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Abstract 

New Methods for Quantum Mechanical 
Reaction Dynamics 

by 

Ward Hugh Thompson 

Doctor of Philosophy in Chemistry 

University of California at Berkeley 

Professor William H. Miller, Chair 

1 

Quantum mechanical methods are developed to describe. the dynamics of bimolec­

ular chemical reactions. We focus on developing approaches for directly calculating the 

desired quantity of interest. 

Methods for the calculation of single matrix elements of the scattering matrix ( S­

matrix) and initial state-selected reaction probabilities are presented. This is accomplished 

by the use of absorbing boundary conditions (ABC) to obtain a localized (£2 ) representa­

tion of the outgoing wave scattering Green's function. This approach enables the efficient 

calculation of only a single column of the S-matrix with a proportionate savings in effort 

over the calculation of the entire S-matrix. Applying this method to the calculation of the 

initial (or final) state-selected reaction probability, a more averaged quantity, requires even 

less effort than the state-to-state S-matrix elements. 

It is shown how the same representation of the Green's function can be effectively 

applied to the calculation of negative ion photodetachment intensities. Photodetachment 

spectroscopy of the anion ABC- can be a very useful method for obtaining detailed infor­

mation about the neutral ABC potential energy surface, particularly if the ABC- geometry 

is similar to the transition state of the neutral ABC. Total and arrangement-selected pho­

todetachment spectra are calculated for the H3 o- system, providing information about 

the potential energy surface for the OH + H2 reaction when compared with experimental 

results. 

Finally, we present methods for the direct calculation of the thermal rate constant 

from the flux-position and fiux-fiux correlation functions. The spirit of transition state 
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theory is invoked by concentrating on the short time dynamics in the area around the 

transition state that determines reactivity. These methods are made efficient by evaluating 

the required quantum mechanical trace in the basis of eigenstates of the Boltzmannized flux 

operator. This operator is oflow rank, approximately equal to twice the number of states of 

the "activated complex." Applications to the D + H2 and 0 + HCl reactions illustrate the 

power and usefulness of the present approach. The power of these methods should extend 

the range of accessible systems beyond reactions involving 3 or 4 atoms. 
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Chapter 1 

Introduction 

Understanding gas phase reaction dynamics is of great importance to the 

field of chemistry. Gas phase chemical reactions play a crucial role in processes oc­

curring in the atmosphere, in combustion, in explosions, and in industrial procedures. 

On a more fundamental level, much of the basic physics of reaction dynamics can be 

investigated, unobscured, by the examination of isolated bimolecular collisions. This 

knowledge, thus acquired, can then be applied in the study of chemistry occurring in 

solution, in clusters, and on surfaces. 

While classical and semiclassical approaches are of great use and describe 

many systems quite accurately, the fully correct treatment of reaction dynamics is 

quantum mechanical. For many reactions, a quantum mechanical treatment is re­

quired, such as for the hydrogen transfer reactions examined in this work, where 

tunneling .can play an important role. However, in other cases where classical and 

semiclassical methods are accurate, it is also useful to have a viable quantum me­

chanical approach as a diagnostic tool for evaluating the usefulness and applicability 

of these methods. Such a comparison for relatively small systems can then. aid in 

the interpretation of classical and semiclassical applications to larger systems which 

cannot be treated fully quantum mechanically. In addition, a rigorous quantum me­

chanical approach serves as a starting point for more approximate methods such as 

mixed quantum-classical, mixed quantum-semiclassical, or transition state theories. 

It has been 20 years since the first rigorous quantum mechanical calculations 
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of the state.-to-state reaction dynamics for an atom-diatom collision, the H + H2 

system, were carried out by Schatz and Kuppermann.1
•
2 Yet, only now have the first 

state-to-state treatments of a four atom system appeared, for the OH + H2 reaction. 

Indeed, it took more than a decade, and advances in both the available theory and 

computational power, before three atom reactive systems could be treated routinely. 

Still, many reactions of a diatom with an atom resist treatment, particularly in cases 

where a deep well and/ or heavy masses are involved. The speed of computers will 

continue to increase in the near future, but it seems clear that without advances in the 

theory for treating the dynamics of chemical reactions the size of accessible systems 

will remain limited. 

In this work, we attempt to advance the quantum mechanical theory of 

chemical reaction dynamics. While a complete treatment of the problem would begin 

with first principles in treating the full electron and nuclear problem, our starting 

point is the Born-Oppenheimer approximation. For many systems of interest this is 

an excellent approximation and we therefore focus on accurate representations of the 

dynamics of the nuclear degrees of freedom on a single Born-Oppenheimer surface 

or, in the case of the photodetachment intensities in Chapter 3, an instantaneous 

transition between two surfaces. In some of the present work it maybe be possible 

to straightforwardly account for deviations from the Born-Oppenheimer assumption, 

but this has been left as an area for future work. 

Advances in experimental methods, particularly techniques involving molec­

ular beams and lasers, have allowed the measurement of very detailed dynamical 

quantitities. The typical quantitities of interest include the differential cross section, 

given (for the case of an atom-diatom reaction) as 

l7-r'v'i'K'--rviK(B) = l-:--k1 
. L (2J + 1) df<,K(B) S-r'v'i'K',-rviKI

2

, (1.1) 
2z TVJ j . 

in the helicity representation.3 Here T and r' are indices representing different chemical 

arrangements, vjK (v'j'K') are the initial (final) vibrational, rotational, and helicity 

quantum numbers, respectively, and k-rvj is the initial translational wavevector for 

state v j. () is the angle between the initial and final translational wavevectors, and 
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dk,K(B) is the reduced Wigner rotation matrix.4
•
5 Finally, the S~, n are the state-, 

to-state S-matrix elements giving the probability amplitude for reacting from state 

n = vjK of the reactants (arrangement r) into staten' = v'j'K' of the products 

(arrangement r'), for total angular momentum J. Note that to obtain the differential 

cross section, one adds the amplitudes and then squares so that there is interference 

between the different partial waves. This is the most detailed quantity measurable 

for a chemical reaction. 

Also of interest is the integral cross section,3 

CT-r'v'j'K'--rvjK = k: . L (2J + 1) JS-r'v'j'K',-rvjKJ
2 

• (1.2) 
TVJ J=min(K,K') 

Here the probability amplitudes are squared and then added so the partial waves 

do not interfere. We have written these quantities in the fully state-resolved forms, 

but only rarely is this resolution approached in an experiment. For example, often 

only the initial state-selected cross section is measured where no attempt is made to 

determine the product quantum state. 

In many cases, experiments are not state-resolved at all and a rate constant 

is measured. Depending on whether the experiment is carried out at a fixed total 

energy (as is often the case for unimolecular reactions) or at a fixed temperature, the 

microcanonical rate constant 

1 
k(E) = 27r1ipr(E) N(E), (1.3) 

or the thermal (canonical) rate constant, 

( ) - 1 foo -{3E 
k T - 27r1iQr(T) Jo e N(E) dE, (1.4) 

is obtained, where j3 = 1/kbT. Here N(E) is the cumulative reaction probability, 

(1.5) 

(which is the reaction probability out of all reactant states for a fixed total energy 

E), Pr(E) = Trr[b'(E- H)] is the reactant microcanonical density of states per unit 



4 CHAPTER 1. INTRODUCTION 

energy (Ttr implies a trace over reactant states only), and Qr(T) is the canonical 

reactant partition function per unit volume given by 

(1.6) 

Here, J.l is the reduced mass for the relative translation of the reactants, the En. are 

the energy levels of the reactant internal degrees of freedom, and 9n. is the degeneracy 

of reactant state nr. 

From a theoretical point of view, one calculates the S-matrix elements and 

combines them together in the indicated way to obtain the desired quantity (cross sec­

tion or rate constant). The current state of the art methods for obtaining the S-matrix 

are the coupled channel approach and the S-matrix Kohn variational principle,6
-

8 

both of which obtain the entire state-to-state S-matrix in a single calculation. If, 

however, one is not interested in a full state-to-state cross section, then these meth­

ods require great effort to be expended to obtain the S-matrix and then the hard won 

detail is summarily averaged over. What is needed, and what is the goal of this work 

is a set of methods that allow the quantity of interest to be obtained directly, i.e., 

without first calculating some more detailed quantity. Such an approach has already 

been developed for the cumulative reaction probability.9- 12 

In Chapter 2 we discuss the calculation of single S-matrix elements and 

initial state-selected reaction probabilities. The key to these methods is the proper 

imposition of the outgoing wave boundary conditions. The coupled channel and S­

matrix Kohn methods enforce these boundary conditions by explicitly including every 

possible asymptotic channel in all arrangements which is the reason they yield the en­

tireS-matrix in a single calculation. In Chapter 2 it is shown how absorbing boundary 

conditions (ABC) can be used to obtain a localized (L2 ) representation of the outgo­

ing wave scattering Green's function. This approach enables the efficient calculation 

of only a single S-matrix element (or indeed an entire column of the S-matrix) with 

a proportionate savings in effort. Applying this method to the calculation of initial 

(or final) state-selected reaction probabilities requires even less effort for this more 

averaged quantity. 
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Chapter 3 demonstrates how this same representation of the Green's func­

tion can be effectively applied to the calculation of negative anion photodetachment 

intensities. Photodetachment spectroscopy has proven to be a very useful method 

for evaluating the transition state region of a reactive potential energy surface and 

is sometimes referred to as transition state spectroscopy.13
•
14 In a typical scenario, a 

negative ion ABC- is formed and crossed with a laser, detaching the electron and 

forming an unstable complex ABC which then falls apart. If the ABC- geometry is 

similar to that of the transition state of the neutral ABC, such an experiment can pro­

vide detailed information about the saddle point region of the neutral potential. This 

approach generally requires theoretical simulations of the photodetachment spectra. 

In Chapter 3, total and arrangement-selected photodetachment spectra are calculated 

for the H3 0- system providing information about the potential energy surface for the 

OH + H2 reaction when compared with experimental results. 15 

Finally, Chapter 4 describes the direct calculation of the thermal rate con­

stant from flux correlation functions. These methods invoke the spirit of transition 

state theory by concentrating on the short time dynamics in the area ·around the 

transition state that determines reactivity. Applications are presented to the one­

dimensional Eckart barrier, the collinear H + H2 reaction, and the three-dimensional 

D + H2 and 0 + HCl reactions. The power of these methods should make them 

applicable to larger systems (> 3, or even 4, atoms). 
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Chapter 2 

Reaction Probabilities 

2.1 Introduction 

All the information quantum mechanics gives about a chemical reaction is 

contained in the scattering matrix (S-matrix). Each S-matrix element is the probabil­

ity amplitude of reacting from a specific initial quantum state of the asymptotically 

separated reactants into a particular final quantum state of the asymptotically sepa­

rated products. Thus, if one can calculate the S-matrix, all the possible experimen­

tally measurable quantities for the reaction can be subsequently computed (e.g., inte­

gral and differential cross sections, canonical and microcanonical rate constants, etc.). 

Many theoretical methods have been developed to calculate the S-matrix elements. 

However, most experiments are not fully state-selected since preparing reactants in 

a specified state and measuring the resulting state of the products is a formidable 

task. In general one is only interested in more averaged quantities anyway. And 

while for experimentalists, measuring more averaged quantities requires considerably 

less effort, until recently calculating more averaged quantities required the same effort 

as obtaining the most detailed quantities. Previous theoretical methods involved cal­

culating the entire S-matrix, then summing and averaging this detailed information 

to obtain the desired quantity. 

Methods for calculating the entire S-matrix are clearly useful and necessary. 

For instance, the phase information contained in these probability amplitudes is re-
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quired for computing the differential cross section. Additionally, if more than one 

measurable quantity is desired, the S-matrix provides the information to obtain them 

all in a single calculation. However, these methods are computationally expensive 

which so far has made them unfeasible for reactions involving more than three atoms. 

Methods for directly calculating averaged quantities with a proportionate savings in 

effort are therefore of great value. Ideally one is seeking a hierarchy of methods in 

which all levels of detail can be obtained for a computational price commensurate 

with the level of detail. 

2.2 Quantum Reactive Scattering 

Here we first present a review of formal scattering theory to illustrate how 

the solution of the Schrodinger equation leads to the relevant relations involving 

the S-matrix.16- 18 In particular, we highlight some of the properties of the Green's 

function and its role in these expressions. We discuss the proper imposition of the 

physical boundary conditions for the scattering problem, specifically how this can be 

accomplished by the use of absorbing boundary conditions (ABC). We then express 

the relations in a finite basis, in this case a discrete variable representation (DVR). 

Finally we show how more averaged quantities, such as half state-selected and cumu­

lative reaction probabilities can be ·computed directly within this formulation. 

2.2.1 Review of Formal Theory 

All the information about a quantum mechanical system is contained in the 

solution of the time-independent Schrodinger equation: 

(ii- E) I~)= o. (2.1) 

The most familiar case is that in which the system is bound and the solution of this 

equation yields the discrete energy eigenvalues and the corresponding eigenstates. The 

fact that the spectrum is discrete results from the physical boundary conditions of 

the system: namely that ~ ( x) --+ 0 as I xI --+ oo since V ( x) --+ oo as I xI --+ oo. (These 

----·-----
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are known· as homogeneous boundary conditions.) However, the case of interest to 

us, is that of the scattering of particles (i.e., an unbound system in which V(x) f+ oo 

as lxl --+ oo ). In this case the energy spectrum is continuous and the Schrodinger 

equation is solved for a specified energy to obtain the scattering wavefunction, w(E). 

(The nature of the energy spectrum is again due to the physical boundary conditions 

which are: w(x) --+ q,(x) as lxl --+ oo, where q, is a nonzero, asymptotic solution 

of the Schrodinger equation which is a combination of an incoming plane wave and 

outgoing spherical waves. These boundary conditions are called inhomogeneous.) 

For the bound system the typical procedure for solving the Schrodinger 

equation is relatively straightforward. A basis set representation is chosen, the matrix 

elements of the Hamiltonian in this basis are calculated, and the resulting linear 

algebra equation 

(H- EI) · c = 0 (2.2) 

is diagonalized to obtain the eigenvalues {En} and the eigenstates {Wn}· Here His the 

Hamiltonian matrix, I the identity matrix, and c a vector of coefficients of the basis 

functions ( W n is obtained as linear combination of the basis functions with coefficients 

c determined from the diagonalization procedure). At first glance, the scattering 

system cannot be treated in the similar manner since the boundary conditions are 

more complicated. In fact, this is one of the primary goals of this work - to put 

the solution of scattering problems on the same footing as bound state problems. 

Namely, one hopes to obtain an approach which consists of: (1) choosing a basis, (2) 

calculating matrix elements, and (3) performing a linear algebra problem. 

In contrast to the bound system, the scattering system must have a wave­

function that is nonzero over an infinite stretch of space encompassing the interaction 

region, where the colliding particles are close together, as well as the completely sep­

arated reactants and products. Clearly this eliminates a straightforward use of a 

finite basis representation. However, the wavefunctions of the isolated reactants and 

products are often easily obtained since the problem can be separated into uncou­

pled problems of the eigenfunctions of the two fragments and a plane wave describing 

their relative translation. Since the wavefunction is known in these asymptotic re-
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gions ·of the potential, the effort of a finite basis approach must be centered on the 

interaction region. This raises the crucial issue of how to solve the problem in the 

interaction region once the asymptotic wavefunctions in the reactant and product val­

leys are known; the key to this is the proper enforcement of the scattering boundary 

conditions. 

The Schrodinger equation is a homogeneous differential equation but for a 

scattering problem the boundary conditions are inhomogeneous. However, it is pos­

sible to write Eq. (2.1) in the form of an inhomogeneous equation. This allows the 

boundary conditions to be introduced into the differential equation itself. We do this 

by separating the Hamiltonian into a zeroth order part, H0 , which describes the sep­

arated fragments and an interaction potential, "«nt, which describes the interactions 

of the fragments as they come together. Then Eq. (2.1) can be rewritten as 

(E- Ho)lw) = "«ntl'l1). (2.3) 

The general solution of such an inhomogeneous equation is the sum of a complemen­

tary solution <P which satisfies the corresponding homogeneous equation: 

(E- Ho)I<P) = o, (2.4) 

and a particular solution x which is any solution of the inhomogeneous equation, 

(2.5) 

For the purpose of illustration, let us consider the concrete example of 

collinear atom-diatom scattering. Writing the Hamiltonian in the Jacobi coordinates 

of the reactant arrangement, 

A 1i2 a2 1i2 a2 
H = ------+ V(r,R). 

2J.LR 8R2 2J.Lr 8r2 
(2.6) 

A straightforward choice for the zeroth order Hamiltonian is to take 

A A 1i 2 82 1i 2 82 
Ho = Rlim H = --2-8R2 - -2 a 2 + llasym(r), 

-+oo J.l R J.lr r 
(2.7) 
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since the potential becomes independent of R when the reactants: are completely 

separated (for the molecular scattering cases we will consider). Then the interaction 

potential is given by 

Vint(r, R) = V(r, R)- llasym(r). (2.8) 

The complementary solution must be an eigenfunction of H0 ; this Hamiltonian is 

separable and the eigenfunctions have the form 

e-iknR 

<Pn(r, R) = 1; 2 'Pn(r). 
Vn 

(2.9) 

where kn = J2J.LR(E- cn)/1i 2 is the wavevector, Vn = 1ikn/ J.lR the velocity, and 'Pn 

the solution of the asymptotic vibrational Hamiltonian: 

[ 
tt

2 8 2 ] --
8 2 

+ llasym(r) 'Pn(r) = E:<pn(r). 
2f.lr r 

(2.10) 

The factor of .JV;. normalizes <Pn to have unit incident flux. (This is just one possible 

choice of the normalization factor.) 

Obtaining the particular solution of the inhomogeneous equation is much 

harder. A standard technique for solving such equations is the method of Green's 

functions. 19 The Green's function for this problem is defined as the solution of the 

differential equation 

[E- Ho( q)] Go( q, q') = 8( q- q'), (2.11) 

where q = (R, r). This is the inhomogeneous equation with the inhomogeneity re­

placed by a Dirac delta function. From this equation, one can recognize that the 

Green's function is in fact the inverse of E- H0 . This presents a complication since 
' A 

the Green's function will be singular whenever E equals an eigenvalue of H0 • And 

since H0 is the Hamiltonian for a scattering problem it has a continuous set of eigen­

values. This is dealt with by adding a small imaginary constant, iE, to the energy 

with the understanding that after all the manipulations are complete, the limit is 

taken that E goes to zero. Thus, the Green's function becomes 

Gci(q', q; E)= lim (q'J (E + iE- H0)-1 Jq), 
!-+0+ 

(2.12) 
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where we have added the superscript + to G0 to denote that we chose to add a 

positive (imaginary) constant. We could just as well have subtracted ie from the 

energy (to give G0) but that would represent the imposition of a different set of 

boundary conditions, as will be discussed below. 

Once the Green's function is known, the particular solution is obtained by 

convoluting Gci ( q, q', E) with the inhomogeneity: 

(2.13) 

These equations do carry with them a physical interpretation. If we imagine a beam of 

A atoms colliding with beam of B-C molecules, at large separation the wavefunction 

is a product of an incoming wave describing the two fragments coming together and 

the (as yet) unperturbed vibrational state, n, of BC. As a result of the collision a 

scattered wave is emanated outward describing A-B + C motion. (Scattered waves 

are also produced describing A + B-C resulting from elastic and inelastic collisions.) 

Thus, the physical boundary condition of the problem must be that asymptotically 

the wavefunction is a combination of an incoming plane wave and outgoing scattered 

waves in each channel. (Here, a "channel" refers to a possible asymptotic state of 

A-B(n') + Cor A+ B-C(n') products of the collision.) The coefficient of each of 

these scattered waves is the S-matrix element equal to the probability amplitude for 

reacting from the initial (incoming) state into the final (outgoing) channel: 

(2.14) 

(Note that the wavefunction must also be regular at the origin: limR ...... o w~(R) = 0.) 

Naturally, the generator of these scattered waves is the interaction potential between 

the two fragments and the nature of this potential determines reaction dynamics and 

hence, the scattered waves as is evident from Eq. (2.13). [If we had subtracted ie from 

the energy (instead of adding it) to obtain the incoming wave Green's function G0 
the resulting asymptotic form of the scattering wavefunction would be 

(2.15) 
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Thus, this choice of the sign of iE gives the scattered waves as incoming.] 

We can obtain the same result by some simple operator algebra. The solution 

. to Eq. (2.5) may be obtained by multiplying from the left with (E- H0 )-
1 which 

we now recognize as the Green's function. (This might more correctly be called the 

Green's operator, but it should be obvious when the Green's function is really a 

function and when it is really an operator.) This gives an equation for x, 

X= (E- Ho)-1 ~nt W. (2.16) 

Clearly, this is the operator form of Eq. (2.13) once we make the identification 

(E- Ho) Go = i. (2.17) 

Again, there is the problem of G0 being singular and it is necessary to add a small 

imaginary constant to the energy. 

We now need to address the issue of solving the Schrodinger equation for for 

the full scattering wavefunction, w+. Recall that the full solution to the differential 

equation in (2.3) is the sum of the complementary and particular solutions so that 

w+ = <P + x+ and 

(2.18) 

This is known as the Lippmann-Schwinger equation. Ndte that this is an integral 

equation that requires us to know w+ before we can obtain it. We need somehow to 

resolve this and "close" the equation. This can be accomplished if we substitute the 

expression for w+ into the right hand side to obtain 

(2.19) 

Continuing to iteratively substitute we obtain an equation containing an infinite series 

of terms involving Gt and ~nt: 

(2.20) 
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The quantity in the square brackets is immediately recognized as a geometric series 

the sum of which can be expressed in closed form to give 

(2.21) 

This expression can be rearranged by noting the property of the inverse of a product 

of operators: 

jJ-1 A.-1 (ABt 1 

[(E- Ho) (1- ct V;nt)t 1 

A A 

1 [E + i€- Ho - Vintt 

[E + i€- iit1 

c+(E), (2.22) 

where Q+(E) is the full Green's function. Then the full scattering wavefunction is 

given by 

(2.23) 

Note that the <P term gives the proper solution in the case where V;nt = 0. In a general 

case <P will describe reactants in a specific quantum state n, and also depend on the 

energy,·,so more proper notation is <Pn(E). Then the full scattering wavefunction for 

reaction from state n of the reactants is given by 

(2.24) 

2.2.2 S-matrix Elements 

The scattering wavefunction, as an eigenstate of the Hamiltonian satisfying 

the proper boundary conditions, contains all the information necessary to obtain the 

S-matrix. Indeed, the the scattering operator16 is defined such that its plane wave 

matrix elements are given by 

(2.25) 
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where w;;-P (E') is the scattering wavefunction for product state np with incoming wave 

boundary conditions: 

(2.26) 

Now we wish to consider overlap of the scattering wavefunctions at different energies. 20 

Taking the adjoint of Eq. (2.26), this gives 

(w~p(E')I'W~r(E)) - (<l>np(E')i['fint (;+(E') + 1]jw~r(E)) 

(<Pnp (E') i'Cint c+(E')i'W~r (E)) + (<Pnp(E') II"W~r (E))(2.27) 

How~ver, we can make use of Eq. (2.18) to replace W~r(E) in the second term. Then 

we obtain 

I 

(w~p(E')Iw~r(E)) = (<l>np(E')i<Pnr(E)) + (<l>np(E')i'fint c+(E')i'W~r(E)) 

(2.28) 

This can be simplified by noting that the Hamiltonian in c+(E') can be acted on 

'W~r (E) and the zeroth-order Hamiltonian in Gci (E) can be acted to the left onto 

<Pnp ( E'). Doing this gives the result 

(w~p(E')I'W~r(E)) (<l>np(E')i<Pnr(E)) + (<l>np(E')i'finti'W~r(E)) {E, _ ~ -1'- ic} 

+ (</>np(E')i'finti'W~r(E)) {E _ ~' + iE}. (2.29) 

Combining the common terms and noting that 

1 1 -2iE 
E' - E + ic + E - E' + ic = ( E - E')2 + €2' 

(2.30) 

is a prelimit delta function equal to - 27l'i 8 ( E - E') as c ~ o+, gives 

Since the asymptotic states are plane waves, this becomes 

bnp,nr b(E- E')- 27ri(</>np(E')I'finti'W~r(E))8(E- E'), 

Snp,nr (E) 8(E- E'), (2.32) 
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where Snp,nr (E) is the "on-shell" S-matrix. This illustrates the conservation of energy 

and naturally, one always calculates the S-matrix for initial and final states with the 

same total energy. One normally defines a transition operator, T, such that 

and it can be shown that 
A A A A+ AJ" 

T = Vint + VintG Yint· 

Then the S-matrix elements are given by 

This can be written in an alternate form by noting that 

(Ho + "Cint- E)I<Pnr(E)) 

(H- E)I<Pnr(E)) 

"Cint I <Pnr (E)) 

"Cint I <Pnr (E)), 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

and similarly for the product asymptotic state. Then, the S-matrix elements are given 

by 

At this point, we note that this expression can be obtained in a more general case 

than we have considered here. In the distorted wave representation, the asymptotic 

wavefunctions can be chosen to be more sophisticated than plane waves, in which case 

the S-matrix elements can be expressed as (with a slightly different normalization 

convention for the asymptotic wavefunctions which only affects the factor of -21ri) 

Here, <Pn, is any (regular) scattering wavefunction with a unit incoming wave in channel 

n and outgoing waves in all other open channels n' 

(2.39) 
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(r in Eq. {2.39) denotes all coordinates of the system other than that for relative 

translation, R, and { </>n(r)} the asymptotic channel eigenfunctions; Vn is the transla­

tional velocity for channel n.) As is evident from Eq. (2.39), S~p,nr is the scattering 

amplitude between asymptotic states np and nr that is already included in the dis­

torted wave ~nr· Thus, it is seen that Eq. (2.37) is a special case of Eq. (2.39) in 

which s~p,nr is chosen to be 8np,nr· 

The distorted wave representation is extremely useful as it allows one to take 

advantage of any knowledge of the scattering wavefunction. The asymptotic waves, 

~np and ~nr can contain any level of scattering information, elastic, inelastic, or even 

reactive. The simplest choice is to take the distorted wave to be 

e-iknR 

~n(r, R) = -
112 

</>n(r), 
Vn · 

(2.40) 

for which 

s~',n = 0. (2.41) 

This is really an "undistorted wave" containing no scattering information. Elas­

tic scattering information can be incorporated into an elastically distorted wave by 

choosing 
e-iknR eiknR 

~n(r, R) ""'- 112 </>n(r) + 172 </>n(r) S~,n· 
Vn Vn 

(2.42) 

Similarly an inelastically distorted wave can be used by choosing 

s~,n = 0, , (2.43) 

in Eq. (2.42) only for nand n' of different chemical arrangements. Reactive distorted 

waves can also be used as will be discussed below. 

2.2.3 DVR-ABC Formulation 

In a basis set representation such as a DVR the S-matrix is given by (with 

matrices and vectors represented in boldface) 

S~ n (E)+~ [«P~ · (H- EI) · «Pnr 
p, r n p 

+ «P~p · (H- EI) · G+(E) · (H- EI) · «Pnr]. 

(2.44) 

(2.45) 
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The difficulty here is that the Green's function and tlte asymptotic waves are nonzero 

out to infinity in the reactant and product valleys. This cannot be treated with a finite 

basis representation. What is needed is a way to turn the problem into a psuedo­

bound state problem which can be treated by typical L 2 approaches. One way to 

accomplish this is by using absorbing boundary conditions. As discussed above, the 

Green's function is formally defined as 

(2.46) 

where the i€ serves to impose the outgoing wave boundary conditions. If € is allowed 

to become a function of position such that it is zero in the interaction region but 

turns on moving out in the reactant and product valleys it also serves to make the 

Green's function localized. The Green's function now dies off to zero as the "absorb­

ing potential" increases in the entrance and exit valleys but the correct behavior is 

maintained in the interaction region. We refer to the use of € in the Green's function 

in the this manner as absorbing boundary conditions. 

We note that the discrete variable representation, and other grid point meth­

ods, has been developed and used by many persons,21- 37 with the work of Light and 

co-workers38- 40 being particularly important in recent years. This idea of adding a 

negative imaginary potential to the Hamiltonian (or alternatively adding a positive 

imaginary component to the energy) has been used in many time-dependent41
-

47 

and time-independent48
-

57 methods. In time-dependent wavepacket approaches, ab­

sorbing potentials (often referred to as negative imaginary potentials (NIPS), complex 

absorbing potentials (CAPS), or empirical optical potentials) are placed at the asymp­

totic edges of the finite basis representation so that outgoing flux will be absorbed 

and not reflected back to intefere with the true dynamics. The DVR-ABC formalism 

refers to the representation of the outgoing wave Green's function within a DVR and 

by including a negative imaginary potential and the scattering relations that result. 

Using absorbing boundary conditions we can transform the expression for 

the S-matrix into a more useful form, taking advantage of the L 2 nature of the Green's 

function. Including this position-dependent absorbing potential, the Green's function 



) 

18 CHAPTER 2. REACTION PROBABILITIES 

satisfies the relation 

(EI- H + ie) · G+(E) =I, (2.47) 

where we have noted that € -1- € is now an operator. Dividing the Green's function 

into real and imaginary parts, G = Gr + iGi, we obtain equations relating the two: 

(H- EI) · Gi = e · Gr, (2.48) 

and 

(H- EI) · Gr = -1- e · Gi. (2.49) 

Taking the transpose of these equations, noting that Gi, Gr, H, and e are symmetric 

matrices gives 

Gi · (H - EI) = Gr · e, (2.50) 

and 

Gr · (H- EI) = -1- Gi ·e. (2.51) 

Using these equalities to evaluate the matrix elements of (H-E) G (H-E) yields 

(H- EI) · Gr · (H- EI) _:_ -(H- EI)- e · Gr · e, (2.52) 

for the real part of the Green's function and 

(H- EI) · Gi · (H- EI) = -e- e · Gi · e, (2.53) 

for the contribution of the imaginary part. Substituting these equations into the 

expression for the S-matrix in the DVR gives 

(2.54) 

where (l)n is the following DVR vector in grid point space 

(2.55) 

q denotes all coordinates, and CI.i and Wj are the (multidimensional) grid points and 

DVR weights, respectively. 
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This is the fundamental expression for the S-matrix in the DVR-ABC for­

malism of scattering theory. Typically, the distorted (or asymptotic) waves are chosen 

such that they are nonzero only in the given arrangement, i.e., illnr = 0 in the prod­

uct arrangement and illnp = 0 in the reactant arrangement, i.e., nonreactive distorted 

waves are chosen. Then the first two terms in Eq. (2.54) are zero and S-matrix is 

given by 

(2.56) 

where we have noted that e · illnr = er · illnr if illnr is a nonreactive distorted wave, and 

similarly for the distorted wave in the product arrangement. Also, the zeroth order 

contribution to the reactive S-matrix is zero, (S~p,nr (E) = 0) if nonreactive distorted 

waves are used. 

The initial state-selected reaction probability is given as the sum over prod­

uct quantum states of the state-to-state reaction probabilities: 

(2.57) 

Using the expression we just derived for the S-matrix elements in the DVR-ABC 

formulation this gives 

Pnr (E) = L ill;r · er · G+(E)* · eP · illnp ill;p · eP · G+(E) · er · illnr, (2.58) 
np 

where we have noted that G+(E) is a complex-symmetric matrix. This equation can 

be made useful by means of the identity 

(21i)-1 L:eP · illnpq;;P* · ep = ep, (2.59) 
np 

which is a completeness-like relation in the ABC formalism. An equivalent expression 

exists for the reactant wavefunctions and absorbing potentials. 

In the following, we derive this Eq. (2.59). The starting point is two operator 

identities involving the microcanonical density operator, 8(E- H): 

A 1 A 

8(E- H)=- -Im G+(E) 
7r 

(2.60) 

8(E- H)= L PI Wn(E) )( Wn(E) I, (2.61) 
n 
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where '11 E,ri is the exact scattering wavefunction. p = (2 1r 1i )-1 is a density of states 

factor related to the normalization of the translational part of the scattering wave­

function. A Lippmann-Schwinger-type equation for W E,n in terms of the zeroth order 

scattering wavefunction <Pn can be obtained of the form 

'lln(E) - [1 +(;+(E) (H-E)] <Pn 

(;+(E) (E- fi + i€ +fi-E) cl?n 

(;+(E) i€ <Pn. (2.62) 

This is a well-known result for the case where € is a positive constant, but we note 

that it also applies in the more general case that € is an operator. (Though now one 

has to be aware that € and G+(E) do not commute.) Using this expression in Eq. 

(2.61), and putting this into a DVR gives 

(2.63) 
n 

The right-hand side of this equation is of the form we have obtained in the expression 

for the initial state-selected reaction probabilities above. Now we need to relate this 

to a more convenient and compact form. Turning to Eq. (2.60), one has 

Im (E + i€- iit 1 (E- i€- ii) (E- i€- ii)- 1
, 

- (;+ g(;+(E)*, 

the DVR of which combined with Eq. (2.60) is 

8(E- H)= .!_ G+(E) · € • G+(E)*. 
7r 

Equating Eqs. (2.63) and (2.65) results in the closure relation in Eq. (2.59). 

(2.64) 

(2.65) 

If we use the closure relation in Eq. (2.59) for the initial state-selected 

reaction probability then we obtain 

(2.66) 

Note that a similar expression holds for the final state-selected reaction probability, 

(2.67) 
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. which is the probability of ending up in product quantum state np when the reactants 

have been prepared in a microcanonical ensemble. At first ,this result may not seem 

any simpler to calculate than an S-matrix element. Indeed, both require the operation 

of the Green's function operation onto a single vector (the asymptotic wavefunction). 

However, the state-selected probability is easier to obtain because the basis does 

not need to be extended as far out in the product valley as for the calculation of 

the S-matrix element. This results from the physics of the problem. That is, while 

overall reactivity is determined a localized area around the interaction region, the 

detailed aspects about state-specific reactivity and product state distributions is not 

determined until further out towards the asymptotic valleys. 

The same closure relation of Eq. (2.59) relates the initial state-selected 

reaction probability to the cumulative reaction probability, 

(2.68) 

A direct expression for N(E) has been obtained by Seideman and Miller9 

N(E) = 4tr[G+(E)*. Ep. a+(E). Er], (2.69) 

within the DVR-ABC formalism as adapted from the result of Miller, Schwartz, and 

Tromp. 58 This expression has been used for many systems including the H + H2 ,9 •10•59 

H + 0 2 ,
60 OH + H2 ,

61
•
62 and ketene isomerization63 reactions as well as gas-surface 

scattering. 64•65 Of particular note is the development by Man~he and Miller12 of a re­

markably efficient method for evaluating the quantum mechanical trace in Eq. (2.69). 

2.3 The Collinear H + H 2 Reaction 

The collinear H + H2 """"' H2 + H exchange reaction is a two-dimensional 

problem which provides a good first test of a state-specific scattering method. Un­

like a one-dimensional system, meaningful (vibrational) state-selected quantities can 

be calculated, but without the computational difficulty of a full three-dimensional 

scattering problem. 
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The potential energy surface used for this reaction is the Liu-Siegbahn­

Truhlar-Horowitz (LSTH) surface which is an analytical fit66
•
67 by Truhlar and Horo­

witz to the ab initio calculations of Liu and Siegbahn. 68 This is a full three degree 

of freedom surface which we constrain to the collinear configuration for these calcu­

lations. The barrier height is 0.425 e V and is symmetrically located with a collinear 

transition state. The mass of the hydrogen atom is taken as 1837.151 atomic units. 

There are multiple coordinate systems which are appropriate for the treat­

ment of this problem. These include Jacobi coordinates (of the reactant or product 

arrangement), normal mode coordinates of the transition state, and valence bond co­

ordinates. The present calculations have been carried out in the reactant Jacobi co­

ordinates, (R, r), and in the normal mode coordinates of the transition state, (qb q2); 

neither coordinate system has a distinct advantage over the other for this case. Note 

that in this two-dimensional case the Jacobi coordinates, like the normal coordinates, 

are Cartesian and therefore -oo < r, R < oo. In addition, the two sets of coordinates 

are related to by a simple linear transformation (rotation): 

1 
r ql + 2q2, 

R 
3 1 
2ql- 4q2, 

~ (2.70) 
1 1 

ql -:- -R+ -r 
2 4 ' 

3 
q2 -R+ -r. 

2 

In turn, these coordinates are related to the bond distances by 

rl r, 
1 

(2.71) r2 R- -r 
2 ' 

and 

1 
rl ql + 2q2, 

1 
(2.72) r2 - ql- -q2. 

2 
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The primary advantage of these coordinates (vs. valence bond coordinates, for ex­

ample) is that the kinetic energy operator is separable. 

In the present discussion we will concentrate for the most part on the normal 

coordinates while pointing out any differences with the use of Jacobi coordinates. The 

Hamiltonian is given by 

(2.73) 

where the translational and vibrational reduced masses are 

(2.74) 

respectively. 

We have chosen to use a discrete variable representation as the finite basis. 

Specifically we use the ( -oo, +oo) sine-function DVR of Colbert and Miller.37 This 

choice for the basis has multiple advantages: (1) the kinetic energy matrix elements 

are given in closed form, (2) no multidimensional integrals of the potential need to be 

evaluated numerically since the potential matrix is approximated as diagonal (with 

a given diagonal element equal to the potential evaluated at that DVR grid point), 

and (3) the Hamiltonian matrix is sparse for a multidimensional case such as this. 

The absorbing potentials in the reactant and product regions, Er and Ep, are 

taken to be a function of the translational Jacobi coordinate for each arrangement; 

~.e., 

(2.75) 

forT= r (reactants) or p (products), where Rr and Rp are functions of the transition 

state normal coordinates (q1 , q2 ). For all calculations in this paper, the absorbing 

potential has been taken to be a quartic function, beginning at Ro and ending at 

Rmax, 

( 
R,.- Ro )

4 

E-r(R-r) = ,\ Rmax- Ro ' (2.76) 

though we note that other functional forms work essentially as well. 
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2.3.1 State-to-State Reaction Probability 

We have calculated the state-to-state S-matrix elements for the collinear 

H + H2 reaction in the DVR-ABC formalism using Eq. (2.56). The calculation is 

carried out as follows. First a DVR grid (basis) is chosen; for a sine-function DVR this 

means specifying the spacing between grid points. The density of the DVR grid points 

is specified by the grid constant, NB, which is the number of points per deBroglie 

wavelength. This is related to the spacing between points, .6.q, by N B = 2 n-j k .6.q 

where k = (2mE /fi2
)

112
. Typically NB is on the order of 4, relatively independent of 

the system being treated. This can be thought of as a basic guideline - four points 

are required to represent one period of the wave. A direct product grid in the two 

coordinates, Rand r (or q1 and q2 ) is laid out and then truncated according to two 

criteria: (1) In the product and reactant asymptotic valleys, the grid is truncated at 

the boundaries of the absorbing potentials. Namely, a grid point in arrangement T is 

discarded if the value of the translational Jacobi coordinate of that arrangement, Rn 

is larger than a specified value, Rmax· (2) The grid is truncated according to an energy · 

cuttoff. If the potential energy at a grid point is larger than a fixed value, Ycut· The 

assumption underlying this is that for Ycut chosen sufficiently large, the wavefunction 

will be zero at these points and therefore they do not need to be considered. 

There are essentially three convergence parameters to consider in these cal­

culations: (1) NB must be large enough to properly represent the Green's function on 

the DVR grid; (2) "Vcut must be large enough to include all physically relevant regions 

of the potential energy surface; and (3) Rmax must be large enough for the absorbing 

potential to absorb all the outgoing flux without reflection. 

A typical DVR grid in the transition state normal mode coordinates for 
L 

a state-to-state calculation for the collinear H + H2 reaction is shown in Figure 

2.1 overlayed on the contour plot of the LSTH potential energy surface.68•66•67 The 

contours of the quartic absorbing potential €( q) are indicated by broken lines. 

Once the basis set has been chosen, the matrix elements of the relevant 

operators can be evaluated. In the sine-function DVR an an:alytical form for the 
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Figure 2.1: Contour plot of the LSTH potential energy surface. A typical DVR grid 
laid out in normal coordinates is shown as the filled circles. The dashed lines are 
the contours of the absorbing potential. x = R and y = .j3 r /2 are the mass-scaled 
Jacobi coordinates. 
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kinetic energy matrix elements exist and for the ( -oo,oo) version these are given by 

1i2 d2 1i2 .. , { 1r2 /3, 
(x·l - --lx·,) = (T )· ., = (-l)(a-a) 

' 2 dx2 ' x '·' 2 .6.x2 _2 -
J1 J1 (. '1)2 ' t-t 

i = i' } . 
i ::/:- i' 

(2. 77) 

In addition, the matrix elements of the potential in a DVR are approximated as diag­

onal, with the diagonal elements equal to the potential evaluated at the corresponding 

DVR point. Thus, we have that 

(2.78) 

and similarly for the absorbing potential, 

(2.79) 

The Hamiltonian is thus formed in the DVR basis and the next step is to obtain the 

asymptotic state and solve the linear system 

(E- H + ie) ·X= €r • (>nr, (2.80) 

to obtain 

(2.81) 

with which the S-matrix elements Snp,nr (E) can be trivially computed. 

The asymptotic wavefunction ~n can be chosen as any (regular) scattering 

wavefunction with a unit incoming wave in channel n and outgoing waves in all other 

open channels n' as shown in Eq. (2.39). We have chosen the asymptotic state to be 

an undistorted ~ave of the form (in the reactant Jacobi coordinates) 

e-iknR 
~n(r, R) = -

112 
<Pn(r), 

Vn 
(2.82) 

Another, more conventional choice, would be the standing free wave 

;r,. ( R) . sin kn R ,+. ( ) '±'nr, = -2z 
112 

'f'nr 
Vn 

(2.83) 

[ 

e-iknR eiknR] 
- 1/2 + 172 <Pn(r), 

Vn Vn 
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which contains elastic distortion such that 

(2.84) 

We have tried this form as well, but we find that the incoming wave in Eq. (2.82) 

leads to better con~ergence. We note that for the free or distorted incoming radial 

function it is not necessary to multiply it by a cutoff function to regularize it for small 

R (as is necessary in the Kohn variational approach37
); this is because <Pn is always 

multiplied by the reactant or product absorbing potential ( cf Eqs. (2.56) and (2.66)) 

which vanishes identically ·for small R. 

In Figure 2.2 the present calculated state-to-state reaction probabilities for 

collinear H + H2 are compared to benchmark results obtained by Bondi and Connor.69 

The agreement is excellent. The v = 0 -+ v' = 0 reaction probability displays 

a threshold to reaction at approximately 0.55 eV. As mentioned above, the bare 

barrier is 0.425 eV and the 0.125 eV of zero point energy in the symmetric stretch 

mode at the transition state is responsible for the difference. N'ote that there is a 

significant amount of tunneling below this threshold energy as well as reflection at 

energies above it, as is typical for a quantum mechanical reaction over a barrier. After 

reaching maximum around 0.6 eV, the reaction probability slowly becomes smaller as 

elastic scattering is more important at higher translational energies. Two prominent 

(and well known) resonances are observed at 0.89 and 1.29 eV (near the energies 

of the v = 1 and v = 2 states). These are Feshbach resonances due to vibrational 

nonadiabaticity. Due to changes in the adiabatic zero point energy along the reaction 

path, a higher vibrational state (which asymptotically is a closed channel) can be 

accessed in the region of the transition state. A transition to such a state results in 

a (relatively) long-lived resonance before a transition can be made back to the lower 

state and the fragments can separate to give reactants or products. The resonances at 

0.89 and 1.29 e V have lifetimes of about 16 and 22 fs, respectively. The v = 0 -+ v' = 1 

(which is equal to P1 ,0 ) and v = 1 -+ v' = 1 probabilities display resonances at the 

same energies. For the calculations shown in Fig. 2.2, we used Rmax = 6.9 a.u., 

NB = 3.7, and Ycut = 4.1 eV resulting in at grid of 546 points at 1.0 eV. 

Figure 2.3 illustrates the convergence of the reactive state-to-state probabil-
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Figure 2.2: State-to-state reaction probabilities, Po,o(E), P0 ,1 (E), and P1,1(E), for 
the collinear H + H2 reaction calculated with the DVR-ABC Green's function (filled 
circles) compared with the results of Bondi and Connor (Ref. 69) shown as the solid 
line. 
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Figure 2.3: Percent error in the calculated state-to-state reaction probabilities as a 
function of the extent of the grid, Rmax atE= 1.0 eV. Results are shown for different 
values of Ycut: the thick solid line has Ycut = 3.0 eV, the dashed-dot line Ycut = 4.0 
eV, and the long-dashed line Ycut = 5.0 eV. The thin solid line marks zero percent 
error. The error is calculated relative to the results of Bondi and Connor (Ref. 69). 
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Figure 2.4: Calculated state-to-state reaction probabilities as a function of the extent 
of the cuttoff energy, 'Vcut atE= 1.0 eV. Results are shown for different values of Rmax: 

the thick solid line and filled circles has Rmax = 6.8 a.u., the dashed-dot line and open 
circles Rmax = 7.0 a.u., and the long-dashed line and open squares Rmax = 7.2 a.u. 

ities at a total energy of 1.0 e V as the size of the grid, Rmax is increased, for different 

values of 'Vcut· (The percent error is calculated by comparison to the results of Bondi 

and Connot.69
) At this energy the v = 0 and 1 vibrational states are open channels. 

Agreement with the exact answer to within 3% can be obtained with Rmax = 6.7 a.u., 

'Vcut = 3.0 eV and 421 DVR points; as noted above, 1% error can be attained with 

about 120 more points. 

The dependence of the v = 0 to v' = 0 reaction probability the cuttoff 

energy is shown in Figure 2.4 for Rmax equal to 6.8, 7.0, and 7.2 a.u for E = 1.0 

eV. For reference, the reaction probability obtained by Bondi and Connor is 0.546 at 
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this energy. Note that the reaction probability displays a large oscillation at low 'Vcut 

but is relatively stable above 'Vcut = 2.6 eV. In fact, Po,o is converged to within 2% 

above this value of 'Vcut while the other probabilities (P0 ,1 and Pu) are within 6% 

of the exact answer. For the two larger values of Rmax, all the reaction probabilities 

are converged to 1% error for 'Vcut = 3.5 eV (and within 2% for Rmax = 6.8). As 

discussed above, the truncation of the DVR grid by an energy cuttoff assumes that 

the wavefunction is zero at grid points where the potential energy is larger than 'Vcut· 

From Fig. 2.4, one would infer that the scattering wavefunction at total energy 1.0 

eV has little amplitude outside the area where the potential is less than 2.6 eV. 

2.3.2 Initial State-Selected Reaction Probabilities 

For computing the total reaction probability for a given initial reactant state 

(via Eq. (2.66)), the DVR grid was again laid down in the normal mode coordinates 

of the transition state as shown in Figure 2.5. The absorbing potentials Er and Ep 

were chosen as above, Eq. (2.75)-(2.76), though now the parameters R0 and Rmax are 

different for the reactant and product absorbing potentials. Since no state-specific 

information is being obtained about the products, the product absorbing potential 

can be brought in much closer to the transition state. Indeed, while the reactant 

absorbing potential remains essentially the same as in the state-to-state case, the 

product absorbing potential can be brought in close to the interaction region as in a 

calculation of the cumulative reaction probability.9 •10 

Since the savings in calculating the initial state-selected rather than the 

state-to-state reaction probabilities is realized because the product absorbing poten­

tial no longer needs to extend as far into the exit valley, an important question then 

becomes, How close can the product absorbing potential be to the interaction region? 

Figure 2.6 shows the convergence for E = 1.0 e V with respect to Rp,max, the end of 

the grid in the product valley. Recall that for the state-to-state probabilities the grid 

was truncated in the asymptotic valleys with Rmax = 6.9 a.u. to obtain 1% error. 

Here, the same level of accuracy is realized when the product absorbing strip ends at 

Rp,max = 5.0 a.u. corresponding to a grid of 358 DVR points. For these calculations, 
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Figure 2.5: Contour plot of the LSTH potential energy surface overlayed with a 
DVR grid (shown as the filled circles) laid out in normal coordinates for a typical 
initial state-selected calculation. The dashed lines are the contours of the absorbing 
potential. x = R and y = .J3 r /2 are the mass-scaled Jacobi coordinates. 
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Figure 2.6: Percent error in the initial state-selected reaction probabilities as a func­
tion of the extent of the grid in the product arrangement, Rp,max at E = 1.0 eV. The 
solid line is the error for Po and the long-dashed line the error for P1 . The error is 
calculated relative to the results of Bondi and Connor (Ref. 69). 

Rr,max = 6.9 a.u., NB = 3.5, and 'Vcut = 4.1 eV. This is merely an illustration of 

the convergence of the initial state-selected probabilities on the extent of the grid 

in the product valley. In fact, the minimum grid needed to obtain <1% error has 

Rr,max = 6.8 a.u., Rp,max = 5.2 a.u., NB = 3.2, and 'Vcut = 3.8 eV corresponding to 

290 DVR points (only slightly more than half that needed for the state-to-state prob­

abilities). However, the reaction probabilities converge to within 3% for 'Vcut = 3.1 

e V and a grid as small as 231 points. 
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Inelastic Distorted Waves and Numerov Propagation 

In calculating partially state-resolved reaction probabilities we have also 

used inelastically distorted waves70•71 for Q?n, which are useful in reducing the size 

of the grid needed to represent the Green's function because the reactant absorbing 

potential can be brought in closer to the interaction region. (Non-reactive distorted 

waves have also been used analogously in S-matrix Kohn variational calculations of 

reactive scattering. 72
-

74
) 

In this work, we have used the (standard) Numerov propagation method. 71 

We note that any inelastic propagation algorithm would suffice for the present pur­

pose. Indeed, the standard Numerov algorithm just described is not suitable for 

describing closed channels, for which the renormalized Numerov algorithm can be 

used. To obtain inelastically distorted waves, we need to solve the Schrodinger equa­

tion from the asymptotic reactant valley inward towards the interaction region. The 

full Schrodinger equation is 

[-~ 
02

2 - .!"!__ 
02

2 + V(R, r)- El Q?(R, r) = 0. 
2f.lR oR 2f.lr or (2.85) 

We can define the asymptotic vibrational Hamiltonian as 

A • 1i2 d2 
h:sym = --2 d 2 + v;sym(r) 

. f.lr r 
(2.86) 

where the asymptotic potential is defined by the limit 

- (2.87) 

Here T = r, p is the arrangement index. For simplicity, we will henceforth assume we 

are interested only in computing distorted waves in the reactant arrangement. If we 

define the interaction potential as Vint(R, r) = V(R, r)-vasym(r) then the Schrodinger 

equation takes the form 

[- 2:~ i)~' + Vin<(R, r) +h.,.,.- El ii;(R, r) = 0. (2.88) 

We can expand the asymptotic reactant wavefunction for vibrational channel n as 

(2.89) 
n' 
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where cPn' is the asymptotic vibrational state in channel n', satisfying 

(2.90) 

The translational coefficient, Un'+-n(R), must satisfy the asymptotic boundary condi­

tion 
e-iknR 

Un'+-n(R) "'bn1+-n l/2 ' 
· Vn 

(2.91) 

requiring that there only be amplitude in state n at large R. 

Inserting this expansion in the Schrodinger equation, multiplying by ¢>'k ( r), 

and integrating over r results in a set of coupled linear equations 

{ 
d

2 2~R } dR2 I-~ [V;nt(R)- Et] · u(R) = 0, (2.92) 

where I is the identity matrix in the vibrational channel space. Similarly, 

(2.93) 

is the matrix of the interaction potential, 

(2.94) 

is the (diagonal) matrix of translational energies, and u( R) is the matrix of transla­

tional coefficients in the vibrational channel space. 

We want to solve this for u( R) on a grid of points in the R coordinate. 

When the DVR grid is laid out in the reactant Jacobi coordinates it is convenient to 

choose the Numerov grid such that every fifth or tenth point, say, corresponds to a 

DVR grid point. (The Numerov grid generally needs to be denser than that for the 

DVR.) Once the R grid is defined, 

Rm = mh, m=l, ... ,M (2.95) 

where h is the grid spacing, we define the matrix 

(2.96) 
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The differential equation in the radial coordinate, Eq. (2.92), can be solved on this 

grid using a three-point recursion relation 

(I- ~; Tm) · Um - 2 (I+ 5 ~; Tm-1) · llm-1 + (I- ~; Tm-2) · Um-2 = 0, (2.97) 

which, upon solving for the matrix Um gives 

(2.98) 

This equation is solved from the asymptotic valley inward starting with the initial 

conditions at the two Numerov grid points, Rm and Rm_ 1 : 

(um)n,n' 

(i.e., therefore s~, n = 0). 
' 

e-iknRm-t 

bn,n' --1/:-2-
Vn 

(2.99) 

Figure 2. 7 shows the initial state-selected reaction probabilities over a range 

of total energies for two different grid sizes compared to the results of Bondi and 

Connor. For the probability of reaction from the ground vibrational state, P0 (E), 

the agreement is excellent for both values of Rr,max, except near the resonance at 

0.9 eV where the error is on the order of several percent. For P1 (E) reasonable 

agreement is obtained with the smaller grid while for the larger grid the agreement 

is within 1% except around 0.9 eV. The difficulty around this energy is due to the 

low translational energies associated with the excited vibrational state. These low 

translational energies require a very slow turn on of the absorbing potential to avoid 

reflection. It should be noted that the parameters describing the grid and absorbing 

potential were obtained by converging the reaction probabilities at E = 1.0 eV. It is 

encouraging that such agreement can be_ obtained over the entire energy range using 

one set of parameters. For comparison with the above results, the minimum grid size 

needed to converge to within 1% at E = 1.0 e V is 216 DVR points. 



2.3. THE COLLINEAR H + H2 REACTION 

1.0 

0.8 

0.6 

0.4 

0.2 

0.8 

0.6 

0.4 

0.2 

0.6 0.8 
Energy (eV) 

37 

1.0 

Figure 2. 7: Initial state-selected reaction probabilities, Po( E) and P1 (E), for the 
collinear H + H2 reaction calculated with the DVR-ABC Green's function and using 
inelastic distorted waves. The solid line represents the results of Bondi and Connor 
(Ref. 69), the present results with Rr,max = 5.5 a.u., and Rr,max = 6.5 a.u. are shown 
as the dashed line and the filled circles, respectively. 
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2.4 The OH + H 2 Reaction 

Quantum mechanical scattering calculations have advanced to the point that 

rigorous calculations are now possible for a number of atom-diatom reactions (A + 
BC --+ AB + C), and the first attempts at rigorous treatments of four atom reactions 

are beginning to appear. 75- 89,61 ,62 Due to the light masses involved and the availability 

of a reasonable potential energy surface, the 

(2.100) 

reaction has become the benchmark of choice for exact quantum treatments of a 

diatom-diatom collision. Already, there have been two full dimensional state-selected 

time:.dependent wavepacket calculations88,89 on this system as well as a calculation 

of the cumulative reaction probability using a discrete variable representation (DVR) 

with absorbing boundary conditions (ABC) to represent the Green's function. 61 ,62 

Despite the advances of the last decade, exact quant,um scattering calcula­

tions remain unfeasible for systems with five or more atoms and indeed, for most four 

atom reactions. At the same time, it may not be necessary to treat all the degrees 

of freedom in a large system using rigorous quantum mechanics. An excellent exam­

ple of this is the OH bond in reaction (2.100). Ab initio calculations show that the 

bond distance hardly changes throughout the entire reaction, 90 and the full dimen­

sional dynamics calculations show that freezing this bond has a minimal effect on 

the reaction probabilities.88 ,89 The logical approach to treating a large system "rig­

orously" may lie in reduced dimensionality, mixed quantum-classical,91- 93 or mixed 

quantum-semiclassical approaches. 94 

The DVR-ABC formalism for calculating the full reactive scattering Green's 

function was first introduced by Seideman and Miller9 and applied to cumulative reac­

tion probabilities. Subsequently it was shown to be an efficient method for calculating 

state-specific reaction probabilities.95 ,96 The purpose of this paper is twofold: 1) to test 

the DVR-ABC method on a large multidimensional reactive scattering system, and 2) 

to show how the same formalism can be used to efficiently calculate photodetachment 

intensities. 
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2.4.1 Review of Previous Work 

Reaction (2.100) and its reverse reaction 

H + HzO--+ OH +Hz, (2.101) 

(and their isotopic variants) have been of great interest to the chemical dynamics 

community over the past two decades. In particular, Reaction (2.101) has been ex­

tensively studied as a (and so far the) primary example of mode-selective chemistry, 

one of the "holy grails" of chemical research. This reaction also represents an excel­

lent example of the predictive ability of theoretical chemistry as this mode-selective 

behavior was first seen in the quasiclassical trajectory calculations of Schatz and co­

workers. In this section we present a review of the experimental and theoretical work. 

that has been carried out on these two reactions to this date. 

Light and Matsumoto first reported the effect of the vibrational excitation 

of OH and Hz as measured in a flow tube. 97 They obtained upper limits for the rate 

constants (at T = 298 K) of the reactions 

OH(v = 0) + H2(v = 1) --+ H 20 + H, k01 

OH(v = 1) + H2(v = 1) --+ H20 + H, k11 (2.102) 

and were able to extract the ratio of these rates with that for the reaction between 

OH( v = 0) and H2 ( v = 0) (denoted koo - we will use the notation kvoHvHJ. They 

found that k0 J/k00 :::; 1000 and k11 /k00 :::; 1600 indicating that while exciting the 

H2 reactant with one quantum of vibrational energy increases the rate significantly, 

similar excitation of the OH reactant has little effect on the rate. The same quali­

tative result was subsequently obtained by Zellner and Steinert in another flow tube 

experiment.98 They obtained a ratio of k0I/ k00 = 1.2 (±0.4) x 102 at T = 300 K. 

This is consistent with the upper limit established by Light and Matsumoto. How­

ever, Zellner and Steinert characterize this enhancement in the rate as "moderate" 

since placing the same amount of energy in translation would increase the rate by a 

factor"' 5 x 103
. Note that the transition state for this reaction is almost collinear, 

with an 0 - H- H angle of about 164°, and the barrier is "early" (with a height 
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of "' 0.26 eV), consistent with the exoergic character (by ": 0.64 eV) of the reaction 

(Hammond's postulate). In such a case, Polanyi's rules99
•
100 predict that translational 

energy would be more effective than H 2 vibration in promoting the reaction. Thus, 

this experimental result confirms the expectation formed from these simple guidelines. 

Around the same time, Glass and Chaturvedi101 measured the ratio kod k00 as 155 ( ± 
38), in excellent agreement with Zellner and Steinert. They also found that k10 jk00 

and k20 jk00 ~ 1.5 which is consistent with the results of Light and Masumoto. 97 

The first theoretical calculations on these reactions began about the same 

time with ab initio calculations of the potential energy by Walch and Dunning90 and 

the thermal rate constant (from transition state theory) for Reaction (2.100) by Schatz 

and Walch. 102 The ab initio potential energy calculations give a planar transition state 

which is almost collinear with an 0-H-H angle of 15° pointing cis with the H-0-H 

angle at 98°. The reaction is found to be exoergic by "' 0.7 eV with an early barrier 

of about 0.27 eV. 90 The transition state theory rate constants obtained by Schatz 

and Walch are in very good agreement with the experimental results once the Wigner 

tunneling correction is incorporated. A potential energy surface was obtained by 

Schatz and Elgersma103 as an analytical fit to the ab initio points (See Figure 2.8). 

This surface is often referred to as the Walch-Dunning-Schatz-Elgersma, or WDSE, 

surface. The surface does suffer from some inaccuracies, however. The transition 

state geometry is given as a trans configuration and there is a spurious well just 

before the barrier on the OH + H2 side. The problem of the well has been addressed 

by a modification of the surface introduced by Clary. 75 

Quasiclassical trajectory studies of the system were first carried out by 

Schatz and co-workers. Schatz and Elgersma first reported calculations on the re­

action of ground state OH and H2 and the resulting product energy partitioning. 

They found that the majority of the energy ("' 55%) was channeled into vibration 

of H20 (as expected for an early barrier) with translation and rotation receiving 

35% and 10% of the available energy, respectively. Following this, Schatz examined 

the effect of the vibrational excitation (by one quantum) of the reactants.104 This 

quasiclassical trajectory study found the rate constant at 300 K was enhanced by a 

factor of only 1.28 upon excitation of the OH bond. On the other hand, exciting the 

\ 
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Figure 2.8: Contour plot of the WDSE potential energy surface for the OH + H2 

system. Here R is the distance between the OH and H2 centers-of-mass and r 1 is the 
H2 bond distance. All other coordinates are set to their values at the transition state. 
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H2 diatom resulted in a rate 393 times greater. More significantly, the first hint of 

mode-specific chemistry for this reaction was seen in the product vibrational energy 

distribution. When H2 was excited the extra energy went into the vibrations of H2 0 

and was randomly distributed among the modes. However, when OH was excited, 

the extra energy went into the vibrations of H20 but almost completely into the OH 

stretch modes. Schatz, Colton, and Grant105 performed a quasiclassical trajectory 

study on the H + HOD --+ H2 + OD reaction and found that the rate is 10-1000 

times larger when the OH bond is excited with five quanta of energy than when the 

OD bond is excited with the same amount of energy. This was the first observation, 

theoretical or experimental, of mode-specificity in this system. 

Within the last six years, numerous reduced and full dimensionality quantum 

mechanical calculations have been carried out on the Reactions (2.100) and (2.101). 

In particular, Clary and co-workers75
-

78 have calculated state-to-state 5-matrix ele­

ments using the rotating bond approximation (RBA) and obtained good. agreement 

with experimental results:78 In the RBA, the H2 bond axis is held fixed relative to 

the vector joining the centers-of-mass of the two diatoms and the moment of inertia 

is modified to give the proper asymptotic rotational energy levels of the reactants 

and products. 75 Within this approximation they were able to calculate reaction prob­

abilities, cross sections, and rate constants~ In addition, Clary compared the three 

degree of freedom calculations (where the H2 bond, the OH bend, and the diatom 

translational coordinate are treated explicitly) to four degree of freedom calculations 

in which the OH vibration is included.76 The slight differences indicate that the OH 

bond does indeed act as a spectator to the reaction. 

Echave and Clary have carried out a full planar calculation.79 Their approach 

differs significantly from the four degree of freedom calculations to be introduced in 

Section 2.4.3. Namely,'they treat the OH and H2 diatoms as plane rotors with angles 

in the range (0, 21r) and eigenfunctions of the form eimcp. This approach is similar 

to that of Kuppermann and co-workers who presented the first exact calculation of 

planar atom-diatom scattering.106•107 On the other hand, we employ a planar ap­

proximation in which the diatoms are treated as three-dimensional rotors with th.e 

projection quantum number constrained to equal zero. The different results obtained 
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with these two choices will be discussed in Section 2.4.4. Recently, Palma and Echave 

carried out a planar quasiclassical trajectory study of the OH + H2.108 

Wang and Bowman have carried out an investigation of both reactions80- 82 

within the adiabatic bend approximation. 109•110 In this reduced dimensionality meth­

od, the calculation is carried out on an effective potential formed by minimizing 

the potential with respect to the bending angles and adding the adiabatic bending 

energy. The result is a three-dimensional calculation involving only rc,~.dial degrees of 

freedom. This allows for investigation of vibrationally state-specific effects but limits 

the information that can be obtained regarding the rotational degrees of freedom 

to adiabatic models. Wang and Bowman find good qualitative agreement with the 

experimental results indicating a significant enhancement of (in this case) the reaction 

probability upon H2 excitation but little change for OH excitation. 

Baer and co-workers have treated the reaction using a sudden approximation 

for the angular degrees of freedom and obtained state-to-state reaction probabilities 

for Reactions 2.100 and 2.101.83
-

86 Their cross sections show qualitative agreement 

with experiment and more accurate theoretical calculations except in calculations in 

which the four atoms are constrained to be collinear. 

While most of the quantum mechanical calculations have been carried out 

on the OH + H2 reaction (due to the smaller number of reactant states and the 
I 

simpler form of the reactant eigenfunctions) most of the recent experiments have 

examined the H + H20 reaction (because of its properties of mode- and bond-selective 

chemistry). These experiments have primarily been performed by two groups. Crim 

and co-workers have looked at reaction of H atoms with H20 and HOD molecules 

which have overtone excitation in the local mode OH stretch.111- 115 They found, for 

example, that exciting the fourth overtone of the OH stretch in HOD before reacting 

with H gives OD +Has products more than two orders of magnitude more frequently 

than OH + D. They also found that if one OH bond in H20 is excited to the third 

overtone and the other to the first, the resulting OH product is eight times more likely 

to be vibrationally excited than not. On the other hand, less than 5% is excited if 

the initial H20 has the fourth overtone excited in one bond and none in the other. 

These experiments validate this reaction as the principle example to this point of 
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/1 

1.64 a.u. 1.86 a.u. 3.16 a.u. 

Table 2.1: The values of the reactant Jacobi coordinates at the transition state ge­
ometry for the OH + H2 reaction. 

mode- and bond-selective chemistry. Zare and co-workers have shown that the same 

qualitative results are observed in reactions where the H20 has only one overtone of 

excitation in the OH bond rather than four (with the difference in energy made up 

in· translation.U6- 119 

Recently, the first molecular beam experiment for the D2 + OH --t HOD + 

D reaction was performed by Alagia et al. 120 They measured the angular distribution 

and found predominantly backscattered products which is consistent with a nearly 

collinear transition state. Clary's three degree of freedom RBA calculations are m 

excellent agreement with the experimental distribution. 78 

There have been many more theoretical and experimental studies on the 

H20 + H H- OH + H2 system and its isotopic variants that we have not reported 

here. 

Finally, we should note that in addition to the immense theoretical interest 
\ 

m Reaction (2.100) as the prototypical four-atom reactive system and its reverse 

reaction as the primary example of mode-specific chemistry, it also is of interest as 

part of the mechanism for H 2 combustion.121 

2.4.2 Two Degree of Freedom Calculations 

We have carried out calculations for the OH + H2 reaction similar to that for 

collinear H + H2 • These are two degree of freedom calculations in which the transla­

tional scattering coordinate, R, and the H2 bond distance, r1 are treated dynamically. 

These coordinates are taken as Cartesian and the Hamiltonian is given by 

(2.103) 
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Figure 2.9: The initial state-selected reaction probabilities for the two degree of free­
dom OH + H2 (v = 0, 1) reaction as a function of total energy relative to bottom of 
the OH + H 2 asymptotic valley. 

where the reduced masses are 

/lR 
(mo + mH)(mH + mH) 

mo + mH + mH + mH' 

(2.104) 

and the two-dimensional potential is obtained by evaluating the full potential at fixed 

values of the angles and OH bond distance: 

(2.105) 

In the present calculations, the angles and OH bond distance were set to their values· 

at the transition state geometry as given in Table 2.1. We note that the value of 
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1 2 does not give the proper water geometry. Thus, in this two degree. of freedom 

potential surface does not contain the correct product valley; the potential becomes 

repulsive for large values of r 1 . This gives a limited range of r 1 for which convergence 

can be achieved, though this does not present a significant problem. 

As in the collinear H + H2 case, we use the ( -oo, oo) sine-function DVR 

of Colbert and Miller for the two coordinates. The reactant absorbing potential is 

a function of the translational coordinate, €r = €r(R), while the product absorbing 

potential is a function of the H2 bond distance, fp = fp(ri). 

Figure 2.9 shows the two degree of freedom initial state-selected reaction 

probabilities for OH + H2 (v = 0, 1) as a function of total energy. There are a number 

of things to note about these results. The v = 0 probability looks much like that 

for the collinear H + H2 reaction. The probability first becomes significant due to 

tunneling below the threshold energy (which is the sum of the barrier height and the 

adiabatic H2 vibrational energy). At energies near the threshold the probability rises 

rapidly to a maximum value very near one (this high value is almost certainly due 

to the constraint to two dimensions). After the maximum, P0(E) falls slowly before 

experiencing a sharp resonance around E = 0. 77 e V corresponding to the opening of 

the H 2 ( v = 1) channel. The 0 H + H2 ( v = 0) state does exhibit more structure in 

the probabilities than collinear H + H2 . 

2.4.3 Four Degree of Freedom Calculations 

The Hamiltonian and The Basis Set 

Since we are interested in initial state-selected quantities, we have chosen to 

use the Jacobi coordinates of the reactants. This coordinate system is advantageous 

for describing the asymptotic states of the reactants. We denote the H2 and OH 

bond distances by r 1 and r 2 , respectively. The distance between the H 2 and OH 

centers-of-mass is R. /I is the angle between r 1 and R, -:y2 the angle between r2 and 

R, and cp is the torsional angle. 

We have calculated reaction probabilities and photodetachment intensities 

explicitly treating four degrees of freedom. The 0 H bond distance is frozen at its 



2.4. THE OH + H2 REACTION 47 

R 

Figure 2.10: The Jacobi coordinates for the OH + H 2 arrangement. The out-of-plane 
torsional angle, c.p, is not shown. 

equilibrium value and the torsional angle is fixed at c.p = 0, -i.e., the planar configura­

tion. These give the proper transition state geometry for the reaction. The quality of 

these approximations can be seen in comparing our results to the higher dimensional 

reactive scattering calcuations. One cai1 obtain the reduced dimensionality Hamilto­

nian in a straightforwar-d way from the full Hamiltonian. The four degree of freedom 

Hamiltonian for J = 0 is given by 

H = 

+ 

+ 

1i. 2 1 82 1i 2 1 82 
----r1------R 

2J.Ll r1 8ri 2J..LR R 8R2 

( 2J.L~ri + 2J..L~R2 ) Ji 
(-2-J..L-2~--,~:--.e-q + 2j.L~R2 ) j~ 

(2.106) 

\vhere j 1 and j 2 are the angular momentum operators for the H2 and OH rotation, 

respectively. \Ve will use j 1 and JH2 interchangeably for the H 2 rotation quantum 
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number and similarly j 2 and ioH. The angular momentum operator .Ji is given by 

~2 - ()2 ~- 1 [ ()2 1 + sin2/Il . I/2 
JI - ~ 2 + cot /I ~ - . I/2 ~ 2 + . 2 sm /I, 

U/I V/I Sill /I V/I 4 Sill /I 
(2.107) 

and similarly for j~. 

We have four independent variables in this case: ri, R, /I and 12. We want 

to define a direct product basis in these coordinates, 

(2.108) 

Using this basis (assuming it is real), a given matrix element of the Hamiltonian has 

the form 

We can rearrange Jacobian factors in the integral to obtain 
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This suggests that we can include the Jacobian factors into the basis functions, with 

the corresponding modification to the Hamiltonian operator (to that in the curly 

brackets). Thus, we define new basis functions as 

Uj(R) Ru-j{R) 

Vn(r1) r1 Vn(r1) 

fmbt) sin1/ 2 /1Jm( /1) 

91( /2) 
. 1/2 - ( ) 

Sill /291 /2 , 

which have orthonormality relations given by 

laoo Uj'(R) Uj(R)dR 

la-rr. fm'( /1) fm( /1)/1 

(2.111) 

(2.112) 

(2.113) 

for example. We have used the sine-function DVR of Colbert and Miller37 for the 

r 1 and R coordinates since they represent the large-amplitude motions making up 

the reaction coordinate. A Gauss-Legendre DVR was used for the angles 11 and 12 . 

However, the exchange symmetry of H2 was exploited so that, for a given parity, only 

half the angular DVR points were needed for 11 . It is the modified basis functions 

in Eq. (2.111), corresponding to the Hamiltonian in Eq. (2.110) that we are defin­

ing here as sine-functions and Legendre polynomials which make up the finite basis 

representation (FBR) underlying the DVR. (The FBR, in which the integrals in the 

matrix elements are evaluated by quadrature, and DVR, with grid points defined by 

that quadrature, are related by a unitary transformation.39 ) 

In practice, a direct product (raw) grid is first laid down in these coordinates. 

The "refined" grid is then obtained by truncating the raw grid according to two 

criterion: (1) an energy cuttoff, i.e., if the potential at a given DVR point is greater 

than some value "Vcut, then that point is discarded, and (2) the boundaries of the 

absorbing potential in the reactant and product valleys. Then the matrix elements 

of the Hamiltonian are computed in the DVR. Finally, the linear system 

(2.114) 
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1s solved to obtain the reactive scattering wavefunction. The Hamiltonian matrix 

IS sparse in a multidimensional case, which allows the linear algebra to be solved 

using iterative methods (See Section 2.4.3) which makes large dimensional problems 

tractable when one cannot store the entire Hamiltonian matrix. 

As pointed out above, the potential energy matrix elements are diagonal. 

The diagonal elements are simply the potential evaluated at the DVR grid point. 

The DVR matrix elements of the absorbing potential are also diagonal and similarly 

evaluated. The radial kinetic energy matrix elements can be expressed in closed 

form37 as 

('i') .. , = n2 -l)(i-i') { 7r2 /3 - 1/2i2, 
t,t 2 .6.r2 ( . _2_ - _2_ 

f-l (i-i')2 (i+i')2' 

i = i' } 

i=Ji'' 
(2.115) 

where .6.r is the grid spacing. The lD kinetic energy matrix elements for the angular 

DVR are given by a sum over Legendre polynomials: 

N-1 

(Tang2)i,i' = L .JWi Pj{ COS 1'2i) j (j + 1 )fi 2 ..;w;; Pj( COS 1'2i') (2.116) 
j=O 

for the OH rotation, where N is the number of angular DVR points. For the H2 

rotation, the symmetrized matrix elements are given by 

N-1 

(Tang1)f,;, = L .JWi Pj( COS '!'1i) j (j + 1 )fi2 [1 + ( -1 )(p+j)J..;w;; Pj( COS '!'1i') (2.117) 
j=O . 

where pis the parity quantum number. Note that for the symmetrized case we use 

only half of the angular DVR points for ')'1 • (Recall that the kinetic energy operators 

are those given in Eq. (2.110). 

Typically we need 14 DVR points for the ')'2 and 7 points for the symmetrized 

'T'l coordinate. We note that using as few as 10 and 5 angular points reduces the 

accuracy only slightly and produces a significant savings in the size of the basis. The 

number of radial DVR points are determined by specifying a grid constant, NB, which 

is the number of grid points per de Broglie wavelength .. A grid constant of 2.6 gives 

converged results. Depending on the scattering energy, the DVR basis consists of 

between 20000 to as many as 50000 points for the highest energies. 

In our calculations we have used the potential energy surface fit by Schatz 

and Elgersma103 to the ab initio results of Walch and Dunning90 (the WDSE surface). 
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This surface also includes a modification by Clary75 to remove a spurious well on the 

OH + H2 side of the barrier. 

The absorbing potential is taken to be a function of the translational Jacobi 

coordinate in the reactant arrangement, Er = Er(R), and the H2 bond distance in 

the product arrangement Ep = Ep(rt). There are several satisfactory choices for the 

functional form of the absorbing potential. However any choice must turn on slowly 

enough not to cause reflection, yet be strong enough to absorb all outgoing :flux. We 

have found the quartic potential to work well, 

E-r(Rr) =A ( R.y- Ro,-r )4 
Rmax,-y - Ro,-r 

(2.118) 

where 1 = p, r is the arrangement index and Rp = rt, Rr = R. Ro,-r and Rmax,-r are 

the starting and ending points of the absorbing potential in the 1 arrangement. A 

is a strength parameter representing the maximum value of the absorbing potential, 

generally it is taken to be about 2 eV. The beginning of the absorbing strip is chosen 

such that the imaginary potential has significant value only where the interaction 

potential is small. 

The Asymptotic State 

The asymptotic state of the reactants can be defined by 

(2.119) 

where Hasym is the asymptotic Hamiltonian for reactants given by 

Hasym = lim H. 
R-+oo 

(2.120) 

When the OH and H2 diatoms are far apart, the eigenvalue problem defined by 

Eq. (2.119) is separable and becomes four, one-dimensional eigenvalue/eigenfunction 

problems. However, only for the H 2 vibrational eigenfunctions do we need to carry out 

a numerical calculation; for the translational coordinate R, spherical Hankel functions 

of the second kind are the solutions of the radial equation (including the centrifugal 

potential) with the proper asymptotic boundary conditions, and the OH and H2 
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rotations are free rotors with Legendre polynomial eigenfunctions. Expressing the 

asymptotic state in a space-fixed axis, one has 

( I .if. ) ( ) 
1 h(2)(k R) J (U + 1) (. . I . . J 0) r1, R, 11, 12 'J.'nr = 'Pv r1. ~ l n J1 0 J2 0 J1 J2 12 

yVn 4~ 

X (JI2 0 .e 0 I J12 .e 0 0) ~[1 + ( -1)(P+id] Pjl (cos II) Pj2 ( ~&~~} 
where we have noted J = M = I< = 0. 'Pv is the asymptotic H 2 vibrational eigenstate, 

and we have normalized the translational function with respect to the incoming flux; 

kn and Vn are the translational wavevector and velocity, respectively. The Clebsch­

Gordan coefficients are derived from the body-fixed to space-fixed transformation. 

J12 is the vector addition of the diatom angular momenta, j 1 and }2, and J = 0 is 

obtained from the vector addition of J 12 and f. p defines the parity of the H2 rotation, 

and lis the orbital angular momentum quantum number. 

Iterative Methods 

For a multidimensional problem, the Hamiltonian is often too large to store 

in core memory. There are several suitable iterative methods one can use which require 

only the ability to multiply the Hamiltonian onto a vector. For the reactive scattering 

calculations here we have used the Newton algorithm developed by Auerbach and 

Leforestier.96•122 This method has the advantages that it requires very little core 

memory (our largest calculations use only~ 10MB), displays rapid convergence, and 

gives the ability to "dial in" the allowed error. 

2.4.4 Results and Discussion 

We have calculated initial state-selected reaction probabilities over a range 

of energies for the OH(joH) + H2(v,}HJ reaction for many sets of initial quantum 

numbers. In order to compare with full dimensional calculations, the reaction proba­

bilities as a function of translational energy are shifted, as has been done previously 

by Clary. 75 The shift of 0.031 eV75 is equal to the difference in zero point energy 

between the transition state and the asymptotic reactants of the neglected degrees of 

freedom, namely, the 0 H stretch and the torsional angle. 
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Figure 2.11: Initial state-selected reaction probabilities for the four degree of freedom 
OH(joH = 0) + H2 (v = O,jH2 ) reaction, for different initial H2 rotational states. 

Figure 2.11 shows the reaction probabilities as a function of initial j H 2 for 

v = 0 and ioH = 0. As for the H + H2 reaction, the probability is largest for jH2 = 1. 

Although there is not complete quantitative agreement, the reaction probabilities 

shown have the same qualitative dependence on initial rotational quantum number 

and translational energy as the five degree of freedom results of Zhang and Zhang in 

which only the OH bond is held frozen. 87 (We note that full dimensional calculations 

have shown that including the 0 H stretch changes the results minimally88
,
89 and 

therefore comparing to the five degree of freedom results highlights the effect of the 

torsional angle.) Zhang and Zhang observe the j H 2 = 1 initial state give the largest 

reaction probability. At lower energies (less than about 0.4 eV) the next largest 
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Figure 2.12: Initial state-selected reaction probabilities for the four degree of freedom 
OH(jon) + H2(v = O,jn2 = 0) reaction, for different initial OH rotational states. 

probabilities are the jn2 = 2 and 0 initial states. At higher energies, however, these 

probabilities do not rise as sharply and are overtaken by jn2 = 3 and 4. This is a 

similar scenario to what we observe in Fig. 2.11 with the primary difference being that 

the present jn2 = 3 reaction probability is significantly larger at higher energies than 

that seen by Zhang and Zhang. The absolute magnitude of the probabilities presented 

here is somewhat larger than that found in the five degree of freedom calculations, 87 

roughly 10% higher. In addition, the threshold to reaction is approximately the same 

in both reactions. 

Our results are qualitatively different from the planar results of Echave and 

Clary79 who observe a monotonic decrease in the reaction probability with initial jn2 • 
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As discussed in Section 2.4.1, the difference between these two planar calculations 

can be found in the treatment of the diatom rotations. Echave and Clary represented 

the diatoms as plane rotors, whereas we have treated the diatoms as three dimen­

sional rotors with the projection quantum number constrained to equal zero. The 

nature of such a planar calculation has previously been examined by Kuppermann 

and co-workers106•
107

•1•
2 for the H + H2 reaction. They performed both planar and 

three-dimensional calculations and found two major differences. First, the threshold 

energy for the planar calculations was lower by about 0.06 eV, equal to the zero point 

energy in the bend at the transition state. They attribute this to double degeneracy 

of the linear H3 bend at the transition state in the three-dimensional problem which 

does not exist in the planar system. Second, the maximum magnitude of the prob­

abilities is larger for the planar case which they reason is due to the constraint to 

two-dimensions. They do not report effects on the rotational state dependence of the 

reaction probabilities. For the OH + H2 reaction, Echave and Clary do observe a very 

slightly lower threshold but the maximum magnitude of the probabilities appears to 

be about the same as the present results, (though they only report probabilities up to 

translational energies of about 0.37 eV) which is slightly larger than the calculations 

of Zhang and Zhang. 87 

In Figure 2.12 we show the reaction probabilities for several different values 

of ioH with v = 0 and jH2 = 0. There is a very weak dependence on the initial OH 

rotational quantum number. This is not surprising since this rotation is not a major 

component of the reaction coordinate and thus should not affect the hydrogen atom 
' 

transfer as strongly as the H2 rotation. At low translational energies, the ioH = 1 and 

3 initial states give the largest reaction probabilities while ioH = 0, 2, and 4 become 

larger at the higher energies (above about 0.6 eV). This is similar to the results of 

Zhang and Zhang87 which show that ioH = 1 and 3 give the largest probabilities up 

to 0. 7 e V where the ioH = 0 and 2 states give equal probabilities. (They do not 

report results for ioH = 4 or for translational energies greater than 0.7 eV.) Again, 

the present planar calculations give probabilities which are larger by approximately 

10-15% and the threshold to reaction is similar. The planar calculations of Echave 

and Clary find no easily discernable difference between intial states ioH = 0, 1, ... , 5 
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Figure 2.13: Initial state-selected reaction probabilities for the four degree of freedom 
OH(joH) + H2( v = 1, jH2 ) reaction, for different initial H2 rotational states. 

over translational energies up to 0.37 eV. 79 Their reaction probabilities are somewhat 

larger than those in Fig. 2.12. 

The small barrier for this reaction coupled with the relatively large vibra­

tional spacing for H2 means that OH + H 2(v = 1) proceeds virtually without a barrier. 

This can be seen in the sharp threshold seen in the present probabilities shown in Fig­

ure 2.13. Thus the reaction probability is greatly enhanced by vibrational excitation 

of H2 , as noted above in Section 2.4.1. The full-dimensional calculations of Zhang 

and Zhang88 and N euhauser89 find several strong resonance features in the reaction 

probabilities for initially vibrationally excited H2 at translational energies below 0.2 
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eV. These features are also observed in our calculations as shown in Fig. 2.13. The 

lowest energy resonance is missing in our results (since we have shifted our probabil­

ities) however the remaining features are well reproduced. We find that rotational 

·excitation also enhances the reaction probability with the H2 rotation being more 

effective at promoting reaction. 

2.5 Concluding Remarks 

In this Chapter we have shown how a localized, square-integrable represen­

tation of the Green's function can be achieved by the use of absorbing boundary 

conditions. This can be used, in conjunction with a discrete variable representa­

tion basis, to efficiently calculate both state-to-state and half state-selected reaction 

probabilities. In computing the S-matrix elements via Eq. (2.56), or the initial state­

selected probabilities by Eq. (2.66), one has to solve the set of linear equations 

(EI- H + ie) ·X= Er · q;nr' (2.122) 

to obtain 

(2.123) 

A column of the S-matrix can then be obtained, giving the probability amplitude 

for reaction from reactant state nr to all possible product states. Alternatively, the 

initial state-selected probability for state nr can be obtained. This is less expensive 

(computationally) because the size of the DVR basis can be reduced by bringing in 

the absorbing potential in the product valley. This is possible because the product 

state selection is still being "determined" further out in the asymptotic valley than 

is the simpler question of reactivity. 

Application to the collinear H + H2 reaction demonstated the efficiency of 

these methods. In addition, it was shown how inelastic distorted waves can be used 

to reduce the size of the DVR basis in the initial state-selected calculation. The 

asymptotic wavefunction is then a solution of the Schrodinger equation closer in to 

the interaction region, and the size ofthe basis in which the linear system, Eq. (2.122), 

must be solved is reduced. 
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Initial state-selected reaction probabilities for the benchmark four atom OH 

+ H2 reaction have been calculated in reduced dimensionality. The OH bond was 

held fixed and the reaction constrained to a plane while the remaining four degrees 

of freedom were treated explicitly. The resulting reaction probabilities have all the 

qualitative features observed in full-dimensional calculation. This example displays 

the applicability of the present method to realistic systems. 

2.6 Appendix 1: Absorbing Potentials 

As an ad hoc construction introduced (in this case) to make the Green's 

function localized in space, the absorbing potentials prompt many questions con­

cerning their proper implementation: What properties are desired in an absorbing 

potential? How is the convergence of a calculation with respect to the absorbing po­

tential obtained? How is accuracy balanced with efficiency? What functional forms 

are appropriate and what is the 'optimal' choice? 

The purpose of this appendix is to address these frequently asked questions 

regarding absorbing potentials. 

How Does an Absorbing Potential Work? 

Consider a generic Hamiltonian, in one-dimension, with a negative imaginary 

potential added: 

' ' 1i2 ()2 
H€ = H- iE(x) = --!:) 2 + V(x)- iE(x), 

2m ux 
(2.124) 

where the function E is everywhere positive. Now the propagation of a wavefunction 

'1/J under this Hamiltonian is given by 

'1/J(x, t) = e-i[H-i€(~)]t/li 1/;(x, 0). (2.125) 

Now we can imagine looking at the probability density for this wavefunction which 

is given by 

'1/J* (X, O )ei[H+i€(x)]~li e -i[H -i€(x)]t/li1/;( X, O), 

e-€(x)t/lii1/J(x, 0)12, (2.126) 
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where in the last equality here we have assume the Hamiltonian and absorbing po­

tential commute. While this is generally not true, the qualitative illustration of the 

properties of this negative imaginary is still valid. We see first that under the modified 

Hamiltonian, probability is not conserved. The norm of the wavefunction is reduced 

exponentially with €. In addition we see that the "absorbed" amplitude is position 

dependent: the amplitude is not damped where c( x) = 0 and is damped more strongly 

where c( x) is larger. 

Necessary Properties and Convergence 

The desired property of an absorbing potential is simply stated: an optimal 

absorbing potential must absorb all outgoing flux without causing reflection. This 

succinct description, however, does not immediately lead to an obvious method for 

choosing an appropriate absorbing potential. It should be clearly stated that there 

is not a unique, optimal absorbing potential. In fact, different choices of functional 

form, or even different parameters for the same functional form may work just as well 

for a specific problem. The goal in the present work is to obtain reaction probabilities 

to moderate ("" 3 or 4 significant digits, less than 1% error) rather than high accuracy 

("" 6 or more significant digits). Thus, obtaining appropriate absorbing potentials for 

this purpose does not necessitate a complex scheme for minimizing reflection, but 

rather one wishes simple guidelines for choosing an adequate and easily converged 

potential. 

One key consideration is that low translational energies present a more severe 

test in that the amplitude is much more easily reflected. These energies therefore 

require a very smoothly and slowly increasing absorbing potential to avoid reflection. 

This is in strong contrast to the case of high translational energy where the absorbing 

potential must turn on strongly in order to absorb all the flux before the end of the 

grid is reached. In fact, both of these cases can occur at the same time. Consider 

the collinear H + H2 reaction for the case where an initial state-selected probability 

is desired. If the total energy is about 0.8 eV, then the translational energy for the 

H2 (v = 0) state is very high, about 0.53 eV while for H2 (v = 1) the translational 
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eriergy is less than 0.02 eV. Indeed, the probabilities for energies near the threshold 

for an excited state are the hardest to converge. An optimal absorbing potential in 

this situation must simultaneously satisfy the two, seemingly contradictory, criterion 

mentioned above. 

Convergence is obtained by, loosely speaking, taking the t. -t o+ limit. If 

the absorbing potential is taken as an infinitesimal constant everywhere, the correct 

Green's function will result but only if the "finite" basis is extended infinitely far 

into the asymptotic valleys. One can picture "rolling up" the asymptotic edges of the 

absorbing potential and moving them inward until the absorbing' potential begins to 

interfere with the dynamics. Convergence is typically achieved by doing the reverse 

- the absorbing potential is placed close to the interaction region and moved out­

ward and made shallower until the calculated result no longer changes. As a rough 

guideline, this procedure usually places the beginning of the absorbing strip at the 

point where the interaction potential, V- 'Vasym, equals zero. The maximum value 

of the potential is typically taken to be one to two times the scattering energy and 

the answer is often relatively insensitive to this. 

Functional Forms 

The most frequently used functional form for absorbing potentials in time­

dependent and time-independent problems seems to be a power law dependence. That 

is, the absorbing potential is given roughly as 

( 
R-Ro )n 

En(R) = A Rmax- Ro ' (2.127) 

where typically n is between 1 and 6. In the present work we have used a quartic 

potential (n = 4). This potential has a slow initil turn on, to prevent reflection of 

the low translational energy components,, and then rises strongly to absorb the higher 

energy amplitude. 

The Woods-Saxon potential, 

2A 
t.ws(R) = , 

1 + exp[(Rmax- R)/rl] 
(2.128) 
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is another useful form for the absorbing potential. In this case, the absorbing potential 

is not explicitly zero in the interaction region but is exponentially decaying (though 

it is usually set to zero). While the Woods-Saxon potential levels off at largeR (it is 

a prelimit Heaviside step function) the end of the grid is placed where the potential 

equals ).. A drawback with this potential is the sensitivity to the parameter "7 which 

can make convergence somewhat more difficult. 

2. 7 Appendix II: Semiclassical Reaction Proba­

bilities 

In Section 2.2.3 we have shown that, within the absorbing boundary condi­

tions formalism, the initial state-selected reaction probability can be expressed as 

(2.129) 

In this Appendix we wish to evaluate this expression using a semiclassical approx­

imation for the outgoing wave Green's function. This work is an outgrowth of the 

research carried out by Keshavamurthy and Miller94 in calculating the elements of 

the S-matrix semiclassically and Spath and Milleri23 who calculated the semiclassical 

cumulative reaction probability using absorbing boundary conditions. 

To illustrate how the semiclassical probability is obtained, we first insert a 

pair of completeness relations in the position representation: 

Noting that the operator Ep is a function only of position and therefore (xi I Ep lxz) = 
€(xi) 8(x2- xi), we obtain 

Insertion of another completeness relation inside the absolute square gives 

Pnr(E) = ~ J dxi €p(xi) If dx2 (xii c+(E) lx2)€r(x2) <I>nr(x2)1
2 

(2.131) 

(2.132) 
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for the reaction probability. 

At this point we introduce the semiclassical approximation for the Green's 

function. Recall that the Green's function can be expressed (with the absorbing 

potential included) as 

(2.133) 

The semiclassical approximation for the propagator (obtained by evaluating the Feyn­

man path integral propagator within the stationary phase approximation) is given by 

EJ2S(x11 x2, t) / .i: ----'------'- 27rz n 
8x28x1 

x exp { iS(x1, x2, t)jn- ~lot €(x2(t')) dt'}, (2.134) 

where S(x1, x 2, t) is the classical action associated with a trajectory going from x1 to 

x 2 in timet. We note, however, that 

82S(xl, X2, t) 
ax28xl 

which gives the initial state-selected probability as 

2 i a 
Pnr(E) = h j dx1 €P(x1) h j dx2 j dt a~:j21ri1i 

(2.135) 

X exp { iS(xb x2, t)jn- ~lot €(x2(t')) dt'} €r(x2) <Pnr (x2)1
2

. (2.136) 

This expression requires that one find trajectories that start in the product absorbing 

strip ( €p( xi) =f. 0) and end up in the reactant absorbing strip ( €r ( X1) =f. 0) after 

time t. The integrals are computed over starting positions (x1), ending positions 

(x 2 ), and transit times (t). This approach is somewhat lacking in that it specifies 

trajectories by double-ended boundary conditions: x(t; x1 , x2). Thus one has to solve 

the notorious root search problem of finding x(t; x11 p1) = x2 for p1, where P1 is the 

initial momentum of the trajectory. While this can be accomplished for one, two, and 

possibly three degrees of freedom it becomes increasingly difficult as the size of the 

system increases, and for large systems is not feasible. 
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Figure 2.14: A plot of the Eckart barrier and the absorbing potential used in the 
calculation of the semiclassical initial state-selected reaction probabilities. The Eckart 
potential is shown as the solid line and the absorbing potential as the dashed line. 
For reference, the barrier is centered at s = 0 and the absorbing potentials here begin 
at s = 4 a. u. and end at s = 6 a. u. 

Fortunately an approach is available to circumvent this problem- the initial 

value representation (IVR). Simply put, one makes a change of variables from xi and 

x 2 to XI and PI· Then the integral over x 2 becomes 

(2.137) 

where l8x2j 8pii is the Jacobian factor for the transformation. Inserting this in the 

expression for Pnr (E) gives the probability as 

( ) 2 j ( ) i j j 8x2(xi,Plli)/ .i: 
Pnr E = n3 dxi f.p XI n dpi dt 8pi 27rzn 

x exp{iS(xbpi,t)jn- k fat c(x2(xbpbt'))dt'} 

X Er(x2(X1JPb t)) q>nr(x2(x1,p!, t))l2
. {2.138) 

Now the procedure is simpler. Trajectories, x 2(t) are started in the product absorbing 

strip with initial conditions xi, PI and the time integral is evaluated along the course 
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of the trajectory. Note that the trajectories will not contribute until they have reached 

the reactant absorbing strip, i.e., until they have "reacted." 

We have applied this semiclassical method to the one-dimensional symmetric 

Eckart barrier, 

V(x) = Vo sech2 (~) , (2.139) 

with Vo = 0.425 eV, a = 1, and a mass of 1060. These parameters are intended to 

represent the profile along the reaction path of the H +H2 potential. The potential and 

absorbing potential are shown in Figure 2.14. In this one-dimensional problem there 

is only one asymptotic reactant channel and the wavefunction is given by (defining 

reactants to the left and products to the right) 

eikx 

~E(x) = r::' 
. yV 

(2.140) 

where v = 1ik/ J.l = .j2E / J.l· This wavefunction is normalized to have unit incident 

flux. 

Figure 2.15 shows the reaction probability as a function of energy for the 

Eckart barrier. The lower panel highlights the results in the deep-tunneling regime by 

showing the probability on a semilog plot. The semiclassical calculation reproduces 

the exact probability well at energies near threshold. 'rhe agreement is good over the 

energy range 0.25-0.8 eV. The semilog plot shows that accurate tunneling probabilities 

as low as "" 10-4 can be obtained with this method. 



2. 7. APPENDIX II: SEMICLASSICAL REACTION PROBABILITIES 65 

;;... 1.0 ... ·­-~ .c 
0 a. 
=- 0.5 

10-6 
0.1 

• • • 

• Semiclassical Initial State-Selected 
--Exact 

0.2 0.3 0.4 0.5 0.6 0.7 
Energy (eV) 

0.8 

Figure 2.15: Initial state-selected probability vs. energy for the one-dimensional 
Eckart barrier. The semiclassical probability is shown as the filled circle, the exact 
results as the solid line. The upper panel shows the probability on a linear scale while 
the lower panel plots the results on a semilog scale to better view the agreement in 
the deep-tunneling regime. 
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Chapter 3 

Photodetachment Intensities 

3.1 Introduction 

Photoelectron spectroscopy of negative ions has proved to be a powerful 

tool for probing the reaction dynamics and the potential energy surface of the cor­

responding neutral molecular system.13•14 In a typical experiment, the stable anion 

ABC- is photodetached by a fixed freqency laser and the kinetic energy distribution 

(spectrum) of the detached electron measured. In a fortuitous case, the equilibrium 

geometry of the anion lies directly below the transition state region of the neutral 

potential energy surface. Then, in the spirit of transition state theory, one would 

predict that the spectrum consists of a series of peaks, each corresponding to a state 

of the activated complex of the ABC neutral and with an intensity proportional to 

the Franck-Condon overlap of that state with the anion wavefunction. Since the acti­

vated complex is not a stable species (decaying to produce either the neutral products 

or reactants), these states have a finite lifetime which gives rise to broadening of the 

peaks in the spectrum. Thus the kinetic energy distribution of the detached electron 

gives detailed information about the the transient activated complex which is the 

gateway to reaction. Comparison with theoretical predictions of the spectrum con­

stitutes a stringent test of an ab 'initio surface and provides for a detailed assessment 

of the crucial features of the transition state region which cannot be obtained by a 

comparison of reactive scattering results. 
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Calculations for this process were first carried out by Schatz124 to study the 

hydrogen atom exchange reaction between halogen atoms, X+ HX' --+ XH +X'. 

More recently, 125 comparison of theoretical and experimental results were used to 

great effect for the F + H2 reaction, leading to the accurate characterization of the 

transition state for that reaction. As noted in Section 2.4 the reaction 

(3.1) 

has become the benchmark of choice for quantum treatments of a four-atom reaction. 

Recently, de Beer et al. 15 have carried out photodetachment experiments and simu­

lations of H 30- and D3 0- providing information on the potential energy surface of 

Reaction (3.1). Despite the flurry of recent experimental and theoretical work on the 

OH + H 2 reaction, the best available potential surface103 still contains multiple flaws. 

For example, the surface gives the transition state geometry as a trans configuration 

though ab initio calculations predict it to be cis; it also contains a spurious well just 

before the barrier on the 0 H + H 2 side, which has been partially corrected by Clary. 75 

Thus, comparison of theoretical calculations on this surface with experiment may pro­

vide information useful for evaluating and improving this surface (or for producing a 

new potential energy surface). 

The photodetachment spectroscopy of H30-, however, has some aspects 

which make it a difficult problem. The anion has two stable geometries, H- · · · H20 

and Ho- · · · H 2 structures, neither of which lies close to the geometry of the neutral 

transition state. 15 •126 The two anion species lead to distinctly different spectra at 

different laser polarizations, 15 and furthermore, excited vibrational states of the anion 

are delocalized over both geometries and can give Franck-Condon overlap with the 

transition state. An additional difficulty is the lack of knowledge of both the anion 

and neutral surfaces. The interpretation of the spectra is simplified if one surface 

is known well (or alternatively, if the spectra are insensitive to one surface), but if 

both surfaces are not well determined, one is limited to making statements about the 

similarities and differences between the surfaces. 
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3.2 Theory 

The photodetachment intensity is given within the Franck-Condon approx­

imation by 

(3.2) 

where </>b is the bound state of the anion and WnT is the scattering wavefunction on the 

neutral surface. The density of states, p(E), is associated with the normalization of 

the scattering wavefunction, which for our choice of normalization is p( E) = ( 21l-1i) -l. 
I 

This approximation has been shown to be very useful and accurate.124 

In the DVR-ABC approach outlined in Section 2.2.3, the Lippmann-Sch­

winger-type equation 

(3.3) 

is used to obtain the reactive scattering wavefunction. The bound state DVR vector 

can be obtained by solving a vibrational eigenvalue problem on the anion potential 

energy surface using the same basis as for the scattering wavefunction. The Franck­

Condon intensity is then given by 

However, one can make use of the closure relation derived in Section 2.2.3 to obtain 

the following simpler result, 

I(E) = _! <Pl· G*(E) · e · G(E) ·l/Jb, 
,7r 

(3.5) 

for the total photodetachment intensity. Moreover, since the full absorbing potential 

can be written as the sum of the absorbing potentials in the reactant and product 

arrangements, e = er + ep, one can divide the intensity into the parts due to the 

neutral dissociating into reactants and the part dissociating into products (that is, 

arrangement-selected intensities). Then the contribution to the photodetachment 

intensity from a given arrangement T is given by 

(3.6) 
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The total intensity can subsequently be obtained as 

I(E) = L Ir(E). (3.7) 
r 

Alternatively, starting again from Eq. (3.2), we can use the completeness 

relation for the scattering wavefunction: 

L p(E) I 'l'n,.(E))('l'n,.(E) I= 8(E- H). (3.8) 
n,-=nr,np 

The right hand side is just the microcanonical density operator which can be expressed 

in terms of the outgoing wave Green's function 

A 1 A+ . 
8(E- H)= --Im G (E). 

7r 
(3.9) 

This gives us an alternative, direct way to calculate the total photodetachment in­

tensity. In the DVR-ABC formulation this is given by 

1 t +( I( E) = --Im l/Jb · G E) ·l/Jb. 
7r 

(3.10) 

Note that both Eq. (3.6) and Eq. (3.10) require the same amount of computational 

work: the action of the Green's function onto a single vector. Thus, the direct and 

arrangement-selected photodetachment intensities can be computed simultaneously 

with no extra work. Additionally, the intensity obtained from Eq. (3. 7) can be 

compared to that from Eq. (3.10) as a test of the convergence of the Green's function. 

3.3 Eckart Barrier Model 

An illustrative example is provided by calculating photodetachment intensi­

ties for a model one-dimensional system where the anion is represented by a harmonic 

oscillator and the neutral by the Eckart barrier potential. (Recall the Eckart barrier 

with an absorbing potential is pictured in Fig. 2.14.) We have used the method 

described above in Section 3.2 to obtain the total and arrangement-selected photode­

tachment spectra for this model problem. The parameters used for the Eckart barrier 

are the same as given in Section 2. 7 and the anion harmonic oscillator frequency is 

taken to be 3000 cm-1 • 
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Figure 3.1 shows the calculated total and arrangement-selected photodetach­

ment spectra for this model problem. The spectra have been calculated for different 

positions of the anion equilibrium distance, r 0 , relative to the top of the barrier. The 

barrier is centered at s = 0 and for r0 = 0 the equilibrium geometry of the harmonic 

oscillator anion coincides with the top of the barrier. For r0 = 1 and 2 a. u., the anion 

equilibrium geometry is displaced towards products. A check on the convergence of 

the calculated spectra is the integral of the total photodetachment intensity - this 

should be one with the energy in atomic units (or 27.21 eV if the energy is given in 

electron volts as shown here). 

The spectra for ro has several interesting features. The total intensity is 

a single broad peak centered at about E = 0.43 eV. Recall that the barrier height 

in this case is 0.425 eV. This is expected as the scattering wavefunctions on the 

neutral surface will have exponentially decaying tails in the region of the barrier for 

energies below the barrier height. Since the Franck-Condon overlap in this case is 

predominantly in the barrier region, one might predict that the intensity would be 

largest at an energy above the barrier height. Note that the intensity has a somewhat 

longer tail at higher energies than at lower energies. Another interesting feature 

involves the arrangement-selected intensities which in this case are identical. This is 

due to the symmetry of both the barrier and the anion wavefunction about s = 0 in 

this case. 

An interesting development is observed when the anion' equilibrium geom­

etry is displaced towards products. A nodal structure appears in the spectra, the 

maximum intensity moves to lower energies, and the highest energy at which inten­

sity is observed is smaller. In addition, the intensity leading to reactants decreases 

dramatically and is virtually zero for the r0 = 2 a.u. case. All of these features can 

be explained by a simple picture of the changing Franck-Condon overlap as the anion 

geometry is displaced. The Franck-Condon overlap becomes stronger with the scat­

tering wavefunction of the neutral at lower energies as the anion geometry is moved 

away from the barrier. Thus, the intensity peaks at lower. energies and reactants 

can be formed only by tunneling. Note that the reactant-selected intensity for the 

r0 = 1 a.u. case begins around E = 0.38 eV. The nodal structure can be attributed 
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Figure 3.1: Photodetachment spectra for the one-dimensional model problem with a 
harmonic oscillator anion and a neutral potential given by the Eckart barrier. The 
spectra are given for different values of the anion equilibrium distance, r0 , relative to 
the top of the Eckart barrier. Note that for r0 = 0, the product- and reactant-selected 
spectra are indistinguishable. 
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to interference between amplitude which reflects off the barrier and amplitude which 

directly moves off towards products. The same pattern, including the increasing num­

ber of nodes with larger displacement, can be observed in the case where the neutral 

potential is replaced by a free particle potential with an infinite wall at s = 0. 

3.4 Photodetachment of H 3Q-

3.4.1 Details of the Calculation 

We have chosen to use the Jacobi coordinates of the reactants as shown in 

Figure 2.10: r 1 and r 2 denote the H 2 and OH bond distances, respectively, R the 

distance between the H 2 and 0 H centers-of-mass, /I the angle between r 1 and R, /2 

the angle between r 2 and R, and <.p the torsional angle. 

The calculations presented here treat either two or four degrees of freedom 

explicitly. In all cases, the 0 H bond distance is frozen at its equilibrium value, r~ = 

1.8633 a.u. and the torsional angle is fixed at r..p0 = 0, i.e., the planar configuration. 

These values give the proper transition state geometry for the reaction. As shown 

in Section 2.4, calculations of reaction probabilities with these coordinates fixed give 

all the. qualitative features of a full six degree of freedom treatment. Here we make 

no attempt to incorporate the effects of these two neglected coordinates under the 

assumption that the zero point energies are the same in the anion and neutral. 

Our calculations have used the WDSE potential energy surface for the neu­

tral. (See Fig. 2.8.) For the anion surface, we have used the surface of de Beer et 

al. 15 , shown in Fig. 3.2, that provides a global anharmonic description of the two 

coordinates r 1 and R. This anion surface has two minima. The global minimum is 

an H- · · · H 2 0 structure under the H + H 20 (product) valley of the neutral surface. 

The other local minimum lies under the 0 H + H 2 (reactant) valley at an H o- · · · H 2 

structure. The energy of the local minimum with the HO- · · · H 2 geometry is 0.085 

eV higher than that of H- · · · H 20Y The ground state wavefunction on this potential 

energy surface is localized in the H- · · · H 2 0 well, while excited states with v ~ 2 are 

delocalized across both wells. Very little information is available about the potential 
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Figure 3.2: Two degree of freedom contour plot of the H30- anion potential energy 
surface. Here R is the distance between the OH and H2 centers-of-mass and r1 is the 
H2 bond distance. The contour spacing is 0.06 eV. 
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in the angular (bending) coordinates. Consequently, we use separable harmonic oscil­

lator bending potentials. The frequencies are taken from the ab initio calculations of 

Xantheas and Dunning.126 The equilibrium bending angles are varied, and the effects 

on the resulting spectra are discussed below. 

In addition to these calculations on the H30- potential, ab initio results at 

the CCSD(T) aug-cc-p VTZ level by Mielke127 find the equilibrium geometries in good 

agreement with those of de Beer et al. 15 

Clary and co-workers have carried out reduced-dimensionality ab initio cal­

culations for the anion and neutral potentials includj.ng two stretching modes (the H2 

vibration and the scattering coordinate of OH + H2) and the OH bend. They have 

obtained the photodetachment spectrum on these two surfaces using the rotating 

bond approximation.128 They find good agreement between their theoretical spectra 

and that of the experiment. Of particular note is the excellent match between the 

calculated and experimental electron binding energies. This is presumably due to the 

higher quality ab initio results. 

No fit exists for the anion surface, only the value of the potential on a grid 

of points in the r1 and R coordinates. We have used interpolation to obtain the 

potential at points within the boundary of the grid. Points outside the boundary are 

set to a large (constant) value. 

For the two and four degree of freedom calculations of the photodetach­

ment intensities presented here we have used the same Hamiltonians, basis sets, and 

absorbing potentials as described in Sections 2.4.2 and 2.4.3. 

Acting the Green's Function 

To calculate the photodetachment spectra one needs to evaluate the action 

of a Green's operator onto ¢>b, the anion bound state, 

(3.11) 

which can be done by solving the linear system 

( E - H + ie) · x = <l>b (3.12) 
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For multidimensional problems the size of the Hamiltonian is often too large to be 

stored in core memory. When this is the case, sparse matrix methods provide a useful 

solution. In particular, Krylov subspace methods such as the generalized minimal 

residual129 (GMRES) and the quasi-minimal residual130 (QMR) methods have been 

found to be quite effective. They are based on the matrix-vector multiplication. 

A Krylov space is formed by multiplying the matrix repeatedly onto a vector and 

the required linear algebra problem is solved in this space (see the discussion of the 

Lanczos method in Section 4.2.2). The DVR basis is well suited for such schemes as 

the Hamiltonian is sparse in a multidimensional case. A practical difference between 

these two methods (for the more fundamental differences, we refer the reader to the 

literature129- 131 ) is that each Krylov vector in GMRES is explicitly orthogonalized to 

every previous vector (all of which are stored). In the QMR approach, each Krylov 

vector is only orthogonalized with the last few preceeding vectors. While this means 

GMRES displays faster convergence with the number of iterations (Krylov vectors), it 

also requires more memory and each iteration is slower than the previous one. Hence, 

in this work we have chosen to use the QMR method. 

A special feature of the photodetachment spectra calculations is that the 

intensity is required for many energies ("' 130 - 300). In addition, the action of the 

Green's function is only required onto one vector, the anion bound state. Thus, such 

a system is amenable to a multiply-shifted QMR132 (MSQMR) approach. In this 

method, a single, common Krylov basis is formed and used to obtain G+(E) ·l/Jb for 

all the desired energies. This is possible because the Krylov basis is invariant under 

shifts by a scalar. Convergence can be checked using an upper bound to the residual 

that provides a good estimate of the true error. 

The two degree of freedom photodetachment intensities shown were calcu­

lated for 300 energies at one time. The CPU time on a RISC/6000 Model 590 was 

approximately 2 minutes. This represents a reduction by a factor of at least 40 in 

CPU time as compared to running each energy independently. The four degree of 

freedom intensities were calculated at about 130 energies. The total energy range was 

broken up into four or five segments for which up to 50 energies were computed at 

one time. These smaller energy ranges were required by the larger spectral range of 
'-
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the 4D Hamiltonian whichs slows convergence. 

Obtaining th'e Anion Bound State 

We have used a Lanczos scheme133 applicable to a fully coupled potential 

to obtain the bound state wavefunction. (See Section 4.2.2 for a description of the 

Lanczos algorithm.) A new Hamiltonian is formed, Hanion which has the same kinetic 

energy as fi but the neutral potential is replaced by Vanion ( r1, R, Ill 12; ~~,,g). Here 

1f and ~~ are the equilibrium bending angles for the anion. Note that this Hamil­

tonian is real symmetric. A Krylov space is formed with reorthogonalization to all 

previous vectors. The Lanczos algorithm is used to obtain the lowest eigenvalues and 

eigenvectors. (Typically the number of Lanczos iterations needed is between 100 and 

140.) The eigenvectors are examined to determine the vibrational state in the coupled 

r1 and R coordinates. 

· 3.4.2 Results and Discussion 

Recently, de Beer et al. 15 presented experimental photodetachment spectra 

of H 30- and D 30- as well as two degree of freedom simulation results. The experi­

mental spectra were taken at two laser polarizations (} = 0° and (} = 90°. The (} = 0° 

spectra was attributed to the H- · · · H 20 anion structure and consist of three peaks 

at electron binding energies of 1.53, 2.00, and 2.38 eV. (For D- · · · D 2 0 the peaks 

occur at 1.53, 1.88, and 2.17 eV.) These peaks were assigned to the stretching pro­

gression of the OH(OD) local mode stretch in the neutral and denoted (000), (001), 

and (002), respectively. [This is the notation for H20 vibrations: (n1, n2, n3) where 

n1 is the symmetric stretch, n2 the bend, and n3 the asymmetric stretch quantum 

number.] The peak lineshapes have some asymmetry indicating possible excitation 

of the n 2 bending mode. The (} = 90~ spectra are qualitatively different with broad 

peaks at 1.53 and 2.05 eV. These peaks are not shifted upon deuteration. 

The simulations of de Beer et al.15 explicitly treated the H 0- H and H- H 

bonds. They performed ab initio calculations to obtain the anion potential as a func­

tion of these two coordinates. Their simulated spectra reproduce the main features 
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of the experimental results. The a = 0° spectra correspond to the photodetachment 

from the v = 0 state of the anion which is completely localized in the H- · · · H 20 

well. In contrast, the a = 90° spectra are attributed to the v = 2 state of the anion; 

this is the first state delocalized across both geometries of the anion. The peak at 2.05 

eV is due to excitation from the Ho- · · · H2 structure. In this section we present the 

theoretical photodetachment spectra obtained from explicitly treating two and four 

degrees of freedom as described in Sections 2.4.2 and 2.4.3. 

Clary and co-workers have carried out reduced-dimensionality ab initio cal­

culations for the anion and neutral potentials including two stretching modes (the H2 

vibration and the scattering coordinate of OH + H2 ) and the OH bend. They have 

obtained the photodetachment spectrum on these two surfaces using the rotating 

bond approximation. 128 They find good agreement between their theoretical spectra 

and that of the experiment. Of particular note is the good agreement between the 

(absolute) electron binding energies in the calculated and experimental spectra. This 

may be due to the more accurate ab initio calculations. 

Two Degrees of Freedom 

We have performed the two degree of freedom calculations described in Sec­

tion 2.4.2 for the few lowest eigenstates of the anion. The purpose of presenting two 

degree of freedom results here is twofold: (1) to show that, though the coordinates 

and method are different, our results are consistent with those of de Beer et al., 15 

and (2) to illustrate the basic features of the photodetachment spectra which can be 

compared with higher dimensional results. 

Figure 3.4 shows the 2D total and arrangement-selected photodetachment 

spectra from the v = 0 state of the anion for (a) H 3 o-, and (b) D 3 o-. Note that 

the energy of the separated reactants 0 H + H 2 is the zero of ~nergy on the neutral 

potential energy surface, The lowest possible scattering energy is then -0.64 eV which 

is the exoergicity of the reaction.103 For these calculations the 0 H and H 2 angles were 

set equal to the equilibrium values for the H- · · · H 20 structure, ~~ = 175.9° and 

~~ = 104.8°. A contour plot of the v = 0 anion bound state wavefunction is shown 
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Figure 3.3: Two degree of freedom contour plot of the v = 0 bound state wavefunction 
for the H30- anion. 

in Figure 3.3. Comparing this with Fig. 2.8 shows that this anion state is localized 

under the H + H 2 0 valley. 

The spectra in Fig. 3.4 show the three peaks attributed to the local mode 

OH(OD) stretch in the neutral H 20 (D20). The experimentally observed (000) --+ 

(001) and (001) --+ (002) peak spacings are 0.47 and 0.38 eV (0.35 and 0.29 eV) for the 

H3 Q- ( deuterated) spectrum. Our calculated spectra are in good agreement giving 

spacings of 0.46 and 0.30 eV (0.36 and 0.25 eV deuterated). 

These spectra are in reasonable agreement with the simulations of de Beer 

et al. 15 indicating our choice of somewhat different coordinates is not significant. The. 

primary difference is the relative intensity of the (001) peak in the H30- spectrum is 

larger than they observed. (Both simulations show a larger relative intensity for this 

peak than seen in the experiment.) Another difference is the dip in the (002) peak 

of the H 3 Q- spectrum. This dip appears at the energy of the H 2(v = 1) vibrational 

level. 

The arrangement-selected intensities show that most of the intensity leads to 

the formation of H + H 20 products. This would be expected from the position of the 

Franck-Condon region. Howev'er, we do see some intensity leading to the formation 
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Figure 3.4: Two degree of freedom photodetachment intensities from the v = 0 state 
of the anion for (a) H30- and (b) D3Q-. The solid line is the total intensity, the 
dashed line is the product-selected intensity, and the dot-dashed line is the reactant­
selected intensity. 
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of the 0 H + H 2 reactants. Since there is no Franck-Condon overlap on the reactant 

side of the barrier in this case this must occur by passing over the barrier. For the 

deuterated case virtually no reactants are formed. This can be explained by the fact 

that the energy local OD stretch levels are lower in energy thus most of the intensity 

is energetically forbidden from passing over the barrier. 

The results of the experiment are given in electron binding energy (eB E). 

The conversion to the eBE from the scattering energy, E, is given by 

eBE = E + EA +De-E;;, (3.13) 

where EA is the electron affinity of OH, De is the dissociation energy of H-(H20) 

to obtain HO- + H 2 , and E;; is the vibrational energy of the anion. de Beer et alY 

give EA = 1.83 eV and De= 0.325 eV. Alternatively, the eBE can also be calculated 

by using the electron affinity of H, 0.75 eV, and the dissociation energy of H-(H20) 

to give H 2 0 + H-, calculated to be 0.79 eV. This gives a slightly different number 

by about 0.03 eV. (We have used the first method.) The uncertainty lies in the 

dissociation energies as discussed by de Beer et al. 15 We will address this in Section 

3.4.2. As seen from Fig. 3.4, our calculations give the first peak centered at 1.95 eV 

and 1.97 e V for H 30- and D 30-, respectively. This· compares to the experimental 

value of 1.53 e V for both. We will discuss this discrepancy in Section 3.4.2. 

The photodetachment spectra for (a) H3Q- and (b) D 3 Q- are shown in 

Figure 3.6 for the v = 1 state of the anion. The bending angles are the same as 

in Fig. 3.4. A contour plot of the anion wavefunction for the v = 1 state is shown 

in Figure 3.5. This state is mostly localized under the H + H2 0 side of the neutral 

potential energy surface, though less so than the v = 0 wavefunction. The spectra are 

similar to those with v = 0 except the (000) peak is split into two. The (001) peak 

now leads to a greater fraction of reactants formed in the case of H3 0-, and some 

formation of reactants for D 3'o-. In addition, we see sharp features in the reactant 

spectrum at the energy that the reactants become energetically accessible and at the 

energy of H 2 (v = 1). 

Figure 3.8 is the same as Figs. 3.4 and 3.6 for the v = 2 state of the anion. 

These spectra are significantly different from those for v = 0 and v = 1. This anion 
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Figure 3.5: Two degree of freedom contour plot of the v = 1 bound state wavefunction 
for the H30- anion. 

wavefunction is delocalized over both the H- · · · H 2 0 and HO- · · · H 2 wells as can be 

seen from the anion wavefunction shown in Figure 3. 7. The product-selected spectra 

resemble somewhat that for the v = 1 state in Fig. 3.6. The spectra's dominating 

featur~s are sharp and lead to the formation of reactants. This is in qualitative 

agreement with the results of de Beer et al. 15 The primary difference is the relative 

heights of the sharp peak at 0.29 eV and the broader peak centered around 0.4 eV. 

This sharp peak was attributed by de Beer et al. to the spurious well on the reactant 

side of the barrier. The feature at 0.75 eV (the energy of H 2 (v = 1)) is observed in 

both calculations. We note that the broad peak is centered around 2.20 and 2.30 e V 

electron binding energy for H30- and D30-, respectively, compared with 2.05 eV as 

observed in the experiment. 

Four Degrees of Freedom 

Here we present calculations of the photodetachment intensity explicitly 

treating four degrees of freedom including the H 2 and 0 H bending angles 1 1 and 

1 2 as described in Section 2.4.3. The equilibrium bending angles used for the anion 
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Figure 3.6: Two degree of freedom photodetachment intensities from the v = 1 state 
of the anion for (a) H30- and (b) D3 Q-. The solid line is the total intensity, the 
dashed line is the product-selected intensity, and the dot-dashed line is the reactant­
selected intensity. 
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Figure 3. 7: Two degree of freedom contour plot of the v = 2 bound state wavefunction 
for the H30- anion. 

potential are varied and we discuss the effect on the spectrum. All calculations 

were done for even parity (p=O). As mentioned above, the r 2 and <p coordinates are 

not expected to have a significant impact on the photodetachment spectrum. Thus 

the spectrum calculated with this Hamiltonian should represent the best theoretical 

prediction of the experimental spectrum- (at least for the purposes of this paper). 

The comparison of the calculated spectrum with the experimental result then gives 

information about the accuracy (or inaccuracy) of the neutral and anion potential 

·energy surfaces. 

Figure 3.9 shows the v = 0 photodetachment spectra for (a) H3 0- and 

(b) D3Q- with anion equilibrium angles 1f = 175.9° and /g = 104.8°. The spectra 

are significantly different from the corresponding 2D results. The H 3 0- spectrum 

consists of the (000) and (001) peaks with a spacing of 0.45 eV but the peaks are 

much broader than in the 2D spectrum (Fig. 3.4) and there is superimposed structure 

due to excitation of the bending degrees of freedom. The (002) peak may be hidden by 

the bending progression off the (001) peak. The relative peak intensities are virtually 

the same as in the 2D case; the (000) peak is only slightly higher than the (001) 

peak. The reactant-selected intensity is small as in the 2D spectrum but is now a 
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Figure 3.8: Two degree of freedom photodetachment intensities from the v = 2 state 
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Figure 3.9: Four degree of freedom photodetachment intensities from the v = 0 state 
of the anion for (a) H3Q- and (b) D3 0-. The anion equilibrium bending angles 
are ~~ = 175.9° and ,g = 104.8°. The solid line is the total intensity, the dashed 
line is the product-selected intensity, and the dot-dashed line is the reactant-selected 
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single broad feature. In the deuterated spectrum all three peaks are observed with 

(000) ---+ (001) peak spacings of 0.39 and 0.32 eV, respectively. These peak spacings 

are larger than those found in the 2D calculations. As in the case of H30- the peaks 

are broadened with superimposed structure not seen in the 2D spectrum. The relative 

intensity of the (001) peak to the (000) peak is larger than that seen in the 2D results. 

Only a small fraction of the intensity leads to the formation of the reactants. 

In Figure 3.10 we show the v = 0 spectrum with equilibrium angles 1? = 
169.0° and~~= 122.0° for (a) H30- and (b) D 30-. These angles correspond to the 

transition state geometry of the neutral. The three peaks are observed as in the 2D 

spectra with (000) ---+ {001) and {001) ---+ (002) peak spacings of 0.45 and 0.33 eV 

for H 30- and 0.34 and 0.29 eV for D30-, in excellent agreement with experiment. 

The peak spacings are somewhat different than those in the 2D spectra and the 4D 

spectra in Fig. 3.9 indicating that they are sensitive to the constraint to two degrees 

of freedom and the choice of anion equilibrium angles. The bending progression 

and broadened peaks seen in the spectra of Fig. 3.9 have disappeared but there is 

some asymmetry in the (001) peak in Fig. 3.10(a) which may be attributed to OH 

bending excitation. Asymmetry is not easily discerned in the other peaks and there 

is not the same degree of asymmetry as observed in the experiment. In these spectra 

the relative intensity of the (001) peak to the (000) peak is significantly reduced from 

the 2D spectra and the 4D spectra of Fig. 3.9. A small amount of reactants is formed 

in the H 30- case while no reactants are seen for D30-. Again a dip at the energy 

of H2 ( v = 1) is observed. 

The anion equilibrium angles were chosen to give greater Franck-Condon 

overlap with the neutral equilibrium geometries. The resulting decrease in bending 

excitation of the neutral gives better agreement with the observed experimental spec­

tra. This indicates that these angles may be more similar in the neutral and anion 

than is given by the current potential energy surfaces. Comparison of Figs. 3.9 and 

3.10 indicates that the relative intensities of the peaks are also affected by achange 

in the equilibrium angles. If the equilibrium angles for the anion are not near those 

for the neutral, then the region of Franck-Condon overlap sits higher up on the re­

pulsive wall of the neutral potential where the excited vibrational states have greater 
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Figure 3.10: Four degree of freedom photodetachment intensities from the v = 0 state 
of the anion for (a) H3 0- and (b) D30-. The anion equilibrium bending angles are 
1f = 169° and ~~ = 122°. The solid line is the total intensity, the dashed line is the 
product-selected intensity, and the dot-dashed line is the reactant-selected intensity. 
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amplitude.· 

The spectral features appear at lower electron binding energies than in the 

2D calculations. The (000) peak occurs at 1.80 and 1.82 eV eBE for H30- and 

D 30-, respectively. This is 0.27 and 0.29 eV higher than seen in the experiment. 

(We should note that this effect is seen in Fig. 3.9(a) as well with the first peak at 

1.83 e V eB E.) A difference between the neutral and anion zero point energies in the 

bending degrees of freedom leads to these lower electron binding energies than seen 

in the 2D case. 

Figure 3.11 shows the v = 2 spectrum for (a) H30- and (b) D30- with 

the anion equilibrium angles ~~ = 175.9° and ~~ = 104.8°. The same basic structure 

is seen as in Fig. 3.8: a narrow peak followed by a very broad feature. There are 

however, large differences between these spectra and the 2D results. The narrow 

peak is much less dominant and in the deuterated spectrum is not identifiable as a 

separate feature. The broad peak has a bending progression superimposed on it. As 

in the 2D case, the majority of the intensity leads to the formation of reactants. This 

anion state has the majority of its Franck-Condon overlap with the 0 H + H2 side of 

the neutral surface leading to these reactant-dominated features. There is still some 

Franck-Condon overlap on the product side of the neutral surface which is seen as a 

small background in the spectrum. We note that the broad feature is centered at an 
. .J 

electron binding energy of about 2.09 eV for H30- and 2.17 eV for D3 0-. These 

values are 0.04 and 0.12 eV higher than observed in the experiment. 

As discussed by deBeer et al./ 5 the differences in electron binding energies 

may in part be attributed to the difference between the calculated value of the dis­

sociation energy of H- · · · H 2 0 to give H 2 0 + H- (0.79 eV) and the experimentally 

measured value (0.62 ± 0.04 eV). This would put the (000) peak in the v = 0 spectra 

as 0.10 eV higher than observed in the experiment. The broad peak in the v = 2 

spectrum would be 0.13 eV lower than is seen in the experiment. [We note that the 

calculated spectra have larger peak widths than those in the experiment. Thus the 

electron binding energies of the onsets of the spectra are closer to the experiment than 

the peak positions.] deBeer et al. have suggested that the barrier is too "late" in the 

WDSE surface, and should be moved earlier into the 0 H + H2 valley. Our results 
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Figure 3.11: Four degree of freedom photodetachment intensities from the v = 2 
state of the anion for (a) H3Q- and (b) D3 Q-. The anion equilibrium bending angles 
are 1f = 175.9° and ,.g = 104.8°. The solid line is the total intensity, the dashed 
line is the product-selected intensity, and the dot-dashed line is the reactantJselected 
intensity. 
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are consistent with this conclusion. Moving the barrier later would reduce the zero 

point energy of the H 2 0 · · · H neutral thus shifting the peak positions to lower energy 

in the v = 0 spectra. It might also increase the zero point energy of the HO · · · H 2 

neutral thus shifting the broad peak in the v = 2 spectrum to higher energies. 

3.5 Concluding Remarks 

We have shown how the DVR-ABC formalism for generating the Green's 

function can be used to obtain total and arrangement-selected photodetachment in­

tensities simultaneously. We have presented the results of this method applied to two 

and (planar) four degree of freedom calculations of the photodetachment spectra of 

H 30- and D 30-. In addition a multiply-shifted quasi-minimal residual (MSQMR) 

method was used to obtain the Green's function for many energies at once, producing 

a significant savings in computational time. 

The H3 0- anion has two local minima, one of the form H 2 0 · · · H- (the 

global minimum) which lies under the product side of the neutral surface, and the 

other of the form HO- · · · H 2 lying under the reactant side of the neutral surface. As a 

result the photodetachment spectra are highly sensitive to the initial vibrational state 

of H30-; the v = 0 state is localized in the H 20 · · · H- well and results primarily 

in the formation of products while the v = 2 state is delocalized over both wells and 

results primarily in the formation of reactants. 

We have performed the two degree of freedom calculations to illustrate the 

basic nature of the spectra and to demonstrate agreement with 2D calculations by de 

Beer et al. 15 Our 2D spectra are in good agreement with those of de Beer et al. despite 

the use of somewhat different coordinates. The four degree of freedom calculations 

represent our best prediction of the experimental spectra. That is, if the potential 

energy surfaces we used were the "true" ones, we would expect the 4D spectra to be 

in excellent agreement with the experiment. Since the spectra are not in excellent 

agreement, we can analyze the differences to obtain information about the "true" 

potential energy surfaces. 

The v = 0 spectrum consists of three peaks which are assigned to the local 
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mode DH stretch in the neutral H20 of the products.15 In the case where the anion 

equilibrium bending angles for OH and H2 are given the values obtained from ab initio 

results by de Beer et al. the four degree of freedom spectra in Fig. 3.9 spectra have 

the same basic structure but have different peak spacings and broader peak widths 

than the two degree of freedom results. In addition significant bending excitation of 

the neutral is observed. Changing the angles to that of the transition state geometry 

of the neutral eliminates most of the bending excitation and lowers the intensity of 

the (001) peak relative to the (000) peak giving a spectrum in good agreement with 

experiment. Since neither the neutral nor anion potential are accurately known, it is 

not possible to state whether it is the anion or the neutral bending potentials which 

·are in error. The conclusion that can be drawn is that the angles are more similar in 

the two potentials than given by the current surfaces. 

The v = 2 spectrum is dominated by a broad peakleading to the formation 

of reactants. The large narrow peak which was observed in the two degree of free­

dom calculations, is much less dominant in the four degree of freedom spectra. The 

four degree of freedom spectra also have a bending progression superimposed on the 

broad peak which is not observed in the two degree of freedom results. The calcu­

lated intensities are in good agreement with the experimental spectra assigned to the 

Ho- · · · H2 anion minimum. The theoretical spectrum does have a small background 

leading to products due to the delocalized nature of the v = 2 eigenstate across both 

amon rmmma. 

Finally, the theoretical calculations give the electron binding energy of the 

v = 0 spectra as too high relative to the experimental results. While for the for the 

v = 2 spectra, the electron binding energy is too low compared to experiment. This 

disagreement between the theoretical and experimental results is consistent with the 

suggestion by de Beer et al.15 that the barrier on the neutral WDSE potential energy 

surface is too "late" and should be moved earlier into the 0 H + H2 valley. 
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Chapter 4 

Thermal Rate Constants 

4.1 Introduction 

The last decade has seen great progress in theoretical methods for treat­

ing chemical reaction dynamics. Full quantum scattering calculations are now rou­

tinely carried out for numerous three atom systems (atom-diatom collisions). Indeed, 

full-dimensionality scattering calculations have been carried out for some four atom 

systems88
•
89

•
134

-
140 (most notably the OH + H2 reaction). However, such large systems 

still present a major challenge and methods are needed to make reactions involving 

many atoms (> 3) more amenable to theoretical calculations. To this end, this work 

has focused on directly calculating the dynamical quantity of interest. While the S­

matrix elements ( Snp,nr (E)) provide the most detailed information obtainable for a 

chemical reaction (resolution on the full state-to-state and amplitude level), frequently 

one is not interested in this extreme amount of detail. As discussed in Chapter 2, 

often more averaged quantities , such as the initial state-selected reaction probability, 

( 4.1) 

or the cumulative reaction probability, 

( 4.2) 
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are desired. In many cases, it is the "velocity" of the reaction at constant temperature 

that is of interest, the thermal rate constant, 

( 4.3) 

where Qr(T) is the reactant partition function and f3 = 1/kbT. The recent progress 

achieved in the direct calculation of initial state-selected11 •
96

•141 is discussed in Chapter 

2. Methods for directly obtaining the thermal rate constant have existed for over 

35 years142 and have been the focus of much attention47
•58•91 •143-

168 for the last two 

decades. This chapter describes some of the latest advances in the technology for 

the direct (but fully correct) calculation of the thermal rate constant for a chemical 

reaction. 

The exact thermal rate constant for a system obeying classical mechanics is 

given by 

k (T) - 1 J d J d -,BH(p,q) 8[f( )] df( q) · £_ ( ) (4.4) 
CL - Qr(T)hF p q e q dq m X p, q ' 

where p and q are the momenta and coordinates of the classical system of F degrees 

of freedom governed by the Hamiltonian H(p, q). The equation f( q) = 0 defines 

a dividing surface which separates reactants and products. x(p, q) is known as the 

cha'racteristic function and is equal to 1 for reactive trajectories and 0 for nonreactive 

trajectories. Practically, one runs a trajectory with initial conditions p and q (which 

must lie on the dividing surface by virtue of the 8[f(q)] factor) backward in time 

to determine if it started as reactants in the infinite past; starting with the same 

initial conditions the trajectory is run forward in time to determine if it ends up 

as products in the infinite future. (Here "infinite" refers to times long enough to 

ensure the trajectory will not return to the interaction region.) A trajectory which 

positively satisfies these two criteria is reactive. This is the point of departure for 

various dynamical approximations, most notably transition state theory169
-

174 (TST). 

In TST the characteristic function is assumed to be given by x(p, q) = h(ps) where 

h( x) is the Heaviside step function equal to 1 if x > 0 and 0 if x < 0, and Ps is 

the momentum perpendicular to the dividing surface f( q) = 0. Thus, trajectories 

crossing the dividing surface are assumed never to come back - there is no recrossing 
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of the dividing surface. 170 Thus, TST provides an upper bound to the classical rate 

constant and a variational principle exists in which the best dividing surface is that 

which gives the lowest rate (i.e., the fewest recrossing trajectories). 

Transition state theory is the most used and useful model in chemical reac­

tion rate theory. However, strictly speaking there is no (single) quantum mechanical 

transition state theory in the sense that the fundamental TST assumption is stated in 

terms of (recrossing) trajectories; this cannot be straightforwardly interpreted in the 

context of quantum mechanics. In addition, a strict, meaningful upper bound to the 

exact quantum rate constant has never been provided by any quantum mechanical 

version. There are, however, many quantum mechanical analogues to (or generaliza­

tions of) transition state theory (providing both exact and approximate rates). All 

these approaches invoke, in some way, the spirit of TST: reactivity is determined 

at the transition state (or in the case of quantum mechanics and the uncertainty 

principle, in a small area around the transition state). 

In this Chapter quantum mechanical methods for obtaining rate constants 

are presented which are evocative of this spirit. However, the goal here is to ob­

tain the exact rate constant and therefore the current approach is more akin to the 

method described above for calculating exact classical rate constants. That is, if one 

is interested in obtaining the exact classical rate, a straightfoward approach would be 

to start trajectories with initial conditions as reactants and run them forward in time 

to see if they react. With the wisdom of TST in hand, we would follow the procedure 

described above and trajectories would only have to be followed for short( er) times 

(in practice) forward and backward. In addition, trajectories which never reach the 

transition state, and are thus destined not to react, would not be followed at all. 

Similarly, if the quantum mechanical rate constant is desired, it can be obtained by 

calculating all the reactive S-matrix elements and then averaging away all that detail 

as indicated in Eq. (4.3). However, the lesson of TST would tell us that a simpler,. 

direct route to the rate constant would be to somehow measure the net reactive flux 

through the transition state. 
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4.2 · Direct Calculation of Rates 

4.2.1 Flux Correlation Functions 

Though Yamamoto was the first to derive a direct expression for the thermal 

rate constant, 142 the present approach is best described from the point of view of later 

work by Miller.143 For completeness, we summarizehere the relevant points of Miller's 

derivation. 

As given in Eq. (4.3), the thermal rate constant can be expressed in terms 

of the state-to-state S-matrix elements as 

( 4.5) 

where Qr is the reactant partition function 

( 4.6) 

Here, 11- is the reduced mass for the relative translation of the reactants, the €nr are the 

energy levels of the reactant internal degrees of freedom, and 9nr is the degeneracy 

of reactant state nr. Starting with this expression Miller showed143 that the rate 

constant can be expressed as 

(4.7) 

. where W P,nr is the full scattering wavefunction corresponding to an initial incoming 

wave in the reactant channel nr with translational momentum P. F is the sym­

metrized flux operator for any dividing surface separating reactants and products. 

This expression for the rate constant is much more appealing than Eq. ( 4.5) from 

an intuitive standpoint. It states that the rate is given by the Boltzmann average 

of the contributions from each of the asymptotic reactant states. The contribution 

of a given state is just the expectation value of the flux through some (any) surface 

dividing the reactants and products. 
\ 

Note that in Eq. ( 4. 7) the integral over initial momenta includes only neg-

ative values. Clearly this must be true as a positive relative momentum would move 
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the reactants further apart instead of towards a (possibly reactive) collision. However, 

this is important in that the completeness relation, 

(4.8) 

requires integration over all momenta from -oo to +oo. Therefore the trace of an 

operator A is given by 

(4.9) 

This can be used to express the rate constant in terms of a quantum mechanical trace 

if we first define a projection operator g3 which projects onto only those scattering 

states with negative asymptotic momenta. That is, g3 is defined to have the property 

(4.10) 

(4.11) 

Then, Eq. ( 4. 7) for the rate constant can be rewritten simply as a quantum mechan­

ical trace 
1 ° A 

k(T) = Qr tr[e-,8H Fg3], ( 4.12) 

using this projection operator. This is a central result in the derivation of a useful 

expression for the th~rmal rate constant which does not depend on state-selected (or 

energy-dependent) quantities. 

Some discussion must now be devoted to the nature of the projection oper­

ator. Recall that in the expression for the exact classical rate constant given in Eq. 

( 4.4), x(p, q) is the most crucial factor as it contains the dynamical information of the 

system. The operator g3 plays the same role in the quantum mechanical expression 

as does x(p, q) in the classical one. Whereas x(p, q) projects onto the reactive part 

of the phase space, g3 projects onto the reactive part of the Hilbert space. 

Such a projection operator can be written down in multiple forms. The sim­

plest, which immediately arises from the above derivation, is obtained by projecting 

onto only those scattering eigenstates which can produce reaction: 

( 4.13) 
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Using this form for the projection operator in Eq. (4.12) and evaluating the trace in 

the basis { I'W P,nr)} it is easily seen that Eq. ( 4. 7) for the rate constant is recovered. 

An alternative, but formally equivalent, expression for the projection oper­

ator, originally proposed by Miller, 143 is given by 

( 4.14) 

where h is the Heaviside step function, h(O = 1 for e > 0 and h(e) = 0 otherwise. 

Here, the momentum Pr is the translational momentum of the reactants. This opera­

tor selects out those components of the basis which have momentum in the direction 

towards products in the infinite past (at t--+ -oo). The relation to Eq. (4.13) can 

be easily identified. It is not difficult to see that a very similar projection operator 

can be defined as 

( 4.15) 

where Pp is the translational momentum of the products. This can be viewed as 

projecting onto the components of the basis which have positive momentum in the 

infinite future. 

Miller, Schwartz, and Tromp58 have shown that these projection operators 

are equivalent to one based on the position step function: 

g3 = lim eiHtfnh( -s)e-iHtft., 
t-+-00 

(4.16) 

in the long time limit indicated. For simplicity of notation we will often refer to a 

generic reaction coordinate s, satisfying s = f( q) = 0, with negative s lying on the 

reactant side of the dividing sudace. This latter projection operator selects out those 

components of the basis which were on the reactant side of the barrier at t --+ -oo. 

Again, another projection operator can be defined within this spirit as 

g3 = lim eiHt/nh(s)e-iHtft., 
t-+oo 

( 4.17) 

which projects onto that part of the basis which is on the product side of the dividing 

sudace in the infinite future. 
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Using the projection operators in Eqs. (4.14) and (4.16), and the property 

[H, g5] = 0,143 the exact thermal rate constant can be expressed as 

k(T) =_..!._lim tr[h(p)eiHt~/1i Pe-iHtcf1ih(p)], 
Qr t->oo 

( 4.18) 

or equivalently as 

k(T) = 2_ lim tr[h( -s)eiHt~/n Pe-iHtcfnh( -8)], 
Qr t->oo 

( 4.19) 

where we have combined the propagators with the Boltzmann operator to obtain a 

single propagator in complex time, tc = t- if31i/2, and also used the property of the 

step function h(O * h(O = h(O in order to express k(T) as the trace of an Hermitian 

operator. From these expressions we define the flux-momentum correlation function, 

(4.20) 

and the flux-position (sometimes called the flux-step or flux-side) correlation function, 

(4.21) 

so that the thermal rate constant is given by 

k(T) = _..!._lim CJp(t) = _..!._lim Cts(t). 
Q r t-+oo Q r t-+oo 

(4.22) 

An important feature of this approach is that these correlation functions only need to 

be evaluated at a single (long) time to obtain the rate constant. (Here "long" refers 

to the time needed for amplitude to cross the barrier which, as will be seen in the 

applications can be quite short, sim 5-70 fs.) 

If we note that the flux operator can be written as 

A z A 

F = r;_ [H, h(~)], ( 4.23) 

and thus, 

( 4.24) 

then from the flux-position correlation function we can define a left-right (sometimes 

called the step-step) correlation function 

\ 

(4.25) 
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by replacing the time-evolved :flux operator with this expression and pulling the 

derivative outside the trace. Then the rate constant is obtained as the long time 

limit of the derivative of the left-right correlation function. 

k(T) = Q
1 

lim dd Css(t). 
r t-+oo t 

( 4.26) 

Note that this requires obtaining the correlation function at two or more (long) times 

in order to evaluate the derivative. 

If the flux-position correlation function is written with the projection oper­

ator in Eq. (4.17) (with some rearrangement), 

( 4.27) 

then we can use Eq. ( 4.24) to defin~ the :flux-flux correlation function 

(4.28) 

as its time derivative. The rate constant is then given by the time integral of the 

derivative so that 
1 roo 

k(T) = .Qr Jo Cff(t) dt. ( 4.29) 

The flux-flux correlation function must be evaluated at many times in order to com­

pute the required time integral. 

4.2.2 Evaluation of the Trace 

The efficient calculation of the thermal rate constant for a chemical reaction 

usmg any of the correlation functions just described lies in the evaluation of the 

quantum mechanical trace. In this work we concentrate on obtaining the rate via the 

:flux-position and flux-flux correlation functions. In the following, we first describe 

how the flux-flux correlation function can be obtained by taking advantage of the 

physics involved in the chemical reaction. Then the same principle is applied to the 

flux-position correlation function with a few changes. 
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The Flux.;.Flux Correlation Function 

The evaluation of the quantum mechanical trace to obtain Cff(t) is the 

computational bottleneck. This is because to obtain a matrix element of the operator 

inside the trace, propagation must be carried out in both real time and imaginary 

time (the Boltzmann operator). However, the trace can be calculated efficiently by 

evaluating it in an optimum basis (since the trace is independent of .the basis in 

which it is computed). In the case of the flux-flux correlation function the operator 

inside th~ trace is of low rank. It has previously been shown that. if the flux operator 

in one-dimension is diagonalized in a finite basis, there will be only two nonzero 

eigenvalues. 158•159•175 These two eigenvalues are of equal magnitude but opposite sign, 

corresponding to motion forward and backward across the dividing surface. In a 

multidimensional case the flux operator is not of low rank as this pair of positive and 

negative eigenvalues will be repeated for every state in the perpendicular degrees of 

freedom (the degrees of freedom that are parallel to the dividing surface). However, 

the Boltzmannized flux operator 

' (4.30) 

is of low rank in many dimensions. This is because the Boltzmann factor restricts 

the number of states accessible in the perpendicular degrees of freedom (though this 

number naturally rises with~ temperature). Thus, the rank of this operator will be 

approximately equal to twice the number of states in the perpendicular degrees of 

freedom that are significantly populated thermally at temperature T. If the dividing 

surface is placed at the saddle point then this can be thought of as twice the number 

of states of the "activated complex." To see this, suppose for illustrative purposes 

that the reaction coordinate (the one degree of freedom for motion normal to the 

dividing surface) were separable from all the degrees of freedom for motion on the 

dividing surface (the activated complex); F(f3) would then be given by 

( 4.31) 

where F1d is the one dimensional flux operator (of rank 2) 175 and fit the Hamiltonian 

for the activated complex, with eigenfunctions jnt) and eigenvalues Ent. The effective 
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rank of Fsep(/3) is thus twice the number of states, jnt) for which e-{3Ent is significant. 

One expects the rank of the true Boltzmannized flux operator to be siinil.ar. We note 

that a slightly different version of the Boltzmannized flux operator was first defined 

by Park and Light.159 

If we could somehow obtain the eigenvaules {fn} and eigenfunctions { jn)} 

of the Boltzmannized flux operator, 

(4.32) 

this would constitute the ideal basis in which to evaluate the trace in Eq. ( 4.28). In 

fact, there is a method which can do just that: the iterative Lanczos algorithm133 

obtains only the largest (in absolute value) eigenvalues (and the corresponding eigen­

functions) of an operator. The procedure is to first choose a random vector jv0 ). (We 

continue to use bra-ket notation, though this procedure is carried out within a finite 

basis set .. In· a such a representation, the states become vectors and operators become 

matrices.) A Krylov basis is formed by repeated application of F(/3) onto jv0 ): 

(4.33) 

(4.34) 

where 5.0. implies Schmidt orthogonalization to all previous vectors. In this pro­

cess the matrix of F(f3) in the Krylov basis {jv0 ), jv1 ), ... , lvM_1)} is automatically 

obtained. Diagonalizing this Krylov space version gives the M largest (in absolute 

value) eigenvalues {fn};;;,1 and eigenvectors { jn) };;;,1 of F(f3) in the full basis. 

Once these eigenvalues and eigenvectors are in hand, the rate constant is 

given by 

( 4.35) 

Thus the cost of calculating the rate constant is propagation in imaginary time ( ap­

plying F(/3)) M-1 times, where M is the rank of F(/3), plus propagation in real time 

of the resulting M eigenfunctions. Note that in general M is much, much smaller than 
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the total size of the basis since it is roughly equal to twice the number of thermally 

accessible states of the activated complex. In carrying out the real time propagation, 

it is advantageous to introduce an imaginary absorbing potential:41
-

46
•
48

-
55 

ii --+ ii - i€, (4.36) 

where f. = €( q) is zero in the interaction region and "turns on" in the reactant and 

product valleys. By including € the outgoing flux is absorbed before it can undergo 

unphysical reflection from the edge of the finite basis set. The absorbing potential 

actually has two desirable consequences: (1) Its inclusion guarantees that the flux-flux 

correlation function will go to zero at long times. And, (2) it allows the edge of the 

finite basis to be moved in closer to the interaction region in the reactant and product 

valleys, thus reducing the size of the basis. Absorbing potentials have previously been 

used by Brown and Light47 in calculating the flux-flux autocorrelation function. 

The rate constant now becomes 

M 
k(T) = Qr(T)-1 L fn looo dt (ni ei(fl+ii)t/n F e-i(H-ie)t/n in). 

n=l 0 
(4.37) 

Since the rate constant is given by the time integral of the flux-flux correlation func­

tion, the time propagator in Eq. ( 4.3,7) ~hould be carried out with a method which 

gives the result at all intermediate times for the same effort as propagating to one 

long time. The split operator propagation scheme satisfies this requirement. For a 

small time, !::J.t, the propagator is approximated as 

(4.38) 

(See Section 4.3.3 for the precise form of the split operator propagator used in the 

present applications.) Thus, an eigenstate in) is propagated in steps of !::J.t by succes­

sive application of this split operator: 

in(t + !::J.t)) = e-it!:1t/2n e-i(V-ie)!:1t/n e-iT!:1t/2n in(t)). (4.39) 

Note that the (n(t)i is given by the complex conjugate of in(t)) so it is only necessary 

to propagate the ket state. The correlation function is thereby obtained at all the 
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intermediate times (needed to perform the integral) for the same cost as finding it 

at the largest time. (The same propagation scheme is used in imaginary time for 

the Boltzmann operator.) Each eigenstate of the Boltzmannized flux operator is 

propagated and its contribution to the flux-flux correlation function, and hence the 

rate, is obtained. Writing out the expression for the rate constant explicitly with 

some integration scheme for the time integral gives 

M 

k(T) = Qr(T)-l L fn L WJ. (n(CL\t)j F in(CL\t)), ( 4.40) 
n=l 1.=0 

where the W£ are the weights in the time integration scheme. 

The Flux,.Position Correlation Function 

In applying this same Lanczos method for evaluating the trace in the case 

of the flux-position correlation function, some differences arise. First, absorbing po­

tentials cannot be used in the time propagation with the flux-position correlation 

function. If they are included, the correlation function will tend to zero at long 

times. Since the rate is equal the correlation function at long times (within a factor 

of the reactant partition function), the absorbing potentials cannot solve the problem 

of unphysical reflection from the edge of the finite basis in this case. Second, the cor­

relation function is only needed at a single (long) time, making a scheme such as the 

Chebychev polynomial expansion (which does not yield intermediate times) a useful 

propagation method for this approach. This is also made feasible by the elimination 

of the absorbing potential (giving a real Hamiltonian). 

The same reasons for which the Boltzmannized flux operator is of low rank 

imply a similar low rank for the entire operator Cts(t), 

( 4.41) 

the trace of which is the rate constant (for large enough t). This is more akin to 

Manthe and Miller's12 treatment of the microcanonical case, where the CRP N(E) 

was expressed as the trace of a matrix/ operator of low rank (the eigenvalues of which 

they called the eigenreaction probabilities). The same Lanczos algorithm described 
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above is used to obtain the eigenvalues and of c,s(t) (the eigenfunctions are not 

needed). 

When applying the operator/matrix C1s(t) to a vector, each operator in 

61s(t) operates sequentially (from the right). Thus two operations of the time 

evolution operator - by far the most time consuming part of the calculation 

exp(-iHtc/fi) and exp(iHt~jfi), are required for each operation ofCts(t). 

The Chebychev polynomial expansion approximates the propagator as176 

e-iHtc/n"' e-iHtc/n ~ (2 _ 8 ) i-n J (~Htc) T, (H-: H) 
~ n,O n 2fi n ~H/2 ' ( 4.42) 

where His the Hamiltonian matrix in some finite basis, Nc is the order of the highest 

Chebychev polynomial, the Jn are Bessel functions, and the Tn are the Chebychev 

polynomials177 obtained by the recursion relation 

( 4.43) 

~H is the spectral range of the Hamiltonian and H is the average value of the Hamil­

tonian. This scaling of the Hamiltonian is necessary to place the range within (-1,1) 

for the argument of the Chebychev polynomials. Specifically, if Amax and Amin are 

the largest and smallest eigenvalues of H, then 

( 4.44) 

and 
H = Amax + Amin. ( 4.45) 

2 
In cases where the Hamiltonian can be stored in core memory, we explicitly diagonalize 

the Hamiltonian to obtain Amin and Amax· When this is not the case (as for the D + 
H2 reaction in Section 4.3.3), we estimate Amin and Amax from a low order Lanczos 

calculation using a sparse Hamiltonian matrix multiply. 

The number of Chebychev polynomials needed depends on the spectral range 

and the propagation time. This relation occurs because the Bessel functions become 

exponentially damped as the order n becomes larger than the argument. In our case 

this implies the guideline 

N > ~Hitcl (4.46) 
c 21i . 
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The Chebychev expansion for the propagator provides several advantages. 

It is an efficient representation and allows one to combine the operation of the time 

evolution operator and the Boltzmann operator. Intermediate results and restarting 

are not required. We are primarily interested in the case of large multidimensional 

systems where the Hamiltonian matrix cannot be stored directly. The Chebychev 

propagation only requires the storage of three complex vectors, ~nd one can make use 

of a sparse matrix multiplication routine for applying the Hamiltonian matrix onto a 

vector. 

4.3 Applications 

In order to demonstrate the utility of the direct calculation of thermal rate 

constants from the flux correlation functions we have applied these methods to several 

systems. The flux-position correlation function has been used to calculate rates for 

the one-dimensional Eckart barrier, the two-dimensional collinear H + H2 reaction, 

and the three-dimensional D + H2 reaction for J = 0. The flux-flux correlation 

function approach has been tested on the same D + H2 system as well as th~ 0 + 
H Cl reaction. 

4. 3.1 The Eckart Barrier 

As a starting point, consider the one-dimensional Eckart barrier, 

V ( s) = Vo sech 2 
( s /a), ( 4.47) 

with Vo = 0.425 eV, a= 0.734 a.u. and a mass of 1061 a.u. These parameters model 

the collinear H + H2 reaction. We have chosen to use the ( -oo, oo) sine-function 

discrete variable representation of Colbert and Miller37 as the finite basis. The basis 

is specified by Ns and Qmax, where Ns is the grid constant used to determine the 

spacing of the DVR grid points, .6.x: 

( 4.48) 
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For the present applications we have found NB = 10 - 14 to be sufficiently large. 

Qmax defines the extent of the basis; the DVR grid is truncated for lsi > Qmax· 

The flux operator for a dividing surface defined by f( q) = 0 can be expressed 

as 

F = ~{ b[f( q)Jnt · f> + p · ntb[f( q)]}, ( 4.49) 

where n 1 is the unit vector normal to the dividing surface and p is the momentum 

operator. However, this flux operator may be equivalently be written in the form of· 

a commutator: 
' z ' 

F = h[H, h(f(q))]. ( 4.50) 

We note that these two expressions for the flux operator do not have identical nu­

merical properties in an L 2 basis representation. In particular, for a one-dimensional 

case it can be proven that the form in Eq. ( 4.49) is of rank two in a finite basis. This 

cannot be shown for the commutator form, however in practice the rank is quite low 

and often effectively two. We have chosen to use the form in Eq. (4.50) because it is 

more straightforwardly generalized to higher dimensions and is easily applied with a 

sparse matrix multiply routine as mentioned above. 

The DVR matrix elements of the flux operator in Eq. 4.50 are easily evalu­

ated. They are given by 

z 
F· ., = -T· ·,[h(s·,)- h(s·)] },} 1i },} } } ( 4.51) 

where h(sj) is the step function evaluated at the lh DVR point, and Tj,j' ·is the 

kinetic energy matrix. This can be easily applied in a sparse matrix-multiplication 

scheme as required in the following multidimensional applications. 

For simple barrier crossing reactions, such as the present example, one ex­

pects that Cts(t) will reach a constant value (a "plateau") at times on the order of 

1i{3, giving the correct rate constant. At longer times, reflection from the edge of 

the grid gives spurious results. Thus, we determine the real propagation time, t, by 

specifying a unitless time factor, r, according to the relation 

t = T n(3. (4.52) 
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The number of Chebychev terms, Nc, depends on the propagation time and can also 

be specified by a single factor, 'fJ, 

N 
_ ~Hiicl 

c- 'fJ 2n · (4.53) 

In order to evaluate the efficiency of the method, we are interested in examining ( 1) 

the time needed to reach the plateau value of the correlation function, (2) the grid size 

necessary to obtain a reasonably wide plateau period, (3) the number of Chebychev 

terms needed in the expansion, and particularly important, ( 4) the number of Lanczos 

iterations necessary to converge the rate constant .. 

Fig. 4.1 shows the rate constant obtained from Cts(t) as a function of t 

for (a) T = 200 K, (b) T = 300 K, and (c) T = 1000 K for different grid sizes. 

(k(T;t) = Cts(t)/Qr(T)) Note that the plateau begins around 25 fs forT= 200 K 

and around 18 fs for T = 300 K, while for these temperatures n(J "' 38 fs and 25 

fs, respectively. In contrast, for T = 1000 K the plateau occurs at about t = 10 fs 

while n(J"' 7. This behavior has previously been observed by Tromp and Miller146
•
147 

in the flux-flux autocorrelation function. At higher temperatures, the plateau time 

depends on the temperature-dependent dynamics of crossing the barrier, while at 

l9wer temperatures, the rate is dominated by tunneling. However, the tunneling time 

depends strongly on the barrier frequency but only weakly on the temperature (as 

shown for the harmonic barrier by Miller, Schwartz, and Tromp58). 

For all temperatures we see that the plateau region may be extended by 

making the grid larger. This is particularly an issue at lower temperatures. Because 

we have a Boltzmann distribution of translational energies, at low temperatures there 

is a contribution from energies above the barrier even though the rate is dominated by 

tunneling. Reflection from the edges of the grid occurs at these higher energies which 

cross the barrier at times less than the tunneling time. Thus, lower temperatures 

require grids which extend farther away from the barrier. In Fig 4.1(a), forT= 200 

K with Qmax = 7.0 a.u., a grid of 31 DVR points is necessary. For Qmax = 8.0 and 9.0 

a.u. at the same temperature, 35 and 39 DVR points are required, respectively. At T 

= 1000 K, 39 DVR points are required for Qmax = 4.0 a.u., 49 points for Qmax = 5.0 

a.u., and 59 points for Qmax = 6.0 a.u. We note that the grid sizes necessary for these 
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Figure 4.1: Thermal rate constants k(T;t) for the one-dimensional Eckart barrier 
calculated as a function_ of time from the flux-position correlation function for (a) T 
= 200 K, (b) T = 300 K, and (c) T = 1000 K. In (a) results are shown for grid sizes 
of Qmax = 7.0 a.u. (solid line), 8.0 a.u. (dashed line), and 9.0 a.u. (dot-dashed line). 
In (b) grid sizes of Qmax = 5.0 a.u. (solid line), 6.0 a.u. (dashed line), and 7.0 a.u. 
(dot-dashed line) are shown. And (c) shows resUlts for grid sizes of Qmax = 4.0 a.u. 
(solid line), 5.0 a.u. (dashed line), and 6.0 a.u. (dot-dashed line). 
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calculations compare favorably with those used by Seideman and Miller9 for direct 

calculations of the cumulative reaction probability. 

For all the results shown, we have used 'fJ = 1.3 to determine the number of 

Chebychev terms. We have found this to give accurate results while minimizing the 

computational effort. For the results shown for the Eckart barrier in Fig. 4.1 we have 

used a maximum of about 230 Chebychev terms (for 1000 K at the longest times). 

The number of Lanczos iterations needed is 4 for all but the lowest temperatures. 

This implies a rank of 2, as an additional 2 iterations are needed to insure the trace is 

converged. At lower temperatures, approximately 10 eigenvalues are needed. This is 

due to our choice of the form of the flux operator. As discussed above, it is possible to 

express the flux operator as a dyadic,175 so 61s(t) will be of rank 2 at all temperatures. 

Eq. ( 4.50) does not guarantee this low rank, but we have chosen to use it because it 

is more easily applied to higher dimensions. 

4.3.2 The Collinear H + H 2 Reaction 

The collinear H + H2 reaction serves as a standard test problem for reactive 

scattering methods and presents us with the first step to treating multidimensional 

systems. An accurate potential energy surface exists66
-6

8 and many exact calculations 

are available for comparison.47
•
155

•
159 

We have used a DVR grid in the normal mode coordinates (q1 , q2 ) of the 

transition state. In these coordinates, the optimum dividing surface is defined by 

q2 = 0, where q2 is the asymmetric stretch and q1 is the symmetric stretch normal 

mode. The· raw grid is truncated according to an energy cutoff: if the potential 

energy at a given DVR point is greater than a specified cutoff energy, 'Vcut, then that 

DVR point is discarded. The grid is also truncated in the asymptotic reactant and 

product valleys in the following manner: points are omitted if the translational Jacobi 

coordinate, R( q1 , q2 ) is larger than a specified value, Rmax. The reactant partition 

function is given by 

( 4.54) 
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where J.l is the reduced mass associated with the relative translation of H and H2 • 

The cv are the vibrational energy levels of H2 calculated numerically. 

Fig. 4.2 shows the time dependence of C1s(t) for different grid sizes for (a) T 

= 300 K, (b) T = 500 K, and (c) T = 1000 K. At 300 K, the convergence is virtually 

the same as for the Eckart barrier; the plateau begins around 18 fs and is lengthened 

by increasing the extent of the grid. ForT= 500 K and T=1000 K the plateau begins 

around 15 fs (1ij3 ,....._ 15 fs) and 13 fs, respectively. This is a slightly longer time at 

1000 K than for the Eckart barrier. Again, for the lower temperatures, the time is 

determined by the tunneling time. 

The size of the DVR grid for the results shown varies from 82 points for 

Rmax = 6.0 at 300 K to 364 for Rmax = 6.0 and T = 1000 K. Realistically, one needs 

a grid of around 100 points at 300 K, 150 points for 500 K, and 300 points for 1000 

K to obtain converged results. This is on the order of the size of the basis used by 

Seideman and Miller9 for calculating cumulative reaction probabilities. The number 

of Chebychev terms needed for the propagation in complex time was less that 700 for 

all cases. However, around 300 terms are usually sufficient for convergence. 

Table 4.1 compares the results obtained from the flux-position correlation 

function with the results of Rom et al. 155 and Brown and Light.47 The rate constants 

given are obtained by averaging the results obtained at several times within the 

plateau period. For all temperatures shown the averaged value is within 1% of the 

result for each time within the plateau. We note that at higher temperatures it is 

necessary to use a larger 'Vcut, as more of the potential energy surface is sampled. As 

in the case of the Eckart barrier, at lower temperatures we need a larger grid. The 

agreement between the previous results and our present method is excellent over a 

wide range of temperatures though our results are higher than those of Brown and 

Light47 above 1000 K. 

It is interesting to examine the structure of the eigenvalues of Cts· Table 4.2 

shows typical sets of eigenvalues obtained at different temperatures. The pattern is 

similar to that seen by Manthe and Miller12 in the eigenreaction probabilities. Namely, 

as the temperature is raised more eigenvalues contribute to the rate, corresponding 

to more states of the activated complex which are now energetically (or thermally) 
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Figure 4.2: Thermal rate constants k(T;t) in units of em molecule-1 s-1 for the 
collinear H + H2 reaction calculated as a function of time from the flux-position 
correlation function for (a) T = 300 K, (b) T = 500 K, and (c) T = 1000 K. In (a) 
forT = 300 K results are shown for grid sizes of Rmax = 6.0 a.u. (solid line), 6.5 a.u. 
(dashed line), and 7.0 a.u. (dot-dashed line). In (b) and (c) grid sizes of Rmax = 5.0 
a.u. (solid line), 5.5 a.u. (dashed line), and 6.0 a.u. (dot-dashed line) are shown. 
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k(T) 
Temp. (K) Present a Ref. 155 Ref. 47 

300 4.82 4.821 4.82 
350 18.2 18.96 
400 54.3 54.69 
500 254 252.9 252 
600 724 726.3 
700 1576 1574 
800 2853 2848 
900 4573 4557 

1000 6703 6692 6680 
1500 2.29(4)b 2.21( 4) 
2000 4.76(4) 4.20( 4) 

acalculated from Eq. (4.2.1). 
bThe number in parentheses is the power of 10. 

Table 4.1: Thermal rate constants for the collinear H + H2 reaction in units of em 
molecule-1 s-1 

accessible. Also, as the temperature increases, the eigenvalues associated with a given 

state increase, representing an enhancement of the rate through that state. We have a 

different case than Manthe and Miller12 because C1s is not a positive definite operator: 

Therefore we have both positive and negative eigenvalues. The rate is given by the 

cancellation of the negative eigenvalues by the larger positive ones. This is consistent 

with the properties of the flux operator discussed above and in more detail by Park 

and Light.IS8,159 

4.3.3 The D + H 2 Reaction . 

The D + H2 reaction provides an ideal system for application of a new 

method for calculating rate constants. An accurate potential energy surface exists 

and there are recent exact161•178 calculations of the thermal rate constant available 

for comparison. 

We have carried out calculations of the thermal rate constant for the D 

+ H2 reaction for J = 0 on the LSTH (Liu-Siegbahn-Truhlar-Horowitz) potential 
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Temperature 
300 K 500 K 1000 K 1500 K 2000 K 

5.9251 377.572 7759.253 23872.925 43925.841 
0.8528 3.508 359.960 2203.398 8866.303 
0.4098 0.0264 16.542 51.169 1545.173 
0.1853 0.990 7.421 254.994 
0.0215 0.0267 0.938 53.182 
0.0035 0.063 19.687 

0.489 
' Eigenvalues 0.158 

-0.270 
-0.0025 -0.051 -14.112 
-0.0059 -0.094 -3.431 -41.140 
-0.0164 -0.462 -21.274 -139.343 
-0.0876 -0.0179 -5.206 -108.782 -520.493 
-0.1364 -0.258 -77.623 -763.604 -1233.238 
-2.1842 -122.604 -1360.776 -2691.187 -5244.550 

Table 4.2: Eigenvalues of the Cts operator for different temperatures. The eigenvalues 
have been divided by Qr(T) and are in units of Cfll molecule-1 s-1. Only eigenvalues 
with absolute value greater than 0.001 are listed. 

energy surface.66-68 This surface is an, analytical fit by Truhlar and Horowitz66•67 to 

the ab initio calculations of Siegbahn and Liu.68 The potential is thermoneutral with 

a symmetric barrier of 0.425 e V and a collinear transition state. 

Details of the Calculation 

Here we outline the procedure for the D + H2 reactions (which is not largely 

different than for 0 + HCl). We have used the reactant Jacobi coordinates, as 

shown in Figure 4.3, where R is the distance from D to the center of mass of H2, 

r the H2 bond distance, and 1 the angle between R and r. A discrete variable 

representation21 ·22•37
-

39 has been chosen for the basis set. The radial sine-function 

(DVR) of Colbert and Miller37 is used for the coordinates rand R, while a symmetry­

adapted Gauss-Legendre DVR is employed to describe t~e angular motion. Thus, the 
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Figure 4.3: The Jacobi coordinates of the D + H2 arraugemeut. 

exchange symmetry of Hz is taken into account and the total rate constant is obtained 

by performing. both even and odd parity calculations and adding the resulting rate 

constauts with the proper 'veights ( 1:3) from the nuclear spin statistics: 

k(T) = kp=o(T) + 3 kp=l (T). (4.55) 

Here p is the parity quantum number and p = 0 and 1 refer to even and odd parity, 

respectively. The reactant partition function is given by 

Qr(T) = ( ~~ ) 
3

/Z [ L (2j + 1)e-i3~v.j + 3 L (2j + 1)e-i3~v.jl 
2 11 1i j3 v,jeven v,jodd 

(4.56) 

where the { cv,j} are the energy levels of the isolated Hz molecule (calculated numer­

ically). 

The general procedure for a calculation is as follows. First, a direct product 

DVR grid is laid out in the three coordinates. The spacing of grid points in the radial 

coordinates is determined by specifying the grid constant, N 8 , 'vhere 

( 4.57) 
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with N8 typically between 10-13. [Note that in the symmetry-adpated Gauss-Legend­

re DVR only half of the grid points in an unsymmetrized basis in 1 are used. Thus, 

the points lie only in the interval ('rr /2, 1r) rather than (0, 1r ); the information in the 

other half of the range (0, 1r /2) is redundant due to the symmetry.] The grid is then 

truncated accordingto two criteria: (1) A grid point in the reactant or product valley 

is discarded if the translational Jacobi coordinate for that arrangement, RT, (where T 

is an arrangement index) is greater than some value, Rmax· (Note that Rmax can vary 

with arrangement.) (2) If the potential energy at a given grid point is larger than 

a specified cuttoff energy, 'Vcut, that grid point is discarded. The assumption being 

that at such a point the wavefunction will be vanishingly small and can be taken to 

be zero. 

The basis set is defined by the parameters Ns, N"'f, p, 'Vcut, and Rmax· The 

grid constant, N B, determines the number of points per thermal de Broglie wavelength 

for the R and r coordinates. N"'f is the number of Gauss-Legendre DVR points used 

for the 1 coordinate before symmetrization and p defines the parity of the calculation. 

If the potential energy at a DVR point is greater than 'Vcut that point is discarded. 

The grid is truncated in the asymptotic reactant valley if the translational Jacobi 

coordinate is greater than Rmax· It is similarly truncated in the product valley by 

the same criterion, however, the Jacobi coordinates of the product arrangement are 

used. 

For this system, the Hamiltonian for J = 0 is given by 

ii - ----R----r+ +-- j +V(R,r,IX4.58) n 2 
1 82 n 2 

1 82 
( n 2 n 2 

) , 2 

2f..lR R 8R2 2f..lr r 8r2 2J..tRR2 2J..trr2 

. - TR + 't + t"'f + v, 
where]2 is the angular momentum operator associated with the diatom,rotation. Note 

that the basis functions we choose for the finite basis reprentation associated with 

the DVR are actually of the form (for the sine-function DVR in the R coordinate), 

- 1 [7r ] 1 cPi = R sine ~x (x- xi) = R cPj, ( 4.59) 

so that the matrix elements are of the form 

{4.60) 
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(where, of course, the integrals are evaluated by a specified quadrature). For the 

angular degrees of freedom a factor of sin 1/
2 1 is included in the basis functions in a 

similar fashion. The effect of this is to change the Jacobian from R 2r 2 sin 1 to 1 with 

a corresponding change in the Hamiltonian. 

For the flux-flux correlation function, the one-dimensional propagators are 

calculated and stored for use in the split operator. This is implemented as follows: 

The operator T-y does not commute with TR and Tr. Thus, we form the split operator 

in two steps, first ~eparating out the radial kinetic energy terms, 

( 4.61) 

and then the middle term is split once again: 

e -i(T,+ v -ii)t:.tjfi ~ e -it..,.t:.t/21i e -i(V -ii)D.t/fi e -it..,.t:.t/21i. (4.62) 

Thus we need to obtain the matrices of the three one-dimensional kinetic energy 

propagators and the full-dimensional propagator containing the potential terms. The 

latter is simple since the potentials only depend on position and in a DVR are thus 

approximated as diagonal: 

(j'l e-i{V-ii)t:.t/fi li) = e-i(V(q;)-i{(q;)]D.t/fi Dj',j, ( 4.63) 

where <I.i represents the coordinates R, r, and 1 for DVR grid point j. For the kinetic 

energy propagator matrix elements in the radial sine-function DVR an analytical 

form can be obtained in terms of error functions (which can be evaluated numeri­

cally). Finally, the angular kinetic energy propagator is obtained by transforming to 

the corresponding finite basis representation (of Legendre polynomials) in which the 

propagator is diagonal and then transforming back: 

pDVR = U. pFBR. ut 
-y -y ' ( 4.64) 

where p~VR is the matrix of the angular kinetic energy propagator in the DVR, and 

similarly for p~BR. The transformation matrix is 

(4.65) 
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where k = 0, 1, ... , N /2 is the DVR grid point index, l = 0, 1, ... , N - 1 the Leg­

endre polynomial index, Wk the weight for the Gauss-Legendre quadrature, P1 the 

normalized Legendre polynomial, and p t~e parity quantum number. Also, 

(P~BR) l,l' = exp {- i~t [1 + ( -1)P+1
] l(l + 1)n2

} 81,1', ( 4.66) 

is the propagator in the fi.nitebasis representation. The split operator described above 

is applied using sparse matrix multiplication routines. 

Once the propagator is known the Lanczos algorithm is carried out for the 

Boltzmannized flux operator to obtain the eigenvalues and eigenfunctions. Each 

eigenfunction is then propagated in real time to obtain the flux-flux correlation func­

tion which is integrated to obtain the thermal rate constant. 

One additional note is necessary on the form of the absorbing potential. We 

have used a quartic function of the translational Jacobi coordinate of each arrange­

ment for c(q). Namely, c(q) = cp(Rp) + cr(Rr) where 

tr(Rr) = ).T ( RT- Rmax,T ) 4' ( 4.67) 
Rmax,r - Ro,r 

where T = r, pis the arrangement label, Ro,r is the point where the absorbing potential 

"turns on," Rmax,r is the end of the absorbing potential (and the truncated grid),, and 

Ar is the strength parameter. 

Flux-Position. Correlation Function Results 

Fig. 4.4 illustrates the plateau period for the D + H2 reaction for (a) T 

300 K, (b) T = 500 K, and (c) T = 1000 K. In this case at T = 300 K the 

plateau begins at 22 fs and at 20 fs for T = 500 K, both are slightly longer times 

than for the collinear H + H2 case. At T = 1000 K, the plateau begins around 22 fs, 

significantly longer than for collinear H + H2 or the Eckart barrier. The grid sizes 

for both temperatures (Rmax = 6.0 a.u. for 300 K, and Rmax = 5.0 a.u. for 500 K 

and 1000 K) are comparable to those needed for calculating the cumulative reaction 

probability. At the highest temperatures, about 20 Lanczos iterations are needed to 

converge the rate constant. For all temperatures the number of Chebychev terms 

necessary is less than 1000. 
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Figure 4.4: Thermal rate constants k(T;t) in units of cm3 molecule-1 s-1 for the three 
dimensional D + H2 reaction calculated as a function of time from the flux-position 
correlation function for (a) T = 300 K, (b) T = 500 K, and (c) T = 1000 K. In (a) 
results are shown for grid sizes of Rmax = 6.0 a.u. (solid line), 6.5 a.u. (dashed line), 
and 7.0 a.u. (dot-dashed line). In (b) and (c) grid sizes of Rmax = 5.0 a.u. (solid 
line), 5.5 a.u. (dashed line), and 6.0 a.u. (dot-dashed line) are shown. · 
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I Temp. (K) 
k(T) 

Present a Ref. 178 Ref. 161 

300 1.07( -17) 8.17(-18) 9.2(-18) 
500 5.15(-16) 5.22( -16) 5.6(-16) 
700 2.96(-15) 3.00(-15) 3.2(-15) 
900 7.66(-15) 7.59(-15) 8.1( -15) 
1100 1.36(-14) 1.33(-14) 1.4( -14) 
1300 1.96(-14) 1.94(-14) 2.1(-14) 
1500 2.50(-14) 2.53(-14) 2.7(-14) 

acalculated from Eq. ( 4.2.1). 

Table 4.3: Thermal rate constants for the three-dimensional D + H2 (J = 0) reaction 
in units of cm3 molecule-1 s-1 

Table 4.3 compares the results from the flux-position correlation function 

to the results of Mielke et al. 178 and Park and Light. 161 As for the collinear H + H2 

results, the rate constants given in the table are obt'ained by averaging the results 

obtained at several times within the plateau period. For all temperatures shown the 

averaged value is within 2% of the result for each time within the plateau. The present 

method gives the rate constant in excellent agreement with the results of Mielke et 

al. 178 for temperatures above 300 K. At 300 K the rate is overestimated by the present 

method by about 30 %. 

Flux-Flux Correlation Function Results 

The flux-flux autocorrelation function for the D + H2 reaction is shown 

in Figure 4.5 for (a) T = 300 K, (b) T = 500K, and (c) T = 1000 K. Fig 4.5(a) 

compares the correlation functions calculated with (solid line) and without (dashed 

line) an absorbing potential included in the real time propagation. The two correlation 

functions are virtually identical for the first 25 fs. At larger times, however, the 

absence of the absorbing potential results in unphysical reflection form the edge of 

the finite DVR grid and the correlation function diverges. Incorporating an absorbing 
', 

potential eliminates this spurious reflection and the correlation function converges 

smoothly to zero. 
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Figure 4.5: The flux-flux autocorrelation function for the D + H2 reaction at (a) T 
= 300 K with (solid line) and without (dashed line) an absorbing potential, (b) T = 
500 K, and (c) T = 1000 K. The units of CJJ(t) are (atomic units of time)- 2
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Figure 4.6: The thermal rate constant vs. the number of Lanczos iterations (i.e., the 
number of eigenvalues of the Boltzmannized flux operator used to calculate the trace) 
at (a) T = 300 K, (b) T = 500 K, and (c) T = 1000 K. 
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Figure 4.7: Arrhenius plot of the thermal rate constant, k(T) vs. 1000/T for the D 
+ H2 reaction. The rates calculated from the flux-flux correlation function are shown 
as solid circles, the results of Mielke et al. (Ref. 178) as a solid line, and the results 
of Park and Light (Ref. 161) as a dashed line. 

The correlation functions also illustrate the TST -like nature of this method. 

The propagation time required for the correlation function to decay to zero is quite 

short ( < 25 fs for all the temperatures shown here). This is analogous to the short 

times one would need to follow trajectories starting at the transition state forward 

and backward in time to obtain the exact classical rate constant. The present method 

obtains the exact quantum rate constant from short time dynamics in the region of 

the transition state, The time for the correlation function to decay to zero for a 

direct reaction over a barrier (such as this one) is expected to be on the order of 1i (3; 

naturally the time decreases with increasing temperature. Indeed, for D + H2 we find 

the correlation function converges to zero in 22 fs at 300 K for which 1if3 ~ 25 fs, in 
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15 fs at 500 K (nf3 :::::. 15 fs), and in 10 fs at 1000 K (nf3 ::::: 8 fs). While at higher 

temperatures the correlation function decreases smoothly, at 300 K oscillations are 

observed which can be attributed to a small amount of recrossing of the dividing 

surface; at this temperature almost all of the energies in the Boltzmann distribution 

lie below the barrier. 

The rate constant vs. the number of Lanczos iterations (number of eigenval­

ues of the Boltzmannized flux operator) is plotted in Fig. 4.6 for {a) T = 300 K, (b) 

T = 500 K, and (c) T =1000 K. At all temperatures a reasonable approximation ( < 

10% error) to the rate can be obtained with just 6 eigenvalues; the rate constant is 

converged after only 12 eigenvalues of the Boltzmannized flux operator (correspond­

ing to about 6 states of the activated complex contributing to the rate). This small 

number can be compared with the size of the DVR basis used for these calculations: 

approximately 690 grid points at 300 K, 950 at 500 K, and 1750 at 1000 K. Thus, 

while the size of the basis has increased by more than a factor of two, the number 

of eigenvalues of the Boltzmannized flux operator needed to obtain the rate has not 

changed. 

An Arrhenius plot of the rate constant vs. 1000/T is shown in Fig. 4.7. 

The present calculated rate constants for J = 0 are compared with previous exact 

calculations by Park and Light161 and Mielke et al. 178 (The calculations of Park and 

Light also obtained the rate constant from the flux-flux autocorrelation function.) 

Good agreement is observed between the present results and the previous calculations 

over the temperature range 300 - 1500 K. 

4.3.4 The 0 + HCI ---+ OH + Cl Reaction 

Details of the Calculation 

We have chosen to use the Jacobi coordinates of the H + OCl arrangement 

as shown in Figure 4.8: r is the 0-Cl bond distance, R the distance from H to the 

center-of-mass of 0-Cl, and 1 the angle between r and R. These coordinates describe 

the interaction region well, and they provide a framework for approximate angular 

momentum decoupling schemes (such as the centrifugal sudden (CS) approximation 
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Figure 4.8: The Jacobi coordinates of the H + OCl arrangement. 

or the J -Shifting approximation 109
) since to a good approximation one expects the 

projection of the total angular momentum along the 0-Cl axis to be conserved (be­

cause the H atom is so light compared to 0 and Cl). 

The J = 0 Hamiltonian in this coordinate system is given by 

where f2 is the orbital angular momentum operator associated with the motion of H 

about the center of mass of 0-Cl. J.lR and llr are the reduced masses associated \Yith 

the coordinates R and r, respectively. 

"VVe have included the effects of nonzero total angular momentum by means 

of t\vo approximate methods. In the J-shifting approximation, 109 it is assumed that 

rotational and internal motion are separable, so that the rotational energy E1K sim­

ply adds to the J = 0 Hamiltonian of Eq. (4.68), and furthermore, EJJ( is usually 

approximated by using rotation constants corresponding to the transition state ge­

ometry of the potential energy surface. Following Koizumi et al., 179 the transition 

state geometry is assumed to be a symmetric top and the rotational energy levels are 
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given -by 

( 4.69) 

where the moments of inertia IB and IA are effectively that of 0-Cl and of H about 

the 0-Cl axis, respectively. The values used by Koizumi et al. are IB = 4.16 x 105 

a.u. and IA = 1.70 x 103 a.u. The total rate constant can then be obtained by a 

single calculation for J = 0 as 

k(T) = kJ=o(T) Q Js(T), ( 4.70) 

J 

QJs(T) = L (2J + 1) L- e-f3EJI<, ( 4. 71) 
J=O K=-J 

where Q Js(T) is the rotational partition function. 

The centrifugal sudden, or helicity conserving approximation (HCA) is a 

more sophisticated approximation in which the coriolis coupling terms in the body­

fixed representation of the Hamiltonian are neglected}80 A difference in our present 

treatment from the usual helicity conserving approximation is that we have chosen 

the diatom vector r (the 0-Cl vector) as the body-fixed quantization axis - because 

the projection of total angular momentum onto it is most nearly conserved - rather 

than the atom-diatom vector R as is usually done.181 This results in the following 

term, 

IKI:::; min(J,f), ( 4.72) 

being added to the J = 0 Hamiltonian of Eq. ( 4. 72). Within this approximation 

J and K are conserved quantum numbers and appear simply as parameters in the 

Hamiltonian. One calculates the rate via Eq. (4.40) for each J and K, and then the 

total rate constant is given by 

J 

k(T) = L (2J + 1) L kJK(T). ( 4.73) 
J=O K=-J 

The helicity conserving approximation is thus more expensive to apply than 

the ]-shifting approximation because the latter requires only the J = 0 calculation 

(cf. Eq. (4.71)) while the former requires a separate calculation- each of which 

is essentially the effort of the J = 0 calculation - for each value of J and K. In 
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I 

practice, though, things are greatly simplified because the dependence of k1K on J 

and K is very simple. E.g., if the J-shifting approximation were accurate, then Eq. 

( 4. 71) shows the J and K dependence is 

In kJK(T) =constant- o:J(J + 1)- 77K2
• (4. 74) 

It will be seen in the next Section that Eq. (4.74) is not quantitatively correct, but 

nevertheless one needs to carry out calculations for only a few values of J and K and 

interpolate between them in order to evaluate the sum in Eq. (4.73). 

We have chosen to use a discrete variable representation21 •39•38,
37 (DVR) 

basis. This has the advantages that the Hamiltonian is sparse in a multidimensional 

case and no integrals over the potential need to be evaluated. Specifically, we have 

used the radial sine-function DVR developed by Colbert and Miller37 for the rand R 

coordinates and a Gauss-Legendre DVR for the 1 coordinate. In the case where the 

HC approximation is used, an associated Legendre DVR is used since the projection 

quantum number is nonzero. 182
-

184
•
26 

The basis set implemented for this problem is much the same as that for the 

D + H2 reaction: sine-function DVRs for the radial coordinates and an unsymmetrized 

Gauss-Legendre DVR for the angular degree-of-freedom. For this problem we have 

found N B = 11-13 to be sufficiently large. N'"Y is the number of Gauss-Legendre DVR 

points used for the 1 coordinate (usually, N'"Y ~ 30). As is typical, a "raw" grid is laid 

down in the Jacobi coordinates of the H + OCl arrangement and truncated by an 

energy cuttoff: if the potential energy at a DVR point is greater than Ycut that point 

is discarded. The grid is also truncated in the asymptotic reactant, 0 + HCl, valley 

if the translational Jacobi coordinate is greater than Rmax· It is similarly truncated 

in the OH + Cl and H + OCl valleys using the translational Jacobi coordinates of 

those arrangements. 

The split operator scheme used for here is the same as that described above 

for the D + H2 reaction. Note that since only the 1D kinetic energy matrices and 

the values of the potential need to be stored, the memory requirements are quite low: 

usually less than 10 MB of core memory and never more than 30 MB even for the 

largest basis of about 19,000 DVR grid points. The optimum time step is determined 
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by calculating the rate constant for successively smaller i:::l.t until the result does not 

change. 

As in all the applications presented here, the commutator form of the flux 

operator as given in Eq. (4.50) is used here. In addition to it's usefulness in sparse 

matrix-multiplication routine, it is particularly more convenient than the differential 

form when the dividing surface - defined by the equation s( q) - is expressed in 

terms of coordinates other than those used to represent the Hamiltonian. The dividing 

surface used in this study is defined by roH- THCI + 0.29 = 0 (with all distances in 

atomic units). 

The form (and even the magnitude) of the absorbing potentials used for the 

0 + HCl reaction are the same as those forD + H2• 

Results and Discussion 

We have calculated the thermal rate constants for the 0 + HCl reaction 

on the Koizumi, Schatz, and Gordon (KSG) 179 potential energy surface which is an 

analytical fit to ab initio calculations, 179
•185 but with the barrier height scaled down 

from 18.8 to 8.5 kcal/mole to match the experimental rate186 at T = 295 K. This 

reaction provides a rigid test of a method for calculating thermal rate constants. The 

heavy masses involved demand a large basis and the heavy-light-heavy nature of the 

reaction requires that the correlation function be calculated for long times. 

There have been numerous experimental measurements of the thermal rate 

constant for the 0 + HCl reaction,186-
192 in addition to several theoretical179

•
187

•
193

•194 

studies. Brown and Smith187 and Persky and Broida193 carried out quasiclassical tra­

jectory calculations on semi-empirical LEPS (London-Eyring-Polanyi-Sato) surfaces. 
' 

These surfaces all featured a collinear transition state geometry. However, ab ini­

tio calculations on the system indicate that the transition state is significantly bent 

with an 0-H-Cl angle of about 135° .179
•
185

•
195 The KSG potential energy surface, 

with a bent transition state, was originally used by Koizumi et al. to calculate to­

tal and state-selected thermal rate constants. These calculations were carried out 

by integrating coupled channel equations in hyperspherical coordinates to obtain the 
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state-to;..state reaction probabilities which were then used to obtain the rate constants 

(with a J-shifting approximation). Moriba.yashi and Nakamura have also carried out 

quantum reactive scattering calculations on the KSG surface (as well as a LEPS sur­

face of Persky and Broida) by integrating coupled channel equations in hyperspherical 

coordinates. 194 They obtained state-selected and cumulative reaction probabilities as 

well as state-selected (but not total) rate constants. In addition they examined dif­

ferent approximations for including the effects of nonzero total angular momentum. 

Recently, ab initio calculations have been carried out (and a potential energy 

surface obtained) by Ramachandran, Senekowitsch, and Wyatt giving a barrier height 

of 17.8 kcal/mole. 155 This is in reasonable agreement with the ab initio barrier height 

of 18.8 kcal/mole used in the KSG surface before scaling but significantly larger than 

the best ab initio estimate of 11.9 kcal/mole. 179 Rate constants have not yet been 

computed on this surface. 

The KSG potential energy surface has a bent trans!tion state geometry with 

an 0-H-Cl angle of 133.4° and a barrier height of 8.5 kcal/mole. 179 The 0 + HCl --t 

OH + Cl reaction is endothermic. In contrast, the H + OCl asymptotic arrangement 

is "' 40 kcal/mole higher in energy than 0 + HCl and is therefore not a relevant 

product channel. Thus we refer to OH + Cl as "products" without ambiguity. 

There is an excited e A') electronic state surface which is degenerate at linear 

geometries with the e A") ground state. The details of this surface are not fully known 

and it is not included in the scattering calculations here. However, following Koizumi 

et al.179 the rate constants presented here have been multiplied by the factor 

f(T) = 3/(5 + 3e-2:1.8/T + e-326/T) (4.75) 

to approximately account for collisions that end up on the excited state as opposed 

to the ground state surface. 

Figure 4.9 shows the J = 0 flux-flux autocorrelation function for the 0 + 
HCl reaction at T = 300 K. At very short times the correlation function decays rapidly 

and goes through zero around 7 fs, corresponding to an initial passage of flux across 

the dividing surface towards products. This is followed by a negative lobe indicating 

flux returning across the dividing surface from products to reactants. It is expected 



4.3. APPLICATIONS 

4 

3 

..., - 2 = ,.-.! 

>< -.... .._., 
1 1:: 

u 

0 

-1 

0 10 20 30 40 
Time (fs) 

50 

129 

60 70 80 

Figure 4.9: The flux-flux autocorrelation function for the 0 + HCl reaction at T = 
300 K. The units of the correlation function are (atomic units of time) - 2 . 

that a heavy-light-heavy system such as 0 + HCl should exhibit significant recrossing 

of the transition state. In a classical picture the H atom in the region of the transition 

state is trapped between the massive 0 and Cl and bounces back and forth between 

these two collision partners. This is manifested in the oscillations in the correlation 

function - the negative lobe is immediately followed by a positive one representing a 

second passage of flux towards products. (Of course the oscillations observed depend 

on the position of the flux dividing surface which has not been optimized here for 

minimum recrossing.) The correlation function eventually dies to zero around SO fs. 

This is twice the time that would be expected in the case of a direct reaction (which 

would be rv 1ij3 ~ 25 fs). 58 
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Figure 4.10: The flux-flux autocorrelation function for the 0 + HCl reaction at T = 
700 K. The units of the correlation function are (atomic units of time)-2 • 

Figure 4.10 shows the J = 0 flux-flux autocorrelation function for the 0 

+ HCl reaction at T = 700 K. This correlation function is similar to that shown in 

Fig. 4.9 for T = 300 K. There is a rapid initial decay to zero followed by a negative 

lobe and then a postive lobe. At this temperature the correlation function decays 

to zero in approximately 35 fs ( cf. n f3 ~ 11 fs). However, in this case the negative 

lobe is much smaller (relative to the initial value of the correlation function) than for 

the lower temperature, while the following positive lobe is about the same magnitude. 

However the smaller oscillations observed at T = 300 K are not present. here. While in 

a variational TST picture the optimum dividing surface for minimizing recrossing may 

change with temperature we have used the same dividing surface at all temperatures. 
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Figure 4.11: The thermal rate constant vs. the number of Lanczos iterations (i.e., 
the number of eigenstates of the Boltzmannized flux operator used to obtain the rate) 
at T = 400 K. 

Figure 4.11 shows the (J-shifted) rate constant versus the number of Lanc­

zos iterations for T = 400 K. Recall that each Lanczos iteration corresponds to an 

eigenvalue (and eigenvector) of the Boltzmannized flux operator which is included in 

the calculation of the rate. At this temperature the rate converges with around 20 

iterations implying that there are 9 or 10 thermally accessible states of the activated 

complex contributing to the reaction rate. With the heavy masses of the oxygen and 

chlorine it is expected there will be more states accesible at a given temperature than 

for a reaction like H + H2 where all the atoms are "light." The number of eigenvalues 

that it is necessary to include changes very mildly with temperature; at the highest 

temperature (T = 700 K) about 24 Lanczos iterations are required. Note that the 
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Figure 4.12: The partial rate constant kJx(T), within the helicity conserving approx­
imation, vs. J(J + 1) £or K = 0. Results forT = 400 K (solid line with circles) and 
T = 250 K (dashed line with squares are shown. 

rate constant is within 2% of the final result after 14 iterations and within 1% after 

18 iterations. 

Results from helicity conserving calculations are presented in Figures 4.12 

and 4.13. The HC rate constants forK= 0 are plotted as a function of J(J + 1) on 

a semilog plot in Fig. 4.12 for T = 250 and 400 K. At both temperatures a straight 

line is obtained. Fig. 4.13 shows the CS rate constant as a function of K 2 for fixed 

J. Results are shown for T = 250 K with J = 24 and T = 400 K with J = 24 and 

48. As shown on a semilog plot, k1x(T) vs. K 2 is nonlinear but can be reasonably 

well approximated as a straight line. Note that for T = 400 K, the slope of the line 

is independent of J. 
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Figure 4.13: The partial rate constant k1x(T), within the helicity conserving approx­
imation, vs. K 2 for fixed J. Results are shown forT= 400 K with J = 24 (solid line, 
with circles) and J = 48 (dot-dashed line with triangles) and T = 250 K with J = 24 
(dashed line with squares). 

These results can be interpreted in terms of the above discussion on the 

J-shifting and helicity conserving approximations. In principle one needs to calculate 

k1x(T) within the CS approximation for all J and I{ which contribute. However, if 

the dependence of the rate on J and I{ is smooth, interpolation between the calculated 

values can be used to give the total rate constant. In that sense a rough "interpola­

tion" can bemadebyassuminglnkJx(T) = -aJ(J+1) andlnkJK(T) = -TJK2 (i.e., 

fitting the curves as straight lines). This is equivalent to the J -shifting approximation 

(for fixed temperature) as discussed above and is tantamount to extracting "effective" 

moments of inertia. (We refer to rate constants obtained by this procedure as CS 

"Adjusted.") Doing this we obtain at IB = 4.73 x 105 a.u. and IA = 1.96 x 103 a.u. 
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k(T) 
Temp. (K) J-shifting CS "Adjusted"a 

200 9.8( -18)6 

250 1.0( -16) 1.2( -16) 
300 5.8( -16) 
350 2.0(-15) 
400 7.1(-15) 7.7(-15) 
500 3.7(-14) 
600 1.0(-13) 
700 2.8(-13) 

asee Section text. 
bThe number in parentheses is the power of 10. 

Table 4.4: Total thermal rate constants within the J -shifting and Centrifugal Sudden 
approximations compared for the three-dimensional 0 + HCl reaction in units of cm3 

molecule-1 s-1 

at T = 400 K and IB = 4.96 x 105 a.u. and IA = 1.86 x 103 a.u. at T = 250 K. This 

indicates that the moments of inertia do not depend strongly on temperature. In 

addition, these values are in reasonable agreement with those obtained by Koizumi et 

al. 179 from the transition state geometry. The change in the value of the rate constant 

is 20% at T = 250, K and 8% at T = 400 K. (See Table 4.4.) 

Figure 4.14 presents an Arrhenius plot of the calculated rate constant as 

compared to the results of Koizumi et al. and experiment.186
•
190 The present results 

are larger than both the experimental and previous theoretical rates at all tempera­

tures. Unfortunately, since the thermal rate constant is a highly averaged quantity, it 

is not possible to extract a particular feature of the potential energy surface to hold 

accountable for the discrepancy. With regard to experiment, if the barrier height 

were raised only rv o~8 - 1.0 kcaljmole- recall that the ab initio value of the barrier 

was scaled from 18.8 to 8.5 kcaljmole in the KSG potential energy surface - then 

our calculated rates would be in much better agreement with experiment. The lack 

of agreement between our results and Koizumi et al.'s is harder to understand. At 

present we have no explanation for this. We note that the rate constants calculated 

by Moribayashi and Nakamura194 for the initial HCl rotational states j = 0, 1, 2 -
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Figure 4.14: Arrhenius plot of calculated and experimental thermal rate constants. 
The present calculations are shown as a solid line and the results of Koizumi et al. 
as a dashed line. The experimental results of Brown and Smith (Ref. 186) are shown 
as open circles and that of Mahamud et al. (Ref. 190) as filled squares. 

though not directly comparable to the present results since they are not fully Boltz­

mann averaged over all initial states - are also larger than the rates of Koizumi et 

al. (though smaller than ours). Moribayashi and Nakamura also suggest that higher 

j states (j > 2) may contribute even more significantly to the rate and if so, then 

their fully Boltzmann averaged rate constant would be even larger. 

We note that in Fig. 4.14 the present results show indicate that the slope of 

ln k(T) vs. 1/T increases with increasing temperature. This is also observed in the 

rates obtained by Koizumi et al. as well as in the experimental results shown here. 

In fact the activation energy reported by Brown and Smith over the temperature 

range 293-'440 K is 5.9 kcal/mole,186 while a value of 7.3 kcal/mole is obtained by a 
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Figure 4.15: Calculated thermal rate constants, k(T) vs. 1000/T for the 0 + HCl 
(solid line) and 0 + DCl (dashed line) reactions. 

least squares fit of the data of Mahamud, Kim, and Fontijn190 over the range 353-

1486 K. Indeed, the results of Mahamud et al. show a non-Arrhenius increase in the 

activation energy as the temperature is raised .. Our results give an activation energy 

of 5. 7 kcal/mole over the range of 200-700 K as compared to about 5.0 kcal/mole 

from the results of Koizumi et al. over 285-667 K. Thus the theoretically calculated 

activation energies are lower than those obtained by experiment though the correct 

non-Arrhenius behavior is reproduced. 

We have also performed calculations for the thermal rate constant of the 

0 + DCl reaction. These are compared to the results for the 0 + HCl reaction in 

Figure 4.15 .. The deuterated rate constants were obtained by using the same basis set 

at a given temperature as was needed for the 0 + HCl reaction. The most interesting 
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result-here is the tunneling enhancement of the rate when His substituted for D. While 

the thermal rate constants for the reaction with DCl follow an Arrhenius form (i.e., 

In k(T) vs. 1/T is a straight line with the slope equal to the activation energy), with 

HCl the activation energy becomes smaller as the te:niperature is lowered. This change 

in the activation energy at lower temperatures can be attributed to the tunneling of 

the H atom. In the deuterated case the tunneling rate is reduced due to the heavier 

mass and the rate therefore remains Arrhenius at low temperature. Indeed, the 

activation energy for the 0 + DCl reaction is 6. 7 kcal/mole, larger than that for 0 

+ HCI. Experimental measurements of Brown and Smith found the ratio of the rate 

constants ko+HCz/ ko+DCl at T = 400 K as 2.4 ± 0. 7.187 This is smaller by a factor 

of two than the ratio of 4.8 obtained in the present calculations. 

4.4 Concluding Remarks 

A method for directly calculating thermal rate constants for chemical re­

actions by means of the flux-position and flux-flux correlation functions has been 

presented. The key to these methods is taking advantage of the low rank of the 

Boltzmannized flux operator, Eq. (4.30), to efficiently evaluate the required quan­

tum mechanical trace. If the flux dividing surface is placed at the saddle point of 

the potential, this operator has a rank approximately equal to twice the number of 

thermally accessible states of the activated complex. It is in this context that these 

methods contain the spirit of transition state theory. 

In the case of the flux-position correlation function, the Lanczos algorithm 

is used to find only the nonzero eigenvalues of the entire operator in the trace, Eq. 

( 4.41). The propagation in complex time, tc = t- in/3 /2 is carried out by a Chebychev 

polynomial expansion. The correlation function only needs to be calculated at a 

single (long) time. We have presented applications to the model one-dimensional 

Eckart barrier and two dimensional collinear H + H2 reaction as well as the three­

dimensional D + H2 reaction for total angular momentum, J = 0. These examples 

illustrate the efficiency and accuracy of this approach. 

The flux-flux autocorrelation function calculation has three main features: 
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(1) The low rank of the Boltzmannized flux operator is used to advantage in evaluating 

the quantum mechanical trace. An iterative Lanczos scheme is used to obtain the 

eigenfunctions of F(/3) corresponding to the largest (in absolute value) eigenvalues 

and the trace is evaluated in this (much smaller) basis. (2) Absorbing potentials are 

used in the (real) time propagation to prevent reflection from the edge of the finite 

basis (here a DVR grid) making the method stable and thereby allowing the size of 

the basis to be reduced. (3) A split-operator algorithm is used for both the real and 

imaginary time propagation. For the real time propagation, this produces the time 

correlation function at all intermediate times necessary to perform the integral of 

Cf!(t) at no additional computational effort. 

The absorbing potentials in the flux-flux correlation function make it a more 

efficient and stable method than that using the flux-position function. 

Application to the D + H2 and 0 + HCl reactions indicate the applicability 

of the method to a large range of systems. The rank of the Boltzmannized flux oper­

ator is seen to be small (""' 12-24) and to depend weakly on the temperature and the 

size of the full basis set. This is in accord with the interpretation of these eigenvalues 

as related to the states of the activated complex. The real time propagation needed 

to obtain the correlation function need only be carried out for short times (on the 

order of n/3 for direct reactions). The advantages of this method make it applicable 

to a large range of molecular systems, including those with several atoms (> 3). 

4.5 Appendix 1: A Quantum Mechanical Transi­

tion State Theory 

As discussed in Section 4.1, there is no unique quantum mechanical tran­

sition state theory ( QMTST). Indeed, quantum "transition state theories" run the 

gamut from fully exact to very approximate. The exact methods presented in this 

Chapter could, in some sense, be called QMTSTs as they only follow the dynamics in 

a region about the transition state. However, Miller has previously proposed a con­

vincing quantum mechanical analogy to classical transition state theory. 143 Section 4.2 
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discussed the connection between the classical characteristic function, x(p, q), and 

the quantum mechanical projection operator ~· The classical TST assumption can be 

expressed by replacing the characteristic function by a step function, h(ps), where Ps 

is the momentum perpendicular to the flux dividing surface. This amounts to a zero 

time approximation to the characteristic function. Miller suggested that a quantum 

mechanical TST could be obtained in the same spirit by taking ~--+ h(p5 ).
143 This, 

also, is a zero time approximation. (See Eq .. ( 4.20.) 

The approximate thermal rate constant is then given by 

(4.76) 

(Note that there is some ambiguity in how the operators in the trace should be ordered 

since ~ commutes with the Hamiltonian but h(fis) does not. We have simply taken 

the correlation function in Eq. (4.20) at zero time.) This rate can be obtained by 

diagonalizing the operand of the trace using the Lanczos scheme described in the 

Chapter. 

Note that just as in the case of classical transition state theory, Eq. ( 4. 76) 

represents zero time dynamics, i.e., the quantum mechanical transition state rate is 

the instantaneous flux through the dividing surface in the reactive direction. [We 

note that the projection operator involving the step function in position gives the 

rate constant as zero at t --+ 0. It is clear that not all projection operators are created 

equal, particularly in the zero time limit.] As a practical point, we note that this 

approximation represents a significant computational savings in that one now only 

has to carry out a propagation in pure imaginary time (to evaluate the Boltzmann 

average) 

In order to implement Eq. 4.76 we need the matrix elements of h(p) in 

the sine-function DVR. To accomplish this we begin by noting that the sine-function 

DVR basis functions in the momentum representation are given by74 

(4.77) 

where ¢j(p) = 0 for IPI > Pmax· We need to evaluate the matrix element of h(p) in 
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Figure 4.16: Arrhenius plot of the thermal rate constant, k(T) vs. 1000/T, calculated 
using the quantum mechanical analogue to transition state theory. The dashed line 
is the QMTST result and the solid line is the exact rate constant. 

this basis. This gives 

(jjh(fi)lj') i: t (jjp) h(p) (pjj') 

1 1Pma:z "( . "') / __ dp e' J-J 1rp Pma:z. 

2Pmax 0 
( 4.78) 

The diagonal matrix elements for which j = j' can immediately be identified as 

Integrating for j =/= j' gives 

(j lh(p) jj) = ~. 
2 

(jjh(p)jj') = -
1- {. ?rna~' [ei(j-j')1r -1]} 

2Pmax z(J - J )1r 

( 4. 79) 

(4.80) 
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Figure 4.17: Arrhenius plot of the thermal rate constant, k(T) vs. 1000/T, for 
the collinear H + H2 reaction calculated using the quantum mechanical analogue to 
transition state theory. The QMTST rates are shown as as solid circles, the results 
of Rom et al. (Ref. 155) as a solid line, and the results of Brown and Light (Ref. 161) 
as a dashed line. 

as the result for the off-diagonal matrix elements. In some cases, one is interested in 

the matrix elements of h( -P); the diagonal elements are the same and the off-diagonal 

elements differ by a minus sign. 

We have applied this method to the Eckart barrier, the collinear H + H2 

reaction, and the three-dimensional D + H2 reaction. The details of the calculations 

for these systems are given in the main text of the Chapter. 

Figure 4.16 shows the Arrhenius plot of the rate constant calculated by 

the QMTST method compared to the exact result. The QMTST method does not 

reproduce the exact rate constant except at high temperatures. The transition state 
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Figure 4.18: Arrhenius plot of the thermal rate constant, k(T) vs. 1000/T, calculated 
using the quantum mechanical analogue to transition state theory. The QMTST rates 
are shown as as solid circles, the results of Mielke et al. (Ref. 178) as a solid line, and 
the results of Park and Light (Ref. 161) as a dashed line. 

theory approximation gives rate constants about two orders of magnitude too large at 

200 K. However,for higher temperatures, the error decreases and is below 20% above 

1700 K, and below 10% above 2400 K. We note that the TST rate, in this case, is an 

upper bound to the true rate. We also find that varying the position of the dividing 

surface shows that locating it at the top of the barrier gives the lowest TST rate at 

all temperatures. 

Figure 4.17 shows a similar Arrhenius plot for the QMTST rate for the 

collinear H + H2 reaction, compared to the results of Rom et al. 155 and Brown and 

Light.47 In this case, the transition state theory result is in good agreement with the 

flux-position results over the entire temperature range. The largest error due to the 
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transition state theory approximation is 40% (at the lower temperatures) and the 

error is less than 15% above 400 K. 

Finally, Figure 4.18 is an Arrhenius plot showing the present QMTST rate 

constants for the three-dimensional D + H2 reaction (for total angular momentum, 

J = 0) with those calculated by Mielke et al.178 and Park and Light. 161 The transition 

state theory approximation is in good agreement with the flux-position correlation 

function results at all temperatures except 300 K. The approximate rate overestimates 

the rate at 300 K by a factor of 4. 

The results for this quantum mechanical analogue to classical transition 

state theory are mixed in nature. For the multidimensional examples (the collinear 

H + H2 and D + H2) the agreement with exact calculations is quite reasonable 

except at the lowest temperatures. For the one-dimensional Eckart barrier, on the 

other hand, the agreement is poor at all temperatures below about 1700 K. This may 

indicate that while this approximate method properly represents the nonseparability 

of the multidimensional cases, it is not properly describing the rate due to tunneling 

through the barrier. This would account for the inaccuracy at low temperatures for 

the multidimensional reactions as well as that for the Eckart barrier. The Eckart 

barrier height in this example is 0.425 eV; even at moderately high temperatures, 

tunneling will account for a significant portion of the rate constant. 
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Chapter 5 

Concluding Remarks 

5.1 Summary 

In this work we have presented several methods for describing quantum reac­

tion dynamics at differing levels of detail. As discussed in Chapter 1, it is imperative 

that advances in theoretical methods be made if the range of systems amenable to a 

quantum mechanical treatment is to be extended to more than three or four atoms. · 

Clearly though, one cannot get something for nothing. How is it then, that more 

efficient methods can be developed? This has been achieved by two main approaches: 

(1) The quantity of interest is directly calculated, and (2) the physics involved in the 

chemical reaction is used to advantage. The first point is clear: one should not have 

to calculate quantitities which contain more detail than is desired, no more than an 

experimentalist should have to put in a laser to measure product state distributions, 

say, which are not of interest. Much of the effort expended in the calculation of 

these more detailed quantitities will be washed out in the subsequent averaging. The 

second point is more ill-defined, but we have presented here a couple of examples. 

One example involves the state-to-state and initial state-selected reaction 

probabilities described in Chapter 2. While the absorbing boundary conditions enable 

the direct calculation of the desired quantitity, the intial state-selected calculation is 

more efficient than the state-to-state. The reason is that reactivity is determined in 

a smaller region about the transition state than the product state-selection (allowing 
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the size of the necessary basis to be reduced). This is a well-known property of gas 

phase chemical reactions. 

Another example is the direct calculation of thermal rate constants presented 

in Chapter 4. Today, it is still common to obtain rate constants by first calculating 

the entire S-matrix and then averaging away all the hard earned detail. A simple 

(but possibly overstated) analogy to this practice is to estimate the number of cars 

crossing the Bay Bridge into San Francisco in a day by monitoring every car within 

driving distance to determine if it crosses the bridge or not. On the other hand, the 

direct way to obtain the same result is to sit at the toll plaza and count the cars as 

they pass. This is the spirit of the present methods for calculating the rate constant 

for a chemical reaction. 

The flux correlation function approach requires the evaluation of a quantum 

mechanical trace. A straightforward computation of this in a basis of size N would 

require 2N applications of the propagator in complex time, tc = t- in/3 /2. Alterna­

tively, one can evaluate the trace in a basis of the eigenstates of the Hamiltonian. The 

correlation function is then easily obtained but first one must diagonalize an N x N 

matrix. The present methods take advantage of the low rank of the Boltzmannized 

flux operator in Eq. (4.30). This operator has a rank approximately equal to twice 

the number of states of the "activated complex" that are thermally accessible. These 

methods heed the lesson of transition state theory by concentrating on determining 

the contribution of each state of the activated complex to the rate. The number of 

states of the activated complex is usually less than the number of asymptotic reactant 

or product open channels. Indeed, we have found the rank of the Boltzmannized flux 

operator, M, is on the order of ten or twenty even for basis sets where N is several 

thousand. The effort involved in these methods is approximately 2M applications 

of the propagator in complex time (though somewhat less than this for the flux-flux 

correlation function since only one real time propagation is required). 

We have also shown, in Chapter 3, how the photodetachment spectrum can 

be obtained using the absorbing boundary conditions Green's function. Photodetach­

ment spectroscopy of a stable anion ABC- can yield information about the neutral 

scattering surface of ABC. In such cases where the anion geometry is close to that 
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of the neutral transition state, it is often called transition state spectroscopy. Both 

total and arrangement-selected intensities can be obtained simultaneously. In addi­

tion, the spectrum for a large range of energies can be calculated at one time with the 

multiply-shifted quasi-minimal residual method.132 The photodetachment spectra for 

H3 0- has been calculated in reduced dimensionality (four degrees of freedom treated 

explicitly). When compared with experiment,15 the theoretical spectra indicate that 

the WDSE potential energy surface90
•
102 has incorrect equilibrium bending angles 

and a barrier that is too "late."· However, since the the anion equilibrium geometries 

(there are two local minima on the surface) are not the same as the neutral saddle 

point, no direct information about the transition state is obtained. 

5.2 Prognosis for the Future 

5.2.1 The Present Methods 

A few comments are in order here concerning the more immediate possible 

improvements in the methods presented here. 

Transition state spectroscopy is a powerful tool for probing potential energy 

surfaces of scattering systems. However, it is not applicable to every system but can 

only be applied to systems with a stable anion with an equilibrium geometry close to 

that of the transition state of the neutral. In addition, if spectrum is not insensitive 

to the anion potential and the potential is not well characterized, the interpretation 

of the result in terms of the features of the neutral potential cannot be definitive 

and is much more subtle. With these caveats, transition state spectroscopy should 

continue to provide useful information for scattering systems. One additional note: 

the present calculations give the total and arrangement-selected intensities for the 

same effort. It seems one ought to be able to obtain the more detailed quantity more 

cheaply. 

The method for direct calculation of thermal rate constants from the flux­

flux correlation function, described in Chapter 4, provides hope for accurately treating 

large ( > 3 or 4 atoms) in the near future. There are, however areas in which some 
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improvement can be sought. Some of these involve minor, computational issues, such 

as using the Chebychev polynomial expansion to apply the Boltzmann operator (since 

the imaginary propagation time is fixed). One approach to the calculation (similar 

to the method of Manthe167
) could be to diagonalize the Boltzmann operator for one 

value of /3, call it /30 , corresponding to a high temperature (low /3), 

(5.1) 

The rate for an arbitrary, lower temperature can then be obtained, after propagating 

these eigenstates, as 

(5.2) 

Thus, the diagonalization and propagation only needs to be carried out once. How­

ever, a potential drawback is the higher rank of the Boltzmannized flux operator 

than is necessary at the lower temperatures (though Figure 4.6 is encouraging on 

that score). Such a method has not yet been tested. 

5.2.2 General Comments 

The field of gas phase reaction dynamics can be regarded as a mature field. 

Much progess has been made over the last 30 or 40 years in both theoretical and 

experimental methods. Theoretically, for example, atom-diatom reactions have now 

largely been rendered amenable to quantum mechanical calculations. However, much 

remains to be done in treating larger and more complicated systems as well as apply­

ing the current understanding to condensed phase systems. Ubiquitous in chemical 

dynamics is the case of a few strongly coupled degrees of freedom weakly linked to a 

few or many more degrees of freedom (a bath). This can occur in gas phase reactions 

involving a relatively large molecule (even in the case of H + H20, the OH bond is 

only very weakly coupled to the reacting degrees of freedom) or in reactions (and 

spectroscopy) taking place in solution, in a cluster, or on a surface. 

One approach to treating such systems, which we have made use of in Chap­

ters 2 and 3, is reduced dimensionality methods. Only the few degrees of freedom 
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which take,part in the reaction or are strongly coupled are treated explicitly while 

the remaining coordinates are held fixed. The neglected degrees of freedom can be 

included approximately by adding their adiabatic energies to the potential109
•
196 or 

by cruder methods of including the effect of their zero point energy at the barrier, 

say. 75 These methods have the advantage that the calculation only treats a few co­

ordinates and in many cases (such as the H + H20 reaction75
-

78
•
141

•
166 and the D + 

H2 reaction56 ) are quite accurate. However, one needs to know which degrees of free­

dom to neglect and these methods are not suited to cases where the these neglected 

degrees of freedom have a significant and interesting effect (such as condensed phase 

environments). 

A highly promising methodology involves treating the "interesting" coordi­

nates quantum mechanically while describing the remaining degrees of freedom using 

classical or semiclassical mechanics.91
---9

3
•
165

•
197

-
202 While this may eventually become 

the standard approach for treating large systems, there are still some questions which 

have not been answered. 202
•
203 One of the crucial issues is the interaction between 

the quantum mechanical system and the classical (or semiclassical) bath. A general 

procedure for carrying out the dynamics with consistent interactions between the 

system and bath has yet to appear. Of note is the work by Sun and Miller204 on a 

mixed semiclassical-classical method in which classical trajectories are run including 

all the degrees of freedom, but the semiclassical phase information is only kept for 

the system coordinates. 

The flux-flux correlation function method presented in Chapter 4 for directly 

calculating thermal rate constants holds promise for such mixed quantum-classical 

and quantum-semiclassical approaches. Such an idea has already been implemented 

by two groups,91
•
165 but these methods have not taken advantage of the low rank 

of the Boltzmannized flux operator. This should be an exciting direction for future 

research. 

Dynamical approximations are yet another avenue for treating large and 

small systems. A quantum mechanical theory with the power and amazing usefulness 

of classical transition state theory remains to be found, if indeed it exists. Other 

models, with less ambitious goals, would form an important part of the available 
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repertoire for describing chemical reactions, particularly those with a weak coupling 

to a bath. 

One of the most important issues facing the field of reaction dynamics is the 

generation of high-quality ab initio potential energy surfaces. Accurately describing 

the nuclear dynamics is not very fruitful if the potential energy surface is in error. 

On the other hand, the WDSE potential for the OH + H2 reaction, despite its many 

flaws, does a reasonably good job of describing the dynamics and allowed the theoret­

ical prediction of the mode specificity.105 The dynamicist can improve this situation 

without calculating potential energy surfaces by developing dynamics methods which 

are amenable to direct ab initio calculations. For example, the method for calculating 

photodetachment intensities described in Chapter 3 can calculate an entire spectrum 

using a single DVR grid. Thus, a direct ab initio calculation of the potential energies 

of both the anion and the neutral at these grid points is possible. The accuracy and 

efficiency of such an approach needs to be investigated. Another step in this direction 

is the development of methods which require the potential only in a small region, such 

as the thermal rate constant calculations. 

The field of gas phase reaction dynamics has an exciting future ahead in the 

development of new methods and the application of the current knowledge to new 

and interesting systems. 
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