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De novo design of high-affinity binders of 
bioactive helical peptides

Susana Vázquez Torres1,2,3,12, Philip J. Y. Leung1,2,4,12, Preetham Venkatesh1,2,3,12, Isaac D. Lutz1,2,5, 
Fabian Hink6, Huu-Hien Huynh7, Jessica Becker7, Andy Hsien-Wei Yeh1,2, David Juergens1,2,4, 
Nathaniel R. Bennett1,2,4, Andrew N. Hoofnagle7, Eric Huang8, Michael J. MacCoss8, 
Marc Expòsit1,2,4, Gyu Rie Lee1,2, Asim K. Bera1,2, Alex Kang1,2, Joshmyn De La Cruz1,2, 
Paul M. Levine1,2, Xinting Li1,2, Mila Lamb1,2, Stacey R. Gerben1,2, Analisa Murray1,2, 
Piper Heine1,2, Elif Nihal Korkmaz1,2, Jeff Nivala9,10, Lance Stewart1,2, Joseph L. Watson1,2 ✉, 
Joseph M. Rogers6 ✉ & David Baker1,2,11 ✉

Many peptide hormones form an α-helix on binding their receptors1–4, and sensitive 
methods for their detection could contribute to better clinical management of 
disease5. De novo protein design can now generate binders with high affinity and 
specificity to structured proteins6,7. However, the design of interactions between 
proteins and short peptides with helical propensity is an unmet challenge. Here we 
describe parametric generation and deep learning-based methods for designing 
proteins to address this challenge. We show that by extending RFdiffusion8 to enable 
binder design to flexible targets, and to refining input structure models by successive 
noising and denoising (partial diffusion), picomolar-affinity binders can be generated 
to helical peptide targets by either refining designs generated with other methods, or 
completely de novo starting from random noise distributions without any subsequent 
experimental optimization. The RFdiffusion designs enable the enrichment and 
subsequent detection of parathyroid hormone and glucagon by mass spectrometry, 
and the construction of bioluminescence-based protein biosensors. The ability to 
design binders to conformationally variable targets, and to optimize by partial 
diffusion both natural and designed proteins, should be broadly useful.

Peptide hormones, such as parathyroid hormone (PTH), neuro-
peptide Y (NPY), glucagon (GCG) and secretin (SCT), which adopt 
α-helical structures on binding their receptors1–4, play key roles in 
human biology and are well-established biomarkers in clinical care 
and biomedical research (Fig. 1a). There is considerable interest in 
their sensitive and specific quantification9, which at present relies on 
antibodies that require substantial resources to generate, can be dif-
ficult to produce with high affinity, and often have less-than-desirable 
stability and reproducibility10–14. The loop-mediated interaction sur-
faces of antibodies are not particularly well suited to high-specificity 
binding of extended helical peptides—almost all anti-peptide anti-
bodies bind their targets in non-helical conformations15. Designed 
proteins with very high stability can be readily produced with high 
yield and low cost in Escherichia coli; however, although there 
have been considerable advances in de novo design of binders for 
folded proteins6,7, the design of proteins that bind helical peptides 
with high affinity and specificity remains an outstanding challenge. 
Design of peptide-binding proteins is challenging for two reasons. 

First, proteins designed to bind folded proteins, such as picomolar- 
affinity hyper-stable 50–65-residue minibinders7,16, have shapes 
suitable for binding rigid concave targets, but not for cradling 
extended peptides. Helical peptides can readily associate to form 
coiled-coil assemblies, and this principle has been used to design 
binders for a calmodulin peptide17, but coiled-coil subunits generally 
self-associate in the absence of binding partners owing to consider-
able exposed hydrophobic surface, considerably reducing the effec-
tive target-binding affinity. Second, peptides have fewer residues 
to interact with, and are often partially or entirely unstructured in 
isolation18. Hence, there can be an entropic cost of structuring the 
peptide into a specific conformation19, which compromises the favour-
able free energy of association. Progress has been made in designing 
peptides that bind to extended β-strand structures20 and polyproline II 
conformations21 using protein side chains to interact with the peptide 
backbone, but such interactions cannot be made with α-helical pep-
tides owing to the extensive internal backbone–backbone hydrogen 
bonding.
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Design of peptide-binding scaffolds
We set out to develop general methods for designing proteins that 
bind peptides in helical conformations. To fully leverage recent 
advances in protein design, we explored both parametric and deep 
learning-based approaches. For parametric generation, we reasoned 
that helical bundle scaffolds with an open groove for a helical pep-
tide could provide a general solution to the helical peptide-binding 

problem: the extended interaction surface between the full length of 
the helical peptide target and the contacting helices on the designed 
scaffold could enable high-affinity and specific binding, and the heli-
ces flanking the groove could limit self-association of the recessed 
hydrophobic surfaces. In parallel, we reasoned that deep learn-
ing methods, which do not pre-specify scaffold geometries, could 
permit the exploration of different potential solutions to peptide  
binding.
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Fig. 1 | Design strategies for binding helical peptides. a, Helical peptide 
targets: apoptosis-related BH3 domains of Bid43 (PDB ID: 4QVE) and Bim44  
(PDB ID: 3FDL), GCG3 (PDB ID: 1GCN), gastric inhibitory peptide45 (GIP; PDB ID: 
2QKH), SCT46 (PDB ID: 6WZG), GCG-like peptide 147 (GLP1; PDB ID: 6X18), PTH48 
(PDB ID: 1ET1), PTHrp25 (PDB ID: 7VVJ), PYY49 (PDB ID: 2DEZ) and NPY50 (PDB ID: 
7X9A). b, Parametric approach. Left: sampling groove scaffolds varying 
supercoiling and helix distance to fit different targets. Middle: design model 
(spectrum) and PTH target (purple) of the best parametrically designed PTH 
binder. Right: split NanoBiT titration of PTH and the binder showed weak 
binding. a.u., arbitrary units. c, Inpainting binder optimization. Left: redesign 
of parametrically generated binder designs using RFjoint Inpainting to expand 
the binding interface and ProteinMPNN to redesign the sequences. Middle: AF2 
prediction of Inpainted design (spectrum) with extended interface (teal), and 
PTH target (purple). Right: FP measurements (n = 4) indicate 6.04 nM binding 

to PTH and weak binding to off-target PTHrp. d, Threading approach to peptide 
binder design. Left: starting with a helix-bound scaffold, a target is threaded 
onto the bound helix and the interface is redesigned. Middle: AF2 prediction  
of design (spectrum) and SCT target (orange). Right: FP measurements (n = 4) 
indicate 3.95 nM binding to SCT and 12 nM binding to GCG. e, Hallucinating 
peptide binders. Left: Markov chain Monte Carlo (MCMC) steps are carried out 
in sequence space. At each step, the peptide sequence is re-predicted, and 
changes are accepted or rejected on the basis of interfacial contacts and AF2 
metrics. The final structure is then redesigned using ProteinMPNN to avoid 
adversarial sequences. Interaction pAE, predicted alignment error across  
the interface; pLDDT, predicted local distance difference test. Middle: AF2 
prediction of design (spectrum) and Bid target (blue). Right: FP measurements 
(n = 4) indicate 7 nM binding affinity to Bid.
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We began by exploring parametric methods for generating back-
bones with overall ‘groove’ shapes. Using the Crick parameterization of 
α-helical coiled coils22, we devised a method to sample scaffolds consist-
ing of a three-helix groove supported by two buttressing helices (Fig. 1b 
and Methods). We assembled a library sampling a range of supercoiling 
and helix–helix spacings to accommodate a variety of helical peptide 
targets (Supplementary Figs. 1–3). We then used this library to design 
binders to PTH, GCG and NPY, and screened 12 designs for each target 
using a NanoBiT split-luciferase binding assay (Supplementary Fig. 4). 
Many of the designs bound their targets (3, 4 and 8 out of 12 to PTH, GCG 
and NPY, respectively) but with only micromolar affinities (Fig. 1b and 
Supplementary Fig. 4a–c). These results suggest that groove-shaped 
scaffolds can be designed to bind helical peptides, but also that design 
method improvement was necessary to achieve high-affinity binding.

We next explored using RoseTTAFold Inpainting (RFjoint)
23, a model 

that can jointly design protein sequences and structures, along with 
ProteinMPNN24, an improved sequence design method, to improve the 
modest affinity of our tightest parametrically designed PTH binder 
(Fig. 1c, left). We used RFjoint Inpainting to extend the binder interfaces 
and ProteinMPNN to redesign the sequences, reasoning that the combi-
nation of these two methods could lead to more favourable interactions 
with the peptide. Out of 192 designs tested, 44 showed binding against 
PTH in initial yeast display screening. Following size-exclusion chroma-
tography (SEC), the best binder was found to bind with 6.04 nM affinity 
to PTH using fluorescence polarization (FP). Binding was specific: very 
little binding was observed to PTH-related peptide (PTHrp), a related 
peptide sequence with 34% sequence identity that binds the same 
receptor as PTH25 (Fig. 1c, right). Overall, the affinity of the starting PTH 
binder was improved by approximately three orders of magnitude, and 
the computational model of the highest-affinity binder had 19% greater 
surface area contacting the target peptide (the structural extension 
was critical to the improvement in binding affinity; sequence redesign 
with ProteinMPNN of the original binding interface did not measur-
ably increase affinity; Supplementary Fig. 5). We used the same design 
strategy to generate higher-affinity binders for NPY and GCG. Using 
weak parametric binders as a starting point, we extended their binding 
interfaces and redesigned their sequences to generate a 231-nM-affinity 
binder for GCG and a 3.5-µM binder for NPY after screening 96 designs 
(Extended Data Fig. 1a,b).

As an alternative to de novo parametric design of scaffolds that 
contain grooves, we explored the threading of helical peptides of 
interest onto already existing designed scaffolds with interfaces that 
make extensive interactions with helical peptides26,27 (Fig. 1d, left, and  
Methods). We threaded sequences of peptides of interest onto these 
complexes, and filtered for interfacial hydrophobic interactions 
between the target sequence and the scaffolds17,26. The selected scaf-
folds were then redesigned in the presence of the threaded target 
sequence with ProteinMPNN24 and the complex was predicted with 
AlphaFold228 (AF2; with initial guess6) and filtered on AF2 and Rosetta 
metrics. Initial screening using yeast surface display identified 4/66 
binders for SCT, which were expressed in E. coli. After purification, all 
four of the designs were found to bind with submicromolar affinity 
using FP, with the highest-affinity design binding with an affinity of 
2.7 nM for SCT (Fig. 1d, right); we also made designs with a dissociation 
constant (Kd) of <100 nM to GCG-like peptide 1 and gastric inhibitory 
polypeptide (Extended Data Fig. 2a,b). The SCT binder design bound 
GCG, which has 44% sequence identity to SCT4,29, with fourfold weaker 
affinity than SCT (Fig. 1d, right).

Designing binders using Hallucination
We next explored the use of deep learning Hallucination methods 
to generate helical peptide binders completely de novo, with no 
pre-specification of the binder or peptide geometry (Fig. 1e, left inset, 
and Supplementary Fig. 6a). Hallucination or ‘activation maximization’ 

approaches start from a network that predicts protein structure 
from sequence, and carry out an optimization in sequence space for 
sequences that fold to structures with desired properties. This approach 
has been used to generate new monomers30, functional-site scaffolds23 
and cyclic oligomers31. Hallucination using AF2 or RoseTTAFold has the 
advantage that neither the binder nor the peptide structure needs to 
be specified during the design process, enabling the design of binders 
to peptides in different conformations (this is useful given the unstruc-
tured nature of many peptides in solution; disordered peptides can 
bind in different conformations to different binding partners18). Hal-
lucination directly optimizes metrics correlated with binding, albeit 
with the possible hazard of generating adversarial protein sequences31. 
We began by designing binders to the apoptosis-related BH3 domain of 
Bid (Fig. 1a). The Bid peptide is unstructured in isolation, but adopts an 
α-helix on binding to Bcl-2 family members32,33; it is therefore a model 
candidate for the design of helix-binding proteins. Starting from only 
the Bid primary sequence, and a random seed binder sequence (of length 
60, 70, 80, 90 or 100 residues), we carried out a Monte Carlo search in 
sequence space, optimizing for confident binding to the target peptide 
(AF2 predicted local distance difference test, pLDDT; and predicted 
alignment error, pAE)6. The trajectories typically converged in 5,000 
steps (sequence substitutions; Supplementary Fig. 6b), and the output 
binder structure was subsequently redesigned with ProteinMPNN, as 
previously described31. All designed binders were predicted to bind 
to Bid in a predominantly helical conformation; the exact conforma-
tions differ between designs because only the amino acid sequence of 
the target is specified in advance. This protocol effectively carries out 
flexible backbone protein design, which can be a challenge for tradi-
tional Rosetta-based design approaches for which deep conformational 
sampling can be very compute intensive. In line with our prediction 
that ‘groove’ scaffolds would offer an ideal topology for helical peptide 
binding, many of the binders from this approach contain a well-defined 
‘groove’, with the peptide predicted to make extensive interactions with 
the binder, typically helix–helix interactions (Extended Data Fig. 3a).

We experimentally tested 46 of the Hallucinated designs (Extended 
Data Fig.  3a) by co-expression of a GFP-tagged Bid peptide and 
His-tagged binders, with co-elution of GFP and binder used as a read-
out for binding. Four of these designs were further characterized, 
and showed soluble, monomeric expression even in the absence of 
peptide co-expression (Extended Data Fig. 3b), and could be pulled 
down using Bid BH3 peptide immobilized on beads (Extended Data 
Fig. 3c). Circular dichroism experiments indicated that the Bid peptide 
was unstructured in solution, and that helicity increased on interac-
tion with the Hallucinated proteins, in line with the design prediction 
(Extended Data Fig. 3d). The binders were highly thermostable and, 
unlike the native Bcl-2 protein Mcl-1, readily refolded after (partial) ther-
mal denaturation at 95 °C (Extended Data Fig. 3e). FP measurements 
revealed a 7-nM-affinity binder to Bid peptide (Fig. 1e, right inset), a 
higher-affinity interaction than that between Bid and the native partner 
Mcl-1 (Extended Data Fig. 3f,g).

Design refinement with RFdiffusion
We next explored using the RoseTTAFold-based denoising diffusion 
method RFdiffusion8. RFdiffusion directly generates protein structures 
with diverse topologies, and is much more compute efficient than 
Hallucination. We first extended RFdiffusion to enable optimization 
of existing helical peptide-binders.

A long-standing challenge in protein design is to increase the activity 
of an input native protein or designed protein by exploring the space 
of plausible closely related conformations for those with predicted 
higher activity34. This is difficult for traditional design methods as 
extensive full-atom calculations are needed for each sample around 
a starting structure (using molecular dynamics simulation or Rosetta 
full-atom relaxation methods), and it is not straightforward to optimize 
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for higher binding affinity without detailed modelling of the binder– 
target side-chain interactions. We reasoned that, by contrast, RFdiffu-
sion might be able to rapidly generate plausible backbones in the vicin-
ity of a target structure, increasing the extent and quality of interaction 
with the target guided by the extensive knowledge of protein structure 
inherent in RoseTTAFold. Typically, during the reverse diffusion (gen-
erative) process, RFdiffusion takes random Gaussian noise as input, and 
iteratively refines this to a new protein structure over many (T) steps 
(generally 200). Part way through this denoising process, the evolving 
structure no longer resembles ‘pure noise’, instead resembling a ‘noisy’ 
version of the final structure. We therefore reasoned that ensembles 
of structure with varying extents of deviation from an input structure 
could be generated by partially noising initial starting structures to 
different extents (for example, time step 70), and then denoising to a 
similar, but not identical, final structure (Fig. 2a; in this case, the input 
coordinates to RFdiffusion at time step 70 are from a noised starting 
structure, rather than a partially denoised random distribution).

We implemented this ‘partial diffusion’ approach (Methods), and 
sought first to assess the extent to which protein structures could 

be resampled and refined with partial diffusion. As expected, partial 
diffusion allowed diversification of a starting protein fold, and the 
magnitude of this diversity could be tuned by varying how much noise 
was added to a starting structure (Fig. 2a). We next explored the ability 
of partial diffusion to ‘regularize’ native protein backbones using as 
a metric AF2 structure prediction from a single sequence. We found 
that RFdiffusion improves the ‘designability’ of protein backbones: 
ProteinMPNN sequence design on partially diffused native backbones 
(with high similarity to the native fold, Extended Data Fig. 4a,c, middle 
row) have improved structure recapitulation (self-consistency) by AF2 
compared to both the native sequence (Extended Data Fig. 4b, pink 
versus grey, and Extended Data Fig. 4c, bottom row) and ProteinMPNN 
sequences generated from the original native backbone (Extended 
Data Fig. 4b, blue, and Extended Data Fig. 4c, top row). Further, we 
found in tests on the well-studied colicin–immunity protein system35 
that the small changes in protein backbone that partial diffusion 
can sample are sufficient to mediate specificity changes within pro-
tein families (Supplementary Fig. 7). Thus, partial diffusion enables 
protein backbone resampling and refinement, the extent of which 
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optimization strategy. b, Top: design model (spectrum) of the partially diffused 
binder to NPY (green) and FP measurements (n = 4) indicating a 5.3 nM binding 
affinity to NPY target and selectivity over PYY (brown). ND, not detectable. 
Bottom: design model (spectrum) of the partially diffused binder to GCG 
(yellow) and FP measurements (n = 4) indicating a subnanomolar binding 
affinity to GCG and selectivity over SCT (orange). c, Left: model (spectrum with 
GCG in grey) aligns with 0.72 Å RMSD to the 1.95-Å crystal structure (teal and 

yellow) of the RFjoint Inpainted GCG binder. Right: model (spectrum with GCG in 
grey) aligns with 0.6 Å RMSD to the 1.81-Å crystal structure (teal and yellow) of 
the partially diffused GCG binder. d, Left: the crystal structures of the Inpainted 
(grey) and partially diffused (teal and yellow) GCG binders have considerable 
topological similarity; there are many small readjustments. Right: FP titrations 
(n = 4) with GCG indicate much tighter binding following partial diffusion.  
e, Left inset: the crystal structure of the partially diffused backbone (teal) shows 
how the newly introduced Ile13 increases shape complementarity compared to 
the phenylalanine in the Inpainted binder (crystal structure in grey; structures 
aligned on residues 16–29 of GCG). Middle: crystal structure of the partially 
diffused GCG binder (teal and yellow). Right inset: the backbone shifts in the 
partially diffused structure (teal) enable Tyr16 to make packing and hydrogen- 
bonding interactions with the peptide; Ser16 in the original design did not 
make any peptide contacts (grey).
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can be tuned by varying the amount of noise added. Furthermore, 
partial diffusion can considerably increase the designability of input  
protein models.

As a first experimental test of partial diffusion, we started from our 
parametrically designed Inpainted binders to GCG (with 231 nM Kd) and 
NPY (with 3.5 µM affinity; Extended Data Fig. 1a,b). Following partial 
noising and denoising, we identified diverse designs (Supplementary 
Fig. 8) that in silico had substantially improved computational metrics 
compared to the starting design (Supplementary Fig. 9). We used an 
auxiliary potential during the denoising trajectory8 that minimized 
the radius of gyration (see Code availability) of the protein–peptide 
complex to promote additional interaction with the peptide. Initial 
screening with yeast surface display revealed quite high binding success 
rates, with 25 out of 96 designs binding GCG, and 20 out of 96 binding 
NPY at 10 nM peptide concentration. The highest-affinity designs were 
expressed in E. coli and then purified, and their binding affinities were 
determined using FP to be 5.6 nM to NPY (Fig. 2b, top) and below the 
limit of detection in the picomolar range to GCG (Fig. 2b, bottom). 
The designs were quite specific: the GCG binder bound preferentially 
to GCG over the closely related SCT, and particularly notably, the NPY 
binder did not show any cross-reactivity to peptide YY (PYY), a member 
of the NPY and pancreatic polypeptide family36 with 63% sequence 
identity to NPY (Fig. 2b).

To gain insight into the structural rearrangements generated by 
partial diffusion that contribute to the affinity increases, we solved the 
structures (Extended Data Table 2) of the original Inpainted GCG binder 
and the partially diffused higher-affinity GCG binder. Both designs 
were very close to their design models. Subtle structural changes in 
the protein backbone between the original Inpainted design model 
and the partially diffused model are nearly perfectly recapitulated in 
the corresponding crystal structures (Fig. 2c). Alignment of the two 
crystal structures (Fig. 2d) on the structurally conserved C-terminal 
residues (16–29) of GCG (Supplementary Fig. 10) showed that in the 
partially diffused GCG binder a 2.7-Å shift towards the target in the 
binder backbone enables an isoleucine to fit into a pocket previously 
occupied by a phenylalanine side chain at position 13 (Fig. 2e, left 
inset). Similarly, at position 16, a 3.6-Å shift in the backbone allows a 
tyrosine residue to pack underneath the peptide and form a hydrogen 
bond to the peptide backbone where previously a serine could not 
make any contacts (Fig. 2e, right inset). These backbone movements 
and accompanying sequence changes increase the interaction shape 
complementarity (0.62 versus 0.67) and contact molecular surface 
(431 Å2 versus 522 Å2; computed on the crystal structures). We observed 
similar improvements in estimated binding energy (Rosetta ddG) and 
contact molecular surface after running partial diffusion starting from 
the Inpainted designs for GCG and NPY (Supplementary Fig. 11).

De novo binder design using RFdiffusion
Inspired by this success at optimizing binders with RFdiffusion, we next 
tested its ability to design binders completely de novo through uncon-
ditional binder design. We first used the fixed target structure approach 
of ref. 8, and provided RFdiffusion with the sequence and structures 
of the two peptides in helical conformations, leaving the topology of 
the binding protein and the binding mode completely unspecified 
(Fig. 3a). From this minimal starting information, RFdiffusion gener-
ated designs predicted by AF2 to fold and bind to the targets with high 
in silico success rates. A representative design trajectory is shown for 
PTH in Supplementary Video 1; starting from a random distribution 
of residues surrounding the PTH peptide in a helical conformation, in 
sequential denoising steps the residue distribution shifts to surround 
the peptide and progressively organizes into a folded structure that 
cradles almost the entire surface of the peptide.

We obtained synthetic genes encoding 96 designs for each target. 
Using yeast surface display, we found that 56 of the 96 designs bound 

to PTH at 10 nM peptide concentration. The highest-affinity design 
again bound too tightly for accurate Kd estimation; instead FP data 
provide an approximate upper bound for the Kd of < 500 pM (Fig. 3b, 
bottom). Binding was also highly specific; no binding was observed 
to the related PTHrp (Fig. 3b, bottom). For Bim, 25/96 of the designs 
bound by yeast surface display, and FP on the highest-affinity design 
indicated a Kd of < 500 pM (Fig. 3c, bottom). Circular dichroism tem-
perature melts indicate that both binders are stable at 95 °C (middle 
panels of Fig. 3b,c). The completely de novo diffused binders again 
had considerable structural similarity to our starting groove binding 
concept (compare the top panels of Fig. 3b,c to the middle panel of 
Fig. 1b). We solved the X-ray crystal structure (Extended Data Table 2) 
of the Bim binder, and found that it closely matched the design model 
(3.0 Å resolution, 0.57 Å RMSD; Fig. 3d). A kinked helix on the binder 
adjacent to the interface is well recapitulated in the structure, and a 
cross-interface hydrogen-bond network designed between Thr73 and 
Asn77 of the binder and Asn20 of Bim forms in the otherwise hydro-
phobic interface.

We next sought to generalize RFdiffusion to enable binding to flex-
ible targets from a specification of the target sequence alone (as can 
be achieved with AF2 Hallucination, detailed above). We fine-tuned 
RFdiffusion by training on two chain systems from the Protein Data Bank 
(PDB), noising the structure on one and providing only the sequence on 
the second. We found that the fine-tuned version could readily design 
folded structures around a variety of peptides given only sequence 
information. We used this approach to design binders to PYY (Fig. 3e), 
which in the cryogenic electron microscopy structure with the NPY 
Y2 receptor is incompletely resolved and adopts a partially helical 
structure37. Starting from only the amino acid sequence of PYY, RFdif-
fusion generated solutions with the peptide in a range of conforma-
tions. A design with the peptide adopting a different conformation 
from the experimental structure bound PYY with 24.5 nM affinity 
(Fig. 3e, right). Note that here we explored using shorter binder chain 
lengths in these calculations, resulting in smaller designs, which prob-
ably accounts for the lower affinity than in the fixed structure case 
above. Lower affinity binders were also obtained for PTH and GCG 
using this flexible backbone RFdiffusion approach (Extended Data  
Fig. 5a,b).

Human versus machine problem solving
The deep learning methods largely converged on the overall solution to 
the helical peptide-binding design problem—groove-shaped scaffolds 
with helices lining the binding site—that the human designers chose 
in the initial Rosetta parametric approaches. The increased affinity of 
the deep learning designs probably derives at least in part from higher 
shape complementarity resulting from direct building of the scaffold 
to match the peptide shape; the average contact molecular surface 
for the partially diffused GCG binders and NPY increased by 33% and 
29% respectively compared to that of the starting models, and the 
Rosetta ddG improved by 29% and 21% (Supplementary Fig. 11). The 
ability of RFdiffusion de novo design to rapidly ‘build to fit’ provides 
a general route to creating high-shape-complementary binders to a 
wide range of target structures, and as noted above, partial diffusion 
provides a general route to sampling binders with increased affinity 
by making small backbone adjustments to enable placement of more 
space-filling side chains.

Design of protein biosensors
Given our success in generating de novo binders to clinically relevant 
helical peptides, we next sought to test their use as detection tools 
for use in diagnostic assays. Compared to immunosensors, de novo 
protein-based biosensors can offer a more robust platform with high 
stability and tunability for diagnostics38. To design PTH biosensors, 
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we grafted the 6.1-nM PTH binder into the lucCage system39 (Fig. 4a), 
screened eight designs for their luminescence response in the presence 
of PTH, and identified a sensitive lucCagePTH biosensor (LOD = 10 nM) 
with ≈21-fold luminescence activation in the presence of PTH (Fig. 4b).

Enrichment for LC–MS/MS detection
We explored the use of our picomolar-affinity RFdiffusion-generated 
binders to PTH and GCG as capture reagents in immunoaffinity enrich-
ment coupled with liquid chromatography–tandem mass spectrom-
etry (LC–MS/MS), a powerful platform for detecting low-abundance 
protein biomarkers in human serum40. We prepared PTH- and 
GCG-binder-conjugated beads as described in the Methods. PTH enrich-
ment was quantified on the basis of the analysis of the amino-terminal 
peptide of a tryptic digestion of PTH in human plasma41 (Methods and 
Extended Data Fig. 6a). We found that the designed binder enabled 
capture of PTH from buffer and human plasma supplemented with PTH 
(the endogenous levels are too low for reliable detection) with recover-
ies of 53% and 43%, respectively (Fig. 4d, left). For GCG, enrichment was 
quantified for recovery of peptide in buffer solution (see Methods and 
Extended Data Fig. 6b) because recovery was low in extract (further 
increases in specificity of this design will probably be necessary for 

actual applications). The GCG binder beads had comparable peptide 
capture efficiency to that of monoclonal GCG antibody beads, with 
91.1% recovery when normalized to the antibody’s 100% recovery rate 
in a spiked buffer (Fig. 4d, right). In contrast to the antibody-coupled 
beads, which lost almost all GCG-binding activity after the first use 
(Fig. 4d, right), the GCG-binder-conjugated beads retained almost 
full binding activity in a second capture experiment (Fig. 4d, right). 
This greater robustness to washing and repeated use probably reflects 
the exceptional stability of the designed binders (middle panels of 
Fig. 3b,c and Extended Data Fig. 3e), which could substantially lower 
cost (as they are no longer single use) and extend shelf life compared 
to using antibodies.

Discussion
Antibodies have served as the industry standard for affinity reagents 
for many years, but their use is often hampered by variable specific-
ity and stability10,11. For binding helical peptides, the computation-
ally designed helical scaffolds described in this paper have a number 
of structural and biochemical advantages. First, the extensive burial 
of the full length of an extended helix is difficult to accomplish with 
antibody loops15, but very natural with matching extended α-helices 
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Fig. 3 | De novo peptide binder design with RFdiffusion. a, Schematic showing 
peptide binder design using RFdiffusion. Starting from a random distribution 
of residues around the target peptide (XT), successive RFdiffusion denoising 
steps progressively remove the noise leading at the end of the trajectory to a 
folded structure, X0, cradling the peptide. At each step t, RFdiffusion predicts 
the final structure pX0 given the current noise sample Xt, and a step that 
interpolates in this direction is taken to generate the input for the next denoising 
step Xt−1. b, Design of picomolar-affinity PTH binder. Top: design model of PTH 
binder (spectrum, AF2 metrics in Supplementary Table 9). Middle: circular 
dichroism data show that the binder has helical secondary structure and is 
stable at 95 °C (inset). Bottom: FP measurements (n = 4) with PTH indicate  
a subnanomolar binding affinity and no binding to PTHrp indicates high 
specificity. c, Design of picomolar-affinity Bim binder. Top: design model  

of Bim binder (spectrum, AF2 metrics in Supplementary Table 9). Middle: 
circular dichroism data show that the binder has helical secondary structure 
and is stable at 95 °C (inset). Bottom: FP measurements (n = 4) with Bim indicate 
a subnanomolar binding affinity. d, Crystal structure of Bim binder (teal and red). 
Top inset: a cross-interface hydrogen-bond network formed between Asn20  
of Bim and Thr73 and Asn77 of the binder. Bottom inset: a kinked helix in the 
diffused backbone accommodates Arg13 of Bim. e, RFdiffusion with PYY 
sequence input alone. Left: PYY in complex with its native NPY Y2 receptor37 
(PDB ID: 7YON) shows flexibility at its N and C termini (teal). Middle: design 
model of the binder (spectrum) with PYY target (brown); the peptide is more 
ordered in both regions (N terminus, teal). Right: FP measurements (n = 4) with 
PYY indicate a 24.5 nM binding affinity.
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in groove-shaped scaffolds. Second, designed scaffolds are more ame-
nable to incorporation into sensors as illustrated by the lucCagePTH 
sensor. Third, they are more stable than antibodies, can be produced 
much less expensively, and can be easily incorporated into affinity 
matrices for enrichment of peptide hormones from human serum (the 
striking difference in the robustness of antibody-conjugated versus 
binder-conjugated beads to repeated use (Fig. 4d, right) highlights the 
differences in stability of the two modalities). Fourth, computational 
design avoids the need to immunize animals, which often mount weak 
responses to highly conserved bioactive molecules42. MS-based detec-
tion of peptides following enrichment using designed binders could 
provide a general route forwards for serological detection of a wide 
range of disease-associated peptide biomarkers.

Our results highlight the emergence of powerful new deep learn-
ing methods for protein design. The RFjoint and RFdiffusion methods 
were both able to improve on initial Rosetta designs, and the Halluci-
nation approach generated high-affinity binders without requiring 
pre-specification of the bound structures. Moreover, the RFdiffusion 

method rapidly generated very tight (picomolar Kd values) affinity 
and specific binders to several helical peptides. RFdiffusion was pre-
viously shown to be able to design binders to folded targets8; here we 
demonstrate further that it can be used to improve starting designs by 
partial noising and denoising, and can generate binders to peptides 
starting from no information other than the target sequence. To our 
knowledge, the Bim- and PTH-binding proteins diffused starting from 
random noise are the highest-affinity binders to any target (protein, 
peptide or small molecule) achieved directly by computational design 
with no experimental optimization. We expect both the RFdiffusion 
de novo peptide binder design capability and the ability to resample 
around initial designs (before or after experimental characterization) 
to be broadly applicable.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Fig. 4 | Application of designed binders to sensing and detection. a, The 
PTH lucCage biosensor. Cage and latch (left, beige), key (right, beige) and  
the PTH binder (grey) thermodynamically shift from the off to on state in the 
presence of PTH peptide target (purple). This conformational change brings 
two luciferase halves (inactive in white, active in blue) close together leading to 
luminescence. b, Left: titration of PTH results in luminescence increase (n = 3). 
Middle: response of lucCagePTH biosensor in the linear concentration range, 
indicating a 10 nM limit of detection (Supplementary Methods). Right: titration 
curve of 10 nM lucCagePTH + lucKey to various concentrations of PTH (n = 3).  
c, LC–MS/MS enrichment experiment schematic; the trypsin digestion step 

was skipped for the GCG binder. d, Left: LC–MS/MS recovery percentages for 
triplicate measurements of an N-terminal tryptic peptide of PTH. The negative 
control comprised bovine serum albumin mixed with PTH in a buffer solution. 
Right: recovery percentage for triplicate measurements of intact GCG peptide 
normalized to the percentage recovery with a monoclonal antibody (n = 3). 
Following the first binding and elution experiments, beads were extensively 
washed and resuspended in PBS–CHAPS 0.1%, and then used in a second 
pulldown experiment. An unrelated binder attached to the magnetic beads 
mixed with GCG in buffer was used as a negative control. a,c, Created with 
BioRender.com.
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Methods

Computational methods
Parametric design of groove-shaped scaffold library and use for 
binder design. The parametric groove-shaped scaffold library was sam-
pled using a random sampling approach, for which key parameters22 
were selected randomly from specific distributions. An even distribu-
tion of bundle ‘lengths’ was sampled, for which each parametric helix 
was 15–19 residues long. A supercoiling value was randomly selected 
from a biased distribution favouring more supercoiled scaffolds, given 
that these scaffolds were more likely to fail in the subsequent looping 
step (Fig. 1b and Supplementary Fig. 1). This biased sampling strategy 
was chosen to achieve a more uniform distribution of supercoiling 
within the final scaffold library, with sufficient numbers of highly su-
percoiled bundles. An average helix neighbour distance value was 
randomly selected from a Gaussian distribution informed by native 
protein helical bundle geometries (Fig. 1b and Supplementary Fig. 1). 
The distance of each helix from its neighbours was independently 
randomly selected from a much tighter Gaussian distribution centred 
at the preselected average helix neighbour distance value, to provide 
some noise within a given scaffold to helix distances and allow for 
heterogeneous amino acid selections (Supplementary Fig. 2). Values 
for helix phase and z displacement were randomly sampled for each 
helix. The ‘groove’ consisting of three helices was first sampled as a 
helical bundle using the Crick parameterization of α-helical coiled 
coils, around an imaginary central helix where the target was to later be 
docked. Next, the two buttressing helices were sampled with the same 
parameterization, but moved radially outwards with randomly sampled 
helix neighbour distances as well as an additional randomly sampled 
tilt. This process was used to sample a set of 200,000 arrangements 
of 5 helices. Next, the Rosetta ConnectChainsMover51 was used to loop 
this set into approximately 135,000 successful scaffold backbones. 
These backbones were designed and filtered using Rosetta52 (including 
flexible backbone design) to yield a final library of 18,000 scaffolds. 
Backbones were filtered on metrics including buried nonpolar sur-
face area per residue, Rosetta score per residue, percentage alanine, 
exposed hydrophobics per residue, and Rosetta ‘holes’53. This library 
was used to design binders to different helical peptide targets using 
an adapted version of the miniprotein binder design computational 
pipeline used in ref. 7, in which only the binder interface was designed 
and the target was restricted to only rotamer repacking.

RFjoint Inpainting. To sample around an initial putative binder, and to  
extend the binding interface to make additional contacts with the 
bound peptide, the RFjoint Inpainting network was used23, in conjunc-
tion with ProteinMPNN24. Rosetta-designed binders to PTH, GCG and 
NPY were used as input to RFjoint. RFjoint is deterministic, and hence, to 
generate diversity, additional length was added (randomly and inde-
pendently sampled) at the loop junctions between the binder helices. 
Additionally, one whole helix was completely rebuilt by RFjoint, to further 
permit diversification. RFjoint designs were subsequently sequence 
redesigned with ProteinMPNN, validated and filtered in silico by AF2 
with initial guess6,28, and subsequently tested experimentally.

Sequence threading to generate peptide binders. We started from a 
library of several thousand all-helical scaffolds bound to designed single 
helices. We then threaded sequences of peptides of interest onto the 
bound single helix and filtered to obtain threaded conformations that 
maximized the number of target sequence positions that formed hydro-
phobic interactions at the interface to the binder scaffold17,26. The result-
ing binders were then redesigned in the presence of the threaded target 
sequence with ProteinMPNN24 (forbidding cysteine) and the complex 
was predicted with AF2 with initial guess6,28. Another round of Protein-
MPNN and AF2 + initial guess was carried out on the AF2 models that 
passed gate filters. Both rounds had gate filters of interface pAE < 10, 

mean pLDDT > 92, predicted template modelling (pTM) score > 0.8 and 
RMSD to input backbone <1.75 Å. AF2 models from both rounds that 
passed gate filters were further filtered on AF2 metrics and filtered on 
Rosetta metrics to select sequences to order. Sequences were filtered 
against membrane insertion potential54, contact_molecular_surface, 
ddG7, interface pAE and monomer pAE6.

AF2 Hallucination for flexible peptide binder design. Code for run-
ning Hallucination with AF2 was modified from ref. 31, with custom 
losses developed to promote binding of the Hallucinated protein to the 
input peptide sequence. AF2 model_4_ptm was used for all experiments.
Initial sequence sampling. In line with ref. 31, the initial binder 
sequence was sampled randomly, with amino acid probabilities cor-
responding to background amino acid frequencies in BLOSUM6255. The 
target sequence (but no template structure) is also provided, separated 
by a chain break (+32 residue positional index offset). Residues were 
then mutated, with probabilities related to their background frequency 
in BLOSUM62. The number of amino acid changes proposed at each step 
is decayed throughout the trajectory (1,250 ×3 steps, 2,500 ×2 steps, 
1,250 ×1 step). Multiple simultaneous amino acid changes initially helps 
speed up Hallucination, and a lower rate of changes later on allows 
more gradual refinement. To further speed up convergence, alterations 
were selectively made to residues with the lowest 50% of AF2 pLDDTs.
Losses used for Hallucination. Losses used for Hallucination were 
as follows.
• pLDDT of the bound state: average pLDDT of the binder–peptide 

complex.
• pTM of the bound state: the pTM score of the binder–peptide com-

plex.
• Radius of gyration: the radius of gyration was calculated as the mean 

squared distance of residues from the centre of mass of the protein. 
To approximately standardize the scaling with length of the protein, 
this was empirically normalized by dividing the radius of gyration 
by the radius of a sphere of volume related to the length of the Hal-
lucinated protein.

• Contact probability: calculated as total probability that a residue in 
the target is in contact (closer than 8 Å) with the target peptide (the 
summed probability over the sub-8-Å bins of the distogram output 
from AF2). This was averaged across all target residues.

• Interface pAE: the mean pAE between the binder and peptide chains.
For all examples shown in this work, the losses were weighted with 

relative weights of 1:1:0.1:3:5.
Simulated annealing. To optimize the designed binder, Monte Carlo 
simulated annealing was carried out, with a starting temperature  
of 0.01, and the half-life of the exponential decay set to 500 steps.  
Alterations were accepted or rejected using the Metropolis criterion. 
A total of 5,000 steps were carried out during design.
ProteinMPNN. Previous work has demonstrated that AF2 Hallucina-
tion yields adversarial sequences that do not work experimentally31. 
However, designs can be rescued with ProteinMPNN redesign of the 
sequences. Sixty-four sequences were designed per backbone, and 
were subsequently filtered on the basis of AF2 pLDDT, pTM, RMSD to 
the design model, RMSD of the monomer to the binder model (without 
the peptide), and Rosetta ddG. The precise values used for filtering 
were chosen to reduce the set down to 46 designs.

Partial diffusion to optimize binders. RFdiffusion was modified to 
allow the input structure to be noised only up to a user-specified time 
step instead of completing the full noising schedule. The starting point 
of the denoising trajectory is therefore not a random distribution. 
Rather, it contains information about the input distribution resulting 
in denoised structures that are structurally similar to the input (Fig. 2a). 
The AF2 models of the highest-affinity designs from Inpainting for 
GCG and NPY were used as inputs to partial diffusion. The models were 
subjected to 40 noising time steps out of a total of 200 time steps in the 
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noising schedule, and subsequently denoised. An auxiliary potential 
minimizing the radius of gyration of the binder–peptide complex was 
used (described below). Approximately 2,000 partially diffused designs 
were generated for each target. The backbones in the resulting library 
were sequence designed using ProteinMPNN (and ProteinMPNN after 
Rosetta FastRelax), followed by AF2 + initial guess6. The resulting librar-
ies were filtered on AF2 pAE, pLDDT, RMSD to the design model, RMSD 
of the monomer to the binder model (without the peptide) and Rosetta 
ddG. The precise values used for filtering were chosen to reduce the 
set down to 96 designs for each target.

De novo peptide binder design using RFdiffusion. The AF2 model 
of the PTH peptide in the highest-affinity binder from Inpainting was 
used as input to RFdiffusion. For Bim, there was no previously designed 
binder and therefore the crystal structure of Bim56 (PDB: 6X8O) was 
used as input. An auxiliary potential minimizing the radius of gyration 
of the binder–peptide complex was used during denoising (described 
below). Approximately 2,000 diffused designs were generated for each 
target. The backbones in the resulting library were sequence designed 
using ProteinMPNN (and ProteinMPNN following FastRelax), followed 
by AF2 + initial guess6. The resulting libraries were filtered on AF2 PAE, 
pLDDT, RMSD to the design model, RMSD of the monomer to the binder 
model (without the peptide) and Rosetta ddG. The precise values used 
for filtering were chosen to reduce the set down to 96 designs for each 
target.

Radius of gyration potential. RFdiffusion enables the use of exter-
nal guiding potentials during inference, which help in the design of 
proteins with a certain desired property. The utility of these guiding 
potentials in designing symmetric oligomers and enzymes, as well as a 
description of how they are incorporated into the sampling procedure, 
is reported in ref. 8. In this work, we take advantage of guiding potentials 
to minimize the radius of gyration of the binder–peptide complex. The 
radius of gyration is calculated as the root mean square of the distance 
of all the Cα atoms from the centroid. It is more important to apply the 
potential at the initial denoising steps, and less so towards the end 
when the quaternary structure is largely fixed. Therefore, the scaling 
factor with which the gradients are multiplied has a cubic decay over 
the course of the denoising trajectory.

Training RFdiffusion for designing binders to targets from sequence 
alone. A modified version of RFdiffusion was trained to permit the 
design of protein binders to targets, for which only the sequence of 
the target was specified. The training strategy largely followed the 
training strategy used for the original RFdiffusion model, with some 
modifications. A summary is provided below.
Overview of ‘base’ RFdiffusion training. RFdiffusion8 is a denoising  
diffusion probabilistic model fine-tuned from a pretrained struc-
ture prediction model; RoseTTAFold57,58. RFdiffusion is trained with a 
forward noising process that iteratively, over 200 time steps, noises 
residue translations and orientations to distributions that are indis-
tinguishable from random distributions (three-dimensional Gaussian 
distribution and a uniform distribution on SO(3), respectively). RFdif-
fusion is then trained to reverse this corruption process, predicting the 
ground truth (X0) at each time step of prediction. Mean-squared-error 
losses are used to minimize the error between the forward and reverse 
processes. Full training details are extensively described in ref. 8.
Modifications to RFdiffusion for binder design to sequence inputs 
alone. RFdiffusion was trained on both monomers (<384 amino acids) 
and heterocomplexes (one chain, denoted the ‘binder chain’, <250 
amino acids) from the PDB. Coordinates were scaled by a factor of 
four, in line with the original RFdiffusion model. In 20% of cases, no 
sequence or structure was provided to the model (for unconditional 
generation). In the other 80% of cases, 20–100% of the protein was 
noised. In contrast to RFdiffusion, however, the structure of up to 50% 

of the protein (monomer or ‘target chain’) was noised (diffused), while 
providing the sequence of those residues. Thus, RFdiffusion learns to 
condition its predictions on the sequence (without structure) of part 
of a protein (the monomer) or of a target to bind to. This version of 
RFdiffusion was trained for seven epochs.

Computational filtering. Precise metrics cutoffs changed for each 
design campaign to get to an orderable set, but largely focused on pAE 
(<10), pLDDT (>80) and Rosetta ddG (<−40)6.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Atomic models of the GCG binders designed with Inpainting and partial 
diffusion (Fig. 2c), the Bim binder (Fig. 3d) and PTH peptide have been 
uploaded to the PDB with the accession codes 8GJG, 8GJI, 8T5E and 
8T5F, respectively. Sequences of the binders described in this paper 
are in Extended Data Table 1.

Code availability
Code for the parametric design pipeline can be found at https://github.
com/proleu/peptide_paper/tree/main/projects/parametric_groove_
design. Code to run RFjoint Inpainting can be found at https://github.
com/RosettaCommons/RFDesign. Computational notebooks for the 
sequence-threading pipeline can be found at https://github.com/pro-
leu/peptide_paper/tree/main/projects/threading. Partial-diffusion 
code explanation and examples can be found at https://github.com/
RosettaCommons/RFdiffusion#partial-diffusion. Code explanation 
and examples of binder design using RFdiffusion can be found at 
https://github.com/RosettaCommons/RFdiffusion#binder-design. An  
explanation of how to implement potentials, including the radius of 
gyration can be found at https://github.com/RosettaCommons/RFdi
ffusion#using-auxiliary-potentials. Code to run AF2 Hallucination for 
peptide design is available at https://github.com/RosettaCommons/
AF2_peptide_hallucination.
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Extended Data Fig. 1 | Low affinity RFjoint-Inpainted binders for NPY and 
GCG using extended parametric designs. (a) Left: Design model (colour 
spectrum + yellow) of the tightest GCG binder. Right: FP titration (n = 4) for the 
tightest GCG binder indicates ~ 231 nM binding affinity (b) Left: Design model 
(colour spectrum + dark green) of the tightest NPY binder. Right: FP titration 
(n = 4) for the tightest NPY binder indicates 3.5 µM binding affinity.



Extended Data Fig. 2 | Additional binders made using threading and 
redesign. (a) Left: Design model (colour spectrum + dark blue) of the tightest 
GLP1 binder. Right: FP titration (n = 4) for the tightest GLP1 binder indicates 
68.8 nM binding affinity (b) Left: Design model (colour spectrum + green) of 
the tightest GIP binder. Right: FP titration (n = 4) for the tightest GIP binder 
indicates 6.96 nM binding affinity.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Hallucinated Bid binders are stable and bind Bid 
peptide with high affinity. (a) 46 Hallucinated designs tested for initial 
experimental screening. (b) 4 designs were chosen for expression without Bid 
peptide. All expressed as monomeric proteins (assessed by preparative SEC) 
and were pure by SDS-PAGE (n = 1). (c) All Hallucinations could be pulled-down 
by biotinylated Bid immobilised on streptavidin magnetic beads. B = bound  
to bead, U = unbound, in supernatant. L = ladder (n = 1). (d) Bid is unstructured 
in isolation by circular dichroism (CD), whereas all Hallucinations were helical 
in isolation, as predicted from the Hallucinated structure. A 1:1 molar ratio of 

binder:Bid (Mix) produced greater helical signal than that predicted by the 
isolated spectra (No inter.) suggesting binding is inducing helix formation 
(n = 1). (e) Melting with CD showed that Hallucinations were thermostable,  
and binding to Bid increased thermostability (where measurable) (n = 1). All 
Hallucinated binders would remain folded, or refold after heating and cooling, 
in contrast to the natural binder Mcl-1 which precipitated in the process. (f) ITC 
showed that Hallucinations bound to Bid, with µM to nM Kds (n = 1). (g) FP 
measurements of designed Bid binders (n = 3).
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Extended Data Fig. 4 | Partial diffusion increases designability of native 
proteins. 500 native proteins of length 100 to 300 residues were selected from 
the PDB (< 3.5 Å resolution and no missing residues). Three different methods 
were applied to these proteins: 1) single sequence AlphaFold2 (AF2), 2) 
ProteinMPNN combined with AF2, and 3) partial diffusion (60 steps, noise = 1), 
ProteinMPNN and AF2. (a) Partial diffusion generates diverse protein 
conformations from the initial fold while maintaining the same overall fold,  

as indicated by the TM (Template Modeling) score exceeding 0.5. (b) The 
backbones resulting from partial diffusion exhibit higher designability 
compared to the native backbone, implying that they have been idealised for 
design purposes. (c) Visualisation of an example where partial diffusion + 
ProteinMPNN results in a significantly more designable protein relative to 
sequence redesign by ProteinMPNN on the native backbone.



Extended Data Fig. 5 | PTH and GCG binders designed with RFdiffusion. 
Representative binding data is shown for PTH (a) and GCG (b) binders designed 
by providing sequence input alone. The binding affinities, as measured by FP 
(n = 4), indicate low micromolar interactions with the respective peptide targets.
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Extended Data Fig. 6 | LC-MS/MS chromatograms for PTH and GCG binders. 
(a) LC-MS/MS chromatograms for SVSEIQLMHNLGK, the N-terminal tryptic 
peptide of PTH; different peptide fragments detected by the LC-MS/MS assay 

are in different colours. (b) LC-MS/MS chromatograms for the intact GCG 
peptide HSQGTFTSDYSKYLDSRRAQDFVQWLMNT; different peptide 
fragments detected by the LC-MS/MS assay are in different colours.



Extended Data Table 1 | Amino acid sequences of peptide binders
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Extended Data Table 2 | Crystallographic data collection and refinement
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