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Abstract

Stochastic nonzero-sum duopoly games with economic applications

by

Liangchen Li

We study a class of stochastic duopoly games inspired by the two time-scale feature of

many markets. The firms convert their short-term “local” advantage driven by exogenous

infinitesimal shocks into a more durable gain through long-term market dominance. As an

extension of existing literature, we consider two asymmetric players each of whom adopts

timing strategies to increase her profitability and possibly bring negative externality

to the rival. In turn, this leads us to more general settings of nonzero-sum games.

Characterizing Nash equilibrium as a fixed-point of each player’s best-response to her

rival, we construct threshold-type Feedback Nash Equilibrium via best-response iteration.

Our main contribution is explicitly constructing equilibria for types of duopoly games

that represent a wide range of industries. Motivated by the competition among sectors

of power generators, we consider a duopoly of producers with finite options to increase

their production capacity. We study nonzero-sum games in which two players compete for

market dominance via switching controls. We also study mixed switching and impulses

games inspired by the vertical competition among the producers and consumers of a

commodity. Our analysis quantifies the dynamic competition effects and brings economic

insights.
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Chapter 1

Introduction

Guidance and attributions: The topic of my thesis concentrates on the study of

nonzero-sum duopoly games in stochastic environments. We consider the competition

between asymmetric players with various types of controls, motivated by well-discussed

economic applications. Chapter 1 introduces the problem we studied and provides an

overview of this thesis. Rigorous formulation and building blocks that help us solving

the problem are stated in Chapter 2. Three types of solvable games are discussed re-

spectively. The content of Chapter 3 is the result of a collaboration with René Aı̈d and

Mike Ludkovski, and has appeared as [6]. The content of Chapter 4 is of a submitted

paper [56] that I had with Mike Ludkovski. Chapter 5 summarizes the ongoing work [4]

collaborated with René Aı̈d, Luciano Campi and Mike Ludkovski. They are reproduced

here with permissions.

1.1 Background

We consider firms in a competitive market who aim to maximize their profit while

being exposed to exogenous stochastic shocks. The uncertainty may come from uncertain
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Introduction Chapter 1

market development, exogenous demand/supply shocks, unpredictable costs, etc. In turn,

one main problem faced by administrators of the firms is to make decisions reacting to

the stochastic environment, e.g. building additional production capacity, investing in

R&D to be on the cutting edge, switching on/off production to maintain solid profit and

so on, with the anticipation that they would gain more revenue in the foreseen future.

Such problems have been extensively studied as stochastic optimal control problems since

the late 1950s. Existing research has considered a variety of approaches to the choices

faced by the firm, including singular control by Steg [73] in which firms repeatedly make

investments of arbitrary size to increase their respective capital stocks; timing control by

Grenadier [39] in which firms determine the optimal time to make investment; impulse

control by Baccarin [11] in which agents make timing decisions to shift the underlying

process to a desired level, and two-sided optimal switching control by Hamadène and

Jeanblanc [41] in which a power station decides to switch between operating and closed

modes.

Furthermore, firms’ profits are affected not only by her choices but also by decisions

of other participants of the competitive market. In the electricity market, investor of

coal-fired plants and renewable power plants compete to provide base-load power gener-

ation, while the competitiveness of non-emissive energies highly relies on a substantial

price for carbon emission. Smartphone producers like Apple and Samsung compete for

increasing market shares via investing in high technology devices and advertising, while

the global demand of smartphones grows in a stochastic way. Another representative

example could be the auto market of fuel cars and hybrid cars. As the price of crude

increases considerably, one may expect that costumers will switch to hybrid cars, thus

the producers have to adjust their capacity accordingly. To the extent that the profits

of the firm are affected by decisions of others, it is important to consider the strategic

interaction across firms. Assuming that firms take into account the other firms’ reactions

2



Introduction Chapter 1

to their own actions and they know their rivals think the same way, their decisions can

be treated as a dynamic game.

Such dynamic competition under uncertainty provides a natural generalization from

the classical one-agent optimization problems and hence is applicable in a large variety

of applied settings. One classical example of dynamic games would be that producers

of substitutable goods (e.g. steel, electricity, cars, etc.) compete à la Cournot on the

product market. To wit, the producers compete on the amount of product they produce

whose price is determined by their aggregate output. As one producer invests to increase

her capacity, she will lower the good price which brings negative externality to the others

and herself. Therefore, in such a competitive market, every single producer must take

the strategic interaction across all producers into consideration when making decisions.

The general problem of capacity expansion under uncertainty has been extensively stud-

ied as a stochastic optimal control problem and offers a natural link to the theory of

real options. Single-agent models for multi-stage capacity expansion were initiated in

Dixit [32] and Var-Ilan et al. [12]. See also the very recent work Aı̈d et al. [5] using

a continuous-control framework. Early pioneering works to mix concepts from both the

real options frameworks and the game theory were Smets [72], who first introduced the

effect of competition in the real option literature, and Williams [77], who provided the

first rigorous derivation of a Nash equilibrium in a real option framework. See also the

books [40, 25]. The “standard” real option game features two symmetric firms competing

to invest in a non-exclusive underlying project over the infinite (continuous) time horizon.

The competition is of the leader/follower type: at the time of the first investment, one

firm becomes the leader; the follower is then able to invest at a later date [33, 46, 63].

We refer to the survey by Azevedo and Paxson [10] who present a catalog of more than

fifty articles dealing with variants of this setup. A simpler version is the preemption

game introduced by Grenadier [39], where two identical firms compete to be the first to

3



Introduction Chapter 1

initiate a new project. To our knowledge the first paper to explicitly consider competi-

tive capacity expansion was Bashyam [13]. Another notable contribution is Huisman and

Kort [48] who allow for joint optimization of the timing and project size, demonstrating

that the first mover over-builds to delay entry of the other firm. More examples include:

(i) Boyer et al. [17] model capacity-building investments, via irreversible addition of

production units, in a homogeneous product duopoly facing uncertain demand growth.

They demonstrate equilibrium paths of the investment game may include episodes dur-

ing which firms invest at different times, a preemption pattern, and episodes in which

firms invest simultaneously, a tacit collusion pattern; (ii) Huisman and Kort [47] study a

dynamic duopoly in which firms compete in the adoption of new technologies to provide

a framework where firms take into account technological progress in making their invest-

ment decisions; (iii) Huberts et al. [45] examine a dynamic incumbent-entrant framework

with stochastic evolution of the inverse demand and find incumbent invests earlier than

the entrant in equilibrium while the size of investment plays an important role of the

game.

1.2 Stochastic Nonzero-sum Duopoly Games

This thesis focuses on studying nonzero-sum games, in which the interacting firms’

aggregate gains and losses can be less than or more than zero (cf. Morgenstern and

Neumann [60]). Comparing to zero-sum games in which each firm’s gain or loss is exactly

balanced by the losses or gains of the other firms, nonzero-sum games draw our interest

because: (i) nonzero-sum games are more flexible to better fit the motivating economic

examples, since the aggregate revenue of the market may change as one firm makes

investment. For instance, additional capacity may decrease the overall revenue through

a lower product price, while new technique developed by one firm will bring extra welfare

4



Introduction Chapter 1

to the whole industry; (ii) technique-wise solving nonzero-sum games is more complicated

while zero-sum games are usually solved via minimax theorem (cf. Aumann and Hart [9,

Chapter 2]). Though much less than studies on zero-sum games, such features have drawn

many studies in stochastic nonzero-sum games. Some recent related works are: Aı̈d et

al. [2] who consider nonzero-sum games of two players with impulse controls, Hamadene

and Zhang [42] and Attard [8] who study a two player nonzero-sum game on stopping

times, De Angelis et al. [30] and Martyr and Moriarty [59] who construct threshold-type

Nash equilibrium for nonzero-sum stopping games, while Riedel and Steg [69] develop a

subgame-perfect equilibrium of stochastic timing games in mixed strategies.

1.2.1 Markets with Two Time-scales Feature

We concentrate on a specific class of dynamic games which are inspired by the two

time-scales feature of many markets. Indeed, dynamic competition is often driven by

infinitesimal shocks that determine the rapidly fluctuating short-run market conditions.

These fluctuations yield “local” advantage to firms, e.g. high carbon emission price

benefits non-emissive power plants, a material gas price makes the producer of hybrid cars

more competitive and so on. After a sustained period of advantageous market conditions

we expect the respective firm to become dominant. To wit, the firms convert such short-

term effect into a more durable gain through market dominance, e.g. longer-term capacity

gains, technological edge, advertising to increase market shares, etc. Thus, the two time-

scales link the immediate competitive advantage and the long-run market organization.

The novelty of our setup is to fully integrate this well-known idea within a non-cooperative

game model, by considering a “microeconomic” stochastic factor (Xt) that drives market

conditions, e.g. carbon emission price, aluminum price for aluminum producers and

automakers, crude price, domestic R&D costs, etc, vis-a-vis the “macroeconomic” market

5



Introduction Chapter 1

regime (Mt) that determines market power and relative profits of the firms, for instance

the numbers of coal-fired power plants and renewable power plants built reflect not only

the electricity market organization but also profitability of each generation sector. One

can also consider (Mt) as a direct index of the proportion of market shares the firms are

taking, or an index of their R&D level.

1.2.2 Competition of Asymmetric Players

We consider a duopoly of two firms, dubbed player i, j ∈ {1, 2}, i 6= j, that natu-

rally mirrors the two-sided nature of the up/down market conditions represented by the

one-dimensional X. Players compete continuously by exercising discrete controls. They

collect continuous-time profit at their respective rates πi’s driven by both the “microe-

conomic” market condition X and the “macroeconomic” market regime M . Meanwhile,

they may take actions (we also say they exercise controls) at any time as the local mar-

ket condition develops, e.g. building additional capacity, switching to expanding mode,

increasing advertising investments and so on, which yield instantaneous “one-shot” effect

on the market regime M . This assumption creates a feedback effect between X and M :

e.g. as X varies, one player gets more motivated to enhance her market dominance,

eventually triggering her to act and moves Mt towards her preferred direction. From the

narrative of two time-scale feature, it follows that the long-run market organization is

then fully controlled by the players, while the local market fluctuation is fully exogenous.1

These players’ actions yield sunk-cost K. For simplicity, we assume such acting cost

is lump-sum and adjusted to reflect both the instant cost occurred at the acting time

and any operating cost in the future. Consequently, the integrated total profit of the

players is given by their future cash flow received over an infinite time horizon, minus all

1An extension to this setting, in which the local market fluctuation X is partially controlled by these
players, is represented in Chapter 5.

6
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the acting costs. Taking the time value of money and the risk of future uncertainty into

consideration, we assume these two players aim to optimize the net present value (NPV)

of their expected integrated total profit, at an exogenous discounting rate r > 0. In the

context of game theory, such quantities are accordingly defined to be the game payoffs

these players receive (see Definition 2.3).

Distinct to most of the literature that considers games of identical players (though

see Takashima et al. [75], Aı̈d et al. [2], De Angelis et al. [30]), one of our contributions

is that we consider asymmetric players. In terms of the profit rates, they may have

different preference on the micro/macro market. For instance, higher carbon emission

price and higher proportion of renewable powers in the base-load power generation imply

a higher profit rate π of the corresponding energy generators, while the coal-fired power

plants investors desire the opposite. Moreover, impact yielded by these players’ actions

is supposed to be distinct. As an example, new technology developed by one smartphone

producer enhances her own dominance in the industry described by the process M . To

wit, innovation made by different producer leads to a different macro market regime

Mt, whereas both producers may get benefit from the macro market development due to

increased aggregate demand of phones. In turn, this asymmetry leads us to a more general

nonzero-sum game, and combines dynamic competition with (possibly) cooperation or

immediate preemption, e.g. the coal-fired power generators might build capacity, when

emission is cheap, to prevent her rival from expanding in the future.

1.2.3 Equilibrium: Emerging Macro Market

Let αi denote a game strategy of player i, which specifies when and how she drives

the macro market regime M (i.e. exercises a control). A strategy profile (α1,α2) then

fully specifies these two players’ action in the game. Recall that the long-term market

7
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organization M is considered to be fully controlled by these players, while the short-term

market condition X captures the exogenous stochasticity. Given the players’ strategy

profile, one is able to infer the dynamic of M from the dynamic of X. In particular,

the discrete nature of the macro regime M , following from the setting that the players

make discrete/lumpy actions, allows a high degree of analytic tractability which brings

us insights of the competitive market. For instance, we find that a static uptrend of

the carbon emission price X grants long-term market advantage to the renewable power

generators, and may exclude the coal-fired power generators from building more capacity,

i.e. convergent M in the long-run (see Section 4.4.2). Such inference motivates us to

explicitly construct equilibria of the duopoly game which allow structural insights into

the strategic interaction between the players, the short-term fluctuations in X, and the

emerging M .

1.2.3.1 Nash Equilibrium: Fixed-point of Best-response

In the context of game theory, solving a game often amounts to identifying one (or all)

possible equilibrium(s) of the game. We utilize the standard concept of Nash equilibrium

to describe the optimal behavior. Letting (α1,α2) be a strategy profile of these two

players, we denote the corresponding game payoff received by player i by J i(α1,α2). Here

we use the term strategy profile to emphasize the joint dependence of the players’ game

payoffs upon both of their strategies, as opposed to the single-agent control problems.

The strategy profile (α1,∗, α2,∗) is said to be a Nash equilibrium of the duopoly game if

for any strategy αi of player i such that (αi,αj,∗) is admissible

J i(αi,αj,∗) ≤ J i(αi,∗,αj,∗), i ∈ {1, 2}, j 6= i. (1.1)

8
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The corresponding game payoff V i := J i(αi,∗,αj,∗) is then named the equilibrium payoff

of player i ∈ {1, 2}. We would like to make a note here that above definition of Nash

equilibrium is informal because it strongly depends upon the definition of admissibility

(i.e. the types of controls the players are allowed to exercise). In Chapter 2, we rigorously

formulate admissible strategies and accordingly define a Nash equilibrium in Definition

2.4.

Notice that the Nash equilibrium criterion (1.1) characterizes equilibrium strategies

as a fixed point of each player’s best-response to her rival’s strategy. Specifically, given

an arbitrary rival’s strategy αj define the resulting best-response payoff of player i

Ṽ i(αj) := sup
{αi:(αi,αj)∈A}

J i(αi,αj), (1.2)

where we use A to denote the set of all admissible strategy profiles. Under some restric-

tive assumptions, one can guarantee the single-agent control problem (1.2) to be solved

uniquely, and the corresponding unique maximizer α̃i defines a so-called “best-response

map” accordingly. In turn, if such maps can be well-defined in this way, a strategy profile

is a Nash equilibrium if and only if it is a fixed-point of the best-responses. Unlike most

approaches studied in the field of game theory which look at the equations in equilibrium

directly, the fixed-point characterization inspires us to determine a Nash equilibrium of

the game via best-response iterating. To wit, we first derive the players’ best-response to

the rival’s strategies, which boils down to solving a (constrained) single-agent optimizing

problem. Then we attempt to obtain an equilibrium by finding the best-response of the

players iteratively. Consequently, equilibrium payoffs (if are attained) satisfy:

V i = Ṽ i(αj,∗), i ∈ {1, 2}, j 6= i, (1.3)

9



Introduction Chapter 1

and the strategy profile (α1,∗, α2,∗) is a Nash equilibrium of the game.

On one hand, the fixed-point characterization allows us to break down the problem

into single-agent optimizing sub-problems which we can attack by using classical meth-

ods (introduced in Chapter 2). On the other hand, it allows us to concentrate on a

specific class of strategies instead of the whole set of admissible strategies. The latter

is either not feasible to enumerate in general, or makes the control problem (1.2) not

solvable. Nevertheless, by looking at a specific class of strategies which is closed under

the best-response maps (i.e. given the rival’s strategy one player’s best-response is in the

same class), we are able to obtain a Nash equilibrium among all admissible strategy pro-

files. Unfortunately, such an iterative approach is not enough to directly justify neither

existence nor uniqueness of a Nash equilibrium. For related discussion, we refer to De

Angelis et al. [30] who show existence of a unique Nash equilibrium for a nonzero-sum

duopoly game, and our discussion of multiple Nash equilibria in Section 3.2.2 and Section

4.4.1.

In terms of the optimality, we would like to mention that Nash equilibrium is not

the only choice. Though not being discussed in this thesis, Pareto efficiency is another

type of game equilibrium, very popular in economics literature and in operations research

application. In words, it is a strategy profile from which there is no strategy that makes

every player at least as well off and at least one player strictly better off. As a recent

reference, Carmona in [22] discusses such equilibria for stochastic differential games with

N players, as well as mean-field games.

1.2.3.2 Acting Order: Endogenous or Pre-determined

It is well-known that the order of players’ actions is essential in determining the

solution of a game. Comparing to existing literature (e.g. Siddiqui and Takashima [71]

who consider optimal expansion timing between symmetric firms with pre-determined

10
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investment order), we contribute by studying endogenous equilibria in which the acting

order is stochastically determined. As discussed, we expect fluctuations of the micro

market condition X grant local advantages to one player and motivate her to act, thus

the players’ acting order in an equilibrium is determined from their dynamic cooperation

and preemption. Note that it is perfectly possible that both players are incentivised to

preempt under some specific market condition. One way to address this is to assume

preemptive priority of one player, e.g. coal-fired power plants are easier to build so

that corresponding generators are prior to preempt. Grasselli et al. [38] propose an

infinitesimal coordination game in which firms attempt to invest over an infinitesimal

round. See also Steg and Thijssen [74], and Riedel and Steg [69] who construct mixed

strategies that the players decide to preempt immediately or at a specific rate.

We also consider other types of game solutions. Inspired by Grasselli et al. [38], we

study the situation that one player is granted a priority option, which guarantees her

to act first without concerning that the rival may preempt. We find that the player

assigned to be the leader intends to act later (than that in a more competitive game)

to reap more game payoffs. Moreover, we consider a cooperative solution, which can be

viewed a regulator who controls both players and optimizes aggregate profit (a related

problem was treated in Aı̈d et al. [1]). We observe that such a regulator will let the

players act later, even present one player from acting, which corroborate that competition

leads to preemption and over-investment. Comparing these scenarios with endogenous

competitive equilibria, we obtain an “apples-to-apples” quantification for the value of

being the leader, and the cost of competition.

Stackelberg competition (cf. Von Stackerberg [76]) is another classical and well-

discussed strategic game in which the predetermined leader acts first and the follower acts

sequentially. The follower observes the leader’s action and makes decisions accordingly,

whereas she must have no means of committing to a future non-Stackelberg follower

11
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action. A priority game as mentioned above in which each player acts once and one

player has one priority is of Stackelberg-type, but a game that each player acts twice

and one player has one priority is not. Note that such a designated acting order allows

these players to signal to each other. Following such an idea, we discuss the selection

among multiple equilibria in Section 3.2.2. We also mimic a Stackelberg competition by

constructing a two-regime switching game (see detailed illustration in Section 4.2.4).

1.2.3.3 Extension: Partially Controlled Local Market Condition X

In above narrative, we assume that the players take actions to change the macro

market regime M while the local market condition X is a purely exogenous stochastic

process. In fact, one may speculate that the macro economic affects the micro market

fluctuation (cf. Joëts et al. [50]). Namely, the dynamic of X may depend on the current

regime Mt, which creates a mixed feedback effect between X and M . On the other hand,

the players may directly impose shocks to the local market, e.g. demand/supply shocks,

discounts, etc. Consequently, given a strategy profile of the players, not only the dynamic

of M but the dynamic of X as well will emerge from the strategic interaction. In Chapter

5, we represent such a mixed duopoly game.

1.3 Tractable Games from Economic Applications

Inspired by well-discussed economic applications, we now introduce three types of

duopoly games that can fit in the generic setup introduced in preceding sections. These

games are mainly distinguished in terms of the choices (i.e. controls to be exercised)

faced by the players and the strategic interaction between the micro/macro market X

and M . Explicit game equilibria and corresponding numerical case studies are presented

in the following chapters respectively.

12
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1.3.1 Capacity Expansion: Finite Controls

The need to reduce carbon emission to achieve the 2 Celsius degree target puts under

pressure power systems of many countries. Lowering the carbon content of electricity

requires the development of competitive non-emissive energies for base-load generation.

The most immediately viable alternative to provide dispatchable base-load power would

be nuclear power plants. But, as shown in the 2005 and 2010 editions of the Projected

Cost of Electricity Generation by the International Energy Agency, the relative com-

petitiveness of nuclear power compared to coal-fired generation strongly depends on the

existence of a material price for carbon emission. Indeed, a carbon price of 30 USD/tCO2

would definitively make nuclear power plants much more economical than coal-fired plants

for electricity base-load generation. Unfortunately for the nuclear industry, as Figure 1.1

shows, the carbon price of the European Union Emission Trading System (EU-ETS) has

fallen to a low of 5 e/tCO2 since mid-2012, and has not recovered since then to a value

high enough to sustain emission reduction based on economic efficiency. Nevertheless,

ongoing political developments, market design changes and technological advances might

change this situation and benefit the nuclear producers. A crucial dilemma thus arises

for the nuclear industry: either wait for a significant rise in the carbon price at the risk

of base-load generation being preemptively taken by coal-fired plants, or intervene now

at the cost of enduring short-term losses.

In line with the above narrative, we consider a duopoly game takes place between

two players, representing sectors of electricity generators. Producer 1 invests in nuclear

power plants with unit expansion cost K1, while producer 2 invests in coal-fired plants

with expansion cost K2. We consider that those costs include the Operation & Main-

tenance costs since once the decision is made to invest, they become sunk costs. These

investment costs are so massive that projects can be considered as a one-shot decision.

13



Introduction Chapter 1

2006 2008 2009 2010 2012 2013 2015 2016
0

5

10

15

20

25

30

35

Figure 1.1: Price (in euros per ton of CO2) of the one year-ahead emission allowance
on the EU-ETS. Source: TheIce.

To give an order of magnitude, the Hinkley Point Project of two nuclear power plants

being built in the UK carries a cost of approximate 15 billion USD, and the cost of a

1 GW-capacity supercritical coal-fired plant is approximately 1 billion USD. Moreover,

given the enormous sunk costs and plant lifetime of 40+ years, investments are viewed

as irreversible. We focus on the carbon price Xt as the main state variable. Higher Xt

benefits nuclear producers, while lower Xt benefits coal-fired plants. To reflect the signif-

icant uncertainties associated with the carbon price (see again Figure 1.1 which can be

viewed as a historical trajectory of Xt), we work in a continuous-time stochastic setting.

Thus, firms’ investment strategies correspond to stopping times related to Xt. The game

aspect of the model arises from the negative externality of capacity expansion. Namely,

the competitive price is driven by the aggregate capacity of the producers, so that when

one of the firms expands, electricity prices decline, hurting her competitor. This creates

a preemptive motive for the investors and converts our framework into a non-zero-sum

duopolistic game of timing.

Beyond the two profit-maximizing investors, we also aim to understand the role of
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Figure 1.2: Si,∗n1,n2 denotes the equilibrium threshold of firm i at stage (n1, n2) (Left:
a) Sketch of the various stage thresholds as a function of (n1, n2). (Right: b) A sample
trajectory of X with X0 = 0, ~M0 = (2, 2). The corresponding macro market evolution
is (2, 2)→ (1, 2)→ (1, 1)→ (0, 1)→ (0, 0) with expansions at the first hitting times
of the corresponding thresholds.

the third-party regulator, or government in the game outcome. Carbon emission markets

remain highly politicized, with a fluid market design. For instance, we can mention

initiatives to prevent carbon price collapse, such as the Stability Reserve Mechanism in

the ETS, and the United Kingdom carbon price floor of approximately 18 GBP/tCO2

institutionalized since 2016. France is following the same path. Thus, the establishment

of a high and steady value for carbon strongly depends on the political will and ability

of each state. Our purpose is thus to analyze the effect of such commitment on the

market equilibrium. In particular, we are interested in the deviation of this equilibrium

compared to the decision a benevolent planner would do.

To sum-up, we consider a duopoly of two distinct producers, each of whom has options

to irreversibly increases her current production capacity Q by paying a fixed lump-sum

capital K, so as to generate more revenue. Consequently, since the producers’ profitabil-

ities are contingent upon number of options they exercised, the macro market regime in

this case can be modeled in terms of numbers of options left for each producer, denoted
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by ~Mt = (N1
t , N

2
t ). Such capacity expansion is modeled in terms of timing strategies

characterized through threshold rules and solved through dynamic programming-like ar-

guments. The framework necessitates to specify the initial finite number of possible

expansions. This can be justified by assuming a fixed demand curve, so that one can

infer the maximum additional capacity that is economically feasible. In other words,

financially we work backwards, starting from potential end-game capacities (i.e. stages

where no more investment will take place) to determine the maximum number of initial

options needed (see a related discussion in [17, Sec 2.5]). As a illustration, Figure 1.2a

shows a schematic for all the different thresholds starting at ~M0 = (2, 2), namely each

firm has two options to expand her capacity. To better visualize the game evolution, a

simulated state trajectory is presented in Figure 1.2b with the firms’ thresholds Si,∗n1,n2

denoting the equilibrium threshold of firm i at stage (n1, n2). As the state process X hits

her threshold S1,∗
2,2 (the first time Xt exceeds S1,∗

2,2), firm 1 invests to expand her production

capacity by exercising one option, which in turn moves the macro market to the regime

(1, 2), namely one option left for firm 1 and two options left for firm 2. Sequentially,

the firms exercise their options at the hitting times of their thresholds and the resulting

macro market evolution is (2, 2)→ (1, 2)→ (1, 1)→ (0, 1)→ (0, 0).

1.3.2 Optimal Switching: Infinite Controls

The problem of determining an optimal sequence of stopping times to switch between

several regimes (or modes), e.g. entry/exiting from a market, starting/shutting down

a production, different investing modes, etc, is called optimal switching problem. The

theory of optimal switching, as a special case of impulse control, was extensively studied

in the past decades, as an important subject both in mathematics and economics. Opti-

mal two-regime switching problems (or starting and stopping problems) were introduced
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into the study of real options by Brennan and Schwarz [20], and by Dixit [31] to analyze

production facility problems. An example of multiple switching problems is Ludkovski

[57] who applies to energy tolling agreement. Mathematically, Brekke and Økesendal

[19] apply a verification approach for solving the variational inequality associated with

the switching problem, which is generalized by Pham and Ly Vath [58] by using a vis-

cosity solution approach, Pham [66] and Pham et al. [67] studies smooth-fit principle in

the context of optimal multi-regime switching problem via dynamic programing princi-

ple and systems of variational inequalities, Hu and Tang [44] study a multi-dimensional

backward stochastic differential equation (BSDE) with oblique reflection which arises in

the study of optimal switching problem, while Bayraktar and Egami [14] construct the

optimal value functions by utilizing the dynamic programming principle and construct

explicit solutions using the smallest concave majorant method. See also Carmona and

Ludkovski [23] who study operational flexibility of energy assets and propose a method of

numerical solutions relying on Monte Carlo regression; Johnson and Zervos [51] who de-

rive an explicit characterization of optimal tactics with relaxed smoothness requirements

of payoffs.

Characterized by system states (i.e. the macro regime M) and the evolution of state

variables (i.e. the micro market fluctuation X), such switching problems are naturally

linked to the market with two time-scale feature. Most relevant are the multi-mode

models [57, 66, 67, 44] mentioned above. Moreover, considering the players dynamically

react to actions of their rivals by strategically switching the system states (i.e. moving

the market regime) leads us to a switching game, which merges the single-agent switching

models and the nonzero-sum stopping games [42, 8, 59, 69] accordingly. The overall model

then links exogenous stochastic shocks with the endogenized players’ decisions to obtain

the dynamic equilibrium for the macro market organization. In Figure 1.3, we sketch the

emerging equilibrium associated to one of our case studies as an illustration. Player 1
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increases Mt by +1 whenever (Xt) hits her thresholds (the dashed lines in the bottom

panel) from below, while P2 decreases Mt by −1 whenever (Xt) hits her thresholds from

above. The top panel shows the resulting macro stage (M∗
t ) along one realized trajectory

of the local market fluctuations (Xt).

Our methodological interest in this model stems from three different directions. First,

it extends our work on multi-stage capacity expansion games discussed in Chapter 3. In

that version, the number of controls available to the players was a priori restricted; here

we consider the more plausible situation of an infinitely-repeated game. One economic

motivation is the capacity expansion problem under a growing stochastic environment

(e.g. demand) X. This yields a non-stationary model but the ultimate number of ag-

gregate investments is unbounded, and must be modeled by a switching game. Second,

we are interested in a stationary switching game, where the market undergoes cyclical

shocks (in the sense of X being a recurrent Markov process). We wish to find the en-

dogenous dynamic equilibrium that will mirror this cyclicality through the strategically

adjusted market regime. Describing such a recurrent stochastic investment-timing com-
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Figure 1.3: A trajectory of X and equilibrium M∗ starting at X0 = 0, M∗0 = 0.
Here X is an Ornstein-Uhlenbeck process and M = {−2,−1, 0, 1, 2}. The equilib-
rium strategies are of threshold-type; the dashed lines in the bottom plot indicate the
respective switching thresholds.
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petition naturally links to switching duopoly games. Third, our model is motivated by

the desire for tractability while allowing for dynamic cross-effects due to competition and

stochastic shocks. The repeated stationary nature of the competition allows to remove

the time-variable but still maintain the stochastic dynamics. In particular, we leverage

the related analytical results about the variational inequalities satisfied by the value func-

tions [19, 58] and the construction of threshold-type strategies. We also make extensive

use of the finite-control approximation inspired by Bayraktar and Egami [14] to establish

the dynamic programming principle. As a result, the equilibrium structure is intuitive

(summarized through switching thresholds) yet brings novel insights.

1.3.3 Mixed Optimal Switching and Impulse Controls

Under a typical setting of stochastic impulse control problem, the controller receives

continuous and instantaneous reward/cost according to the underlying diffusion process.

By exercising impulse controls which results costs bounded from below, she is able to

move the underlying process by a certain amount. Therefore, optimality of impulse con-

trol problems involves both the choice of optimal sequence of intervening times and the

choice of optimal impulse amounts in every time instant. Such stochastic impulse control

problem has attracted a growing interest of many researchers over the last decades, and

has been widely studied in inventory control [43], exchange rate problem [21], dividend

payout problems [49] and portfolio optimization with transaction costs [61]. We refer to

the work of Korn [53] which surveys the applications of impulse control in mathematical

finance. The appropriate mathematical framework to cover these problem is in Bensous-

san and Lions [15]. The controlled underlying process is described as an Itô diffusion

in many economic and financial applications, solving which generally exploits a study

of related Hamilton-Jacobi-Bellman (HJB) equations and quasi-variational inequalities.
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Alternatively, Egami [34] shows a new mathematical characterization of the value func-

tion through the smallest concave majorant viewing the impulse control problem as a

sequence of optimal stopping problems.

Surprisingly, there is a lack of literature in the field of stochastic impulse games. In

very recent work, Aı̈d et al. [2] extend the single-agent optimization to a general nonzero-

sum impulse duopoly game and provide a verification theorem for the value functions and

the players’ optimal strategies; Ferrari and Koch [36] model pollution control problem

between a firm and a regulator as a stochastic impulse nonzero-sum game. See also a

related work Aı̈d et al. [3] who present a policy iteration algorithm to tackle nonzero-

sum stochastic impulse games. As an extension to the existing literature, we consider a

duopoly of two players with different types of controls. In particular, we assume Player

1 can directly shift the underlying process X to her desired level (i.e. impulse controls),

while Player 2 can affect X through switching the macro market regime M (unlike games

we discuss in the preceding subsections, only Player 2 may exercise controls on the macro

market). Their expected future profits depend on the jointly controlled processX, leading

us to a nonzero-sum duopoly game.

Our motivation comes from the vertical competition among producer P1 and con-

sumer P2 of a commodity. The producer extracts the commodity and sell it for a price

X. The consumer buys the commodity and converts it into a final good with price P .

This situation could represent a range of industries, e.g. extraction of crude oil, which is

then consumed by refineries and chemical industries into final consumer goods. Or the

production of aluminum that is converted by automaker into vehicles. Indeed, produc-

ers directly influence the supply yielding shocks to X, while consumers can be in either

austerity or expansion mode that determines the drift of X. An illustration is sketched

in Figure. 1.4. This cyclic behavior continues ad infinitum, yielding a stationary distri-

bution for the pair (Xt, µt). Note that in Expand/Reduce regime, the consumer uses her
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Figure 1.4: An illustration of the vertical competition between the producer and the
consumer. The blue arrows represent drift-switching controls exercised by the con-
sumer at levels yl,h, while the red curved arrows represent impulse controls exercised
by the producer at levels x±l,h.

switching control to keep Xt from going too high or too low, and the producer acts as a

“back-up”, explicitly forcing prices from becoming extreme.

1.4 Overview of the Thesis

We study nonzero-sum duopoly games in the market with two time-scale feature: a

“microeconomic” stochastic factor (Xt) and the “macroeconomic” market regime (Mt).

Compared to existing literature, we consider asymmetric players whose strategies are

completely endogenous. Explicit Markovian Nash equilibria are constructed in three

specific games motivated by economic applications, which bring novel insights. The rest

of this thesis is organized as follows.

In Chapter 2, we provide rigorous formulation of the duopoly game in a recursive

manner, introduce techniques used to tackle optimal stopping problems, and compute

fundamental functions and quantities related to the underlying diffusion process which

are building blocks to construct and analyze game equilibria.

In Chapter 3, we consider competitive capacity investment for a duopoly of two dis-
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tinct producers, who are exposed to stochastically fluctuating costs and interact through

aggregate supply. Capacity expansion is irreversible and modeled in terms of timing

strategies characterized through threshold rules. Section 3.1 formalizes the nonzero-sum

timing game we are led to, describing the transitions among the discrete investment stages

(i.e. the macro market regime). Working in a continuous-time diffusion framework, we

characterize and analyze the resulting Nash equilibrium and game values in Section 3.2.

Our analysis quantifies the dynamic competition effects and yields insight into dynamic

preemption and over-investment in a general asymmetric setting. A case-study consider-

ing the impact of fluctuating emission costs on power producers investing in nuclear and

coal-fired plants is also presented in Section 3.3.

In Chapter 4, we study nonzero-sum stochastic switching games, in which two players

compete for market dominance through controlling (via timing options) the discrete-

state market regime M . Switching decisions are driven by a continuous stochastic factor

X that modulates instantaneous revenue rates and switching costs. This generates a

competitive feedback between the short-term fluctuations due to X and the medium-

term advantages based on M . In Section 4.2 we construct threshold-type Feedback

Nash Equilibria which characterize stationary strategies describing long-run dynamic

equilibrium market organization. Section 4.3 describes two sequential approximation

schemes linking the switching equilibrium to (i) constrained optimal switching; (ii) multi-

stage timing games. We provide illustrations using an Ornstein-Uhlenbeck X that leads

to a recurrent equilibrium M∗ in Section 4.4.1 and a Geometric Brownian Motion X that

makes M∗ eventually “absorbed” as one player eventually gains permanent advantage

in Section 4.4.2. Explicit computations and comparative statics regarding the emergent

macroscopic market equilibrium are also provided.

In Chapter 5, we study vertical impulse competition between the producer and con-

sumer of a commodity. The two players receive continuous and instantaneous profit
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based on their jointly controlled process X, leading us to a nonzero-sum game. As for-

mulated in Section 5.1, both players can exercise their influence on the commodity price

X, although their actions of distinct types, specifically impulse control by the producer

and switching-drift control by the consumer. This extends the framework that X is fully

exogenous. Section 5.2 discusses our heuristics on possible structure of the resulting

equilibrium, and characterizes the best-responses of the players through solving a cou-

pled system of quasi-inequalities. In Section 5.3, we provide some numerical examples in

which explicit equilibria are obtained. Further research based on the preliminary results

achieved is discussed in Section 5.4.

Overall, we provide a rigorous and generic formulation of nonzero-sum duopoly games

with closed-loop strategies, which can be fitted by numerous economic examples. The

exogenous stochastic shocks reflecting the micro local market condition are modeled by

general diffusion processes possessing strong Markov property. Case studies related to

specific widely used processes, e.g Brownian motions, Geometric Brownian motions, and

Ornstein-Uhlenbeck (OU) processes, are also represented. In order to solve optimal

control problems rising from determining the game solutions, we implement not only the

verification approach via variational inequalities, but also a direct solution method via the

smallest concave majorant. Employing tatonnement, i.e. best-response iteration, rather

than looking into the equilibrium equations directly, we construct explicit threshold-

type equilibria. High tractability of such equilibria allows us to analyze the dynamics

of the short-term market X and the long-term market M emerging in the equilibrium,

and brings us structural insights of competitive markets, e.g the long-run behavior of

the micro/macro market, the pattern of transitions of the macro market regime, the

strategic interaction between X and M , etc. Numerical studies of the game solutions are

also implemented, which allow us to quantify several features of competitive markets: loss

due to competition, impact of local market dynamics on competitive behavior, impact of
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the acting cost and so on.
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Chapter 2

Formulation and Building Blocks

In this chapter, we provide a generic formulation of duopoly games in Section 2.1. Par-

ticularly, we model the exogenous risk factor by an Itô diffusion process X and the

macro market regime by an endogenous discrete-state process M , define the admissibility

of these players strategy profiles in a recursive manner, and construct explicit Marko-

vian Nash equilibrium via best-response iteration. Section 2.2 provides two classical

approaches: via the smallest concave majorant and via solving variational inequalities

(VIs), to tackle single-agent control problems, which are involved in searching for the

players’ best-response. In Section 2.3, we calculate fundamental solutions to ordinary

differential equations (ODEs), expected first passage time, and first hitting probabilities

related to the underlying process X. These results are critical in the search of a Nash

equilibrium and the analysis of the market organization in the emerging equilibrium.
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2.1 Generic Game Formulation

2.1.1 Exogenous Factor X and Endogenous Regime M

To capture the local fluctuating market condition, we introduce an exogenous diffusion

process (Xt)t≥0 on a probability space (Ω,F ,P), satisfying the stochastic differential

equation (SDE)

dXt = µ(Xt) dt+ σ(Xt) dWt, (2.1)

where (Wt)t≥0 is a standard Brownian motion under P. Denote by D := (d, d̄), with

−∞ ≤ d < d̄ ≤ +∞, the domain of (Xt) and F := (Ft)t≥0 the natural filtration generated

by (Xt). The coefficients µ : D → R and σ : D → R+ are assumed to ensure a unique

strong solution to (2.1). Moreover, let τx := inf{t > 0 : Xt = x} denote the hitting time

of the one-point set {x}, we assume that X is regular in D, i.e. for any x ∈ D \ ∂D and

y ∈ D,

P[τy <∞|X0 = x] > 0,

which informally means that starting at any x, X will reach any y with positive proba-

bility, and the the boundaries are natural, i.e. for any t > 0 and y ∈ D \ ∂D

lim
x↓d

P[τy < t |X0 = x] = 0, lim
x↑d̄

P[τy < t |X0 = x] = 0,

which means d, d̄ can neither be reached in finite time nor be a starting point of the

process; see [16, Ch. 2] and [68, Ch. VII] for detailed exposition.

On the other hand, the macro market regime is fully controlled by the players through

actions. Suppose that the two players exercise discrete/lumpy controls, by paying a

cost Ki, to move the macro market toward their preferred direction (and possibly carry
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negative externality to the rival in the meantime). The macro market regime is then

described by a discrete-state endogenous process (Mt) with domain M. To each regime

m there is an associated action set Ci
m ⊆M that determines the potential new regimes

that player i can drive M into. In a general setting, players are allowed to act on Mt in

multiple ways and the corresponding player must determine the optimal new regime. In

this thesis, we focus on the simple case where Ci
m = {m′} is singleton, or Ci

m = ∅ (player

i will not change market regime away from m).

Remark 2.1 As stated in Section 1.2.3.3, the process (Xt), in a more general setting,

may be partially controlled by the players, e.g one may take the coefficients µ, σ in (2.1)

to depend on Mt, or the players may move Xt by exercising impulse controls. Such an

extension requires refining our definition of the action set Ci
m’s to include both the level

of M to move into and the desired amount to move the underlying process X. We discuss

this extension in Chapter 5.

2.1.2 Admissible Strategies and Game Payoff

To define game strategies, we need to introduce some technical constructs needed

to precise closed-loop equilibrium. Informally, closed-loop strategies are based on the

history of (Xt) and the history of players’ past actions. Note that due to the possibility

that one player may act immediately following her rival, (Mt) is not sufficient on its own

for this purpose.

In particular, we postulate the players adopt timing strategies and denote a strategy

of player i by αi := {τ i(n) : n ≥ 1} where τ i’s are certain stopping times. Admissibility

of τ i(n) is defined recursively, based on the initial state (x,m). Let (Ft)t≥0 be the natural

filtration generated by (Xt). Set σ0 = 0, X0 = x, M̃0 = m. For n ≥ 1, we require τ i(n)
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to be F̃ (n)-adapted and set

F̃ (n)
t = Ft

∨
σ
{

(σk, Pk, M̃k), k < n
}
, (2.2a)

σn = τ 1(n) ∧ τ 2(n), (2.2b)

Pn = 1 · 1{τ1(n)<τ2(n)} + 2 · 1{τ1(n)>τ2(n)} +Hn · 1{τ1(n)=τ2(n)}, (2.2c)

M̃n = C1
M̃n−1

· 1{Pn=1} + C2
M̃n−1

· 1{Pn=2}. (2.2d)

The meaning of n = 1, . . . , is the counter for the overall “round” of the game, with σn

recording the corresponding n-th acting time, Pn the identity of the player who exercises

the n-th control, and M̃n the macro market regime after n total controls are exercised.

Note that Ci
M̃n−1

denotes the regime, to which player i would change the macro market

from M̃n−1.

In (2.2c) we address scenarios that both players intend to intervene at the same time

by letting Hn denote the identity of the resulting leader. As a simple example, Hn ≡ 1

if Player 1 has the instantaneous priority to intervene. In general, resolving Hn requires

consideration of auxiliary discrete-stage game [38, 69] that happens instantaneously at

τm on the event {τ 1(n) = τ 2(n)}; the latter could involve mixed strategies, i.e. there is

an additional random variable ωt that determines the value of Hn. This is another reason

why we must explicitly augment the history of (Pk) to the history of (Xt) in (2.2a).

Definition 2.2 (Admissible Strategies) The set of admissible closed-loop strategies A is

αi := {τ i(n) : n ≥ 1} where τ i(n) is adapted to (F̃ (n)
t ) with σn, Pn, M̃n constructed in

(2.2), and satisfying

• no-acting regimes: τ i(n) = +∞ if Ci
M̃n−1

= ∅, i ∈ {1, 2}, ∀n ≥ 1;

• ordered in time: τ i(n) ≥ σn−1, i ∈ {1, 2}, ∀n ≥ 1;
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• defined for all times: limn→∞ σn = +∞.

Note that strategies in A are of Closed Loop Perfect State (CLPS) type, see a detailed

exposition in [22, Ch. 3]. The three admissibility conditions state that a player will not

act at the regime where her action set is empty and also rule out a clustering of actions in

finite time. The latter restriction limn→∞ σn = +∞ is mild, as it would be sub-optimal to

make infinite controls, as soon as there are some intervening costs. Note that Definition

2.2 is joint over the profile (α1,α2) and also depends on the initial condition. In the

sequel we suppress this dependence for lighter notation.

Let us revisit the construction (2.2) with (α1,α2) denoting these players’ strategies.

Given the strategy profile (α1,α2), the evolution of (Mt) is admitted as

Mt := M̃η(t), with η(t) = max{n ≥ 0 : σn ≤ t}. (2.3)

It is entirely possible and feasible that one player acts immediately, τ i(n) = σn−1, in

which case σn = σn−1, hence (Mt) formally undergoes multiple changes simultaneously.

Furthermore, we describe the sequence of acting times realized by each player, denoted

by σik, i ∈ {1, 2}, k ≥ 1 as

σik := ση(i,k), with η(i, k) = min{n ≥ 1 :
n∑
l=1

1{Pl=i} = k}. (2.4)

As explained in the preceding chapter, the game payoffs J i’s received by these players

are the total net present value (NPV) of future profits, namely the expected future

cashflow discounted at an exogenous, constant interest rate r > 0, minus the discounted

lump-sum costs Ki paid at each action epoch.

Definition 2.3 (Game Payoffs) Given a strategy profile (α1,α2), the NPV of future
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profits received by player i is

J im(x;α1,α2) := E

[
−
∞∑
n=1

1{Pn=i}e
−rσn ·Ki

(
Xσn , M̃n−1

)
+

∫ ∞
0

e−rtπi
(
Xt, M̃η(t)

)
dt

∣∣∣∣X0 = x,M0 = m

]
, (2.5)

where σin denotes the n-th acting time and Pn denotes the identity of the player who

exercises the n-th control.

Note that the intervening costs Ki’s are deterministic functions to be defined in specific

games and we use (M̃η(t)) defined in (2.3) to emphasize the discrete nature of the macro

market regime (Mt).

2.1.3 Threshold-type Markov Nash Equilibrium

From Definition 2.3, game payoffs received by these players are functions of the initial

local market condition X0 and the macro regime M0. Accordingly, we refine our definition

of the optimal behavior in the game as a Markov Nash Equilibrium (MNE).

Definition 2.4 (Markov Nash Equilibrium) Let X0 = x,M0 = m. The strategy profile

(α1,∗, α2,∗) ∈ A is said to be a Markov Nash equilibrium of the duopoly game if for

∀x ∈ D,∀m ∈M and strategy αi of player i such that (αi,αj,∗) is admissible

J im(x; αi,αj,∗) ≤ J im(x; αi,∗,αj,∗), i ∈ {1, 2}, j 6= i, (2.6)

with V i
m(x) := J im(x; αi,∗,αj,∗) denoting the corresponding equilibrium payoff.

In Section 1.2.3.1, we demonstrate that a Nash equilibrium can be characterized as

a fixed-point of the best-response maps among these two players, which allows us to

focus on a special class of strategies and explicitly construct an equilibrium. To do so,
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two key properties of the class are needed. First, given a strategy from this class, the

corresponding single-agent optimal control problem should be uniquely solved so that

we are able to construct a best-response map. Second, this class of strategies should

ideally be closed under the the best-response map. In this thesis, we introduce the class

of strategies, which are stationary and of threshold-type, as follows and exploit it to

construct explicit Nash equilibria for specific games.

The time-stationary Markovian strategies, also known as Feedback Perfect State

(FPS) type defined in [22, Ch. 3] depend only on the current Xt and M̃η(t). Follow-

ing the idea of a similar construction in [2], we define a strategy of player i ∈ {1, 2} by

αi := (Γim)m∈M, where Γim’s are fixed subsets of D. Specifically, when Mt = m, player

i adopts the (feedback) acting region Γim: player i exercises a control at the first hitting

time τ im of (Xt) to Γim (with the convention that the hitting time of an empty set is ∞).

Moreover, for a simpler asymmetry in their profit rates, we assume that Player 1 is in

favor of high Xt, while Player 2 prefers the opposite; it is therefore natural to assume

that P1 acts when X becomes high enough and P2 acts when X becomes low enough.

Definition 2.5 (Threshold-type Strategies) Let si := (sim)m∈M be a vector which char-

acterizes subsets of D for the acting regions Γim of player i ∈ {1, 2} according to

Γ1
m ≡ Γ1

m(s1) := [s1
m, d), and Γ2

m ≡ Γ2
m(s2) := (d, s2

m]. (2.7)

A strategy associated to (Γim)m∈M is called of threshold-type and denoted by si.

Note that such mononicity assumption could be extended. In Chapter 5, we consider

a game in which players’ profit rates are both quadratic in Xt, nevertheless explicit

threshold-type Nash equilibria are attainable.

One notable merit of such threshold-type strategies is the time homogeneity, which

combining with the Dynamic Programming Principle (DPP) provides us effective ap-
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proaches to explore the players’ best-response. In particular, given a threshold-type

strategy αj ≡ sj of player j, the best-response value function of player i, Ṽ i(·; sj)

defined in (4.6), solves a system of coupled stopping problems (see [14]). Namely letting

τm := τ 1
m ∧ τ 2

m (with τ jm pre-specified hitting times according to sj), we expect that

Ṽ i
m(x ; sj) = sup

τ im∈T
Ex

[∫ τm

0

e−rtπi(Xt,m)dt

+ e−rτm1{τ1m>τ2m}

(
Ṽ i
m′′(Xτ2m

; sj)− 1{i=2}K
i(Xτ2m

,m)
)

+ e−rτm1{τ1m<τ2m}

(
Ṽ i
m′(Xτ1m

; sj)− 1{i=1}K
i(Xτ1m

,m)
)]
, (2.8)

for i ∈ {1, 2}, j 6= i, ∀x ∈ D and all m ∈ M. We use the shorthand notation Ex [·] :=

E [·|X0 = x], and the subscript in Ṽ i
m to indicate the conditioning on M0 = m, which is

unchanged until τm. Intuitively, at regime m player i implements a timing strategy to

exercise her control at τ im, and a realization of these two stopping times yields a “leader”,

who acts first and changes the market regime into her desired regime (m′ for Player 1

and m′′ for Player 2). Note that the case {τ 1 = τ 2} requires ad hoc discussion, which we

provide in the following chapters respectively.

Another favorable aspect of such a strategy class is that we reduce dimension of the

players’ acting regions by characterizing them through threshold vectors. Moreover, in

specific games considered in this thesis, we are able to either directly demonstrate the

best-response of a threshold-type strategy is of threshold-type, or justify this statement

via verification arguments. In turn, the best-response of player i solving the system of

problems (2.8) is characterized by a threshold vector denoted by s̃i(sj). Furthermore,

a Markov Nash equilibrium of the game (s1,∗, s2,∗) is indicated as a fixed-point of the
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threshold map

si,∗ = s̃i(sj,∗), i ∈ {1, 2}, j 6= i. (2.9)

2.2 Building Block: Method of Solution

In fact approaching the coupled system (2.8) requires handling the solutions of optimal

stopping problems with an exit constraint. As an essential building block, the set of

optimal stopping problems is narrowed to considering

V (x) = sup
τ∈T

Ex
{
e−rτh (Xτ )

}
, and (2.10a)

VR(x) = sup
τ∈T

Ex
{
1{τ<τR}e

−rτh(Xτ ) + 1{τ>τR}e
−rτRl(XτR)

}
, (2.10b)

where τR is restricted to be an exit time associated to a given interval R := (a, d̄) or

R := (d, a) with a ∈ int(D) (accordingly a hitting time associated to a threshold-type

acting region (d, a] or [a, d̄)), h(·) is the first-mover payoff, and l(·) corresponds to the

resulting second-mover payoff.

2.2.1 Smallest Concave Majorant

One technique we implement is of smallest concave majorants (see e.g. [29]), which

has been used for zero-sum games in [64], [35] and [54], and for nonzero-sum games

in recent works [30, 7]. A key advantage of the method, which characterizes the value

functions via the smallest concave majorant associated to transformed first-mover payoff

h, is that it directly determines the value function, as well as the structure of the optimal

stopping region, which allows us to explicit construct a MNE.
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The method proceeds by standardizing (Xt) via the transformations:

ψ(x) :=
F

G
(x), ϕ(x) :=

G

F
(x) (2.11)

where F and G are respectively the fundamental increasing and decreasing solutions to

the diffusion ODE:

(L − r)u(x) = 0, x ∈ D, (2.12)

where L = b(x) d
dx

+ σ2(x)
2

d2

dx2
is the infinitesimal generator of X. These linearly inde-

pendent solutions are positive, continuous, strictly monotone and convex and admit the

representations (see [70, vol.II, p.292])

Ex
{
e−rτa1{τa<∞}

}
=


F (x)
F (a)

, if x ≤ a,

G(x)
G(a)

, if x ≥ a.

(2.13)

Moreover for d and d̄ natural boundary points one also has (see [16], Sec.2)

lim
x↓d

F (x) = 0, lim
x↓d

G(x) = +∞, lim
x↑d̄

F (x) = +∞, lim
x↑d̄

G(x) = 0. (2.14)

In Section 2.3.1, we derive such fundamental solutions associated to three well-studied

diffusion processes.

It follows from properties of F and G that ψ (resp. ϕ) : D 7−→ R+ is positive,

strictly increasing (resp. decreasing), continuous, and twice differentiable on D. Define
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the ψ-transform operator Ψ as:

Ψh(y) :=


h
G
◦ ψ−1(y), if y > 0,

lim
x↓d

h(x)

G(x)
, if y = 0,

(2.15)

and similarly the ϕ-transform operator Φ by

Φh(z) :=


h
F
◦ ϕ−1(z), if z > 0,

lim
x↑d̄

h(x)

F (x)
, if z = 0.

(2.16)

Applying the operator Ψ (Φ resp.) transforms the optimal stopping problem from x

coordinate to the y = ψ(x) (z = ϕ(x) resp.) coordinate.

Recalling the optimal stopping problem (2.10b), if x were to be in the region R, since

X is regular in D, it reaches the R-boundary a with positive probability. Therefore,

one can consider X as a living on the restricted domain R̄ := [a, d̄) or (d, a], where the

boundary at a is absorbing, i.e. the process X is stopped when it reaches the level a.

Accordingly, we impose a boundary condition on the first-mover payoff h by defining

ĥR(x) :=


h(x), if x ∈ R,

l(x), if x = a.

(2.17)

Thanks to the work of [29] and [30], if x were to be in the region R = (a, d̄) (resp. R =

(d, a)), the value function VR(x) is associated to the smallest concave majorant of trans-

formed payoff ΨĥR(y) (resp. ΦĥR(z)) over ψ(R̄) = [ψ(a), +∞) (resp. ϕ(R̄)), denoted by

WΨR̄ĥ(y) (resp. WΦR̄ĥ(z)). If x were to be in the exit region D \ R (i.e τR = 0), the

value function VR(x) is equivalent to the instant second-mover payoff l(x). To recap, we

state the following proposition for the case R = (a, d̄).
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Proposition 2.6 The value function VR(x) defined in (2.10b) is

VR(x) =


G(x) ·

[
WΨR̄ĥ ◦ ψ(x)

]
, if x ∈ R,

l(x), if x ∈ D \R.
(2.18)

Moreover, if l(a) ≥ h(a), then lim
x↘a

VR(x) = l(a) and an optimal stopping rule τ ∗ can be

defined as

Γ := {x ∈ R̄ : VR(x) = h(x)} and τ ∗ := inf{t ≥ 0 : Xt ∈ Γ}. (2.19)

Note that the unconstrained value function V (x) defined in (2.10a) corresponds to the

special case that R = D and ĥ ≡ h.

Definition 2.7 Let L be the infinitesimal generator of the state process Xt Let H be the

class of real valued functions h ∈ C2(D) such that

lim sup
x→d

∣∣∣∣ h(x)

G(x)

∣∣∣∣ = 0 = lim sup
x→d̄

∣∣∣∣ h(x)

F (x)

∣∣∣∣ , (2.20)

and Ex
[∫ ∞

0

e−rt |(L − r)h (Xt)| dt
]
<∞, (2.21)

for all x ∈ D. We denote by Hinc (resp. Hdec) the set of all h ∈ H such that x 7→

(L − r)h(x) is strictly positive (resp. negative) on (d, bh) and strictly negative (resp.

positive) on (bh, d̄) for some bh ∈ D.

In order to obtain threshold-type equilibrium, one would expect the optimal stopping

rule τ ∗ (2.19) to be of threshold-type. To do so, some regularity of the underlying payoff

functions is required. Similar to De Angelis et al. [30], we introduce two classes of

functions Hinc and Hdec in Definition 2.7 and apply operators Ψ and Φ to payoffs in these

classes. The following lemma states key properties of the resulting transformed payoff
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functions. Proof of the first statement can be done by multiple approaches and we give

one as follows; for the rest of the statements we refer to [30, Lemma 3.1].

Lemma 2.8 Let h ∈ Hinc (resp. Hdec) and set ŷ := ψ(bh) (resp. ẑ := ϕ(bh)). Then the

transformed function Ĥ := Ψh (resp. Φh):

(i) is convex on [0, ŷ) (resp. [0, ẑ)) and concave on (ŷ,+∞) (resp. (ẑ,+∞)),

(ii) satisfies Ĥ(0+) = 0 and Ĥ ′(0+) = −∞,

(iii) has a unique global minimum at some ȳ ∈ [0, ŷ) (resp. z̄ ∈ [0, ẑ)) and limy→∞ Ĥ(y) =

+∞, hence it is monotonic increasing on (ŷ,+∞) (resp. (ẑ,+∞)).

Proof: We take up the ψ-transform Ψh(y) as an example; the proof for ϕ-transform

function can be done following the same scheme. The continuity and differentiability of

Ψh(y) follow directly from those of h, G and ψ, and it is equivalent to show that

(Ψh)′′ (y) =
2

σ2(x)G(x) (ψ′(x))2 (L − r)h(x), x = ψ−1(y). (2.22)

By definition of the operator Ψ (2.15),

(Ψh)′′ (y) =

(
1

ψ′(x)
(
h

G
)′(x)

)′
=

1

(ψ′(x))2

[
(
h

G
)′′(x)− ψ′′(x)

ψ′(x)
(
h

G
)′(x)

]
. (2.23)

On the other hand, by direct differentiation (and dropping the x-argument for typo-

graphical convenience)

(L − r)h = (L − r)
(
h

G
·G
)

= b(x)(
h

G
)′G+

σ2(x)

2

[
(
h

G
)′′G+ 2(

h

G
)′G′

]
+
h

G
(L − r)G

=
σ2(x)G

2

[
(
h

G
)′′ +

(
2b(x)

σ2(x)
+ 2

G′

G

)
· ( h
G

)′
]
. (2.24)
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Meanwhile,

(L − r)F = (L − r)
(
G
F

G

)
= (L − r) (Gψ)

= b(x)ψ′G+
σ2(x)G

2
ψ′′ + σ2(x)ψ′G′ + ψ (L − r)G

= b(x)ψ′G+
σ2(x)G

2
ψ′′ + σ2(x)ψ′G′ = 0. (2.25)

Equations (2.24) and (2.25) follow from the fact that F and G are solutions to the ODE

(2.12), and equation (2.25) yields that

−ψ
′′(x)

ψ′(x)
=

2b(x)

σ2(x)
+ 2

G′(x)

G(x)
. (2.26)

Substituting (2.26) into (2.24) and comparing with (2.23), we obtain (2.22) and complete

the proof. In the case h ∈ Hdec and using ϕ-transformed (Φh) (y) it follows by similar

arguments that

(Φh)′′ (z) =
2

σ2(x)G(x) (ϕ′(x))2 (L − r)h(x), x = ϕ−1(z). (2.27)

Note that since ϕ′ < 0, the interval (0, bh) on x coordinate corresponds to (ϕ(bh), +∞)

on z = ϕ(x) coordinate, which completes the proof accordingly.

If the first-mover payoff h is in Hinc (resp. in Hdec), it follows from Lemma 2.8 that

the transformed Ĥ is convex and then concave. Consequently, its smallest concave ma-

jorant is a straight line which is tangent to Ĥ at a unique point, and then coincides with

Ĥ as sketched in Figure 2.1a (see a similar work by Leung and Li [55]). This construc-

tion reduces to determining the tangency point of Ĥ, corresponding to the transformed

threshold. However, given τR being a hitting time of (d, a] (resp. [a, d̄)), the behavior at

a is crucial for the existence of an optimal stopping rule τ ∗ defined in (2.19). We claim
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ψ(b1,0
1 )

WH1,0
1

H1,0
1

y
*

= ψ(S1,0
1 )0 y

(a)

ψ(b1,1
1 )ψ(s2)

WH1,1
1,s2

H1,1
1,s2

y~
*

= ψ(S1)0 y

(b)

Figure 2.1: ψ corresponds to transformation defined in (2.11), and b denotes the
reflection point where transformed payoff H switches concavity. (Left: a) H1

1,0 and its

smallest concave majorant
(
WH1

1,0

)
, sketched according to Lemma 2.8 with uppercase

S denotes the optimal investment threshold. (Right: b) The transformed payoff H1,s2
1,1

and its smallest concave majorant over (ψ(s2), +∞)with s2 denote given thresholds
of firm 2 and S1 denotes the best-response threshold of firm 1.

that such τ ∗ is a hitting time to a threshold-type acting region (ã, d̄] (resp. (d, ã]), if the

agent is not incentivised to preempt, namely l(a) ≥ h(a). See a sketch of the transformed

payoff and its smallest concave majorant in Figure 2.1b and related details in Section

3.4.1.

On the contrary, the agent will try to preempt right before τR if she foresees second-

mover payoff less than being the first-mover at a. In the content of a duopoly game, this

phenomenon can be interpreted as one player’s best-response is to preempt if her rival

behaves aggressively. Such a preemptive response leads us to lack of optimal τ ∗. We

formulate this observation in Remark 2.9.

Remark 2.9 (Preemptive Best-response) If l(a) < h(a), the payoff ĥ has a negative

jump at the boundary a, and therefore the value function is also discontinuous there:

limx↘a VR(x) > l(a) (see a case study sketched in Figure 3.1a). This down-jump rules

out (2.19) since in fact one ought to stop before reaching a ∈ Γ. In that case, there is

no optimal stopping time; however for any ε > 0, an ε-optimal rule can be defined as the
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first hitting time of Γε = {x ∈ R̄ : VR(x) ≤ h(x) + ε}.

2.2.2 Variational Inequalities

A typical solution approach for optimal stopping problems driven by diffusion pro-

cesses involves studies of variational inequalities (VIs). Such an approach has been widely

implemented in solving optimal switching problems [19, 58, 66, 67], optimal impulse con-

trol problems [15, 18, 11], and nonzero-sum games [2].

Let V be the value function associated to the control problem (2.10a). Then it solves

the following variational inequality

max{LV − rV, h− V } = 0. (2.28)

Let VR be the value functions associated to the control problem with constraint (2.10b).

Then it solves the following variational inequality

`− VR = 0, in D \R, (2.29a)

max{LVR − rVR, h− VR} = 0, in R. (2.29b)

We refer to the books [65, 62] which provide verification theorems of above arguments.

Furthermore, solving these VIs can be reduced to looking for solutions of the ODE (2.12)

subject to certain free boundary and smooth pasting regularities. Assuming that h

is smooth we know that the optimal stopping problem defined in (2.10b) leads to the
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following free-boundary problem:

(L − r)VR = 0, in R̄ \ Γ, (2.30a)

VR = h, in Γ, (2.30b)

VR = `, in D \R, (2.30c)

∂VR
∂x

=
∂h

∂x
, at ∂Γ, (2.30d)

where Γ := {x ∈ R̄ : VR(x) = h(x)} is the optimal stopping region and τ ∗ := inf{t ≥

0 : Xt ∈ Γ}. Analogously, the unconstrained value function V (x) defined in (2.10a)

corresponds to the special case that R = D.

This method requires a priori assumptions about the shape of the stopping region

and may lead to analytic challenges accordingly. Specifically, the method in general is as

follows: One speculates forms of the stopping region and the associated value function,

then determines the value function by using appropriate boundary conditions and verifies

optimality of the candidate. Recall that for the sake of threshold-type equilibria we expect

the optimizer to the problem (2.10b) to be a hitting time of an acting region characterized

by a threshold ã. Taking R = (a, d̄) as an example, we conjecture VR is of the form

VR(x) =


h(x), x ≤ ã,

ωF (x) + νG(x), a < x < ã,

`(x), x ≤ a,

(2.31)
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with the smooth pasting and boundary conditions:


ωF (ã) + νG(ã) = h(ã), (C0-pasting at ã)

ωF (a) + νG(a) = `(a), (C0-pasting at a)

ωFx(ã) + νGx(ã) = hx(ã), (C1-pasting at ã)

(2.32)

where F and G are fundamental solutions to the ODE (2.12). If such a function can

verified to be a solution to the VIs (2.29), we conclude VR is the value function associated

to the control problem (2.10b) and the optimal stopping rule is the hitting time to [ã, d̄).

Back to the system (2.8), we assume the best-response of player i to be the hitting

time of a threshold-type region with threshold s̃im(sjm) and her corresponding game pay-

offs to be in form (2.31) at each regime m ∈ M. Combining the smooth pasting and

boundary conditions (2.32), we obtain a coupled non-linear system of thresholds and

coefficients that characterize her value functions. In turn, we parameterize the corre-

sponding coupled optimal stopping problem and boil it down into solving the non-linear

system. If the value functions associated to a solution of the system solves a system of

Quasi-variational Inequalities (QVIs) derived from (2.8), we can conclude, via a verifi-

cation approach similar to the classical uncoupled problems, that the best-response of

player i is of threshold-type with s̃i(sj) (we refer to the closely related work [2]).

2.3 Building Block: Elementary Computations

2.3.1 Fundamental Solutions to ODE

From the preceding subsection, it follows that the fundamental solutions F and G to

the ODE (2.12) is critical to determine the best-response of the players and furthermore

explicitly construct MNEs of the duopoly game. In this thesis, we consider three classical
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diffusion processes that are widely implemented to model the stochastic risk factor.

Suppose that (Xt) is a Brownian motion with a drift term, i.e. the strong solution

to the SDE

dXt = µdt+ σdWt, (2.33)

with D = R, σ > 0. The fundamental solutions for the ODE

µu′(x) +
1

2
σ2u′′(x)− ru(x) = 0, (2.34)

are

FBM(x) := eθ+x, GBM(x) := eθ−x, (2.35)

where θ+ and θ− are the positive and negative roots of the quadratic equation 1
2
σ2θ2 +

µθ − r = 0.

Suppose that (Xt) is a Geometric Brownian motion (GBM), i.e. the strong solution

to

dXt = µXt dt+ σXt dWt, (2.36)

with D = (0,∞), σ > 0. The fundamental solutions for the ODE

µxu′(x) +
1

2
σ2x2u′′(x)− ru(x) = 0, (2.37)
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are:

FGBM(x) := xη+ , GGBM(x) := xη− , (2.38)

where η+ and η− are the positive and negative roots of the quadratic equation σ2

2
η(η −

1) + µη − r = 0.

Suppose that (Xt) is an Ornstein-Uhlenbeck (OU) process, i.e. the strong solution to

dXt = µ(θ −Xt)dt+ σdWt, (2.39)

with D = R, µ, σ > 0 and θ ∈ R. The fundamental solutions for the ODE

µ(θ − x)u′(x) +
1

2
σ2u′′(x)− ru(x) = 0, (2.40)

are:

FOU(x) :=

∫ ∞
0

u
r
µ
−1e

√
2µ

σ2
(x−θ)u−u

2

2 du,

GOU(x) :=

∫ ∞
0

u
r
µ
−1e
−
√

2µ

σ2
(x−θ)u−u

2

2 du.

(2.41)

Notice that direct differentiation yields that F ′(x) > 0, F ′′(x) > 0, G′(x) < 0,

G′′(x) > 0. It follows that both F (x) and G(x) are strictly positive and convex, and

F (x) is strictly increasing while G(x) is strictly decreasing. One can also easily check

their limits at the corresponding natural boundary points of the domain D satisfy the

condition (2.14).
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2.3.2 First Passage Times and Hitting Probabilities

The macro market evolution M∗ emerging in equilibrium is a time inhomogeneous

non-Markovian process with discrete state space M. Thanks to the stationary nature

of the threshold-type equilibria, the behavior of M∗ is highly tractable. As a quick

glimpse, we analyze the long-run market organization via a jump chain M̌ defined on

an extended regime space M∗ traverses (see detailed discussion in Section 4.2.3). Since

these players act when the process (Xt) hits their acting thresholds, the expected first

passage times associated to those thresholds are linked to the average sojourn times of

the chain M̌ . In effect, the threshold characterization of the players’ strategies highlights

the importance of first passage times and hitting probabilities in describing the long-run

market organization. Therefore we demonstrate these essential computations related to

the underlying process X in this subsection for later use.

2.3.2.1 First Passage Times

Let us first consider the one-sided passage time τ(x; s) := inf{t ≥ 0 : Xx
t = s}. We

condition on the exit time τ being finite, denoting

δs(x) = E[τ(x; s)1{τ(x;s)<∞}]. (2.42)

Then, we implement the well-known result by Darling and Siegert in [28] about the

Laplace transform of τ(x; s),

Ex
[
e−ρτ(x;s)1{τ(x;s)<∞}

]
=


F (x;ρ)
F (s;ρ)

, if x ≤ s,

G(x;ρ)
G(s;ρ)

, if x ≥ s,

(2.43)
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where F (·; ρ) and G(·; ρ) are solutions to (L−ρ)u = 0 and we emphasize their dependence

on the Laplace parameter ρ, to compute δs(x)

δs(x) = − ∂

∂ρ
Ex
[
e−ρτ(x;s)1{τ(x;s)<∞}

]∣∣∣∣∣
ρ=0

, (2.44)

Example 2.10 (Brownian motion). Suppose that the drift term is not trivial, i.e. µ 6= 0.

Taking µ > 0 as an example, from (2.44) we obtain

δs(x) = E
[
τ(x; s)1{τ(x;s)<∞}

]
=


−x−s

µ
e

2µ

σ2
(x−s), if x ≤ s,

x−s
µ

if x ≥ s.

(Geometric Brownian motion). Suppose that µ − 1
2
σ2 > 0 so that for s < x the

expected one-sided first passage time is infinite, i.e. E[τ(x; s)] = ∞. Nevertheless, from

(2.44) we compute

δs(x) = E
[
τ(x; s)1{τ(x;s)<∞}

]
=

1

µ− 1
2
σ2
· ln
(x
s

)
·
(x
s

)1− 2µ
σ
.

(Ornstein-Uhlenbeck process.) Following from (2.44), the expected first passage time

δs(x) to a level s is admitted as

δs(x) =

√
2π

µ

{[∫ (s−θ)
√

2µ

σ2

(x−θ)
√

2µ

σ2

Φ (z) e
1
2
z2dz

]
1{s≥x} +

[∫ (θ−s)
√

2µ

σ2

(θ−x)
√

2µ

σ2

Φ (z) e
1
2
z2dz

]
1{s<x}

}
,

(2.45)

where Φ is the standard Gaussian cumulative distribution function.
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Now let us look into the two-sided first passage time defined as follows

τ(x; a, b) := inf{t ≥ 0 : Xx
t ≤ a or Xx

t ≥ b}, (a, b) ⊃ x,

and accordingly its expectation δab(x) := E
[
τ(x; a, b)

]
. Applying Dynkin’s formula, it is

well known that δab(·) solves the ordinary differential equation

Lδ + 1 = 0, with δab(a) = δab(b) = 0.

In addition, we would like to mention that Darling and Siegert in [28] show that the

expected exit time from an interval x ∈ (a, b), δab(x) can then be obtained via

δab(x) =
δa(x)δb(a) + δb(x)δa(b)− δa(b)δb(a)

δb(a) + δa(b)
. (2.46)

Example 2.11 (Brownian motion.) The expected exit time δab(·) as a solution to

µδ′ab(x) +
1

2
σ2δ′′ab(x) + 1 = 0,

is in the form

δab(x) = −c1 ·
σ2

2µ
· e−

2µ

σ2
x − x

µ
+ c2,

where c1, c2 are constants such that the boundary conditions δab(a) = δab(b) = 0 are

fulfilled.

(Geometric Brownian motion.) The expected exit time δab(·) is a solution to

µxδ′ab(x) +
1

2
σ2x2δ′′ab(x) + 1 = 0, x ∈ (a, b), and δab(a) = δab(b) = 0.
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Solving that we obtain

δab(x) =

(
1

2
σ2 − µ

)−1

ln
(x
a

)
+ ln(

a

b
)

(
x1−2µ/σ2 − a1−2µ/σ2

)
b1−2µ/σ2 − a1−2µ/σ2

 , x ∈ (a, b).

2.3.2.2 First Hitting Probabilities

Given an interval (a, b) ⊃ x, we are interested in the probabilities that the under-

lying process X starting from X0 = x hits one of the two boundaries rather than the

other. Recalling the threshold characterization of the players’ strategies, one can natu-

rally interpret these probabilities as the likelihood that one player acts faster than her

rival.

According to Revuz and Yor in [68, Ch VII.3], these first hitting probabilities can be

evaluated via the scale functions S(·):

P
[
Xx
τ(x;a,b) = b

]
=
S(x)− S(a)

S(b)− S(a)
, P

[
Xx
τ(x;a,b) = a

]
=
S(b)− S(x)

S(b)− S(a)
. (2.47)

Recall that S is the general solution to the ODE LS = 0 that is available in closed-form

for linear diffusions.

Example 2.12 (Brownian motion). The scale function S(·) solves

µS ′(x) +
1

2
σ2S ′′(x) = 0, ⇒ SBM(x) = e−

2µ

σ2
x, x ∈ R.

(Geometric Brownian motion). The scale function S(·) solves

µxS ′(x) +
1

2
σ2x2S ′′(x) = 0, ⇒ SGBM(x) = x1−2µ/σ2

, x ∈ R+.
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(Ornstein-Uhlenbeck Process). The scale function S(·) solves

µ(θ − x)S ′(x) +
1

2
σ2S ′′(x) = 0, ⇒ SOU(x) =

∫ x

−∞
e
µ

σ2
(z−θ)2dz, x ∈ R.

Note that since (Xt) is continuous in D the probability that (Xx
t ) hits a threshold

s < x can be evaluated as the limiting probability as follows

P(Xx hits s) = lim
u↑d

P
[
Xx
τ(x;s,u) = u

]
.

Similarly, one can handle the threshold s > x.
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Chapter 3

Capacity Expansion Games

In this chapter, we consider competitive capacity investment for a duopoly of two distinct

producers. The producers are exposed to stochastically fluctuating costs and interact

through aggregate supply. Capacity expansion is irreversible and modeled in terms of

timing strategies characterized through threshold rules. Because the impact of changing

costs on the producers is asymmetric, we are led to a nonzero-sum timing game describing

the transitions among the discrete investment stages. Working in a continuous-time

diffusion framework, we characterize and analyze the resulting Nash equilibrium and

game values. Importantly, depending on the competition strength, we find that both

threshold-type and preemptive equilibria may arise. Our analysis quantifies the dynamic

competition effects and yields insight into dynamic preemption and over-investment in

a general asymmetric setting. A case-study related to the motivating economic example

considering the impact of fluctuating emission costs on power producers investing in

nuclear and coal-fired plants is also presented.
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3.1 Problem Formulation

We consider a duopoly of two producers, dubbed firm 1 and firm 2. Each firm

has options to irreversibly increase her current production capacity Qi(t) by paying a

fixed lump-sum capital Ki, so as to generate more revenue. However, because the firms

compete on the same market, expansion decisions of one firm carry negative externality

(via lower market prices P (t)) for both of them, which leads to a nonzero-sum duopoly

game.

3.1.1 Relative Cost X and Game Stage M

In this chapter, to capture market uncertainty, we introduce the relative cost between

the production expenses of the two firms as a one-dimensional diffusion process (Xt)t≥0

on a probability space (Ω,F ,P), satisfying the Îto stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt, (3.1)

where (Wt)t≥0 is a standard Brownian motion under P. Denote by D := (d, d̄), with

−∞ ≤ d < d̄ ≤ +∞, the domain of Xt and F := (Ft)t≥0 the natural filtration generated

by Xt. The coefficients b : D → R and σ : D → R++ are assumed to be Lipschitz so as

to ensure a unique strong solution to (3.1).

To describe dynamic capacity expansion, we decompose the overall model into stages.

Let ~Mt ∈ {(N1
t , N

2
t )t≥0 : N i

t = 0, 1, . . . , N i
0}, where N i

t counts how many expansion

options remain for firm i, denote the game stage at date t. Irreversible investment implies

that starting at ~M0 = (N1
0 , N

2
0 ), each coordinate of ~Mt is piecewise constant and non-

increasing. We postulate that firm capacities are fully determined by the investment game

stage Qi(t) = Qi( ~Mt), and market price is solely a function of aggregate supply Q(t) :=
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Q1(t) + Q2(t) (here equated with aggregate production capacity). This is equivalent to

assuming constant (or at least deterministic) demand, which is not far from the truth for

base-load electricity generation where revenue is determined by fixed long-term contracts.

Remark 3.1 Since we will rely on dynamic programming-like arguments, the framework

necessitates to specify the initial number of possible expansions (N1
0 , N

2
0 ). This can be jus-

tified by assuming a fixed demand curve, so that one can infer the maximum additional

capacity that is economically feasible. In other words, financially we work backwards,

starting from potential end-game capacities (i.e. stages where no more investment will

take place) to determine the maximum number of initial options needed (see a related

discussion in [17, Sec 2.5]). Given the long-run electricity demand forecasts, power gen-

erators can in aggregate determine how much capacity could be added, with the competi-

tion centered about who and when will expand (but not how far). If a total of ∆QN̄ extra

capacity is required, one can set ~M0 = (N̄ , N̄).

It follows that price is a function of game stage, P (t) = P ( ~Mt). Consequently

Q( ~Ms) ≥ Q( ~Mt), P ( ~Ms) ≤ P ( ~Mt) for s ≥ t are piecewise constant as well. For typo-

graphical convenience, we henceforth use subscripts (n1, n2) to index above stage quanti-

ties, e.g. Qi
n1,n2

≡ Qi(~n). As a simple example, one may take Qi
n1,n2

= qi+(∆Q)(N i
0−ni)

at a stage (n1, n2), where ∆Q is the size of each expansion, and qi’s are the initial

capacities. For the clearing prices, a typical setting is a linear inverse-demand curve:

Pn1,n2 = D(1− η[Q1
n1,n2

+Q2
n1,n2

]), (3.2)

where η > 0 is the demand elasticity and D is a price multiplier.

When Xt is large, firm 1 has the comparative advantage in production, while when Xt

is close to d firm 2 has the advantage. Since Xt lives on the real line, this monotonicity
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assumption is rather natural. Specifically we shall assume that production costs of firm

1 decrease (linearly) in Xt, while the production costs of firm 2 increase (linearly) in Xt,

which leads to profit rates of the form

π1
n1,n2

(Xt) = (Pn1,n2 − C1 + ρ1Xt)Q
1
n1,n2

,

π2
n1,n2

(Xt) = (Pn1,n2 − C2 − ρ2Xt)Q
2
n1,n2

,

(3.3)

at stage (n1, n2), where Ci, ρi > 0 are the firm-specific fixed production cost, and sensi-

tivity of relative costs to X, respectively. The monotonicity of πi(·) in x will be important

for the analytic derivations in the sequel.

Remark 3.2 In energy markets literature, market uncertainty is usually captured by

stochastic electricity prices (see e.g. [37]). In the context of supply-demand equilibrium

this can be interpreted as stochastic demand [17]. Our setting could similarly accom-

modate a general stochastic power price of the form P (
∑

iQ
i, Xt), assuming that the

factor Xt is also negatively affecting one of the firm’s costs. For example if Xt represents

oil prices, then power prices are positively linked to X and nuclear production cost is

independent of Xt, giving overall positive sensitivity ρ1 > 0 of π1 to x. In contrast, an

oil-fired competitor has costs denominated in Xt and hence has overall a negative exposure

−ρ2 < 0 to oil.

3.1.2 Game Policies and Game Payoffs

By expanding capacity, firms shift the game to a subsequent stage and henceforth

change the profit rates they receive. From the definition of game stages ~M , it follows
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that the firms’ acting sets at the stage (n1, n2) are

C1
(n1,n2) =


(n1 − 1, n2), if n1 > 0,

∅, if n1 = 0,

C2
(n1,n2) =


(n1, n2 − 1), if n2 > 0,

∅, if n2 = 0.

(3.4)

Following from Definition 2.2, we recursively determine admissible strategy profiles A :=

{(α1,α2)} of the firms.

The time-homogeneity of Xt and the feedback form of prices in terms of ~M is the

natural motivation to restrict attention to time-homogenous investment strategies. Thus,

we postulate actions of the firms to be of time-stationary Feedback Perfect State (FPS)

or Markov type, namely the strategy set of firm i is

Ai =
{
αi := αi(Xt, ~Mt)

}
, i = 1, 2. (3.5)

Since the market price declines as aggregate capacity rises, investment by firm i will take

place only once Xt moves sufficiently towards her preferred direction. Accordingly, we

model capacity investment in terms of timing strategies. Due to the piecewise-constant

feature of ~Mt, it is sufficient to consider the F-stopping times τ i for the expansion epochs

at each stage (n1, n2). As a result, the strategy sets can be represented as:

A1 =
{
α1 :=

(
τ 1
n1,n2

) ∣∣n1 > 0,∀n2

}
, A2 =

{
α2 :=

(
τ 2
n1,n2

) ∣∣n2 > 0, ∀n1

}
, (3.6)

maintaining the structure of (3.5).

Meanwhile, we assume that the firms evaluate their decisions based on the total net

present value of future profits (NPV), namely the expected future cashflow discounted

at an exogenous, constant interest rate r > 0, minus the discounted lump-sum costs Ki

paid at each expansion epoch. Therefore, the game payoffs they received are constructed
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through Definition 2.3. Given a strategy profile (α1,α2) and X0 = x, ~M0 = (n1, n2), the

NPV of firm i is

J in1,n2
(x;α1,α2) := E

[∫ ∞
0

e−rsπiN1
s ,N

2
s

(Xs) ds−
n1∑
k=1

Ki · e−rσik
∣∣∣∣∣X0 = x, ~M0 = (n1, n2)

]
,

(3.7)

where σik is the k-th investment time of player i. For brevity, we denote J in1,n2
(x;α1,α2)

by J in1,n2
(x) henceforth.

This, combining with the definition of A in (3.6), leads to a recursive formulation

of equilibrium expected profits in analogue to dynamic programming. Let us consider

the interior stages where both firms have at least one expansion option left, namely

~M0 = (n1, n2) where n1, n2 > 0. Thanks to (3.5) and the strong Markov property of X,

the NPV of firm 1 can be decomposed as (letting τ := τ 1
n1,n2

∧ τ 2
n1,n2

and α = (α1,α2))

J1
n1,n2

(x,α) = Ex
[∫ τ

0

e−rsπ1
n1,n2

(Xs) ds

+
{
e−rτ1{τ1n1,n2<τ

2
n1,n2

}

(
J1
n1−1,n2

(
Xτ1n1,n2

,α
)
−K1

n1

)
+e−rτ1{τ1n1,n2>τ

2
n1,n2

}J
1
n1,n2−1

(
Xτ2n1,n2

,α
)

+e−rτ1{τ1n1,n2=τ2n1,n2}

(
J1
n1−1,n2−1

(
Xτ1n1,n2

,α
)
−K1

n1

)}]
.

(3.8)

We use the shorthand notation Ex {·} := E {·|X0 = x} and the subscript of J in1,n2
to

indicate the conditioning on ~M0 = (n1, n2). In the boundary stages (n1, 0), or similarly

(0, n2), one firm has no options left, which can be represented via e.g. τ 2
n1,0

= +∞ in (3.8),

removing the last two cases/terms. For future use we introduce the static discounted

future cashflows Di’s. The latter capture the situation where capacities are forever fixed,

55



Capacity Expansion Games Chapter 3

which is associated with the first term in (3.8):

Di
n1,n2

(x) := Ex
[∫ ∞

0

e−rsπin1,n2
(Xs) ds

]
= Qi

n1,n2
×
{
Pn1,n2 − Ci

r
+ (−1)i+1ρi

∫ ∞
0

e−rtE [Xt |X0 = x] dt

}
. (3.9)

In order to characterize corresponding smallest concave majorant, some regularity of

the underlying payoff functions are required. We henceforth assume that all D1
n1,n2

are

increasing, and their differences D1
n1−1,n2

−D1
n1,n2

−K1
n1

are contained in the class Hinc,

while all D2
n1,n2

are decreasing and D2
n1,n2−1−D2

n1,n2
−K2

n2
are contained in the class Hdec

(see Definition 2.7). For the sake of concise exposition, we further concentrate on the case

where the discounted cashflows Di
n1,n2

(x) are affine in x. This essentially corresponds to

the expectation Ex[Xt] being affine in x,

Ex[Xt] := x · A(t) +B(t). (3.10)

Substituting into (3.9) leads to:

Di
n1,n2

(x) = Qi
n1,n2

×
[
Pn1,n2 − Ci

r
+ (−1)i+1ρi

∫ ∞
0

e−rs {A(s)x+B(s)} ds
]

= ζ in1,n2
+ (−1)i+1

ρiQi
n1,n2

δ
· x, (3.11)

where ζ i and δ are defined via

ζ in1,n2
:= Qi

n1,n2
×
[
Pn1,n2 − Ci

r
+ (−1)i+1ρi

∫ ∞
0

e−rsB(s)ds

]
, δ :=

1∫∞
0
e−rsA(s)ds

.

Example 3.3 Under a GBM model (2.36), we have Ex[Xt] = xeµt, and consequently

Di’s are of the form (3.11) with
∫∞

0
e−rsB(s)ds = 0, δ = r − µ.
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Under an OU model (2.39), we have Ex[Xt] = xe−µt + θ (1− e−µt), and consequently

Di’s are of the form (3.11) with
∫∞

0
e−rsB(s)ds = µθ

r(r+µ)
, δ = r + µ.

3.1.3 Game Equilibrium

Because decisions of one firm affect the other through the joint dependence of J i’s

on ~Mt, capacity expansion becomes a non-zero-sum stochastic game driven by the state

variable Xt and endogenous game stage ~Mt. To describe optimal behavior in this game

we rely on the standard concept of Markov Nash equilibrium.

Let V i
n1,n2

(x) := J in1,n2
(x,α∗) denote the equilibrium game values at game stage

(n1, n2). Recursive construction of J i’s revealed by equation (3.8) and the time ho-

mogeneity of the state process Xt motivate dynamic programming methods that charac-

terize V i
n1, n2

by looking at the single-stage timing game defined by τ in1,n2
’s. The resulting

stopping time (if it exists) which yields the single-stage equilibrium is in turn part of the

dynamic equilibrium strategy of firm i at stage (n1, n2), and so denoted by τ i,∗n1,n2
. Indeed,

fixing τ−i,∗n1,n2
, the stopping time τ i,∗n1,n2

is the maximizer of the RHS in (3.8). This can be

seen most simply in the boundary stages, where one of the strategy sets is empty and

(3.8) reduces to the traditional situation of a single-agent optimization. In our context,

this optimization is an optimal stopping problem for Xt via τ 1
n1,0

(resp. τ 2
0,n2

):

V 1
n1,0

(x) = D1
n1,0

(x) + sup
τ∈T

Ex
{
e−rτ

[
V 1
n1−1,0(Xτ )−D1

n1,0
(Xτ )−K1

n1

]}
, (3.12)

V 2
0,n2

(x) = D2
0,n2

(x) + sup
τ∈T

Ex
{
e−rτ

[
V 2

0,n2−1(Xτ )−D2
0,n2

(Xτ )−K2
n2

]}
, (3.13)

where T := T[0,+∞) denotes the collection of all F-stopping times with values in [0,+∞),

and Di’s are from (3.9). For the firm who has no remaining expansion options, her game
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value is obtained as

V 1
0,n2

(x) = D1
0,n2

(x) + Ex
[
e−rτ

2,∗
0,n2

{
V 1

0,n2−1

(
Xτ2,∗0,n2

)
−D1

0,n2

(
Xτ2,∗0,n2

)}]
, (3.14)

V 2
n1,0

(x) = D2
n1,0

(x) + Ex
[
e−rτ

1,∗
n1,0

{
V 2
n1−1,0

(
Xτ1,∗n1,0

)
−D2

n1,0

(
Xτ1,∗n1,0

)}]
. (3.15)

Notice that these game values are determined by their rivals’ game strategies τ 2,∗
0,n2

or τ 1,∗
n1,0

respectively, thus there is no more any optimization.

In the interior game stages (n1, n2), by the Nash equilibrium criterion (2.6) the equi-

librium strategy of each firm is the best-response to her rival’s action, and we denote

the resulting NPVs by Ṽ i( · ; τ−i). Namely, based on (3.8), given the rival’s game policy

as τ 2
n1,n2

(resp. τ 1
n1,n2

), firm 1 (resp. firm 2) solves the optimal stopping problem:

Ṽ 1
n1,n2

(x; τ 2
n1,n2

)−D1
n1,n2

(x)

= sup
τ∈T

Ex
[
1{τ>τ2n1,n2}

e−rτ
2
n1,n2

{
V 1
n1,n2−1

(
Xτ2n1,n2

)
−D1

n1,n2

(
Xτ2n1,n2

)}
+1{τ<τ2n1,n2}e

−rτ {V 1
n1−1,n2

(Xτ )−D1
n1,n2

(Xτ )−K1
n1

}
+1{τ=τ2n1,n2}

e−rτ
{
V 1
n1−1,n2−1 (Xτ )−D1

n1,n2
(Xτ )−K1

n1

}]
, (3.16)

Ṽ 2
n1,n2

(x; τ 1
n1,n2

)−D2
n1,n2

(x)

= sup
τ∈T

Ex
[
1{τ>τ1n1,n2}

e−rτ
1
n1,n2

{
V 2
n1−1,n2

(
Xτ1n1,n2

)
−D2

n1,n2

(
Xτ2n1,n2

)}
+1{τ<τ1n1,n2}e

−rτ {V 2
n1,n2−1 (Xτ )−D2

n1,n2
(Xτ )−K2

n2

}
+1{τ=τ1n1,n2}

e−rτ
{
V 2
n1−1,n2−1 (Xτ )−D2

n1,n2
(Xτ )−K2

n2

}]
. (3.17)

Observe that simultaneous investment can be ruled out since on the event {τ = τ 2
n1,n2
}

it is strictly dominated by the strategy of first waiting τ > τ 2
n1,n2

and then optimally

investing as a follower: V 1
n1,n2−1 ≥ V 1

n1−1,n2−1−K1
n1

. Assuming that the suprema above are

attained, we obtain the best-response policy τ̃ in1,n2
= τ̃ in1,n2

(τ−in1,n2
) that maximizes (3.16)-
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(3.17), where we emphasize the dependence on the rival’s strategy. The condition for a

Nash equilibrium at (n1, n2) (as defined in Definition 2.4) is then characterized as a fixed

point of the best-response strategies: τ 1,∗
n1,n2

= τ̃ 1
n1,n2

(τ 2,∗
n1,n2

) and τ 2,∗
n1,n2

= τ̃ 2
n1,n2

(τ 1,∗
n1,n2

). By

induction on the discrete stages (n1, n2), we may patch these local equilibria to construct

a global one:

A∗ =

(α1,∗, α2,∗) :
α1,∗ =

(
τ̃ 1
n1,n2

(
τ 2,∗
n1,n2

)
, n1 > 0,∀n2

)
α2,∗ =

(
τ̃ 2
n1,n2

(
τ 1,∗
n1,n2

)
, n2 > 0,∀n1

)
 . (3.18)

3.2 Constructing Equilibria

In this section, we will specify game strategies and game values of each firm at each

game stage (n1, n2) by dynamic programming. The boundary game stages, at which only

one firm has expansion option(s), can be solved directly as in (3.12)-(3.13), allowing us

to determine (3.14)-(3.15) accordingly. For the interior game stages at which both firms

have expansion options, we first derive their best-response to the rival’s action and then

obtain the equilibrium strategies via the Nash equilibrium fixed-point characterization.

3.2.1 Equilibria at Boundary Stages

In the scenarios where one firm has expansion options while her rival does not, deriving

game values and policies boils down to solving a series of single-agent optimization prob-

lems (3.12)-(3.13). Note that because capacities are forever constant after ~Mt = (0, 0),

V i
0,0(x) ≡ Di

0,0(x) for i = 1, 2, which serves as an inductive starting point to solve the

multiple-stopping problems associated to boundary stages. Solutions to optimization

problems at stage (1, 0) and (0, 1) are classical and stated in Section 3.4.1 for complete-

ness. We then extend inductively to the general boundary case (n1, 0) and (0, n2), with
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a full proof in Section 3.4.2.

Theorem 3.4 (Boundary Cases) The game value of firm 1 at stage (n1, 0) and the

game value for firm 2 at stage (0, n2) for n1, n2 ≥ 1 are admitted as:

V 1
n1,0

(x) =


D1
n1,0

(x) + F (x)

F (S1,∗
n1,0

)
· h1

n1,0

(
S1,∗
n1,0

)
, if x ∈ (d, S1,∗

n1,0
),

V 1
n1−1,0(x)−K1

n1
, if x ∈ [S1,∗

n1,0
, d̄),

(3.19)

V 2
0,n2

(x) =


V 2

0,n2−1(x)−K2
n2
, if x ∈ (d, S2,∗

0,n2
],

D2
0,n2

(x) + G(x)

G(S2,∗
0,n2

)
· h2

0,n2
(S2,∗

0,n2
), if x ∈ (S2,∗

0,n2
, d̄),

(3.20)

with first-mover payoff functions

h1
n1,0

(x) = V 1
n1−1,0(x)−D1

n1,0
(x)−K1

n1
,

h2
0,n2

(x) = V 2
0,n2−1(x)−D2

0,n2
(x)−K2

n2
.

Their corresponding policies are characterized by threshold-type stopping times

τ 1,∗
n1,0

= inf{t ≥ 0 : Xx
t ≥ S1,∗

n1,0
}

τ 2,∗
0,n2

= inf{t ≥ 0 : Xx
t ≤ S2,∗

0,n2
},

where the series of optimal stopping levels S1,∗
n1,0

, S2,∗
0,n2

satisfy the equations

F (S1,∗
n1,0

) =
h1
n1,0(

h1
n1,0

)′ (S1,∗
n1,0

)× F ′(S1,∗
n1,0

), (3.21)

G(S2,∗
0,n2

) =
h2

0,n2(
h2

0,n2

)′ (S2,∗
0,n2

)×G′(S2,∗
0,n2

). (3.22)

Remark 3.5 We do not assume any order of the threshold sequences
(
S1,∗
n1,0

)
n1≥1

or
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(
S2,∗

0,n2

)
n2≥1

. If firm 1’s thresholds are not increasing (resp. decreasing for firm 2), she

would simultaneously exercise multiple expansion options if Xt moves in her preferred

direction. This might happen for example if the market prices are non-convex in ~M .

We have shown that the optimal game policies of the “follower” who is the only firm

with expansion options left are of threshold-type. Her “leader” rival’s game values are

then accordingly determined from (3.14)-(3.15):

Corollary 3.6 (Leader Game Value) The game values of firm 1 at stage (0, n2) and

game values of firm 2 at stage (n1, 0) for n1, n2 ≥ 1 are admitted as:

V 1
0,n2

(x) =


V 1

0,n2−1(x), if x ∈ (d, S2,∗
0,n2

],

D1
0,n2

(x) +G(x) ·
[
V 1
0,n2−1−D1

0,n2

G

] (
S2,∗

0,n2

)
, if x ∈ (S2,∗

0,n2
, d̄),

(3.23)

V 2
n1,0

(x) =


D2
n1,0

(x) + F (x) ·
[
V 2
n1−1,0−D2

n1,0

F

] (
S1,∗
n1,0

)
, if x ∈ (d, S1,∗

n1,0
),

V 2
n1−1,0(x), if x ∈ [S1,∗

n1,0
, d̄).

(3.24)

3.2.2 Equilibria at Interior Stage (1, 1)

In the scenarios that each firm has available expansion options, i.e. at stages (n1, n2)

with n1, n2 > 0, the firms interact through the negative externality of expansion on the

electricity price. In the given context of Nash equilibrium, we will obtain equilibrium

policies as the fixed-point of the firms’ best-response to each other’s strategy. We first

derive the solution at stage (1, 1), then extend to an arbitrary interior stage.

Based on (3.16) with n1 = n2 = 1, firm 1’s first-mover payoff is admitted as h1
1,1(x) =

V 1
0,1(x)−D1

1,1(x)−K1
1 , and her second-mover payoff is l11,1(x) = V 1

1,0(x)−D1
1,1(x). Following

preceding results for boundary stages, one can easily verify that l11,1(x) > h1
1,1(x) for x

small enough, and l11,1(x) < h1
1,1(x) for x large. Assuming that h− l is strictly monotone,
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we accordingly define a “leadership” point L1
1,1 where first-mover payoff of firm 1 equals

her second-mover payoff:

L1
1,1 := inf{x ∈ D : h1

1,1(x) > l11,1(x)}. (3.25)

The meaning of the leadership point arises from the competitive aspect: when x ≤ L1
1,1,

firm 1 does not compete to be first, since she is in fact (instantaneously) better-off being

a second mover. On the other hand, when x > L1
1,1, firm 1 would prefer to be a leader

than a follower. Similar considerations lead to the leadership threshold of firm 2:

L2
1,1 := sup{x ∈ D : h2

1,1(x) > l21,1(x)}. (3.26)

Recall that the game strategy of firm 2 at stage (1, 1) is defined as a F-stopping time

τ 2
1,1. Since the first-mover payoff of firm 2 is greater than her second-mover payoff if and

only if the level of Xt is low, it is reasonable to assume that τ 2
1,1 is of threshold-type:

τ 2
1,1 = inf{t ≥ 0 : Xt ≤ s2}, (3.27)

i.e. expansion of firm 2 takes place once Xt drops below s2.

Depending on relationship between h1
1,1(s2) and l11,1(s2), the payoff of firm 1 would

experience a jump up/down at the exercise threshold of firm 2. In particular, in the case

that s2 < L1
1,1, i.e. h1

1,1 < l11,1 at x = s2, firm 1 actually benefits from having firm 2 invest

at s2, accordingly is not incentivized to preempt when firm 2 intends to invest. She now
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solves the optimal stopping problem following (3.16):

Ṽ 1
1,1(x, s2)−D1

1,1(x) = sup
τ∈T

Ex
[
1{τ<τ21,1}e

−rτ {h1
1,1(Xτ )

}
+ 1{τ>τ21,1}e

−rτ21,1
{
l11,1(Xτ21,1

)
}]

.

(3.28)

Proposition 3.7 (threshold-type best-response of firm 1 at stage (1, 1)) If s2 < L1
1,1, the

best-response of firm 1 associated to τ 2
1,1 = τs2 specified in (3.27) is the stopping time

given by

τ 1
1,1(s2) = inf{t ≥ 0 : Xt ≥ S1

1,1(s2)}, (3.29)

where the optimal stopping level S1
1,1(s2) := S1 > s2 is a function of s2, characterized by

the following equation:

[(
h1

1,1 ∨ l11,1
)

(s2)G(S1)− h1
1,1(S1)G(s2)

]
F ′(S1)

+
[
h1

1,1(S1)F (s2)−
(
h1

1,1 ∨ l11,1
)

(s2)F (S1)
]
G′(S1)

=
(
h1

1,1

)′
(S1) [G(S1)F (s2)−G(s2)F (S1)] .

(3.30)

Consequently, the optimal stopping problem (3.28) admits the value function

Ṽ 1
1,1(x, s2) =


V 1

1,0(x), if x ∈ (d, s2),

D1
1,1(x) + ω̃1

1,1F (x) + ν̃1
1,1G(x), if x ∈ (s2, S1),

V 1
0,1(x)−K1

1 , if x ∈ (S1, d̄),

(3.31)
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where ω̃1
1,1 := ω̃1

1,1(s2) and ν̃1
1,1 := ν̃1

1,1(s2) are defined as

ω̃1
1,1 =

h1
1,1(S1)G(s2)−

(
h1

1,1 ∨ l11,1
)

(s2)G(S1)

F (S1)G(s2)− F (s2)G(S1)
, (3.32a)

ν̃1
1,1 =

(
h1

1,1 ∨ l11,1
)

(s2)F (S1)− h1
1,1(S1)F (s2)

F (S1)G(s2)− F (s2)G(S1)
. (3.32b)

Conversely, in the case that s2 > L1
1,1, i.e. if h1

1,1 > l11,1 at x = s2, then firm 1

is better off preemptively exercising right before firm 2, since her first-mover payoff is

higher than her second-mover one. Recalling the definition of the leadership points Li,

we see that firm 1 is incentivized to preempt immediately τ 1
1,1 = 0 when the state process

is in (L1
1,1, s2] (see also [52]). On (s2, d̄), firm 1 again solves an optimal stopping problem

following (3.16).

Proposition 3.8 (preemptive best-response of firm 1) If s2 > L1
1,1, the best-response of

firm 1 is

τ 1,e
1,1 (s2) = inf{t ≥ 0 : L1

1,1 < Xt ≤ (s2+) or Xt ≥ S1,e
1,1(s2)}, (3.33)

where the optimal stopping level S1,e
1,1(s2) := Se1 ≥ s2 is a solution to (3.30).

Note that the infinitesimal preemption of firm 1 corresponds to “stopping at s2+” which

can be considered as a limit of ε-optimal strategies. This is because the value function on

(s2, d̄) is admitted in terms of concave majorant which yields lim
x↘s2

Ṽ 1
1,1(x, s2)−D1

1,1(s2) =

h1
1,1(s2) > l11,1(s2). Therefore, stopping at s2 is too late and firm 1 prefers to preempt

right before s2. Proof of this proposition is in Section 3.4.3, and very similar steps for

the best-response of firm 2 are stated in Section 3.4.4. As expected, the best-response of

firm 2 depends on the relationship between threshold s1 of firm 1 and L2
1,1.

To determine Nash equilibria of these firms’ strategies, we start by deriving the best-
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response of firm 2 corresponding to τ 1,e
1,1 (s2) defined in (3.33). Since the state process

Xt is assumed to be regular in D, from firm 2 perspective, τ 1,e
1,1 (s2) is indifferent from

the situation that firm 1 invest at τ 1
1,1 = inf{t ≥ 0 : Xt > L1

1,1}. From Section 3.4.4,

if L1
1,1 ≥ L2

1,1, the corresponding best-response of firm 2 is a threshold-type stopping

time of threshold S2 ≤ L1
1,1, which leads us to a threshold-type equilibrium (if it exists)

following Proposition 3.7. Otherwise, if L1
1,1 < L2

1,1, the corresponding best-response of

firm 2 is admitted as

τ 2,e,∗
n1,n2

= inf{t ≥ 0 : L1
1,1 ≤ Xt < L2

1,1 or Xt < S2,e,∗
1,1 }, (3.34)

where S2,e,∗
1,1 := S2,e

1,1(L1
1,1). Note that firm 1 (resp. firm 2) is not incentivized to invest

when Xt = L1
1,1 (resp. Xt = L2

1,1). Back to firm 1, since L2
1,1 > L1

1,1, her best-response to

τ 2,e∗
n1,n2

is then admitted by Proposition 3.8 as:

τ 1,e,∗
1,1 = inf{t ≥ 0 : L1

1,1 < Xt ≤ L2
1,1 or Xt ≥ S1,e,∗

1,1 }, (3.35)

where S1,e,∗
1,1 := S1,e

1,1(L2
1,1). To summarize, when L1

1,1 < L2
1,1 we always have the preemptive

equilibrium defined by
(
τ 1,e,∗

1,1 , τ 2,e,∗
1,1

)
. Under that equilibrium, one or more firms invest

immediately when L1
1,1 < x < L2

1,1, otherwise the investment happens either at the

thresholds Si,e,∗1,1 or at the leadership points Li1,1. It remains to specify the outcome of

the first situation, x ∈ (L1
1,1, L

2
1,1). This is similar to an infinitesimal coordination game

which admits multiple solutions. One approach proposed by [38] involves instantaneous

mixed strategies and leads to the following proposition (see proof in Section 3.4.5).

Proposition 3.9 (coordination game at stage (1, 1)) Let (p1(x), p2(x)) be a mixed

strategy profile, with pi(x) denoting the probability that firm i attempts to invest at Xt = x

over an infinitesimal round, played repeatedly. There are three equilibrium strategies:
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(i) (p∗1(x), p∗2(x)) = (0, 1);

(ii) (p∗1(x), p∗2(x)) = (1, 0);

(iii) (p∗1(x), p∗2(x)) = (
V 1
0,1−V 1

1,0−K1
1

V 1
0,1−D1

0,0
(x),

V 2
1,0−V 2

0,1−K2
1

V 2
1,0−D2

0,0
(x)).

Note that there is a positive probability that the firms will invest simultaneously if they

implement the third equilibrium, and firm 1 is more likely to invest when Xt is close to

L2
1,1 while firm 2 is more likely to invest when Xt is close to L1

1,1. Moreover, the third

equilibrium coincides with the first/second equilibrium when x = L1
1,1 (x = L2

1,1, resp.).

Choices (i) and (ii) above can be interpreted via a preemptive priority that pre-

determines the winner of the instantaneous competition. For example, in our original

economic example, a coal-fired plant is easier to build than a nuclear power plant, so

one may assume that firm 2 has a preemptive priority, i.e. the coordination equilibrium

selected is of type (i) above. Under that assumption firm 1 receives her second-mover

value when L1
1,1 ≤ Xt < L2

1,1, which yields an upward jump in her resulting game value at
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Figure 3.1: Game values of the nuclear industry investor (cf. Section 3.3.4 for details)
for both threshold-type equilibrium and preemptive equilibrium at stage (2, 2) and
µ = 0.23. S·,∗ denote equilibrium thresholds of these two power generators, and L2

denotes the leadership threshold of the coal-fired investor as in (3.26) (Left: a) Firm
2 has a preemptive priority. (Right: b) Firm 1 has a preemptive priority.
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x = L2
1,1. In the converse scenario that firm 1 has a preemptive priority, she receives her

first-mover value on [L1
1,1, L

2
1,1) and the resulting game value is continuous at x = L2

1,1.

Figure 3.1 illustrates these choices.

Returning to Nash equilibria involving threshold-type strategies, the fixed-point char-

acterization (3.18) boils down to solving the following system of equations:



[
l11,1(S2)G(S1)− h1

1,1(S1)G(S2)
]
F ′(S1) +

[
h1

1,1(S1)F (S2)− l11,1(S2)F (S1)
]
G′(S1)

=
(
h1

1,1

)′
(S1) [G(S1)F (S2)−G(S2)F (S1)] ,[

h2
1,1(S2)G(S1)− l21,1(S1)G(S2)

]
F ′(S2) +

[
l21,1(S1)F (S2)− h2

1,1(S2)F (S1)
]
G′(S2)

=
(
h2

1,1

)′
(S2) [G(S1)F (S2)−G(S2)F (S1)] ,

(3.36)

for (S1, S2) ∈ [L2
1,1, d̄) × (d, L1

1,1], and solutions to this system correspond to pairs of

investment thresholds at stage (1, 1). To discuss the existence of such equilibria, we state

the following corollary characterizing the best-response curves.

Corollary 3.10 (best-response curves)

(i) For s2 ≤ L1
1,1 (resp. s1 ≥ L2

1,1), the best-response function s2 7−→ S1
1,1(s2) (resp. s1 7−→

S2
1,1(s1)) is continuous.

(ii) As s2 ↓ d (resp. s1 ↑ d), the best-response of firm 1 (resp. firm 2) converges to a

finite threshold S1,P,∗
1,1 (resp. S2,P,∗

1,1 ).

The first statement is a simple application of the implicit function theorem. An interpre-

tation of Si,P,∗ is provided in Section 3.2.4.1. Existence of solutions to the system (3.36)

then corresponds to existence of crossing points of these best-response curves. Depend-

ing on the relation between L1
1,1 and L2

1,1, there are three scenarios of the best-response
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curves, sketched in Figure 3.2.

Scenario I: L1
1,1 > L2

1,1. In this case there is guaranteed at least one crossing point

of the best-response curves, which corresponds to a threshold-type equilibrium at stage

(1, 1) ( Figure 3.2a). Only threshold-type equilibria exist in this scenario, matching the

setting studied by [30, Section 3.1].

Scenario II: L1
1,1 < L2

1,1 and the best-response curve cross (see Figure 3.2b which has

2 crossings). Consequently, both threshold-type equilibria and a preemptive equilibrium

characterized by (3.34)-(3.35) exist.

Scenario III: L1
1,1 < L2

1,1 and no crossing points between the best-response curves (

Figure 3.2c), which implies that only a preemptive equilibrium exists.

If L1
1,1 < L2

1,1 (i.e. beyond of Scenario I), existence of threshold-type equilibria is not

guaranteed. From Corollary 3.10, one sufficient condition for existence is that S1
1,1(L1

1,1) >

L2
1,1 and S2

1,1(L2
1,1) < L1

1,1. The latter condition does not actually hold in the numerical
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Figure 3.2: Equilibrium scenarios for the best-response curveswith lowercase s denote
given thresholds of one firm and uppercase S denote the other firm’s best-response
threshold. The red dashed lines represent best-response of firm 1, while the green
solid lines represent best-response of firm 2. The dotted lines represent the limiting
thresholds S1,P,∗

1,1 , S2,P,∗
1,1 discussed in Section 3.2.4.1. Note that for s2 > L1

1,1 and

s1 < L2
1,1 there is no threshold-type best-response and the “∆” marks a preemptive

equilibrium which corresponds to (L2
1,1, L

1
1,1) in this numerical example.
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example sketched in Figure 3.2b. Numerical examples in Section 3.3 suggest that Scenario

III occurs under high volatility σ.

Remark 3.11 In Scenarios I & II there are multiple Nash MPEs, so equilibrium se-

lection is an important issue. From monotonicity of payoff functions, typically a higher

threshold of firm 1 and a lower threshold of firm 2 yield higher game values to both

firms. This assumption combining with the sequential nature of investment decisions

with a flavor of a Stackelberg competition preferences the latest equilibrium, i.e. select-

ing the highest threshold S1
1,1 and the corresponding lowest threshold S2

1,1. To understand

the logic for this preference, consider two equilibria termed the later (higher threshold of

firm 1 and lower threshold of firm 2) and the earlier. Now consider firm 1 currently at

her early threshold S1,erl
1,1 and contemplating whether to expand now, i.e. pick the early

equilibrium, or wait. Conditional on firm 2 implementing S2,lat
1,1 , best-response optimality

implies that

Ṽ 1
1,1(S1,erl

1,1 ; τ 2,lat
1,1 ) = J1

1,1(S1,erl
1,1 ; τ 1,lat

1,1 , τ 2,lat
1,1 ) ≥ J1

1,1(S1,erl
1,1 ; τ 1,erl

1,1 , τ 2,lat
1,1 ) = V 1

0,1(S1,erl
1,1 )−K1

1 .

So under that assumption, firm 1 can extract higher expected NPV by waiting and not

investing immediately. Of course, there is a risk that the assumption is false, firm 2

will implement the early threshold S2,erl
1,1 , whereby firm 1 will lose by waiting. However,

by symmetry, when in the future, Xt were to reach S2,erl
1,1 , firm 2 would face the same

dilemma, and (by then knowing that firm 1 did not invest in the past) would also prefer

to wait, in the hope of realizing the later equilibrium. It follows that the sequential nature

of decisions encourages maximization of game values – each firm can rationally assume

that in the future her rival will refrain from the earlier equilibrium, and hence rationally

commit to waiting right now, and not expanding early. In effect, a firm can credibly signal

to her rival that she is implementing the later equilibrium, yielding a higher game value
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to both.

Note that the above argument works when firms make decisions sequentially, but does

not work for simultaneous actions where threat of preemption takes precedence. Namely,

the Stackelberg logic cannot rule out preemptive equilibria. For example, in Scenario

II, when Xt hits L2
1,1, firm 1 has no time to signal that she prefers a threshold-type

equilibrium, as she faces the immediate threat of firm 2 investing which would at once

generate a loss in her (firm 1) NPV.

3.2.3 Equilibria at General Stage (n1, n2)

To generalize to further interior stages (n1, n2) we assume that for all n′1 < n1, n
′
2 <

n2, there is a threshold-type equilibrium (which has been selected, if necessary, among

available choices) at stage (n′1, n
′
2). Under this assumption we can inductively apply the

concave majorant method.

To fix ideas, consider stage (2, 1); we use (S1,∗
1,1 , S

2,∗
1,1) to denote investment thresholds

of the threshold-type equilibrium strategies adopted at stage (1, 1). Then given firm 2’s

strategy with threshold s2 < L1
2,1, firm 1 solves:

Ṽ 1
2,1(x, s2)−D1

2,1(x) = sup
τ∈T

Ex
[
1{τ<τ22,1}e

−rτ {h1
2,1(Xτ )

}
+ 1{τ>τ22,1}e

−rτ22,1
{
l12,1(Xτ22,1

)
}]

,

(3.37)

with h1
2,1(x) = V 1

1,1(x)−D1
2,1(x)−K1

2 , where V 1
1,1 is the equilibrium game value received

by firm 1 at stage (1, 1). Since S2,∗
1,1 < S1,∗

1,1 from Proposition 3.7, from (3.31) the corre-
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sponding first-mover payoff is derived as

h1
2,1(x) =


D1

1,1(x)−D1
2,1(x)−K1

2 + V 1
1,0(x)−D1

1,1(x), if x ≤ S2,∗
1,1 ,

D1
1,1(x)−D1

2,1(x)−K1
2 + ω1

1,1F (x) + ν1
1,1G(x), if S2,∗

1,1 < x ≤ S1,∗
1,1 ,

D1
1,1(x)−D1

2,1(x)−K1
2 + h1

1,1(x), if x > S1,∗
1,1 .

(3.38)

Since F and G terms do not contribute to (L − r)h1
2,1, and (L − r)h1

1,1(x) < 0 for

x > S1,∗
1,1 , we conclude that h1

2,1(x) is in the class Hinc. Similarly, one can check that the

first-mover payoff of firm 2, h2
2,1(x) is in the class Hdec. Consequently, Proposition 2.6

and Lemma 2.8 allow us to apply similar arguments as Proposition 3.7 and Appendix

3.4.4 to derive threshold-type best-response of these firms. Similar arguments yield

Theorem 3.12 Let hin1,n2
and lin1,n2

be the first-mover payoffs and second-mover payoffs

associated to optimal stopping problems (3.16)-(3.17), for i = 1, 2. The threshold-type

equilibrium policies implemented by the firms at stage (n1, n2) are the stopping times

τ 1,∗
n1,n2

= inf{t ≥ 0 : Xt ≥ S1,∗
n1,n2
},

τ 2,∗
n1,n2

= inf{t ≥ 0 : Xt ≤ S2,∗
n1,n2
},

where
(
S1,∗
n1,n2

, S2,∗
n1,n2

)
is a solution to the system of equations



[
l1n1,n2

(S2)G(S1)− h1
n1,n2

(S1)G(S2)
]
F ′(S1) +

[
h1
n1,n2

(S1)F (S2)− l1n1,n2
(S2)F (S1)

]
G′(S1)

=
(
h1
n1,n2

)′
(S1) [G(S1)F (S2)−G(S2)F (S1)] ,[

h2
n1,n2

(S2)G(S1)− l2n1,n2
(S1)G(S2)

]
F ′(S2) +

[
l2n1,n2

(S1)F (S2)− h2
n1,n2

(S2)F (S1)
]
G′(S2)

=
(
h2
n1,n2

)′
(S2) [G(S1)F (S2)−G(S2)F (S1)] .

(3.39)
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Consequently, the equilibrium game values are

V 1
n1,n2

(x) =


V 1
n1,n2−1(x), if x ∈ (d, S2,∗

n1,n2
],

D1
n1,n2

(x) + ω1
n1,n2

F (x) + ν1
n1,n2

G(x), if x ∈ (S2,∗
n1,n2

, S1,∗
n1,n2

),

V 1
n1−1,n2

(x)−K1
n1
, if x ∈ [S1,∗

n1,n2
, d̄),

(3.40)

V 2
n1,n2

(x) =


V 2
n1,n2−1(x)−K2

n2
, if x ∈ (d, S2,∗

n1,n2
],

D2
n1,n2

(x) + ω2
n1,n2

F (x) + ν2
n1,n2

G(x), if x ∈ (S2,∗
n1,n2

, S1,∗
n1,n2

),

V 2
n1−1,n2

(x), if x ∈ [S1,∗
n1,n2

, d̄),

(3.41)

where

ω1
n1,n2

=
h1
n1,n2

(S1,∗
n1,n2

)G(S2,∗
n1,n2

)− l1n1,n2
(S2,∗

n1,n2
)G(S1,∗

n1,n2
)

F (S1,∗
n1,n2)G(S2,∗

n1,n2)− F (S2,∗
n1,n2)G(S1,∗

n1,n2)
, (3.42)

ν1
n1,n2

=
l1n1,n2

(S2,∗
n1,n2

)F (S1,∗
n1,n2

)− h1
n1,n2

(S1,∗
n1,n2

)F (S2,∗
n1,n2

)

F (S1,∗
n1,n2)G(S2,∗

n1,n2)− F (S2,∗
n1,n2)G(S1,∗

n1,n2)
, (3.43)

ω2
n1,n2

=
l2n1,n2

(S1,∗
n1,n2

)G(S2,∗
n1,n2

)− h2
n1,n2

(S2,∗
n1,n2

)G(S1,∗
n1,n2

)

F (S1,∗
n1,n2)G(S2,∗

n1,n2)− F (S2,∗
n1,n2)G(S1,∗

n1,n2)
, (3.44)

ν2
n1,n2

=
h2
n1,n2

(S2,∗
n1,n2

)F (S1,∗
n1,n2

)− l2n1,n2
(S1,∗

n1,n2
)F (S2,∗

n1,n2
)

F (S1,∗
n1,n2)G(S2,∗

n1,n2)− F (S2,∗
n1,n2)G(S1,∗

n1,n2)
. (3.45)

To recap, the overall dynamic expansion game proceeds in discrete stages. At each

interior stage, there are two thresholds Si,∗n1,n2
, which determine the investment level of

firm i = 1, 2. Figure 3.3a shows a schematic for all the different thresholds starting

at ~M0 = (2, 2). To better visualize the game evolution, a simulated state trajectory is

presented in Figure 3.3b with the firms’ thresholds for the case ∆Qi = 0.25 (in which

interior stage equilibria correspond to Scenario II and we assume the firms implement the

latest threshold-type equilibrium). The firms’ equilibrium policies determine a two-sided

exit region for each interior game stage and one-sided exit region for the boundary cases.
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Figure 3.3: Si,∗n1,n2 denotes the equilibrium threshold of firm i at stage (n1, n2) (Left:
a) Sketch of the various stage thresholds as a function of (n1, n2). (Right: b) A sample
trajectory of X with X0 = 0, ~M0 = (2, 2). The corresponding macro market evolution
is (2, 2)→ (1, 2)→ (1, 1)→ (0, 1)→ (0, 0) with expansions at the first hitting times
of the corresponding thresholds.

As the state process X hits one of the firms’ expansion threshold, the game jumps to the

subsequent stage and yields a new exit region.

3.2.4 Predetermined Priority and Central Planner

3.2.4.1 Predetermined Expansion Priority

In a competitive situation, the threat of the rival investing first causes the firms to

act preemptively. As a result, competition leads to loss of value compared to a first-best

strategy without any rivalry. To quantify this loss, we compare the derived equilibrium

game values to the setting where the order of investment is pre-assigned. In the latter

model, one firm is granted a priority option [38] meaning that she is allowed to single-

handedly optimize her investment level without worrying about preemption. After the

pre-assigned leader invests, the rival obtains a chance to invest as well. Thus, the priority

option removes the preemption threat, but still maintains the multi-stage competition
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aspect.

With multiple investment options one may consider a combination of several priority

options; to fix ideas we focus on the simplest situation where each firm starts with one

expansion option ~M0 = (1, 1), and therefore priority grants leadership status, making the

rival a follower. Assuming that the priority option is given to firm 1, her decision now

reduces to solving the optimal stopping problem:

V 1,P
1,1 (x)−D1

1,1(x) = sup
τ∈T

Ex
{
e−rτh1

1,1 (Xx
τ )
}
, (3.46)

where the payoff function is specified in (3.64)—after her investment the game will be in

stage (0, 1) with the associated game value V 1
0,1.

Proposition 3.13 (Policy and value function with priority option) The value function

associated to the optimal stopping problem (3.46) is:

V 1,P
1,1 (x) =


D1

1,1(x) + F (x)

F (S1,P,∗
1,1 )

· h1
1,1

(
S1,P,∗

1,1

)
, if x ∈ (d, S1,P,∗

1,1 ),

D1
0,1(x)−K1, if x ∈ [S1,P,∗

1,1 , d̄).

(3.47)

The corresponding investing policy is τ 1,∗
P = inf{t ≥ 0 : Xx

t ≥ S1,P,∗
1,1 }, where the optimal

stopping level S1,P,∗
1,1 solves F (S1,P,∗

1,1 )×
(
h1

1,1

)′
(S1,P,∗

1,1 ) = h1
1,1(S1,P,∗

1,1 )× F ′(S1,P,∗
1,1 ).

The proof matches that of Proposition 3.14, and hence is omitted. An important

property is that the optimal priority threshold S1,P,∗
1,1 is no less than the leader’s threshold

S1,∗
1,1 , which implies that competition causes preemption: if X0 ∈ (S1,∗

1,1 , S
1,P,∗
1,1 ) then firm 1

chooses to invest now even though without competition she would be better off to wait

until X rises up to S1,P,∗
1,1 .

Note that pre-assigning firm 1 as the first-mover is mathematically equivalent to

taking s2 → d, i.e. best-response when firm 2 never invests. It follows that S1,P,∗
1,1 > S1(s2)
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for ∀s2, i.e. S1,P,∗ is the limiting value of the best-response curve lims2↘d S
1(s2), see the

earlier Figure 3.2.

3.2.4.2 Central Planner

A different perspective on competition is offered by considering the difference be-

tween the primary non-cooperative setting and its cooperative analogue. The latter can

be thought of as a central planner (or state-controlled holding company) that jointly

optimizes the aggregate expected profits. Since there is no more rivalry, this “monopoly”

model reduces to a classical sequential real option problem; a related problem was treated

in [1].

Treatment of the cooperative investment problem is analogous to the problems con-

sidered after we aggregate the profit rates via

πMn1,n2
(x) := π1

n1,n2
(x) + π2

n1,n2
(x). (3.48)

If πi’s are linear in x, then so is πM and hence the solution structure remains the same.

In particular, in states (1, 0), (0, 1) we have investment thresholds SM,∗
1,0 , S

M,∗
0,1 . To handle

the investment decision in stage (1, 1) and beyond, we can view it as optimizing the

two-sided stopping time τ 1,M
1,1 ∧τ

2,M
1,1 , where τ 1,M

1,1 is the time to invest in firm 1-expansion,

while τ 2,M
1,1 is the time to invest in firm 2:

V M
1,1(x) = D1

1,1(x) +D2
1,1(x) + sup

τ1,M1,1 , τ2,M1,1 ∈T
Ex
[
1{τ1,M1,1 <τ2,M1,1 }

e−rτ
1,M
1,1

{
h1,M

1,1

(
Xτ1,M1,1

)}
+1{τ1,M1,1 >τ2,M1,1 }

e−rτ
2,M
1,1

{
h2,M

1,1

(
Xτ2,M1,1

)}]
. (3.49)

Section 3.4.6 presents the resulting solution for V M
1,1 and the optimal investment

thresholds Si,M,∗
1,1 that define τ i,M1,1 . Since the cooperative solution is first-best, V M

1,1 ≥
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V 1
1,1 + V 2

1,1, see Figure 3.4b.

3.3 Numerical Examples

We assume in all following numerical examples that when available, the (latest)

threshold-type equilibria are selected at each stage. Economically this means that the

firms are not very aggressive and refrain from preemptive equilibrium strategies.

3.3.1 Dynamic Preemption and Over-investment for 1-shot Ex-

pansions

In this section, we use a symmetric example to compare competitive investment strate-

gies to their counterparts where competition is constrained (priority option) or firms co-

operate. To focus on the preemption effect, we assume that each firm possesses only one

option to expand her capacity. The firm parameters are identical, except that one prefers

positive Xt and the other negative Xt.

Parameter Meaning Value

θ mean-reversion level 0
µ mean-reversion rate 0.06
σ volatility 0.70
r interest rate 0.03
ρi cost sensitivity ±1.60

Qi
1,1 initial capacity of firm i 1.00

Qi
0,0 expanded capacity of firm i 1.50
Ki expansion cost 5
x0 initial state of Xt 0

Table 3.1: Numerical setting for Section 3.3.1.

The relative cost Xt is a mean-reverting OU process with zero mean-reversion level

θ = 0. As a consequence of these choices, all the equilibrium thresholds will be symmetric
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about x = 0. The price model is:

Pn1,n2 = 30
(
1− 0.17(Q1

n1,n2
+Q2

n1,n2
)
)
.

Starting with stage (1, 1) we compare three competition models: (i) non-cooperative

game, where both firms compete to become the “leader” by investing first, the follower

then has a chance to invest second; (ii) priority case where firm 1 is pre-determined to

be the leader and hence can optimize her threshold S1,P,∗
1,1 without worrying about threat

of preemption; (iii) cooperative game or the central planner model where the aggregate

profit of the two firms is optimized. Thanks to the symmetry present in the example, in

the competitive model the thresholds are symmetric about zero S1,∗
1,1 = −S2,∗

1,1 ; also the

second-investment thresholds are the same in case (i) and (ii) since the follower does not

care if there was an initial priority option or not.

Non-cooperative Predetermined Leader Central Planner

First-stage Policy S1,∗
1,1 = 2.1822 S1,P,∗

1,1 = 2.964 S1,M,∗
1,1 = 2.886

Second-stage Policy S1,∗
1,0 = −0.0387 — SM1,0 = 10.5209

Expected time of mS2,∗
1,1 ,S

1,∗
1,1

(0) mS1,∗
P

(0) = 107.448 mS1,M,∗
1,1 ,S2,M,∗

1,1
(0)

the first investment =16.125 =39.372

Expected time of mS2,∗
0,1

(S1,∗
1,1) mS2,∗

0,1
(S1,P,∗

1,1 ) = 23.269 mS2,M,∗
0,1

(S1,M,∗
1,1 )

the second investment =18.943 = 7.280× 108

Table 3.2: Equilibrium thresholds of firm 1 and expected times of sequential invest-
ments. By symmetry, equilibrium thresholds of firm 2 are the same values with
opposite signs at each game stage. Stage (1, 1) equilibrium corresponds to Scenario I
and is therefore unique.

With parameter values stated in Table 3.1, the equilibrium thresholds of firm 1 as-

sociated to each competition model are presented in Table 3.2. For example, her game

strategy at stage (1, 1) is: τ 1,∗
1,1 = inf{t ≥ 0 : Xt ≥ S1,∗

1,1 = 2.1822}, and so forth.

We remark that under these parameters, stage (1, 1) yields Scenario I and the resulting

threshold-type equilibrium is unique.
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We observe that firm 1’s threshold in a competitive market, S1,∗
1,1 = 2.1822, is lower

than her thresholds corresponding to other situations, i.e. competition leads to earlier

expansion. With a priority option, firm 1 would not invest until Xt ≥ 2.964, and under

central planner, firm 1 would not invest until Xt ≥ 2.886. In other words, when the

state process Xt is in (S1,∗
1,1 , S

1,P,∗
1,1 ) = (2.182, 2.964), the firm over-invests immediately,

rather waiting for her first-best (i.e. non-competitive) threshold. Figure 3.4 quantifies

the resulting impacts on expected profits, which decline due to the above pre-emption

effect that reduces the value of the timing flexibility. The left panel compares V 1
1,1 to

V 1,P
1,1 —note that the two are equal for x ≥ S1,P,∗

1,1 . The right panel shows
(
1− V 1

1,1(x)+V 2
1,1(x)

VM1,1(x)

)
which is the difference between the net profit of the central planner and the sum of two

competitive firms’ net profit. Cooperation increases profits, and the above ratio quantifies

the aggregate loss caused by competitive preemption. This loss is maximized when the

initial state X0 = x is equal to the expansion thresholds Si,∗1,1, whereby one of the firms

overinvests immediately.
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Figure 3.4: Impact of competition on game values. (Left: a) Equilibrium game
value of firm 1 predetermined as the leader V 1,P

1,1 (red dashed curve), versus firm

1 game value in a competitive market V 1
1,1 (solid black). (Right: b) Percentage loss

1− (V 1
1,1(x0) + V 2

1,1(x0))/VM
1,1(x0) in the firms’ aggregate profit due to competition.
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To convert the above thresholds into a more economic context, we compute the aver-

age timing of an investment. For example, the first investment takes place at τ 1
1,1 ∧ τ 2

1,1.

The respective expected value can be obtained by viewing this quantity as the first exit

time from an interval (a, b) ⊃ x, τab = inf{t ≥ 0 : Xx
t ≤ a or Xx

t ≥ b}. Denote its

expectation as m(x; a, b) := Ex [τab] (see detailed computation in Section 2.3.2). Then

the expected time of the first investment in a competitive market, the priority case,

or the central planner are m(0;S2,∗
1,1 , S

1,∗
1,1), m(0;−∞, S1,P,∗

1,1 ) and m(0;S2,M,∗
1,1 , S1,M,∗

1,1 ), re-

spectively. We also will consider the time between the first and the second investments

(i.e. between the leader and follower times).

Table 3.2 shows that there is in fact a very significant wedge between average in-

vestment under competition, and average investment by the central planner. With an

initial state X0 = 0, the expected time to finish expansion in a competitive market,

mS2,∗
1,1 ,S

1,∗
1,1

(0)+mS2,∗
0,1

(S1,∗
1,1) = 35.068, is much shorter compared to the priority/cooperative

analogues, so overall capacity build-up is hastened throughout the game, not just due

to first-stage preemption. Indeed, because the first investment occurs sooner, the leader

gets less time to enjoy her competitive advantage, i.e. lowered mS2,∗
0,1

(S1,∗
1,1), which is an-

other way to explain the harmful impact of competition on industry profitability. An

interesting observation is that the expected time of the second investment for a central

planner (7.280× 108) is so long that it is almost equivalent that the central planner will

invest only once. Therefore, competition can alter not only the timing of investment, but

even the long-run market organization.

3.3.2 Effects of Market Fluctuation

We next discuss the effect of market fluctuations which can be parameterized by the

volatility σ of the OU process (2.39). Higher volatility of the relative costs Xt implies
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more fluctuations in market conditions.
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Figure 3.5: Effect of cost volatility σ. (Left: a) Equilibrium thresholds of firm 1
S1,∗

1,1 , S
1,∗
1,0 , S

1,P,∗
1,1 as the volatility σ of (Xt) varies. (Right: b) Respective equilibrium

game values of firm 1 at X0 = 0 versus σ.

Figure 3.5 shows that as the volatility σ increases, the expansion threshold at stage

(1, 0) S1,∗
1,0 of firm 1 increases, while her stage (1, 1)-threshold S1,∗

1,1 decreases. With a prior-

ity option, the corresponding threshold of firm 1 is positively related to σ. In Figure 3.5b,

the equilibrium expected profit of firm 1 increases if she gets first-mover priority, which

coincides with the intuition that more market fluctuations lead to higher average revenue.

In particular, with higher σ, the pre-determined leader can wait longer until the state

process moves to her preferred direction and then reap higher rewards. On the contrary,

in a competitive market, game values decline as σ increases. This discrepancy highlights

the effects of competition. Namely, in the face of a more volatile market, firms become

more aggressive and expand capacity much sooner, to the extent that their expected

net profits drop. We observe that for σ large, the preemptive equilibrium (3.34)-(3.35)

becomes the only available game strategy the firms can adopt (i.e. we are in scenario

III from Section 3.2.2). The financial interpretation is that under high profit volatility,

firms wish to delay their expansion in order to be certain that X will not quickly move
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against them. Consequently, they are more concerned about pre-emption by the com-

petitor which is another way for future gains to dissipate. As a result, the competition

effect gets stronger and eventually takes over, ruling out threshold-type equilibria.

3.3.3 Case Study: Impact of Multi-part Investments

As discussed, investments in generation capacity are done on a very large-scale with

multi-billion dollar commitments. These massive single-shot decisions carry a lot of risk,

so more flexible technologies might be preferable (see also [26] and [48]). We interpret

flexibility as the ability to split a large investment into smaller ones, for example by

sequentially installing several small plants. In this section we present a numerical example

to discuss the respective effect of expansion size and the number of expansion options.

This analysis also links the sequential, discrete-stage model herein to a continuous control

formulation where capacity is added incrementally in infinitesimal amounts.

We maintain the symmetric parameter setting with the OU process Xt from the

previous section. Capacity expansion is modeled by Qi
n1,n2

= q̄− (∆Q)ni, where q̄ is the

terminal capacity to be reached, and ∆Q is the unit investment. We now compare the

previous single-expansion situation that used ∆Q = 0.5 and ni ∈ {0, 1}, q̄ = 1.5, with a

two-stage expansion for firm i, modeled by ∆Qi = 0.25 and ni ∈ {0, 1, 2}. The expansion

lump-sum costs Ki are proportional to the expansion size ∆Qi, allowing a direct ceteris

paribus comparison. We remark that with added flexibility, the game in interior stages

now features Scenario II with multiple threshold-type equilibria.

3.3.3.1 Single-Firm Increased Flexibility

We first consider the case that only firm 1 is allowed to split her project, namely

(∆Q1, ∆Q2) = (0.25, 0.5). The resulting best-response curves are sketched in Figure 3.6

81



Capacity Expansion Games Chapter 3

firm 1 firm 2

Stage (2, 1) S1,∗
2,1 = 1.133 S2,∗

2,1 = −2.1312

Stage (1, 1) S1,∗
1,1 = 3.323 S2,∗

1,1 = −1.2083

Stage (2, 0) S1,∗
2,0 = −1.043 —

Stage (1, 0) S1,∗
2,0 = 1.064 —

Stage (0, 1) — S2,∗
2,0 = 0.0387

Table 3.3: Investment thresholds for the case ∆Q1 = 0.25,∆Q2 = 0.5. Interior stage
equilibria correspond to Scenario II with multiple threshold-type equilibria; according
to Remark 3.11 we always pick the latest one.

and the equilibrium expansion thresholds are summarized in Table 3.3. Compared to the

case (∆Q1, ∆Q2) = (0.5, 0.5) in Table 3.2, thanks to increased flexibility firm 1 will begin

adding capacity sooner, and is much more likely now to invest first: P0

(
τ 1,∗

2,1 < τ 2,∗
2,1

)
=

0.6853; recall that in the base case that probability was 50/50.
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Figure 3.6: Best-response curves in the case
(
∆Q1, ∆Q2

)
= (0.25, 0.5) with lowercase

s denote given thresholds of one firm and uppercase S denote the other firm’s best-re-
sponse threshold. Interior stage equilibria correspond to Scenario II with multiple
threshold-type equilibria; the latest ones are highlighted in the plot.

As expected, additional flexibility increases the game value of firm 1, see the red

dashed line in Figure 3.7a. The extra profit is maximized when the initial X0 is be-

tween S1,∗
2,1(0.25, 0.5) and S1,∗

1,1(0.5, 0.5). Surprisingly, additional flexibility for firm 1

also increases game value of firm 2. This can be partly understood by supposing that

X0 = S1,∗
1,1(0.5, 0.5), in which situation under ∆Q1 = 0.5 firm 1 will expand her capacity
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to 1.5 immediately, putting firm 2 into the undesirable “follower” state; with ∆Q1 = 0.25,

the expansion is only to Q1
1,2 = 1.25, reducing the negative impact on firm 2. As a re-

sult, in this numerical example, both firms benefit from one of them gaining additional

flexibility.
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Figure 3.7: (Left: a) Impact of firm’s 1 increased flexibility on game values received
by each firm. The two “cusps” of the red dashed line are due to the game values
not being smooth at the thresholds S2,∗

2,1(0.25, 0.5) and S2,∗
1,1(0.5, 0.5). (Right: b) The

expected capacity E0[Qi(t)] of each firm starting with X0 = 0.

3.3.3.2 Marco Market Organization: Expected Capacity

Another question we are interested in is the expected capacity Ex[Qi(t)] of each firm at

time t, or equivalently the distribution of ~Mt = (N1(t), N2(t)). The exact answer depends

on P(τ i ≤ t) and requires computing the running maximum of an OU process which is not

available in closed form. For our purposes we accordingly use Monte Carlo simulation

to estimate the expected capacity of firm 1 in the cases (∆Q1, ∆Q2) = (0.25, 0.25),

(0.25, 0.5) and (0.5, 0.5), assuming that X0 = 0.

To compute Ex[Qi(t)], we employ a Monte Carlo method based on the Euler scheme

with ∆t = 1/120 and 10000 simulated trajectories of the state process X. The estimated

capacities at time t for each case are presented in Figure 3.7b, from which we observe

that added flexibility allows firms to smooth out their investment profiles over time,
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installing more capacity early on, and less (on average) later. Comparing the curves for

(∆Q1, ∆Q2) = (0.25, 0.25) against those of (∆Q1, ∆Q2) = (0.5, 0.5) we see that smaller

project size ∆Q makes aggregate capacity grow slower.

3.3.4 Case Study: Political Will for Meaningful Carbon Prices

We return to the motivating economic example where firm 1 is the nuclear power

generator and firm 2 is a coal-fired plant investor. With Xt representing the carbon

emission price, higher Xt implies higher net profit made by the nuclear investors (who

are carbon-neutral), while lower profit is made by the CO2-emitting coal-fired plant. As

mentioned in Remark 3.2, we can also interpret the firms’ sensitivity to the carbon price

via the correlation between CO2 allowance price and electricity prices

Parameter Value Unit

Private discount rate r 10%
Public discount rate rPublic 3%
Nuclear expansion cost K1 1400 USD/MWe
Coal expansion cost K2 850 USD/MWe
Revenue rate P1,1 24 USD/MWh
Revenue rate P1,0 22 USD/MWh
Revenue rate P0,1 22 USD/MWh
Revenue rate P0,0 10 USD/MWh
Cost Sensitivity ρ 0.25
Long-run carbon price θ 30 USD/tCO2
Political will µ [0.1, 0.25]
Initial carbon price X0 5 USD/tCO2

Table 3.4: Parameter values for Section 3.3.4.

As in the previous example, we model Xt as a mean-reverting OU diffusion. Such

dynamics are interpreted in terms of the government policy to target a carbon price of

$θ per ton of CO2. Market conditions generate fluctuations around this long-run average

price, and the mean-reversion parameter µ represents the strength of the political will
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to keep prices around θ. Specifically, in light of recent experiences around the world,

policy makers have tried to impose significant carbon prices (θ = 30), while the actual

prices have been rather low (X0 = 5). The mean-reversion rate µ in (2.39) determines

the expected time to reach the carbon price target, with the time-scale proportional to

µ−1.

In the short-run, market conditions are favorable for the coal-fired plants, reflected

in the fact that their investment costs are lower, K2 < K1. In the long-run, the carbon

price will rise and erode this favorable situation. For the social planner, the nuclear

investment is therefore preferable (and can be justified through a lower social discount

factor rPublic). However, private investors have much larger discounting r = 10%. There-

fore, depending on the political will, coal-fired investment might still be made in the near

future. To sharpen this conflict, we assume that the leveraged costs of electricity gener-

ation (LCOE) and the nominal electricity prices are such that at most one investment

is profitable. Thus, starting at stage ~M0 = (1, 1), stages (1, 0) and (0, 1) are both ab-

sorbing. Consequently, the two firms are competing to make the first and only expansion

(i.e. become the “leader” in this asymmetric single-shot setting). Namely, the coal-fired

investor might want to preempt the base-load market before the carbon price makes her

less competitive. Knowing this, one wonders whether the “green” nuclear power plant

generator will hasten her own investment.

The nominal levels of prices Pn1,n2 are designed in the following way. Noting r, the

discount rate, the LCOE for player i is pi := r·Ki
N

, where N is the number of hours per year

to get a price in USD/MWh. In words, LCOE is the price level for which the net present

value of building a new plant is zero. We have p2 ≤ p1 and take P1,1 > max(p1, p2),

but P0,0 � min(p1, p2). Thus, nominal prices after a first investment are set in such a

way that once one player has invested, a second investment will lead to a nominal price

much lower than the LCOE’s of both players, making it unlikely that the price plus
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the carbon premium will rise above investment levels again. The intermediate nominal

prices P0,1, P1,0 are right around pi’s, so that investment is possible, but is conditional

on a favorable carbon price (low enough for the coal-fired investor, high-enough for the

nuclear investor).

It turns out that with the above parameters, stage (1, 1) leads to a unique non-

preemptive equilibrium (scenario I). To explain the long-term structure of the market,

we consider the end stage limt→∞ ~Mt. With the parameter settings given, it is only

profitable to make (exactly) one investment, so that limt→∞ ~Mt ∈ {(1, 0), (0, 1)}. Figure

3.8 plots the probability Prob0,1 = Px0(limt→∞ ~Mt = (0, 1)) that the coal-fired producer

is the one to build. We see that this quantity is highly sensitive to µ. If µ is too low, the

competition will “choose” to preemptively build coal-fired plants (S2,∗
1,1 > X0 = 5), while

the public decision-makers will still be struggling to establish a high and steady value of

carbon price. As µ rises, the investment threshold of the coal-fired investor S2,∗
1,1 falls as
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Figure 3.8: Game equilibrium at stage (1, 1) for the nuclear-coal generation capacity
market. Equilibrium is based on Scenario I with a unique threshold-type equilibrium.
(Left: a) Investment thresholds S1,∗

1,1 , S
2,∗
1,1 as the mean-reversion rate µ varies. For

convenience we also indicate the level of initial carbon price X0. (Right: b) Probability
that the coal-fired investor invests first Prob1,0 as µ varies for the given X0 = 5.
For small µ the coal-fired producer is guaranteed to invest first; for large µ nuclear
producer 1 is almost guaranteed to invest first, Prob1,0 ' 0.
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she anticipates lower future profits, and hence demands larger short-term gains (possible

only if carbon price is minimal) as compensation. Of course, with strong political will,

carbon prices are unlikely to fall from X0 = 5, so that the likelihood of coal-fired investor

making an investment becomes negligible. This confirms the strong impact of policy-

making on power plant investments. At the same time, the investment threshold of the

nuclear investor is insensitive to µ, because nuclear capacity is not added until Xt ' θ,

whereby the mean-reversion rate is less relevant.

We next consider a multi-stage situation, whereby each of the two producers can

build up to two equal-sized smaller-scale plants. We again assume that expansion costs

are proportional to plant size, and also that the overall market demand economically

supports aggregate capacity up to two plants. Specifically, we assume that with a sin-

gle small plant, market price will decline to P2,1 = P1,2 = 23 and with any two small

plants, P2,0 = P0,2 = P1,1 = 22, matching the large-plant setting in Table 3.4. Beyond

that, investment becomes impractical, i.e. P1,0 and P0,1 are too low to ever be prof-

itable. Therefore, starting at stage (2, 2), either (i) the nuclear producer builds 2 small

nuclear plants; (ii) the coal-fired investor builds two small coal-fired plants; or (iii) each

firm builds one plant apiece. The probabilities of the respective outcomes are labeled

Prob2,0, P rob1,1, P rob0,2, with Probn1,n2 := P (limt→∞ ~Mt = (n1, n2)). In contrast to the

original large-scale investment competition, the initial competitive market at stage (2, 2)

corresponds to Scenario II (unless µ is close to 0.1) supporting both a threshold- and

preemptive-type equilibria. This occurs because smaller scale investments make nuclear

investment profitable at lower carbon prices, sharpening the competition to install capac-

ity first (algebraically it turns out that with given parameter values L1
2,2 < L2

2,2). Stages

(2, 1) and (1, 2) still correspond to Scenario I with a unique non-preemptive equilibrium.

We first assume the threshold-type equilibrium is selected. Figure 3.9 shows that the

coal-fired investor will increase her investment threshold S2,small,∗
2,2 for a smaller project
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Figure 3.9: (Left: a) Distribution of the terminal stages
Probn1,n2 := P(limt→∞ ~Mt = (n1, n2)) under ∆Qi = 0.25. The solid lines rep-
resent probabilities of terminal stages in a competitive market. The dashed line
represents the probability Probe0,2 = P(limt→∞ ~Mt = (0, 2)| ~M0 = (1, 2)) that two
nuclear plants are built if a small nuclear plant is built at X0 = 5 preemptively.
(Right: b) Investment thresholds S1,∗

2,2 , S
2,∗
2,2 and S2,∗

1,2 , as µ varies. For convenience we
also indicate the level of initial carbon price X0 = 5.

compared to the preceding single large plant S2,large,∗
1,1 . As a result, for µ < µ∗ = 0.181, the

coal-fired investor is going to build one small plant at once and wait for a moment that

the carbon price drops to expand her existing plant. Moreover, even for large µ, the coal-

fired investor still has a good chance to build one small plant (leading to terminal stage

(1, 1)), which means that only a very strong policy can guide the market to exclusively

“green” power plants.

From Figure 3.9b we also observe that the investment threshold of coal-fired investors

at stage (1, 2) is significantly lower relative to the threshold at stage (2, 2). This is the

opposite effect from what was observed in Section 3.3.3, due to the different relationship

between stages and prices. Thus, one way for the public decision-makers to guide the

industry could be via preempting the base-load market by a small “green” power plant

at the initial time (e.g. built with government subsidies). In turn, the lowered electricity

price reduces anticipated future profits of the coal-fired investor, and makes them less
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likely to ever invest (see also [13]). In Figure 3.9a, as the dashed line shows, public

decision-maker’s preemption sharply increases the probability that two (small) nuclear

power plants will be built. Another alternative for policy makers is to grant a priority

option to nuclear investors at the first stage (2, 2). Distinguished from the preemption

case, nuclear investors with a priority can simply wait until a high-enough carbon price

to make their investment. Since the long-run carbon price is taken to be θ = 30, once

it is high, it will likely remain high. Consequently, a single priority option is enough

to guide the market to the (0, 2) terminal stage, since the coal producer becomes very

unlikely to invest in the (1, 2)-stage.

Figure 3.10a shows that the social planner (equivalent to a cooperative game, or

a generator monopoly) is likely to build two nuclear plants, consistent with the idea

that “green” generation is more profitable in the long-run. Significantly, Figure 3.10b

illustrates that the percentage loss caused by competition can be as high as 40% at

moderate levels of µ (when a small coal-fired plant is built instantly). This confirms the

anecdotal evidence of very significant losses incurred by producers in newly deregulated

markets, and the accompanying capacity over-investment (due to the preemptive race to

build first). It also illustrates the dramatic impact that the short-term driven competition

can have on the long-term market organization; here over-investment drastically alters

the mix of power plants likely to be built, hurting long-run profits of both producers. We

also observe that such losses are reduced to almost zero for µ large enough, which again

corroborates the strong impact of public policy.

Coming back to the equilibrium type at stage (2, 2), suppose instead that the investors

are aggressive and implement the preemptive equilibrium strategy. Since a coal-fired

power plant is cheaper to build, it is natural to assume that the coal-fired investor pos-

sesses preemptive priority. For µ < µ∗ = 0.181, this makes no difference: an aggressive

coal investor will behave exactly the same as before because she will build a small plant
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Figure 3.10: (Left: a) Distribution of the terminal stage limt→∞ ~Mt under co-
operative game model. (Right: b) Percentage loss caused by competition:[
1− (V 1

2,2 + V 2
2,2)/VM

2,2

]
(X0).

at once and there is no preemptive equilibrium at stage (2, 1). For larger µ, it turns out

that L2
2,2 < X0 = 5, which prevents firm 2 from immediate investment, as the NPV of

an expansion is negative. Meanwhile, the nuclear investor will choose to preempt right

before the carbon emission price drops down to L2
2,2 (see resulting game value of firm

1 in Figure 3.1a). Consequently, exclusively “green” power plants are more likely to be

established.
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Figure 3.11: Resulting equilibrium types at stage (2, 2) in the small-scale power plants
case, as the political will µ and carbon volatility σ vary.

90



Capacity Expansion Games Chapter 3

Finally, we end this section by illustrating which equilibrium scenario takes place

during stage (2, 2) as the political will µ and carbon market fluctuation σ vary. As

Figure 3.11 shows, we observe that only a preemptive equilibrium exists (Scenario III)

under low carbon volatility σ. Also, the impact of µ is non-monotone: when µ is very

small or very large, the competition between industries is less preemptive (as one industry

is clearly ahead in the short-term) and hence threshold-type equilibria exist. However,

for intermediate values of µ, the equal-strength competition raises benefits of aggressive

investment and generates preemptive equilibria. The impact of σ is harder to explain

and is ultimately linked to its recursive effect on the leadership thresholds Li2,2 of the two

industries.

3.4 Propositions and Proofs

3.4.1 Optimization at Stage (1, 0) and (0, 1)

In the game stage (1, 0) firm 2 has already invested and firm 1 now optimizes her

expected discounted profits. Substituting (3.11) into (3.12) for n1 = 1, firm 1 solves the

optimal stopping problem:

V 1
1,0(x)−D1

1,0(x) = sup
τ∈T

Ex
{
e−rτh1

1,0 (Xτ )
}
, (3.50)

where the first-mover payoff is:

h1
1,0(x) = D1

0,0(x)−D1
1,0(x)−K1

1 =
ρ1∆Q1

1

δ
· x−

(
K1

1 + ζ1
1,0 − ζ1

0,0

)
,

and we set ∆Q1
1 as the expansion size of firm 1 when she has one option left. The payoff

h1
1,0 is linear and increasing in x, similar to a Call option payoff. Thus, this optimal
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stopping problem can be considered as an analogue to pricing a perpetual American Call.

In order to solve this problem, we apply the operator Ψ (2.15) and then Proposition 2.6

with R = D, see Section 3.4.1.1 for the details.

Proposition 3.14 (firm 1 at stage (1, 0)) The value function associated to the optimal

stopping problem (3.50) is admitted as:

V 1
1,0(x) =


D1

1,0(x) + F (x)

F (S1,∗
1,0 )
· h1

1,0

(
S1,∗

1,0

)
, if x ∈ (d, S1,∗

1,0),

D1
0,0(x)−K1

1 , if x ∈ [S1,∗
1,0 , d̄).

(3.51)

The corresponding policy is characterized by a threshold-type stopping time

τ 1,∗
1,0 = inf{t ≥ 0 : Xx

t ≥ S1,∗
1,0}, (3.52)

where the expansion threshold S1,∗
1,0 satisfies the equation

F (S1,∗
1,0) =

h1
1,0(

h1
1,0

)′ (S1,∗
1,0)× F ′(S1,∗

1,0). (3.53)

In the converse scenario, at stage (0, 1) firm 2 possesses the only expansion option.

Substituting (3.11) into (3.13) for n2 = 1, she solves the following optimal stopping

problem:

V 2
0,1(x)−D2

0,1(x) = sup
τ∈T

Ex
{
e−rτh2

0,1(Xτ )
}
. (3.54)

The first-mover payoff is derived as:

h2
0,1(x) = D2

0,0(x)−D2
0,1(x)−K2

1 = −ρ
2∆Q2

1

δ
· x−

(
K2

1 + ζ2
0,1 − ζ2

0,0

)
,
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where we set ∆Q2
1 as the expansion size of firm 2 when she has one option left. Since

h2
0,1 is decreasing and linear in x, the single-agent optimizing problem can be considered

as an analog to the perpetual American Put. The following Proposition readily follows,

see Section 3.4.1.2.

Proposition 3.15 (firm 2 at stage (0, 1)) The value function associated to the optimal

stopping problem (3.54) is admitted as:

V 2
0,1(x) =


D2

0,0(x)−K2
1 , if x ∈ (d, S2,∗

0,1 ],

D2
0,1(x) + G(x)

G(S2,∗
0,1 )
· h2

0,1(S2,∗
0,1), if x ∈ (S2,∗

0,1 , d̄).

(3.55)

The corresponding policy is characterized by a threshold-type stopping time

τ 2,∗
0,1 = inf{t ≥ 0 : Xx

t ≤ S2,∗
0,1}, (3.56)

where the expansion threshold S2,∗
0,1 satisfies the equation

G(S2,∗
0,1) =

h2
0,1(

h2
0,1

)′ (S2,∗
0,1)×G′(S2,∗

0,1). (3.57)

Example 3.16 Under a GBM model (2.36), the game value of firm 1 at stage (1, 0) is

derived as:

V 1
1,0(x) =


D1

1,0(x) +
K1

1+ζ11,0−ζ10,0
η+−1

(
x

S1,∗
1,0

)η+
, if x ∈ (0, S1,∗

1,0),

D1
0,0(x)−K1

1 , if x ∈ [S1,∗
1,0 , +∞),

where S1,∗
1,0 =

δ(K1
1+ζ11,0−ζ10,0)η+
ρ1∆Q1

1(η+−1)
is the expansion threshold of firm 1 at stage (1, 0). The
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game value of firm 2 at stage (0, 1) is derived as:

V 2
0,1(x) =


D2

0,0(x)−K2
1 , if x ∈ (0, S2,∗

0,1 ],

D2
0,1(x) +

(K2
1+ζ20,1−ζ20,0)

1−η−

(
x

S2,∗
0,1

)η−
, if x ∈ (S2,∗

0,1 , +∞),

where S2,∗
0,1 =

δ(K2
1+ζ20,1−ζ20,0)η−
ρ2∆Q2

1(η−−1)
is the expansion threshold of firm 2.

Under an OU model (2.39), there is no explicit formula. The thresholds and game

values can be obtained by plugging F (2.41) and G (2.41) into preceding propositions and

solving the resulting equations numerically.

3.4.1.1 Proof of Proposition 3.14

Proof: This is a canonical single agent optimal stopping problem. In this thesis,

we prove it following the work of [55]. Recall that the optimal stopping problem (3.50)

corresponds to the case R = D discussed in Proposition 2.6. Applying operator Ψ

to h1
1,0, we obtain H1

1,0(y) := Ψh1
1,0(y), which is continuous and twice differentiable on

ψ(D) = (0,+∞). Meanwhile, denoting the smallest concave majorant of H1
1,0 over R+

by WH1
1,0(y), and referring to Proposition 2.6, we obtain

V 1
1,0(x)−D1

1,0(x) = G(x) ·
[
WH1

1,0 ◦ ψ(x)
]
, x ∈ D. (3.58)

Since h1
1,0 is a linear increasing function which is in the class Hinc, the transformed

payoff y 7→ H1
1,0(y) possesses properties stated in Lemma (2.8), namely it is convex on

[0, ψ
(
b1

1,0

)
) and concave on (ψ

(
b1

1,0

)
,+∞). Therefore, we conclude that there exists a

unique number y∗ > ψ(b1
1,0), such that the smallest concave majorantWH1

1,0 is a straight

line from the origin tangent to H1
1,0 at

(
y∗, H1

1,0(y∗)
)

on [0, y∗), and then coincides with
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H1
1,0 on [y∗,+∞) (see Figure 2.1a):

(
WH1

1,0

)
(y) =


y
H1

1,0(y∗)

y∗
, if y < y∗,

H1
1,0(y), if y ≥ y∗.

(3.59)

Define S1,∗
1,0 := ψ−1(y∗). By direct differentiation, we obtain

dH1
1,0(y)

dy

∣∣∣∣y=ψ(S1,∗
1,0)

=

(
h1

1,0

)′
(S1,∗

1,0)G(S1,∗
1,0)− h1

1,0(S1,∗
1,0)G′(S1,∗

1,0)

F ′(S1,∗
1,0)G(S1,∗

1,0)− F (S1,∗
1,0)G′(S1,∗

1,0)
.

To match the first derivative at the tangent point, it must hold that

H1
1,0(y∗)

y∗
= (H1

1,0)′(y∗), (3.60)

where by (2.11) the LHS is admitted as

H1
1,0(y∗)

y∗
=
H1

1,0(ψ(S1,∗
1,0))

ψ(S1,∗
1,0)

=
h1

1,0(S1,∗
1,0)

F (S1,∗
1,0)

. (3.61)

Consequently, we can rewrite condition (3.60) in terms of S1,∗
1,0 , and simplify it to

(3.53). Substituting (3.61) into (3.59), we get

WH1
1,0 ◦ ψ(x) =


ψ(x)

H1
1,0(y∗)

y∗
= F (x)

G(x)

h11,0(S1,∗
1,0 )

F (S1,∗
1,0 )

, if x ∈ (d, S1,∗
1,0),

H1
1,0(ψ(x)) =

h11,0(x)

G(x)
, if x ∈ [S1,∗

1,0 , d̄).

Combining above with (3.58) we obtain the expression for the value function V 1
1,0(x) in

(3.51). This also yields the structure of the optimal stopping region as (3.52) and the

smooth pasting condition at the threshold S1,∗
1,0 via (3.60).
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3.4.1.2 Proof of Proposition 3.15

Proof: The optimal stopping problem (3.54) corresponds to the special case R = D.

Applying Φ operator and referring to Proposition 2.6 yields that

V 2
0,1(x)−D2

0,1(x) = F (x) ·
[
WH2

0,1 ◦ ϕ(x)
]
, x ∈ D, (3.62)

where H2
0,1(z) := Φh2

0,1(z) =
h20,1
F
◦ϕ−1(z) is continuous and twice differentiable on ϕ(D) =

(0, +∞), and WH2
0,1 is its smallest concave majorant in the z-coordinate. Since h2

0,1 is

in Hdec, Lemma 2.8 implies that z 7→ H2
0,1(z) possesses the same shape as y 7→ H1

1,0(y)

sketched in Figure 2.1a, and consequently its smallest concave majorant WH2
0,1 has the

same shape as WH1
1,0. Similar arguments as in the proof of Proposition 3.14 yield that

WH2
0,1 ◦ ϕ(x) =


ϕ(x)

H2
0,1(z∗)

z∗
= G(x)

F (x)

h20,1(S2,∗
0,1 )

G(S2,∗
0,1 )

, if x ∈ (S2,∗
0,1 , d̄),

H2
0,1(ϕ(x)) =

h20,1(x)

F (x)
, if x ∈ (d, S2,∗

0,1 ],

where S2,∗
0,1 is obtained by matching the first derivative at z∗ := ϕ

(
S2,∗

0,1

)
H2

0,1 (z∗)

z∗
=
(
H2

0,1

)′
(z∗) .

Finally, the value function V 2
0,1(x), as well as the stopping region (3.56) stated in (3.55)

is obtained by (3.62).

3.4.2 Proof of Theorem 3.4

We use induction to prove the result for the case where only firm 1 has expansion

options. Suppose that at stage (n1−1, 0) firm 1 implements game strategy characterized

by threshold S1,∗
n1−1,0 and receives game value V 1

n1−1,0. Following (3.12), at stage (n1, 0)
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firm 1 solves an optimal stopping problem with first-mover payoff:

h1
n1,0

(x) = V 1
n1−1,0(x)−D1

n1,0
(x)−K1

n1

=


D1
n1−1,0(x)−D1

n1,0
(x)−K1

n1
+

h1n1−1,0(S1
n1−1,0)

F(S1
n1−1,0)

F (x), if x < S1,∗
n1−1,0,

D1
n1−1,0(x)−D1

n1,0
(x)−K1

n1
+ h1

n1−1,0(x), if x ≥ S1,∗
n1−1,0,

where ∆Q1
n1

is the expansion size of firm 1 when she has n1 options and h1
n1−1,0(x) =

V 1
n1−2,0(x)−D1

n1−1,0(x)−K1
n1−1 is her first-mover payoff at stage (n1−1, 0) and is contained

in the class Hinc. Also note that h1
n1,0

is smooth at the point S1,∗
n1−,0 following the smooth

pasting condition. This problem corresponds again the case R = D in Proposition 2.6

and therefore yields a value function

V 1
n1,0

(x)−D1
n1,0

(x) = G(x) ·
[
WH1

n1,0
◦ ψ(x)

]
, (3.63)

where H1
n1,0

(y) := Ψh1
n1,0

(y) and WH1
n1,0

(y) is its smallest concave majorant over R+.

Since F is a solution to the ODE (2.12), the F term in h1
n1,0

does not contribute to

(L − r)h1
n1,0

. From the assumption that all increasing linear functions are in Hinc and

(L − r)h1
n1−1,0(x) < 0 for x ≥ S1,∗

n1−1,0, we then conclude that h1
n1,0

(x) is in the class Hinc

and there exists b1
n1,0

, such that H1
n1,0

(y) is convex over (0, ψ
(
b1
n1,0

)
) and concave over

(ψ
(
b1
n1,0

)
,+∞), cf. Lemma 2.8. Repeating the proof of Proposition 3.14 then gives the

game value and strategy of firm 1 stated in Theorem 3.4. Identical arguments work for

firm 2, using the Φ-transform.
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3.4.3 Proof of Proposition 3.7 and 3.8

From the definition of τ 2
1,1 in (3.27), the optimization problem (3.28) corresponds to

the case R =
(
s2, d

)
in Proposition 2.6. The first-mover payoff is:

h1
1,1(x) = V 1

0,1(x)−D1
1,1(x)−K1

1

=


D1

0,0(x)−D1
1,1(x)−K1

1 , if x ∈ (d, S2,∗
0,1),

D1
0,1(x)−D1

1,1(x)−K1
1 +G(x) ·

[
D1

0,0−D1
0,1

G

] (
S2,∗

0,1

)
, if x ∈ (S2,∗

0,1 , d̄).

(3.64)

Given the strategy of firm 2 stated in (3.27), we define

ĥ1,s2
1,1 (x) := 1(s2,d̄)(x)h1

1,1(x) + 1(x=s2)l
1
1,1(x). (3.65)

Applying the operator Ψ defined in (2.15), we denote the transformed function by

H1,s2
1,1 (y) := Ψĥ1,s2

1,1 (y), and its smallest concave majorant over [ψ(s2), +∞) by WH1,s2
1,1 .

Following Proposition 2.6, the corresponding value function is admitted as

Ṽ 1
1,1(x, s2)−D1

1,1(x) = G(x) ·
[
WH1,s2

1,1 ◦ ψ(x)
]
, s2 < x < d̄. (3.66)

Let us first consider the case s2 < L1
1,1. Since G is a solution to the ODE (2.12), we

conclude that h1
1,1 is in the class Hinc. Following Lemma 2.8, there exists a fixed point

b1
1,1 such that y 7→ Ψh1

1,1(y) is convex on
(
0, ψ(b1

1,1)
)

and concave on
(
ψ(b1

1,1), +∞
)
.

Consequently (see Figure 2.1b), there exists a unique ỹ∗ > ψ(b1
1,1), such that the smallest

concave majorant WH1,s2
1,1 (y) is a straight line from

(
ψ(s2), Ψl11,1(ψ(s2))

)
, tangent to
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H1,s2
1,1 (y) at

(
ỹ∗, Ψh1

1,1(ỹ∗)
)

and then coincides with H1,s2
1,1 (y):

WH1,s2
1,1 (y) =


Ψl11,1(ψ(s2)) + (y − ψ(s2))

(
Ψl11,1

)′
(ỹ∗), if y ∈ [ψ(s2), ỹ∗),

Ψh1
1,1(y), if y ≥ ψ(ỹ∗),

(3.67)

which yields the optimal stopping region characterized in (3.29). To match the first

derivative at the tangent point, it must hold that

Ψh1
1,1(ỹ∗)−Ψl11,1(ψ(s2))

ỹ∗ − ψ(s2)
=
(
Ψh1

1,1

)′
(ỹ∗). (3.68)

Define S1 := ψ−1(ỹ∗). Substituting (3.65) and ψ = F
G

into the LHS of (3.68), we obtain:

Ψh1
1,1(ỹ∗)−Ψl11,1(ψ(s2))

ỹ∗ − ψ(s2)
=

h11,1(S1)

G(S1)
− l11,1(s2)

G(s2)

F (S1)
G(S1)

− F (s2)
G(s2)

=
h1

1,1(S1)G(s2)− l11,1(s2)G(S1)

F (S1)G(s2)− F (s2)G(S1)
:= ω̃1

1,1.

(3.69)

Differentiating the RHS directly, it follows that

dH1
1,1(y)

dy

∣∣∣
ψ−1(ỹ∗)=S1

=

(
h1

1,1

)′
(S1)G(S1)− h1

1,1(S1)G′(S1)

F ′(S1)G(S1)− F (S1)G′(S1)
,

hence we can rewrite condition (3.68) in terms of S1 and simplify it to equation (3.30).

Finally, for x ∈ (s2, S1),
(
H1,s2

1,1

)′
(ỹ∗) = ω̃1

1,1 implies that

W 1,s2
1,1 (ψ(x)) = Ψl11,1(ψ(s2)) + (ψ(x)− ψ(s2))ω̃1

1,1 , ω̃1
1,1ψ(x) + ν̃1

1,1, s2 ≤ x < S1,

where ω̃1
1,1 and ν̃1

1,1 can be verified to match (3.32). From Proposition 2.6, the value
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function is then admitted as

Ṽ 1
1,1(x, s2)−D1

1,1(x) =


G(x)W 1,s2

1,1 (ψ(x)) = ω̃1
1,1F (x) + ν̃1

1,1G(x), if s2 < x < S1,

h1
1,1(x), if x ≥ S1,

which coincides with (3.31), and completes the proof of Proposition 3.7.

Next, suppose that s2 > L1
1,1. For L1

1,1 < x ≤ s2, firm 1 will try to preempt her rival

since her corresponding first-mover payoff is higher than her second-mover payoff. For

x > s2, the value function of firm 1 is again admitted as (3.66) according to Proposition

2.6. However, since there is a negative jump at y = ψ(s2) in H1,s2
1,1 (y), the smallest

concave majorant WH1,s2
1,1 (y) is now a straight line from

(
ψ(s2), Ψh1

1,1 (ψ(s2))
)
, tangent

to H1,s2
1,1 (y) at

(
ỹ∗, Ψh1

1,1(ỹ∗)
)

and then coincides with H1,s2
1,1 (y):

W 1,s2
1,1 (y) =


Ψh1

1,1(ψ(s2)) + (y − ψ(s2))
(
Ψh1

1,1

)′
(ỹ∗), if y ∈ (ψ(s2), ỹ∗),

Ψh1
1,1(y), if y ≥ ψ(ỹ∗).

(3.70)

And the first derivative is matched at the tangent point

Ψh1
1,1(ỹ∗)−Ψh1

1,1(ψ(s2))

ỹ∗ − ψ(s2)
=
(
Ψh1

1,1

)′
(ỹ∗). (3.71)

Repeating the preceding steps then yields the threshold Se1. Note that if s2 ≥ b1
1,1,

equation (3.71) yields Se1 = s2. Meanwhile, following from (3.66), lim
x↘s2

Ṽ 1
1,1(x, s2) −

D1
1,1(s2) = h1

1,1(s2) > l11,1(s2), which implies stopping at s2 is too late, and firm 1 would

prefer to preempt right before s2. Therefore, with an ε-optimal stopping rule defined as

Γε := {x ∈ (s2, d̄) : Ṽ 1
1,1(x, s2)−D1

1,1(x) ≤ ĥ(x) + ε} and τ ε := inf{t ≥ 0 : Xt ∈ Γε},

(3.72)
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the best-response of firm 1 in this situation is lim
ε↘0

τ ε which corresponds to (3.33).

3.4.4 Best-response of Firm 2 at stage (1, 1)

Similar to previous discussion, we start with the assumption that firm 1’s policy is

of threshold type: τ 1
1,1 = inf{t ≥ 0 : Xt ≥ s1}. For s1 > L2

1,1, firm 2 solves the optimal

stopping problem:

Ṽ 2
1,1(x, s1)−D2

1,1(x) = sup
τ∈T

Ex
[
1{τ<τ11,1}e

−rτ {h2
1,1(Xτ )

}
+ 1{τ>τ11,1}e

−rτ11,1
{
l21,1(Xτ11,1

)
}]

.

(3.73)

The resulting threshold-type best-response of firm 2 is

τ 2
1,1(s1) = inf{t ≥ 0 : Xt ≤ S2

1,1(s1)},

where the optimal stopping level is characterized as the solution to:

[
h2

1,1(S2)G(s1)−
(
h2

1,1 ∨ l21,1
)

(s1)G(S2)
]
F ′(S2)

+
[(
h2

1,1 ∨ l21,1
)

(s1)F (S2)− h2
1,1(S2)F (s1)

]
G′(S2)

=
(
h2

1,1

)′
(S2) [G(s1)F (S2)−G(S2)F (s1)] . (3.74)

Consequently, the optimal stopping problem (3.73) admits the value function

Ṽ 2
1,1(x, s1) =


V 2

1,0(x)−K2
1 , if x < S2(s1),

D2
1,1(x) + ω̃2

1,1F (x) + ν̃2
1,1G(x), if x ∈ [S2(s1), s]),

V 2
0,1(x), if x > s1,

(3.75)
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where ω̃2
1,1 := ω̃2

1,1(s1) and ν̃2
1,1 := ν̃2

1,1(s1) are defined as

ω̃2
1,1 =

(
h2

1,1 ∨ l21,1
)

(s1)G(S2)− h2
1,1(S2)G(s1)

F (s1)G(S2)− F (S2)G(s1)
, (3.76a)

ν̃2
1,1 =

h2
1,1(S2)F (s1)−

(
h2

1,1 ∨ l21,1
)

(s1)F (S2)

F (s1)G(S2)− F (S2)G(s1)
. (3.76b)

For s1 < L2
1,1, firm 2 is incentivized to preempt when s1 ≤ Xt < L2

1,1 or right before Xt

hits s1. To wit, the preemptive best-response of firm 2 is a “stopping time” admitted as

τ 2,e
1,1 (s1) = inf{t ≥ 0 : (s1−) ≤ Xt < L2

1,1 or Xt ≤ S2,e
1,1(s1)}, (3.77)

where the optimal stopping level S2,e
1,1 := Se2 ≤ s1 is a solution to (3.74).

The proof is a symmetric repetition of the proof of Proposition 3.7 and 3.8, except

the fact that the first-mover payoff of firm 2, h2
1,1(x), is in the class Hdec, and z = ϕ(x)

coordinate has opposite direction from y coordinate.

3.4.5 Proof of Proposition 3.9

Proof: The coordination game is used to model instantaneous competition without

imposing simultaneous action. It is played over infinitely many rounds, each of which

lasts an infinitesimal amount of time. If at any round at least one firm invests, the game

stops. Otherwise, we move on to the next round. Firm strategies are assumed to be fixed,

i.e. stationary, across rounds; namely firm i attempts to invest with probability pi(x) ∈

[0, 1]. Given the strategy profile (p1(x), p2(x)), the outcome of a given round is that

firm 1 invests first with probability p1(x)(1− p2(x)), firm 2 invests first with probability

(1− p1(x))p2(x), and both firms invest simultaneously with probability p1(x)p2(x). The

fourth outcome is that nobody invests and we continue to the next round. Over infinitely
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many rounds, the game will eventually terminate and the final outcome will be

P0,1(x) =
p1(x)(1− p2(x))

p1(x) + p2(x)− p1(x)p2(x)
(firm 1 invests first),

P1,0(x) =
p2(x)(1− p1(x))

p1(x) + p2(x)− p1(x)p2(x)
(firm 2 invests first),

P0,0(x) =
p1(x)p2(x)

p1(x) + p2(x)− p1(x)p2(x)
(simultaneous investment).

Consequently, the NPV of firm 1 is

V 1
1,1(x) = P0,1(x)(V 1

0,1(x)−K1) + P1,0(x)V 1
1,0(x) + P0,0(x)(D1

0,0(x)−K1)

=
p1(x)(V 1

0,1(x)−K1) + p2(x)V 1
1,0(x)− (V 1

1,0(x) + V 1
0,1(x)−D1

0,0(x))p1(x)p2(x)

p1(x) + p2(x)− p1(x)p2(x)
.

(3.78)

Differentiating w.r.t. p1(x), we get

∂V 1
1,1

∂p1

(x) =
p2(x)(V 1

0,1(x)− V 1
1,0(x))− (V 1

0,1(x)−D1
0,0(x))p2

2(x)

(p1(x) + p2(x)− p1(x)p2(x))2
,

which is free of p1(x). Finally, we obtain the best-response strategy for firm 1 as


if p2(x) >

V 1
0,1−V 1

1,0−K1

V 1
0,1−D1

0,0
(x), then p∗1(x) = 0,

if p2(x) <
V 1
0,1−V 1

1,0−K1

V 1
0,1−D1

0,0
(x), p∗1(x) = 1,

if p2(x) =
V 1
0,1−V 1

1,0−K1

V 1
0,1−D1

0,0
(x), p∗1(x) ∈ (0, 1) is free.

Since in this scenario we have V 1
0,1(x)−K1 > V 1

1,0 > D1
0,0−K1, combining similar results

obtained for firm 2, we obtain the three stated equilibrium strategies.
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3.4.6 Central Planner Cooperative Monopoly

Denote by DM
n1,n2

(x) ,
(
ζ1
n1,n2

+ ζ2
n1,n2

)
+

ρ1Q1
n1,n2

−ρ2Q2
n1,n2

δ
· x the aggregate expected

profits for the central planner in stage (n1, n2). In stage (1, 0) the payoff is

hM1,0(x) = DM
0,0(Xx

τ )−DM
1,0(Xx

τ )−K1 =
ρ1∆Q1

1

δ
· x−KM

1,0

and using Proposition 3.14 the value function is

V M
1,0(x) =


DM

1,0(x) + F (x)

F (SM1,0)
· hM1,0

(
SM1,0
)
, if x ≤ SM1,0;

DM
0,0(x)−K1, if x > SM1,0,

(3.79)

where the optimal stopping level SM1,0 satisfies (3.53) after substituting h1
1,0 by hM1,0. In

stage (0, 1) the payoff is hM0,1(x) = −ρ2∆Q2
1

δ
· x −KM

0,1. Using Proposition 3.15 the corre-

sponding value function is:

V M
0,1(x) =


DM

0,0 −K2, if x ≤ SM0,1;

DM
0,1(x) + G(x)

G(SM0,1)
· hM0,1(SM0,1), if x > SM0,1,

(3.80)

where the optimal stopping level SM0,1 satisfies equation (3.57), substituting h2
0,1 by hM0,1.

In stage (1, 1) the payoffs become h1,M
1,1 (x) = V M

0,1 (x) −DM
1,1 (x) −K1 and h2,M

1,1 (x) =

V M
1,0(x)−DM

1,1(x)−K2, which can be easily verified to belong to Hinc and Hdec, respec-

tively. With τ 2,M,∗
1,1 fixed (resp. τ 1,M,∗

1,1 ), the optimal problem (3.49) converts to an optimal

stopping problem with an exit level (3.28), where the function h2,M
1,1 (resp. h1,M

1,1 ) acts

as the second-mover payoff. Consequently, the first-stage policy of the monopoly is the

paired stopping time given by

τ 1,M,∗
1,1 = inf{t ≥ 0 : Xt ≥ S1,M,∗

1,1 }, τ 2,M,∗
1,1 = inf{t ≥ 0 : Xt ≤ S2,M,∗

1,1 }. (3.81)

104



Capacity Expansion Games Chapter 3

The overall value function of the central planner in stage (1,1) is:

V M
1,1(x) =


V M

1,0(x), if x ∈ (d, S2,M,∗
1,1 )

DM
1,1(x) + ωMF (x) + νMG(x), if x ∈ (S2,M,∗

1,1 , S1,M,∗
1,1 )

V M
0,1(x), if x ∈ (S1,M,∗

1,1 , d̄)

(3.82)

where

ωM =
h1,M,∗

1,1 (S1,M,∗
1,1 )G(S2,M,∗

1,1 )− h2,M,∗
1,1 (S2,M,∗

1,1 )G(S1,M,∗
1,1 )

F (S1,M,∗
1,1 )G(S2,M,∗

1,1 )− F (S2,M,∗
1,1 )G(S1,M,∗

1,1 )
,

νM =
h2,M,∗

1,1 (S2,M,∗
1,1 )F (S1,M,∗

1,1 )− h1,M,∗
1,1 (S1,M,∗

1,1 )F (S2,M,∗
1,1 )

F (S1,M,∗
1,1 )G(S2,M,∗

1,1 )− F (S2,M,∗
1,1 )G(S1,M,∗

1,1 )
.

The thresholds (S1,M,∗
1,1 , S2,M,∗

1,1 ) solve the system of equations (compare to (3.39))



[
h2,M

1,1 (S2)G(S1)− h1,M
1,1 (S1)G(S2)

]
F ′(S1) +

[
h1,M

1,1 (S1)F (S2)− h2,M
1,1 (S2)F (S1)

]
G′(S1)

=
(
h1,M

1,1

)′
(S1) [G(S1)F (S2)−G(S2)F (S1)] ;[

h2,M
1,1 (S2)G(S1)− h1,M

1,1 (S1)G(S2)
]
F ′(S2) +

[
h1,M

1,1 (S1)F (S2)− h2,M
1,1 (S2)F (S1)

]
G′(S2)

=
(
h2,M

1,1

)′
(S2) [G(S1)F (S2)−G(S2)F (S1)] .

(3.83)

The extension to general (n1, n2) stage is analogous.

105



Chapter 4

Stochastic Switching Games

We study nonzero-sum stochastic switching games, which extends our work on multi-stage

capacity expansion games discussed in Chapter 3. Rather than a priori restricted number

of controls available to the players, here we consider the situation of an infinitely-repeated

game. Two players compete for market dominance through controlling (via timing op-

tions) the discrete-state market regime M . Switching decisions are driven by a continuous

stochastic factor X that modulates instantaneous revenue rates and switching costs. We

construct threshold-type Feedback Nash Equilibria which characterize stationary strate-

gies describing long-run dynamic equilibrium market organization. Two sequential ap-

proximation schemes link the switching equilibrium to (i) constrained optimal switching;

(ii) multi-stage timing games. We provide illustrations using an Ornstein-Uhlenbeck X

that leads to a recurrent equilibrium M∗ and a Geometric Brownian Motion X that

makes M∗ eventually “absorbed” as one player eventually gains permanent advantage.

Explicit computations and comparative statics regarding the emergent macroscopic mar-

ket equilibrium are also provided.
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4.1 Problem Formulation

We consider two firms, dubbed player i, j ∈ {1, 2}, i 6= j, competing on the same

market. As discussed, we introduce an exogenous diffusion process (Xt)t≥0 on a prob-

ability space (Ω,F ,P) to capture the local fluctuating market condition, which satisfies

the following SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, (4.1)

with domain D := (d, d̄). We refer Section 2.1.1 for detailed regularity of X.

The macro market regime is described by a discrete-state process (Mt) and represents

the relative market dominance of each player. The domain of (Mt) is a finite set M; for

simplicity we consider integer-valued Mt and M = {m,m + 1, . . . ,m}. The players

exercise switching-type controls to enhance their market dominance; thus, Player 1 can

increase Mt by +1, and Player 2 can decrease Mt by -1. To exercise a switch, player i

must pay a cost Ki(Xt,Mt). Note that a switch by Player 1, followed by a switch by

Player 2 completely neutralize each other and bring the market to its original state. The

interpretation of Mt as a relative dominance can be motivated by taking Mt = M1
t −M2

t ,

where M i
t ∈ N represents the production capacity, or technology level of firm i. Thus,

players repeatedly make competing investments to increase their capacity; investments

by Player 1 raise Mt and those by Player 2 lower it.

To match the intuition about the role of (Mt), we postulate that: (i) Player 1

(resp. P2) is dominant when Mt > 0 (resp. Mt < 0); (ii) Player 1 (resp. P2) prefers

higher (resp. lower) Xt. The last assumption creates a positive feedback effect between

X and M : as X rises, Player 1 gets more motivated to enhance her market dominance,

eventually triggering her to act and make Mt higher too; when X falls sufficiently Player
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2 gains short-term advantage and moves Mt towards her preferred negative direction.

By way of illustration, we consider the following two representative examples:

Example 4.1 (Mean-reverting Advantage) Local market fluctuations are mean-reverting,

modeled by an Ornstein-Uhlenbeck process

dXt = µ(θ −Xt)dt+ σdWt,

with D = R, µ, σ > 0 and θ ∈ R. Thus, the long-run market is stationary and mar-

ket organization is expected to undergo a cyclical behavior as X stochastically oscillates

around θ. The players receive constant profit rates based on deterministic profit ladders

πim that are independent of Xt with

π1
m < π1

m+1 and π2
m > π2

m+1 ∀m.

Thus, Player 1 maximizes her revenue when Mt is high and Player 2 when Mt is low. In

complement, the present market conditions Xt affect the switching or investment costs.

Thus, when Xt is high/low, K1 is low/high (K2 is high/low). Economically this could be

interpreted as X representing exchange rate, with dollar-denominated investment costs

both for the domestic firm P1 and foreign firm P2. For concreteness, we suppose the

switching costs are exponential in Xt:

Ki(x,m) = ci(m) + αi(m)eβ
i(m)·x, i = 1, 2,

where ci(m), αi(m) > 0, β1(m) < 0 and β2(m) > 0.

Example 4.2 (Long-run Advantage) In the second example we suppose that in the

long-run one player will possess the competitive advantage and become dominant. How-
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ever, in the medium-term fluctuations X creates uncertainty in M . This is captured by

using a Geometric Brownian Motion (GBM) for X

dXt = µXt dt+ σXt dWt, (4.2)

with D = (0,+∞), µ ∈ R and σ > 0. The players receive profit rates according to

predetermined profit ladders πim as well; for the sake of diversity we use linear switching

costs,

Ki(x,m) =
[
ci(m) + βi(m) · x

]
+
, i = 1, 2

where β1(m) < 0 and β2(m) > 0.

In line with the discrete nature of M we postulate the players adopt timing strategies,

denoted by αi := {τ i(n) : n ≥ 1}, i ∈ {1, 2} where τ i are certain stopping times.

Admissibility of αi’s is defined recursively as introduced in Definition 2.2, where the

players’ acting sets at a regime m are as follows

C1
m =


m+ 1, if m < m̄,

∅, if m = m̄,

C2
m =


m− 1, if m > m,

∅, if m = m.

(4.3)

We suppose the players aim to maximize their expected future (discounted) profits on

[0,∞) defined through revenue rates πi’s that are driven by (Xt,Mt). The integrated

total profit, i.e. the game payoff, is then given by
∫∞

0
e−rsπi(Xs,Ms)ds minus the net

present value of switching costs. Given a strategy profile (α1,α2), the NPV of future
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profits received by player i is

J im(x;α1,α2) := E

[
−
∞∑
n=1

1{Pn=i}e
−rσn ·Ki

(
Xσn , M̃n−1

)
+

∫ ∞
0

e−rtπi
(
Xt, M̃η(t)

)
dt

∣∣∣∣X0 = x,M0 = m

]
,

= E

[
−
∑
k

e−rσ
i
kKi

(
Xσik

, M̃η(i,k)−1

)
+

∫ ∞
0

e−rtπi
(
Xt,Mt

)
dt

∣∣∣∣X0 = x,M0 = m

]
(4.4)

where r > 0 is the constant discount rate. Let us also introduce the static discounted

future cashflows

Di
m(x) := E

[∫ ∞
0

e−rtπi(Xt,m)dt

∣∣∣∣X0 = x

]
, (4.5)

which are assumed to satisfy the growth condition Di
m(x) ≤ C(1 + |x|) for i ∈ {1, 2}

and all m ∈ M. Because switching costs are non-negative, game payoffs are also of

linear growth since they are dominated by Di’s, in particular J1
m(x) ≤ D1

m(x) while

J2
m(x) ≤ D2

m(x).

The Nash equilibrium criterion stated in Definition 2.4 characterizes equilibrium

strategies as a fixed point of each player’s best-response to her rival’s strategy. Specifi-

cally, given an arbitrary rival’s strategy αj define the resulting best-response payoff of

player i

Ṽ i
m(x ;αj) := sup

{αi:(αi,αj)∈A}
J im(x;αi,αj), x ∈ D,m ∈M. (4.6)

Because (taking Player 1 as an example) game payoffs satisfy D1
m(x) ≥ Ṽ 1

m(x;α2) ≥

J1
m(x; ᾱ1,α2) ≥ D1

m(x), such best-response values are always well-defined. Equilibrium
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payoffs then satisfy:

V i
m(x) = Ṽ i

m(x ;αj,∗), i ∈ {1, 2}, j 6= i. (4.7)

4.2 Constructing Equilibria

We now focus on the special class of stationary and threshold-type strategies as intro-

duced in Section 2.1, which allow us to explicitly construct a MNE (see Definition 2.4).

To do so, two key properties are needed. First, one must show that this class of strategies

is closed under the best-response map (4.6). Second, a verification theorem is needed

to show that the resulting fixed point of (4.7), defined through a system of equations,

is indeed a MNE of the game. The programme starts in Section 4.2.1 where we define

threshold-type strategies and then characterize the best-response to such strategies as a

solution to a system of coupled optimal stopping problems. Next, in Section 4.2.2 we

state the verification theorem which provides a system of nonlinear equations for the

equilibrium threshold vectors s1,∗, s2,∗. Lastly in Section 4.2.3 we study the emerging

equilibrium macro state M∗.

4.2.1 Stationary and Threshold-type Strategies

Recall that Player 1 is in favor of high Xt and large Mt, while Player 2 prefers the

opposite; it is therefore natural to assume that P1 switches up when X becomes high

enough and P2 switches down when X becomes low enough. Following the idea of a

similar construction in [2], we define a strategy of player i ∈ {1, 2} by αi := (Γim)m∈M,

where Γim’s are threshold-type subsets of D introduced in Definition 2.5. Given a strategy

profile (α1,α2), a sequence of switches is uniquely determined as follows:

— when Mt = m, player i adopts the (feedback) switching region Γim: player i exercises
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a switch (changes M i
t by ±1) at the first hitting time τ im of (Xt) to Γim (with the

convention that the hitting time of an empty set is ∞);

— if both players want to switch, Player 1 has the priority.

Admissibility of the strategy profile (α1,α2) in Definition 2.2 now reduces to

— Γ1
m = Γ2

m = ∅ (Mt ∈M)

— Γ1
m ∩ Γ2

m+1 = ∅ for m < m and Γ1
m−1 ∩ Γ2

m = ∅ for m > m. This rules out simulta-

neous switching loops; for instance if there were an x ∈ Γ1
m ∩Γ2

m+1 then starting in

regime m, we would have that P1 switches up to m+ 1, but them immediately P2

switches back down to m, generating an infinite sequence of instantaneous switches.

Relying on the resulting Markov structure of threshold-type strategies, we revisit the

formal game evolution which can now be constructed using independent auxiliary copies

X̃(n), n = 1, . . . , of the strong Markov X. Below, Xx denotes the X-process started at

X0 = x. Let x ∈ D, m ∈ M, and a strategy profile (α1,α2) ∈ A. Set σ0 = 0, X0 = x

and M̃0 = m. For n ≥ 0, define

X̃
(n)
t = Xx

σn+t, for t ≥ 0, (4.8a)

τ̃ i,n = inf{s ≥ 0 : X̃(n)
s ∈ Γi

M̃n
}, i ∈ {1, 2}, (4.8b)

σn+1 = σn + τ̃ 1,n ∧ τ̃ 2,n, (4.8c)

Pn+1 = 1 · 1{τ̃1,n<τ̃2,n} + 2 · 1{τ̃1,n>τ̃2,n} +Hn+11{τ̃1,n=τ̃2,n}, (4.8d)

M̃n+1 = M̃n + 1 · 1{Pn+1=1} − 1 · 1{Pn+1=2}. (4.8e)

Then the evolution of (Mt) and the sequence of switching times of each player (σik)k≥1

are obtained as in (2.3) and (2.4). The strong Markov property of X implies that each
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X̃(n) can be considered as a fresh (independent) copy of X starting at X̃
(n)
0 = Xx

σn .

Consequently, given these players’ strategies, the pair (Xt,Mt) is Markovian.

In Figure 4.1 we sketch the emerging equilibrium based on threshold-type strategies

associated to one of our case studies. The players make a switch whenever the process

(Xt) hits the threshold s1,∗
m from below or s2,∗

m from above when at stage m, see the dashed

lines in the bottom plot. The switching times σik are described through the respective

hitting times. The top panel shows the resulting macro stage (M∗
t ) driven by σik’s along

one realized trajectory of the local market fluctuations (Xt). These players are “at equal

strength” in the beginning, M∗
0 = 0; as (Xt) drops, it enters Player 2’s switching region

first (τ 2(1) < τ 1(1)) leading her to exercise a switch and change M∗
σ2
1

= −1. The players

then recursively wait for (Xt) to hit either the threshold s1,∗
−1 or s2,∗

−1 (τ 1(2) ∧ τ 2(2)), to

make further switches.

Note that in the above definition we require Γim to be connected, so that they are

fully characterized by their boundary sim. In turn, threshold-type strategies allow to

move from looking at the unstructured (in the sense of optimization) switching strategies
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Figure 4.1: A trajectory of X and equilibrium M∗ starting at X0 = 0, M∗0 = 0.
Here X is an Ornstein-Uhlenbeck process and M = {−2,−1, 0, 1, 2}. The equilib-
rium strategies are of threshold-type; the dashed lines in the bottom plot indicate the
respective switching thresholds.
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defined by general Γim to searching for equilibria parametrized by the |M|-vectors s1, s2.

In particular, this reduces the search for MNE to a 2|M|-dimensional setting where

numerical resolution becomes possible. Towards this goal, the main aim in this section

is to constructively find such threshold equilibria.

As discussed, given a threshold-type strategy αj ≡ sj of player j, we expect the best-

response strategy of player i to be consistently of threshold-type (see Corollary 4.8). The

Dynamic Programming Principle (DPP) implies that her corresponding value function,

Ṽ i(·; sj) defined in (4.6), solves a system of coupled stopping problems (2.8). To approach

the coupled system, we first consider the corresponding generic local constrained optimal

stopping problem (which uncouples (2.8) by removing Ṽ i
m−1, Ṽ

i
m+1 from the right-hand-

side) and then the game equilibrium that is characterized as the best response to sj,∗.

See [14] for a related analysis of unconstrained optimal switching problems.

Remark 4.3 (Boundary Stages) Recall that admissible strategies defined in Definition

2.2 imply Player 1 (resp. Player 2) cannot make any switches at stage m (resp. at stage

m). In terms of threshold-type strategies this is equivalent to simply taking s1
m = d and

s2
m = d which can be viewed as a constraint on possible admissible controls.

To find the best-response of player i, we consider a local optimal stopping problem of

the form

ṽi(x; τ j) = sup
τ i∈T

Ex
[
1{τ i<τ j}e

−rτ ihi(Xτ i) + 1{τ i>τ j}e
−rτ j li(Xτ j) + 1{τ i=τ j}e

−rτ igi(Xτ i)
]
,

(4.9)

where τ j is a given stopping time, hi(·) is the leader payoff from switching before τ j, and

li(·) is the follower payoff from switching after τ j. gi(·) denotes the payoff of player i

when both players want to switch simultaneously. In our setting, g1 = h1, while g2 = l2

due to the priority of Player 1.
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In order to obtain threshold-type equilibrium, one would expect the optimizer to

(4.9), τ̃ i to be of threshold-type, given τ j is of threshold-type. However, as discussed at

length in Section 3.2.2 this is not always true. If player j behaves aggressively, player i

would try to preempt right before, leading to lack of optimal τ i.

Assumption 4.4 (i) The exogenous stopping time τ j is of threshold-type,

τ j := inf{t ≥ 0 : Xt ∈ Γj}, j ∈ {1, 2}, with Γ1 := [s1, d) and Γ2 := (d, s2].

(ii) h1 ∈ Hinc and h2 ∈ Hdec introduced in Definition 2.7.

(iii) player i is not incentivized to preempt at sj, i.e. hi(sj) < li(sj).

Under the above assumptions, it is known that the solution of (4.9) is of threshold-

type. Specifically, this can be established using the smallest concave majorant method,

see e.g. [29, 30]. Let us remark that Assumption 4.4 (iii) is essential for this result and

would be hard to check in the sequel. Nevertheless, if the rest of Assumption 4.4 is

fulfilled, there exists uniquely a preemptive best-response, see Section 3.2.2.

Proposition 4.5 Suppose that all conditions of Assumption 4.4 are satisfied. Let F,G

be the solutions to (L − r)u = 0, where L is the infinitesimal generator of X. Set

W (x1, x2) := F ′(x1)G(x2)− F (x1)G′(x2) (4.10)

W(x1, x2) := F (x1)G(x2)− F (x2)G(x1). (4.11)

115



Stochastic Switching Games Chapter 4

Then the value function of (4.9) is admitted as

ṽi(x; τ j) =


hi(x), for x ∈ Γi,

li(x), for x ∈ Γj,

ω̃iF (x) + ν̃iG(x), for x ∈ D \ (Γi ∪ Γj) ,

where the optimal stopping region Γi = Γ(s̃i) is of threshold-type and defined uniquely

through the threshold s̃i := s̃i(sj) (with s̃1 > s2 and s̃2 < s1) that satisfies

hi(s̃i)W (s̃i, sj)− li(sj)W (s̃i, s̃i)− (hi)′(s̃i)W(s̃i, sj) = 0. (4.12)

The coefficients ω̃i := ω̃i(s̃i, sj) and ν̃i := ν̃i(s̃i, sj) are defined as

ω̃i =
hi(s̃i)G(sj)− li(sj)G(s̃i)

W(s̃i, sj)
, ν̃i =

li(sj)F (s̃i)− hi(s̃i)F (sj)

W(s̃i, sj)
. (4.13)

Moreover, the coefficient ω̃i in Proposition 4.5 corresponds to the slope of the straight

line segment and ν̃i corresponds to the y-intercept (see Figure 2.1b). From the fact that

being a follower is assumed to sub-optimal, it follows that ω̃1, ν̃2 ≥ 0 and ν̃1, ω̃2 ≤ 0.

Remark 4.6 The above proposition subsumes the case where only one player is able to

act. In this situation we may simply take s1 = d or s2 = d, and player i then effectively

solves a standard optimal stopping problem as a special case of (4.9). See related dis-

cussion in Section 3.2.1. These cases arise in the boundary stages m,m associated to

(2.8).
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4.2.2 Best-response Verification Theorem

By construction of MNEs in Definition 2.4, game payoffs and threshold-type strategies

associated to an equilibrium necessarily solve the local optimizing problems stated in

(2.8). Moreover, they necessarily are fixed-points to the following pair of optimizing

problems at each regime m:



V 1
m(x) = sup

τ1m∈T
Ex

[∫ τm

0

e−rtπ1
m(Xt)dt+ e−rτm1{τ1m>τ2,∗m }

(
V 1
m−1(Xτ2,∗m

)
)

+e−rτm1{τ1m≤τ2,∗m }

(
V 1
m+1(Xτ1m

)−K1
m(Xτ1m

)
)]
,

V 2
m(x) = sup

τ2m∈T
Ex

[∫ τm

0

e−rtπ2
m(Xt)dt+ e−rτm1{τ1,∗m >τ2m}

(
V 2
m−1(Xτ2m

)−K2
m(Xτ2m

)
)

+e−rτm1{τ1,∗m ≤τ2m}

(
V 2
m+1(Xτ1,∗m

)
)]
,

(4.14)

where τ 1,∗
m , τ 2,∗

m are the stopping times associated to the thresholds s1,∗
m , s2,∗

m . Comparing

to the generic problem in (4.9) and subtracting Di
m(x) = Ex

[∫∞
0
e−rtπim(Xs)dt

]
, we then

wish to set
h1
m(x) := V 1

m+1(x)−D1
m(x)−K1

m(x),

l1m(x) := V 1
m−1(x)−D1

m(x),


h2
m(x) := V 2

m−1(x)−D2
m(x)−K2

m(x),

l2m(x) := V 2
m+1(x)−D2

m(x).

(4.15)

Plugging above into (4.12) and (4.13) for all m and combining, we obtain a coupled

nonlinear system of sim, ω
i
m, ν

i
m in (4.18), whose solutions are expected to be a MNE of
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the switching game. First for each m /∈ {m,m} there are 6 equations:



{
V 1
m+1 −D1

m −K1
m

}
(s1,∗
m ) ·W (s1,∗

m , s2,∗
m )−

{
V 1
m−1 −D1

m

}
(s2,∗
m ) ·W (s1,∗

m , s1,∗
m )

−
{
V 1
m+1 −D1

m −K1
m

}′
(s1,∗
m ) · W(s1,∗

m , s2,∗
m ) = 0,{

V 1
m+1 −D1

m −K1
m

}
(s1,∗
m ) ·G(s2,∗

m )−
{
V 1
m−1 −D1

m

}
(s2,∗
m ) ·G(s1,∗

m )

−ω1
m · W(s1,∗

m , s2,∗
m ) = 0,{

V 1
m−1 −D1

m

}
(s2,∗
m ) · F (s1,∗

m )−
{
V 1
m+1 −D1

m −K1
m

}
(s1,∗
m ) · F (s2,∗

m )

−ν1
m · W(s1,∗

m , s2,∗
m ) = 0,

(4.16a)

{
V 2
m−1 −D2

m −K2
m

}
(s2,∗
m ) ·W (s2,∗

m , s1,∗
m )−

{
V 2
m+1 −D2

m

}
(s1,∗
m ) ·W (s2,∗

m , s2,∗
m )

−
{
V 2
m−1 −D2

m −K2
m

}′
(s2,∗
m ) · W(s1,∗

m , s2,∗
m ) = 0,{

V 2
m−1 −D2

m −K2
m

}
(s2,∗
m ) ·G(s1,∗

m )−
{
V 2
m+1 −D2

m

}
(s1,∗
m ) ·G(s2,∗

m )

−ω2
m · W(s2,∗

m , s1,∗
m ) = 0,{

V 2
m+1 −D2

m

}
(s1,∗
m ) · F (s2,∗

m )−
{
V 2
m−1 −D2

m −K2
m

}
(s2,∗
m ) · F (s1,∗

m )

−ν2
m · W(s2,∗

m , s1,∗
m ) = 0,

(4.16b)
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where F and G are the solutions to the ODE (2.12), and W (·, ·),W(·, ·) are from (4.10).

In boundary regimes m = m and m = m we have the following systems of 3 equations:



s1,∗
m = d, ω1

m = 0, ν1
m = 0,{

V 1
m−1 −D1

m

}
(s2,∗
m )− ν1

m ·G(s2,∗
m ) = 0,{

V 1
m+1 −D1

m −K1
m

}
(s1,∗
m ) · F ′(s1,∗

m )−
{
V 1
m+1 −D1

m −K1
m

}′
(s1,∗
m ) · F (s1,∗

m ) = 0,{
V 1
m+1 −D1

m −K1
m

}
(s1,∗
m )− ω1

m · F (s1,∗
m ) = 0,

(4.17a)

s2,∗
m = d, ω2

m = 0, ν2
m = 0,{

V 2
m−1 −D2

m −K2
m

}
(s2,∗
m ) ·G′(s2,∗

m )−
{
V 2
m+1 −D2

m −K2
m

}′
(s2,∗
m ) ·G(s2,∗

m ) = 0,{
V 2
m−1 −D2

m −K2
m

}
(s2,∗
m )− ν2

m ·G(s2,∗
m ) = 0,{

V 2
m+1 −D2

m

}
(s1,∗
m )− ω2

m · F (s1,∗
m ) = 0.

(4.17b)

We now propose a verification theorem which confirms that this is indeed the case.

Our proof in Section 4.5.1 follows the methods in [2] who considered nonzero-sum games

with impulse controls.

Theorem 4.7 (Verification Theorem) Let Γ1,∗
m := [s1,∗

m , d),Γ2,∗
m := (d, s2,∗

m ], s1,∗
m > s2,∗

m

119



Stochastic Switching Games Chapter 4

and ω1
m ≥ 0, ω2

m ≤ 0, ν1
m ≤ 0, ν2

m ≥ 0. Define

V 1
m(x) =


V 1
m+1(x)−K1

m(x), for x ∈ Γ1,∗
m ,

V 1
m−1(x), for x ∈ Γ2,∗

m ,

D1
m(x) + ω1

mF (x) + ν1
mG(x), for x ∈ D \ (Γ1,∗

m ∪ Γ2,∗
m ) ,

(4.18a)

V 2
m(x) =


V 2
m+1(x), for x ∈ Γ1,∗

m ,

V 2
m−1(x)−K2

m(x), for x ∈ Γ2,∗
m ,

D2
m(x) + ω2

mF (x) + ν2
mG(x), for x ∈ D \ (Γ1,∗

m ∪ Γ2,∗
m ) .

(4.18b)

Assume that (cf. Assumption 4.4)

– D1
m+1 −D1

m −K1
m ∈ Hinc for m < m, and D2

m−1 −D2
m −K2

m ∈ Hdec for m > m;

– V 1
m−1(s2,∗) ≥ V 1

m+1(s2,∗
m ) − K1

m(s2,∗
m ), for m > m, and V 2

m+1(s1,∗) ≥ V 2
m−1(s1,∗

m ) −

K2
m(s1,∗

m ), for m < m;

– thresholds si,∗m and coefficients ωim, ν
i
m, i ∈ {1, 2}, m ∈ M satisfy a system of

non-linear equation stated in (4.16) - (4.17).

Then, (s1,∗, s2,∗) := (Γ1,∗
m , Γ2,∗

m )m∈M is a Markov Nash Equilibrium, and V i’s in (4.18)

are the corresponding equilibrium payoffs.

We slightly abuse the notation in (4.18) as V 1
m+1 and V 2

m+1 do not exist. However,

since in fact s1,∗
m = d and s2,∗

m = d, so that Γ1,∗
m = Γ2,∗

m = ∅, the respective equations in

(4.16) - (4.17) are indeed well-defined.

The proof of Theorem 4.7 can be repeated to obtain an analogous verification theorem

for the system of equations corresponding to the best-response value function Ṽ i
m(x ; sj)

as defined in (2.8) for any threshold-type rival strategy sj:
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Corollary 4.8 Let s2 be the fixed switching thresholds of P2 and Ṽ 1
· (·; s2) be constructed

as in (4.18a). Suppose that

— D1
m+1 −D1

m −K1
m ∈ Hinc for m < m;

— Ṽ 1
m−1(s2

m; s2) ≥ Ṽ 1
m+1(s2

m; s2)−K1
m(s2

m), for m > m;

— (s̃1, s2, ω̃1, ν̃1) is a solution to (4.16a) & (4.17a).

Then s̃1 ≡ s̃1(s2) are the best-response thresholds, and Ṽ 1
m(x) are the corresponding best-

response value function of P1.

Theorem 4.7 provides a direct approach to find a MNE of the switching game via solv-

ing the system of equations for the threshold vectors si and equilibrium payoffs defined

through ωi and νi. Unfortunately, because this is a large system of equations (namely

there are 6|M− 1| equations in total), the latter is non-trivial even numerically. In par-

ticular, most standard root-finding algorithms require a reasonable initial guess. In our

experience, providing such a guess is not easy, so that the high-dimensional optimization

algorithm frequently does not converge. Thus, in Section 4.3 we propose two approaches

to obtain threshold vectors and game payoffs close to those in equilibrium.

Remark 4.9 As discussed in Section 2.1.1, players are allowed to act on Mt in multiple

ways in a more general setting. When Ci
m has multiple elements, the corresponding player

must choose how to switch, not just when. In the latter case we need to specify the

respective switching costs, i.e. to consider Ki(m,m′) which defines the cost of switching

from m to m′. Such an extension can be handled by replacing the leader payoff in (4.15)

with h1
m(x) = maxm′∈C1

m
[V 1
m′(x) − D1

m(x) − K1(x,m,m′)] and the follower payoff with

`1
m(x) = V 1

m′(x)−D1
m(x), where m′ = arg max{m′′ ∈ C2

m : V 2
m′(s

2
m)−D2

m−K2(s2
m,m,m

′)}.

The above max-terms resemble the intervention operators in impulse control.
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4.2.3 Equilibrium Macro Dynamics

The macro market evolution M∗ emerging in equilibrium is a time inhomogeneous

non-Markovian process with discrete state spaceM. Thanks to the stationary nature of

the threshold-type strategies, the behavior of M∗ is highly tractable and is the subject

of this subsection.

Recall that in (4.8e) we define the sequence of regimes M∗ traverses, i.e. M̃∗
n ≡M∗

σn .

According to (4.8e), M̃∗
n has memory: the next transition of M̃∗

n is affected by the last

transition. For example, if M̃∗
n = +1 and the previous regime was M̃∗

n−1 = +2, this

implies that the latest switch was due to Player 2, and hence we begin the sojourn in

regime +1 at location s2,∗
+2, i.e. X̃

(n)
0 = Xx

σn = s2,∗
+2, while if the previous state was

M̃∗
n−1 = 0 then it was Player 1 who switched last and we begin the sojourn at s1,∗

0 , i.e.

X̃
(n)
0 = Xx

σn = s1,∗
0 .

To capture this 1-step memory we define the extended state space

E := {m−, (m+ 1)−, (m+ 1)+, · · · ,m−,m+, · · · , (m− 1)−, (m− 1)+,m+} ∪ {ma, ma},

(4.19)

where the superscript “+” corresponds to the previous transition being made by Player

1 (“up move in M”) and “−” corresponds to Player 2 making a “down move in M”. We

discuss the last two states ma, ma below.

Instead of M∗
t we now define its extended jump chain M̌n that takes values in E and

represents (M̃∗
n−1, M̃

∗
n). Note that M̌0 is undefined, as we need to know the previous

transition to know the state of M̌ . Let us use Figure 1.3 to explain how M̌ behaves. The

macro market starts at X0 = 0 and M∗
0 = 0, while M̌∗ starts when (Xt) hits s2,∗

0 with

M̌∗
1 = (−1)−. The first sojourn begins at s2,∗

0 and ends when (Xt) hits s2,∗
−1, leading us to

M̌∗
2 = (−2)−, and so forth.
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We proceed to compute the qualitative behavior of M∗ via M̌n. In the case that X

is recurrent, the nature of threshold strategies implies that M∗ will also have recurrent

dynamics. To quantify the dynamic macro equilibrium we then compute the long-run

distribution of M∗ on M. The latter is summarized via the transition probabilities of

M̌∗
n and the sojourn times ξm of M̌∗

n.

In the case when X is transient, M∗ should be transient too. Specifically, we should

encounter the situation that τ̃ 1,n∧ τ̃ 2,n = +∞ (see (4.8c)), so that no more switches take

place and M∗ remains constant forever or “absorbed”. Under the assumption that X is

continuous and regular, this phenomenon can only occur at the boundary states of M,

whereby one player is a priori restricted from switching. This yields a one-sided switching

region and hence the possibility of a scenario that M∗
t ≡ m (or m), for all t conditional

on M∗
0 = m, i.e. that X never hits s2

m starting at s1
m−1 (or s1

m starting at s2
m+1). Note

that given Xt = x,M∗
t = m (recall that the pair (Xt,M

∗
t ) is Markovian) one can not

determine whether M∗ is absorbed or not. This is handled via taboo probabilities [27,

Ch. Taboo Probabilities] which are taken into account by adding the two “absorbing”

states {ma, ma} to E. Probabilistically, when switching up from (m − 1)±, potential

absorption can be captured by nature tossing a coin to decide whether the new state of

M̌ is m+ or ma.

Returning to the case of recurrent X, let ~Π denote the invariant distribution of M̌∗,

solved from ~ΠP = ~Π, where P is the transition probability matrix of M̌∗. Furthermore,

let ~ξ be the vector of expected sojourn times at each state of M̌ , defined as

ξm− := E
[
τ̃ 1,n ∧ τ̃ 2,n | M̌∗

n = m−
]
, ξm+ := E

[
τ̃ 1,n ∧ τ̃ 2,n | M̌∗

n = m+
]
, (4.20)

where the threshold hitting times τ̃ i,n are defined in (4.8b). It follows that the long-run

proportion of time that M∗ spends at regime m (recall that M∗
t = m is captured by

123



Stochastic Switching Games Chapter 4

M̌∗
η(t) = m±) is given by:

ρm =
Πm+ξm+ + Πm−ξm−∑
j∈M{Πj+ξj+ + Πj−ξj−}

, for all m ∈M. (4.21)

Now let us consider X to be non-recurrent so that one or both of the boundary

regimes are absorbing, w.l.o.g m+ for example. In the long-run we then trivially have

limt→∞M
∗
t = m and the quantities of interest in this situation are the expected number

of controls exercised by player i before M∗ gets absorbed, i.e.

Ni
m(x) := lim

T→∞
Ex
[∑

k

1{σik≤T}
∣∣M∗

0 = m

]
, i ∈ {1, 2}, (4.22)

and the expected time until absorption,

Tm(x) := Ex
[

min
{
t ≥ 0 : M̌∗

η(t) ∈ {ma,ma}
} ∣∣M∗

0 = m
]
. (4.23)

Analytic evaluation of these quantities is given in Section 4.5.3 which also provides ex-

pressions for the transition matrix P of M̌∗ and sojourn times ~ξ. Computations specific

to the OU Example 4.1 and the GBM Example 4.2 processes are also discussed.

4.2.4 Stackelberg Switching

We emphasize that the order of switches is never pre-determined and so the identity

of the n-th switcher, Pn, is resolved endogenously based on game evolution and the

realization of (Xt). A variant of the switching game would be to pre-specify the identity

of the player making the next switch, but not its timing, akin to a Stackelberg equilibrium

where the leader and follower roles are fixed but timing strategy remains. The latter

situation also arises organically if we restrict Mt ∈ {−1,+1} which implies that players
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will alternate in their actions: ... ≤ σ1
k ≤ σ2

k ≤ σ1
k+1 ≤ σ2

k+1 ≤ ... Indeed, at any given

stage only one firm can control (Mt) so no consideration of simultaneous competition is

needed (See [17]).

It is instructive to consider a stationary threshold-type equilibrium in this setting,

which reduces to characterizing the two thresholds s1,∗
−1 and s2,∗

+1. Furthermore, if their

profit rates and switching costs depend on the local market environment (Xt) symmetri-

cally around 0 and (Xt) is a process symmetric around 0 (like the OU process), we may

search for a symmetric equilibrium with s1,∗
−1 = −s2,∗

+1 =: š and V 1
. (x) = V 2

. (−x) for any

x ∈ D. In turn this reduces finding the MNE to solving a single nonlinear equation in š,

providing some insight into the respective structure.

Examining Theorem 4.7 for Player 1, the system of equations is simplified to

V 1
−1(x) =


V 1

+1(x)−K1
−1(x), x ≥ š,

D1
−1(x) + ω1

−1F (x), x < š,

V 1
+1(x) =


D1

+1(x) + ν1
+1G(x), x > −š,

V 1
−1(x), x ≤ −š,

where š, ω1
−1, ν

1
+1 satisfy the following system (compare to (4.17))

(
V 1

+1 −D1
−1 −K1

−1

)
(š) · F ′(š)−

(
V 1

+1 −D1
−1 −K1

−1

)′
(š) · F (š) = 0, (4.24a)(

V 1
+1 −D1

−1 −K1
−1

)
(š)− ω1

−1F (š) = 0, (4.24b)(
V 1
−1 −D1

+1

)
(−š)− ν1

+1G(−š) = 0. (4.24c)

Note that the last two equations specify ω1
−1, ν

1
+1 in terms of V 1

±1(±š). One can now show

that this system admits at least one solution.
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Corollary 4.10 Suppose that profit rates and switching costs are continuous and depend

on the local market environment (Xt) symmetrically about 0, and (Xt) is a process sym-

metric around 0. Then there exists a threshold-type MNE for the switching game with

M = {−1,+1}.

Proof: See Section 4.5.4.

4.3 Sequential Approach to MNEs

To approximate the system of nonlinear equations (4.16) - (4.17) proposed in Section

4.7 we provide two sequential approaches. The first approach is through best-response

iterations among threshold-type strategies, while the other inducts on equilibrium in

finite-switch strategies. The latter links multi-stage timing game equilibrium discussed

in Chapter 3 to the switching equilibrium. The resulting threshold vectors si can be used

as initial guesses in a root-finding algorithm.

4.3.1 Constructing MNE by Best-response Iteration

Given the rival’s strategy, determining the best-response of one player is similar to

a single-agent optimal switching problem, which has been studied in [14, 24]. Let us

assume that Player 2 implements a threshold-type strategy s2 as in Definition 2.5. The

best-response of Player 1 is then expected to be characterized through (2.8), which is a

system of coupled optimal stopping problems.

We then decouple this system, in particular to apply Proposition 4.5 that provides

the best-response threshold and game payoff of Player 1 once the leader/follower payoffs

are fully specified. To do so, we consider auxiliary problems where the number of ac-

tions/switches available to Player 1 is bounded. Namely, Player 1 is constrained to ever
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use at most N1(≥ 1) controls. Her corresponding set of strategies is defined as

A1,(N1) :=
{

(α1, s2) ∈ A : τ 1(n) = +∞, n > η(1, N1)
}
, (4.25)

where τ 1(n) is the stopping rule Player 1 adopts at the n-th “round” of the game and

η(1, N1) defined in (2.4) denotes the round at which Player 1 exercises her N1-th switch.

Note that now the stopping sets are allowed to explicitly depend on the remaining number

of controls left (equivalent to number of switches already used plus an initial constraint).

The best-response of Player 1 with N1 controls is then admitted as

Ṽ 1,(N1)
m (x ; s2) := sup

α1,(N1)∈A1,(N1)

J1
m(x;α1,(N1), s2), ∀x ∈ D, (4.26)

for all m ∈ M. When Player 1 has zero controls N1 = 0, her payoff at any stage m is

fully determined by s2, for instance at regime m+ 1

Ṽ
1,(0)
m+1 (x ; s2) = Ex

[∫ τ2m+1

0

e−rtπ1
m+1 (Xt) dt

]
+ Ex

[
e−rτ

2
m+1

]
·D1

m(s2
m+1), (4.27)

where the last term is the NPV of fixed-market-state cashflows defined in (4.5).

Proposition 4.11 Given a threshold-type strategy sj of player j, the best-response game

payoffs of player i with finite controls converge as N i →∞, i.e. ∀x ∈ D,

Ṽ i,(N i)
m (x ; sj)↗ Ṽ i

m(x ; sj), for all m ∈M as N i ↗∞.

Proof of Proposition 4.11 is inspired by [14] and stated in Section 4.5.2. Moreover,
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strong Markov property of X and Dynamic Programming Principle (DPP) imply that

Ṽ 1,(N1)
m (x ; s2) = sup

τ1(1)∈T
Ex

[∫ τm

0

e−rtπ1
m(Xt)dt+ e−rτm1{τ1(1)>τ2m} · Ṽ

1,(N1)
m−1 (Xτ2m

; s2)

+ e−rτm1{τ1(1)≤τ2m}

(
Ṽ

1,(N1−1)
m+1 (Xτ1(1) ; s2)−K1

m(Xτ1(1))
)]
,

(4.28)

for all m ∈ M, ∀x ∈ D, with τ 2
m the first hitting time of Γ2

m = (d, s2
m], and dependence

of τ 1(1) on N1 omitted for brevity. We refer to [14, 24] who proved that DPP holds in

this problem and our analysis of finite-control stopping games in Chapter 3.

Notice that game payoffs (4.27) can be treated as starting points to implement a back-

ward Dynamic Programming scheme to solve the finite-control optimal stopping problem

introduced in (4.28). Suppose that Ṽ
1,(N1)
m−1 (· ; sj) and Ṽ

1,(N1−1)
m+1 (· ; sj) are determined, and

Assumption 4.4 holds. We denote

ṽ1,N1

(x ; τ 2
m) := Ṽ 1,(N1)

m (x ; sj)−D1
m(x),

h1,N1

(x) := Ṽ
1,(N1−1)
m+1 (x ; sj)−D1

m(x)−K1
m(x),

l1,N
1

(x) := Ṽ
1,(N1)
m−1 (x ; sj)−D1

m(x)

and apply Proposition 4.5 with leader/follower payoffs h1,N1
, l1,N

1
to obtain best-response

game payoff Ṽ
1,(N1)
m (x ; s2), which is parameterized by ω̃

1,(N1)
m ,ν̃

1,(N1)
m , s̃

1,(N1)
m . Thanks to

Proposition 4.11 we know Ṽ
1,(N1)
m (x ; s2) converges, thus expect s̃

1,(N1)
m → s̃1

m would con-

verge as well as N1 → ∞. Thus, for N1 large, we may use s̃1,(N1) to define a time-

stationary strategy that is a proxy for the best response.

Building upon the preceding convergence result, we propose the following algorithm

to determine a threshold-type Markov Nash equilibrium. Essentially, we apply the
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tâtonnement approach, alternating in finding the best-response strategies of the two

players, expecting to converge to an associated best-response fixed point. These alter-

nating best-responses are indexed by “rounds” a = 1, 2, . . . , A. At odd rounds, Player 1

solves for her best response (i = 1, j = 2); at even rounds, Player 2 solves for her best

response (i = 2, j = 1):

¬: Set the strategy of player j to be of threshold-type as sj,a:

– For a = 1, set s2,1 as the monopoly thresholds of P2, i.e. when P1 is not

allowed to switch (N1 = 0 case). The thresholds s2,1 can then be obtained by

solving a single-agent optimal switching problem.

– For a > 1 set sj,a = s̃j,a−1.

: Solve for s̃i,a and value function Ṽ
i,(N)
m (· ; sj,a) for all m ∈M:

– Solve optimal stopping problems when player i is allowed at most n switches

and player j applies sj,a using Proposition 4.5, iteratively for n = 1, . . . , N .

– Record Ṽ
i,(N)
m (·) and the approximate best-response strategy s̃i,a(sj,a−1) '

s̃i,(N)

®: Change the roles of i and j (alternate which player is solving for the best response)

¯: Repeat steps ¬ - ® as a = 1, . . . , until the maximum change in |s̃i,(N),a− s̃i,(N),a−2|,

i ∈ {1, 2} are both less than a predetermined tolerance level Tol (or simply for A

rounds).

Figure 4.2 illustrates the above best-response induction in one of our case-studies. In

each round we iterate to find the best response assuming player i has up to N i switches.

During the odd rounds a = 1, 3, . . . Player 2 implements the stationary strategy s2,a and

her game values (gray ‘+’) decrease as the number of Player 1’s controls N1 = 1, . . . , 30
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increases. In contrast, during the even iterations, Player 2 game values Ṽ
2,(N2)
m converge

upwards as N2 = 1, . . . , 30. The corresponding thresholds si,am are shown on the right

panel. We observe that both game values and thresholds converge after 30 inner iterations

over N i, and over A = 30 outer tatonnement rounds (a total of 30 × 30 × 2 optimal

stopping problems solved via Proposition 4.5). In particular, we may take s
i,(N),A
m as an

approximation of a best response fixed-point and hence of the equilibrium si,∗m .

4.3.2 Constructing MNEs by Equilibrium Induction

Another approach to construct an (approximate) threshold-type MNE of the switch-

ing game is to take limits in a finite-control game of timing. This links to our work

in the preceding chapter. Suppose that both players are constrained to finite control

strategies with respective bounds n1, n2 on total allowed number of switches. Specifically
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Figure 4.2: Finding fixed point of best-response maps via the tatonnement process
over a with M = {−1, 0,+1}. Squares represent rounds a = 1, 3, . . . where player’s 2
strategy is fixed. Triangles represent even rounds a = 2, 4, . . . where player’s 1 strategy
is fixed. (Left): Game values of Player 2 with M0 = 0 and X0 = 0 indexed according
to Ṽ 2,N2(x; s1,a) with N2 = 1, 2, . . . , 30. (Right): Thresholds si,a0 as a function of a at
m = 0 and N = 30. The enlarged square represents the first round a = 1 and the
enlarged triangle represents the last a = 30 round which appears to be close to a fixed
point.
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we consider strategies of the form

αi,(n
1,n2) :=

(
Γi,(k

1,k2)
m

)k1≤n1,k2≤n2

m∈M
, with Γi,(0,k

j)
m ≡ ∅, (4.29)

where ki ≤ ni denotes the number of controls remaining for player i, and index stages of

this game as

(Mt, N
1
t , N

2
t ) :={macro market regime,

# controls remaining for P1,

# controls remaining for P2},

with Mt ∈M, and N i
t is a non-increasing piecewise-constant process on N with N i

0 = ki

for i ∈ {1, 2}. Duopoly games of this type were studied in Chapter 3, in which we

determine local equilibria at each game stage by backward dynamic programming and

patch them to construct a global one.

At sub-stage (m, k1, k2), the local equilibrium is characterized as a fixed point of these

players’ best-response based on Proposition 4.5. Taking Player 1 as an example again,

her leader and follower payoffs are related to her equilibrium game payoffs at adjacent

stages which are known when implementing backward dynamic programming:


h

1,(k1,k2)
m (x) := V

1,(k1−1,k2)
m+1 (x)−D1

m(x)−K1
m(x),

l
1,(k1,k2)
m (x) := V

1,(k1,k2−1)
m−1 (x)−D1

m(x),

(4.30)

and their equilibrium strategies (τ
1,(k1,k2),∗
m , τ

2,(k1,k2),∗
m ) and game payoffs solve a pair of
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optimal stopping problems:



V
1,(k1,k2)
m (x)−D1

m(x) = sup
τ
1,(k1,k2)
m ∈T

Ex
[
1
{τ1,(k

1,k2)
m <τ

2,(k1,k2),∗
m }

· h1,(k1,k2)
m (X

τ
1,(k1,k2)
m

)

+1
{τ1,(k

1,k2)
m >τ

2,(k1,k2),∗
m }

· l1,(k
1,k2)

m (X
τ
2,(k1,k2),∗
m

)

]
,

V
2,(k1,k2)
m (x)−D2

m(x) = sup
τ
2,(k1,k2)
m ∈T

Ex
[
1
{τ1,(k

1,k2),∗
m <τ

2,(k1,k2)
m }

· l2,(k1,k2)
m (X

τ
1,(k1,k2),∗
m

)

+1
{τ1,(k

1,k2),∗
m >τ

2,(k1,k2)
m }

· h2,(k1,k2)
m (X

τ
2,(k1,k2)
m

)

]
.

(4.31)

Note that simultaneous switches can be ruled out since on the event {τ i,(k
1,k2)

m = τ
j,(k1,k2),∗
m },

stopping by Player 1 is strictly dominated by the strategy of first waiting, and then op-

timally switching as follower. In Chapter 3 we show that the local equilibrium exists

under some regularity conditions on Di’s and Ki’s, however uniqueness cannot be guar-

anteed. Moreover, such a local equilibrium is not always of threshold-type, as preemptive

equilibria may emerge.

In the example sketched in Figures 4.3a, we implement a forward scheme to generate

a sequence of equilibria starting at sub-stage (m, k1, k2) = (−1, 0, 0) where the payoffs

are V
i,(0,0)
−1 (x) = Di

−1(x). With this known, we can solve for the local equilibria at stages

(0, 0, 1) and (−2, 1, 0) utilizing (4.30). Iterating, we find local equilibria for all triplets

(m, k1, k2) shown in the Figure (Throughout, we make the ansatz that local equilibria are

all of threshold-type at any sub-stage (m, k1, k2)). These triplets can be characterized as

k2 = k1 +∆m, where the auxiliary parameter ∆m is the difference between the number of

switches available to the players at regime m. For instance ∆−1 = 0 in Figure 4.3a, so that

the players are equally endowed whenever they are at regime Mt = −1, cf. the sub-stages

(−1, 1, 1), (−1, 2, 2), . . . . The sub-stages (m, k1, k2) that are not reachable from (−1, 0, 0)

are omitted and in this instance we need not consider the respective local equilibria.
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Using the terminal game stage (−1, 0, 0) and continuing up to k1 ≤ N , the above

forward scheme iteratively yields a sequence of equilibrium thresholds s
i,(n,n+∆m)
m and

game coefficients (ω
i,(n,n+∆m)
m , νi,(n,n+∆m)). The resulting game payoffs are shown in Figure

4.3b. As mentioned, the parameter ∆m influences all the equilibria in Figure 4.3a. For

example, in the presented scheme, the game will eventually end with Mt = −1 for t large

enough. Nevertheless, as N increases, we expect that this effect vanishes, so that the

limits are independent of ∆m:


s
i,(n,n+∆m)
m

ω
i,(n,n+∆m)
m

νi,(n,n+∆m)

 as n↗∞−−−−−→


si,∗m

ωi,∗m

νi,∗m

 , i ∈ {1, 2},m ∈M. (4.32)

This convergence can be observed in Figure 4.3 where the underlying symmetries imply
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Figure 4.3: Left : A schematic diagram illustrating induction on local timing equilibria
of Section 4.3.2, starting at (−1, 0, 0) and with m = −2 and m = +2, which leads to
∆−2 = −1,∆−1 = 0, . . . ,∆+2 = 3 in (4.32). The diagram illustrates the reachable
stages (m, k1, k2) relative to (M0, 0, 0) and using the “forward” dynamic programming
scheme. Blue circles denote single-agent optimization sub-stages that correspond to
optimal stopping problems, while red circles denote interior stages where local timing
equilibrium is determined according to (4.31). Boundary stages are those where k1 = 0
or k2 = 0 or m ∈ {m,m}. Stages not reachable from (−1, 0, 0) are omitted. Right:

Equilibrium payoffs V
i,(N1

0 ,N
2
0 )

M0
(X0) with X0 = 0, M0 = 0 indexed by N1

0 . Player 2

is given one extra control, N2
0 = N1

0 + 1 ⇔ ∆0 = −1. The dashed line denotes the
limiting payoff V i

0 (X0) in the original infinite-control game.
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V
1,(n,n+1)

0 (0) = V
2,(n+1,n)

0 (0). Thus, we may interpret the top curve in Figure 4.3b as the

game payoff in the finite-stage setup when the player has one more switch than her rival,

and the bottom curve as her game payoff when she has one fewer switch relative to the

rival. As n→∞, the relative benefit vanishes and both V
i,(n,n±1)

0 (x) approach V i
0 (x).

Two issues arise with the above scheme. First, the associated equilibrium payoffs

V i,(N1
0 ,N

2
0 ) are not monotone in terms of N1

0 or N2
0 . For instance, higher N1

0 benefits P1,

while higher N2
0 harms her since her rival now has more flexibility. Changing both N i’s

simultaneously leads to ambiguous results: in Figure 4.3b P1’s payoff decreases first, then

increases in terms of N1
0 = N2

0 − 1. Thus convergence in (4.32) is hard to prove. Second,

the local timing game might generate multiple threshold-type equilibria as explained in

Chapter 3. As a result, equilibrium selection becomes important when inducting on N i
0’s.

Remark 4.12 Setting ∆m = m (resp. ∆m = m) is equivalent to granting P2 (resp. P1)

infinite number of allowed switches, while her rival is restricted to finite number of con-

trols. This of course confers an ultimate advantage to the privileged player who will

ultimately “win out” the competition. For example, taking (M0, N
1
0 , N

2
0 ) = (0, 4, 2) in

the running example means that P2 only has 2 switches, while P1 has four, so she will

ultimately succeed in driving to the best possible regime limt→∞Mt = +2 and will never

require more than 4 switches anyway (recall that m = +2). Thus this setting resembles the

auxiliary game discussed in Section 4.3.1, except that both players are now dynamically

optimizing their thresholds.

134



Stochastic Switching Games Chapter 4

4.4 Numerical Examples

4.4.1 Case Study: Mean-reverting Market Advantage

Continuing Example 4.1, we describe the local market fluctuation (Xt) by an Ornstein-

Uhlenbeck (OU) process mean-reverting to θ = 0:

dXt = −µXtdt+ σdWt, (4.33)

with µ = 0.15, σ = 1.5, D = R (i.e. natural boundaries d = −∞ and d = +∞). This

implies that the stationary distribution of X is Gaussian, N (0, 7.5). For the discounting

rate we take r = 10%. The profit rates πim are constant and listed in Table 4.1. Note

that πi’s are monotone but concave in terms of the regime m. A motivating economic

context is the advertising competition between two firms. They can make an advertising

campaign by paying Ki, with the cost dependent on the exchange rate (Xt). The effect

of advertising (i.e. exercising a change in M) is to enhance one firm’s dominance in the

market, bringing her higher profit rates. Due to diminishing returns to scale, improve-

ment in the profit rate decreases as the firm captures more and more market share, so

that πim is concave in m.

m −3 −2 −1 0 +1 +2 +3

π1
m 0.0 1.5 2.8 4.0 5.1 5.9 6.0
π2
m 6.0 5.9 5.1 4.0 2.8 1.5 0.0

Table 4.1: Profit rate ladders πim for Section 4.4.1.

In Table 4.1 our intent is that the profit ladder extends to the right and to the left

forever, however the above concavity makes it uneconomical to reach extreme levels of

dominance. Thus, we progressively enlarge the number of market regimes considered:

Mt ∈ {−1, 0, 1} (Case I), Mt ∈ {−2,−1, 0, 1, 2} (Case II), and Mt ∈ {−3, . . . , 3} (Case
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III). Below we also consider an asymmetric situation with Mt ∈ {−1, 0, 1, 2}.

The switching costs Ki’s are affected by Xt:

Ki
m(x) := ci · (1 + e(−1)iβix), i ∈ {1, 2}, (4.34)

where ci = 0.5, βi = 0.5, i ∈ {1, 2}. Thus, Player 1 can make cheap switches to dominate

the market when x � 0 and Player 2 has the advantage when x � 0. For simplifica-

tion, Ki’s are not directly affected by (Mt). By construction, the profit rates and all

other parameters are symmetric (about zero), so in equilibrium we expect players to act

symmetrically as X fluctuates from positive to negative and vice versa.

Best-response induction associated to this case study with M = {−1, 0, 1} was the

one sketched in Figure 4.2 and explained in Section 4.3.1. We also implement the equilib-

rium induction (see Section 4.3.2) for both Case I & II and observe that players behave

aggressively when they have more controls than their rivals in the finite-control scenario.

As sketched in Figure 4.3, Player 2 will have the “last word” and limt→∞M
∗
t = −1.

Consequently, she can behave more aggressively, be the leader more frequently, and reap

higher payoff already in the medium-term.

4.4.1.1 Equilibrium Thresholds

Table 4.2 lists the computed equilibrium thresholds for the three cases. Recall that

in Case I M is restricted to be in {−1, 0, 1}, so Player 1 (P2) is not allowed to act when

Mt = +1 (Mt = −1, respectively), hence there is no s1,∗
1 or s2,∗

−1. Thus, there are 4 total

thresholds to be computed, and 12 equations in the system (4.16). Due to the symmetric

parameter setting, thresholds of Player 1 are symmetric to thresholds of Player 2 around

0, so in principle the equilibrium is fully characterized by the pair s1,∗
0 , s1,∗

−1. Similarly, in

Case II there are 8 thresholds (4 unique ones) and 24 equations, and in Case III there
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are 12 thresholds and 36 equations.

Regime π1
m π2

m

Case I Case II Case III
Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

+3 6.0 0.0 − 3.47853
+2 5.9 1.5 − 0.25184 13.16216 0.25184
+1 5.1 2.8 − −0.56688 1.90352 −0.56688 1.90352 −0.56688

0 4.0 4.0 0.94861 −0.94861 0.94861 −0.94861 0.94861 −0.94861
−1 2.8 5.1 0.56688 − 0.56688 −1.90352 0.56688 −1.90352
−2 1.5 5.9 −0.25184 − −0.25184 −13.16216
−3 0.0 6.0 −3.47853 −

Table 4.2: Equilibrium thresholds si,∗m for Cases I, II & III of Section 4.4.1.

A major finding is that the players implement the same thresholds at each interior

regime in all cases. For example, s1,∗
0 = 0.94681 in all three Cases I/II/III. Therefore,

when in regime 0, Player 1 “does not see” whether stage +2 is reachable or not, and only

makes her decision based on πi±1. This phenomenon is un-intuitive in the following two

aspects. On the one hand, Player 1 adopts the same equilibrium threshold s1,∗
0 = 0.94861

despite the fact that she can further exercise switches to enhance her dominance at state

+1 in Cases II & III. The latter would be expected to make the switch from 0 to +1 more

valuable and therefore make P1 more aggressive in regime 0. As we see, this intuition,

while valid in single-agent contexts, fails in the constructed equilibrium. On the other

hand, players are also myopic about the multi-step threat from the switches of the other

player. For example, P2 implements the same threshold s2,∗
+1 = −0.56688, though in

Cases II & III she is facing the threat that P1 may switch the market to an even more

disadvantageous regime.

Figure 4.4a plots equilibrium payoffs of Player 1 x 7−→ V 1
0 (x) (constructed as (4.18))

when they are at equal strength M0 = 0 for Case I & II. As expected, V 1
m’s are continuous,

increasing and bounded: V
1,(I)

0 is bounded by D1
−1 and D1

+1, while V
1,(II)

0 is bounded by

D1
−2 and D1

+2. Note that when these players are at equal strength locally (i.e. X0 = 0)
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Player 1 has lower equilibrium payoff in Case II, which can be interpreted as an influence

of heavier competition between them.

The right panel of Figure 4.4b illustrates the nature of the variational inequalities

for V 1
m. Dashed lines represent leader payoff V 1

+1(x) − K1
0 from switching (Mt) to (+1)

and the follower payoff V 1
−1(x). We have that V 1

0 (x) coincides with V 1
−1(x) for x < s2,∗

m

(stopping region of P2), and smooth-pastes to V 1
+1(x)−K1

0(x) at the switching threshold

s1,∗
0 of P1. As explained, this switching threshold is the same in Case I and II even though

all the game payoffs (in particular V 1
0 and V 1

±1) change.

4.4.1.2 Macroscopic Market Structure in Equilibrium

Due to the mean-reverting property of the OU process in (4.33), the resulting M∗

is recurrent. In particular, at the extreme regimes M̌ is guaranteed to move back to-

wards zero. Table 4.3 presents the resulting long-run proportion of time M∗ spends at
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Figure 4.4: Equilibrium payoff V 1
0 (x) of Player 1 for Case I and Case II. Left panel :

the dashed levels indicate D1
m; D1

±1 are the asymptotes of V 1
m for Case I, and D1

±2

are the asymptotes of V 1
m in Case II. The box denotes the region corresponding to the

zoomed-in right panel. Right : Dashed curves denote the leader payoffs V 1
+1(x)−K1

0 (x)

and the follower payoffs V 1
−1(x) for each Case. The same resulting thresholds si,∗0 ,

i ∈ {1, 2} are adopted in both Cases.
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each regime, ρm given by (4.21). The table also lists the transition matrix P of the

extended jump chain M̌ , and mean sojourn times ~ξ for Case I, whence M̌ takes values

in {−1−, 0−, 0+,+1+}. Note that due to the limited number of regimes, the invariant

distribution of M̌ is uniform, i.e. the original jump chain M̃ spends half the time at

regime 0 and 25% of its time at regimes ±1. Of course, the corresponding sojourn times

are not equal, so the long-run distribution of M∗ is more complex.

Regime π1
m π2

m Case I Case II Case III

+3 6.0 0.0 0.00002
+2 5.9 1.5 0.34476 0.34474
+1 5.1 2.8 0.47186 0.12711 0.12711

0 4.0 4.0 0.05628 0.05628 0.05628
−1 2.8 5.1 0.47186 0.12711 0.12711
−2 1.5 5.9 0.34476 0.34474
−3 0.0 6.0 0.00002

P =

(−1)− (0)+ (0)− (+1)+


(−1)− 0 1 0 0
(0)+ 0.205 0 0 0.795
(0)− 0.795 0 0 0.205

(+1)+ 0 0 1 0

, ~ξ =
(−1)− (0)+ (0)− (+1)+

( )4.431 0.264 0.264 4.431 .

Table 4.3: Equilibrium stationary distribution ρm of M∗ for Cases I, II & III. Bottom:
Dynamics of M̌∗ in Case I.

From Table 4.2, we observe that the thresholds si,∗0 are quite low, so that M∗ does

not spend much time in regime 0 and the market is typically not at “equal strength”. In

Case I, only one level of market dominance is possible and so we observe rapid switches

from “equal strength” to “P1 dominant” or “P2 dominant”, each of which occurs around

ρ
(I)
±1 = 47% of the time. In Case II, because si,∗0 remain the same, we have the same

ρ
(II)
0 , so the market continues to be dominated (but now by different degrees) by one

player around 47% of time. Thus, the long-run distribution of regimes {+1,+2} in Case

II can be considered as “splitting” of those 47% of regime +1 in Case I. Moreover, when
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one player dominates the market, she will max-out her dominance most of the time

(ρ
(II)
±2 = 34% out of 47%).

A second finding is that one can effectively endogenize the domain M of M . Recall

that concavity of profit rates πim in terms of m reduces players’ incentive to make further

switches if the game stage is already advantageous. On the contrary, the rival becomes

more incentivized to switch M back towards 0. In the presented example, we make the

marginal gain in profit rates minimal when going from +2 to +3 (and -2 to -3 for Player

2, respectively). As a result, in Case III there is very little incentive for P1 to switch from

+2 to +3, reflected in the very high equilibrium threshold s2,∗
+2 = 13.1621594. Because

this threshold is far above the mean-reverting level θ = 0, it follows that these players

are not likely to enhance their dominance up to the maximum level and regimes ±3 will

take place extremely rarely; according to Table 4.3, M∗ spends less than 0.001% of time

in those extreme regimes. Consequently, from a financial perspective it is reasonable to

simply restrict M to be in {−2,−1, 0,+1, 2}, since effectively ρ
(III)
m ' ρ

(II)
m for all m.

4.4.1.3 Effect of Profit Ladder

To isolate the effect of the profit rates πim, we construct threshold-type equilibria with

M restricted toM(IV ) = {−1, 0,+1,+2}, and vary profit rate π1
2 of Player 1 at stage +2

(all other profit rates remain as in Table 4.1). Resulting equilibrium thresholds of these

players are sketched in Figure 4.5 by solid lines. As expected, when π1
+2 increases, there

is more benefit to being in regime +2 and as a result, Player 1 is more willing to make a

switch up from +1. Consequently, she implements lower switching thresholds and s1,∗
+1 is

decreasing in π1
+2. On the contrary, she does not change her threshold s1,∗

0 at regime 0,

confirming the myopic nature of equilibrium thresholds discussed in the previous section.

However, eventually π1
+2 − π1

+1 is large enough (or alternatively s1,∗
+1 is low enough) to

trigger simultaneous switches (s1,∗
0 > s1,∗

+1), so that P1 will pass directly from regime 0
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to regime 2 (recall that we assume that this incurs two switching costs, linearly added).

In the latter situation, she switches sooner already in regime 0, see the extreme right of

Figure 4.5a, where s1,∗
0 starts changing, as soon as s1,∗

+1 < s1,∗
0 .

Turning attention to Player 2, her switching threshold s2,∗
0 in regime 0 is never affected

by π1
+2. Moreover, while her profit rate in regime +2 is unaffected, more aggressive

behavior of P1 who switches into Mt = +2 more frequently, causes her to respond

by lowering s2,∗
+2. Additionally, in the situation where P1 goes straight from 0 to +2

(π1
+2 ≥ 6.25), P2 increases s2,∗

+1, adjusting his strategy in response to a more aggressive

strategy of P1 which reduces his anticipated gain from switching M from +1 to 0. These

observations illustrate the complex feedback effects between thresholds in different market

states and the underlying πim’s.

4.4.1.4 Effect of Switching Costs

Another essential parameter is the switching cost K. To study the effect of K, we

vary the overall level of switching costs in Ki(x) = ci · (1 + e(−1)iβi). Specifically, we try
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Figure 4.5: Equilibrium switching thresholds si,∗m (P1 on the left, P2 on the right) as
the profit rate π1

+2 of P1 varies in Case IV. We use the same type of line for each
regime m across the two panels.
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ci ∈ [0.1, 1], i.e. from 20% to 200% relative to the baseline ci = 0.5 used in preceding

setup, with all other parameters unchanged. The resulting equilibrium thresholds of

Player 1 and her equilibrium payoff at the “equal strength”, V 1
0 (0) are sketched in Figure

4.6 for Case I where M = {−1, 0,+1}. Observe that as ci decreases (from the right to

the left in Figure 4.6) P1 adopts lower thresholds while P2 adopts higher thresholds by

symmetry, which means they switch the macro market environment more frequently. For

instance, the expected sojourn time of M̃∗ at regime (+1)+ drops from 6.522 at ci = 1.0

to 1.887 at ci = 0.1, while the expected sojourn time at regime (0)+ drops from 0.422 at

ci = 1.0 to 0.105 at ci = 0.1. Recall that Ki
0(x) is a function of x, so that lowering the

threshold is equivalent to paying more. While lower (single) switching cost induces more

frequent switching, the overall cost of switching still declines, so that equilibrium payoffs

increase as ci declines.
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Figure 4.6: Left : Equilibrium thresholds adopted by P1 as ci varies in [0.1, 1]. Thresh-
olds of P2 are anti-symmetric about 0. Right : Equilibrium payoff at “equal-strength”,
i.e. V 1

0 (0) = V 2
0 (0) due to symmetry.

142



Stochastic Switching Games Chapter 4

4.4.1.5 Multiple Threshold-type Equilibria

As mentioned, existence of multiple threshold-type equilibria is highly likely. Accord-

ing to Theorem 4.7, any suitable solution to the system of non-linear equations is an

MNE of the switching game. This situation arises in Case II above and is “detected”

by selecting different local equilibria during the equilibrium induction of Section 4.3.2.

Specifically, in some sub-stages there are two different threshold-type equilibria in the

local stopping game, which can be interpreted as “Sooner” (players behave more aggres-

sively and switch quickly once (Xt) deviates from zero) and “Later” (players are more

relaxed and sim are larger in absolute value). This phenomenon was already discussed

for stopping games in Section 3.2.2. Then during equilibrium induction we consistently

choose (i) later equilibria (this is what was done and reported above in Tables 4.2-4.3);

(ii) sooner equilibria. This generates two different sequences of si,∗m , which ultimately

yield two different solutions to the nonlinear system, reported in Table 4.4.

−2 −1 0 +1 +2 V i
0 (0)

Later
s1,∗,L
m −0.25184 0.56688 0.95861 1.90352 −

33.98s2,∗,L
m − −1.90352 −0.94861 −0.56688 0.25184
ρLm 0.34476 0.12711 0.05628 0.12711 0.34476

Sooner
s1,∗,S
m 0.17983 −0.19139 1.38933 1.02891 −

33.65s2,∗,S
m − −1.02891 −1.38933 0.19139 −0.17983
ρSm 0.41143 0 0.17714 0 0.41143

Table 4.4: Equilibrium thresholds si,∗m and long-run distribution ~ρ of (M∗t ) associated
to two distinct equilibria in Case II

We note that in the “Sooner” equilibrium which was described previously, players

effectively skip regimes ±1 as s1,∗
0 > s1,∗

+1 and s2,∗
0 < s2,∗

−1. For example, starting at M∗
0 = 0

and X0 = 0, P1 will not switch up until Xt = 1.389 = s1,∗,S
0 , but then directly go

to M∗ = +2 because 1.389 > 1.029 = s1,∗,S
+1 . As a result, the alternative stationary

distribution ~ρS of MS,∗ is only supported on {−2, 0, 2} (interestingly, ρS0 > ρL0 so in
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the aggressive equilibrium the market is more frequently at “equal strength”). Such

multiple instantaneous switches are indicative of their aggressiveness—once (Xt) moves

in their preferred direction, players attempt to extract maximum dominance by switching

into regime ±2. In line with previous analysis, the Sooner equilibrium carries lower

equilibrium payoffs, as players are penalized for aggressive interventions that leads to

“wasted” effort, e.g. V i,S
0 (0) = 33.65 < V i,L

0 (0) = 33.98.

Remark 4.13 In Case I there seems to be a unique equilibrium, which we conjecture

is due to having only a single interior regime where players compete simultaneously.

Thus, with M = {−1, 0, 1} we always observe a unique local threshold-type equilibrium

during either of the finite-control inductions. It remains an open problem to establish

more precise conditions regarding equilibrium uniqueness in the infinite-control switching

game. Similarly, we do not have the machinery to check whether further threshold-type

equilibria exist in Case II.

4.4.2 Case Study: Long-run Advantage

Returning to Example 4.2, we now consider local market fluctuations X to follow a

Geometric Brownian motion (2.36) with drift µ = 0.08, volatility σ = 0.25, and discount-

ing rate r = 10%. Because µ − 1
2
σ2 > 0, limt→∞Xt = +∞ a.s., and so in the long-run

Player 1 will dominate the market since she will eventually have the advantage in terms

of X.

The profit rates πim are constant and given by

π1
−1 = 0; π1

0 = 3; π1
+1 = 5;

π2
−1 = 5; π2

0 = 3; π2
+1 = 0.
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The switching costs Ki
m’s are again independent of m and driven by X:

K1(x) := (10− x)+, K2(x) := (−2 + x)+. (4.35)

This case study can be interpreted as competition between an energy producer using a

renewable resource (Player 1) and a producer using exhaustible resources (Player 2). The

competition is in terms of generating capacity, with Mt denoting the relative production

capacity. Here Xt represents the marginal cost of exhaustibility which connects to the

relative cost of increasing capacity. We expect that Xt → +∞ (“peak oil”); as non-

renewable resources are depleted, P2 becomes noncompetitive. In the long run, P1 will

therefore dominate, however there is no upper bound on how many times the competing

investments in new capacity will take place. Thus, the market will first go through a

transient phase where both producers compete, and then will eventually enter the high-

X regime where the renewable P1 dominates and (endogenously) never relinquishes her

advantage.
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Figure 4.7: Left : A trajectory of (Xt,M
∗
t ) for the GBM example, starting fromX0 = 5,

M∗0 = 0. Right : Distribution of M∗t ∈ {−1, 0, 1} as a function of t.
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4.4.2.1 Macroscopic Market Structure in Equilibrium

Expansion Thresholds sim Ave Plants Built
−1 0 +1

Player 1 5.9796 8.9594 - 3.8151
Player 2 - 4.1296 5.9574 2.8151

Table 4.5: Equilibrium in the GBM case study. Average Plants Built refers to the
expected number of switches by player i starting at X0 = 5,M0 = 0.

Table 4.5 shows the resulting equilibrium thresholds, and Figure 4.7a plots a tra-

jectory of (Xt) and (M∗
t ) starting at X0 = 5, M∗

0 = 0. The right panel Figure 4.7b

shows the distribution of M∗ via t 7→ P(M∗
t = m). We observe that Player 2 is likely to

make the first expansion (P(M∗
t = −1) increases for low t), while in the medium-term

Player 1 becomes more and more likely to be dominant. In line with Xt → +∞ (due to

µ − σ2/2 > 0) we have P(M∗
t = +1) → 1 as t grows. The probability of absorption for

M̌∗ when moving up from the states (0)± is (see Section 4.5.3.1)

P(+1)a = lim
u↑∞

(s1,∗
0 )1− 2µ

σ2 − (s2,∗
1 )1− 2µ

σ2

u1− 2µ

σ2 − (s2,∗
+1)1− 2µ

σ2

= 1−
(s1,∗

0

s2,∗
1

)1− 2µ

σ2

= 0.4709,

leading to the transition probability matrix P of M̌∗ as

P =

(−1)− (0)+ (0)− (+1)+ (+1)a



(−1)− 0 1 0 0 0

(0)+ 0.374 0 0 0.331 0.295

(0)− 0.379 0 0 0.329 0.292

(+1)+ 0 0 1 0 0

(+1)a 0 0 0 0 1

. (4.36)

Note that in the scenario plotted in Figure 4.7a, M∗
t = +1 after t = 15 which can be
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interpreted as “absorption”. The theoretical average time until absorption (defined in

(4.23)) is T0(5) = 30.775. In the Figure we also note that P1 makes 5 switches up and P2

makes 4 switches down. Recall that on the infinite time horizon P1 will always make one

more switch since M∗
t = +1 eventually. The last column of Table 4.5 shows the average

number of expansions implemented by each producer, Ni
0(5) defined in (4.22).
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(c) µ = 0.08, σ ∈ (0.20, 0.35)
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(d) µ = 0.08, σ ∈ (0.20, 0.35)

Figure 4.8: Left : Average total number of switches exercised by P2. Right : Estimated
proportion of time that (M∗t ) spends in regime m in the next T̄ = 30 years, ρm(T̄ )
from (4.37), for each m ∈M. In all cases we take X0 = 5, M∗0 = 0.
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4.4.2.2 Effect of the Drift µ and Volatility σ

We examine the effect of the drift µ and volatility σ in (2.36) on the equilibrium

strategies and the macro market regime M∗. To do so, we evaluate the expected number

of expansions carried out by Player 2 conditional on M0 = 0, N2
0(5) (which always satisfies

N2
0(5) = N1

0(5)−1). Additionally, we also compute the proportion of time that M∗ spends

at each regime m ∈ {−1, 0, 1} in the next T̄ = 30 years, ρm(T̄ ):

ρm(T̄ ) := E

[
1

T̄

∫ T̄

0

1{M∗t =m}dt
∣∣∣M∗

0 = 0

]
. (4.37)

Figure 4.8 shows the results as we vary µ from 0.05 to 0.15 with fixed σ = 0.25, or

in complement vary σ ∈ [0.20, 0.25] with fixed µ = 0.08. As expected, higher µ increases

the tendency of (Xt) to go to +∞ and hence enforces the dominance of Player 1; thus

Player 2 expands less. A similar effect holds as σ falls —with less fluctuations there

are fewer opportunities for P2. As a result, the overall number of switches, which can

be viewed as the “observable competition”, decreases as µ increases or σ decreases. A

related effect is observed in Figure 4.8b: the dominance of P1, ρ+1(T̄ ), increases as µ

rises or σ falls. For µ low (σ high), the transition to long-run advantage takes place more

slowly, so the players are more even-handed in the medium term on [0, T̄ ). Note that

higher volatility hurts Player 1, intensifying the medium-term competition and causing

both players to expend a lot of capital on repeated expansion. Finally, we remark that

the proportion of time M∗ spends in regime 0, ρ0(T̄ ) is quite stable with respect to

different combinations of µ and σ.
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4.5 Computations and Proofs

4.5.1 Proof of Theorem 4.7

Proof: To begin with, we argue that by construction of V i’s in (4.18) we have:

1. V i
m ∈ C2(D \ (si ∪ sj)) ∩ C1 (D \ sj) ∩ C (D), for ∀m ∈M, i ∈ {1, 2}, i 6= j;

2. V i
m is at most linear growth, i.e.

|V i
m(x)| ≤ C(1 + |x|), for ∀x ∈ D; (4.38)

3. V i’s satisfy the following system of variational inequalities (VIs) for m < m:

V 1
m+1 −K1

m − V 1
m ≤ 0, in D, (4.39a)

V 1
m−1 − V 1

m = 0, in Γ2,∗
m , (4.39b)

V 2
m+1 − V 2

m = 0, in Γ1,∗
m , (4.39c)

max
{

(L − r)V 1
m + π1

m, V
1
m+1 −K1

m − V 1
m

}
= 0, in D \ Γ2,∗

m , (4.39d)

and for m > m,

V 2
m−1 −K2

m − V 2
m ≤ 0, in D, (4.40a)

V 1
m−1 − V 1

m = 0, in Γ2,∗
m , (4.40b)

V 2
m+1 − V 2

m = 0, in Γ1,∗
m , (4.40c)

max
{

(L − r)V 2
m + π2

m, V
2
m−1 −K2

m − V 2
m

}
= 0, in D \ Γ1,∗

m . (4.40d)

The smoothness of V i follows directly from the regularity of F (·) and G(·) and the

piecewise construction. The second statement follows from the linear growth assumption
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imposed on Di’s in (4.5) and signs of coefficients ωi, νi. Note that this is a natural

property of correct equilibrium payoffs since the best-response game payoff of player i

satisfies

min
m∈M

Di
m(x) ≤ Ṽ i

m(x;αj) ≤ max
m∈M

Di
m(x), (4.41)

and a MNE is characterized as a fixed-point of best-responses. The key is the last

assertion; we show (4.39), with (4.40) then following analogously. Comparing the system

(4.16) for fixed m with (4.12) and (4.13), one can see that V 1
m−D1

m is indeed the solution

to the optimal stopping problem (4.9) with

h1
m(x) := V 1

m+1(x)−D1
m(x)−K1

m(x),

l1m(x) := V 1
m−1(x)−D1

m(x),

which in turn brings the restriction on signs of ωi,νi. Taking P1 as an example, ω1
m

corresponds to the slope of the straight line segment of its transformed smallest concave

majorant which ought be positive for m < m and equal to zero for m = m. Similarly, ν1
m

corresponds to the y-intercept of that line segment which ought to be negative for m > m

and equal to zero for m = m. Furthermore, the signs of the derivatives of F (·), G(·)

imply that V 1
m −D1

m is increasing. The assumption V 1
m−1(s2,∗) ≥ V 1

m+1(s2,∗
m )−K1

m(s2,∗
m ),

for m > m plus the smallest concave majorant characterization then yields

V 1
m −D1

m = l1m ≥ h1
m = V 1

m+1 −D1
m −K1

m, in Γ2,∗
m ,

V 1
m −D1

m = h1
m = V 1

m+1 −D1
m −K1

m, in Γ1,∗
m ,

V 1
m −D1

m ≥ h1
m = V 1

m+1 −D1
m −K1

m, in D \
(
Γ1,∗
m ∪ Γ2,∗

m

)
,
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which shows (4.39a). (4.39b) and (4.39c) are obtained directly from the construction of

V i’s, reflecting the payoff in x-states where the rival switches immediately. Lastly, to

check (4.39d), recall that the discounted cash flows in (4.5) satisfy (L − r)Di
m = −πim,

and by their definition (L − r)F = (L − r)G = 0. For x ∈ D \ (Γ2,∗
m ∪ Γ1,∗

m ) (“the no-

action region”) we have by (4.18) that V 1
m(x) = D1

m(x) + ω1
mF (x) + ν1

mG(x), so applying

the operator (L − r) we get

(L − r)V 1
m + π1

m = (L − r)D1
m + π1

m = −π1
m + π1

m = 0, x ∈ D \ (Γ2,∗
m ∪ Γ1,∗

m ).

For x ∈ Γ1,∗
m \ Γ1,∗

m+1, we have V 1
m(x) = V 1

m+1(x) − K1
m(x) = D1

m+1(x) + ω1
m+1F (x) +

ν1
m+1G(x)−K1

m so that

(L − r)V 1
m + π1

m = (L − r)
(
V 1
m+1 −K1

m

)
+ π1

m

= (L − r)D1
m+1 + (L − r)

(
−K1

m

)
+ π1

m (4.42)

= (L − r)
(
D1
m+1 −D1

m −K1
m

)
< 0, (4.43)

where the last inequality (4.43) is due to D1
m+1 −D1

m −K1
m ∈ Hinc. Similar arguments

apply to x ∈ Γ1,∗
m+1 \ Γ1,∗

m+2 where two simultaneous switches by P1 will take place; by

induction we conclude that (L − r)V 1
m + π1

m < 0 for x ∈ Γ1,∗
m , establishing (4.39d).

We now prove (s1,∗, s2,∗) is a Nash equilibrium. To do so, we first consider the

point of view of P1, letting α1 = {τ 1(n) : n ≥ 1} be her arbitrary strategy satisfying

(α1, s2,∗) ∈ A, and (σn)n≥0 be the sequence of resulting switching times defined in (2.2),
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with X0 = x, M̃0 = m. As a first step, we use induction to establish that

V 1
m(x) ≥ E

[ ∫ σn

0

e−rtπ1(Xx
t , M̃η(t))dt−

n∑
k=1

1{Pk=1}e
−rσk ·K1

(
Xσk , M̃k−1

)
+ e−rσnV 1

M̃n
(Xx

σn)
]
∀n ≥ 1. (4.44)

For n = 1, since σ1 = τ 1(1) ∧ τ 2,∗
m , applying Itô’s formula to the process e−rtV 1

m(Xx
t )

over the interval [0, σ1] and taking expectations yields

V 1
m(x) = E

[
−
∫ σ1

0

e−rt (L − r)V 1
m (Xx

t ) dt+ e−rσ1V 1
m(Xx

σ1
)
]

≥ E
[ ∫ σ1

0

e−rtπ1(Xx
t , M̃0)dt+ e−rσ1V 1

m(Xx
σ1

)
]

(4.45a)

≥ E
[ ∫ σ1

0

e−rtπ1(Xx
t , M̃0)dt+ e−rσ1{−K1(Xx

σ1
, M̃0) · 1{σ1=τ1(1)} + V 1

M̃1
(Xx

σ1
)}
]
,

(4.45b)

where the inequality (4.45a) follows from (4.39d) and the fact that σ1 ≤ τ 2,∗
m , and the

inequality (4.45b) is due to (4.39a) and (4.39b):

E
[
V 1
m(Xx

σ1
)
]
≥ E

[
1{σ1=τ1(1)}

{
V 1
m+1(Xx

σ1
)−K1(Xx

σ1
, M̃0)

}
+ 1{σ1=τ2,∗m }V

1
m−1(Xx

σ1
)
]
.

(4.46)

Next we show (4.44) for n = 2. By construction, we have σ2 = τ 1(2) ∧ (σ1 + τ 2,∗
M̃1

).

Consider the second-round sub-game started at initial state Xx
σ1

; applying Itô’s formula

to the process e−rtV 1
m+1

(
X
Xx
σ1

t

)
over the interval [0, σ2 − σ1] and taking expectation con-
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ditional on F̃ (2)
σ1 , cf. (2.2a), we obtain

V 1
m+1(Xx

σ1
) ≥ E

[ ∫ σ2−σ1

0

e−rtπ1
(
X
Xx
σ1

t ,m+ 1
)
dt+ e−r(σ2−σ1)V 1

M̃2

(
Xx
σ2

)
− 1{σ2=τ1(2)}e

−r(σ2−σ1) ·K1(Xx
σ2
,m+ 1)

∣∣∣ F̃ (2)
σ1

]
,

analogously to (4.45b) and replacing X
Xx
σ1

σ2−σ1 by Xx
σ2

based on the strong Markov property

of (Xt). Furthermore, using
∫ σ2
σ1
e−rtπ1(Xx

t ,m+1)dt = e−rσ1
∫ σ2−σ1

0
e−rtπ1

(
X
Xx
σ1

s ,m+1
)
ds

we have

E
[
1{σ1=τ1(1)}e

−rσ1V 1
m+1(Xx

σ1
)
]

≥ E

[
1{σ1=τ1(1)} ·

[ ∫ σ2

σ1

e−rtπ1
(
Xx
t ,m+ 1

)
dt+ e−rσ2V 1

M̃2

(
Xx
σ2

)]
− 1{σ2=τ1(2)}1{σ1=τ1(1)}e

−rσ2 ·K1(Xx
σ2
,m+ 1)

]
. (4.47)

Similarly, we have

E
[
1{σ1=τ2,∗m }e

−rσ1V 1
m−1(Xx

σ1
)
]

≥ E

[
1{σ1=τ2,∗m } ·

[ ∫ σ2

σ1

e−rtπ1
(
Xx
t ,m− 1

)
dt+ e−rσ2V 1

M̃2

(
Xx
σ2

)]
− 1{σ2=τ1(2)}1{σ1=τ2,∗m }e

−rσ2 ·K1(Xx
σ2
,m− 1)

]
. (4.48)
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Substituting (4.47) - (4.48) into (4.45b), we obtain

V 1
m(x) ≥ E

[ ∫ σ1

0

e−rtπ1(Xx
t , M̃0)dt+

∫ σ2

σ1

e−rtπ1(Xx
t ,m+ 1)dt

+ e−rσ2V 1
M̃2

(Xx
σ2

)− 1{σ1=τ1(1)}e
−rσ1K1(Xx

σ1
, M̃0)

− 1{σ2=τ1(2)}1{σ1=τ1(1)}e
−rσ2 ·K1(Xx

σ2
,m+ 1)

− 1{σ2=τ1(2)}1{σ1=τ2,∗m }e
−rσ2 ·K1(Xx

σ2
,m− 1)

]
= E

[ ∫ σ2

0

e−rtπ1(Xx
t , M̃η(t))dt

−
2∑

k=1

1{Pk=1}e
−rσk ·K1

(
Xσk , M̃k−1

)
+ e−rσ2V 1

M̃2
(Xx

σ2
)
]
.

Iterating this argument for n = 3, . . . , establishes (4.44). Let us remark that the

above works without any modifications in the boundary regimes m ∈ {m,m}, where

τ 1(n) or τ 2,∗
m are set to be infinite. Since V 1

m is at most of linear growth from (4.38) and

admissibility of (α1, s2,∗) requires limn→∞ σn = +∞, dominated convergence theorem

implies

V 1
m(x) ≥ E

[ ∫ ∞
0

e−rtπ1(Xx
t , M̃η(t))dt−

∑
k=1

1{Pk=1}e
−rσk ·K1

(
Xσk , M̃k−1

)]
= J1

m(x;α1, s2,∗). (4.49)

Similarly for P2 we obtain that

V 2
m(x) ≥ J2

m(x; s1,∗,α2), for ∀(s1,∗,α2) ∈ A.

Last but not least, one can verify that replacing α1 by s1,∗ in above argument leads

to σ1 = τ 1,∗
m ∧ τ 2,∗

m so that (L − r)V 1
m (Xx

t ) = −π1(Xx
t , M̃0) on [0, σ1) and V 1

m(Xx
t ) =

V 1
m+1(Xx

t ) − K1
m(Xx

t ) at σ1 = τ 1,∗
m and V 1

m(Xx
t ) = V 1

m−1(Xx
t ) at σ1 = τ 2,∗

m . These turn

154



Stochastic Switching Games Chapter 4

inequalities in (4.45a) and (4.45b) into equalities, and inductively yield

V 1
m(x) = J1

m(x; s1,∗, s2,∗),

which, combining with (4.49), completes the proof.

4.5.2 Proof of Proposition 4.11

Let X0 = x ∈ D , M0 = m ∈ M, and fix sj. The best-response of player i with

N i ≥ 1 controls is

Ṽ i,(N i)
m (x ; sj) = sup

αi,(N
i)∈Ai,(Ni)

J im(x ;αi,(N
i), sj), (4.50)

where

Ai,(N i) :=
{

(αi, sj) ∈ A : τ i(n) = +∞, n > η(i, N i)
}
, (4.51)

with η(i, N i) defined in (2.4) denotes the round at which player i exercises her N i-th

switch. Since Ai,(N i) ⊆ Ai,(N i+1) we have that N i 7→ Ṽ
i,(N i)
m (x ; sj) is non-decreasing.

Moreover, since Ṽ
i,(N i)
m (x ; sj) is bounded from above by maxmD

i
m(x), limn→∞ Ṽ

i,(N i)
m (x ; sj)

is well-defined. It remains to show that this limit is Ṽ i
m(x ; sj).

Because Ai,(N i) ⊆ {αi : (αi, sj) ∈ A}, we trivially obtain

lim
N i→∞

Ṽ i,(N i)
m (x ; sj) ≤ Ṽ i

m(x ; sj). (4.52)

To obtain the opposite inequality, for any ε > 0, let αiε := {τ iε(n) : n ≥ 1} (which
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depends on x) be a ε-optimal strategy satisfying (αiε, s
j) ∈ A and

J im(x ;αiε, s
j) ≥ Ṽ i

m(x ; sj)− ε. (4.53)

Now for a fixed N i ≥ 1 we define the respective truncated N i-finite strategy α
i,(N i)
ε :=

{τ i,(N
i)

ε (n) : n ≥ 1} as

τ i,(N
i)

ε (n) =


τ iε(n), n ≤ η(i, N i)

+∞, o.w.

(4.54)

Thus, the truncated strategy stops switching completely after the first N i switches. De-

note by M
(N i)
t the resulting macro regime and by (σ

i,(N i)
k )k≤N i the sequence of switching

times of player i, cf. (2.4), based on (α
i,(N i)
ε , sj), which we compare against the corre-

sponding M
(∞)
t and (σ

i,(∞)
k )k≥1 based on the non-truncated (αiε, s

j). By the construction

of the truncation,

σ
i,(N i)
k = σik, for k ≤ N i, M

(N i)
t = Mt, for t ≤ σiN i ,

and the two cashflows completely match up to σ
i,(∞)

N i . In the truncated version, there-

after only the other player i applies her controls. Since σ
i,(∞)

N i → ∞ as N i → ∞ from

admissibility of αiε, it follows that there exists N ε > 1 s.t. for ∀N > N ε

Ex,m

[∫ ∞
σiN

e−rt|πi
(
Xt,M

(∞)
t

)
| dt

]
< ε; (4.55a)

Ex,m

[∫ ∞
σiN

e−rt|πi(Xt,M
(N)
t )| dt

]
< ε; (4.55b)

Ex,m

[
∞∑

k=N+1

e−rσ
i,(∞)
k Ki

(
X
σ
i,(∞)
k

, M̃
(∞)
η(i,k)−1

)]
< ε. (4.55c)
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For the second bound we use the fact that M has a finite state space so that

|πi(Xt,M
(N)
t )| ≤ max

m
|πi(Xt,m)|

which still satisfies the growth condition. Using (4.55) and (2.5) we have for N > N ε

∣∣J im(x ;αi,(N)
ε , sj)− J im(x ;αiε, s

j)
∣∣

≤ Ex,m
[∫ ∞

σi,∞N

e−rt
(
|πi
(
Xt,M

(∞)
t

)
|+ |πi(Xt,M

(N)
t )|

)
dt

+
∞∑

k=N+1

e−rσ
i,(∞)
k Ki

(
X
σ
i,(∞)
k

, M̃
(∞)
η(i,k)−1

)]
≤ 3ε. (4.56)

By Fatou’s lemma and (4.56) we obtain

lim inf
N→∞

J im(x ;αi,(N)
ε , sj)

= lim inf
N→∞

Ex,m

[∫ ∞
0

e−rtπi(Xt,M
(N)
t )dt−

N∑
k=1

Ki
(
X
σ
i,(N)
k

, M̃
(N)
η(i,k)−1

)
· e−rσ

i,(N)
k

]

≥ J im(x ;αiε, s
j)− 3ε. (4.57)

In turn, from (4.53), we get

lim inf
N→∞

Ṽ i,(N)
m (x ; sj) ≥ lim inf

N→∞
J im(x ;αi,(N)

ε , sj) ≥ Ṽ i
m(x ; sj)− 4ε, (4.58)

which along with (4.52) and letting ε ↓ 0 completes the proof.

4.5.3 Dynamics of M̃ ∗ in Threshold-type Equilibrium

In this subsection, we present computational details related to the macro market

equilibrium described in Section 4.2.3. While the computations are largely classical, we
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state them for the completeness and the reader’s convenience. For ease of presentation

we consider the case where si,∗m ’s are in strictly ascending/descending order in terms of

m, so that all transitions of M∗ are by ±1.

4.5.3.1 Transition probabilities of M̌∗ in interior states

Conditional on M̌∗
n−1 ∈ {m−,m+} and m /∈ ∂M, we have that (X̃(n) being defined

in (4.8a))

M̌∗
n =


(m+ 1)+, if X̃

(n)
t hits s1,∗

m before s2,∗
m ,

(m− 1)−, if X̃
(n)
t hits s2,∗

m before s1,∗
m ,

(4.59)

with the starting position X̃
(n)
0 = s1,∗

m−1 if M̌∗
n = m+ and X̃

(n)
0 = s2,∗

m+1 if M̌∗
n = m−. Let

us use Xx to denote a generic copy of X started at X0 = x and consider the two-sided

passage times

τ(x; a, b) := inf{t ≥ 0 : Xx
t ≤ a or Xx

t ≥ b}, (a, b) ⊃ x.

Thus we have:

Pm+,(m+1)+ = P
[
X
s1,∗m−1

τ(s1,∗m−1;s2,∗m ,s1,∗m )
= s1,∗

m

]
, Pm+,(m−1)− = P

[
X
s1,∗m−1

τ(s1,∗m−1;s2,∗m ,s1,∗m )
= s2,∗

m

]
,

Pm−,(m+1)+ = P
[
X
s2,∗m+1

τ(s2,∗m+1;s2,∗m ,s1,∗m )
= s1,∗

m

]
, Pm−,(m−1)− = P

[
X
s2,∗m+1

τ(s2,∗m+1;s2,∗m ,s1,∗m )
= s2,∗

m

]
.

(4.60)

Evaluation of (4.60) via the scale function S(·) of (Xt) is stated in Section 2.3.2.2.
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4.5.3.2 Transition probabilities of M̌∗ in boundary regimes

Recall that at regimes m−,m+ only one player can switch. For a recurrent X, she is

guaranteed to do so eventually and we simply have

Pm−,(m+1)+ = Pm+,(m−1)− = 1. (4.61)

When X is transient, one player will be permanently dominant in the long-run and

at least one of the following absorbing probabilities

Pma := P
[
X
s2,∗m+1

t ≤ s1,∗
m ∀t

]
= lim

d↓d
P
[
X
s2,∗m+1

τ(s2,∗m+1;d,s1,∗m )
= d
]
,

Pma := lim
u↑d

P
[
X
s1,∗m−1

τ(s1,∗m−1;s2,∗m ,u)
= u

]
,

(4.62)

are strictly positive. Namely, when M∗ enters a boundary regime, there is a positive prob-

ability that M∗ will stay constant henceforth. To address this, we use the states {ma, ma}

of the extended M̌ that are entered from the regime adjacent to the corresponding bound-

ary. For instance, three transitions are possible from M̌∗
n−1 ∈ {(m− 1)−, (m− 1)+}:

M̌∗
n =


up to ma, if X̃

(n)
t hits s1,∗

m−1 before s2,∗
m−1 and M̌∗ gets absorbed,

up to m+, if X̃
(n)
t hits s1,∗

m−1 before s2,∗
m−1 and M̌∗ is not absorbed,

down to (m− 2)−, if X̃
(n)
t hits s2,∗

m−1 before s1,∗
m−1 .

(4.63)

Probabilistically, we may interpret absorption as an independent “coin toss” at the tran-
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sition out of (m− 1)±, so that using (4.62)

P(m−1)+,ma = P
[
X
s1,∗m−2

τ(s1,∗m−2;s2,∗m−1,s
1,∗
m−1)

= s1,∗
m−1

]
× Pma , (4.64)

P(m−1)+,m+ = P
[
X
s1,∗m−2

τ(s1,∗m−2;s2,∗m−1,s
1,∗
m−1)

= s1,∗
m−1

]
× (1− Pma), (4.65)

P(m−1)+,(m−2)− = 1− P(m−1)+,ma − P(m−1)+,m+ . (4.66)

Similar computations are used for P(m−1)−,·,P(m+1)−,·,P(m−1)+,·.

4.5.3.3 Average sojourn times of M̌∗

The expected sojourn times ~ξ of M∗ in (4.20), or equivalently expected inter-arrival

times between jumps of M̌∗ correspond to the mean two-sided exit time, δab(x) :=

E
[
τ(x; a, b)

]
, x ∈ (a, b), namely

ξm− := E
[
τ(s2,∗

m+1; s2,∗
m , s1,∗

m )
]
, ξm+ := E

[
τ(s1,∗

m−1; s2,∗
m , s1,∗

m )
]
, (4.67)

for m /∈ ∂M. We refer Section 2.3.2.1 for detailed evaluation.

4.5.3.4 One-sided exit times and sojourn times in boundary regimes

To compute mean sojourn times ξm− , ξm+ we make use of the one-sided passage times

τ(x; s) := inf{t ≥ 0 : Xx
t = s}.

If the corresponding absorbing probability (4.62) is zero, we have

ξm− := E
[
τ(s2,∗

m+1; s1,∗
m )
]
, ξm+ := E

[
τ(s1,∗

m−1; s2,∗
m )
]
.
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Otherwise, we condition on the exit time τ being finite, denoting δs(x) = E[τ(x; s)1{τ(x;s)<∞}].

Then, e.g.

ξm+ = E
[
τ(s1,∗

m−1; s2,∗
m )
∣∣τ(s1,∗

m−1; s2,∗
m ) <∞

]
=

1

1− Pma
δs2,∗m

(s1,∗
m−1). (4.68)

Computation of δs(x) is stated in Section 2.3.2.1.

Geometric Brownian motion. GBM is non-recurrent; suppose that µ − 1
2
σ2 > 0 so

that ma is the absorbing regime. Then from (2.44) we compute

δs2,∗m
(s1,∗
m−1) = E

[
τ(s1,∗

m−1; s2,∗
m )1{τ(s1,∗m−1;s2,∗m )<∞}

]
=

1

µ− 1
2
σ2
· ln
(s1,∗

m−1

s2,∗
m

)
·
(s1,∗

m−1

s2,∗
m

)1− 2µ
σ
.

4.5.3.5 Expected number of switches until absorption under non-recurrent

(Xt)

Without loss of generality, let us assume that m is the absorbing regime, so that

limt→∞M
∗
t = m. Define

υupe :=E
[
#up-moves before M̌∗ hits ma | M̌∗

0 = e

]
, e ∈ E \ {ma},

υdne :=E
[
#down-moves before M̌∗ hits ma | M̌∗

0 = e

]
, e ∈ E \ {ma},

where E is the state space of M̌ from (4.19) and P is the transition matrix of M̌∗.

Let P−a be the sub-matrix with the row and column corresponding to ma removed.

Define ~υup := [υupm− , · · · , υ
up

m+ ]T , ~υdn := [υdnm− , · · · , υdnm+ ]T , ~P up := [P up
m− , · · · , P

up

m+ ]T and
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~P dn := [P dn
m− , · · · , P dn

m+ ]T , with


P up
m± := Pm±,(m+1)+ , for m < m− 1, P up

m+ := 0,

P dn
m± := Pm±,(m−1)− , for m > m, P dn

m− := 0,

and P up
(m−1)± := P(m−1)±,m+ + P(m−1)±,ma . Then we obtain

~υup = (I − P−a)−1 ~P up and ~υdn = (I − P−a)−1 ~P dn, (4.69)

and after taking care of the initial condition X0 = x which leads to a non-standard first

transition probability, obtain the expected number of switches defined in (4.22)

N1
m(x) = Px,m

[
M̌∗

1 = (m+ 1)+
]
×
(
υup(m+1)+ + 1

)
+ Px,m

[
M̌∗

1 = (m− 1)−
]
× υup(m−1)− ,

N2
m(x) = Px,m

[
M̌∗

1 = (m+ 1)+
]
× υdn(m+1)+ + Px,m

[
M̌∗

1 = (m− 1)−
]
×
(
υdn(m−1)− + 1

)
.

(4.70)

In general Px,m
[
M̌∗

1 = (m+1)+
]

= P(Xx
τ(x;s2,∗m ,s1,∗m )

= s1,∗
m ); however one must also consider

the situation when M∗
0 = m− 1, so that M̌∗

1 = ma becomes possible, and also M∗
0 = m,

in which case one must assign M̌0 = ma or M̌0 = m+ according to the probability

Pma(x) := limu↑d P
[
Xx
τ(x;s2,∗m ,u)

= u
]
.

4.5.3.6 Non-recurrent (Xt): expected time until absorption

To begin with, we need the expected number of visits to each non-absorbing regime.

Define

Ve1,e2 := E
[
#visits to e2 before M̌∗ reaches ma

∣∣∣∣ M̌∗
0 = e1

]
, for all e1, e2 ∈ E \ {ma},
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and let V denote the matrix of Ve1,e2 with rows ~Ve1,· :=
[
Ve1,m− , . . . ,Ve1,m+

]
, for e1 ∈

E \ {ma}. Then from standard Markov chain arguments,

V = (I − P−a)−1,

where P−a is the transient transition sub-matrix defined in the preceding subsection.

Multiplying by the respective sojourn times ξm, the expected absorption time starting

from an arbitrary regime e ∈ E \ {ma} is T̃e := ~Ve,· · ~ξ−a, where ~ξ−a is the vector of

expected sojourn times excluding ξma . Finally, the expected time until M∗ gets absorbed,

as defined in (4.23), is admitted as (cf. (4.70))

Tm(x) = Ex
[
τ(x; s2,∗

m , s1,∗
m )
]

+ Px,m
[
M̌∗

1 = (m+ 1)+
]
× T̃(m+1)+

+ Px,m
[
M̌∗

1 = (m− 1)−
]
× T̃(m−1)− .

Again further adjustments are needed when M∗
0 = m− 1 or M∗

0 = m as discussed in the

preceding subsection.

4.5.4 Proof of Corollary 4.10

Proof: From (4.24b) and (4.24c), we write V 1
+1(x) explicitly for x ≥ š by substituting

in the respective expressions for ν1
+1 and ω1

−1:

V 1
+1(x) = D1

+1(x) + ν1
+1G(x)

= D1
+1(x) +

V 1
−1(−š)−D1

+1(−š)
G(−š)

G(x)

= D1
+1(x) +

D1
−1(−š) + ω1

−1F (−š)−D1
+1(−š)

G(−š)
G(x)

= D1
+1(x) +

G(x)

G(−š)

[
(V 1

+1 −D1
−1 −K1

−1)(š)
F (−š)
F (š)

+D1
−1(−š)−D1

+1(−š)
]
.
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The above gives an equation relating V 1
+1(x) to V 1

+1(š); therefore, if one defines

Q(s) :=
D1

+1(s)− G(s)
G(−s)

[(
D1
−1(s) +K1

−1(s)
)F (−s)
F (s)

+D1
+1(−s)−D1

−1(−s)
]

1− G(s)
G(−s)

F (−s)
F (s)

, (4.71)

and let š be a solution to the system (4.24), then it holds Q(š) = V 1
+1(š). Similarly, after

differentiating with respect to x (guaranteed by Corollary 4.10 which requires smoothness

of D1
m(·) and K1

m(·)), one can define

q(s) := D1′

+1(s) +
G′(s)

G(−s)

[
(Q(s)−D1

−1(s)−K1
−1(s))

F (−s)
F (s)

+D1
−1(−s)−D1

+1(−s)
]
,

(4.72)

and conclude q(š) = V 1′
+1(š). Then replacing V 1

+1(x) by Q(x) and (V 1
+1)′(x) by q(x) in

(4.24a) we obtain that solving the system (4.24) is equivalent to finding the root(s) of

Z(s) :=
[
Q(s)−D1

−1(s)−K1
−1(s)

]
F ′(s)−

[
q(s)− (D1

−1)′(s)− (K1
−1)′(s)

]
F (s) = 0,

(4.73)

Since š > s2,∗
+1 = −š =⇒ š > 0 (otherwise the switching regions would overlap), we seek

positive solutions to (4.73). We shall show that Z(0) < 0 and Z(s) > 0 for s large

enough, which by continuity (as each term in (4.73) is continuous) implies the existence

of a root.

On the one hand, the numerator of Q(s) at s = 0 is admitted as

D1
+1(0)− G(0)

G(0)

[(
D1
−1(0) +K1

−1(0)
)F (0)

F (0)
+D1

+1(0)−D1
−1(0)

]
= −K1

−1(0) < 0,

while the denominator 1− G(s)
G(−s)

F (−s)
F (s)

= 1−
(F (−s)
F (s)

)2
is strictly positive (F (·) is increasing)
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for s > 0 and tends to zero as s ↓ 0, so that lims↓0Q(s) = −∞. Furthermore,

lim
s↓0

q(s) = (D1
+1)′(0) +

G′(0)

G(0)

[
(lim
s↓0

Q(s)−D1
−1(0)−K1

−1(0))
F (0)

F (0)
+D1

−1(0)−D1
+1(0)

]
= +∞,

since G(·) is positive and decreasing (G′(·) < 0) while all other terms beyond lims↓0Q(s)

are finite. Putting everything together,

lim
s↓0
Z(s) =

[
lim
s↓0

Q(s)−D1
−1(0)−K1

−1(0)
]
F ′(0)−

[
lim
s↓0

q(s)− (D1
−1 −K1

−1)′(0)
]
F (0)

= −∞,

since F (·) is positive and increasing, and all other terms are finite.

On the other hand, for s large enough and using the property of F and G at natural

boundary points (2.14), we have Q(s) ≈ D1
+1(s), q(s) ≈ (D1

+1)′(s) asymptotically as s ↑ d̄

and hence

Z(s) ≈
[
D1

+1(s)−D1
−1(s)−K1

−1(s̄)
]
F ′(s)−

[
D1′

+1(s)−D1′

−1(s)−K1′

−1(s)
]
F (s),

=
[
−
(D1

+1(s)−D1
−1(s)−K1

−1(s)

F (s)

)′] · F 2(s) > 0.

The last inequality follows from ∆D := D1
+1 − D1

−1 − K1
−1 ∈ Hinc (cf. Definition 2.7),

thus 
lim sup

s↑d̄

∆D(s)

F (s)
= 0,

∆D(s) > 0, for s large,

=⇒
(

∆D(s)

F (s)

)′
< 0 as s ↑ d̄.
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Chapter 5

Vertical Impulse Competition

In this chapter, we consider the dynamic competition between the producer and the con-

sumer of a commodity. As an extension to our work stated in Chapter 3 and Chapter 4,

these two players possess distinct types of controls and are allowed to intervene the local

market condition. In particular, the producer is able to move Xt to her desired level by

exercising impulse control, while the consumer can change the macro market regime (e.g.

the overall demand level) which would increase/decrease the commodity price on aver-

age. The process X is then (partially) jointly controlled by the players rather than being

fully exogenous. Moreover, the macro market regime M , though fully endogenously de-

termined, affects not only the players’ profitabilities but also the underlying commodity

price X, which leads us to a more complex feedback effect between these two processes.

By hypothesizing structure of the dynamic competition in equilibrium, we obtain reason-

able threshold-type Nash equilibria by iteratively applying the best-response maps. The

preliminary results represented here are based on the ongoing work [4] without rigorous

mathematical proof, which will be completed in future research.
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5.1 Problem Formulation

We consider vertical competition among producers, Player 1, and consumers, Player

2, of a commodity. The producer extracts the commodity at cost cq and sells it for a

price X. The consumer buys the commodity and converts it into a final good that has

price P . This situation could represent a range of industries, for example extraction of

raw oil, which is then consumed by refineries and chemical industries into final consumer

goods. Or the production of aluminum that is converted by automakers into vehicles. We

focus on the role of the commodity price X that intrinsically creates competition between

the two players (which should be thought of as representative agents of the respective

industry sectors). Indeed, producers prefer high X, while consumers prefer low X. This

competition is dynamic and manifests itself through strategic price effects actuated by the

two industries. Therefore, X is (partially) jointly controlled by the producer/consumer,

leading to game-theoretic impacts.

On the production side, the producer needs Xt to be high enough to make a profit

margin, and can directly influence the supply (think of OPEC). Such production capacity

shocks lead to disinvestment/investment shocks summarized by Nt :=
∑

s≤t ξs, where

ξs denotes the amount by which the producer shifts the price Xs. On the consumption

side, consumers can be in austerity or expansion mode that lowers demand for the com-

modity and influences the drift of Xt (think building more fuel efficient cars when oil

prices become high, or substituting aluminum with other materials when aluminum is too

expensive). Thus, we assume that the drift µt ∈ {µ−, µ+} of (Xt) fluctuates over time ac-

cording to consumer behavior, with µ+ > 0 > µ−. Because such consumer shifts are slow

and expensive, the drift term is persistent (i.e. piecewise constant in time) and changing

it incurs heavy switching costs. In fact, it follows from above narrative that the drift

term reflects the macro market. We then model the macro market regime by a process
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M taking values in {µ+, µ−} and name them as Reduce/Expand regime. Consequently,

the price follows the dynamics

dXt = −Mtdt+ σdWt + dNt, (5.1)

where Nt :=
∑

s≤t ξs summarize impulses of the producer and the Brownian motion (Wt)

captures exogenous price shocks due to speculators, geopolitical events, etc. We note

that both players can push X in either direction, although their actions of distinct types,

namely impulse control by the producer and switching-drift control by the consumer.

However, the consumer is the only player who may exercise switching controls to change

M . Notice also that the commodity price follows a Brownian motion with drift if no

impulse exercised by the producer.

5.1.1 Instantaneous Profit Rates

The price X of the commodity also influences the volume of trade. This is captured by

the demand function Q(X). A similar phenomenon plays out in the final-good market:

the goods price P leads to sales volume QA(P ). Since the consumer is in effect the

intermediary between the commodity and the goods market, she will pass some of her

price shocks to P ≡ P (X).

Based on the above discussion, the instantaneous profit rate of the producer is

π1(x) := (x− cq)Q(x) (5.2)

while the instantaneous profit rate of the consumer is

π2(x) := QA(P )P − αQ(x)(x+ cd) (5.3)
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where α is the proportion of commodity consumed by the consumer (e.g. percentage

of overall crude oil used to produce gasoline) and cd is the processing cost from input

commodity to final good. We shall consider linear inverse demand

Q(X) = d0 − d1X,

which leads to a quadratic profit rate of the producer

π1(x) = −d1x
2 + (d0 + cqd1)x− cqd0. (5.4)

If we further assume that P (X) = p0 + p1X (the price of the final good is linearly

proportional to the commodity price), and QA(P ) = d′0 − d′1P (final good demand is

linearly decreasing in its price P ), the profit rate of the consumer becomes:

π2(x) = QA(P (x))P (x)− αQ(x)(x+ cd)

= p0(d′0 − d′1p0)− αd0cd + (p1(d′0 − 2d′1p0)− α(d0 − d1cd))x+ (αd1 − d′1p2
1)x2

=: γ0 + γ1x+ γ2x
2. (5.5)

To ensure that the consumer profit is concave (downward parabola) in x is equivalent

to assuming that the output market is more elastic to the price x than the intermediary

market: αd1 < d′1p
2
1 ⇔ γ2 < 0.

To sum up, the profit rates of both producer and consumer are concave and quadratic

in x, implying that each player has their preferred commodity levels X̄q, X̄d that maximize

their profit rates:

X̄q =
d0 + cqd1

2d1

X̄d =
γ1

−2γ2

.
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Typically, we expect that X̄d < X̄q, so that the preferred commodity price by the con-

sumer is lower than that of the producer. In turn this implies that the stochastic fluctu-

ations coming from (Wt) can generate three different market conditions:

Xt < X̄d abnormally low prices

X̄d ≤ Xt ≤ X̄q vertical competition

Xt > X̄q very high prices

In the first case, both players wish to raise Xt; in the last setup both wish to lower it. In

the most interesting and relevant intermediate case, they compete against each other.

5.1.2 Admissible Strategies and Game Payoff

In line with above motivating economic narrative, we postulate the players adopt

timing strategies :

α1 = {
(
τ 1(n), ξ(n)

)
: n ≥ 1}, α2 = {τ 2(n) : n ≥ 1}, (5.6)

where ξ(n)’s denote the amounts Player 1 will intervene X by exercising impulse controls.

To define admissibility recursively, we require all τ i(n)’s and ξ(n) to be adapted to F̃ (n)

defined in (2.2) with a minor change in (2.2d)

M̃n = M̃n−1 · 1{Pn=1} + C2
M̃n−1

· 1{Pn=2}, (5.7)

where the consumer’s action sets are

C2
µ− := {µ+}, C2

µ+ := {µ−}.
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Note that action sets of the producer, which is in effect considered as the set of impulses,

are not empty though she is not able to change the macro market regime. Consequently,

admissibility of these players’ strategy profiles follows from Definition 2.2.

The objective functionals of the players consist of integrated profit rates π·(x), dis-

counted at constant rate r > 0 and subtracting the control costs. We take the invest-

ment cost function of the producer to be K1(ξ) = κ0 + κ1|ξ| and of the consumer as

K2(µ) = h0 > 0. Given a strategy profile (α1,α2) and X0 = x,M0 = µ0, the producer’s

game payoff is given by:

J1
±(x;α1,α2) := Ex

[ ∫ ∞
0

e−r t
(
Xt − cq)Q(Xt)dt−

+∞∑
n=1

1{Pn=1}e
−r σn ·K1

(
ξ(n)

)]
, (5.8)

and similarly the representative consumer’s game payoff is:

J2
±(x;α1,α2) := Ex

[ ∫ ∞
0

e−r t
(
γ0 + γ1Xt + γ2X

2
t )dt−

+∞∑
n=1

1{Pn=2}e
−r σn ·K2(M̃n−1)

]
,

(5.9)

where we use the subscript to denote the initial drift µ0 being positive/negative. Recall

the construct (2.2) that n is the counter of the overall “round” of the game and σn

records the corresponding n-th acting time (either of the producer or the consumer).

(Xt) is jointly controlled by these two players as defined in (5.1) with Mt = M̃η(t) and

Nt =
∑

k ξ(k)1{σ1
k≤t}, where σ1

k indicates the producer’s k-th intervention times and ξ(k)

denotes the corresponding impulse.

Lastly, we mention the scenario that no player exercises any control which leads us

to the micro market condition modeled by a Brownian motion with a static drift term
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µ±, i.e.

dX̃t = −µ±dt+ σdWt,

and the corresponding static discounted future cashflows received by these players

Di
±(x) := E

[∫ ∞
0

e−rtπi(X̃t)dt

∣∣∣∣ X̃0 = x

]
. (5.10)

We compute them here for future usage. For the producer, we have

D1
±(x) = Ax2 +B±x+ C±, (5.11)

where

A = −d1

r
, B± =

1

r

(
d0 +

2µ± d1

r
+ cq d1

)
, C± =

1

r

(
− µ±B± + Aσ2 − cqd0

)
.

Similarly for the consumer, we obtain

D2
±(x) = Ex2 + F±x+G±, (5.12)

where

E =
γ2

r
, F± =

1

r

(
γ1 − 2µ±

γ2

r

)
, G± =

1

r

(
γ0 + σ2γ2

r
− µ±F±

)
.

5.2 Constructing Equilibria

We aim to construct explicit equilibria for the vertical competition between the pro-

ducer and the consumer. In particular, we shall aim to construct threshold-type Feedback
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Nash equilibria which allow structural insights of the competition and the resulting two

time-scale market dynamics. To begin with, we conjecture the shape of players’ acting

regions, illustrate the resulting possible competitive dynamics and characterize players’

game values via variational inequalities in Section 5.2.1. Best-response of the players are

discussed in Section 5.2.2 and Section 5.2.3, which allows us to determine Nash equilibria

by implementing tatonnement, i.e. iterating best-response. Reasonable Nash equilibria

constructed are also discussed in Section 5.3.

5.2.1 Heuristics on Threshold-type Equilibrium

We concentrate on a specific class of strategies which are stationary and of threshold-

type. Similar to Definition 2.5, these players exercise their controls (impulse or switch-

type) at the first hitting times of their action regions Γi· ’s which are characterized by

thresholds. For lighter sub-/superscripts, we now use letter x to denote a threshold of

the producer, and letter v to denote her game values. For the consumer, we use letter y

to denote a threshold and letter w to denote her game values.

The action regions are expected to be as follows. The impulse continuation region(
Γ1
·
)c

= (x`, xh) is two-sided: the producer will act whenever Xt reaches xh from below

or drops to x` from above. Note that these thresholds x±` , x
±
h are µ-dependent. Such a

conjecture follows naturally from the producer’s quadratic profit rate π1 in (5.4). When

the producer intervenes, she will bring Xt to her impulse level x±∗lh so that the impulse

amount is always ξ± = x±∗lh − x
±
lh. When Mt = µ+, we have the intuition that if Xt is

very low, the consumer has an interest in switching from a decreasing to an increasing

demand, i.e. when Xt ≤ y` for some endogenous threshold y` the consumer wants to

switch to µ−. Similarly, when Mt = µ−, the consumer would want to switch to µ+ only

when Xt ≥ yh for another endogenous threshold yh. To wit, the consumer’s switching
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regions are Γ2
− = [yh,+∞) and Γ2

+ = (−∞, y`]

The natural ordering we expect is that for the producer

x±` < x±∗` < X̄q < x±∗h < x±h (5.13)

and for the consumer

y` < X̄d < yh (5.14)

so that when acting both players try to move X towards their preferred levels. However,

the precise ordering between the impulse thresholds x± and the switching thresholds y’s

is not clear a priori and will emerge as part of the overall equilibrium construction.

5.2.1.1 Illustrating Competitive Dynamics

To understand the market evolution under competition of the producer and consumer,

we focus on the case where both players are active. The producer’s strategy is summarized

via a 2×4 matrix C1 which lists the thresholds x±` , x
±
h and the target levels x±∗` , x±∗h . Thus,

the no-intervention regions are [x±` , x
±
h ] and impulse amounts are x±∗h − x

±
h , x

±∗
` − x

±
` :

C1 =

x+
` , x+∗

` , x+
h , x+∗

h

x−` , x−∗` , x−h , x−∗h

 . (5.15)

The consumer has two switching thresholds y`, yh satisfying the following order among

the thresholds

x±` < y` < yh < x±h . (5.16)
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Note that in the Expand regime (drift µ−), we assume that x−h > yh. Therefore, coming

from below, Xt hits yh first, causing the consumer to switch into the Reduce regime with

drift µ+. When yh ≤ Xt < x−h , the consumer switches first as well. To define the players’

behavior when Xt ≥ x−h (i.e. the situation both players want to intervene), we assume

that the consumer has the priority for simplicity. As a result, the impulse threshold

x−h is not effective, i.e. will never get triggered along a controlled path of (Xt). Similar

argument could be applied to claim that x+
` is not effective either if x+

` < y`. In Fig. 5.1,

we provide an illustration to describe the vertical competition among the two players.

µ+

µ−

xL
−

xL
−*

xh
+

xh
+*

yL

yh

x

Figure 5.1: An illustration of the vertical competition between the producer and the
consumer. The blue arrows represent drift-switching controls exercised by the con-
sumer at levels yl,h, while the red curved arrows represent impulse controls exercised
by the producer at levels x±l,h.

To illustrate equilibrium dynamics, Figure 5.2 shows a sample trajectory of (Xt)

with producer strategy C1 =

1.0, 1.3, 2.0, 1.7

1.0, 1.3, 2.0, 1.7

 and consumer strategy (y`, yh) =

(1.2, 1.8). The effective thresholds are (y`, x
+
h ) when Mt = µ+, or (x−` , yh) when Mt = µ−.

In other words, in the Reduce regime, (Xt)t>0 will be between [1.2, 2.0], in the Expand

regime it will be between [1.0, 1.8], and overall we expect it will be bounded between

[1.0, 2.0]. Extreme commodity price at the beginning of the game X0 is still possible.

Nevertheless, the game is well-defined following from above discussion. For instance, if
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Figure 5.2: A sample path of the controlled market price (Xt) under competitive
equilibrium. Observe that Xt ∈ [1, 2] for all t

M0 = µ+, X0 = 2.2, the consumer (with the priority) will switch first the drift M0 to µ−,

then the producer will move the price to x−∗h = 1.7.

In Figure 5.2, we start in the Reduce regime with X0 = 1.5 and M0 = µ+. On this

trajectory, (Xt) moves down (due to negative drift) and so the consumer switches to a

positive drift to draw the price up. Nevertheless, the price keeps decreasing and hits

x−` = 1.0, whereby the producer intervenes and pushes it to x−∗` = 1.3. Prices then

continue to rise up to yh = 1.8 at which point the consumer switches again and starts

pushing them back down (supposedly she wishes to keep them somewhere around 1.5).

This cyclic behavior continues ad infinitum, yielding a stationary distribution for the

pair (Xt,Mt). Note that in Expand/Reduce regime, the consumer uses her switching

control to keep Xt from going too high or too low, and the producer acts as a “back-up”,

explicitly forcing prices from becoming extreme. The resulting mean-reversion behavior

(due to Mt essentially alternating between µ−, µ+ as Xt moves up and down) is clearly

evident. The additional interventions by the producer further make the domain of (Xt)

to be bounded.
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5.2.1.2 Heuristics on Game Values

We develop first some heuristics about possible Nash equilibria on the producer side

by analyzing the value functions v+(x) and v−(x) resp. corresponding to a positive and

negative drift. Ignoring for the moment the consumer, the value functions v± of the

producer satisfy the quasi-variational inequality:

sup
{
− rv± − µ±v±x +

1

2
σ2v±xx + π1(x); sup

ξ

{
v±(x+ ξ)− v±(x)−K1(ξ)

}}
= 0. (5.17)

Note that as written, the two variational inequalities are automonous, hence uncoupled

from each other. The game coupling comes from the additional boundary condition that

when the consumer switches, the producer payoffs are unaffected:

v+(yr) = v−(yr), r ∈ {`, h}. (5.18)

The general solution of the ODE

−rv − µ±vx +
1

2
σ2vxx + π1(x) = 0

is of the form v±(x) = D1
±(x) + u±(x) where D1

±(x) is the static discounted cashflow

functions and u± satisfies the homogenous ODE

−ru− µ±ux +
1

2
σ2uxx = 0,

i.e. the fundamental solutions computed in Section 2.3.1. Letting θ±1 > 0 and θ±2 < 0 be

the two real roots of the quadratic −r − µ±z + 1
2
σ2z2 = 0, we use the ansatz that

v±(x) = D1
±(x) + λ±1 e

θ±1 x + λ±2 e
θ±2 x, (5.19)
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for the solution of each equality in the continuation regions. When applying the impulse

ξ, which are treated temporarily as unknowns, at the boundary x±` the producer brings

the system back to the point x±∗` := x±` + ξ±` , resp. x±∗h . Making the hypothesis that the

value function is continuous at x±`h we have:

v±(x±` ) = v±(x±∗` )− κ0 − κ1(x±∗` − x
±
` ), (5.20)

v±(x±h ) = v±(x±∗h )− κ0 − κ1(x±h − x
±∗
h ). (5.21)

And making the hypothesis that the value function is differentiable at the borders of the

intervention region, we have:

v±x (x±` ) = v±x (x±∗` ) + κ1, (5.22)

v±x (x±h ) = v±x (x±∗h )− κ1. (5.23)

Finally, the optimal investment impulse ξ is given by the first order condition at x±∗`h

v±x (x±` + ξ±` ) = κ1, (5.24)

v±x (x±h + ξ±h ) = −κ1. (5.25)

Hence on producer’s side the parameters to be determined are: λ±1 , λ
±
2 , the thresholds

x±` , x
±
h and the targets x±∗` , x±∗h (12 = 4 + 4 + 4 parameters).

For the consumer, there are two quasi-variational inequalities satisfied by her value

functions w±(x) depending on the sign of µ:

sup
{
− rw+ − µ+w

+
x +

1

2
σ2w+

xx + π2(x);w−(x)− w+(x)−K2
}

= 0,

sup
{
− rw− − µ−w−x +

1

2
σ2w−xx + π2(x);w+(x)− w−(x)−K2

}
= 0,
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where π2(x) is as in (5.5). Our ansatz of the solution in the continuation region is as

follows

w±(x) = D2
±(x) + ν±1 e

θ±1 x + ν±2 e
θ±2 x, (5.26)

where D2
±(x) is the static discounted cashflow, and θ±1 , θ

±
2 are as before. When Mt = µ−,

the consumer will switch to µ+ if Xt ≥ yh and similarly when Mt = µ+ she will switch

to µ− if Xt ≤ y`. These switches translate to

w−(y) = w+(yh)− h0, y ≥ yh, (5.27)

w+(y) = w−(y`)− h0, y ≤ y`. (5.28)

together with the smooth pasting C1 regularity

w+
x (yr) = w−x (yr), r ∈ {`, h}. (5.29)

Hence, on consumer’s side we have 6 parameters: ν±1 , ν
±
2 and the two thresholds y`, yh.

Like in (5.18) when the producer impulses nothing happens to consumer payoff:

w±(x±∗r ) = w±(x±r ), r ∈ {`, h}, (5.30)

notice that equations (5.18) and (5.30) also correspond to C0 smooth fit conditions of

equilibrium payoffs of each player at his/her competitor’s thresholds. This is due to the

fact that there is no cross-term intervention cost in our model.

To sum up, we have 18 = 12 + 6 parameters to determine. By substitution of the

parametric formulae for v± and w± in the equations (5.20) to (5.25) (for the producer),

(5.27) to (5.29) (for the consumer) and (5.18)-(5.30) (cross effects) above, we obtain two
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coupled systems of 22 equations in total, which are more than unknowns. Nevertheless,

as we discussed in the previous subsection, the order of players’ thresholds makes some

of their thresholds ineffective. We can in turn get rid of the corresponding boundary

conditions.

5.2.2 Consumer Best Response

Fixing x±r , the consumer faces a two-state switching control problem on the bounded

domain (x±` , x
±
h ). To proceed with analysis of the different sub-cases that are possible, we

start with the case where the consumer is completely inactive. In that case, she simply

collects the payoff based on the strategy (x±`,h), and can be considered as a “follower”. As-

suming that the consumer never makes any switching, her corresponding value functions,

denoted by ω±0 , are of the form

ω±0 (x) = D2
±(x) + ν±1,0e

θ±1 x + ν±2,0e
θ±2 x (5.31)

on [x±` , x
±
h ], with boundary conditions

ω±0 (x±r ) = ω±0 (x±∗r ), r ∈ {`, h}. (5.32)

For x > x±h we take ω±0 (x) = ω±0 (x±∗h ) and similarly for x < x±` . In turn, from (5.32) we

can solve for the coefficients ν±1,0, ν
±
2,0 via the following uncoupled linear system:


ν±1,0 ·

[
eθ
±
1 x
±
` − eθ±1 x±∗`

]
+ ν±2,0 ·

[
eθ
±
2 x
±
` − eθ±2 x±∗`

]
= D2

±(x±∗` )−D2
±(x±` ),

ν±1,0 ·
[
eθ
±
1 x
±
h − eθ±1 x±∗h

]
+ ν±2,0 ·

[
eθ
±
2 x
±
h − eθ±2 x±∗h

]
= D2

±(x±∗h )−D2
±(x±h ).

(5.33)

Fig. 5.3a illustrates the shape of ω±0 (x). In the left panel, we have monotonicity
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between ω+ and ω−: the consumer is incentivised to switch to µ− when Xt is low and to

µ+ when Xt is high. In that situation, we expect that a threshold-type strategy is a best

response. In contrast, on the right panel two other cases are illustrated. First, we see that

it is possible that ω+(·) � ω−(·), in other words the consumer has a strong preference

to one regime over the other. In that case, the Expand regime could be absorbing, i.e. it

is optimal to never switch to µ+. In the plot this would happen if h0 is low (dashed

line), whereby ω−(x) > ω+(x)− h0 and it is optimal to switch to µ− at any x (therefore

µ+ would never be observed in the resulting game evolution). At the same time, we

see that if h0 is moderate (the solid line), then the region where ω−0 (x) > ω+
0 (x)− h0 is

disconnected, so it is likely that a two-threshold switching strategy is an optimal response.

This illustrates the fact that a threshold switching strategy might not be optimal in all

potential situations.
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]
Figure 5.3: No-Switch payoffs ω±0 (x) of the consumer given the producer’s strategy C1.
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5.2.2.1 Consumer’s single-switch best-response

In the scenario when the payoff in the Expand regime is higher for any price x, she

will never switch to the Reduce regime. We then expect the consumer’s corresponding

best-response to be either a single-switch strategy (to the preferred regime) or no-switch

(if already there), cf. Figure 5.3b. Economically, this corresponds to yh > x±h so that

as the price rises, the producer impulses X down, and the consumer is not intervening

to increase her demand. As a result, the consumer never switches (except perhaps the

first time from positive to negative drift) and limtMt = µ−. This can be observed when

demand switching is very expensive, so that producer has full market power and is able

to keep prices consistently high. The consumer is forced to be in the Expand regime

forever but is not able to influence X any further.

Suppose that the consumer prefers Reduce regime (Mt = µ+) and adopts threshold-

type strategies. We represent her thresholds as

y` = −∞, x±` < yh < x±h ,

given the producer’s strategy C1, and posit that her best-response is of the form

ω+(x) = ω+
0 (x); (5.34a)

ω−(x) =


ω+

0 (x)− h0, x ≥ yh,

D2
−(x) + λ−1 e

θ−1 x + λ−2 e
θ−2 x, x−` < x < yh,

ω−(x−∗` ), x ≤ x−` ,

(5.34b)
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with the smooth pasting and boundary conditions:



D2
−(x−` ) + λ−1 e

θ−1 x
−
` + λ−2 e

θ−2 x
−
` = D2

−(x−∗` ) + λ−1 e
θ−1 x

−∗
` + λ−2 e

θ−2 x
−∗
` ,

(C0-pasting at x−` )

D2
−(yh) + λ−1 e

θ−1 yh + λ−2 e
θ−2 yh = D2

+(yh) + λ+
1,0e

θ+1 yh + λ+
2,0e

θ+2 yh − h0,

(C0-pasting at yh)

D2
−,x(yh) + λ−1 θ

−
1 e

θ−1 yh + λ−2 θ
−
2 e

θ−2 yh = D2
+,x(yh) + λ+

1,0θ
+
1 e

θ+1 yh + λ+
2,0θ

+
2 e

θ+2 yh ,

(C1-pasting at yh)

(5.35)

where λ+
1,0, λ

+
2,0 are coefficients of the consumer’s payoff associated to the no-switch strat-

egy in (5.31). The system (5.35) is to be solved for the three unknowns yh, λ
−
1,2. It can

be re-written as first solving for λ−1,2 from the linear system

 eθ
−
1 yh eθ

−
2 yh

eθ
−
1 x
−
` − eθ−1 x−∗` eθ

−
2 x
−
` − eθ−2 x−∗`

 ·
λ−1
λ−2

 =

ω+
0 (yh)−D2

−(yh)− h0

D2
−(x−∗` )−D2

−(x−` )

 (5.36)

and then determining yh from the smooth pasting C1-regularity

ω−x (yh) = ω+
0,x(yh). (5.37)

The overarching plan is that such ω− should be a solution to the variational inequality

sup
{
− rω− − µ−ω−x +

1

2
σ2ω−xx + π2; ω+

0 − h0 − ω−
}

= 0. (5.38)

Note that while the above equation for ω− depends on ω+
0 , the equation for ω+

0 is au-

tomonous —the system of equations becomes decoupled because the two regimes of M
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no longer communicate.

5.2.2.2 Double-Switch best-response of the consumer

Finally, we consider the main case where the consumer adopts threshold-type switches

at both regimes, i.e. the ordering in (5.16) holds. Given the producer’s strategy C1, we

make the ansatz that the consumer’s best-response value is of the following form

ω+(x) =


ω+(x+∗

h ), x ≥ x+
h ,

D2
+(x) + λ+

1 e
θ+1 x + λ+

2 e
θ+2 x, y` < x < x+

h ,

ω−(x)− h0, x ≤ y`,

(5.39a)

ω−(x) =


ω+(x)− h0, x ≥ yh,

D2
−(x) + λ−1 e

θ−1 x + λ−2 e
θ−2 x, x−` < x < yh,

ω−(x−∗` ), x ≤ x−` ,

(5.39b)
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with the smooth pasting and boundary conditions:



D2
+(x+

h ) + λ+
1 e

θ+1 x
+
h + λ+

2 e
θ+2 x

+
h = D2

+(x+∗
h ) + λ+

1 e
θ+1 x

+∗
h + λ+

2 e
θ+2 x

+∗
h , (C0 at x+

h )

D2
−(x−` ) + λ−1 e

θ−1 x
−
` + λ−2 e

θ−2 x
−
` = D2

−(x−∗` ) + λ−1 e
θ−1 x

−∗
` + λ−2 e

θ−2 x
−∗
` , (C0 at x−` )

D2
+(y`) + λ+

1 e
θ+1 y` + λ+

2 e
θ+2 y` = D2

−(y`) + λ−1 e
θ−1 y` + λ−2 e

θ−2 y` − h0, (C0 at y`)

D2
−(yh) + λ−1 e

θ−1 yh + λ−2 e
θ−2 yh = D2

+(yh) + λ+
1 e

θ+1 yh + λ+
2 e

θ+2 yh − h0, (C0 at yh)

D2
+,x(y`) + λ+

1 θ
+
1 e

θ+1 y` + λ+
2 θ

+
2 e

θ+2 y` = D2
−,x(y`) + λ−1 θ

−
1 e

θ−1 y` + λ−2 θ
−
2 e

θ−2 y` ,

(C1-pasting at y`)

D2
−,x(yh) + λ−1 θ

−
1 e

θ−1 yh + λ−2 θ
−
2 e

θ−2 yh = D2
,x(yh) + λ+

1 θ
+
1 e

θ+1 yh + λ+
2 θ

+
2 e

θ+2 yh .

(C1-pasting at yh)

(5.40)

The six equations can be split into a linear system for the coefficients λ’s and the smooth-

pasting conditions determining the two switching thresholds yr (viewed as free bound-

aries)

ω+
x (yr) = ω−x (yr), r ∈ {`, h}. (5.41)

The ω± are supposed to be a solution to the coupled variational inequalities

sup
{
− rω+ − µ+ω

+
x +

1

2
σ2ω+

xx + π2; max{ω− − h0, ω
+
0 } − ω+

}
= 0,

sup
{
− rω− − µ−ω−x +

1

2
σ2ω−xx + π2; max{ω+ − h0, ω

−
0 } − ω−

}
= 0,

which would then indeed lead to the consumer’s best-response by a verification argument.
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5.2.3 Producer Best Response

We now consider the best-response of the producer, given the consumer’s switching

strategy denoted by C2 := [y`, yh]. For simplification, we assume pre-specified impulse

amounts (also with a fixed cost denoted specifically by Kq), e.g. ξ = ±0.2, and x±∗`h =

x±`h+ξ. This simplification reduces the dimension of searching solutions to the QVIs (5.17)

by eliminating the first-order conditions (5.24)-(5.25), and leads us to the simplified QVIs

as follows

sup
{
− rv± − µ±v±x +

1

2
σ2v±xx + π1(x); v±(x+ ξ)− v±(x)−K1(ξ)

}
= 0. (5.42)

5.2.3.1 Monopoly Best-response

To begin with, we determine the monopoly-like strategy of the producer assuming

the consumer adopts a no-switch strategy. In that case Mt is constant throughout.

Intuitively, this is the case when the thresholds yr → ∞, r ∈ {`, h}. We obtain two

uncoupled QVIs to solve following from (5.42). Assuming the producer adopts threshold-

type impulse strategies, her expected payoff is of the form:

v±(x) =


v±(x±∗h )−Kq, x ≥ x±h ,

D1
±(x) + ν±1 e

θ±1 x + ν±2 e
θ±2 x, x±` < x < x±h ,

v±(x±∗` )−Kq, x ≤ x±` ,

(5.43)
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with the smooth pasting and boundary conditions:



D1
±(x±h ) + ν±1 e

θ±1 x
±
h + ν±2 e

θ±2 x
±
h = D1

±(x±∗h ) + ν±1 e
θ±1 x

±∗
h + ν±2 e

θ±2 x
±∗
h −Kq,

(C0 at x±h )

D1
±(x±` ) + ν±1 e

θ±1 x
±
` + ν±2 e

θ±2 x
±
` = D1

±(x±∗` ) + ν±1 e
θ±1 x

±∗
` + ν±2 e

θ±2 x
±∗
` −Kq,

(C0 at x±` )

D1±, x(x±h ) + ν±1 θ
±
1 e

θ±1 x
±
h + ν±2 θ

±
2 e

θ±2 x
±
h = D1

±,x(x
±∗
h ) + ν±1 θ

±
1 e

θ±1 x
±∗
h + ν±2 θ

±
2 e

θ±2 x
±∗
h ,

(C1-pasting at x±h )

D1
±,x(x

±
` ) + ν±1 θ

±
1 e

θ±1 x
±
` + ν±2 θ

±
2 e

θ±2 x
±
` = D1

±,x(x
±∗
` ) + ν±1 θ

±
1 e

θ±1 x
±∗
` + ν±2 θ

±
2 e

θ±2 x
±∗
` .

(C1-pasting at x±` )

(5.44)

These are 2 linear systems of 2 equations each in the coefficients ν±1,2 plus two nonlinear

equations each in x±l,h.

In Fig. 5.4 we sketch the producer’s monopoly payoffs when she exercises two-sided

impulse controls (along arrows) and pushes the commodity price to x±∗r (dashed lines)

automonously. These two payoffs cross at X̄q since we take symmetric µ± in this example.

Notice that we observe the orders x−h < x+
h and x−` < x+

` . An interpretation could be

that when the price drift is negative (−µ+) the producer is more tolerant toward the

high values X could take before intervening as, apart from her intervention, she can also

rely on a negative drift which could keep X away from high values on average. A similar

reasoning would justify x−` < x+
` . One also notice that the producer, though not able to

switch the drift, would benefit from the consumer’s switching with y` < X̄q and yh > X̄q.
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Figure 5.4: Monopoly payoffs of the producer. The arrows indicate directions of her
impulse controls and the dashed lines denote the price level she would push to.

5.2.3.2 Non-preemptive Response

We now consider the main case supposing the ordering (5.16) holds. To obtain the

producer best-response it suffices to identify the two active impulse thresholds [x+
h , x

−
` ].

Our ansatz is

v+(x) =


v+(x+∗

h )−Kq, x ≥ x+
h ,

D1
+(x) + ν+

1 e
θ+1 x + ν+

2 e
θ+2 x, y` < x < x+

h ,

v−(x), x ≤ y`,

(5.45a)

v−(x) =


v+(x), x ≥ yh,

D1
−(x) + ν−1 e

θ−1 x + ν−2 e
θ−2 x, x−` < x < yh,

v−(x−∗` )−Kq, x ≤ x−` ,

(5.45b)
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with the smooth pasting C1 regularity and boundary conditions:



D1
+(y`) + ν+

1 e
θ+1 y` + ν+

2 e
θ+2 y` = D1

−(y`) + ν−1 e
θ−1 y` + ν−2 e

θ−2 y` , (C0 at y`)

D1
−(yh) + ν−1 e

θ−1 yh + ν−2 e
θ−2 yh = D1

+(yh) + ν+
1 e

θ+1 yh + ν+
2 e

θ+2 yh , (C0 at yh)

D1
+(x+

h ) + ν+
1 e

θ+1 x
+
h + ν+

2 e
θ+2 x

+
h = D1

+(x+∗
h ) + ν+

1 e
θ+1 x

+∗
h + ν+

2 e
θ+2 x

+∗
h −Kq,

(C0 at x+
h )

D1
−(x−` ) + ν−1 e

θ−1 x
−
` + ν−2 e

θ−2 x
−
` = D1

−(x−∗` ) + ν−1 e
θ−1 x

−∗
` + ν−2 e

θ−2 x
−∗
` −Kq,

(C0 at x−` )

D1
+,x(x

+
h ) + ν+

1 θ
+
1 e

θ+1 x
+
h + ν+

2 θ
+
2 e

θ+2 x
+
h = D1

+,x(x
+∗
h ) + ν+

1 θ
+
1 e

θ+1 x
+∗
h + ν+

2 θ
+
2 e

θ+2 x
+∗
h ,

(C1-pasting in x+
h )

D1
−,x(x

−
` ) + ν−1 θ

−
1 e

θ−1 x
−
` + ν−2 θ

−
2 e

θ−2 x
−
` = D1

−,x(x
−∗
` ) + ν−1 θ

−
1 e

θ−1 x
−∗
` + ν−2 θ

−
2 e

θ−2 x
−∗
` .

(C1-pasting in x−` ).

(5.46)

Unlike the monopoly (i.e. single-agent) setting, here the equations are coupled. The coef-

ficients ν±1,2 are the solution to a linear system and the thresholds x+
h , x

−
` are determined

by the C1 smooth-pasting at x+∗
h and x−∗` . Lastly, to justify above v± and corresponding

C1 are the producer’s best-response payoffs and strategy, one need to show they solve the

following QVIs (5.42).

Note that, though hidden in the system of equations above, the producer’s thresholds

[x+
` , x

−
h ] are essential to define her best-response. On one hand, taking Mt = µ− as an

example, the players’ behavior need to be defined when Xt > x−h since both of them want

to exercise a control, hence the payoff v− needs to be defined for x > x−h as well. On

the other hand, the consumer’s best-response are highly contingent upon the thresholds
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[x+
` , x

−
h ]. For the sake of simplicity, we assume that the consumer possesses the priority

to intervene when they both want to act. Consequently, if the producer decides not

to prevent the consumer from switching, it is equivalent for her to set x+
` = −∞ and

x−h = +∞. The producer’s strategy associated to the payoffs (5.45) is in effect

C1 =

−∞, −, x+
h , x+∗

h

x−` , x−∗` , +∞, −

 .
Preemptive Response In the case when the static discounted future profits of the

producer satisfy D1
−(x) ≥ D1

+(x) for any x, one possible strategy for her is to preempt

in order to prevent the consumer from switching the drift to µ+. Such a strategy can

be realized by taking x−h < yh. However, imposing this constraint might not solve the

system (5.44). In the latter situation the best response is to impulse X right before it

hits yh, i.e. x−h = yh − .

In general, we need to manually verify whether x−h > yh (the main case) or xh = yh−

(the pre-emptive case) whenever consider the producer best-response. The two situations

lead to different boundary conditions at the upper threshold, and hence cannot be directly

compared.

5.3 Numerical Examples

In this section, we represent some numerical examples in which reasonable threshold-

type Nash equilibria are obtained. The results are preliminary and future discussion is

expected in our ongoing work.
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(d) Producer’s Payoffs at M0 = µ−

Figure 5.5: Equilibrium payoffs of the producer and consumer.

5.3.1 Double-Switch + Non-preemptive Impulse

The corresponding parameter values are d0 = 10/3, d1 = 2/3, p0 = 1.044, p1 = 1, d′0 =

23, d′1 = 11/3, cq = cd = 0, α = 1.0, r = 0.1, µ− = −0.1, µ+ = 0.1, σ = 0.25, h0 = 10, with

fixed impulse amounts ξ ≡ 0.2 and impulse cost Kq = 3, which yield X̄d = 2.0, X̄q =

2.5. To construct an interior, non-preemptive equilibrium satisfying the ordering (5.16)

we employ tatonnement, i.e. iteratively apply the best-response maps. The resulting
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equilibrium is

C1∗ =

 −∞, −, 4.7991, 4.5991

0.21281, 0.41281, +∞, −

 , C2∗ = [1.2134, 2.7632]. (5.47)

In Fig. 5.5 we verify that the ansatz (5.39) and (5.45) associated to above strategies solve

corresponding QVIs.

In the equilibrium (see Figure 5.6), the commodity price X∗ increases on average due

to the positive drift in the Expand regime (M∗
t = µ−). When it exceeds yh = 2.76, the

consumer switches to the Reduce regime which makes the price decrease on average. The

producer benefits from such switches, thus decides to act as a “back-up”, i.e. impulse

up when X∗ is extremely low (≤ 0.21), rather than preempting to prevent the consumer

from switching. Similarly, in the Reduce regime, the price decreases on average due to the

negative drift and triggers the consumer to switch to the Expand regime when it drops

below y` = 1.21. The producer will not intervene until the price becomes extremely high

(≥ 4.80). In turn, the players’ strategy profile yields a stationary distribution for the
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Figure 5.6: A sample path of the controlled market price (Xt) under a Double-Switch
equilibrium
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pair (X∗t ,M
∗
t ). The macro market M∗ would switch between the Expand regime and

the Reduce regime back and forth, while the jointly controlled price X∗, bounded in the

range [x−` , x
+
h ], fluctuates at a mean-reverting pattern (due to the changes of its drift).

5.3.2 Single-Switch + Monopoly/One-sided Impulse

There is another type of equilibrium in which the consumer decides to switch from one

regime to the other only. For instance, suppose that the consumer chooses to switch to

the Reduce regime (µ+, negative drift) only, then the producer’s best-response is expected

to be acting like a monopoly at the Reduce regime and exercise one-sided impulse at the

Expand regime (assuming that she is not incentivised to preempt).

To construct such an equilibrium, we increase the switching cost h0 = 25 and keep

all other parameters unchanged. We start with assuming the consumer is passive and

solving for the monopoly impulse thresholds x
(0)
`h of the producer. Next, we fix that

impulse strategy and solve for y
(1)
`h switching thresholds, which in effect imply a single-

switch strategy (i.e. y
(1)
` = −∞). Then we revert back to the producer and find her best

response to x
(1)
`h , and so forth. The resulting equilibrium is

C1∗
single =

1.0250, 1.2250, 4.8954, 4.7954

0.1608, 0.3608, +∞, −

 , C2∗
single = [−∞, 2.8869], (5.48)

where we use the subscript to denote that this strategy profile corresponds to a single-

switch case. In turn, when there exists a heavy switching cost, the consumer would only

switch off from the Expand regime (µ−) and decrease the commodity price. Instead

of switching to the Expand regime, she relies on the producer who would impulse the

commodity price up when X is too low. In Fig. 5.7 we verify that the ansatz (5.39) and

(5.45) associated to above strategies solve corresponding QVIs.
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(d) Producer’s Payoffs at M0 = µ−

Figure 5.7: Equilibrium payoffs of the producer and consumer.

In the single-switch equilibrium (see Figure 5.8), the players act similarly to the

double-switch equilibrium when the macro market is in the Expand regime (M∗
t = µ−).

Namely, the commodity price X∗ increases on average due to the positive drift. When it

exceeds yh = 3.46, the consumer switches to the Reduce regime which makes the price

decrease on average. The producer acts as a “back-up” by impulsing up when X∗ is

extremely low (≤ 0.19). However, in the Reduce regime, the heavy switching cost makes

it not optimal for the consumer to switch to the Expand regime. The price drops on

average due to the negative drift and the producer acts to prevent it from being too low

(≤ 1.03). In turn, the jointly controlled commodity price X∗ decreases in the long-run,
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Figure 5.8: A sample path of the controlled market price (Xt) under a Single-Switch
equilibrium

and the producer would intervene more frequently to maintain a sound price.

One interesting observation is that there also exists a double-switch equilibrium with

the following strategy profile:

C1∗
double =

 −∞, −, 4.8182, 4.6182

0.2099, 0.4099, +∞, −

 , C2∗
double = [0.8487, 3.0788], (5.49)

which is obtained by starting from a double-switch strategy of the consumer and itera-

tively apply the best-response maps. One direct observation is that the producer does

not move the price X up at the Reduce regime (µ+) so that the consumer has to switch

to the Expand regime. Equilibrium selection is not trivial in this situation, since one can

observe that the consumer collects more payoff in the double-switch equilibrium when Xt

is high but prefers the opposite when Xt is low, though the producer consistently favors

the double-switch equilibrium.
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Figure 5.9: Equilibrium payoffs in two types of equilibria.

5.3.3 Effect of Market Fluctuation

In this subsection, we study how the volatility of the commodity price may affect

the players’ decisions in double-switch equilibria constructed. Recall that the parameters

used in preceding sections are r = 0.1, X̄d = 2.0, X̄q = 2.5, µ− = −0.1, µ+ = 0.1, σ =

0.25, h0 = 10, with fixed impulse amounts ξ ≡ 0.2 and impulse cost Kq = 3. We now

vary σ from 0.2 to 0.4. As σ increases, both the consumer and the producer decide to

wait longer, which is also observed when their acting costs h0, Kq increase.
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Figure 5.10: Double-Switch equilibrium thresholds of the players as σ variates.

5.4 Future Research

The work represented in this chapter is still ongoing. The assumption of fixed impulse

amount should be extended. In fact, with linear impulse costs, such amount can be

optimally determined via (5.24)-(5.25). Meanwhile, one essential task to be done is to

provide rigorous game formulation and mathematical proofs of the best-response maps

we constructed in Section 5.2. Though analytical inference for equilibria of the general

competition is hard to approach, we are interested in solving some limiting cases, e.g.

free actions by the consumer h0 = 0 which should lead to y` = yh.

We shall aim to analyze dynamics of the pair (Xt,Mt) in the emerging equilibrium.

In this model, the commodity price is partially controlled by the players which brings

difficulty for us to obtain analytic results about the short-/long-term market condition.

Nevertheless, explicit constructed threshold-type equilibria allow us to investigate the

resulting competition via numerical approach (e.g. Monte Carlo methods).

Another notable extension we aim to do is an economic case study. We would like

to consider a simplified vision of the crude oil market and its refined products. The

model would be calibrated in the vicinity of the current world consumption of oil and
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gasoline. Switching from the Expand regime to the Reduce regime is considered as

replacing gasoline cars by electricity cars which lowers the yearly grow rate of gasoline

consumption. We expect that this calibrated case study would bring us insights about

the future regime of the oil market (will it be switched into the Reduce regime?), the

existence of vertically integrated companies (BP, Shell, etc.), and so on.
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Volume 2, Itô calculus, vol. 2. Cambridge university press, 2000.

[71] A. Siddiqui and R. Takashima, Capacity switching options under rivalry and
uncertainty, European Journal of Operational Research 222 (2012), no. 3 583–595.

[72] F. R. Smets, Essays on foreign direct investment. PhD thesis, Yale University,
1993.

[73] J.-H. Steg, Irreversible investment in oligopoly, Finance and Stochastics 16
(2012), no. 2 207–224.

[74] J.-H. Steg and J. Thijssen, Quick or persistent? strategic investment demanding
versatility, tech. rep., 2015.

[75] R. Takashima, M. Goto, H. Kimura, and H. Madarame, Entry into the electricity
market: Uncertainty, competition, and mothballing options, Energy Economics 30
(2008), no. 4 1809–1830.

[76] H. Von Stackelberg, Market structure and equilibrium. Springer Science & Business
Media, 2010.

[77] J. T. Williams, Equilibrium and options on real assets, Review of Financial
Studies 6 (1993), no. 4 825–850.

204


	Curriculum Vitae
	Abstract
	Introduction
	Background
	Stochastic Nonzero-sum Duopoly Games
	Markets with Two Time-scales Feature
	Competition of Asymmetric Players
	Equilibrium: Emerging Macro Market

	Tractable Games from Economic Applications
	Capacity Expansion: Finite Controls
	Optimal Switching: Infinite Controls
	Mixed Optimal Switching and Impulse Controls

	Overview of the Thesis

	Formulation and Building Blocks
	Generic Game Formulation
	Exogenous Factor X and Endogenous Regime M
	Admissible Strategies and Game Payoff
	Threshold-type Markov Nash Equilibrium

	Building Block: Method of Solution
	Smallest Concave Majorant
	Variational Inequalities

	Building Block: Elementary Computations
	Fundamental Solutions to ODE
	First Passage Times and Hitting Probabilities


	Capacity Expansion Games
	Problem Formulation
	Relative Cost X and Game Stage M
	Game Policies and Game Payoffs
	Game Equilibrium

	Constructing Equilibria
	Equilibria at Boundary Stages
	Equilibria at Interior Stage (1, 1)
	Equilibria at General Stage (n1, n2)
	Predetermined Priority and Central Planner

	Numerical Examples
	Dynamic Preemption and Over-investment for 1-shot Expansions
	Effects of Market Fluctuation
	Case Study: Impact of Multi-part Investments
	Case Study: Political Will for Meaningful Carbon Prices

	Propositions and Proofs
	Optimization at Stage (1, 0) and (0, 1)
	Proof of Theorem 3.4
	Proof of Proposition 3.7 and 3.8
	Best-response of Firm 2 at stage (1, 1)
	Proof of Proposition 3.9
	Central Planner Cooperative Monopoly


	Stochastic Switching Games
	Problem Formulation
	Constructing Equilibria
	Stationary and Threshold-type Strategies
	Best-response Verification Theorem
	Equilibrium Macro Dynamics
	Stackelberg Switching

	Sequential Approach to MNEs
	Constructing MNE by Best-response Iteration
	Constructing MNEs by Equilibrium Induction

	Numerical Examples
	Case Study: Mean-reverting Market Advantage
	Case Study: Long-run Advantage

	Computations and Proofs
	Proof of Theorem 4.7
	Proof of Proposition 4.11
	Dynamics of  in Threshold-type Equilibrium
	Proof of Corollary 4.10


	Vertical Impulse Competition
	Problem Formulation
	Instantaneous Profit Rates
	Admissible Strategies and Game Payoff

	Constructing Equilibria
	Heuristics on Threshold-type Equilibrium
	Consumer Best Response
	Producer Best Response

	Numerical Examples
	Double-Switch + Non-preemptive Impulse
	Single-Switch + Monopoly/One-sided Impulse
	Effect of Market Fluctuation

	Future Research

	Bibliography



