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Abstract
Objective. Enable neural control of individual prosthetic fingers for participants with upper-limb
paralysis. Approach. Two tetraplegic participants were each implanted with a 96-channel array in
the left posterior parietal cortex (PPC). One of the participants was additionally implanted with a
96-channel array near the hand knob of the left motor cortex (MC). Across tens of sessions, we
recorded neural activity while the participants attempted to move individual fingers of the right
hand. Offline, we classified attempted finger movements from neural firing rates using linear
discriminant analysis with cross-validation. The participants then used the neural classifier online
to control individual fingers of a brain–machine interface (BMI). Finally, we characterized the
neural representational geometry during individual finger movements of both hands.Main Results.
The two participants achieved 86% and 92% online accuracy during BMI control of the
contralateral fingers (chance= 17%). Offline, a linear decoder achieved ten-finger decoding
accuracies of 70% and 66% using respective PPC recordings and 75% using MC recordings
(chance= 10%). In MC and in one PPC array, a factorized code linked corresponding finger
movements of the contralateral and ipsilateral hands. Significance. This is the first study to decode
both contralateral and ipsilateral finger movements from PPC. Online BMI control of contralateral
fingers exceeded that of previous finger BMIs. PPC and MC signals can be used to control
individual prosthetic fingers, which may contribute to a hand restoration strategy for people with
tetraplegia.

1. Introduction

Tetraplegic individuals identify hand function as a
high-impact priority for improving their quality of
life [1–3]. Neuroprosthetics research has enabled con-
trol of basic grasp shapes [4–7], an important step
towards empowering paralyzed individuals to per-
form daily activities. However, these predefined grasp
templates constrain the range of motion and thus
limit the usefulness of existing neural prosthetics.

The complexity of human motor behavior is
largely enabled by our versatile, dexterous hands
[8]. The human hand can weave intricate crafts,
sign expressive languages, and fingerpick guitar solos.
Even everyday manual behaviors, like turning a
door handle, require volitional control over many
degrees of freedom [9]. Indeed, humans can move
individual fingers much more independently than
other animals, including monkeys [10, 11]. To better
restore autonomy to people with tetraplegia, neural

© 2023 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1741-2552/acd3b1
https://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/acd3b1&domain=pdf&date_stamp=2023-5-25
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8040-8844
https://orcid.org/0000-0002-0101-2455
https://orcid.org/0000-0002-8765-7253
https://orcid.org/0000-0002-9481-4915
https://orcid.org/0000-0002-1540-197X
https://orcid.org/0000-0002-5279-5023
https://orcid.org/0000-0002-0426-3241
https://orcid.org/0000-0002-7947-0472
mailto:cguan@caltech.edu
http://doi.org/10.1088/1741-2552/acd3b1


J. Neural Eng. 20 (2023) 036020 C Guan et al

prosthetics would benefit from enabling dexterous
finger control.

Intracortical brain–machine interface (BMI)
research has largely focused on control of computer
cursors and robotic arms, rather than dexterous hand
control. Building off foundational studies of non-
human primates [12–18], several clinical studies have
implemented continuous decoders for cursor control
[19–23]. Leveraging this cursor control, subsequent
studies [24–26] developed on-screen keyboard typ-
ing interfaces for tetraplegic participants. [5–7, 27]
extended continuous decoding to arm control, with
[27] controlling the user’s own muscles. Recent work
has also decoded speech from sensorimotor cortex
[28–31]. However, relatively few BMI studies have
focused on hand control [32–37], and previous stud-
ies frequently combine the ring and little fingers or
leave them out altogether. Individuated finger control
would be useful for applications like keyboard typing
or object manipulation.

Most motor BMIs record neural activity from the
MC, although areas of the posterior parietal cortex
(PPC) have also been used successfully for BMI con-
trol of reaching [15, 22] and grasping [4]. The PPC
plays a central role in sensorimotor integration, with
regions of PPC representing visual stimulus locations
and eye movements [38], task context [39], planned
reaches [40], and object grasping [41, 42]. PPC uses
partially mixed selectivity to simultaneously encode
many motor variables [43], which can be useful for
versatile neural decoding.

Despite PPC’s clearly demonstrated role in
grasping [8, 42, 44], less is known about PPC
responses during individual finger movements. With
functional magnetic resonance imaging (fMRI),
lesion, and anatomical evidence situating primary
MC as core to fine finger movements (for review,
see [8]), most electrophysiological studies of fin-
ger movements have focused on the primary motor
and primary somatosensory cortex [33, 34, 45–50].
Nevertheless, non-human primate mapping studies
[51] and stimulation studies [52, 53] have identi-
fied PPC sub-regions that are likely involved in fine
finger movements. These results imply that fine fin-
ger movements are supported by a broad neuronal
network, which should be investigated to improve
dexterous BMI control.

Here, we recorded intracortical activity from
the PPC of two tetraplegic participants while they
attempted to press individual fingers. Across task con-
texts, we could classify individual finger movements
during planning and attempted-execution periods.
We connected this neural decoder to drive a neural
prosthetic hand, with accuracies exceeding recent
intracortical BMI studies [36, 54]. Furthermore, we
characterize both the neural tuning and representa-
tional geometry [55] during attempted finger move-
ments of either hand. The neural code factorized
into finger type and laterality components, leading

to finger representations that were simultaneously
discriminable and similar across contralateral/ipsi-
lateral pairs of fingers. These findings contribute to
the understanding of human hand movements and
advance the development of hand neuroprosthetics
for people with paralysis.

2. Methods

2.1. Study participants
Experiments were conducted with two volunteer par-
ticipants enrolled in a BMI clinical study (Clinic-
alTrials.gov Identifier: NCT01958086). All proced-
ures were approved by the respective institutional
review boards of California Institute of Technology,
Casa Colina Hospital and Centers for Healthcare,
and University of California, Los Angeles. Each par-
ticipant consented to this study after understanding
the nature, objectives, and potential risks.

Participant NS is a right-handed, tetraplegic
woman. Approximately ten years before this study,
she sustained an AIS-A spinal cord injury at cervical
level C3-C4. NS canmove her deltoids and above, but
she cannot move or feel her hands.

Participant JJ is a right-handed, tetraplegic man.
Approximately three years before this study, he sus-
tained a spinal cord injury at cervical level C4-C5. He
has residual movement in his upper arms, but he can-
not move or feel his hands.

Because both participants could not move or feel
their hands, we instructed them, during the behavi-
oral tasks, to attempt finger movements as if their
fingers were not paralyzed. We often abbreviate these
finger movement attempts as ‘finger movements.’

2.2. Tasks
2.2.1. Alternating-cues finger press task with delay
Each participant performed an instructed-delay fin-
ger movement task (figure 1). They were seated in
front of a computer monitor display, with their hands
prone on a flat surface. Each trial began with a
cue specifying a finger of the right hand. The fin-
ger cue then disappeared during a delay period. A
cue-invariant go-icon appeared, instructing the par-
ticipant to attempt to press the cued finger as though
pressing a key on a keyboard. This instructed-delay
task format temporally separates the visual stimulus
from the planning and execution epochs.

Supplementary table 1 documents the phase dur-
ations for each task, and supplementary table 2 lists
the date ranges for each task.

Some regions of the PPC are modulated by non-
motor variables like visual stimulus location [38]
and task context [39]. To ensure that the recorded
neural signals reflected movement type (rather than,
e.g. visual memory), we varied the cueing method
between runs (figure 1). In the Spatial-Cue vari-
ant, five circles corresponded to the five fingers. In
the Text-Cue variant, the finger cue was a letter
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Figure 1. Alternating-cues, instructed-delay finger press task. Trial structure. Each rectangle represents the computer monitor
display at each phase. Two cue variants, text and spatial, were trial-interleaved. In the spatial variant, the location of the
highlighted circle corresponded to the cued finger. Trials without a highlighted circle indicated a No-Go cue. In the text variant, a
highlighted letter (for example, ‘M’ for the middle finger) cued each finger. In both variants, the finger cue disappeared before the
movement phase (Go) to separate planning and execution periods. Phase durations are listed in supplementary table 1.

Figure 2. Reaction-time finger-press task with randomized cue location. When a letter was cued by the red crosshair, the
participant looked at the cue and immediately attempted to flex the corresponding digit of the right (contralateral) hand. We
included a No-Go condition ‘X’, during which the participant looked at the target but did not move their fingers. Visual feedback
indicated the decoded finger 1.5 s after cue presentation. To randomize the saccade location, cues were located on a grid (three
rows, four columns) in a pseudorandom order. The red crosshair was jittered to minimize visual occlusion. Reproduced from
[54]. CC BY 4.0.

abbreviation. A brief Pre-Cue phase in each trial
indicated what cue-variant the trial would be.

2.2.2. Finger press task with randomized cue location
(reaction-time)
Letters, corresponding to each movement type, were
arranged in a 3 × 4 grid across the screen (figure 2).
Each grid consisted of two repetitions each of T
(thumb), I (index), M (middle), R (ring), P (pinky),
and X (No-Go). Letters were arranged in a random
order to dissociate eye gaze signals from movement
representations. On each trial, a single letter cue was
indicated with a crosshairs symbol, which was jittered
to minimize systematic effects of letter occlusion.
Each cue was selected once (for a total of 12 trials)
before the screen was updated to a new arrangement.

Each run-block consisted of four screens for a total of
48 trials.

On each trial, the participant was instructed to
immediately saccade to the cued target and fixate,
then attempt to press the corresponding finger of the
right hand. A trained classifier decoded the finger
movement from neural signals and displayed the clas-
sified finger movement 1.5 s after the start of the trial.
The participant pressed the instructed finger and fix-
ated on the cue until the visual classification feedback
was shown.

Data from participant NS performing this task
was previously analyzed in [54]. Data from parti-
cipant JJ have not been reported previously. During
three sessions, participant JJ also performed this task
using his left hand.

3
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Figure 3. Text-cued finger movement task with instructed-delay. Trial structure. Text cues indicate the hand (‘R’ or ‘L’) and the
finger (e.g. ‘m’ for middle finger). After a delay period, a cue-invariant Go-icon instructs movement execution.

2.2.3. Ten-finger press task
Each participant also performed an instructed-delay
finger press task with fingers from both hands. The
task was like the Text-Cue variant of the Alternating-
cues finger press task with delay, except without a Pre-
Cue phase. All ten fingers were interleaved in trials
within the same run-block (figure 3). Phase durations
are documented in supplementary table 1.

2.3. Implant location
Participant NS was implanted with two 96-channel
NeuroPort Utah electrode arrays six years after injury
(about four years before this study). The implant
locations were determined using anatomical priors
and preoperative fMRI [54]. One array (denoted NS-
PPC) was implanted over the hand/limb region of
PPC at the junction of the intraparietal sulcus (IPS)
with the postcentral sulcus. This region is thought to
be involved in the planning of grasp movements [4,
42, 56]. In this report, we refer to this brain area as PC-
IP (postcentral-intraparietal), although it is some-
times also referred to as the anterior IPS region [57].
A second array was in Brodmann’s area (BA) 5d. In
the weeks following implantation, it was found that
the BA 5d array did not function, so only the PC-IP
array was used in this study.

Participant JJ was implanted with two 96-channel
NeuroPort Utah electrode arrays about 20 months
after injury (about 35 months before this study).
The first array (denoted JJ-PPC)was implanted in the
superior parietal lobule (SPL) of the left PPC. The
second array (denoted JJ-MC)was implanted near the
hand knob of the left MC (supplementary figure 1).
PPC and MC activity were recorded simultaneously.

2.4. Neural signal recording and preprocessing
Neural signals were acquired, amplified, bandpass-
filtered (0.3 Hz–7.5 kHz) and digitized (30 kHz,
16 bits/sample) from the electrodes using Neuro-
Port Neural Signal Processors (Blackrock Microsys-
tems Inc.).

Action potentials (spikes) were detected by high-
pass filtering (250 Hz cut-off) the full-bandwidth sig-
nal, then thresholding at −3.5 times the root-mean-
square voltage of the respective electrode. Although
one or more source neurons may generate threshold
crossings, we used raw threshold crossings for online

control and only sorted spikes for offline analyses.
Single neurons were identified using the k-medoids
clustering method. We used the gap criteria [58] to
determine the total number of waveform clusters.
Clustering was performed on the first n ∈ {2, 3,
4} principal components, where n was selected to
account for 95% of waveform variance.

2.5. Feature extraction
Except when otherwise specified, we used a 500 mil-
lisecond (ms) window of neural activity to calculate
firing rates (counted spikes divided by the window
duration). The firing rate was then used as the input
features to each analysis or classification model.

For cross-validation classification analyses, neur-
ons with an average firing rate on the training fold
<1 Hz were discarded as noisy features. For single-
neuron analyses, a looser threshold of<0.5 Hz, aver-
aged over the entire recording, was used to exclude
neurons from significance and effect size tests.

Behavioral epochs: themovement execution (‘Go’
or ‘move’) analysis window was defined as the 500 ms
window starting 200 ms after the Go cue. For applic-
able tasks, the movement planning (‘Delay’ or ‘plan’)
analysis window was defined as the 500 ms window
starting 200 ms after the Delay screen. The cue ana-
lysis windowwas defined as the 500ms window start-
ing 200 ms after the cue screen. The intertrial interval
(ITI) analysis window was defined as the last 500 ms
of the ITI phase.

2.6. Single-neuron selectivity for finger movements
In the section ‘Single-neuron modulation to indi-
vidual finger presses’, we used a one-way ANOVA to
determine whether neurons distinguished firing rates
between different attempted finger movements. A
neuronwas considered discriminative if p< 0.05 after
false discovery rate (FDR) correction for multiple
comparisons using the Benjamini–Hochberg proced-
ure; we also denoted this FDR-adjusted p-value as q.
We corrected form=N comparisons, whereN is the
number of neurons for each participant. Following
Cohen’s rules of thumb [59], we denoted the ANOVA
effect size as ‘large’ if η2 > 0.14. As the ANOVA post
hoc test, we used Dunnett’s multiple comparison test
[60] to determine which fingers had significantly dif-
ferent firing rates than the No-Go baseline.
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To quantify the effect size of firing-rate changes
against the No-Go baseline (figure 4(a)), we used
Hedges’ g, which is similar to Cohen’s d but bias-
corrected for small sample sizes. We calculated and
visualized Hedges’ g values using the data analysis
using Bootstrap-Coupled Estimation Python library
[61].

For visual simplicity, we pooled neurons across
sessions when calculating and visualizing single-
neuron metrics (percentage selective, number of fin-
gers discriminable fromNo-Go, empirical cumulative
distribution functions).

To visualize firing rates, spike rasters were
smoothed with a Gaussian kernel (50 ms standard-
deviation [S.D.]), then averaged across trials to create
a peristimulus time histogram.

2.7. Offline classification with cross-validation
We trained a separate linear classifier for each ses-
sion to predict attempted finger movements from the
neural features. We used diagonal-covariance linear
discriminant analysis (diagonal LDA) [62]; diagonal
LDA is equivalent to Gaussian Naive Bayes (GNB)
when GNB shares a single covariance matrix across
classes.

To calculate aggregate classification accuracies,
confusion matrices, and parameter sweeps, we first
calculated the respective metrics for each session
separately, using stratified K-folds cross-validation
(K = 8, no shuffling) within each session. We then
aggregated results across sessions by dividing the
number of correct trials (summed across sessions)
by the number of total trials (summed across ses-
sions). Across-session standard deviations of classific-
ation accuracy are weighted by the number of trials in
each session.

Learning curves (figure 5(b)) were generated by
using subsets of the training set during each stratified
K-Fold split. Window duration sweeps (figure 5(d))
varied the size of the firing-rate estimation window
while fixing the start time at 200 ms after the Go cue.
Neural decode time-courses (figure 5(e)) used 500ms
bins centered at different times of the trial.

To visualize neuron-dropping curves (figure 5(c),
supplementary figure 11), we first aggregated neur-
ons across sessions into a pseudo-population. Spe-
cifically, we combined trials from different sessions
based on their within-finger order. For example,
each session’s first right-thumb trial was combined
into a single trial for the pseudo-population. For the
Alternating-cues finger press task with delay, parti-
cipant JJ performed 96 trials in one session and 120
trials in two sessions, so we used only the first 96 tri-
als from each session. Finally, we randomly sampled
(without replacement) an M-neuron subpopula-
tion from the pseudo-population. We calculated the
cross-validated accuracy when decoding from this
subpopulation. We varied M to create a neuron-
dropping curve, and we repeated the subpopulation

sampling 40 times for each M to generate 95%
intervals.

2.8. Online BMI discrete control
Each BMI control session started with a run of the
open-loop calibration task. For participant NS, this
was the Alternating-cues finger press task, modified
to not have a delay. For participant JJ, this was the fin-
ger press taskwith randomized cue location,modified
to not provide classifier output.

The neural activity and finger movement cues
from the calibration task served as training data for
the online BMI classification model. Neural features
were composed of the threshold crossing rates of each
electrode during a one second window for each trial.
The window start-time, ts, was a hyperparameter
chosen to maximize the cross-validated classification
accuracy on the calibration task. The online BMI clas-
sifier was then fit to the calibration taskwithout cross-
validation. Labels consisted of the finger movement
cues, and features consisted of the firing rates during
each trial’s window [ts, 1+ ts]. Electrodes with mean
firing rates <1 Hz were excluded to minimize sensit-
ivity to discretization.

During online control of the finger grid task, the
classifier predicted a single finger movement for each
trial. Input neural features consisted of the threshold
crossing rates from each electrode in the time win-
dow [0.5, 1.5] s after cue presentation. TheBMI classi-
fier was occasionally recalibrated between run blocks
using data from this task.

As a proof-of-concept, we also connected the clas-
sifier output to the fingers of a robot hand (Shadow
Dexterous Hand; supplementary video 1). On each
trial, a screen cue instructed the participantwhich fin-
ger to press. The BMI classifier predicted each finger
movement from the neural features and then moved
the corresponding finger on the robotic hand.

2.9. Neural distance between fingers
We quantified the neural activity differences between
fingermovements using the cross-validated (squared)
Mahalanobis distance [63]. The Mahalanobis dis-
tance is a continuous, non-saturating analogue of
LDA classification accuracy [64]. Cross-validation
removes the positive bias of standard distance met-
rics, such that E[d2jk] = 0 when two activity patterns
are statistically identical.

To calculate population distances, we used
the representational similarity analysis Python
toolbox [65]. The toolbox slightly modifies the
cross-validated Mahalanobis equation, incorporat-
ing the noise covariances of both folds to improve
robustness:

d2jk =
(
bj − bk

)
A

(
ΣA + ΣB

2

)−1 (
bj − bk

)T
B
/N

where A and B indicate independent partitions of the
trials,Σ is the noise covariancematrix, (bj, bk) are the
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firing rate vectors for finger movements (j, k) stacked
across trials, and N normalizes for the number of
neurons. The units of d2jk are unitless

2/neuron.

2.10. Shared representations across hands
To quantify whether finger representations were sim-
ilar across hands, we compared the pairwise dis-
tances between matching finger pairs and the pair-
wise distances between non-matching finger pairs
(figure 8(b)). We denoted a finger pair as match-
ing if the hands differed and the finger-types were
the same ([Lt, Rt], [Li, Ri], [Lm, Rm], [Lr, Rr], [Lp,
Rp]). We denoted a finger pair as non-matching if
the hands differed and the finger-types also differed
([Lt, Ri], [Lt, Rm], [Lt, Rr], [Lt, Rp], [Li, Rt], [Li,
Rm], etc.). We described a neural population as shar-
ing representations across hands if the average dis-
tance between matching finger pairs was smaller than
the average distance between non-matching finger
pairs.

2.11. Factorized finger representations
Factorized coding refers to representations that can
be decomposed into simpler explanatory factors [66–
70].We assessed whether finger representations could
be linearly decomposed into the sum of finger-type
and laterality components.

We first visualized the representational geometry
in figure 8(d) using 2D multidimensional scaling
(MDS). MDS projects the finger movements into a
low-dimensional space while attempting to preserve
pairwise neural distances (figure 8(a)).We performed
MDS on data from individual sessions and then used
Generalized Procrustes analysis with scaling to nor-
malize and align MDS projections across sessions. In
the NS-PPC MDS plot, ellipses show standard error
(S.E.) across sessions. The JJ-PPC and JJ-MC MDS
plots show the mean values without any S.E. ellipses,
because the two sessions with participant JJ are not
sufficient to estimate the S.E.

We used leave-one-group-out cross-validation
to determine whether hand- and finger-dimensions
generalize to left-out movements (supplementary
figure 8). If finger representations are factorized, then
hand classifiers (left vs. right) should generalize when
trained on a subset of finger types and evaluated
on left-out finger types. Additionally, finger-type
classifiers should generalize when trained on one
hand and tested on the other hand (figure 8(e)).
This metric is often called cross-condition generaliz-
ation performance (CCGP) [70]. We pooled neurons
across sessions (NS: 10 sessions; JJ: 2) into a pseudo-
population. We used a permutation test to assess
whether CCGP was significantly above chance, shuff-
ling the labels repeatedly (N = 1001) to generate a
null distribution. Standard cross-validation accuracy
provides a best-case upper bound on CCGP. Reach-
ing this upper bound implies perfect factorization.

We matched training dataset sizes when comparing
CCGP and within-condition cross-validation
accuracy.

3. Results

3.1. Single-neuronmodulation to individual finger
presses
We first sought to determine whether PPC single
neurons discriminate between individual finger
movements. We quantified single-neuron modula-
tion to attempted finger presses of the right (con-
tralateral to the implant) hand while the participant
performed the Alternating-cues finger press task with
delay (participant NS: 120 trials per session for four
sessions; participant JJ: 112 trials per session [min:
96; max: 120] for three sessions). We recorded 118
neurons per session (min: 111; max: 128) over four
sessions fromNS-PPC, 103 neurons per session (min:
92; max: 116) over three sessions from JJ-PPC, and 93
neurons per session (min: 90; max: 95) from JJ-MC.
For each neuron, we calculated firing rates during the
attempted movement period and compared firing
rates across finger movements (figure 4(a), supple-
mentary figures 2 and 3).

Similar to results from finger studies of the MC
hand area [46, 50], PPC neurons were not ana-
tomically segregated by finger selectivity. A large
portion of neurons (NS-PPC: 54%; JJ-PPC: 30%;
JJ-MC: 78%; figure 4(c)) varied their firing rates
between attempted finger movements (q < 0.05),
and selective neurons were often selective for mul-
tiple finger movements (mean number of signi-
ficant fingers, NS-PPC: 2.1; JJ-PPC: 1.9; JJ-MC:
2.7).Moreover,many neurons discriminated between
movements with large effect sizes (percentage of
neurons with η2 > 0.14, NS-PPC: 40%; JJ-PPC: 25%;
JJ-MC: 64%; figure 4(d), supplementary figures 2(d)
and 3(d)).

We also quantified single-neuron modulation
during movement preparation. Preparatory activity
discriminated between finger movements with reas-
onable effect sizes (figure 4(d)). Consistent with
reaching studies of PPC [22], slightly fewer NS-PPC
neurons had strong tuning (q < 0.05 and η2 > 0.14)
during movement preparation (percentage of neur-
ons: 24%) than during movement execution (per-
centage of neurons: 43%) (figure 4(e)). JJ-PPC neur-
ons modulated at similar rates during preparation
(percentage of neurons with q < 0.05 and η2 > 0.14:
23%) versus during execution (24%) (supplementary
figure 2(e)).

3.2. Classifying finger presses from neural activity
Since single neurons were tuned to finger move-
ments, we evaluated whether attempted finger move-
ments could be classified (offline) from the pop-
ulation neural activity. Using data from the same
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Figure 4. PPC single neurons discriminate between attempted finger movements. (a) Single-trial firing rates for an example
NS-PPC neuron during attempted movements of different fingers. (top) Markers correspond to the firing rate during each trial.
Gapped vertical lines to the right of markers indicate± S.D., and each gap indicates the mean firing rate. (bottom) Firing rates
during thumb (T) and index (I) presses were higher than the No-go (X) baseline. Vertical bars indicate bootstrap 95% confidence
intervals (CI) of the effect size versus No-go baseline. Half-violin plots indicate bootstrap distributions. (b) Mean smoothed firing
rates for each finger movement for two example NS-PPC neurons, which respectively modulated for thumb/index movements
(left) and fingers versus No-Go (right). Shaded areas indicate 95% CI. (c) Percentage of NS-PPC neurons that discriminated
between finger movements in each analysis window (q< 0.05, FDR-corrected for 466 neurons). Line (blue) indicates mean across
sessions. Markers (gray) indicate individual sessions. (d) Complementary empirical cumulative distribution function visualizing
the proportion of NS-PPC neurons with ANOVA effect sizes (η2) above the corresponding x-axis value. Line colors indicate
analysis epoch. Vertical lines (gray) indicate Cohen’s thresholds [59] for small (η2 = 0.01), medium (η2 = 0.06), and large
(η2 = 0.14) effect sizes. (e) Overlap of NS-PPC neurons that modulated significantly (q< 0.05) with large effect sizes (η2 > 0.14)
during movement preparation (plan) and movement execution (move).

task, we trained linear classifiers and assessed finger
classification accuracy on held-out trials using cross-
validation (methods). Classification accuracies sub-
stantially exceeded chance (accuracy, NS-PPC: 86%;
JJ-PPC: 64%; JJ-MC: 84%; chance: 17%). The major-
ity (NS-PPC: 75%; JJ-PPC: 42%; JJ-MC: 67%) of
errors misclassified an adjacent finger (figure 5(a),
supplementary figures 4 and 5).

Classification accuracy can depend on the neural
signal quality and prediction window. To better
understand how finger classification varies over data-
set and classifier parameters, we quantified cross-
validated accuracy across different training data-
set sizes, neuron counts, and window durations
(figures 5(b)–(d), supplementary figures 4 and 5).

Cross-validated accuracy increased with more
training data, reaching 80% accuracy when training
on about 40 trials (2.7 min) for NS-PPC. Higher
neuron counts provide more finger information and
thus improved classification accuracy, reaching 80%
accuracy at about 70 neurons for NS-PPC. These
results indicate that a single electrode array in PPC
provides sufficient information to control a discrete
finger-press prosthetic.

Accuracy also increased when using longer win-
dow durations, reaching 80% at durations above
350 ms. Longer window durations average out firing

rates and thereby reduce the impact of measurement
noise and behavioral variability on classification, but
they directly mandate longer control delays. In some
cases, it may be useful to minimize BMI control
latency even at the expense of accuracy [71].

Finger movements could also be decoded from
PPC during the planning period (figure 5(e)),
although classification accuracy was lower (NS-PPC:
66%; JJ-PPC: 61%; chance: 17%) than during move-
ment execution.

3.3. BMI control of finger movements
We next mapped neural activity to finger movements
to control an online finger BMI, where our par-
ticipants would tap each finger and their attemp-
ted movement would be decoded. For this section,
we replicated a usage scenario where a prosthetic
user could decide to move a finger and immedi-
ately execute the movement, without needing a delay
period.

We started each session with an open-loop calib-
ration task where the participant attempted to press
fingers according to visual cues (methods). Using
only a short calibration period (eight repetitions per
finger, totaling about 2.5 min), each participant was
able to use a classifier to accurately control individual
fingers of the BMI.
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Figure 5. Offline classification of finger movement from population activity. (a) Cross-validated confusion matrix for classifying
attempted finger movement from NS-PPC neural activity during the movement execution epoch. 86% accuracy, 480 trials over
four sessions. (b) Learning curve showing cross-validated accuracy as a function of the training dataset size. About 40 trials (less
than seven trials per finger) are needed to achieve 80% accuracy. Shaded area indicates 95% CI over folds/sessions. (c) Neuron-
dropping curve showing cross-validated accuracy as a function of recorded neurons. Neurons were aggregated across sessions.
About 70 neurons are needed to achieve 80% accuracy. Shaded area indicates 95% interval over subpopulation resamples.
(d) Hyperparameter sweep showing cross-validated classification accuracy as a function of decode window size. Input features
were the average firing rates in the window [200 ms, 200 ms+ window size] after Go-cue. Window durations of about 350 ms are
necessary to achieve 80% accuracy. Shaded area indicates 95% CI over folds/sessions. (e) Cross-validated classification accuracy
across the trial duration (500 ms sliding window). Shaded area indicates 95% CI over folds/sessions.

Figure 6. Online BMI classification of individual finger movements. (a) Confusion matrix for participant NS (PPC), right-hand
finger presses. 86% accuracy± S.D. 4% over ten sessions, 4016 total trials. Reproduced from [54]. CC BY 4.0. (b) Confusion
matrix for participant JJ (PPC+MC), right-hand finger presses. 92% accuracy± S.D. 3% over eight sessions, 1440 total trials.

The confusion matrix for participant NS
(figure 6(a)) shows that she achieved high online
control accuracies (86%; chance: 17%). These finger
representations were robust across contexts and could
be used in a range of environments. In one session,
participant NS used the BMI to control the fingers of
a robotic hand (supplementary video 1).

Participant JJ achieved even higher accuracies
during BMI control (92% ± S.D. 3% over eight
sessions; chance: 17%) (figure 6(b)). However, we
note that participant JJ’s BMI decoder used threshold
crossings from both MC and PPC electrode arrays,
thus doubling the number of electrodes compared
to participant NS. While we cannot retrospectively
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replicate the BMI experiment with an isolated array,
we can approximate the results by training the same
classification algorithm on early runs, using record-
ings only from a single array; we can then apply this
classifier to the subsequent test trials (accuracy, JJ-
PPC: 83%; JJ-MC: 87%; chance: 17%; supplementary
figure 6).

On a few separate runs, participant JJ also per-
formed the calibration and BMI control tasks with
his left hand (ipsilateral to the implant). He achieved
high accuracies (94% ± S.D. 4% over three sessions;
chance: 17%) at a similar level to right-hand finger
decoding (supplementary figure 7).

3.4. Classifying individual finger presses from both
hands
We next investigated whether all ten finger move-
ments could be classified from a single array. Cereb-
ral hemispheres primarily control movement on the
opposite side of the body, andwe have only implanted
electrode arrays in each participant’s left hemisphere.
However, the ability to classify movements of both
sides would reduce the number of implants necessary
for bilateral BMI applications.

We examined single-neuron activity during inter-
leaved, attempted finger presses of the contralateral
(right) and ipsilateral (left) hands (methods; parti-
cipant NS: 100 trials/session for ten sessions; par-
ticipant JJ: 100 trials/session for two sessions). We
recorded 111 neurons per session (min: 102; max:
119) from NS-PPC, 160 neurons per session (min:
159; max: 160) from JJ-PPC, and 130 neurons per
session (min: 120; max: 130) from JJ-MC. Similar
to the contralateral-only results, most neurons (NS-
PPC: 66%; JJ-PPC: 57%; JJ-MC: 78%) discriminated
firing rates across fingers (q< 0.05).

We then evaluated whether these signals could
be used for a neural prosthetic by classifying (off-
line) the attempted finger movement from the pop-
ulation neural activity. A linear classifier (methods)
was able to discriminate between all ten fingers (cross-
validated classification accuracy, NS-PPC: 70%; JJ-
PPC: 66%; JJ-MC: 75%; chance: 10%). The majority
(NS-PPC: 76%; JJ-PPC: 66%; JJ-MC: 68%) of clas-
sification errors were adjacent-finger-confusion or
matching-across-hand-confusion (figures 7(c)–(e)).

3.5. Factorized representation of finger type and
laterality
To characterize how NS-PPC simultaneously rep-
resents contralateral and ipsilateral finger move-
ments, we calculated the cross-validated neural dis-
tances between pairs of attempted finger movements.
Figure 8(a) visualizes these distances in a represent-
ational dissimilarity matrix [55] that is row- and
column-indexed by finger. Visual inspection shows
that neural distances are small between right/left pairs
of fingers (anti-diagonal of figure 8(a)), suggesting
that movement representations are partially shared

across hands. On average, matching right/left finger
pairs were 1.56 distance-units (95% CI: [1.33, 1.78],
figure 8(b)) closer to each other than non-matching
fingers were. Matching fingers were also represented
more similarly than non-matching fingers in JJ-MC
(mean difference: 4.30, 95% CI: [2.74, 5.46], supple-
mentary figure 9(b)), but this result was not conclus-
ive in JJ-PPC (mean difference: 0.27, 95% CI: [–0.17,
0.64], supplementary figure 10(b)).

What representational geometry allows down-
stream readout of all ten fingers (figure 7) while shar-
ing information across hands (figure 8(b))? Studies of
human MC [72–75] have also found correlated rep-
resentations across sides, with [73] linearly decom-
posing population activity into simpler factors: later-
ality, arm-versus-leg, and motion pattern.

Do laterality and finger-type also form a fac-
torized code in PPC and MC? In a perfectly fac-
torized representation (figure 8(c)), vectors between
neural representations are simply the summation of
the vectors between their respective components. For
example, the vector Lm→Ri can be decomposed into
generic left→right and middle→index vectors. Geo-
metrically, these generic vectors would form par-
allelograms between relevant groups of conditions
(figure 8(c)) [76]. In other words, a factorized code
would have a consistent hand subspace and a con-
sistent finger-type subspace, although these subspaces
need not be orthogonal.

We used 2D MDS to visualize the geomet-
ric relationship between NS-PPC finger represent-
ations (figure 8(d)), limiting to the index, middle,
and ring fingers for visual clarity. We found that
inter-finger vectors were similar across hands, with
the index finger relatively distinct from the middle
and ring fingers, consistent with previous studies of
contralateral finger movements [54, 77]. Addition-
ally, the left→right vector appeared identical across
all matching left/right finger pairs.

Factorized coding generalizes across the axes
of the simpler building blocks. Since individual
left→right vectors are nearly identical to each other,
linear decoders trained to differentiate left-vs-right
on a subset of finger types (Lt-vs-Rt; Li-vs-Ri, Lm-vs-
Rm, Lr-vs-Rr) should generalize to held-out, hypo-
thetically equivalent vectors (Lp-vs-Rp) (supple-
mentary figure 8). We aggregated neurons across dif-
ferent sessions into a pseudo-population (methods).
Consistent with the factorized coding hypothesis,
cross-condition hand-decoding generalization per-
formance (hand CCGP) was nearly perfect (accuracy
using 1111 neurons: 99%, chance = 50%, p < 0.001,
permutation test). Next, we applied cross-decoding to
the finger dimension, training a classifier to discrim-
inate between fingers of the right hand and then test-
ing on the left hand (and vice-versa). The finger-type
dimension also generalized well across hands (accur-
acy: 93%, chance = 20%, p < 0.001), and finger-
type CCGP was close to the standard cross-validation
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Figure 7. Offline classification of finger presses from both hands. (a) Mean firing rates for each finger movement for an example
NS-PPC neuron, which increases its firing rate for thumb movements. Shaded areas indicate 95% confidence intervals (CI).
(b) Same as (a) for a second example NS-PPC neuron, which increases it firing rate for index movements. (c) Cross-validated
confusion matrix for classifying right- and left-hand finger movements from NS-PPC neural activity. 70% accuracy, 1000 trials
over ten sessions. (d) Same as (c) using recordings from JJ-PPC. 66% accuracy, 200 trials over two sessions. (e) Same as (c) using
recordings from JJ-MC. 75% accuracy, 200 trials over two sessions.

accuracy (98%) evaluated using within-condition
cross-validation (figure 8(e)); this within-condition
cross-validation accuracy is a best-case upper bound
on CCGP. The close match between finger-type
CCGP and cross-validation accuracy indicated

that the finger-type dimension robustly general-
ized across hands. This result demonstrates that
NS-PPC finger representations can be decom-
posed linearly into hand and finger-type building
blocks.
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Figure 8. Representational geometry of contralateral and ipsilateral finger movements. (a) Cross-validated squared Mahalanobis
distances between NS-PPC activity patterns during the contralateral/ipsilateral finger press task. Distances were averaged over the
ten sessions. (b) Non-matching (different finger-type, different hand) finger pairs have larger distances than matching (same
finger-type, different hand) finger pairs. Each circle is one element of the dissimilarity matrix of an individual session, aggregated
across ten sessions. (c) Example schematic of perfect factorization along hand and finger-type components. Line styles indicate
groups of parallel, identical vectors. A factorized code generalizes linearly across each component axis. For example, the Rm
population activity can be constructed from the summation: Li+ left→right+ index→middle. For visual clarity, figure only
shows three finger-types (index, middle, ring). (d) Representational geometry of finger movements corresponding to NS-PPC
distances (a), visualized in 2-D using MDS. We used Generalized Procrustes analysis (with scaling) to align across ten sessions.
Ellipses show S.E. across sessions. Scale bars shown. Vectors with matching line-styles match each other, suggesting that the neural
code is factorized. (e) Linear decoders generalized (supplementary figure 8) across finger-type to classify hand (left) and across
hand to classify finger-type (right) (p< 0.001, permutation test), indicating that movement representations were factorized
across finger-type and hand dimensions.

Comparable results held for JJ-MC recordings,
with robust factorization of the neural code into hand
and finger-type components (hand CCGP using 259
neurons: 86%, chance = 50%, p < 0.001; stand-
ard hand cross-validation accuracy: 87%) (finger-
type CCGP: 75%, chance = 20%, p < 0.001;
standard finger-type cross-validation accuracy: 89%)
(supplementary figure 9). Interestingly, JJ-PPC fin-
ger representations were less factorized. While above
chance (p < 0.001), the finger-type CCGP (36%,
using 319 neurons) was much lower than the within-
condition cross-validation accuracy (65%) (supple-
mentary figure 10). Even when accounting for differ-
ences in neural population size, finger-type CCGP for
JJ-PPCwas lower than finger-type CCGP for NS-PPC
and JJ-MC (supplementary figure 11).

4. Discussion

Human dexterity is characterized by our ability to
quickly reach-and-grasp, as well as our ability to

move individual fingers volitionally beyond basic
grasp templates [9]. Individual finger movements are
generally considered to be the domain of the MC
hand knob, while the PPC complements via higher-
level computations, such as transforming object
shape to grip type [42]. This perception is suppor-
ted by a wide range of evidence [8]; for example,
fMRI studies find topographic finger activation maps
in MC [77, 78] but not in PPC [79]. Despite the lack
of coarse finger topography in PPC, here we found
that neurons in two grasp-related regions of PPCwere
discriminative for attempted finger movements. Pop-
ulation tuning was robust enough for human parti-
cipants to control finger BMIs in a variety of applica-
tions. These results demonstrate that detailed inform-
ation about finger movements is more distributed
than is commonly thought.

Our study adds to a growing number of finger
BMI demonstrations. Previously, [34] demonstrated
the first online neural decoding of all-five individual
finger movements in human participants, using a
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high-density ECoG grid over the sensorimotor cor-
tex. Similar to our study [36], implanted intracor-
tical arrays in the MC of a tetraplegic participant and
decoded attempted finger movements, achieving an
offline accuracy of 67%. Recently [33, 49], achieved
high-performance continuous control of flexion and
extension of two finger groups. Our results con-
tribute to prior studies by showing that simultan-
eous PPC + MC recordings can improve online fin-
ger decoding accuracies (figure 6). Considering that
PPC and MC usually fulfill different functions for
able-bodied sensorimotor control [8], an interesting
future direction will be to understand to what degree
PPC and MC complement each other across more
diverse BMI control paradigms.

Algorithmic advances may further improve fin-
ger decoding performance. For example, hierarch-
ical classifiers might be useful for classifying finger
direction and finger movement [34]. Additionally,
with larger data quantities or with data augmenta-
tion strategies, time-varying and nonlinear classifi-
ers like recurrent neural networks can improve neural
decoding [32, 49, 80, 81]. Performance improvements
may also come from decoding non-traditional vari-
ables, such as handwriting [32] or goals [22]. State-
machine control (common in other assistive tech-
nologies like myoelectric prostheses [82] or Dwell)
and AI-assisted hybrid control [83, 84] may further
improve BMI usability. In combination with soma-
tosensory intracortical microstimulation to generate
fingertip sensations [47, 48], such methods could
enable a functional hand prosthetic.

After demonstrating BMI control of the contralat-
eral fingers, we studied representations of ipsilateral
finger movements. We found that a linear classifier
could discriminate between movements of all ten fin-
gers (figure 7). Given that descending corticospinal
tracts primarily cross to control the contralateral side,
it was interesting to find that ipsilateral finger decod-
ing was relatively robust. On some sessions, ipsilat-
eral decoding accuracies were even comparable to
contralateral decoding (supplementary figure 7). The
strong ipsilateral coding found here differs slightly
from fMRI studies, which find that ipsilateral fin-
ger coding is about a quarter of the strength of con-
tralateral finger coding [74, 85]. Intracortical elec-
trophysiology studies of ipsilateral grasping and arm
movements find a stronger range of ipsilateral coding;
ipsilateral coding strength varies from∼40% [72, 86]
to >80% [72, 73, 86, 87] of the contralateral coding
strength in MC, depending on the subject and the
specific metric compared. To better understand the
role of ipsilateral finger activity, future single-neuron
studies could investigate how individual finger rep-
resentations mix to construct multi-finger move-
ments, both within and across hands. fMRI stud-
ies of sensorimotor cortex suggest that same-hand
movementswould be organized by their natural usage

patterns [77], while both-hand movements would
exclusively represent the contralateral fingers [74]. An
open question is whether these patterns also extend to
single-neuron populations and to PPC.

Even as the ten finger movements were discrim-
inable, activity patterns for NS-PPC and JJ-MC were
similar across corresponding finger pairs on opposite
hands (figures 8(a) and (b)). Our results match other
studies that have also found shared-yet-separable
hand representations in macaque anterior intrapari-
etal area [88] and human MC [73, 74]. This pattern
of cross-condition generalization has previously been
described as partially mixed selectivity [43], abstract
or factorized representations [70], or compositional
coding [66, 73]. Here, the NS-PPC and JJ-MC fin-
ger codes could be factorized into finger-type and lat-
erality subspaces (figures 8(d) and (e)), resembling
the partial compositionality described by [73] for arm
and leg movements. Compositional and factorized
coding have been speculated to play a number of dif-
ferent computational functions, from skill transfer
to general cognition [43, 66, 67, 72, 73]. For neuro-
prosthetic applications, factorized coding simplifies
decoder calibration. Because neural coding general-
izes across conditions, decoders can train on only the
underlying factors, rather than every combination.

Surprisingly, JJ-PPC population activity was not
factorized to the same extent as NS-PPC and JJ-
MC. The difference between JJ-PPC and NS-PPC
results might stem from neuroanatomical variability
[89, 90] or differences in implant location. The NS-
PPC implant was located at the junction of the
postcentral and intraparietal sulci (PC-IP), an area
involved in grasping and fine finger movements [4,
89, 91]. PC-IP receives inputs from neighboring
somatosensory cortex [90, 92], suggesting that it may
facilitate state estimation of the hand [54, 93, 94]. We
could not implant the JJ-PPC recording array in the
center of the PPC grasping area, functionally local-
ized near PC-IP (supplementary figure 1), because
blood vessels obstructed the cortical surface. Thus, we
implanted the JJ-PPC array in the SPL, medial and
posterior compared to the NS-PPC implant. Medial
and posterior areas of PPC tend to receive stronger
visual inputs [90, 92, 95] and are more involved
in reaching than grasping [96], so the recorded JJ-
PPC population could be more involved in calcu-
lating visuomotor transforms [92, 97] for visually
guided reaching [90, 96]. It is possible that the dif-
ference in implant location also contributed to differ-
ences in contralateral finger tuning between NS-PPC
(figure 4) and JJ-PPC (supplementary figure 2). How-
ever, it is difficult to precisely compare implant loc-
ations, because the anatomical location of individual
functional areas can vary widely between participants
[89, 90]. Future comparisonsmay benefit frommulti-
modal preoperative neuroimaging to map implant
locations onto standard parcellations [98].
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5. Conclusions

The PPC has long been known to be involved in the
reaching and grasping of objects, but less is known
about its contribution to individual finger move-
ments. Here, two tetraplegic participants controlled
individual fingers through BMIs recording from the
PPC and MC. Ipsilateral finger coding was strong in
all three recorded neural populations, and two of the
populations exhibited factorized coding that enabled
decoders to simultaneously generalize across and dis-
criminate between hands. Our results demonstrate
that PPC and MC can provide complementary con-
trol signals for assistive neuroprosthetics.
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