one of the nodes was
not in the CNS. Based on ‘guilt-by-association’ [4, 52], the
two nodes were considered similar if they connected to
a common node. Therefore, two types of negative asso-
ciations can be generated for testing, which were Semi-
isolated with Similar nodes (SS) and Semi-isolated with
Unsimilar nodes (SU). Scenario 3 (cold start) was defined
as ‘given a pair of drug and target, both nodes (drug
and target) are isolated if the association is removed for
testing’. In Scenario 3, both nodes were not in the CNS;
accordingly, a pair of Double Isolated (DI) nodes can be
created for negative associations.

Category space-based jobs

Drug-target associations were selected for testing simi-
lar/ dissimilar drugs or targets based on a category. Four

ClinicalTrials.gov
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types of negative associations were designed as follows:
(i) TEO, in which testing negative pairs (a source node
and an end node) were generated based on a source node
of a testing positive and similar end nodes to the end
node of testing positive in a category, (ii) TRO, in which
testing negatives were generated based on a source node
of testing positives and similar end nodes to the end
node of testing positive in a category, (iii) TEE, in which
testing negative pairs were generated based on a source
node of a testing positive and nonsimilar end nodes to
the end node of testing positive beyond a category and
(iv) TRE, in which testing negatives were generated based
on a source node of nontesting positives and nonsimilar
end nodes to the end node of testing positive beyond a
category.

Evaluation tasks

Based on the combinations of the Perspectives of data
space and validation, seven evaluation Tests were gen-
erated, in which the positive associations for training
and testing were generated based on the validation-
based Perspective, and the negative associations for test-
ing were generated based on the data space-based Per-
spective. Please note that the negative associations for
training were not provided in the benchmark Tasks as
those associations can be generated to improve the per-
formances in different algorithms [21, 62, 63]. To con-
duct a fair comparison, we removed the drugs, targets
and the corresponding drug–target associations from the
evaluation tasks when the drugs and targets did not have
chemical structure and gene sequence information in the
benchmark as those entities and associations cannot be
processed by the structure- and sequence-based meth-
ods.

To organize the Tasks, we classified them as follows.

Internally validated tests

Test 0 (10 Tasks): This Test was designed to conduct a
general evaluation of the drug–target prediction. The k-
fold cross-validation was used to generate the positive
training and testing pairs. The negative testing pairs were
randomly selected. In practice, k was set to 10.

Test 1 (90 Tasks): This Test was designed to evaluate
the drug–target prediction when drugs and targets were
at different connectivity spaces (e.g. isolated drugs or
targets). The k-fold cross-validation was used to generate
the positive training and testing pairs. Nine different con-
nectivity spaces were used for the selection of negative
testing pairs. k was set to 10.

Test 2 (72 Tasks): This Test was designed to evaluate
the drug–target prediction when drugs were within or
beyond two categories (i.e. drug categories from Drug-
bank and pharmacologic class from DailyMed [60]). The
k-fold cross-validation was used to generate the positive
training and testing pairs. Four kinds of category spaces
for drugs were used for the selection of negative testing
pairs. k was set to 3.

Test 3 (72 Tasks): This Test task was designed to evaluate
the drug–target prediction when targets were within or
beyond two categories (i.e. family and protein class from
Panther [61]). The k-fold cross-validation was used to
generate the positive training and testing pairs. Four
kinds of category spaces for targets were used for the
selection of negative testing pairs. k was set to 3.

Test 4 (20 Tasks): This Test was designed to evaluate the
searching for drugs or targets when a target or a drug is
given. N searches were conducted with a specified search
space (e.g. 500 drugs or targets). In practice, N was set to
10.

Externally validated tests

Test 5 (40 Tasks): This Test was designed to evaluate the
drug–target prediction for M diseases. A versioning-based
validation was used to generate the positive testing pairs
with the whole benchmark data that was used as positive
training pairs. Four kinds of category spaces for targets
were used for the selection of negative testing pairs. In
practice, M was set to 10.

Test 6 (40 Tasks): This Test was designed to evaluate
the drug–target prediction for M diseases. A clinical trial-
based validation was used to generate the positive testing
pairs with the whole benchmark data that was used as
positive training pairs. Four kinds of category spaces for
targets were used for the selection of negative testing
pairs. M was set to 10.

Predictive models in evaluation
Based on the data sources used as the input, two
types of algorithms were used: network-based meth-
ods and structure- and sequence-based methods: (i)
Network-based methods are the methods that used
any graphical information from the proposed bench-
mark as the input, which includes multiple types of
biomedical entities, such as drugs, targets, diseases,
side effects and pathways, and the corresponding
information from multipartite (including drug–target
bipartite) networks. In practice, we used three state-
of-the-art network-based methods: DTINet [21], Bio-
Linked Network Embeddings (bioLNE) [64] and NEural
integration of neighbOr information for DTI prediction
(NeoDTI) [65]. For DTINet and NeoDTI, we used drug–
target, drug–disease, protein–disease, drug–side effect,
protein–protein, drug–drug interaction as well as drug–
drug similarity, and protein–protein similarity matrices
as the input data. For bioLNE, we used drug, target,
disease, side effect, chromosomal location, drug category,
drug group, drug substance, food, module, pathway,
variant location, haplotype, disease feature and disease
symbol-related assertions. (ii) Structure- and sequence-
based methods are the methods that primarily used the
chemical structure of drugs and sequence of proteins
as the input. The drug chemical structure and gene
sequence were collected from Drugbank. In practice,
we considered that DeepPurpose [66], DeepDTA [67] and
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Figure 3. Results of six methods for Test 0 for all the evaluated methods.

GraphDTA [68] are state-of-the-art methods. For Deep-
Purpose, we used diverse encoding methods with the
default setting, such as Convolutional Neural Network
(CNN), Transformer, Daylight, AAC and Morgan for the
structure and sequence information. For DeepDTA, we
implemented it based on the DeepPurpose framework,
in which structure and sequence information were
both encoded with CNN. For NeoDTI, the parameter
ranges for the grid search specified as dimension of
node embeddingd = {

256, 512, 1024
}
, dimension of the

projection matrices k = {
256, 512, 1024

}
, repetition time

of neighborhood information aggregation p = {
1, 2, 3

}
.

For bioLNE, the parameter ranges for the grid search
specified as classification {J48, SVM, Random Forest,
Logistic Regress}, Binary Operator {average, hadamard,
wrighted-L1 and L2}, weights for DBSI and classification
are {0.0–0.9} with 0.1 increment and default performed
parameters of Node2Vec [69]. For GraphDTA and DTINet,
the default parameters were used.

Evaluation metrics
Three metrics were mainly used to assess the quality
of the predictions, including area under the receiver
operating characteristic curve (AUC ROC) [56, 57],
Precision/Recall (PR AUC) and F1 measure (including Pre-
cision and Recall). In practice, we normalized the three
metrics Mean

(
Area Under the Curve Receiver Operator

Characteristic (AUCROC)+Precision Recall Area Under the
Curve (PRAUC) + F1

)
to obtain a balanced score to

better identify the best-performing method in general.

In addition, we also provide Precision, Recall and F1
measures at top k and mean average precision (MAP)
at top k search results for Test 4. The AUC ROC, PR AUC
and F1 scores were calculated by the ROC JAVA library
(https://github.com/kboyd/Roc), the Weka evaluation
package [58] and scikit-learn package [70].

Evaluation Results
Existing methods were categorized into two distinct cat-
egories for the purpose of evaluating our benchmark
based on the input data used: (i) network-based and (ii)
structure- and sequence-based methods. For network-
based methods, DTINet [21], bioLNE [64] and NeoDTI
[65] are considered state-of-the-art for comparison. For
structure- and sequence-based, DeepPurpose [66], Deep-
DTA [67] and GraphDTA [68] were adopted. We con-
ducted a general evaluation (Test 0) to select the best-
performing methods as a representative for each cate-
gory and showed their results for the rest Tasks (Tests 1–6)
in the main manuscript. The complete results of all the
experiments for all the evaluated methods are shown in
the supplements.

Our results (see Figure 3) show, in general, structure-
and sequence-based methods performed better than
network-based methods (average AUCROC: 85.72 versus
84.67%, PRAUC: 81.01 versus 83.55%, Precision: 73.00
versus 77.07%, Recall: 84.52 versus 68.24%, F1: 78.23
versus 67.35%, general score: 81.65 versus 78.52%). The
best methods for network-based and structure- and

https://github.com/kboyd/Roc
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Figure 4. Results of internally validated Tests (Tests 1–4) for DeepPurpose and NeoDTI.

sequence-based methods are DeepPurpose (CNN and
Transformer) (average AUCROC: 88.01%, PRAUC: 84.44%,
Precision: 73.40%, Recall: 86.73%, F1: 79.49%, general
score: 83.98%) and NeoDTI (average AUCROC: 86.52%,
PRAUC: 83.32%, Precision: 71.40%, Recall: 80.78%, F1:
74.19%, general score: 81.34%). For each metric, we
observed that bioLNE performed the best in terms of
AUCROC (88.65%), PRAUC (85.73%) and Precision (94.09%)
whereas DeepPurpose (CNN and Transformer) performed
the best in terms of Recall (86.73%) and F1 (79.49%).
Notably, compared with other methods, NeoDTI had
a large standard deviation for Precision (9.20%) and
recall (13.05%). For the following Tasks, we considered
NeoDTI and DeepPurpose (CNN and Transformer) named
DeepPurpose for short as two representative methods
and show their results here (the results for the rest
methods are shown in Supplementary Material).

Internally validated tests
We conducted Tests 1–3, which were internally validated
Tests. Regarding Test 1, in general, DeepPurpose (average
general score: 78.67%) outperformed NeoDTI (74.09%) in
all six Jobs across all 90 Tasks constituting the connec-
tivity space-based Jobs (see Figure 4A). For Scenario 1—
Default (i.e. no isolation of nodes resulted if an asso-
ciation is removed), the performance increased when
the negatives are sampled from a broader connective
space, and achieved the best for type AA (e.g. general
score of DeepPurpose: 93.00% versus NeoDTI: 83.57%

for AA). According to the ‘guilt-by association’ princi-
ple, the nodes were more similar when sharing more
common neighbors [71]. The tested methods performed
excellently when the positive and negative pairs were
topologically distinct (e.g. AA) but performed much worse
when they were more topologically connected (e.g. gen-
eral score of DeepPurpose: 73.76% versus NeoDTI: 59.12%
for TT).

For the cold start problem, methods performed the
best in Scenario 1—default (AUCROC: 85.30%, PRAUC:
84.31%, Precision: 72.91%, Recall: 84.15%, F1: 75.98%,
general score: 81.86%), and then Scenario 2—semicold
start (AUCROC: 77.75%, PRAUC: 77.87%, Precision:
74.48%, Recall: 66.70%, F1: 68.38%, general score: 74.67%),
in which isolation of one node resulted if an association
was removed and finally Scenario 3—cold start (AUCROC:
54.29%, PRAUC: 57.20%, Precision: 53.28%, Recall: 24.24%,
F1: 29.21%, general score: 46.90%), in which the isolation
of both nodes resulted if the association was removed.
The failure of the cold start problem in prediction indi-
cated the necessity of predictive models for new drugs
and new targets. Particularly, we learned that, compared
with other jobs, DI has large standard deviations for other
evaluated methods as shown in Supplementary Figure
2 (see Supplementary Data available online at https://
academic.oup.com/bib) (e.g. AUCROC: 8.11%, PRAUC:
6.96%, Precision: 23.04%, Recall: 21.00%, F1: 17.69%,
general score: 9.36%).

Regarding Tests 2 and 3, in general, DeepPurpose (aver-
age general score: 82.69% for drug category-based Jobs

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac199#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 5. Results of externally validated Tests (Tests 5–6) for DeepPurpose and NeoDTI.

and 83.05% for target category-based Jobs) outperformed
NeoDTI (78.83% for drug category-based Jobs and 81.47%
for target category-based Jobs) across all four category
spaces and four categories covering the 144 Tasks (see
Figure 4B, C). Although DeepPurpose was selected as a
representative model, bioLNE (83.84% for drug category-
based Jobs and 84.46% for target category-based Jobs) was
the best performing model (see Supplementary Tables
1 and 2, see Supplementary Data available online at
https://academic.oup.com/bib). Regarding the category
space-based Jobs, TRE is the best performing (85.16%
for drug category-based Jobs and 87.49% for target
category-based Jobs), and TEO is the worst performing
(73.72% for drug category-based Jobs and 71.11% for
target category-based Jobs), which was consistent with
the design of the evaluation—it was more difficult to

separate the positive and negative drug–target pairs if the
drugs and targets were similar in the two pairs. We also
noticed that different categories had similar prediction
results for drug (e.g. ‘drugbank category’: 78.82% and
‘linkpl class’: 78.84% for NeoDTI, ‘drugbank category’:
81.42% and ‘linkpl class’: 83.96% for DeepPurpose)
and target categories (e.g. ‘family’: 81.33% and ‘protein
class’: 81.60% for NeoDTI, ‘family’: 83.50% and ‘protein
class’: 82.59% for DeepPurpose). The complete results for
category-based and connectivity space-based Jobs of all
the evaluated methods can be found in Supplementary
Tables 1 and 2 (see Supplementary Data available online
at https://academic.oup.com/bib).

For Test 4 (see Figure 4D), DeepPurpose outperformed
NeoDTI (MAP@10: 8.57% for DeepPurpose versus 4.86%
for NeoDTI, MAP@20: 9.96% versus 5.06%, MAP@50:

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac199#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac199#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac199#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac199#supplementary-data
https://academic.oup.com/bib
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11.13% versus 6.32%, MAP@100: 12.26% versus 7.10%).
Among all the methods (see Supplementary Figure 3,
see Supplementary Data available online at https://
academic.oup.com/bib), we noticed that bioLNE per-
formed the best (MAP@10: 23.37%, MAP@20: 53.68%,
MAP@50: 28.30%, MAP@100: 16.76%). Regarding the
queries, we learned that the target queries performed
better than drugs (MAP@10: 11.35% for targets versus
4.72% for drugs, MAP@20: 21.26% versus 14.87, MAP@50:
17.78% versus 9.62%, MAP@100: 16.72% versus 7.75%).
Test 4 also suggested that the best k can be found among
the top 20 to top 50 (MAP@20: 18.07% and MAP@50:
13.70%).

Externally validated tests
We conducted two types of externally validated Tests
based on versioning (Test 5) and trials (Test 6). Regarding
Test 5, despite the great performance achieved by Deep-
Purpose in the previous Tasks, NeoDTI (average general
score: 83.10%) achieved slightly better performance com-
pared with DeepPurpose (average general score: 77.79%)
across the 40 Tasks constituting the versioning-based
Jobs. Similar to the internal validation conducted, TRE
performed the best (92.81% for NeoDTI and 82.98% for
DeepPurpose), and TEO performed worst comparatively
(74.24% for NeoDTI and 71.34% for DeepPurpose) (see
Supplementary Figure 4A, see Supplementary Data avail-
able online at https://academic.oup.com/bib).

Among the 10 diseases of interest, breast cancer had
the best predictive performance (92.56% for NeoDTI
and 90.59% for DeepPurpose) and obesity had the worst
predictive performance (69.32% for NeoDTI and 71.63%
for DeepPurpose). There are four diseases for which both
NeoDTI and DeepPurpose performed well: breast cancer
(91.41% for NeoDTI and 87.32% for DeepPurpose), spinal
muscular atrophy (92.56% for NeoDTI and 83.70% for
DeepPurpose), obsessive–compulsive disorder (83.01%
for NeoDTI and 81.13% for DeepPurpose), and insomnia
(82.50% for NeoDTI and 80.23% for DeepPurpose).
Moreover, the results show that NeoDTI (88.2% for
HDL_cholesterol_level_QTL and 85.61% for migraine)
could be a good complementary tool for DeepPurpose.

Regarding Test 6, the performance of DeepPurpose and
NeoDTI was worse than the previous Tasks, in which
NeoDTI (average general score: 68.24%) outperformed
DeepPurpose (average General Score: 63.29%) across
the 40 Tasks constituting the trial-based Jobs. Similarly,
among the four types, TRE performed the best (77.08%
for NeoDTI and 63.38% for DeepPurpose) whereas
TEO performed the worst (59.44% for NeoDTI and
57.53% for DeepPurpose) (see Supplementary Figure
4B, see Supplementary Data available online at https://
academic.oup.com/bib).

Among the 10 diseases, myocardial infarction had
the best predictive performance (average general score:
97.2% for NeoDTI and average general score: 93.75%
for DeepPurpose) whereas Alzheimer’s disease had the
worst predictive performance (55.80% for NeoDTI and

43.67% for DeepPurpose). We also learned that NeoDTI
(e.g. 84.58% for obesity) could be a good complementary
tool for DeepPurpose, and vice versa for DeepPurpose
(e.g. 86.77% for leukemia) in some cases. For the
details of other methods for Tests 5 and 6, please refer
to Supplementary Figure 5 (see Supplementary Data
available online at https://academic.oup.com/bib).

Analysis of failures in prediction
Investigating the prediction for Tests 5 and 6 helped
identify situations in which existing methods could not
perform well. We chose the best-performing (spinal mus-
cular atrophy) and worst-performing disease (obesity)
for NeoDTI in Test 5. We found that although NeoDTI
successfully distinguished the positives from negatives
in training data, it lacked the ability to predict when the
targets were within the category (e.g. TEO and TRO). The
results show NeoDTI tends to predict all the associations
related to a target as a positive or a negative, which may
result in a good performance when all the labels are all
in positives or negatives (see be0000132 in TEO for spinal
muscular atrophy in Figure 6A). However, it may result
in bad performance if both positives and negatives are in
testing pairs (see be0000215 in TEO and TRO for obesity
in Figure 6B). Although NeoDTI performed well for some
diseases, we found it cannot properly repurpose drugs for
a given protein despite having the potential to predict the
protein with a given drug (see TEE and TRE). A similar
observation of myocardial infarction (best performing)
versus HIV (worst) for a trial-based Job (Test 6) can be
found in Supplementary Figure 6 (see Supplementary
Data available online at https://academic.oup.com/bib).

Discussion
To design the benchmark, we extracted various biomed-
ical associations from existing publicly accessible
databases and knowledge bases and designed various
evaluation Tasks to evaluate the ability of the predictive
models to separate the positive and negative drug-target
associations with similar drugs or targets defined for
different purposes. We hope our work will provide a
standardized and comprehensive way to evaluate the
existing models as well as substantial information (e.g.
features and associations of/among biomedical entities)
to facilitate the selection of the most suitable predictive
models in the real-world developmental process—the
prediction of drug–target associations with a given a pair
of drugs and targets, so as to lay the foundation necessary
for the successful development of robust computational
drug–target prediction methods similar to how the Text
RetriEval Conference [72] has contributed to information
retrieval and ImageNet [73] has contributed to visual
recognition. Please note that our benchmark is designed
for the methods requiring a pair of inputs and is not
applicable to the methods similar to (Q)SAR [74] where
only chemical structures are required.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac199#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac199#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac199#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac199#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac199#supplementary-data
https://academic.oup.com/bib
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Figure 6. Best- and worst-performing predictions in Test 5 for NeoDTI.

The main advantages of our proposed benchmark
include the creation of (i) a large-scale multidimensional
network for prediction consisting of an extensive set of
biomedical entities and diverse types of associations,
and (ii) diverse prediction use-cases in which drugs

and targets utilized for training and testing can be
selected based on the difference of topological con-
nectivity (connected versus isolated) or biomedical
categories (e.g. drug category versus protein family).
The datasets and evaluation Tasks are provided as
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off-the-shelf methods that can be easily adopted as
a well-documented resource for drug development
activities and scientific experiments. Although we
have incorporated 11 repositories, more endeavors are
needed to incorporate important repositories into the
benchmark. The addition of datasets to our benchmark
can be simply implemented by mapping to the common
node space (i.e. the drugs targets from Drugbank and
the diseases from OMIM). Currently, we are planning to
incorporate more repositories (e.g. SymMap [75]) when
their data are publicly accessible (see https://github.
com/bioIKEA/IKEA_BETA_Benchmark/tree/master/data_
space/output/datasets/pending for the pending reposi-
tories).

With our experiment, we found two limitations/biases
of existing state-of-the-art methods. Firstly, they are
incapable of handling new drugs and new targets (e.g.
the poor performance of SS, SU and DI for Test 1) and
secondly, they are incapable of properly repurposing
drugs for a given protein—refer to be0000215 for obesity.
As the discovery of the target-defined antineoplastic
compounds is considered a more effective way for drug
development (e.g. in cancers [76]), it drives researchers
to develop novel repurposing methods to fill these
needs. The proposed benchmark will provide a fine
assessment of the effectiveness of the drug repurposing
methods. Secondly, both DeepPurpose [66] and NeoDTI
[65] perform worse when the training and testing
nodes sharing more connections (e.g. the performance
of CC > TA > TC > TT; SU > SS > DI). Although it was
expected for a network-based method, such as NeoDTI,
to be affected by the connectivity of the drugs and
targets, it is a novel bias found for DeepPurpose. It, in
a sense, demonstrated an indirect connection between
topology-, structure- and sequence-based features for
drugs and proteins in drug development contexts
[28, 77, 78]. Although we addressed the bias caused
by characteristics of data (e.g. topological structure),
some biases in the practice of drug development (e.g.
investigative bias) were not addressed. More evaluation
Tasks are needed to perfect the investigation of the biases.

The evaluation Tasks in the benchmark have relied
on the drug–target associations provided in Drugbank,
which is considered as a ground truth. The drug–target
associations in Drugbank were collected, curated and
validated with multiple sources (e.g. PubMed, Therapeu-
tic Target Database (TTD), Food and Drug Administration
(FDA) labels, RxList, PharmGKB, textbooks) [26] and were
used widely in drug–target prediction tasks. In our study,
we simply trusted the existing knowledge bases to build
our benchmark. Although we consider our contribution
as the development of the benchmark, it is also impor-
tant to keep updated on the associations that are trust-
worthy and supported by the experimental screen. On
the other hand, the proposed benchmark was designed to
provide heterogeneous biomedical information despite
recognizing that it is a challenge for such information
to be processed. To represent the knowledge graph, we

used an undirected multidimensional network (i.e. edge
types can be various but multiple and directed edges
between two nodes are not allowed). We only kept one
theme for each repository (e.g. only one type of asso-
ciation between the nodes), and used owl:sameAs to
map similar concepts between the different reposito-
ries such that they can be linked with differing associ-
ations (e.g. reversed or conflict associations). For exam-
ple, through the mappings between the disease entity
‘myocardial infarction’ (Diseasome: 3281) in Diseasome
to the Omim (Omim:608446), and the side effect entity
in Sider (Sider: C0027051) to the Omim (Omim:608446),
drug–disease associations and drug–side effects asso-
ciations can be utilized simultaneously. In our study,
apart from the drug–target associations, the evaluation
only covers the usage of partial associations (e.g. drug–
drug and gene–gene similarity, drug–side effect, drug–
drug and protein–protein interaction, drug–disease and
protein–disease used in NeoDTI). The current benchmark
is to assess the performance of drug–target prediction,
and the heterogeneous datasets are designed to facilitate
the computational but are not requisite. The usage of the
other associations needed to be considered in the con-
struction of the benchmark (e.g. the effect of removal of
associations for network-based methods) or other predic-
tion tasks (e.g. prediction of protein–protein interaction).

Our study only incorporated two types of methods:
structure- and sequence-based and network-based
methods, in our evaluation, as they utilized two distinct
forms of input data—graphical structures of biomedical
knowledge (including drug-target associations) and
chemical structure and gene sequences. The two types
were considered ideal representatives to demonstrate
how our benchmark can provide input data to facilitate
the computation. Although other types (e.g. matrix
factorization, similarity/distance-based, feature-based
and hybrid methods [14]) could not be tested in this study,
they can be swapped as needed for individual evaluation
use cases so long as the data to be evaluated on can be
made into one of the two evaluated forms. The selection
of six methods evaluated in our benchmark is based
on three criteria: (i) methods of drug–target prediction
published in the top-tier journals for computational
biology from 2017; (ii) methods with open access source
code and (iii) methods that are feasible for process-
ing large training data. Although there are recently
published excellent works (e.g. CoVex [79], a Bayesian
ANalysis to determine Drug Interaction Targets (BANDIT)
[80] and network-based proximity [54]), they cannot be
implemented/included in the experiments due to the
limited resources. Regarding the evaluation metrics, both
AUCROC and PRAUC were not cut-off line sensitive (i.e.
a threshold score was used to separate the positive and
negative pairs for a prediction), whereas the F1 measure
was. A debate exists on how a prediction should be given
in real practice (e.g. probability estimation versus binary
decision): Although the probability estimation may give
a researcher more flexibility to set up a cut-off line, it is

https://github.com/bioIKEA/IKEA_BETA_Benchmark/tree/master/data_space/output/datasets/pending
https://github.com/bioIKEA/IKEA_BETA_Benchmark/tree/master/data_space/output/datasets/pending
https://github.com/bioIKEA/IKEA_BETA_Benchmark/tree/master/data_space/output/datasets/pending
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also challenging to determine a suitable cut-off line in
practice [14]. Depending on the users’ preferences, fur-
ther customization of the benchmarking evaluation may
be necessary. Although the proposed benchmark is only
designed for evaluating the effectiveness of prediction,
we recognize that efficiency is also critical for the selec-
tion of a suitable method in the real-world screening of a
large number of drug–target pairs. In general, the evalu-
ation Tasks are scalable for the evaluated methods since
the running time scales linearly with the number of Tasks
for each main Test (Supplementary Figure 7, see Sup-
plementary Data available online at https://academic.
oup.com/bib). As each Task is independent, in practice,
a parallel computation can be applied for each of the
evaluated methods, allowing for indefinite horizontal
scaling as the resources would permit. On the other hand,
although we set 500 drugs or targets in our search tasks
(Test 4), it requires a larger size of search space in practice.
Therefore, stress testing [81] to assess how stable a
method can complete screening on a full combination
of a large number of drug and target sets is needed.

Key Points

• We have proposed BETA, a large-scale benchmark that
enables a comprehensive evaluation of drug-target pre-
dictive models to facilitate a selection of computational
strategies for drug and target prescreening.

• BETA provides an extensive multipartite network that is
consisted of 0.97 million biomedical concepts and 8.5
million associations, in addition to 62 million drug–drug
and protein–protein similarities.

• BETA provides evaluation strategies that reflect five pur-
poses with a total of seven Tests with 344 Tasks across
multiple sampling and validation strategies.

• Six state-of-the-art methods covering two broad method
types (chemical structure- and gene sequence- and
network-based) were evaluated with the developed Tasks
across multiple Jobs (screening with different levels of
connectivity, target/drug screening when drugs/targets
are within/beyond category and drug repurposing for a
specific disease).

Supplementary data
Supplementary data are available online at https://
academic.oup.com/bib.

Availability
The proposed method is available, along with the data
and source code, at the following URL: https://github.
com/bioIKEA/IKEA_BETA_Benchmark.

Data availability
The data that support the findings of this study are
available on request from the corresponding author upon
reasonable request.

Code availability
The code for data integration and the benchmark gen-
eration is available at https://github.com/bioIKEA/IKEA_
BETA_Benchmark.
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