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ABSTRACT OF THE THESIS

Vox Populism: Analysis of the Anti-Elite Content of Presidential Candidates’ Speeches

by

Caleb Ziolkowski

Master of Science in Statistics

University of California, Los Angeles, 2021

Professor Yingnian Wu, Chair

Often social scientists want to label whether text is populist or anti-elite in some sense.

Traditional methods of content analysis tend to run into one of two problems. Labeling text

by hand is taxing, limiting the scope of the analysis. Alternately, labeling text based on

political-party affiliation elides variation within political parties and does not tend to work

well for two-party systems. I use recent breakthroughs in natural language processing (NLP)

combined with supervised learning to explore an alternative way of labeling text as anti-elite

that avoids these constraints, allowing sentence-level categorization at scale.
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1 Introduction

Anti-elitism is an important topic in the social sciences. Anti-elitism is central to most studies

of populism, a phenomenon present in political movements and parties across the ideological

spectrum, as well as in developed and developing nations (Aslanidis, 2016; Bonikowski &

Gidron, 2015; Di Tella, 1965; Germani, 1978; Moffitt, 2020; Mudde, 2004; Mudde & Rovira

Kaltwasser, 2018; Müller, 2017; Stavrakakis & Katsambekis, 2014). Some argue that anti-

elitism (and populism more generally) shares an inextricable connection with democracy—

only if people doubt the right or ability of the elite to rule are they likely to demand

greater levels of representation (Müller, 2016). Similarly, anti-elitism seems to stoke at

least some revolutionary movements—important democratic revolutions, such as the Ameri-

can and French revolutions, had large anti-elite components (K. Hawkins, Read, & Pauwels,

2017). The effect of economic development on democracy is sometimes understood in terms

of how democracy can reduce tensions between the elites and the people by making the

elites’ concessions credible; windows of heightened anti-elite sentiments are likely to corre-

spond to periods of democratization in such a model (Acemoglu & Robinson, 2000, 2006).

Anti-elitism seems to be a core part of the backlash against globalization (Rodrik, 2020) and

discontent about economic inequality (Lindh & McCall, 2020).

While anti-elitism may be important, studying the subject poses measurement chal-

lenges. For example, how can we know if an actor is, in some sense, anti-elite? One

approach has been to look at their words—written or spoken. For instance, one study

analyzed opinion articles in newspapers in five countries to see how populism—which con-

sists of “people-centrism” and “anti-elitism”—changed from roughly 1990 to 2007 (Rooduijn,

2014). The limitation of this approach is made clear by the amount of data analyzed; for the
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five countries four election periods were examined; for each election period, only four weeks

of newspapers articles were analyzed; and, for each country, only opinion articles in three

newspapers were analyzed in each four week period. To undertake this effort, many coders

were necessary—which introduces both the issue of inter-coder reliability as well as the cost

of labor.

The other widely adopted approach uses party membership to determine if actors—

particularly politicians—are anti-elite. This happens most in the context of studies of pop-

ulism, particularly in proportional representation systems and/or when a party is led by a

charismatic, anti-elite leader (Mudde & Kaltwasser, 2012; Von Beyme, 1988). This approach

rarely (systematically) probes how politicians within the party vary in terms of anti-elitism.

Further, in two-party systems, this approach can be quite problematic. In the US, for in-

stance, there are—and have long been—anti-elite elements on both sides of the political

spectrum, within the two major parties. Using party to classify how anti-elite politicians are

in this case almost surely results in too much measurement error to be truly useful for most

scholarly inquiries.

I explore whether recent breakthroughs in natural language processing (NLP) and su-

pervised learning can be applied to measure the anti-elite content of text at scale. One

of the first efforts to map sentences of more or less arbitrary length into high dimensional

space (these need not be sentences in the traditional sense, but can continue on past end

marks)—known as sentence embedding—was Google’s Universal Sentence Encoder (USE)

in 2018 (Cer et al., 2018). Since then there have been several sentence encoders that have

seen wide adoption in the academy and industry due to their state-of-the-art performance

on language tasks; these sentence embeddings can be combined with supervised learning

techniques to perform language tasks downstream from the encoding process. This thesis

examines if such a method might help with classifying text as anti-elite at a granular level

while demanding fewer resources than relying only on human coding.
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2 Measuring anti-elitism with sentence

embeddings

A recent development in NLP is sentence embeddings. The term sentence embedding refers

to a set of techniques where sentences are converted to vectors of numbers. Sentence embed-

dings differ from previous NLP techniques in important ways. One approach to analyzing

text, known as bag of words, simply looks at the count of words in a text, disregarding

grammar and word order. Since sentence embeddings analyze sentences, they preserve word

order. A more recent approach, word embeddings, represents words in the form of vectors of

numbers that encode the meaning of the words so that similar words in the vector space will

have similar meanings. This is more closely related to sentence embeddings, in that words

are transformed into high-dimensional vectors. Again, a key difference is that sentence em-

beddings use the order of words in a sentence to help map the sentence into high-dimensional

space—usually into vectors of 512 to 1028 real numbers.

One first attempt to create sentence embeddings to be used on downstream linguistic

tasks was Google’s USE, as mentioned above (Cer et al., 2018)—there were other early

attempts of note (Lample, Conneau, Denoyer, & Ranzato, 2017). USE was found “to obtain

surprisingly good task performance with remarkably little task specific training data” (Cer

et al., 2018, p. 1)—a quality that could reduce the resource burden in a task like labeling

text as anti-elite or not. USE maps any given sentence into a vector of 512 numbers. The

transformer version uses attention to compute these embeddings in a way that accounts

for all the words in the sentence and their order (Vaswani et al., 2017), which is trained

through unsupervised learning on Wikipedia, web news, web question-answer pages, and
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discussion forums—and augmented with the Stanford Natural Language Inference (SNLI)

corpus (Bowman, Angeli, Potts, & Manning, 2015; Cer et al., 2018).

Perhaps the encoder model to attain the most widespread application is Google’s Bidi-

rectional Encoder Representations from Transformers (BERT), which obtained state-of-the-

art performance on many language tasks (Devlin, Chang, Lee, & Toutanova, 2018). BERT,

like previous encoders (A. M. Dai & Le, 2015), uses recurrent neural networks to predict

a masked word in a sentence using other words in the sentence. Unlike previous encoders,

BERT uses words from both the left and the right to predict the masked word. There are

different sizes of BERT producing different lengths of vectors, which reflect the amount of

compute and the size of the neural networks used in pretraining the different models.

RoBERTa—short for “A Robustly Optimized BERT Pretraining Approach”—departs

little from BERT, as the name suggests. RoBERTa adopts the same architecture as BERT,

but more thoroughly explores the possible values selected for hyperparameters and does con-

siderably more pretraining (Liu et al., 2019). The sentence embeddings from this approach

obtained state-of-the-art results on several linguistic tasks (Liu et al., 2019).

Also noteworthy is XLNet (Yang et al., 2019). Like previous models, it relies on a

transformer architecture with recurrence. While it follows BERT in using all of the words

in a sentence (not just those to the left or right) to produce embeddings, it does not rely

on masking. XLNet is an auto-regressive model that calculates conditional probabilities for

each word in a sentence given the other words (and their locations) in the sentence. That is,

its task—rather than recovering a masked word—is to predict each word in a sentence using

any combination of the other words in the sentence. XLNet outperforms other models, like

BERT, in some downstream language tasks.

While there are other sentence embeddings, this thesis will focus on these four—USE,

BERT, RoBERTa, and XLNet—in attempting to label text as anti-elite. The goal of this

inquiry is not to find the best possible solution, but rather to find one capable of satisfactorily
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labeling text as anti-elite.

2.1 Sentence embeddings for downstream tasks

A key draw of sentence embeddings is that these vectors can then be used for language tasks

downstream of the pretraining of the embeddings. This is in part why these models have

gained renown. For instance, USE was tested on several tasks (Cer et al., 2018): predicting

a movie’s rating (out of five stars) given the accompanying review (Pang & Lee, 2005);

determining customer sentiment from product reviews (Hu & Liu, 2004); and determining

the similarity of pairs of sentences scored by Pearson correlation with human performance

(STS-B) (Cer, Diab, Agirre, Lopez-Gazpio, & Specia, 2017).

BERT was tested on the General Language Understanding Evaluation (GLUE), which

consists of 9 language datasets used to evaluate language understanding. These include, in

addition to the STS-B mentioned above, the following:

� Multi-Genre Natural Language Inference (MNLI), a large-scale, crowd-sourced entail-

ment classification task (Williams, Nangia, & Bowman, 2017). The model must predict

the second of two sentences affirms, contradicts, or is neutral with respect to the first.

� Quora Question Pairs (QQP), a binary classification task. The model must determine

if two Quora questions are semantically equivalent (Chen, Zhang, Zhang, & Zhao,

2018).

� Question Natural Language Inference (QNLI), a version of the Stanford Question An-

swering Dataset (Rajpurkar, Zhang, Lopyrev, & Liang, 2016) converted to a binary

classification task (Wang et al., 2018). The model must determine if a question-answer

pair is positive—that is contains the correct answer—or negative—does not contain

the correct answer.
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� The Stanford Sentiment Treebank (SST-2), a binary single-sentence classification task

containing sentences from movie reviews with human codings of reviewer sentiment

(Socher et al., 2013).

� The Corpus of Linguistic Acceptability (CoLA), a single-sentence classification task.

The model must predict whether a sentence is “acceptable” or not (Warstadt, Singh,

& Bowman, 2019).

� Microsoft Research Paraphrase Corpus (MRPC), sentence pairs extracted from online

news. Humans have coded whether the pairs of sentences are semantically equivalent

(Dolan & Brockett, 2005).

� Recognizing Textual Entailment (RTE), a binary entailment task. The model must

predict the second of two sentences affirms, contradicts, or is neutral with respect to the

first, but with less training data than MNLI (Bentivogli, Clark, Dagan, & Giampiccolo,

2009).

� Winograd NLI (WNLI), a small natural language inference dataset (Levesque, Davis,

& Morgenstern, 2012).

BERT’s average score on GLUE was 82.1. Its closest competitor was OpenAI GPT, with a

score of 75.1. BERT was also tested on The Stanford Question Answering Dataset (SQuAD

v1.1), a collection of 100k crowdsourced question/answer pairs (Rajpurkar et al., 2016). It

achieved close to human performance.

RoBERTa and XLNet both outperform BERT on the GLUE and SQuAD tasks. The

difference in performance between the RoBERTa and XLNet is small and hard to distinguish

(and seemingly differ slightly depending on which paper one consults, likely due to uneven

improvements in the performance of the two models over time). They both are near or have

exceeded human baselines. While tests like GLUE and SQuAD are valuable for tracking
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model performance, I aim to see if any of these sentence embeddings can offer a relatively

easy way to classify text as anti-elite to aid social science inquiry.

2.2 Supervised learning

Using these embeddings for downstream tasks can be done with machine learning tech-

niques. With a sufficient number of examples labeled as anti-elite (or not), it is conceptually

straightforward to use the vectors of real numbers—that is, sentence embeddings—to pre-

dict the label using supervised learning. I implement and compare multiple machine learning

algorithms in this thesis.

Several issues must be kept in mind, however. First, overfitting must be avoided. Cross-

validation can help with this. Second, the data that I use is imbalanced—there are far fewer

“anti-elite” sentences, as I discuss below—and thus the appropriate metrics must be chosen

to evaluate the performance of the machine learning models. Further, data augmentation

can sometimes help when modeling imbalanced data, which I explore.

2.2.1 Machine learning algorithims

I use a suite of machine learning algorithms to predict whether a sentence is anti-elite given

its sentence embedding:

� Classification decision tree: a tree model where the outcome variable takes on discreet

values. The leaves in the tree represent these discreet values, while the branches are

formed by logical conjunctions of the features that predict the label (Breiman, Fried-

man, Olshen, & Stone, 2017). A Bagged tree model extends a decision tree by bag-

ging (bootstrap aggregating), which can lead to performance improvements (Breiman,

1996).
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� k-nearest neighbors (k-NN): a non-parametric classification algorithm that uses a plu-

rality vote of the k closest training examples to predict the label (Altman, 1992; Fix

& Hodges Jr, 1951).

� Support-vector machine (SVM): a model that maps training data to points in space

to maximize the gap between the two categories (Aizerman, Braverman, & Rozonoer,

1964; Boser, Guyon, & Vapnik, 1992). Testing data can be mapped into the same space

to apply labels. One implementation of an SVM—which I’ll call a Gaussian SVM—

implements the kernel trick using the radial basis function (Gaussian) to perform a non-

linear mapping into space. Another—which I’ll call a Polynomial SVM—implements

the kernel trick over polynomials of the original variable.

� Multivariate adaptive regression splines (MARS): a non-parametric regression tech-

nique that, though similar to linear regression, also models nonlinearities and interac-

tions between variables (Friedman, 1991). A Bagged MARS model extends the model

by bagging (Breiman, 1996). Flexible discriminant analysis transforms the response

variable to better enable linear separation while generating the discriminant surface

using MARS.

� Naive Bayes classifier (NBC): a probabilistic classifier that uses Bayes theorem. This

method assumes independence between features and thus is computationally efficient.

2.2.2 Scoring metric

A key concern is how to choose a metric to evaluate the performance of these models,

particularly in the context of imbalanced data. Further, the choice of metric matters even

more when considering things like crossvalidation and tuning model parameters—discussed

below—as the metric determines which of dozens or even hundreds or thousands of models

emerge as the most promising.
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The essential requirement of any such metric is to adequately summarize the confusion

matrix. When the prediction threshold is not fixed, then metrics that can summarize the

confusion matrix across the possible thresholds are ideal. For these reasons, it is common

for binary classification methods to be evaluated using the receiver operating characteristic

(ROC). However, ROC can often deceive with inflated performance estimations, particularly

when data is imbalanced (Cao, Chicco, & Hoffman, 2020; Kleinbaum, Klein, & Pryor, 2002;

Saito & Rehmsmeier, 2015). The problem is not limited to ROC, as the precision-recall (PR)

curve also has issues (Cao, Chicco, & Hoffman, 2020).

The problem is perhaps most easily illustrated if we think about using accuracy,

correct predictions
total predictions

, as a metric. When the data is highly imbalanced, let x be the proportion of

the more prevalent class, it is trivial to build a predictor that achieves x × 100% accuracy;

simply predict the majority class every time. If x > .9, this predictor achieves over 90%

accuracy, though whether it is a good instance of learning seems dubious (Cao, Chicco, &

Hoffman, 2020; Saito & Rehmsmeier, 2015).

Likewise, ROC—and the metric that summarizes it, the area under the ROC (AUC)—

can give a misleading picture of performance when using imbalanced data. The ROC com-

pares the true positive rate (TPR) and the false positive rate (FPR) across the range of

possible threshold values. A high TPR can be achieved by simply predicting many elements

as positive. If the data is imbalanced, it is possible for this to lead to seemingly impressive

ROCs when in reality the performance on the minority class may be unsatisfactory (Cao,

Chicco, & Hoffman, 2020; Kleinbaum, Klein, & Pryor, 2002; Saito & Rehmsmeier, 2015).

Thus, the ROC (and AUC) can give overly optimistic evaluations of predictors (Kleinbaum,

Klein, & Pryor, 2002).
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2.2.2.1 Average precision

Average precision—an alternate to the area under the PR curve (PR AUC) that avoids

ambiguity about the value of precision when recall is 0—may perform better on imbalanced

data (Jeni, Cohn, & De La Torre, 2013; Saito & Rehmsmeier, 2015). PR plots the TPR, or

“recall,” against the “precision”— True positives
True positives+false positives

—across the range of the threshold.

The average precision—and the PR AUC—involves integrating PR to find the area under

the curve, with a score of 1 being perfect. By evaluating the percentage of true positives

among positive predictions, PR—as well as PR AUC and average precision—may provide

viewers with an accurate prediction of future classification performance.

2.2.2.2 MCC-F1 curve

Average precision, however, still can have its drawbacks. Looking at it’s components (recall

= True positives
True positives+false negatives

and precision = True positives
True positives+false positives

), it’s obvious that it falls

short of summarizing the entire confusion matrix. Specifically, neither recall nor precision

contain information on the true negatives (Cao, Chicco, & Hoffman, 2020). Average precision

is contingent on which class is labeled “positive,” and the more imbalanced the data the more

extreme this contingency (Cao, Chicco, & Hoffman, 2020).

A more recent, less widely used, measure is the MCC-F1 curve and its accompanying

single-number summarization (MCC-F1 metric) (Cao, Chicco, & Hoffman, 2020). This curve

combines two single threshold metrics that both summarize the confusion matrix, calculating

them across the range of possible threshold values to produce a curve. MCC is defined as

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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and F1 is the harmonic mean of precision and recall,

F1 =
2

recall−1 + precision−1
.

The MCC-F1 curve plots the unit normalized MCC—MCC+1
2

—against the F1 score. The

MCC-F1 metric summarizes this curve, with the worst possible performance receiving a

score of 0 and the best possible performance a score of 1 (Cao, Chicco, & Hoffman, 2020, p.

7). In addition, the MCC-F1 curve can provide an optimal threshold.

Though the MCC-F1 curve seems to perform better than both the AUC and the PR

AUC on imbalanced data (Cao, Chicco, & Hoffman, 2020), it is quite new and not widely

adopted. Further, measures like the AUC, accuracy, and balanced accuracy tend to enjoy

frequent use and have familiar interpretations. I use both the MCC-F1 metric and the

PR AUC for hyperparameter tuning and crossvalidation, running the analyses separately.

I still calculate and report other popular performance metrics, using the MCC-F1 optimal

threshold when doing so for single threshold metrics, such as accuracy.

2.2.3 Bayesian parameter tuning, crossvallidation, and data aug-

mentation

Machine learning algorithms tend to have hyperparameters that must be tuned. While some

have relatively few, other algorithms have several. Grid search, though theoretically feasible,

can be computationally taxing, particularly given the length of sentence embeddings. A good

alternative is to use Bayesian optimization—specifically a Gaussian process (GP)—to tune

these parameters (Snoek, Larochelle, & Adams, 2012). I begin with an initial 15 iterations

of the model, which the GP uses to learn how the algorithm’s performance changes with the

hyperparameter values. Tuning is allowed for a further 30 iterations but stops if there is no

improvement after 5 iterations.
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Relatedly, to avoid overfitting and ensure out-of-sample performance (Ward & Ahlquist,

2018), I perform 5-fold crossvalidation, repeated 5 times. This crossvalidation is done on

the training data. It is done for each iteration of the Bayesian optimization, with the

evaluation of performance based on the out-of-sample fold results. The mean of these out-

of-sample fold results across iterations is used to evaluate the models—and of course, choose

hyperparameters. As noted above, it is either the average precision or the MCC-F1 metric

that is used for performance evaluation.

Data augmentation can sometimes help performance on imbalanced data. In addition

to running the algorithms with no data augmentation or subsampling, I try several methods

of data augmentation to see how they impact the results: ROSE (Menardi & Torelli, 2014);

ADASYN (He, Bai, Garcia, & Li, 2008); SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer,

2002); Borderline-smote (Han, Wang, & Mao, 2005); down-sampling—randomly removing

rows of the prevalent class till the classes are equal; removing majority class instances that

are close to one another based on k -NN (Mani & Zhang, 2003); removing majority class

instances using tomek links (Tomek & others, 1976); and upsampling from the minority

class until the classes are equal.

2.3 Speeches of presidential candidates

The data in this thesis comes from candidate speeches for the 2016 presidential election in

the United States (K. A. Hawkins, 2016). This election provides the chance to explore the

prevalence of anti-elite sentiment for both Republican and Democrat candidates. Relative

to most presidential races in the United States, the primary competitions were drawn out

and there were fairly large fields of primary candidates for both parties. Further, notable

candidates in both parties—Bernie Sanders and Donald Trump—were labeled as populist

and, by extension, anti-elite—in popular discourse. This data thus allows an opportunity to

test if this conventional wisdom can be confirmed (and quantified) using natural language
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Table 2.1: Details of speeches.

Candidate Speeches Number of sentences

Carson 1 58
Clinton 22 2081
Cruz 3 195
Kasich 2 116
Rubio 4 127

Sanders 5 199
Trump 21 2376
All 58 5152

processing and machine learning. The data consists of 58 speeches by various candidates.

Table 2.1 shows some of the details of the data. When running analysis and generating

predictions, I remove any text that is exactly duplicated; my assumption—based on having

read through several speeches—is that this removes transcriptions of audience responses

(e.g. “Applause”). For analysis and predictions, the total number of sentences is 4404.

2.3.1 Training data

I coded 1049 sentences by hand—where I used the speech transcribers’ paragraph breaks to

designate sentences—labeling them as anti-elite or not. Since my goal is to test if NLP and

ML offer an efficient way to label sentences, choosing the transcribers’ paragraph breaks of-

fers an easy way to partition the data automatically. I selected these sentences from speeches

by Bernie Sanders, Hilary Clinton, and Donald Trump. I did this in part because they had

the most speeches in the data. I also was particularly interested in Donald Trump and

Bernie Sanders as both were labeled as populists by parts of the mainstream media and

academia. I believed they may offer more anti-elite sentences, thereby hopefully amelio-

rating, if only somewhat, the issue of class imbalance. When I remove duplicates (again,

primarily transcriptions of audience responses like “Applause” or “Laughter”), I’m left with

961 sentences.
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Table 2.2: Anti-elite results from hand coding.

Candidate Anti-elite proportion Number of sentences

Clinton 0.059 438
Sanders 0.201 199
Trump 0.109 412
All 0.106 1049

Here are examples of the sentences, which though clearly sometimes longer than a

sentence, tend to be focused on a single theme—which probably is why the transcribers

chose these as paragraphs.

� Example 1: Candidate Sanders said, “Tonight, we served notice to the political and

economic establishment of this country that the American people will not continue to

accept a corrupt campaign finance system that is undermining American democracy,

and we will not accept a rigged economy in which ordinary Americans work longer

hours for lower wages, while almost all new income and wealth goes to the top 1%.”

� Example 2: Candidate Clinton said, “Instead of an economy built by every American,

for every American, we were told that if we let those at the top pay lower taxes and

bend the rules, their success would trickle down to everyone else.”

� Example 3: Candidate Trump said, “So I’ve watched the politicians. I’ve dealt with

them all my life. If you can’t make a good deal with a politician, then there’s something

wrong with you. You’re certainly not very good. And that’s what we have representing

us. They will never make America great again. They don’t even have a chance. They’re

controlled fully— they’re controlled fully by the lobbyists, by the donors, and by the

special interests, fully.”

I classified all of these examples as anti-elite. And Table 2.2 shows the proportion of anti-

elite sentences for the hand-coded sample. These sentences provide testing and training

data, with 20% left for testing.
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Table 2.3: Examples of embeddings: first eight of 512 digits.

candidate X1 X2 X3 X4 X5 X6 X7 X8

Sanders 0.0067 0.0343 -0.0038 0.0530 -0.0723 0.0145 0.0791 0.0309
Clinton 0.0436 0.0513 -0.0427 0.0163 -0.0698 0.0622 0.0819 0.0618
Trump 0.0082 0.0196 -0.0227 -0.0028 -0.0808 0.0101 0.0965 0.0558

I take the sentences that have been hand-coded and get embeddings, tokenizing the

sentences as required by the encoder models. As mentioned above, I get sentence embeddings

from USE, BERT, RoBERTa, and XLNet. I use the transformers version of USE. For Bert,

I use both encodings for the cased (BBC) and uncased (BBU) base models (cased models

distinguish between capitalized and lower-case letters). For RoBERTa, I use the base cased

model (RBC). XLNet does not automatically provide a single vector of embeddings for a

sentence, so I use max-pooling (XLN.x) and mean-pooling (XLN.m)—separately—to get

general sentence embeddings appropriate for downstream tasks. To show what sentence

embeddings look like, the first eight numbers for the USE embeddings for these examples

are shown in Table 2.3.

3 Results

For each set of embeddings, I perform crossvalidation and Bayesian hyperparameter tuning

twice for each model (once using the MCC-F1 metric to evaluate performance, then the other

using average precision). For XLNet, I do this for both the max-pooling embeddings and

the mean-pooling embeddings. Further, I do this with no data augmentation and then once

for each of the 8 data augmentation methods listed in Section 2.2.3. This process is iterated
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across all 9 of the machine learning algorithms listed in Section 2.2.1. I thus attempt to run

972 models, each with 5 rounds of 5-fold crossvalidation and up to 45 iterations of Bayesian

hyperparameter tuning. In reality, some data augmentation methods do not always work

with each machine learning algorithm, so the actual number of models that successfully ran

is 863; again, since I hope to find a satisfactory model for labeling sentences, not the absolute

best model, the failure of some models need not threaten the enterprise. The proof will be

in the results of the models that ran.

3.1 Top-performing models

I order the results by the ascending mean log loss for each model achieved across the 5

iterations of the 5-fold crossvalidation for the best performing hyperparameters resulting

from the Bayesian tuning. Across all the iterations of crossvalidation—for the optimized

hyperparameters—I calculated the mean MCC-F1 metric, the mean average precision, the

mean AUC, the mean PR AUC, and the mean log loss. All of these metrics are indepen-

dent of any choice of threshold, and thus are useful in assessing models without specifying a

threshold. I then examine which of these evaluation metrics is most consistent in predicting

training data and testing data. That is, I calculate the Pearson correlation coefficient be-

tween test performance—each model’s mean score for each of these 5 metrics when fit on

the test data—and the training performance—each model’s score for each of these five

metrics on the 5 crossvalidation iterations when hyperparameters have been optimized. The

intuition is that a defensible way to choose the best performing model is to look at the one

that performed the best on the training data—using the metric that is most consistent pre-

dictor of performance across testing and training data—in order to avoid simply picking the

model that happened to perform best—possibly simply “got lucky”—on the testing data.

Table 3.1 shows that the log loss metric is the most consistent across testing and training

data. Table 3.2 shows the results for the top 35 models, ranked according to the mean cross-
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Table 3.1: Pearson correlation coefficents across testing and training data.

Average precision MCC-F1 AUC PR AUC Log loss

0.905 0.832 0.845 0.855 0.97

validation log loss. A few trends stand out. USE and RBC embeddings tend to perform the

best. BERT embeddings do not break the top 35. The dominance of Polynomial SVM and

Gaussian SVM is quite striking, taking all but 2 of the top 35 spots. Data augmentation

does not appear to offer major benefits, with b-smote and tomek both performing about

the same as similar models with no data augmentation. It’s not clear whether MCC-F1 or

average precision is more useful as a metric for Bayesian hyperparameter tuning. Finally,

metrics typically reported in similar types of studies (e.g. Çinar, Stokes, & Uribe, 2020;

Y. Dai, 2018), AUC and accuracy, look quite good for the testing data The mean AUC for

the top 35 is 0.93 and the mean accuracy is 0.94. AUC does not tend to drop much from

the crossvalidation on the training data to the testing data. A naive strategy of simply

guessing the majority class would result in an accuracy of 0.89, an MCC-F1 of 0.21, an

average precision of 0.11, and a balanced accuracy of 0.5 on the entire training sample. The

strategy adopted in this thesis has produced several models that do well predicting anti-elite

sentiment on held-out data, particularly compared with a naive strategy that achieves fairly

high accuracy on unbalanced datasets.
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Table 3.2: The 35 top-performing models.

Emb. ML algo Data aug. Eval. met. Rank AP AP-CV MCCF1 MCCF1-CV LL LL-CV AUC AUC-CV ACC Bal. ACC

RBC Poly SVM none MCCF1 1 0.66 0.78 0.51 0.54 0.20 0.17 0.95 0.95 0.93 0.82
USE Poly SVM tomek AP 2 0.81 0.77 0.53 0.53 0.16 0.18 0.94 0.94 0.96 0.84

USE Poly SVM none MCCF1 3 0.82 0.76 0.53 0.53 0.15 0.18 0.96 0.94 0.95 0.83

USE Poly SVM none AP 4 0.82 0.76 0.53 0.53 0.15 0.18 0.96 0.94 0.95 0.83
USE Poly SVM tomek MCCF1 5 0.81 0.78 0.52 0.53 0.16 0.18 0.95 0.94 0.95 0.83

RBC Poly SVM none AP 6 0.64 0.78 0.51 0.53 0.24 0.18 0.94 0.95 0.91 0.85

RBC Gaus. SVM none MCCF1 7 0.63 0.79 0.51 0.54 0.24 0.18 0.95 0.95 0.91 0.87
RBC Gaus. SVM bsmote MCCF1 8 0.62 0.77 0.52 0.53 0.23 0.18 0.94 0.94 0.90 0.90

RBC Gaus. SVM bsmote MCCF1 9 0.65 0.78 0.51 0.53 0.24 0.18 0.94 0.94 0.90 0.88

RBC Gaus. SVM bsmote AP 10 0.65 0.78 0.51 0.53 0.24 0.18 0.94 0.94 0.93 0.82

USE Gaus. SVM none AP 11 0.82 0.77 0.54 0.53 0.16 0.18 0.95 0.94 0.96 0.84

RBC Gaus. SVM none AP 12 0.64 0.78 0.51 0.53 0.24 0.19 0.94 0.95 0.93 0.82

XLN.m Gaus. SVM none AP 13 0.66 0.77 0.52 0.52 0.24 0.19 0.87 0.91 0.94 0.81
XLN.m Gaus. SVM none MCCF1 14 0.66 0.77 0.52 0.52 0.24 0.19 0.87 0.91 0.94 0.81

RBC Poly SVM tomek AP 15 0.65 0.77 0.52 0.53 0.25 0.19 0.94 0.95 0.93 0.86

XLN.m Gaus. SVM tomek AP 16 0.67 0.77 0.52 0.52 0.25 0.19 0.87 0.92 0.93 0.84

USE Gaus. SVM none MCCF1 17 0.83 0.76 0.54 0.53 0.16 0.19 0.95 0.94 0.96 0.84

XLN.m Poly SVM tomek AP 18 0.69 0.75 0.50 0.52 0.21 0.19 0.90 0.93 0.91 0.83
XLN.m Poly SVM tomek MCCF1 19 0.69 0.75 0.50 0.52 0.21 0.19 0.90 0.93 0.91 0.83

USE Poly SVM bsmote MCCF1 20 0.81 0.77 0.53 0.53 0.18 0.19 0.94 0.95 0.95 0.82

RBC Poly SVM bsmote AP 21 0.66 0.76 0.51 0.53 0.25 0.19 0.94 0.94 0.92 0.84
XLN.m Poly SVM none MCCF1 22 0.69 0.74 0.51 0.52 0.21 0.19 0.91 0.93 0.93 0.82

XLN.m Poly SVM none AP 23 0.70 0.73 0.51 0.51 0.21 0.20 0.91 0.93 0.93 0.80

RBC Poly SVM tomek MCCF1 24 0.67 0.77 0.52 0.53 0.25 0.20 0.94 0.95 0.92 0.87
USE Poly SVM bsmote AP 25 0.82 0.76 0.53 0.53 0.18 0.20 0.94 0.95 0.95 0.82

USE Gaus. SVM bsmote MCCF1 26 0.81 0.76 0.53 0.53 0.19 0.20 0.94 0.95 0.95 0.82
USE Gaus. SVM bsmote AP 27 0.81 0.76 0.53 0.53 0.19 0.20 0.94 0.95 0.95 0.82

RBC Poly SVM bsmote MCCF1 28 0.65 0.75 0.51 0.53 0.25 0.20 0.94 0.94 0.93 0.82
XLN.x Gaus. SVM none MCCF1 29 0.61 0.71 0.50 0.50 0.24 0.20 0.88 0.91 0.94 0.79
XLN.x Gaus. SVM none AP 30 0.61 0.71 0.50 0.50 0.24 0.20 0.88 0.91 0.94 0.79

USE Gaus. SVM upsample AP 31 0.83 0.75 0.54 0.52 0.18 0.20 0.94 0.95 0.96 0.84

USE k-NN none AP 32 0.80 0.74 0.61 0.58 0.18 0.20 0.95 0.95 0.96 0.88
USE k-NN tomek AP 33 0.82 0.76 0.61 0.59 0.18 0.21 0.95 0.95 0.95 0.85
XLN.x Poly SVM tomek AP 34 0.60 0.68 0.50 0.51 0.23 0.21 0.89 0.91 0.93 0.80

USE Gaus. SVM smote AP 35 0.81 0.75 0.54 0.53 0.20 0.22 0.93 0.95 0.96 0.82

a XLN.m = XLNet mean pooling; XLN.x = XLNet max pooling; AP = Average pecision; “-CV” = Mean crossvalidation score; LL = Log loss; ACC = Accuracy
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Figure 3.1: Best model’s test-data performance. Includes fitted line and confidence
intervals from logit regression. Vertical line represents the optimal threshold from MCC-F1
curve and the confusion matrix is based on this threshold.

I examine the top model from 3.2 a bit more closely. This polynomial SVM model used

the embeddings from RoBERTa with no data augmentation. The Bayesian optimized hy-

perparameters were a cost of 24.9, a third-degree polynomial, and a scale factor of 1.4e−05.

Figure 3.1 displays the performance of this model on the test data. The figure includes a

confusion matrix—with the threshold provided by the MCC-F1 curve. The figure also dis-

plays the gradations in the model’s predictions along the x-axis. A fitted line and confidence

intervals from a logit regression show that as the predicted probability of a sentence being

anti-elite increases, it is increasingly likely that I coded the sentences as anti-elite.

3.2 Predicting anti-elitism for all data

I take the top model from 3.2 and use it to predict all the data, including the data that

doesn’t have hand-coded labels. I fit the model to the hand-coded sample, maintaining

the hyperparameters and workflow from the crossvalidation and Bayesian hyperparameter
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optimization. I then predict the probability a sentence is anti-elite for all the data. Using

the optimal threshold from the MCC-F1 score from above, this results in 406 predictions of

anti-elite sentences (9.2%).

I randomly select one example of an anti-elite sentence for each candidate that I repro-

duce below (truncated to 500 characters):

� Candidate Carson: “And I’m saying to people around this nation right now, stop being

loyal to a party or to a man and use your brain to think for yourself. That is really

the key to us as a nation becoming successful again. Not allowing ourselves to be

manipulated by people who think that they are the kingmakers, who think that they

are the rulers of thought. They are not the rulers of thought. We, the people are the

rulers of thought in this nation. We get to determine what kind of nation we have;

other people. . . ”

� Candidate Clinton: “First, let’s start with protecting taxpayers and making sure we

have more fairness in the system. It is wrong that corporations and the super wealthy

play by a different set of rules. A Wall Street money manager should not be able to

pay a lower tax rate than a teacher or a nurse.”

� Candidate Cruz: “We will win by speaking the truth with a smile. The truth is the

American people are fed up with Washington, with a corrupt class that enriches itself

and leaves behind the working men and women of this country. The truth is the

American people are fed up with a federal government that views the Bill of Rights

and the Constitution as a rough draft, as an inconvenience, as something to be set

aside, and we are ready to get back to the vision of the framers, of protecting the

unalienable rights. . . ”

� Candidate Kasich: “And if we are a neighbor, that means that widow who was married

for 50 years who no one calls anymore, you want to change the world? You take her to

dinner on Saturday night. She’ll wear that dress she hadn’t worn in six months. I trust

you to do it. You see, what I learned as a boy, what I learned from my mother and
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Table 3.3: Mean of anti-elite predictions.

Candidate Mean probability of anti-elite sentence

Carson 0.176
Clinton 0.069
Cruz 0.065
Kasich 0.057
Rubio 0.059

Sanders 0.240
Trump 0.129

father is that the spirit of America rests in us. It doesn’t rest in a big-time politician,

the big wigs. Look, you hire us to go do the job, plain and simple, to create an envir. . . ”

� Candidate Rubio: “If we remember – if we remember that the family, not the govern-

ment, is the most important institution in our society. . . ”

� Candidate Sanders: “Addressing Wealth and Income Inequality: This campaign is

going to send a message to the billionaire class. And that is: you can’t have it all. You

can’t get huge tax breaks while children in this country go hungry. You can’t continue

sending our jobs to China while millions are looking for work. You can’t hide your

profits in the Cayman Islands and other tax havens, while there are massive unmet

needs on every corner of this nation. Your greed has got to end. You cannot take

advantage of all. . . ”

� Candidate Trump: “Their financial resources are unlimited. Their political resources

are unlimited. Their media resources are unlimited. And, most importantly, the depths

of their immorality is unlimited.”

For the most part, these sentences seem to contain elements of anti-elitism. The Rubio and

especially Kasich examples may not be best classified as anti-elite—though even in those

there are some elements of anti-elitism (Rubio downplaying the importance of government,

Kasich subtly disparaging the role of “big-time politicians” and “big wigs”). The other

examples have quite strong anti-elite meanings, both direct and through connotation.
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Figure 3.2: Change in anti-elite sentences over time. Plots the mean probability
sentences spoken by a candidate will be anti-elite over time. Carson is removed since he
only had a single speech on April 15, 2015—for which the mean probability of an anti-elite
sentence was 0.176.

We can summarize the predictions by candidate as well. Table 3.3 shows the mean

predicted probability that sentences are anti-elite. This mostly seems to bolster popular

perceptions that Trump—about double the anti-elite probability of most—and Sanders—

nearly 4 times the anti-elite probability of most others—were populists. It is somewhat

surprising, perhaps, that Carson is so high and that Cruz isn’t higher, but it must also be

remembered that the sample of speeches is smaller for these candidates.

Lastly, I explore how the best model predicts anti-elite sentences change over time, by

candidate. Figure 3.2 shows a good deal of variation. All candidates tend to exhibit changes

over time, but it is not uniformly in one direction. Perhaps most surprisingly, Trump does

not appear to be any more anti-elite than his Republican primary opponents when running

against them, though the observations during this period are sparse. Intriguingly, Trump

and Clinton’s trend lines appear to mimic one another once the two of them are competing

head-to-head. Exploring this variation—and any relationship between the anti-elitism of a
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candidate and her most obvious opponent—represents just one possible application of the

method I’ve employed in this thesis.

4 Conclusion

This thesis has explored whether natural language processing and machine learning offer a

viable way to measure the anti-elite content of text. I’ve utilized sentence embeddings on

speeches from the 2016 US presidential election, finding that RoBERTa sentence embeddings

perform the best—though the Universal Sentence Encoder was also quite good. On widely

used metrics the best performing model attained high scores on the held-out test data, 0.95

for the area under the receiver operator curve and 0.93 accuracy. Mindful that imbalanced

data—like that used in this paper—can result in overly optimistic estimates for these metrics,

I used more appropriate metrics like average precision, the MCC-F1 metric, and log loss to

optimize hyperparameters and rank the models. The results are promising and suggest the

method developed here can be used to accurately characterize the anti-elite content of text

at scale—and at the granular level of the sentence—while minimizing the amount of coding

to be done by hand.
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