UC Berkeley

Energy Use in Buildings Enabling Technologies

Title

A Disaggregated Thermostat: Enhancing Comfort, Energy Efficiency, and Demand Response

Permalink

https://escholarship.org/uc/item/28w033n2

Authors

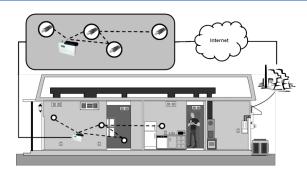
Ota, Nathan Wright, Paul

Publication Date

2007

A Disaggregated Thermostat:

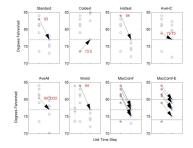
Enhancing Comfort, Energy Efficiency, and Demand Response


Vision

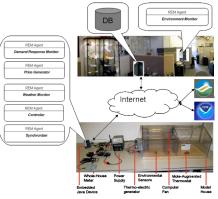
Design and implement a wireless sensor network enabled residential energy management system that reliably balances occupant satisfaction and energy savings preferences with automatic, reactive short-term load shedding and long-term energy reduction.

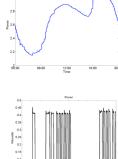
	Old Way	New Way
Actuates	On/Off	On/Off
Uses	Single sensor	Multiple sensors
Measures	°F	°F, RH
Controls	°F	Comfort,
Aware	n/a	price, weather

Methods


- ·Simulations to evaluate multi-sensor HVAC control with distributed sensing for 4 house designs, 4 comfort offsets, 2 operational modes, and 2 weather profiles.
- Wireless communication performance site surveys to characterize packet-level communication.
- Design and development of autonomous embedded agent system for in-situ system pilot tests.
- •Real world and testbed deployments of HVAC control with distributed sensing.

Research


Questions


- · How can an HVAC system react differently given environmental conditions from all rooms?
- ·How does an HVAC system tradeoff comfort and energy consumption?
- ·How can an HVAC system react differently given electricity price information?

Findings

