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MorpHOLOGY, HISTOLOGY, AND FINE STRUCTURE
Application of the Hagen-Poiseuille Equation to Fluid Feeding
Through Short Tubes

CATHERINE LOUDON anp KATHERINE MCCULLOH

Department of Entomology, University of Kansas, Lawrence, KS 66045

Ann, Entomol. Soc. Am. 92(1): 153-158 (1999)
ABSTRACT The Hagen-Poiseuille equation has been widely applied to the study of fluid feeding
by insects that have sucking (haustellate) mouthparts. However, the equation is valid only when the
length of the cylinder is much longer than the entrance length (the length of the entrance region
within which the flow is not fully developed). To estimate under what circumstances the flow
through short tubular mouthparts would be slower than predicted from the Hagen-Poiseuille
equation, we determined the empirical relationship between the relevant parameters using physical
models made of glass micropipets. Fluid flow was measured while applying known pressure differ-
ences to cylinders of different geometries for a range of entrance lengths. We found a simple
relationship between the flow and the entrance length in dimensionless terms for the range of
experimental conditions (length:diameter range, 5:1-150:1; Re range, 18-1100). Thus, it is now
possible to estimate easily correction factors resulting from the effects of the entrance region. The
resistance to flow within the entrance region is sufficiently high that if the entrance length is one-half
of the total length, the expected flow is only ~80% of that predicted from the Hagen-Poiseuille
equation. Reported flow rates through channels in insect mouthparts are sufficiently slow that the
predicted entrance lengths are extremely small relative to their total lengths. Therefore, with the
possible exception of some gigantic extinct insects, the Hagen-Poiseuille equation may be applied
safely to fluid flow through even short feeding tubular structures (when the other assumptions are

L

satisfied).

KEY WORDS Hagen-Poiseuille, fluid feeding, fluid mechanics, mouthparts, haustellate

FLUID-FEEDING EVOLVED IN the insects often, probably
200-300 million years ago (Labandeira 1997). Some
fluid-feeding insects pass fluid along cylindrical chan-
nels in their mouthparts, and for these cases there is
a classic fluid mechanical equation available that de-
scribes the quantitative relationship among the geom-
etry of the channel, the rate of flow, the physical
properties of the flowing fluid, and the pressure dif-
ference along the length of the channel that causes the
fluid to move. This equation, the Hagen-Poiseuille
equation, is

_'rrAPr4 ]
O=guL ]

where Q is the volume flow rate (m*/s in SI units), AP
is the pressure difference between the ends of the
cylinder (Pa), r is the internal radius of the cylinder
(m), uis the dynamic viscosity of the fluid (Pas), and
L is the length of the cylinder (m) (Vogel 1994). This
equation (or an appropriate modification) has been
applied to studies of fluid feeding in a diverse group of
insects, including water uptake in the large milkweed
bug Oncopeltus fasciatus (Dallas) (Mittler 1967);
blood uptake in the assassin bug Rhodnius prolixus Stal
(Bennet-Clark 1963); sap uptake in the aphid Tu-
berolachnus salignus (Gmelin) (Mittler 1957); xylem
uptake in the leathopper Homalodisca coagulata (Say)

(Andersen et al. 1992); blood uptake in the mosquito
Aedes aegypti (L.), the bed bug Cimex lectularius L.,
and the body louse Pediculus humanus L. (Daniel and
Kingsolver 1983); and nectar uptake in the butterflies
Colias eurytheme Boisduval, Danaus plexippus (L.),
and Pieris rapae (L.) (Kingsolver and Daniel 1979,
Daniel et al. 1989). For reviews and additional refer-
ences see Raven (1983) and Kingsolver and Daniel
(1993).

The derivation of the Hagen-Poiseuille equation
relies on conditions that must be approximately sat-
isfied to produce predictions with an acceptable un-
certainty. The most useful discussions on these con-
ditions or limitations describe methods for evaluating
the magnitude of the different physical phenomena
rather than simply dismissing them as negligible: the
complication of non-Newtonian fluids such as blood
(e is not constant, Daniel and Kingsolver 1983), con-
sideration of unsteady effects (Loudon and Tordesil-
las 1998), a changing diameter of the food canal (King-
solver and Daniel 1979), the potential mechanical
failure of the sucking apparatus (Kingsolver and
Daniel 1979, 1993), the influence of gravity (King-
solver and Daniel 1979), the role of capillary feeding
(Kingsolver and Daniel 1993), and the problem with
assuming a constant suction produced by muscular
pumps such as the cibarial pump in the insect (Daniel
et al. 1989).
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Fig. 1. As fluid moves downstream from the entrance to
a channel, its speed distribution or velocity profile changes
in shape until it becomes fully developed. The length of an
arrow indicates the magnitude of the flow velocity at the
location of the base of the arrow.

One assumption that has not been addressed quan-
titatively in this context is that the Hagen-Poiseuille
equation is valid only for the condition of fully devel-
oped flow, where the parabolic velocity profile is no
longer changing with distance along the cylinder (Fig.
1). For some distance downstream of the entrance to
the cylinder, the velocity profile will be changing with
distance (Fig. 1). The entrance length usually is defined
as the distance from the entrance to the location
where the velocity at the center of the cylinder has
approached 99% of the value in the center of the fully
developed flow downstream. The entrance length, L,
may be estimated easily as

L; = 0.058 Re d, [2]

(Vogel 1994), where Re is the dimensionless Reyn-
olds number,

Re = — [3]

d is the internal diameter of the cylinder (m), p is the
density of the fluid (kg/m®), and u is the average
velocity of the fluid inside the cylinder (m/s). There-
fore, entrance length will increase with flow rate. So,
for example, the entrance length in the case of water
(p=998kg/m® u = 1.002by 103 Pasat 20°C) flowing
through a cylinder of 1 mm internal diameter at 1 cm/s
would be 0.6 mm. Although equations (2) and (3)
suggest that as the flow approaches zero (u—90), the
entrance length also will approach zero (Ly—0); in
practice the entrance length approaches a lower
bound of 0.6 d as seen mathematically in more com-
plex formulas given for entrance length (e.g., White
1991, p. 293). That is, in very low Re flow (Re<<1)],
where the diameter is very small or the flow is very
slow or both, the flow will be become fully developed
within =1 radius from the entrance. See
White (1991) for review of both theoretical and exper-
imental research on this subject.

The channels within sucking mouthparts of extant
insects often are extremely long relative to their di-
ameters (length/diameter ratios around 100:1 or
greater) and may have very tiny lumens (d << 1 mm).
For example, the length/diameter ratio is 83:1 for the
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food canal in the leafhopper Homalodisca coagulata
(Say) (stylets 2 mm long, internal diameter 24 pm,
Andersen et al. 1992), 750:1 for the aphid Myzus per-
sicae (length 300 wm, internal diameter 0.4 pm, Au-
clair 1963), and 667:1 for the bug Oncopeltus fasciatus
(length 6 mm, internal diameter 9 pm, Forbes 1976).
Thus, the entrance lengths of the developing flow
within these sucking insect mouthparts may be ex-
pected to be small relative to their overall lengths.
However, the relative sizes of these anatomical fea-
tures by themselves do not reveal the magnitude of the
effect of the entrance region on the overall fluid flow
rate. Complex formulas for calculating the excess re-
sistance to flow in the entrance region are available in
the fluid mechanical literature (e.g., White [1991], pp.
291-292), but they are written in a form more appro-
priate for engineering applications of high flow rates,
using constants that vary in unpredictable ways with
flow speed in the slower flow range more relevant to
insect feeding rates (Re <500). Examples of Re for the
flow through sucking insect mouthparts are Re = 10
for the leathopper Homalodisca coagulata feeding on
xylem (calculated from data supplied in Andersen et
al. 1992) and Re = 0.06 for the aphid Myzus persicae
feeding on phloem (calculated from data supplied in
Auclair 1963). In addition, derivations of these for-
mulas usually assume a flat velocity profile at the
entrance to the tube, although it has been shown
experimentally using laser Doppler velocimetry that
for Re <60, the parabolic velocity profile begins to
form in a fluid reservoir upstream of the entrance to
the tube (Kawata et al. 1974). Therefore, to uncover
the quantitative relationship between the overall flow
and the events in the entrance region, physical mod-
eling was used to determine empirically the relation-
ship between the rate of fluid flow, the geometry of the
cylinder, the applied pressure difference, and the
characteristics of the fluid. The purpose is to make
predictions of the circumstances within which
changes in morphology, behavior, or environmental
conditions may have unexpected effects on the rate of
fluid feeding, as well as to provide guidelines for the
appropriate application of the Hagen-Poiseille equa-
tion. The experimental Re range was 18-1100; this
includes the higher end of the Re range for fluid-
feeding insects where entrance effects are anticipated
to be the most significant (Re > 10).

Materials and Methods

Physical Models. Glass micropipets (25 and 50 pul,
FisherBrand) were used for the cylindrical physical
models. The internal diameters of the micropipets
were 0.60 and 0.85 mm for the 25 and 50 pl micropi-
pets, respectively (calculated from the marked lengths
corresponding to the indicated internal volumes).
Glass micropipets were cut to different lengths to
provide different length/diameter ratios: 25:1, 50:1,
and 100:1 for the 25 ul micropipets and 5:1, 13:1, 25:1,
50:1, and 150:1 for the 25 and 50 ] micropipets. Three
or 4 replicates (different micropipets of identical ge-
ometry) were averaged for any flow measurement at
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Fig.2. Apparatus for applying a known pressure gradient
to a cylinder and measuring the resulting volume flow rate
through the cylinder.

agiven pressure difference. Seventy-six different com-
binations of pressure differences and cylinder mor-
phology were used. The micropipets were attached in
ahorizontal orientation between 2 reservoirs such that
the opening edge of the micropipet was flush with the
inner surface of the rubber septum holding the pipet
in place (Fig. 2). The internal diameter of a reservoir
was at least 10 cm. The fluid used was distilled water.
The difference in water level height between the 2
reservoirs supplied the pressure difference along the
cylinder causing the flow (Fig. 2). The experimental
Re range was 18-1100.

Determination of Volume Flow Rate. The volume
flow rate was determined by videotaping the fall of the
meniscus of the air-water interface using a video cam-
era (Panasonic CCD WV-CL50 with a §-80 mm tele-
vision lens; VHS video format) which allowed a ver-
tical field of view of 4-6 cm (Fig. 2). A ruler and a
stopwatch located outside of the reservoir also were in
the field of view of the video camera. The video cam-
era was positioned 1 m away to reduce parallax caused
by the distance between the ruler and the center of
the meniscus. Comparisons of measurements at the
top and bottom of the field of view indicated that the
measurement error caused by parallax was on the
order of 4 pm for a change in meniscus height of 1 mm.
The pressure difference between the 2 ends of the
cylinder was calculated from the difference in height
of the water level of the 2 reservoirs. The videotapes
were played back frame by frame to determine the
time at which the meniscus reached a given height in
the reservoir as measured on the ruler. The precision
of the meniscus height measurement was determined
by repeated blind frame selections; the standard de-
viation of 10 selections was 0.05 mm (calculated from
the known rate of change in meniscus height). Be-
cause the total volume of water and the dimensions of
the 2 reservoirs are known, the height of fluid in 1
reservoir could be used to calculate the height in the
other reservoir. The time for a change of water height
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of 1 mmin 1 reservoir was used to calculate the volume
flow rate; these time intervals ranged from 12.5t0 1,016
s. The average pressure differential (during the 1-mm
change in height) was used as the representative pres-
sure differential for that measured volume flow rate.
The height difference between the 2 reservoirs was
always >3 mm. Water in the reservoirs was always
allowed at least 5 min to become still after a mechan-
ical disturbance such as adding water.

Viscosity of Water. The viscosity of the water was
estimated from the temperature (Weast 1988), The
temperature of the water varied by <1°C within any
set of measurements, although the temperature of the
water in the reservoirs varied between days of mea-
surement (total range, 18.2-25.0). The results were all
normalized to a standard temperature of 20°C; the
predicted flow at 20°C is obtained by multiplying the
measured volume flow rate by the ratio of the viscosity
of water at that experimental temperature to the vis-
cosity of water at 20°C. The water in the reservoirs was
always within 1°C of the room temperature to mini-
mize the exchange of heat between the apparatus and
the room. The reservoirs were loosely covered with
plastic wrap; evaporation is estimated to be an insig-
nificant source of error under the experimental con-
ditions.

Statistics. The regression and test for homogeneity
of slopes were performed on Minitab software using
the General Linear Models procedure (Minitab 1996).

Results

General Predictive Equation. When the entrance
length was much less than the total length of the
cylinder, the Hagen-Poiseuille equation closely pre-
dicted the volume flow rate (Fig. 3A). As the entrance
length approached the order of magnitude of the total
length of the cylinder, the deviation from predictions
of the Hagen-Poiseuille equation became very pro-
nounced (Fig. 3B). Uncovering a general physical
relationship requires identification of the appropriate
dimensionless parameters (McMahon and Bonner
1983, Pennycuick 1992). We reasoned that the ratio of
the measured flow, Q,,,.... to the flow predicted using
the Hagen-Poiseuille equation, Q,., might scale with
the ratio of the total length, L, to the calculated en-
trance length, Ly, in the following way:

szas _ L/LE
Qcalz - (L/LE) +R’

[4]

where R is an excess resistance caused by the influ-
ence of the entrance region. This general equation fit
the data very well for the complete experimental
range of Reynolds numbers and length/diameter ra-
tios (Fig. 4). Linear regression performed on the vari-
ables (transformed to generate a linear relationship)
allowed an empirical estimate for R of 0.52. Thus, the
best fit of equation 4 to the data is
L/Lg

Qmeas _
Q.ate (L/Lg) +052° (5]
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Fig. 3. Examples of measured volume flow rates
(squares; means = 2 SEs, n = 4) compared with predictions
from the Hagen-Poiseuille equation (solid line) as a function
of applied pressure differences. (A) Entrance length (indi-
cated by gray shading) is <10% of total length of the cylinder.
Experimental conditions: length of cylinder is 127 mm, in-
ternal diameter is 0.848 mm, Re range is 25-250. (B) Entrance
length is as long as the cylinder or longer. Experimental
conditions: length of cylinder is 11 mm, internal diameter is
0.848 mm, Re range is 200-1,000.

(n = 76, ¥* = 0.97 from linear regression on trans-
formed variables where Q_,1./Qmeas is the dependent
variable and L./ Lis the independent variable). This
simple relationship (equation 5) allows general state-
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ments to be made about the quantitative influence of
the entrance length on the total flow: a 5% decrease in
flow rate (Q,,cas/Qcac = 0.95) is expected when the
entrance length is 10% of the total length, and a 20%
decrease in flow rate is expected when the entrance
length is about half of the total length. Although a test
for the homogeneity of slopes showed a significant
effect of the length/diameter ratio when this geomet-
ric factor was treated as a categorical variable (the
(Lg/L)* (length/diameter ratio category) term was
significant to the 0.001 level), we believe that this is an
artifact of the differences in ranges of this geometric
variable along the x axis (Fig. 4). There was no trend
in the relationship between flow rate and entrance
length with the length/diameter ratio.

When Do Short Cylinders Approach the Behavior
of Orifices? As the total length becomes small relative
to the entrance length (L/L;<<1, Fig. 4B), the curve
more closely approximates a straight line intersecting
the origin. This has the consequence that the flow rate
becomes approximately independent of length; that is,
an increase in length will not carry the usual conse-
quence of reducing the flow seen in ordinary Hagen-
Poiseuille behavior. This can be described mathemat-
ically as

meas L
Onees 2 , (6]
anlc LE
or
L L wrt AP .
o« — =
Qmeas LE Qcalc (0058 Re d) 8 B L/ [ ]

which, removing all terms except the morphological
ones, simplifies to

Qmeas & 12’ [8]

because the Ls cancel. The loss of the dependence of
volume flow rate on length is reminiscent of formulas
for flow through orifices (Vogel 1994, Fung 1997),
although note that this fluid behavior occurred for
cylinders with lengths at least 5 times their diameter.

A.
1.2 . length:diameter
. .
gm_e_aﬁ 14 < ratio
Qcalc 08 i 150
0.6 x 100
0.4 x 50
0.2 . A 25
0 : \ 0 : . = 13
0 20 40 0 2 4 5

Total length/entrance length

Total length/entrance length

Fig. 4. The ratio of the measured volume flow rate (Q,,,...) to the calculated volume flow rate (Q.,.) as a function of
the ratio of total length to entrance length. Similar trends were seen for all cylinder geometries (as indicated by different
symbols for the 6 length/diameter ratios) and Re’s (Re range from 18 to 1,000). (A) The measured flow rate asymptotically
approaches the calculated volume flow rate as the length of the cylinder becomes very long relative to the entrance length.
(B) Detail of the lower range of ratios of total length/entrance length.
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Fig. 5. The predicted entrance length increases with
volume flow rate for any fluid. Three representative fluids are
illustrated. Most biologically relevant aqueous solutions will
lead to a smaller entrance length than found for water of the
same temperature flowing at the same rate. The fluid den-
sities and viscosities are from tables in Weast (1988).

Entrance Length As a Function of Volume Flow
Rate. The predicted entrance length may be calcu-
lated solely from the volume flow rate and the physical
properties of the fluid (Fig. 5). This relationship fol-
lows from combining equations 2 and 3 and noting that

Qmeas = Mu:

0.074 Qmens P
Ly=——"— 9
E " (9]
Note that for a given volume flow rate, the entrance
length is independent of tube diameter (keeping in
mind that L;; has a lower bound of 0.6 d).

Discussion

We have supplied a simple method for estimating
when the length of a tube is sufficiently short relative
to the entrance length to cause a significant decrease
in flow rate relative to the predictions of the Hagen—
Poiseuille equation (equation 5; Fig. 5). Most reported
fluid feeding rates for insects fall below 1 mm®/s (=1
ul/s), but some of the rates in the literature may be
underestimates if they were averaged over along time
period that included nonfeeding time as well. Exam-
ples of feeding rates include 5 X 10™* mm?/s is the
maximal reported volume flow rate for a range of
aphid species feeding on phloem (Auclair 1963); 0.19
mm®/s is the maximum recorded for the adult leaf-
hopper Homalodisca coagulata (Say) feeding on xylem
(Andersen et al. 1992); 0.34 mm®/s is the average
reported for 5th instars of the assassin bug Rhodnius
prolixus feeding on rabbit blood (Bennet-Clark
1963a); and 2.5 mm®/s is the average reported for
puddling male Gluphisia septentrionis moths (Smedley
and Eisner 1995). For fluid feeding at rates below 1
mm3/s for water or more viscous fluids, the entrance
length is <100 um (Fig. 5), so the flow should be
within 5% of that predicted by the Hagen-Poiseuille
equation for food canals of lengths on the order of 1
mm or more. Therefore, for most extant insects, a
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significant departure from the predictions of the Ha-
gen-Poiseuille equation caused by entrance effects is
not expected.

Extinct insects may be another matter. Sucking
mouthparts probably evolved from the elongation of
modified chewing mouthparts held close to each other
(Snodgrass 1935, Chapman 1982). That is, the chan-
nels through which the fluid flows are usually formed
by aligned indentations of juxtaposed modified
mouthparts. Therefore, it is reasonable to assume that
at some point in the past, insects ancestral to extant
fluid-feeding insects had shorter and wider (presum-
ably more irregular) channels to direct the fluid. In
addition, some extinct paleodictyopterans had large
beaks (1 report of 3.1 cm long) that probably fed on
plant sap (Labandeira 1997). Certainly if these extinct
insects had sufficiently high feeding rates, the effect of
the entrance region could lower the penalty of a
slowed flow that would otherwise occur during the
development and evolution of longer sucking mouth-
parts.
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