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On the Performance of Optimum Noncoherent
Amplify-and-Forward Reception for Cooperative

Diversity
Ramesh Annavajjala, Pamela C. Cosman and Laurence B. Milstein

Department of Electrical and Computer Engineering
University of California, San Diego, La Jolla, CA 92093, U.S.A

Abstract— In this paper, we present receiver structures
for maximum-likelihood (ML) noncoherent amplify-and-forward
(AF) communication links when multiple relay nodes are em-
ployed. We consider both on-off keying (OOK) and binary fre-
quency shift keying (BFSK) modulation schemes on Rayleigh fad-
ing relay channels with no channel state information. Even for
the simple case of having only one relay node, the optimum non-
coherent receiver is quite involved, and the ML metric computa-
tion requires certain integral evaluations. To lower bound the av-
erage bit error rate (BER), we assume that the link between the
relay and the destination node is unfaded, a reasonable assump-
tion when there is a strong line-of-sight path between the relay and
the destination, and obtain simple closed-form expressions for the
average BER with an arbitrary number of relays. Upper bounds
on the average BER are also presented by numerically evaluating
the Bhattacharyya distance between the likelihood functions. Fur-
ther, simple suboptimum receiver structures are proposed, for both
OOK and BFSK, along with an analytical performance evaluation,
and an asymptotic diversity order analysis.

Keywords: User cooperation, cooperative diversity, relay channels, nonco-
herent communication.

I. INTRODUCTION

Cooperative diversity is attractive for mobile terminals having
single-antenna transceivers. A distributed antenna array can be
formed by collaboration among M nodes, with a potential to
achieve the full diversity order of M . Sendonaris et al. in [1]
showed that, with transmitter channel state information (CSI),
the sum-capacity of an ergodic fading channel can be improved
with user cooperation, whereas in [2] Laneman showed that with
CSI only at the receiver, the sum-capacity cannot be increased
over no-cooperation. The performance of coherent binary PSK
(BPSK) signaling with an amplify-and-forward (AF) commu-
nication protocol and receiver CSI was studied in [3]. An im-
proved analysis of error probability, using the moment generat-
ing function approach, was presented in [4]. Recently, the per-
formance of multi-branch, multi-hop, relay channels was con-
sidered in [5] and [6]. The analysis of [3]-[6] showed that with
M relay nodes and perfect CSI at the receiver, coherent multi-
branch AF reception over independent channels achieves the full
diversity order of M + 1.

In order to acquire the CSI, the relay channel has to be trained
(typically by pilot signaling), which results in a throughput
penalty. If the variation of the channel over time is high rela-
tive to the signaling duration, then the estimates become out-

dated. In such a scenario, one is inclined to employ nonco-
herent detection techniques which do not require knowledge of
the instantaneous channel realization. In this context, Chen and
Laneman in [7] and [8] studied the performance of noncoherent
binary FSK (BFSK) signaling with a decode-and-forward (DF)
protocol. They showed that, with M relays, the diversity order
achievable with a noncoherent DF protocol is at most (M/2)+1
when M is even, and (M + 1)/2 when M is odd. That is, with
the DF protocol, noncoherent signaling loses approximately half
of the available diversity order.

In this contribution, we consider noncoherent communication
over Rayleigh fading relay channels with an AF protocol. While
neither the relays nor the destination have knowledge of the in-
stantaneous CSI, we assume that the statistical averages of the
channel gains are known to them. The amplification gain of
the relay is chosen to satisfy an average power constraint. We
consider both on-off keying (OOK) and BFSK modulation, and
derive the maximum likelihood (ML) noncoherent AF (NCAF)
receiver structures at the destination. Unfortunately, even for the
case of single relay node, no closed-form expression for the ML
NCAF receiver is available, and the ML metric computation re-
quires numerical evaluation of certain integrals. To gain some
understanding of the receiver performance, we assume that the
relay-to-destination link is unfaded1. This is reasonable when
there is a strong line-of-sight path from the relay to the desti-
nation. With this, we are able to derive simple closed-form ex-
pressions for the average bit error rate (BER), with an arbitrary
number of relay nodes, that serve as lower bounds on the opti-
mal performance. We derive the upper bounds on the average
BER by employing the Bhattacharyya bound [10]. We propose
simple suboptimum receivers, for both OOK and BFSK, along
with their performance evaluations. We also show that, using
asymptotic diversity order analysis [11], with M relay nodes
plus a link between the source and the destination, the OOK
achieves a diversity order of at least (M+1)/2, but never M+1,
whereas BFSK achieves the full diversity of M + 1. However,
one of our more surprising results is that for the OOK system,
without a relay, the asymptotic diversity analysis predicts a di-
versity order of less than unity. Since we could not find a good
physical interpretation of this result in the context of diversity, it
suggests that asymptotic diversity analysis should be used with

1A similar assumption is made in [9] for diversity analysis.
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caution.
The rest of this paper is organized as follows. We present the

system model in Section II. Optimum NCAF receiver structures
for OOK and BFSK are formulated in Sections II-A and II-B,
respectively. With the assumption that the relay-to-destination
link is unfaded, Sections III-A and III-B, respectively, derive
the average BER expressions for both OOK and BFSK mod-
ulations, whereas Bhattacharyya distance-based upper bounds
on the BER are discussed in Section IV. Suboptimum receiver
structures are presented in Section V. In Section VI, we study
the asymptotic diversity order analysis. Numerical and simula-
tion results are presented in Section VII. Finally, we conclude
this work in Section VIII.

II. SYSTEM MODEL

Consider a source node S that wishes to communicate with
an intended destination node D with the help of M relay nodes,
R1, . . . , RM . We assume frequency-flat fading on the links be-
tween the source and the destination, between the source and
the relays, and between the relays and the destination. Let g1

denote the channel gain on the path from the source to the des-
tination D, and, for j = 1, . . . , M , gj

2 denote the channel gain
on the path from the source to the relay node Rj . Also, let gj

3

denote the channel gain on the path from the relay Rj to the
destination. We assume that g1, {gj

2}, and {gj
3}, j = 1, . . . , M ,

are zero-mean complex Gaussian random variables (rvs) with
variances E[|g1|2] = Ω1, and E[|gj

2|2] = Ωj
2, E[|gj

3|2] = Ωj
3,

j = 1, . . . , M , respectively.
The source employs a binary signal constellation, X , and nei-

ther the relays nor the destination know the instantaneous chan-
nel gains, and hence employ noncoherent demodulation. The re-
lays amplify the signal received from the source to meet their re-
spective average power constraints. The relays and the destina-
tion are assumed to know the statistical averages, {Ωj

2, Ω
j
3}M

j=1

and Ω1. Our communication protocol is the same as that of [12],
where in the first time slot the source broadcasts its signal to the
destination and the relays, whereas in the second time slot the
relays forward their copies to the destination. That is, if T and
W , respectively, denote the message duration and bandwidth re-
quired for a single-hop system, then the message duration and
bandwidth requirements with M relays are 2T and MW , re-
spectively.

Throughout this paper, we employ low-pass equivalent com-
plex baseband signal models so that X , in general, represents a
complex-valued constellation. Let X ∈ X be the symbol trans-
mitted by the source in the first time slot. Then, the matched-
filer (MF) output at the jth relay is

rj
RS = gj

2X + ηj
RS , (1)

where ηj
RS is a complex-valued Gaussian noise rv with zero-

mean and variance E[|ηj
RS |2] = σ2

N . The output of the MF at
the destination due to the direct link is

rDS = g1X + ηDS , (2)

where ηDS is a complex-valued Gaussian noise rv with zero-
mean and variance E[|ηDS |2] = σ2

N . Relay Rj amplifies the
signal rj

RS by a factor Aj , where Aj is chosen to satisfy the con-

straint E[|Ajr
j
RS |2] = Es. Clearly, Aj =

√
Es/(EsΩ

j
2 + σ2

N ).
In the second time slot, the relays transmit. The output of the
MF at the destination due to the relay Rj is

rj
DR = Ajg

j
3r

j
RS + ηj

DR = Ajg
j
3g

j
2X + Ajg

j
3η

j
RS + ηj

DR, (3)

where ηj
DR is a complex-valued Gaussian noise rv with zero-

mean and variance E[|ηj
DR|2] = σ2

N . One of our goals is to de-
rive the optimal receiver structure at the destination, based only
on the statistical knowledge of Ω1, {Ωj

2, Ω
j
3}M

j=1. We consider
two kinds of binary signal constellations that are amenable to
noncoherent detection: 1)OOK modulation, and 2)BFSK mod-
ulation.

A. On-Off Keying

With OOK, the signal set is given by X = {0,
√

2Es}. The
signal 0 is transmitted when the bit b = 0, whereas

√
2Es is

transmitted when b = 1. The information bits ‘0’ and ‘1’ are
assumed equally likely, so the average transmit energy at the
output of the source is Es. When the information bit b = 1 is
transmitted, the joint pdf of {rj

DR}M
j=1, and rDS , conditioned

on X =
√

2Es, is given by

fr1
DR,...,rM

DR,rDS |X=
√

2P = Eg1

[
fnDS |g1

(
rDS −

√
2Pg1

)]

×
M∏

j=1

E
g

j
2,g

j
3

[
f

ñ
j
DR|gj

2,g
j
3

(
rj
DR − Ajg

j
2g

j
3

√
2P
)]

, (4)

where EU [·] denotes the expectation over the rv U , and ñj
DR,

conditioned on gj
2 and gj

3, is a zero-mean complex Gaussian
rv with variance E[|ñj

DR|2|gj
2, g

j
3] = σ2

N (1 + A2
j |gj

3|2). Also,
fnDS |g1

(·) and f
ñ

j
DR|gj

2,g
j
3
(·) are the conditional density func-

tions of nDS and ñj
DR, respectively. For simplicity, we define

γ1
△
= |g1|2Es/σ2

N , γj
2

△
= |gj

2|2Es/σ2
N , and γj

3

△
= |gj

3|2Es/σ2
N ,

and their respective statistical averages are γ1
△
= E[γ1] =

Ω1Es/σ2
N , γj

2

△
= E[γj

2 ] = Ωj
2Es/σ2

N , and γj
3

△
= E[γj

3] =

Ωj
3Es/σ2

N . To proceed further, we need the following lemma:
Lemma 1: If Z is a complex Gaussian rv, having independent

real and imaginary parts, with mean E[Z] = m and variance
E[|Z − m|2] = N , then the expected value of exp(−|Z|2) is
given by

E[exp(−|Z|2)] =
1

1 + N exp

(
− |m|2

1 + N

)
. (5)

Proof: Refer to (Eqn. (2.1-117), [13]).
Since (rDS −

√
2Pg1)/

√
σ2

N is complex Gaussian with mean
rDS/

√
σ2

N and variance (2P/σ2
N )E[|g1|2] = 2PΩ1/σ2

N , using
Lemma 1, the first term in Eqn. (4) simplifies to

Eg1

[
fnDS |g1

(
rDS −

√
2Pg1

)]
=

1

πσ2
N

× e
− ZDS

1+2γ1

1 + 2γ1

, (6)
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where ZDS = |rDS |2/σ2
N . Following a similar argument as that

for (6), the jth term in the product of the second term in (4) can
now be simplified to

E
g

j
2,g

j
3

[
f

ñ
j
DR|gj

2,g
j
3

(
rj
DR − Ajg

j
2g

j
3

√
2P
)]

=

E
g

j
3




1

πσ2
N

e
− |r

j
DR

|2/σ2
N

1+A2
j
|g

j
3
|2(1+2γ

j
2
)

(1 + A2
j |gj

3|2(1 + 2γj
2))



 . (7)

By defining λ(γj
2) = (1 + 2γj

2)/(1 + γj
2), and Zj

DR =

|rj
DR|2/σ2

N , we can express (7) in the following integral:

E
g

j
2,g

j
3

[
f

ñ
j
DR|gj

2,g
j
3

(
rj
DR − Ajg

j
2g

j
3

√
2P
)]

=

1

πσ2
N

∞∫

x=0

exp
(
−x − Z

j
DR

1+λ(γj
2)γj

3x

)

1 + λ(γj
2)γ

j
3x

dx. (8)

Note that, unfortunately, the integral in Eqn. (8) does not have a
closed-form solution.

When X = 0 is transmitted, we have

fr1
DR,...,rM

DR,rDS |X=0 = Eg1 [fnDS (rDS)]

×
M∏

j=1

E
g

j
2,g

j
3

[
f

ñ
j
DR|gj

2,g
j
3

(
rj
DR

)]
. (9)

Following the analysis (6) and (7), we can simplify the terms in
(9) as

Eg1 [fnDS (rDS)] =
1

πσ2
N

exp (−ZDS) and (10)

E
g

j
2,g

j
3

[
f

ñ
j
DR

(
rj
DR

)]
=

1

πσ2
N

∞∫

x=0

e
−x− Z

j
DR

1+µ(γ
j
2
)γ

j
3

x

1 + µ(γj
2)γ

j
3x

dx, (11)

where µ(γj
2) = 1/(1 + γj

2).
Finally, the log-likelihood ratio of the transmitted bit at the

destination is given by

LLR(b)
△
= log

(
fr1

DR,...,rM
DR,rDS |X=

√
2P

fr1
DR,...,rM

DR,rDS|X=0

)

= F (ZDS , γ1) +

M∑

j=1

G
(
Zj

DR, γj
2, γ

j
3

)
, (12)

where

F (ZDS, γ1) = − log (1 + 2γ1) +

(
2γ1

1 + 2γ1

)
ZDS , (13)

and

G
(
Zj

DR, γj
2, γ

j
3

)
= log





∞∫

x=0

e
−x− Z

j
DR

1+λ(γ
j
2
)γ

j
3

x

1 + λ(γj
2)γ

j
3x

dx



−

log





∞∫

x=0

e
−x− Z

j
DR

1+µ(γ
j
2
)γ

j
3

x

1 + µ(γj
2)γ

j
3x

dx



 . (14)

The destination decodes b̂ = 1 if LLR ≥ 0 and b̂ = 0 otherwise.

B. Binary FSK

With BFSK signaling the signal constellation is given by X =
{
√

Pej2πf1t,
√

Pej2πf2t}, where f1 and f2 are two orthogonal
frequency tones. When b = 1 is the transmitted bit, we have
X =

√
Pe2πf1t. After matched filtering of the received signals

rDS and rj
DR, j = 1, . . . , M , by e−2πf1t and e−j2πf2t over the

signaling duration, we obtain the following low-pass equivalent
complex valued outputs as

rDS,1
△
= rDS,c,1 + jrDS,s,1 =

√
Pg1 + ηDS,1 (15)

rDS,2
△
= rDS,c,2 + jrDS,s,2 = ηDS,2 (16)

rk
DR,1

△
= rk

DR,c,1 + jrk
DR,s,1

= Ak

√
Pgk

2gk
3 + Akgk

3ηk
RS,1 + ηk

DR,1 k = 1, . . . , M (17)

rk
DR,2

△
= rk

DR,c,2 + jrk
DR,s,2

= Akgk
3ηk

RS,2 + ηk
DR,2 k = 1, . . . , M. (18)

In (15)-(18), the subscripts 1 and 2 represent the outputs due
to correlating with frequencies f1 and f2, respectively, whereas
the subscripts c and s denote the in-phase and quadrature com-
ponents, respectively.

Conditioned on f1 being transmitted, the conditional pdf of
rDS,1, rDS,2, rk

DR,1, r
k
DR,2, k = 1, . . . , M , is given by

frDS,1,rDS,2,r1
DR,1,r1

DR,2,...,rM
DR,1,rM

DR,2|f1
=

Eg1 [fηDS,1|g1
(rDS,1 −

√
Pg1)]fηDS,2(rDS,2)

M∏

k=1

Egk
2 ,gk

3

[
fη̃k

DR,1|gk
2 ,gk

3
(rk

DR,1 − Ak

√
Pgk

2gk
3 ) ×

fη̃k
DR,2|gk

2 ,gk
3
(rk

DR,2)
]
, (19)

where η̃k
DR,1 = Akgk

3ηk
RS,1+ηk

DR,1 and η̃k
DR,2 = Akgk

3ηk
RS,2+

ηk
DR,2, conditioned on gk

2 and gk
3 , are two independent com-

plex Gaussian random variables with zero-mean and variances
E[|η̃k

DR,1|2|gk
2 , gk

3 ] = E[|η̃k
DR,2|2|gk

2 , gk
3 ] = σ2

N (1 + A2
k|gk

3 |2).
Using Lemma 1, the terms of (19) can be simplified to

Eg1 [fηDS,1|g1
(rDS,1 −

√
Pg1)] =

1

πσ2
N

× e
−ZDS,1

1+γ1

1 + γ1

(20)

fηDS,2(rDS,2) =
e
− |rDS,2|2

σ2
N

πσ2
N

=
e−ZDS,2

πσ2
N

(21)

Egk
2 ,gk

3

[
fη̃k

DR,1|gk
2 ,gk

3
(rk

DR,1 − Ak

√
Pgk

2gk
3 ) ×

fη̃k
DR,2|gk

2 ,gk
3
(rk

DR,2)
]

=
1

π2N2
0

∞∫

x=0

dx

1 + µ(γk
2)γ

k
3x

× e
−x−

Zk
DR,1

1+γk
3 x

−
Zk

DR,2

1+µ(γk
2 )γk

3x

1 + γk
3x

=
1

π2N2
0

Ψ(Zk
DR,1, Z

k
DR,2, γ

k
2 , γ

k
3). (22)
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In (22), we have ZDS,1 = |rDS,1|2/σ2
N , ZDS,2 = |rDS,2|2/σ2

N ,
Zk

DR,1 = |rk
DR,1|2/σ2

N , Zk
DR,2 = |rk

DR,2|2/σ2
N , and

Ψ(Zk
DR,1, Z

k
DR,2, γ

k
2 , γk

3) is simply given by the integral of
(22).

When frequency tone f2 is transmitted, the above analysis re-
mains valid but, since the correlator with e−j2πf1t would yield
only the noise and the correlator with e−j2πf2t would yield
signal-plus-noise, we need to exchange Zk

DR,1 and Zk
DR,2, and

ZDS,1 and ZDS,2. With this, the LLR of the transmitted bit at
the destination is

LLR(b) = log

(
frDS,1,rDS,2,r1

DR,1,r1
DR,2,...,rM

DR,1,rM
DR,2|f1

frDS,1,rDS,2,r1
DR,1,r1

DR,2,...,rM
DR,1,rM

DR,2|f2

)

= log



e
−ZDS,1

1+γ1
−ZDS,2

∏M

k=1 Ψ(Zk
DR,1, Z

k
DR,2, γ

k
2 , γk

3)

e
−ZDS,2

1+γ1
−ZDS,1

∏M

k=1 Ψ(Zk
DR,2, Z

k
DR,1, γ

k
2 , γk

3)





=

(
γ1

1 + γ1

)
[ZDS,1 − ZDS,2]

+

M∑

j=1

H
(
Zj

DR,1, Z
j
DR,2, γ

j
2, γ

j
3

)
, (23)

where, using the definition of Ψ(·, ·, ·, ·) in (22), we have

H
(
Zj

DR,1, Z
j
DR,2, γ

j
2, γ

j
3

)
= log





∞∫

0

dxe
−x−

Z
j
DR,1

1+γ
j
3x

−
Z

j
DR,2

1+µ(γ
j
2)γ

j
3x

(1 + γj
3x)(1 + µ(γj

2)γ
j
3x)





− log





∞∫

0

dxe
−x−

Z
j
DR,2

1+γ
j
3

x
−

Z
j
DR,1

1+µ(γ
j
2
)γ

j
3

x

(1 + γj
3x)(1 + µ(γj

2)γ
j
3x)



 (24)

The destination decodes b̂ = 1 if LLR ≥ 0 and b̂ = 0 otherwise.

III. LOWER BOUNDS ON THE AVERAGE BER

Due to the complexity of the detection metrics of (12) and
(23), an analysis of the performance of the optimum NCAF is
difficult. As a consequence, we now consider a simple case
of having a strong line-of-sight path on the relay-to-destination
link. An example scenario could be terrestrial communication
from the relay to a destination in a rural environment. In this
case, we assume that the channel gain from the relay to the des-
tination is unfaded. That is, we have f

γ
j
3
(x) = δ(x−γj

3), where
δ(x) is the Dirac delta function. With this assumption, we de-
rive simple closed-form expressions for the average probability
of bit error. Even if this assumption is not satisfied in practice,
the resulting expressions can still serve as lower bounds on the
average error performance.

A. On-Off Keying

We first realize that the term exp(−x) in the integrands of
(11) and (22) is due to the fact that we are averaging E

γ
j
2
[·] over

the pdf of γj
2/γj

2 which is exponentially distributed with unity
mean. Upon replacing exp(−x) in the integrands of (11) by
δ(x − 1), we can simplify the optimum receiver for this special
case as

LLR(b) = − log (1 + 2γ1) +

(
2γ1

1 + 2γ1

)
ZDS +

M∑

j=1





log




e
− Z

j
DR

1+λ(γ
j
2
)γ

j
3

1 + λ(γj
2)γ

j
3



− log




e
− Z

j
DR

1+µ(γ
j
2
)γ

j
3

1 + µ(γj
2)γ

j
3









. (25)

Eqn. (25) can be expressed in a convenient form as

LLR(b) = c1ZDS +

M∑

j=1

cj
2Z

j
DR − Th, (26)

where Th = log(1 + 2γ1) +
∑M

j=1{log(1 + λ(γj
2)γ

j
3) −

log
(
1 + µ(γj

2)γ
j
3

)
}, c1 = 2γ1/(1 + 2γ1), and, for j =

1, . . . , M , cj
2 = 2γj

2γ
j
3/((1 + γj

2 + γj
3)(1 + λ(γj

2)γ
j
3)). In

(Appendix-A, [14]) we derived a simple closed-form expression
for the average BER for the detector of (26) which is given by

P e,On-Off =
1

2

(
1 − F

(
X0, Y

1

0, . . . , Y
M

0 , Th

))
+

1

2
F
(
X1, Y

1

1, . . . , Y
M

1 , Th

)
, (27)

where

F (U1, U2, . . . , UN , Th) =

N∑

j=1






N∏

i=1,i6=j

U j

U j − U i




×

(
1 − exp

(
−Th

U j

))
(28)

X0 =
2γ1

1 + 2γ1

(29)

Y
j

0 =
2γj

2γ
j
3

(1 + γj
2)(1 + λ(γj

2)γ
j
3)

j = 1, . . . , M (30)

X1 = 2γ1 (31)

and Y
j

1 =
2γj

2γ
j
3

1 + γj
2 + γj

3

j = 1, . . . , M. (32)

In (28), the function F (U1, U2, . . . , UN , Th) is defined as the
probability that U1 + U2 + . . . + UN is less than Th, where
U1, . . . , UN are independent exponentially distributed rvs with
the mean of Ui being U i.

We now study the behavior of (27) at high SNR. Similar to
[8], we let γ1 = t1γ, and, for j = 1, . . . , M , γj

2 = t
j
2γ and

γj
3 = t

j
3γ, so that the average link SNR goes to infinity with

γ, while still maintaining a fixed proportionality among them.
The variables t1 and {tj2, tj3}M

j=1 capture the relay placement and
path-loss variability in the relay network. As γ → ∞, (29)-(32)
approach X0 = 1, Y

j

0 = 1, j = 1, . . . , M , X1 = 2t1γ, and
Y

j

1 = 2t
j
2t

j
3γ/(tj2 + t

j
3), j = 1, . . . , M , respectively. It can be
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shown that, as γ → ∞, the threshold Th can be approximated as
(M +1) log(γ). In view of X0 = 1 and Y

j

0 = 1, j = 1, . . . , M ,
the first term,

(
1 − F (X0, Y

1

0, . . . , Y
M

0 , Th)
)

, in (27) is noth-
ing but the probability that the sum of M + 1 independent and
identically distributed (i.i.d.) exponential rvs, each having unity
mean, exceeds Th. This has a well-known closed form, which
is given by [13]

(
1 − F (X0, Y

1

0, . . . , Y
M

0 , Th)
)

=

∞∫

Th

e−xxM

Γ(M + 1)
dx

≈ e−ThTh
M

Γ(M + 1)
≈ (M + 1)M

M !
× (log(γ))M

(γ)M+1
(γ → ∞), (33)

where in the second step of (33) we employed the asymp-
totic behavior of the incomplete Gamma function [15]. The
third step in (33) is due to Th ≈ (M + 1) log(γ). To char-
acterize the behavior of F (X1, Y

1

1, . . . , Y
M

1 , Th) in (27), we
notice that the constituent rvs X1, Y

1

1, . . . , Y
M

1 have a linear
growth in their expected values with γ. Let us define tmax =
max(t1, t

1
2t

1
3/(t12 + t

1
3), . . . , t

M
2 t

M
3 /(tM2 + t

M
3 )). The probabil-

ity F (X1, Y
1

1, . . . , Y
M

1 , Th) can be lower bounded as

F (X1, Y
1

1, . . . , Y
M

1 , Th) = Prob(X1 + Y 1
1 + · · · + Y M

1 < Th)

≥ Prob

(
max(X1, Y

1

1, . . . , Y
M

1 ) ×

(X1/X1 + Y 1
1 /Y

1

1 + · · · + Y M
1 /Y

M

1 ) < Th

)

= Prob(
X1

X1

+
Y 1

1

Y
1

1

+ · · · + Y M
1

Y
M

1

<
Th

2tmaxγ
). (34)

Observe that the rvs X1/X1, Y 1
1 /Y

1

1, . . . , Y
M
1 /Y

M

1 are i.i.d.
rvs each with unity mean. That is, the sum X1

X1
+
∑M

j=1
Y

j
1

Y
j
1

is
Gamma distributed [13]. As a result, (34) simplifies to [13]

F (X1, Y
1

1, . . . , Y
M

1 , Th) ≥

Th
2tmaxγ∫

x=0

e−xxM

Γ(M + 1)
dx

= 1 − e−
Th

2tmaxγ

M∑

j=0

1

j!

(
Th

2tmaxγ

)j

≥ (M + 1)M+1

(2tmax)M+1(M + 1)!

(
log(γ)

γ

)M+1

(γ → ∞).(35)

Combining (35) with (33), we have

P e,On-Off ≥
(M + 1)M

M !
× (log(γ))M

2(γ)M+1
+

(M + 1)M+1

2(2tmax)M+1(M + 1)!

(
log(γ)

γ

)M+1

>
(M + 1)M+1

2(2tmax)M+1(M + 1)!

(
1

γ

)M+1

(γ → ∞). (36)

B. Binary FSK

By replacing exp(−x) in the integrals of Eqn. (22) by δ(x −
1), we can simplify the function H(·, ·, ·, ·) to

H
(
Zj

DR,1, Z
j
DR,2, γ

j
2, γ

j
3

)
= Zj

DR,1

(
1

1 + µ(γj
2)γ

j
3

− 1

1 + γj
3

)

−Zj
DR,2

(
1

1 + µ(γj
2)γ

j
3

− 1

1 + γj
3

)

=
(
Zj

DR,1 − Zj
DR,2

) γj
2γ

j
3

(1 + γj
3)(1 + γj

2 + γj
3)

(37)

With this, we can simplify LLR(b) of (23) to

LLR(b) =

(
γ1

1 + γ1

)
[ZDS,1 − ZDS,2]

+

M∑

j=1

(
γj

2γ
j
3

(1 + γj
3)(1 + γj

2 + γj
3)

)(
Zj

DR,1 − Zj
DR,2

)
.(38)

An analysis of the average error rate of (38) can be performed
as follows: Without loss of generality, we assume that the fre-
quency tone f1 is transmitted. Then ZDS,1 is exponentially dis-
tributed with mean 1 + γ1, whereas ZDS,2 is exponentially dis-
tributed with mean 1. Similarly, Zj

DR,1 is exponentially dis-
tributed with mean 1 + γj

3, whereas Zj
DR,2 is exponentially dis-

tributed with mean 1 + µ(γj
2)γ

j
3. Also, note that ZDS,1, ZDS,2,

Zj
DR,1, Zj

DR,2, j = 1, . . . , M , are independent rvs. With this,
we define the following rvs

U1 =
γ1

1 + γ1

ZDS,1

Uj+1 =
γj

2γ
j
3Z

j
DR,1

(1 + γj
3)(1 + γj

2 + γj
3)

j = 1, . . . , M,(39)

and V1 =
γ1

1 + γ1

ZDS,2

Vj+1 =
γj

2γ
j
3Z

j
DR,2

(1 + γj
3)(1 + γj

2 + γj
3)

j = 1, . . . , M.(40)

The rvs of Eqns. (39) and (40), respectively, have the following
mean values:

U1 = γ1

U j+1 =
γj

2γ
j
3

1 + γj
2 + γj

3

j = 1, . . . , M, (41)

and V 1 =
γ1

1 + γ1

V j+1 =
γj

2γ
j
3

(1 + γj
2)(1 + γj

3)
j = 1, . . . , M.(42)
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The average BER is then given by

P e,BFSK = Prob




M+1∑

j=1

Uj <

M+1∑

j=1

Vj





=

M+1∑

i=1

M+1∑

j=1

κiζj

(
V i

V i + U j

)
, (43)

where the details of (43) can be found in (Appendix-B, [14]),
and the ζj and κj of Eqn. (43) are given by

ζj =

M+1∏

i=1,i6=j

U j

U j − U i

and κi =

M+1∏

j=1,j 6=i

V i

V i − V j

. (44)

We consider the behavior of (43) at high SNR. The mean values
in (41)-(42) simplify to

U1 = t1γ (45)

U j+1 =
t
j
2t

j
3

t
j
2 + t

j
3

γ j = 1, . . . , M, (46)

V 1 = 1 (47)
and V j+1 = 1 j = 1, . . . , M. (48)

Define V =
∑M+1

j=1 Vj . At high SNR, from (47) and (48), V
is a sum of M + 1 i.i.d. exponential random variables of unity
mean, and hence V is Gamma distributed [13]. Using (45)-(48),
the expression in (43) can be simplified as

P e,BFSK = Prob

 
M+1X
j=1

Uj < V

!
≥ E

"
Prob

 
max

�
U1, . . . , UM+1

�
×

(
M+1X
j=1

Uj

U j

)
< v

!���V = v

#
(49)

Since max
(
U1, . . . , UM+1

)
= tmaxγ, and

∑M+1
j=1

Uj

Uj
is again

Gamma distributed, (49) can be simplified as

P e,BFSK ≥
∞∫

v=0

dv
e−vvM

Γ(M)
×

v
tmaxγ∫

u=0

du
e−uuM

Γ(M + 1)

=

∞∫

v=0

dv
e−vvM

Γ(M)
× e−

v
tmaxγ

∞∑

j=M+1

1

j!

(
v

tmaxγ

)j

=
1

Γ(M + 1)

∞∑

j=M+1

1

j!

1

(tmaxγ)j
× Γ(M + j + 1)

(1 + 1
tmaxγ

)M+j+1

≥ (2M + 1)!

M !(M + 1)!

(
1

tmaxγ

)M+1

(γ → ∞). (50)

IV. UPPER BOUNDS ON THE AVERAGE BER

In this section, we present upper bounds on the average BER
for both OOK and BFSK signals on noncoherent relay chan-
nels. To accomplish this task, we use the likelihood functions
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Fig. 1. Average probability of error for OOK modulation with noncoherent de-
modulation. Three cases of relay placements are considered: a)Relay close to
the source, b)relay at the midpoint between the source and the destination, and
c)relay close to the destination. Also shown is the analytical error probability
performance of a system with no relay and the performance with the subopti-
mum detector of Eqn. (62)
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Fig. 2. Average probability of error for FSK modulation with noncoherent
demodulation. Three cases of relay placements are considered: a)Relay close
to the source, b)relay at the midpoint between the source and the destination, and
c)relay close to the destination. Also shown is the analytical error probability
performance of a system with no relay and the performance achieved by the
suboptimum detector of Eqn. (63).

of the transmitted bits along with the Bhattacharyya bound. The
Bhattacharyya upper bound on the probability of error in dis-
criminating two hypotheses, H0 and H1, is given by [10]

P b ≤
∞∫

z=−∞

√
fH1(z)fH0(z)dz, (51)

where fHj (z) is the likelihood function for the hypothesis Hj ,
j ∈ {0, 1}.

For OOK, when the signal is present, the con-
ditional density function, fH1 , takes the form of
fZDS ,Z1

DR,...,ZM
DR|X=

√
2Es

, whereas fH0 , when the sig-
nal is absent, takes the form of fZDS ,Z1

DR,...,ZM
DR|X=0.

Since fZDS ,Z1
DR,...,ZM

DR|X=
√

2Es
= fZDS |X=

√
2Es

×
∏M

j=1 f
Z

j
DR|X=

√
2Es

and fZDS ,Z1
DR,...,ZM

DR|X=0 = fZDS |X=0
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×∏M

j=1 f
Z

j
DR|X=0, the integral in (51) can be expressed as

P b,On−Off ≤
∞Z

ZDS=0

s
1

1 + 2γ1

exp

�
− ZDS

1 + 2γ1

− ZDS

�
dZDS ×

MY
j=1

∞Z
Z

j
DR

=0

q
A(Zj

DR, 1, λ(γj
2)γ

j
3)A(Zj

DR, 1, µ(γj
2)γ

j
3)dZ

j
DR, (52)

where

A(Z, a, b) =

∞∫

x=0

exp(−ax)

1 + bx
exp

(
− Z

1 + bx

)
dx =

1

b
A(Z, a/b, 1).

(53)
Except for the first term, which can be evaluated as√

1 + 2γ1/(1 + γ1), (52) does not appear to have a closed-
from. As a result, one must resort to numerical integra-
tion. At high SNR, the functions A(Zj

DR, 1, λ(γj
2)γ

j
3) and

A(Zj
DR, 1, µ(γj

2)γ
j
3) in the jth integral of the product of (52)

can be approximated as

A(Zj
DR, 1, λ(γj

2)γ
j
3) ≈

1

2t
j
3γ

A

(
Zj

DR, 0, 1
)

(54)

and A(Zj
DR, 1, µ(γj

2)γ
j
3) ≈ A

(
Zj

DR, 1,
t
j
3

t
j
2

)
. (55)

The first term of (52),
√

1 + 2γ1/(1 + γ1), at high SNR, can be
approximated as

√
2/γ1 =

√
2/t1/

√
γ. Using this, along with

(54) and (55), the high SNR version of (52) is
P b,On−Off (High SNR) ≤ 1√

γ

r
2

t1

MY
j=1

(
1q
2tj

3γ

∞Z
Z

j
DR

=0

s
A
�
Zj

DR, 0, 1
�
A

�
Zj

DR, 1,
t
j
3

t
j
2

�
dZj

DR

)
=

1

(γ)
M+1

2

"r
2

t1

MY
j=1

1q
2tj

3

×

∞Z
Z

j
DR

=0

q
A(Zj

DR, 0, 1)A(Zj

DR, 1, tj
3/t

j
2)dZ

j
DR

#
. (56)

For the case of BFSK, the Bhattacharyya bound, analogous to
(52), can be written as

P b,BF SK ≤
∞Z

ZDS,1=0

∞Z
ZDS,2=0

e
−[ZDS,1+ZDS,2]

(2+γ1)
2(1+γ1)

(1 + γ1)
dZDS,1 ×

dZDS,2 ×
MY

j=1

( ∞Z
Z

j
DR,1

=0

∞Z
Z

j
DR,2

=0

q
Ψ(Zj

DR,1, Z
j
DR,2, γ

j
2, γ

j
3) ×q

Ψ(Zj
DR,2, Z

j
DR,1, γ

j
2, γ

j
3)dZ

j

DR,1 dZj

DR,2

)
, (57)

where the function Ψ(·, ·, ·, ·) is given in (22). Only the first
term in (57) has a closed-form solution, and is given by 4(1 +

γ1)/(2+γ1)
2. However, similar to (52), (57) must be evaluated

numerically. At high SNR, the first term 4(1+γ1)/(2+γ1)
2 in

(57) behaves as 4
t1γ

, and the functions Ψ(Zj
DR,1, Z

j
DR,2, γ

j
2, γ

j
3)

and Ψ(Zj
DR,2, Z

j
DR,1, γ

j
2, γ

j
3), with the help of (22), can be sim-

plified to

Ψ(Zj
DR,1, Z

j
DR,2, γ

j
2, γ

j
3) ≈

1

t
j
3γ

∞∫

u=0

e−Z
j
DR,1−

Z
j
DR,2
1+u

1 + u
du

=
1

t
j
3γ

Θ(Zj
DR,1, Z

j
DR,2) (58)

and Ψ(Zj
DR,2, Z

j
DR,1, γ

j
2, γ

j
3) ≈

1

t
j
3γ

∞∫

u=0

e−Z
j
DR,2−

Z
j
DR,1
1+u

1 + u
dt

=
1

t
j
3γ

Θ(Zj
DR,2, Z

j
DR,1), (59)

where

Θ(Z1, Z2) =

∞∫

t=0

e−Z1− Z2
1+t

1 + t
dt. (60)

Using (58) and (59), (57) becomes

P b,BFSK (High SNR) ≤ 4

t1γ

M∏

j=1

{ ∞∫

Z
j
DR,1=0

∞∫

Z
j
DR,2=0

1

t
j
3γ

×

√
Θ(Zj

DR,1, Z
j
DR,2)Θ(Zj

DR,2, Z
j
DR,1)dZ

j
DR,1 dZj

DR,2

}

=
1

(γ)M+1

[
4

t1

M∏

j=1

1

t
j
3

∞∫

Z
j
DR,1=0

∞∫

Z
j
DR,2=0

{√
Θ(Zj

DR,1, Z
j
DR,2) ×

√
Θ(Zj

DR,2, Z
j
DR,1)dZ

j
DR,1 dZj

DR,2

}]
. (61)

V. SUBOPTIMUM RECEIVERS

In this section, we present easy to implement suboptimum re-
ceivers for both OOK and BFSK. For OOK, we propose the
following detector:

LLR(b) (OOK) = c1ZDS +

M∑

j=1

cj
2Z

j
DR − Th, (62)

where Th, c1, and, for j = 1, . . . , M , cj
2, are defined in Section

III-A. It is to be noted that (62) is optimum only when the relay-
to-destination link is unfaded. Performance analysis of (62) is
carried out in (Appendix-C, [14]).

For BFSK, we propose the following suboptimum receiver:

LLR(b) =

(
γ1

1 + γ1

)
[ZDS,1 − ZDS,2] +

M∑

j=1

(
γj

2γ
j
3

(1 + γj
3)(1 + γj

2 + γj
3)

)(
Zj

DR,1 − Zj
DR,2

)
. (63)
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Again, (63) is optimal only when the relay-to-destination link is
unfaded. In (Appendix-D, [14]) we present an analysis on the
performance of (63).

VI. ASYMPTOTIC DIVERSITY ORDER ANALYSIS

In this section, we consider the use of the expression from [11]
for the asymptotic diversity orders of the systems discussed in
this paper. As will be seen, it is unclear as to how much credence
one should put on the results of this type of analysis. However,
we present them because similar results for other systems are
prevalent in the literature (see, e.g., [8], [9]).

From [11], the asymptotic diversity order of a system with M
relay nodes is

dM
△
= − lim

γ→∞

log P
(M)

b (γ)

log(γ)
, (64)

where γ is the average SNR, and P
(M)

b (γ) is the average BER
for an M -relay system with an SNR of γ. This expression can
be used for the noncoherent relay channels. For BFSK, using
the lower bound of (49) and the upper bound of (61), on the
BER, in (64), we conclude that

dM,BFSK ≤ M + 1,

and dM,BFSK ≥ M + 1, (65)

respectively. That is, BFSK achieves a full diversity order of
M + 1. Furthermore, in [14] we show that the suboptimum
BFSK receiver of (63) also achieves a full diversity of M + 1 as
γ → ∞. Using the lower bound on the BER for OOK, (36), in
(64) yields the following upper bound on the diversity order:

dM,OOK < M + 1, (66)

Also, the upper bound on the BER of (56) yields the following
lower bound on dM,OOK :

dM,OOK ≥ (M + 1)/2. (67)

Taken together, (66) and (67) show that OOK achieves a diver-
sity order of at least (M + 1)/2, but cannot achieve the full
diversity of M + 1. In particular, for a noncoherent OOK sys-
tem without the relay, upon setting M = 0 in (66), the asymp-
totic diversity order is less than unity. This can be explained
by the fact that the noncoherent ML receiver does not adapt the
decision threshold, Th, to the instantaneous channel gains, and
hence results in a loss of performance2. This would seemingly
be attributed to a loss in diversity if the asymptotic diversity re-
sult was blindly applied. However, since a diversity order of
less than unity does not appear to have a sensible physical inter-
pretation, care should be exercised when attempting to interpret
performance behavior based solely upon asymptotic diversity
analysis.

2At high SNR, the average BER of the noncoherent OOK receiver with direct
transmission is given by log(γ)/γ [16]. Our lower bound on the average BER
with M relays (cf. (36)), is consistent with the results of [16].
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0 5 10 15 20 25 30
10−6

10−5

10−4

10−3

10−2

10−1

100

Single−hop Average Received SNR

A
ve

ra
ge

 B
it 

E
rr

or
 R

at
e

BFSK: Source location (0,0); Destination location (1,0); Relay location (ρ,0)

Lower Bound: ρ=0.2
Lower Bound: ρ=0.5
Lower Bound: ρ=0.8
Upper Bound: ρ=0.2
Upper Bound: ρ=0.5
Upper Bound: ρ=0.8
Simulations: ρ=0.2
Simulations: ρ=0.5
Simulations: ρ=0.8
No Relay

Fig. 4. Comparison of the average BER for BFSK modulation with nonco-
herent demodulation. The curves with legend “Upper Bound” correspond to
Bhattacharyya distance between the likelihood functions, whereas the curves
with legend “Lower Bound” correspond to the assumption that the link between
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VII. RESULTS AND DISCUSSION

We now present some numerical and simulation results to il-
lustrate the performance of receivers for OOK and BFSK signal
sets, as derived in the previous sections. Results are shown for
M = 1 relay. The distance between the source and the destina-
tion is set to unity, and the relay is placed on the line joining the
source and the destination. The path loss exponent η is set to
four, so that we have γ1 = d−η

DSγ/2 = γ/2, γ1
2 = d−η

RSγ/2, and
γ1

3 = d−η
DRγ/2, where γ is the SNR without a relay. The factor

1/2 is due to the power split between the source and the relay.
Fig. 1 shows the average BER of the optimum OOK receiver of
Eqn. (12) as a function of the single-hop SNR, γ. Three sce-
narios of the relay placement are considered: 1)relay is closer
to the source than to the destination, with dRS = 0.1, 2)relay is
closer to the destination than to the source, with dRS = 0.9, and
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3)relay at the midpoint between the source and the destination
with dRS = 0.5. Also shown is the average BER for single-hop
transmission, which is obtained analytically by evaluating Eqn.
(27) with M = 0, and the BER performance obtained by using
the suboptimum detector of Eqn. (62). From Fig. 1, we observe
that placement of the relay at the midpoint uniformly minimizes
the average BER, whereas relay placement close to the destina-
tion results in worse BER performance. In fact, at lower values
of γ, single-hop transmission performs slightly better than the
case with dRS = 0.9, which can be attributed to an increase in
the noise amplification at the relay. Compared with single-hop
performance, as γ increases, we notice from Fig. 1 an improved
performance with a single relay node. We also conclude from
Fig. 1 that the suboptimum detector performs reasonably well,
compared with the ML NCAF receiver, when the relay is close
to the source. This can be explained by the fact that noise am-
plification at the relay is less severe when the relay is close to
the source.

The average BER for the optimum BFSK receiver of Eqn.
(23) is plotted in Fig. 2 as a function of γ. The placement of
the relay is the same as that of Fig. 1. The suboptimum receiver
as given in (63) is also considered. The following observations
can be made from Fig. 2. First, with optimum reception, BER
performance with dRS = ρ = 0.5 is uniformly better than with
ρ = 0.1 and 0.9, which is due to the fact that, with ρ = 0.5,
the noise amplification at the relay is roughly balanced by the
strong signal from the relay to the destination. The suboptimum
receiver of (62) has identical performance as that of the opti-
mum one (over the plotted range of SNR values) at ρ = 0.1 and
performs very close to the optimum one at ρ = 0.5, whereas its
performance is inferior to the optimum one at ρ = 0.9. This
is due to the fact that, for relay placement closer to the desti-
nation that to the source, the suboptimum receiver suffers from
more noise amplification than the optimum one. Also, notice
from Fig. 2 that, over the range of the plotted average SNR, γ,
performance with relay is uniformly better than the single-hop
transmission.

Finally, we present upper and lower bounds on the average
BER performance of the NCAF receivers. Fig. 3 shows the av-
erage BER performance with OOK modulation. In Fig. 3, the
upper bound is obtained by evaluating (52), whereas the lower
bound is given by (27). Fig. 4 plots the average BER for BFSK
using the upper bound of (57), and the lower bound of (43). The
average BER is parameterized by ρ ∈ {0.1, 0.5, 0.9} in Fig. 3,
and by ρ ∈ {0.2, 0.5, 0.8} in Fig. 4. The lower bounds in Figs.
3 and 4 show that the placement of relay at the midpoint be-
tween the source and the destination is optimal, whereas relay
placement close to the source yields the same performance as
that of placement close to the destination. This can be explained
with the observation that Eqns. (27) and (43) are symmetric
with respect to γj

2 and γj
3. That is, by exchanging γj

2 and γj
3, the

resulting average BER does not change. For OOK, the upper
bounds in Fig. 3 indicate that single-hop transmission has bet-
ter performance over the relay-based one when ρ ∈ {0.1, 0.5},
whereas with BFSK Fig. 4 shows that, at high SNR, the relay-
based system performs better than the single-hop system.

VIII. CONCLUSION

We have presented ML receiver structures for noncoherent
amplify-and-forward communication when multiple relay nodes
are employed. We considered both OOK and BFSK modulation
schemes on Rayleigh fading channels with no receiver CSI. It
was observed that, even for the simplest case of having only one
relay node, the optimum noncoherent receiver is quite involved,
and the ML metric computation requires evaluation of certain
integrals. Next, we presented lower and upper bounds on the
average BER, and also proposed simple suboptimum receivers
along with their performance evaluation. Our asymptotic diver-
sity analysis showed that, with M relay nodes, and a link be-
tween the source and the destination, OOK achieves a diversity
order of at least (M + 1)/2, whereas BFSK achieves the full
diversity of M + 1.
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