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Abstract
Background.  Dynamic contrast-enhanced MRI (DCE-MRI) parameters have been shown to be biomarkers for treat-
ment response in glioblastoma (GBM). However, variations in analysis and measurement methodology complicate 
determination of biological changes measured via DCE. The aim of this study is to quantify DCE-MRI variations 
attributable to analysis methodology and image quality in GBM patients.
Methods. The Extended Tofts model (eTM) and Leaky Tracer Kinetic Model (LTKM), with manually and automatically seg-
mented vascular input functions (VIFs), were used to calculate perfusion kinetic parameters from 29 GBM patients with 
double-baseline DCE-MRI data. DCE-MRI images were acquired 2–5 days apart with no change in treatment. Repeatability 
of kinetic parameters was quantified with Bland–Altman and percent repeatability coefficient (%RC) analysis.
Results. The perfusion parameter with the least RC was the plasma volume fraction (vp), with a %RC of 53%. The extra-
cellular extra-vascular volume fraction (ve) %RC was 82% and 81%, for extended Tofts-Kety Model (eTM) and LTKM 
respectively. The %RC of the volume transfer rate constant (Ktrans) was 72% for the eTM, and 82% for the LTKM, respec-
tively. Using an automatic VIF resulted in smaller %RCs for all model parameters, as compared to manual VIF.
Conclusions.  As much as 72% change in Ktrans (eTM, autoVIF) can be attributable to non-biological changes in the 
2–5 days between double-baseline imaging. Poor Ktrans repeatability may result from inferior temporal resolution 
and short image acquisition time. This variation suggests DCE-MRI repeatability studies should be performed in-
stitutionally, using an automatic VIF method and following quantitative imaging biomarkers alliance guidelines.

Key Points

	•	 Use of an automatically segmented vascular input function results in more repeatable 
DCE-MRI analysis in GBM.

	•	 The plasma volume fraction (vp) is the most repeatable perfusion kinetic parameter.

	•	 DCE-MRI studies should follow imaging protocol guidelines set forth by standards 
bodies such as the Quantitative Imaging Biomarkers Alliance (QIBA) to improve DCE 
repeatability.

Repeatability of tumor perfusion kinetics from dynamic 
contrast-enhanced MRI in glioblastoma
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Dynamic contrast-enhanced MRI (DCE-MRI) is useful for 
the assessment of patients with brain tumors and enables 
quantification of perfusion using pharmacokinetic (PK) 
parameters including the plasma volume fraction (vp), extra-
cellular extra-vascular interstitial volume fraction(ve), per-
meability or exchange rate (Ktrans), and leakage rate (λtr ).1,2 
DCE-MRI-derived kinetic parameters (particularly Ktrans and 
the ratio Ktrans/ve = Kep) have been shown to be useful im-
aging biomarkers for glioma grading,3,4 predictive of overall 
survival,5,6 and provide early indication of treatment efficacy 
in high-grade glioma.7,8 Despite clear potential for clinical 
applications, comparisons across institutions and interpre-
tation of changes in DCE-based kinetics are complicated by 
variations in analysis methods, MRI acquisition, and biolog-
ical changes in the tissue.

A critical feature of a reliable imaging biomarker is re-
peatability and reproducibility, as emphasized by guide-
lines published by the Radiological Society of North 
America’s Quantitative Imaging Biomarkers Alliance 
(QIBA).9 Observed changes in perfusion kinetic parameters 
may be due to both measurement error and physiological 
variations in the tissue. To quantify the repeatability and 
reproducibility of DCE-MRI based perfusion parameters, 
it is important to quantify variations not directly associ-
ated with changes in biology. Especially in routine clinical 
practice, or within the context of a clinical trial, it is crit-
ical to know whether quantitative differences in a given 
imaging biomarker represent true biological changes. 
Quantification of the variability of said biomarker is central 
to this. Knowledge of this variability can directly impact 
clinical decision-making where a true biological change 
may result in changes in patient management. To study the 
effects of image quality variation alone, patients must un-
dergo repeated, identical MRI studies in a short period of 
time to minimize the effects of biological changes. From 
these repeated measurements, a threshold of minimum 
detectable change in a measurement, typically in terms 
of percent change, can be derived with statistical confi-
dence.10 This threshold of detectable change is known as 
the percent Repeatability Coefficient (%RC). The smaller 
the %RC, the more repeatable the measurement, as a 
change is only statistically distinguishable from measure-
ment error when the change exceeds the %RC11.

Several prior studies have evaluated repeatability and 
reproducibility of DCE-MRI based perfusion parameters in 
a variety of disease settings.12–17 However, to our knowl-
edge, this analysis has not been performed in glioblas-
toma (GBM) for either the extended Tofts-Kety Model (eTM) 
model or the Leaky Tracer Kinetic Model (LTKM). Some 
studies include the Tofts model, analyzing repeatability of 
Ktrans, ve,

13 while some studies include the eTM and analyze 
only vp in healthy brain tissue.12 The Quantitative Imaging 
Network Glioblastoma Treatment Response (QIN-GBM-TR) 
dataset with double-baseline DCE-MRI acquisitions is a rare 
imaging study which allows evaluation of repeatability of 
perfusion kinetic parameters in GBM.18 Investigators have 
evaluated the percent RCs of dynamic susceptibility con-
trast (DSC)-MRI PK parameters such as cerebral blood flow 
(CBF) and volume (CBV) in tumor on this same dataset, and 
determined that they were 44% and 46% respectively.19,20 
They also determined that repeatability was increased by 
normalizing the tumor CBV and CBF values with those of 
normal tissue. As DCE-MRI typically requires extravasation 
of contrast agent out of the vessels and into the tissue,19 
similar normalization methods are not available for brain 
diseases. Flow measurements such as relative (r)CBV from 
quantitative DSC imaging do not require a vascular input 
function (VIF),21 and therefore may be more reproducible. 
However, DSC relies on the assumption that contrast agent 
does not extravasate from the vessels into the tissue, while 
DCE requires contrast extravasation for enhancement, and 
therefore these two modalities provide different, yet com-
plementary information about the perfusion and permea-
bility of the region.22

In the present work, we evaluate the repeatability of 
DCE perfusion kinetic parameters in 29 patients from the 
QIN-GBM-TR dataset. PK parameters were calculated from 
two baseline MRI exams taken within 2–5  days of each 
other, with no change in treatment (Figure 1A). PK param-
eters were calculated using the eTM model and the LTKM 
(Figure 1B), with VIFs derived from both automated and 
manual segmentation methods. By assessing repeatability 
of DCE-MRI, we aimed to quantify the variation introduced 
by scanner and computational methods and to inform clin-
icians and researchers in levels of change detection that 
are achievable with DCE-MRI, providing an evidence-based 

Importance of the Study

The Quantitative Imaging Network 
Glioblastoma Treatment Response (QIN-
GBM-TR) dataset includes pretreatment 
DCE-MRI data with double-baseline MRI acqui-
sitions. As such, this study serves as a bench-
mark for quantifying the repeatability of tumor 
perfusion kinetics from DCE-MRI, allowing 
investigators to set a detection threshold for 
inferring changes in perfusion attributable to 
biological changes, rather than technical varia-
tions. A key result of this study is the improved 
repeatability of pharmacokinetic parameters 

when using an automatically determined VIF 
in comparison to a manually segmented VIF. 
We hypothesize that further improvement to 
reproducibility can be achieved through ad-
herence to QIBA guidelines, notably high tem-
poral resolution and large number of dynamic 
phases. This has the impact of improving and 
potentially standardizing DCE protocols for gli-
oblastoma in the future and highlights the im-
portance of institution-specific repeat baseline 
studies to quantify and improve the reproduci-
bility of DCE analysis.

threshold for detecting biological changes which may be 
used to determine disease progression or response to 
therapy.

Materials and Methods

MRI Data

The data in this publication was sourced from a publicly avail-
able dataset, and is used in the present study in accordance 
to the QIN18 and The Cancer Imaging Archive (TCIA)23 guide-
lines. DCE-MRI data were collected from the QIN-GBM-TR 
study stored in the TCIA public repository between August 
2019 and July 2021.18,24 The study of publicly available data 
was approved by the local Institutional Review Board under 
Exception 4.  In the QIN-GBM-TR study, patients underwent 
two repeated brain MRI scans 2–5  days apart, referred to 
as baseline 1 and 2, occurring after surgery but prior to the 
start of therapy. Images were acquired on a single 32-channel 
Siemens Trio 3T scanners using Siemens 32-channel head 
coil. The DCE imaging sequence was performed as follows, 
per study documentation18: T10 mapping was performed by 
using a 3D FLASH sequence before the injection of contrast 
agent, with the ratio of repetition time (TR, ms) to echo time 
(TE, ms) TR/TE = 7.3 ms/4.41 ms, matrix size 128 × 128, field 
of view (FOV) 230 mm × 230 mm, 20 slices, and 2.1 mm slice 
thickness. Variable flip angle (VFA) T1 mapping was performed 
at four different flip angles, 2°, 5°, 10°, and 15°. DCE-MRI util-
ized a 3D FLASH dual gradient echo sequence with TR/TE1/TE2
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threshold for detecting biological changes which may be 
used to determine disease progression or response to 
therapy.

Materials and Methods

MRI Data

The data in this publication was sourced from a publicly avail-
able dataset, and is used in the present study in accordance 
to the QIN18 and The Cancer Imaging Archive (TCIA)23 guide-
lines. DCE-MRI data were collected from the QIN-GBM-TR 
study stored in the TCIA public repository between August 
2019 and July 2021.18,24 The study of publicly available data 
was approved by the local Institutional Review Board under 
Exception 4.  In the QIN-GBM-TR study, patients underwent 
two repeated brain MRI scans 2–5  days apart, referred to 
as baseline 1 and 2, occurring after surgery but prior to the 
start of therapy. Images were acquired on a single 32-channel 
Siemens Trio 3T scanners using Siemens 32-channel head 
coil. The DCE imaging sequence was performed as follows, 
per study documentation18: T10 mapping was performed by 
using a 3D FLASH sequence before the injection of contrast 
agent, with the ratio of repetition time (TR, ms) to echo time 
(TE, ms) TR/TE = 7.3 ms/4.41 ms, matrix size 128 × 128, field 
of view (FOV) 230 mm × 230 mm, 20 slices, and 2.1 mm slice 
thickness. Variable flip angle (VFA) T1 mapping was performed 
at four different flip angles, 2°, 5°, 10°, and 15°. DCE-MRI util-
ized a 3D FLASH dual gradient echo sequence with TR/TE1/TE2

/α = 6.8 ms/2.61 ms/3.89 ms/10°, matrix size 128 × 128, FOV 
230 mm × 230 mm, 20 slices, and 2.1 mm slice thickness. The 
acquisition was repeated for 60 frames for a total scan time of 
6 min, corresponding to a temporal resolution of 6 s. A bolus 
of 0.1 mmol/kg of Magnevist (Bayer) was injected 52 s after 
the start of the DCE scan, at a rate of 5 ml/s.19

A total of 29 double-baseline DCE-MRI image pairs were 
included in this study. From the 54 patients in the QIN-
GBM-TR study, nine patients did not have complete VFA 
images to compute T10 mapping, three patients were not 
found on the TCIA archive, four patients lacked one of the 
baseline imaging time points, two patients images con-
tained motion artifacts, four patients lacked significant 
contrast enhancement, two patients flip angle images did 
not cover the tumor region, and one patient had a tumor at 
the base of the skull and had no sagittal sinus in the field of 
view to use for a VIF (Supplementary Table 1).

Identification and Calculation of the Vascular 
Input Function

The VIF was identified and calculated with two different 
methods: automatic and manual segmentation (Figure 2). 
The automatic segmentation algorithm selects voxels with 
rapid signal enhancement, defined as the difference be-
tween bolus arrival and peak time less than 10 s, and elim-
inates voxels with a maximum signal intensity below the 
90th percentile in the whole image.25 The manual segmenta-
tion method used a user-defined region of interest (ROI) in-
cluding the superior sagittal sinus, drawn on 3–5 of the most 
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Figure 1.  (A) Baseline 1 and 2 (day 0 and day 5) T1-weighted post-contrast DCE-MRI (left) and parametric maps of the perfusion rate constant 
K trans  (right) for patient QIN-GBM-TR-20. (B) The extended Tofts-Kety model (eTM) and the Leaky Tracy Kinetic Model (LTKM) were used to quantify 
perfusion rate constants vp, ve, Ktrans, λtr. The LTKM model includes an additional compartment to the eTM model to account for contrast accumu-
lation which fills at rate λtr .
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central slices of the field of view.8 Both the automatic and 
manual VIF methods averaged the signal intensity and meas-
ured pre-contrast absolute T1 (T10) of all selected voxels to 
create a composite profile and were computed for each DCE 
scan.25 To directly compare perfusion parameters calculated 
from the automatic and manual approaches, the VIF was 
normalized to the maximum of the automatic and manual 
VIFs, such that the maximum value of the VIF for each pa-
tient is equal to 2. This methodology was selected to directly 
compare relative VIF concentration as opposed to absolute 
VIF concentration.25

Perfusion Kinetic Parameter Estimation

A map of T10 was estimated using the VFA method.26 All 
flip angle images were registered to the first DCE-MRI 
image before T10 quantification. The estimated T10 map 
was used to generate the concentration time profile.27 The 

VIF signal-intensity profile was corrected for T ∗
2  dephasing 

using dual-echo DCE sequence and the appropriate dual-
echo correction.28 Voxel-wise concentration was calculated 
from T10 and signal-intensity as:

1
r1

Å
1

T1 (t)
− 1
T10

ã
= C(t), (1)

where

1
T1 (t)

= − 1
TR

ln

Å
1− A

1− A cosα

ã
, (2)

A =
S (t)
S (0)

1− exp(−TR/T10)

1− exp (−TR/T10) cosα
, (3)
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Figure 2.  Two methods to identify and calculate the VIF were used in this study. Baseline 1 for study number QIN-GBM-TR-13 was chosen to high-
light differences between the two VIF segmentation methods. The first method determines the VIF automatically with an algorithm which selects 
only voxels (yellow boxes) with a rapid change in signal intensity and short time-to-peak. The second, more common method, is manual segmenta-
tion of the superior sagittal sinus (red region). Both methods average the signal intensity of all voxels to create a composite profile. The automatic 
VIF captures contrast washout and the initial peak, in contrast to the manual VIF in the sagittal sinus, which in this case shows a rapid saturation of 
signal with smaller initial peak and slow washout.
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r1 is the relaxivity of the contrast agent, T1(t) is the T1 of 
the signal intensity at time t, α is the flip angle, and TR is 
the repetition time.29 Two PK models were used for the es-
timation of perfusion parameters: the eTM1 (Eq. 4) and the 
LTKM (Eq. 5).2 The mathematical formulation of the models 
are as follows:

C (t) = vpCp(t) + Ktrans

t̂

0

Cp (τ) exp
Å
−K

trans

ve
(t − τ)

ã
dτ

(4)

C (t) = vpCp(t) + Ktrans

t̂

0

Cp (τ) exp
Å
−K

trans

ve
(t − τ)

ã
dτ + λtr

t̂

0

Cp (τ)dτ

(5)

where C(t)is the concentration of contrast agent for an 
individual voxel at time t , vp is the volume fraction in the 
plasma, Cp(t) is the concentration in the plasma given by 
the VIF, Ktrans is the perfusion rate constant, ve is the volume 
fraction in the extra-cellular, extra-vascular space, and λtr  is 
the leakage rate constant (LTKM only). Model parameters 
were estimated with the Levenburg–Marquardt regression 
method. The procedure for calculating eTM model param-
eters from a given concentration curve Cp(t) was validated 
with the QIBA DCE-MRI digital reference object (DRO)30 
(Supplementary Figures S3 and S4).

Goodness of Fit Criteria

Goodness of model-data fit was quantified with the R2 sta-
tistic. Given data values Ci , i = 1, 2,..., N, with mean C̄  and 
model values fi, goodness of fit is given by R2 = 1− SSerr

SStot , 

where SSerr =
Σ
i
(Ci − fi)

2 is the residual sum of squares, 

and SStot =
Σ
i

(
Ci − C̄

)2 is the total sum of squares. The 

value of R2 lies between 0 and 1, where a value of 1 in-
dicates perfect model-to-data agreement. Voxels with 
R2 ≤ 0.5 were considered to have a poor fit and are subse-
quently excluded from analysis. The number of voxels with 
fitting confidence level R2 > 0.5 were used as an estima-
tion of the tumor volume. Voxels below this threshold are 
typically necrotic voxels with low contrast enhancement 
and low signal-to-noise ratio. Voxels which did not fit the 
model to a confidence level R2 > 0.5 were excluded from 
statistical analysis, as contrast enhancement is required 
for accurate model parameterization.25

Statistical Analysis

The tumor region was manually segmented over all slices 
in the 3D volume to include the contrast-enhancing le-
sion and surrounding tissue. Mean parameter values of 
the voxels within the ROI with fitting confidence R2 > 0.5 
were included in statistical analysis. The relative change 
between baseline scans for each patient was calculated as 

d = ln
Ä
PB2
PB1

ä
, where PB1, PB2 are parameter values for base-

line 1, and 2 images, respectively. Repeatability was as-
sessed with Bland–Altman analysis.10,27 The Bland–Altman 
95% limits of agreement (LoA) is LoA = d ± 1.96σ where 
σ is the standard deviation (SD) of the distribution.10,11,31 

The RC at 95% confidence is given by RC = 1.96
√
2 wCV ,  

where, wCV =

√
1
n

nΣ
j=1

1
2
(xj1−xj2)

xj 2

2

, xj1 and xj2 are the param-

eter values at baseline 1 and baseline 2 respectively, and xj  
is the mean parameter baseline value for patient j. The co-
efficient of variation (CoV) for the mean difference of each 

parameter is calculated as CoV =

 
1
n

nΣ
j=1

sj
xj  where sj is the 

standard deviation of the two measurements for patient j.13 
Percent RC is given by %RC = RC×100 as in Peled et al.11 The 
change of whole brain T10 map histograms between base-
line scans is calculated as T10 Shift = P1−P2

P1 , where P1 is the 
histogram peak of the T10 values at baseline 1, and P2 is the 
histogram peak of the T10 values at baseline 2.

Results

The relative change of kinetic parameters for both the 
eTM and LTKM for all 29 patients/image pairs is shown 
in Figure 3. For both models and VIF methods, the inner 
quartiles (25–75th percentile) for all parameters are less 
than ±25%, as suggested by QIBA guidelines.9 There was 
no significant difference found between tumor size for ei-
ther eTM or LTKM, indicating both models fit equally well 
to the data (Table 1 and Figure 3). Smaller variation from 
baseline 1 to 2 is observed in the kinetic parameters de-
rived with the automatic VIF, as compared to manual VIF 
for both eTM and LTKM models. Bland–Altman plots for 
each parameter derived from eTM and LTKM with auto-
matic VIF are given in Supplementary Figures S1 and S2. 
Similar analysis was performed by a second observer, 
with DRO validation and inter-observer comparison pro-
vided in the supplementary materials (Supplementary 
Figures S5, S6 and Supplementary Table S7). The LoA 
and bias from Bland–Altman analysis, %RC, and CoV are 
given in Table 1. For the interested reader, mean param-
eter values for all model and VIF combinations are in-
cluded in the supplementary materials (Supplementary 
Table S11).

The %RC was lowest in vp for both the LTKM (72%) and 
eTM (%RC = 53%) with automatic VIF. The range of ab-
solute T10 shift (whole brain) between baseline 1 and 2 
scans was (11± 12)% (mean±SD) with maximum of 55%.  
Out of 29 patients, four patients, T10 shift > 20% were 
observed, corresponding to a significant B1 field inho-
mogeneity effect (Figure 4). There was no significant 
correlation found between T10 shift and time between 
baseline scans. Parameter values for patients with T10 
shift > 20% fall within the Bland–Altman LoA, except for 
one patient which is an outlier in Ktrans (eTM, auto VIF, 
Table 1, Supplementary Figure S1), and leakage rate 
λtr  (LTKM, manual VIF, Table 1, Supplementary Figure 
S2). The CoV was lowest for all parameters under eTM, 
and automatic VIF determination, with a standard devi-
ation of the relative change of 41%, 41%, 37% for Ktrans, 
ve, and vp respectively (Supplementary Tables S1 and 
S7). For nearly all cases, the LoA are smaller for the au-
tomatic VIF, as opposed to manual VIF (Table 1). All VIF 
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methods and model parameterizations are ranked by CoV 
in Supplementary Table S8.

Discussion

As a growing number of clinical trials are collecting perfu-
sion rate constants and other biomarkers from DCE-MRI, it 
is imperative that the repeatability of these parameters is 
assessed in vivo to establish the threshold above which a 
true biological change may be detected due to tumor pro-
gression or effect of therapy. In GBM, the perfusion rate 
constant Ktrans has been shown to be indicative of blood-
brain barrier (BBB) breakdown, and is thought to be an 

indicator of therapeutic response.8 The results presented 
in this work demonstrate repeatability of perfusion param-
eters over a short timeframe providing an estimate of 
change required to attribute changes to biological or physi-
ological changes in the patient.

Similar analysis was performed by Jafari-Khouzani 
et  al.19 and Prah et  al.20 on the DSC portion of the same 
dataset.18 The authors reported a %RC of 46% for CBV, 
and 44% for CBF in enhancing tumor after normalization 
to healthy tissue using a gradient echo sequence, while 
healthy white matter was found to be more repeatable 
with an %RC of 8% for both CBV and CBF.19 In contrast, 
for DCE-MRI the lowest %RC were found to be 72% for 
the LTKM and 53% for the eTM for vp using an automatic 
VIF. The %RC of Ktrans, the most comparable measurement 
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between DCE- and DSC-MRI, as Ktrans is a mixed measure 
of permeability and perfusion,1 for eTM using automatic 
VIF was determined to be 72%. It is important to note 
that no comparison or normalization between tumor and 
healthy tissue can be made for DCE-MRI in the brain, as the 
method utilized in the QIN-GBM-TR dataset requires con-
trast extravasation for T1 signal enhancement, which is dif-
ficult to observe for healthy brain tissue with intact BBB.32

A key finding of this study is the improved consistency 
of perfusion parameters between double-baseline scans 
when using an algorithm to automatically identify and 
calculate the VIF, as opposed to a VIF obtained by manual 
segmentation of the superior sagittal sinus. As the se-
quence used for this analysis is dual-echo, the calculated 
contrast concentration is more susceptible to T2* effects.28 
Corrections performed to cancel these effects may not 
completely account for flow induced T2* effects. T1 signal 
intensity may also be artificially enhanced in large vessels 
due to arrival of spin-labeled blood from outside of the im-
aging plane.33 The automatic VIF method tends to identify 
small voxels associated with smaller vessels and capil-
laries, rather than large arteries or veins which are more 
susceptible to T2* and flow artifacts and may be a better 
representation of the perfusion local to the tumor tissue. 
In the case of the brain, and in this study in particular, the 
only sufficiently large vessel present in the field of view for 
all patients was the superior sagittal sinus, which is a vein 

and therefore not the most suited vessel for an input func-
tion, as the dural sinus may become saturated without a 
definite peak value. Large vessels may also be susceptible 
to partial volume effect if ROIs are drawn too close to the 
vessel boundary.

In our analysis, the %RC of Ktrans and vp for both the eTM 
and LTKM when using an automatic VIF is less than the 
%RC calculated from a manual VIF segmentation. Previous 
studies have shown that the quality of DCE time-course fit-
ting is highly dependent on VIF selection.11 Much work has 
been done to develop smooth, parameterized population 
VIFs, which offer the benefit of improved repeatability at 
the cost of decreased measurement accuracy for the indi-
vidual.34 Therefore, we recommend the usage of an auto-
matic approach, similar to that used in the present study,25 
for maximal consistency and minimizing the risk of accu-
racy loss due to the use of a population VIF.34 Additionally, 
we also recommend converting MR signal intensity curves 
to contrast agent concentration curves and fitting to these, 
as accurate PK model fitting to DCE-MRI signal intensity 
data requires careful correction for internal consistency.35

In an effort to increase the fidelity of measurements 
made by DCE-MRI, the QIBA makes methodology recom-
mendations for maximizing the quality of DCE-MRI acqui-
sitions. Among these recommendations include the use of 
a 3T magnet, a field of view between 220 and 240 mm with 
an acquisition grid of 256 × 128–160, a 3D spoiled gradient 

Table 1.  Summary of Bland–Altman Repeatability Analysis of Perfusion Parameters for eTM and LTKM Models With Automatic and Manual VIF 
Methods. Limits of agreement are expressed as the lower bound (LB) and upper bound (UB) 

Parameter Bias  
ln(B2) −ln(B1)

1.96σ LoA  
(LB, UB)

%RC  
(95%)

%CoV

eTM, automatic VIF

Size (n-vox) 8.2E-2 −0.58, 0.74 64 33

vp −4.9E-2 −0.59, 0.49 53 32

ve −7.9E-2 −0.95, 0.79 82 40

Ktrans (min−1) 8.1E-2 −0.67, 0.83 72 39

eTM, manual VIF

Size (n-vox) 0.14 −0.77, 1.0 76 33

vp −5.0E-2 −0.73, 0.63 66 37

ve −7.7E-2 −1.0, 0.87 88 42

Ktrans (min−1) −6.4E-3 −0.90, 0.89 83 39

LTKM, automatic VIF

Size (n-vox) 0.11 −0.69, 0.91 76 36

vp −5.6E-3 −0.77, 0.77 72 37

ve −3.7E-4 −0.87, 0.87 81 41

Ktrans (min−1) −3.8E-2 −0.84, 0.91 82 41

λtr (min−1) 0.18 −1.5, 1.9 1.3E2 50

LTKM, manual VIF

Size (n-vox) 0.08 −0.73, 0.89 76 38

vp −6.2E-2 −1.2, 1.1 1.1E2 47

ve 6.6E-2 −1.0, 1.1 1.0E2 48

Ktrans (min−1) −8.0E−2 −1.0, 0.86 89 43

λtr (min−1) −8.0E-3 −1.4, 1.4 1.3 51
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recalled MRI sequence, with at least five pre-contrast and 
40 post-contrast phases acquired with < 10 s temporal res-
olution.29 From these recommendations, the QIBA advises 
a repeatability of 21% in Ktrans parameters as a threshold for 
physiological change detection.29 In contrast, the present 
QIN-GBM-TR dataset was acquired using a 3D FLASH 
dual gradient echo sequence, with a field of view equal to 
230 mm × 230 mm on a 128 × 128 grid, with roughly 30 pre-
contrast phases and 30 post-contrast phases,18 or roughly 
3 min of contrast dynamics. According to the QIBA DCE-
MRI guidelines, this dataset is both spatially and tempo-
rally under-sampled in post-contrast and is acquired with a 
sequence requiring T2* decay correction. Temporal under-
sampling known to poorly affect the accuracy of Ktrans es-
timation,8 and fit accuracy is decreased with few dynamic 
acquisitions.36 As Ktrans measurement is highly sensitive 
to sampling rate and the ability to capture the peak of the 
VIF,36 we recommend that studies aimed at measuring 
Ktrans accurately and repeatably, do so in accordance with 
the QIBA recommendations.

The present work demonstrates the %RC of Ktrans and ve 
to be 72% and 87%, respectively, using the eTM model with 
automatic VIF determination in the QIN-GBM-TR dataset. 
A prior study of DCE-MRI parameters found that the %RC 

for Ktrans and vewere 7.7% and 6.2% in patients with newly 
diagnosed glioma.13 We hypothesize that a dataset ac-
quired under full accordance to the QIBA guidelines would 
have smaller CoVs and RCs, similar to those presented 
by Jackson et al.13 Because GBM is a rapidly progressing 
disease,37 it is possible that tumor progression may con-
tribute to changes in perfusion parameters in the 2–5 days 
between double-baseline scans.18

The repeatability of DCE-MRI may be affected by both 
image acquisition and post-processing. Image acquisi-
tion includes signal-to-noise ratio, flip angle accuracy, 
B1-inhomogeneity, temporal and spatial resolution, length 
of imaging, and motion artifact.38 Post-processing in-
cludes the applicability of the applied kinetic model, ac-
curacy in VIF detection and deconvolution, accuracy of 
selected anatomic ROIs to the perfusion maps. In partic-
ular, T10 mapping from VFA methods has been shown to 
have a large inter-site variability (30%–40%) when using 
a phantom.15 These variations are thought to be due to B1 
field inhomogeneity, and contribute strongly to differences 
in the quantification of contrast agent concentration.15 
MR-Fingerprinting may aid in increasing the repeatability 
of pre-dynamic imaging, and has been shown to be highly 
repeatable, with RCs < 2% for T10 mapping and less than 
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10% for T2 mapping.39 In our analysis, four subjects with 
a large mean %T10 shift were identified but did not dem-
onstrate large changes in perfusion parameters. However, 
these patients were identified as outliers for tumor volume 
calculations, suggesting worse model-to-data fitting in 
the tumor region. As baseline T10 maps are acquired, the 
authors believe that T10 variations, potentially due to con-
trast accumulation are accounted for, but should be care-
fully studied on an individual basis, and compared to the 
remaining population to rule out inconsistencies. As GBM 
are highly heterogeneous, fitting to nested versions of the 
eTM or LTKM may lead to increased fit accuracy, and gran-
ular model identification may contribute to increased pa-
rameter repeatability.40

In a multi-institutional study of DCE-MRI perfusion pa-
rameter calculation, it was shown that parameter quan-
tification is highly dependent on the model-data fitting 
algorithm.41 There was wide agreement between param-
eters on a DRO with no noise present, but upon the ad-
dition of noise, the disagreement between institutions 
became apparent. In general, the authors found that 
trends in parameter changes (ie, increasing Ktrans) were 
consistent between sites, but the raw parameter values 
saw errors up to 100% of the true DRO parameter value 
in the presence of noise. In a similar study designed to as-
sess the inter-reader variability of DCE-MRI parameters in 
GBM, the inter-reader variation in Ktrans values was deter-
mined to be 27% ± 34% (mean ± SD), and within-patient 
CoV reaching up to 65% in post-treatment cases.42 We 
therefore strongly support further development and val-
idation of standardized DCE-MRI quantification soft-
ware package by standards bodies, such as the National 
Institute for Standards in Technology or QIBA, and fur-
ther collaboration in reporting best-practices, to maxi-
mize inter-site communication and improve repeatability 
in DCE-MRI protocols and analysis. Until such a standard 
is developed, we recommend using the same reader and 
quantification algorithms to remain consistent within 
studies performed at an individual site. Due to variations 
in compartmental PK models used to process DCE-MRI 
data for varying MR acquisitions, organs, diseases, and 
VIF determinations, or until a standard is accepted and 
made widely available, the authors strongly recommend 
that each site acquire double-baseline data and perform 
similar test-retest analysis whenever possible, to quantify 
the detection threshold for biological changes in patients.

There were several limitations to this study. First, it was 
not possible to control for potential confounding vari-
ables in imaging acquisition, such as different imaging 
technologists, infusion protocols, patient biological vari-
ability, and protocol design. Second, we did not assess 
the non-enhancing FLAIR signal hyperintense tumors 
while focusing on the contrast-enhancing portion of the 
tumor for DCE analysis. The non-enhancing portion of 
the tumor is important in assessing treatment response 
and has been incorporated into the updated criteria for 
Response Assessment in Neuro-Oncology.43,44 DSC-
MRI may generate rCBV measurements to assess both 
enhancing and non-enhancing tumor, and it does not rely 
on the VIF determination, potentially making the method 
more robust in this regard. However, much work has been 
done to show the unique, yet complementary capabilities 

of DCE and DSC methods to assess tumor microvascular 
hemodynamics.45 Third, our study was limited in lacking 
follow-up data for the post-chemoradiation phase of the 
disease. Finally, low Ktrans repeatability in our analysis 
may result from inferior temporal resolution and short 
duration of the DCE-MRI acquisition as compared to the 
QIBA recommendations.9 Temporal under-sampling and 
limited dynamic acquisitions are known to poorly affect 
the accuracy of Ktrans estimation.8,36 DCE imaging quality is 
critical for advancing tumor assessment methods in clin-
ical trials designed to use DCE parameters (such as Ktrans) 
as end points. The recently published ACRIN 6686 trial 
showed rCBV, but not Ktrans, to be a sensitive biomarker 
of early biological changes following bevacizumab treat-
ment in newly diagnosed GBM.46 More work is needed 
to further characterize tumor vasculature with both per-
fusion and permeability parameters in response assess-
ment of GBM.

Conclusion

Using a publicly available dataset with double-baseline 
DCE-MRI acquired within 2–5 days of initial imaging, the 
repeatability of DCE-MRI perfusion rate constant param-
eters was measured in 29 GBM patients, using both auto-
matic and manual methods for VIF determination. For the 
eTM model, the %RCs for the parameters were determined 
to be 72%, 82%, and 53% for Ktrans, v , and vp, respectively. 
For the LTKM model, the %RCs were determined to be 
72%, 81%, 82%, and 130% for vp, ve, K

trans, and λtr , respec-
tively. The practical value of our analysis is summarized as 
follows: first, this study demonstrates that automated VIF 
determination can increase repeatability in DCE analysis. 
The automatic approach also simplifies clinical implemen-
tation, as it is less time consuming and less demanding on 
dedicated research personnel as compared to the manual 
segmentation. Second, this study indicates the need for 
standardization of the DCE-MRI protocols to facilitate com-
parison across institutions and multi-center trials. Finally, 
the establishment of RCs and coefficients of variation in 
a standardized dataset may allow researchers to estab-
lish an evidence-based change detection threshold, which 
may be updated with the investigators’ own DCE analysis 
methodology and MRI equipment. Due to suboptimal spa-
tial and temporal sampling in this image set, we posit that 
the %RCs presented here constitute likely a worst-case, 
upper bound for the detection threshold of biological and 
physiological changes in GBM under identical imaging 
conditions. We hypothesize that repeatability of DCE-MRI 
quantification will be improved, including yielding smaller 
%RCs, through adherence to standard imaging guidelines 
such as those suggested by QIBA.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
Advances online.
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