
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
An Experiment in Microtask Crowdsourcing Software Design

Permalink
https://escholarship.org/uc/item/2904d747

Author
Lopez, Consuelo

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2904d747
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

An Experiment in Microtask Crowdsourcing Software Design

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Software Engineering

by

Consuelo López

Thesis Committee:
Professor André van der Hoek, Chair

Associate Professor James Jones
Assistant Professor Thomas LaToza

2016

c© 2016 Consuelo López

DEDICATION

To all those crowds which, collectively working, make things happen, especially when it is
impossible through individual efforts. But there is one specific crowd, to which I want to
especially dedicate this thesis: the one of all those girls and women who battle against

gender inequality every single day.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

ABSTRACT OF THE THESIS x

1 Introduction 1

2 Related Work 6
2.1 Crowdsourcing . 6
2.2 Crowdsourcing Models . 8
2.3 Microtask Crowdsourcing . 9
2.4 Crowdsourcing in Software Engineering . 10
2.5 Crowdsourcing and Design . 12

3 Experiment Design 15
3.1 Experimental Conditions . 16
3.2 Participant Recruitment . 17
3.3 Experiment Time . 18
3.4 Qualification Tests . 19
3.5 Tasks . 19
3.6 CrowdDesign Platform . 20
3.7 Questionnaire . 23
3.8 Review Procedure . 25
3.9 Compensation . 26

4 Data Analysis 27
4.1 Diversity . 27
4.2 Quality . 28
4.3 Difficulty . 30
4.4 Collaboration . 30

iii

5 Results 33
5.1 General Results . 33
5.2 User Interface Design Without Examples (UIplain) 39

5.2.1 Diversity . 39
5.2.2 Quality . 41
5.2.3 Difficulty . 44

5.3 Internal Code Design Without Examples (ICplain) 45
5.3.1 Diversity . 45
5.3.2 Quality . 47
5.3.3 Difficulty . 49

5.4 Influence of Examples (UIexamples and ICexamples) 50
5.4.1 Diversity . 50
5.4.2 Quality . 54
5.4.3 Difficulty . 57

5.5 Borrowing . 58
5.5.1 Use of ‘Duplicate’ and ‘Copy’ Features 58
5.5.2 Solution Categories Distances . 61

5.6 Additional Analyses . 64
5.6.1 Finding Subgroups within the Solution Alternatives 64
5.6.2 Finding Subgroups within the Crowd 68

6 Discussion 73

7 Threats to Validity 78
7.1 Internal Threats to Validity . 78
7.2 External Threats to Validity . 79

8 Conclusion and Future Work 81

Bibliography 84

Appendices 90
A Consent Form and Demographics Questionnaire 90
B Qualification tests . 93

B.1 User Interface Design Qualification Tests 93
B.2 Internal Code Design qualification Tests 97

C Tasks description . 100
C.1 User Interface Design Tasks . 100
C.2 Internal Code Design Tasks . 104

D Diversity per Worker . 108
D.1 User Interface Decision Points . 108
D.2 Internal Code Decision Points . 112

E Cumulative Number of Unique Categories Created by Workers 116
E.1 User Interface Decision Points . 116
E.2 Internal Code Decision Points . 119

iv

LIST OF FIGURES

Page

1.1 Morphological chart for a vegetable collection system. 4

3.1 Stages of the experiment. 16
3.2 HIT description for UIplain experiment. 18
3.3 Task description for ‘representing cars’ decision point. 21
3.4 CrowdDesign platform. 22
3.5 Copy and duplicate features in CrowdDesing platform. 23
3.6 Exit questionnaire. 24
3.7 Quit questionnaire. 24
3.8 CrowdDesign admin tool. 25

4.1 Affinity diagrams constructed during data analysis. 28
4.2 Example of the use of ‘duplicate’ feature. 31

5.1 Example of a solution alternative which did not show honest effort. 34
5.2 Designs submitted by workers for UI design task. 37
5.3 Designs submitted by workers for IC design task. 38
5.4 Diversity per worker for ‘creating maps’ design (UIplain). 40
5.5 Cumulative number of unique categories provided by workers for ‘creating

maps’ design (UIplain). 40
5.6 Example of a top solution provided for ‘setting timing of traffic lights’ decision

point (UIplain). 43
5.7 Diversity per worker for ‘moving cars’ design (ICplain). 46
5.8 Cumulative number of unique categories provided by workers for ‘moving cars’

design (ICplain). 47
5.9 Diversity per worker for ‘creating maps’ decision point (UIexamples). 52
5.10 Diversity per worker for ‘moving cars’ decision point (ICexamples). 52
5.11 Cumulative number of unique categories created by workers for ‘creating maps’

design (UIexamples). 53
5.12 Cumulative number of unique categories created by workers for ‘moving cars’

design (ICexamples). 53
5.13 Cumulative average quality score for ‘creating maps’ decision point in the

UIexamples experiment (left), and ‘moving cars’ decision point in the ICex-
amples experiment (right). 55

v

5.14 Occurrences of each category in a chronological order (‘creating maps’ decision
point, UIexamples experiment). 62

5.15 Example of a solution within the “map only” category (‘creating maps’ deci-
sion point, UIplain). 66

5.16 Example of a solution within the “automated using input” category (‘creating
maps’ decision point, UIplain). 67

vi

LIST OF TABLES

Page

5.1 Number of workers at each step of the experiment. 34
5.2 Demographics. 35
5.3 Number of solution alternatives submitted per decision point (UI design). . . 36
5.4 Number of solution alternatives submitted per decision point (IC design). . . 36
5.5 Number of resulting categories per decision point for UIplain experiment. . . 39
5.6 Quality of solution alternatives (UIplain). 41
5.7 Number of requirements met (UIplain). 42
5.8 Crosstabulation of quality scores and requirements met. 42
5.9 Number of resulting categories per decision point for ICplain experiment. . . 45
5.10 Quality of solution alternatives (ICplain). 47
5.11 Number of requirements met (ICplain). 48
5.12 Crosstabulation of quality scores and requirements met (ICplain). 49
5.13 Number of resulting categories per decision point (UIexamples). 51
5.14 Number of resulting categories per decision point (ICexamples). 51
5.15 Quality of solution alternatives for UIexamples (top) and ICexamples (bottom). 54
5.16 Number of requirements met for UIexamples (top) and ICexamples (bottom). 56
5.17 Crosstabulation of quality scores and requirements met (UIexamples). 57
5.18 Crosstabulation of quality scores and requirements met (ICexamples). 57
5.19 Exit questionnaire results across the four experiments and comparisons. . . . 58
5.20 Use of copy and duplicate feature (ICexamples). 59
5.21 Use of copy and duplicate feature (UIexamples). 60
5.22 Number of sketches with x distance for each of the four experiments. 63
5.23 Resulting average quality, average number of requirements met, and total

diversity of the subset of ‘top designs’ (all experiments). 64
5.24 Average quality and average number of requirements met for categories iden-

tified for ‘creating maps’ decision point. 65
5.25 Resulting average quality, average number of requirements met, and total

diversity when filtering out solutions with x requirements met (all experiments). 66
5.26 Average quality, average number of requirements met, and total diversity per

demographic group. 68
5.27 Demographics of the group of workers who generated the best designs. . . . 70
5.28 Performance of workers with x correct answers out of five during the qualifi-

cation test per experiment. 71

vii

ACKNOWLEDGMENTS

Fortunately, there are many people I need to thank for helping me succeed on this adventure,
personally, academically, and professionally. First and foremost, thank you to my family
(Vı́ctor, Adriana, Emilia and Tomás), who put up with the distance, and gave me all their
love and encouragement, which has been essential to succeed in my endeavor.

Mati, I could not imagine a way to surf this wave without you. Undoubtedly, you flavored
this experience; you gave it colors, you gave it red, you gave it magic and enthusiasm. Thanks
for helping me when I bumbled, when I did not believe in myself, and when I was breathless.
Thanks for celebrating my triumphs, for encouraging me in every new project and sharing
with me the little (and big) things that make me happy. Thank you for making me feel at
home. You are a wonderful person, a magnificent professional, and, most of all, the best
adventure partner.

My deepest gratitude to André van der Hoek, my advisor, for these two years of guidance.
Thank you for giving me this opportunity; your support and confidence were essential for
me to come to UCI. Thank you for sharing your wisdom and your hard work, for inspiring
me to seek out new challenges, and for helping me when I stumbled. Thank you for always
pushing me to do my best and for sparking my passion for research.

I am very thankful to my committee members. Thank you Jim Jones, you were the first
Professor I had at UCI, and the one who taught me how to read papers, an essential skill
without which I would not have been able to write this thesis. Thank you Thomas LaToza
for feeding my curiosity about crowdsourcing.

Many thanks to BEC.AR and the Government of Argentina for trusting me, supporting
my stay in the United States, and for believing that education, science and technology are
decisive to make a better society. A special thanks to the Fulbright Commission in Argentina
who made my life immensely easier, and assisted me every single time that I needed. This
would not have been possible without them.

This is not an individual work but the effort of a lot of people. A very special thanks
to my research group. Sahand Nayebaziz, thanks for your curiosity and your patience.
Fernando Spanghero, thanks for sharing this ride with me. I want to especially thank Edgar
Weidema, with whom I closely worked together during this project. Edgar, thank you for
your encouragement, trust, patience, and especially for your (now, at a distance) constant
support.

Many thanks to all the anonymous workers from Amazon Mechanical Turk who participated
in the experiments, for their great feedback and dedicated work. Without them, this work
would not have been possible.

To everyone in the SDCL research group, thank you for making my stay a memorable and
wonderful experience. Nicolas Mangano, thank you for all the hours you spent helping me
during my initial steps in research. Thank you all the people who contributed to this work

viii

with their time and effort. Thanks to Ankita Raturi, Christian Adriano, Lee Martie, Matias
Giorgio, Mengyao Zhao, Sara Tripplet, and Thomas Kwak for spending many hours scoring
designs, clustering solution alternatives on the wall, and mainly, for supporting my work
with invaluable feedback. My thanks to Arturo di Lecce, Fabio Ricci, and Martin Medina
who made my stay a joyful experience.

I would like to express my appreciation to my first academic mentors: Judith Meles and
Daniel Battistelli. Judith, I will always be very thankful for encouraging me to continue
studying and sharing my knowledge. Daniel, you made me realize that no class is large
enough to scare me, and that we need to push ourselves to become better on what we do.

I have been lucky to meet fantastic people in the last two years. Coming alone and living in
a different country has been, indeed, a challenge and an adventure. Thanks to all the friends
I made here, you have made my stay much, much happier. I want to especially thank Asal
Askarizadeh, initially my roommate, now my friend, for your help, generosity, and care.

Thank you very much to those unique women who are sisters to me. Agus, Leti, Lety, Nanu,
Sara, Sofi, Tefi, Vero, and Vale, thank you for sharing my achievements and drying my tears.
Especially, thank you for making me feel that distance does not exist.

Thank you, University of California, Irvine for this wonderful experience and for enriching
me as a person and as a professional. I hope this is not a ‘goodbye’, but just a ‘see you
later’.

ix

ABSTRACT OF THE THESIS

An Experiment in Microtask Crowdsourcing Software Design

By

Consuelo López

Master of Science in Software Engineering

University of California, Irvine, 2016

Professor André van der Hoek, Chair

Microtask crowdsourcing is a form of crowdsourcing in which work is decomposed into a set

of small, self-contained tasks, which each can typically be completed in a matter of minutes.

The approach has been used to address a number of different problems, ranging from labeling

images to planning travel. To date, however, little is known about the potential of microtask

crowdsourcing in software engineering.

This thesis explores microtask crowdsourcing as applied to software design work. We partic-

ularly conducted a large study with Amazon Mechanical Turk workers, who each provided

one or more solution alternatives for a small, partial software design problem. We included

two experimental conditions: (1) user interface design work versus internal code design work,

and (2) workers operating independently versus workers being shown previous designs from

other workers.

We report on various results concerning solution diversity, solution quality, and perceived

task difficulty, across the different experimental conditions. Our primary findings show that:

(1) it is feasible for a crowd to generate a broad range of solution alternatives for a software

design problem, (2) solutions alternatives range all over the quality spectrum, and (3) many

workers perceived the task as difficult.

x

1

Introduction

The use of crowdsourcing as an approach to performing diverse kinds of tasks has rapidly

increased in popularity over the last few years [22]. It was Jeff Howe, in 2006, who first

used the term crowdsourcing and defined it as “the act of a company or institution taking

a function once performed by employees and outsourcing it to an undefined (and generally

large) network of people in the form of an open call” [34]. Since then, crowdsourcing has

become an accepted approach for tasks such as translation of video subtitles [3, 26], general

graphical design [1], content moderation [19], and audio transcription [14]. Academia too,

has begun to study crowdsourcing, for instance exploring how to use it for taxonomy creation

[16], itinerary planning [90], language translation [89], or writing [7, 42].

Crowdsourcing is also gaining popularity as a means of supporting software engineering work

(see [58]). To date, various commercial platforms are available to support different software

engineering tasks. Examples of these platforms include, among others, Bugcrowd [12] for

bug bounties, Stack Overflow [73] for expert exchange knowledge, uTest [83] for usability

and system testing, and Topcoder [81] for programming competitions. Beyond practice,

academia has devoted time and effort to the exploration of the application of crowdsourcing

1

to tasks such as requirements gathering (e.g., [11]) or software verification (e.g., [54]).

Different crowdsourcing models exist. Returning to the definition of crowdsourcing by Howe,

several characteristics stand out and help differentiate these models. Particularly, the way

these characteristics play out in practice may vary, for instance, in the form of the open call,

the way a task is broken down, or how workers collaborate. Several canonical models have

emerged, with LaToza and van der Hoek [53] describing some of the crowdsourcing models

that are more prevalent in software engineering, including peer production, competition, and

microtasking.

This thesis contributes to the exploration of microtask crowdsourcing for software engineer-

ing, particularly in the context of software design work. To date, the form of crowdsourcing

that is explored the most in software design is the competition model. This model has shown

promise, not only in software (e.g., Topcoder [81]), but also in other domains such as apparel

design (e.g., [78]), architecture (e.g., [6]), video production (e.g., [80]), and music creation

(e.g., [20]). Despite these successes, the effectiveness of the competition model has been

questioned [75], mainly because of the linear nature of its underlying process: participants

work independently on their tasks and the “aggregation mechanism” is simply to select a

winner [48]. In doing so, the diversity of the crowd and the work it produces is not fully

leveraged in that the effort of the losing contestants is wasted [15, 48]. Some platforms com-

pensate by applying a two-phased approach, enabling borrowing from other designs (e.g.,

[48]), but even then a large amount of futile and unpaid work is performed by individual

workers.

To explore a different approach, we focus in this thesis on microtask crowdsourcing. While

not yet widely explored for software engineering, microtasking has had success when applied

to complex problems [42], showing that it can match the quality of professionals [89]. For

instance, CrowdForge [42], a general purpose framework for accomplishing complex and

interdependent tasks using microtask markets, was used for article writing, obtaining higher

2

quality rates than individually produced articles. Furthermore, microtasks allow the use of

a large and diverse crowd, potentially improving the exploration of the design space at a

reduced cost [33]. Finally, because many more people participate, the loss of individual work

if not selected is less of an issue for the individual, though collectively, of course, there still

is some serious lost of effort. Interestingly, too, is that microtask crowd work, as long as it

represents serious effort, is typically paid regardless of whether or not it is used.

The approach we explore in this thesis builds upon the concept of a morphological chart

[72], a widely used design technique in engineering. A morphological chart, also known as

a concept combination table [24] or a function-means table [23], consists of a set of main

decision points (one per row) and solution alternatives for each decision point (multiple per

row). Solution alternatives are meant to be derived in a structural manner, independent from

the other decision points. For each decision point, its solution alternatives should represent

as much of the space of possible solutions for that decision point only. A full morphological

chart, then, consists of many partial solutions per decision point, from which a designer

builds a complete (or near complete) design by choosing one alternative per decision point

in such a way that the full set is both as compatible and as functional as possible. Figure 1.1

shows an example of a morphological chart for the design of a vegetable collection system

[30].

Examining whether a morphological chart can be adapted to software design work by par-

allelizing its construction through microtasks leads to three questions:

1. Can a crowd identify key decision points? Given a prompt (set of requirements), is it

possible for a crowd to identify the main decision points that, when taken together,

represent the ‘heart of the design problem’ to be solved? Moreover, can the crowd

specify those decision points sufficiently clearly so that they can serve as input into

the next phase?

3

Figure 1.1: Morphological chart for a vegetable collection system.

2. Can a crowd identify solution alternatives? Given a set of decision points, is it possible

for a crowd to generate a diverse set of solution alternatives for each decision point?

Moreover, are at least some of those solution alternatives of a sufficiently high quality

that they actually solve the various partial design problems?

3. Can a crowd assemble a design from the individual solution alternatives? Given a

set of decision points and solution alternatives for each of those decision points, is it

possible for a crowd to select a set of alternatives that together form a complete or

near-complete design?

In this work, we focus on the second question: given a set of specified decision points, can

a crowd of workers generate a diverse set of solution alternatives with at least some set of

those alternatives being of high quality? We chose this question first, because it is here that

we believe the greatest benefit from the crowd may lie, as it is the question that is least

4

easily addressed by a single person, yet most easily parallelized.

To begin to formulate an answer to this question, we conducted four separate experiments

on Amazon Mechanical Turk [4] that together explore two experimental conditions: (1) user

interface (UI) design work versus internal code (IC) design work, and (2) workers operating

independently versus workers being shown previous designs from other workers. In each

experiment, we asked workers to provide solutions for four small, partial design problems,

each representing a decision point in a large design task. To perform their work, crowdworkers

used a special-purpose tool with which they were able to sketch a set of possible solution

alternatives and provide explanatory descriptions for each of these solution alternatives.

We evaluated the resulting diversity, quality, and perceived difficulty for each of the four

experiments. Our primary findings reveal that: (1) it is important for diversity to involve

multiple workers, since individual workers did not create diverse sets of solution alternatives,

(2) quality of the solutions varied considerably, (3) the task is seen as difficult by many

workers. In addition, we observed a variety of additional phenomena upon which we report.

The remainder of the thesis is organized as follows. Chapter 2 presents background mate-

rial on crowdsourcing, crowdsourcing models, crowdsourcing for software engineering, and

crowdsourcing for design broadly speaking. Chapter 3 describes the various elements in-

volved in our experiment design. Chapter 4 outlines the procedure we followed to analyze

the results. Chapter 5 presents the results of our study. Chapter 6 reviews the key find-

ings of our research. Chapter 7 discusses issues that arose throughout the work. Chapter

8 concludes by revisiting our contributions and outlining a number of directions for future

work.

5

2

Related Work

2.1 Crowdsourcing

Whereas the term ‘crowdsourcing’ was popularized to describe Internet-based activities [10],

the history of crowdsourcing dates back to more than 300 years ago. The list of the most

famous examples of the use of crowdsourcing includes the Longitude Prize in 1714 (when

the British government offered the public a monetary prize to whoever came up with the

most simple and practical method for the precise determination of a ship’s longitude at

sea), the first publication of the Oxford English Dictionary in 1884 (when 800 volunteers

catalogued words to create the first fascicle), and the design competition for the Sydney

Opera House in 1957 (see [21] for a complete timeline of the crowdsourcing history). Not

in the least because of the rise of digital connectivity in the world, the pace of the use of

crowdsourcing has accelerated over the past few years. Dawson and Bynghall [21] attribute

this acceleration to the influence of factors such as the rise of collaboration tools, the global

awareness of crowdsourcing, the comfort with remote work, and results being produced at

a competitive cost with great efficiency. To date, crowdsourcing is a practice driven by

6

Web 2.0 technologies [70], characterized by a customer, or requester, who advertises tasks

on a crowdsourcing platform that are processed by members of the crowd, or crowdworkers,

mostly for a fixed remuneration [39].

Implicit in the idea of crowdsourcing is the ability to create value that transcends individual

contributions, articulating collective insights through structured aggregation [21]. According

to Surowiecki [76], there are four criteria that empower the wisdom of a crowd: diversity of

opinion (each person should have private information even if it is just an eccentric interpreta-

tion of the known facts), independence (people’s opinions are not determined by the opinions

of those around them), decentralization (people are able to specialize and draw upon local

knowledge), and aggregation (some mechanism exists for turning private judgments into a

collective decision). Surowiecki states that, if a group satisfies those conditions, its judgment

is likely to be accurate.

Today, crowdsourcing utilizes advanced Internet technologies to take advantage of the col-

lective knowledge of the community or to exploit the crowd to directly produce goods and

services [69]. Many online platforms are available to perform tasks in a wide variety of do-

mains. For instance, Wordy [85] offers crowdsourced real-time copy-editing and proofreading

services. Another example is CastingWords [14], which provides audio transcription services

through the crowd. Finally, HYVE Crowd [37] is an example of a platform which runs cre-

ative competitions seeking designs for objects, ranging from a car trunk, to a hair product,

to a new individual coffee machine.

The constant increase in fields that adopt crowdsourcing [10, 21, 22, 40, 70] and the suc-

cess of existing crowdsourcing platforms provide initial evidence that crowdsourcing might

offer benefits over traditional ways of working. The research community has reaffirmed and

explained some of these benefits. Beyond many studies describing successful cases of crowd-

sourcing (e.g., [5, 22, 45]), other research seeks to document common lessons learned across

such case studies. Kittur et al. [42], for instance, state that crowdwork has the potential to

7

support a flexible workforce and mitigate challenges such as shortages of experts in specific

areas. As another example, Stol and Fitzgerald [75] highlight cost reduction, faster time to

market, higher quality through broad participation and creativity, and open innovation as

benefits of the use of crowdsourcing. Other benefits are described elsewhere (e.g., [21, 33]).

2.2 Crowdsourcing Models

Crowdsourcing is not a single strategy, but concerns an umbrella of approaches [35]. Accord-

ing to Doan et al. [22], any crowdsourcing system should address four main challenges: (1)

how to recruit certain users, (2) what contributions users can make, (3) how to combine user

contributions to solve the target problem, and (4) how to evaluate users and their contri-

butions. There are naturally multiple ways to approach these challenges. Different authors

describe, then, various crowdsourcing models that have emerged as relatively common.

Howe [35] identified, as early as 2008, four models of crowdsourcing. He suggests that,

depending on what is being attempted to be achieved, a requester can select one of the

following: harnessing the collective intelligence or crowd wisdom, using the crowd to sift

through things and vote, using the crowd to create what you want to sell, and tapping into

the crowd’s collective financial resource. He identified these models as different because of

the rather different underlying purpose of each.

Saxton et al. [69] describe a different categorization, one based on the underlying business

model. Their taxonomy includes the intermediary model, the citizen media production

model, the collaborative software development model, the digital goods sales model, the

product design model, the peer-to-peer social financing model, the consumer report model,

the knowledge based building model, and the collaborative science project model.

Dawson and Bynghall [21] offer yet another categorization of crowdsourcing models. They

8

identified no fewer than 22 categories, which are clustered into seven types of crowd business

models plus non-profit ventures. The list of categories includes, among others, competition

markets, microtasks, innovation prizes, and innovation markets.

For the purposes of this thesis, we work with the categorization proposed by LaToza and van

der Hoek [53]. They focus on crowdsourcing as models determined by eight characteristics

of how different crowds work together, focusing on the underlying collaborative nature of

crowdsourcing. They describe three main models: peer production (open source development

is a well known example of this model), competitions (TopCoder [81] and 99designs [1]

are examples of platforms embedding this model), and microtasking (typified by Amazon

Mechanical Turk [4]). As this thesis explores the application of microtask crowdsouring to

software engineering, and sofware design in particular, the next section details this model

further.

2.3 Microtask Crowdsourcing

Microtask crowdsourcing envisions a radically different model of work compared to other

crowdsourcing models [22, 49]. Unique is that workers are recruited using an open call and

are assumed to be transient, working on short, self-contained tasks [49, 53]. Frequently,

indeed, a microtask can be completed in a matter of minutes [49, 53]. A solution to a

more complex task is achieved by combining the set of self-contained microtasks through an

aggregation mechanism (e.g., majority voting) [53].

Microtasking offers many potential advantages. Many authors agree on this model’s primary

benefit: its extreme scalability [33, 49, 53, 62]. By dividing tasks into self-contained micro-

tasks, microtask crowdsourcing dramatically increases the potential for parallelism, enabling

the work to be distributed to large crowds and leading to potentially very fast completion of

9

large tasks [52, 53]. Additionally, microtasking has been observed to offer benefits such as a

more fluid labor force, fast worker recruitment, and, due to mass participation, the creation

of diverse ideas from the crowd [49, 53].

There are some kinds of work which are naturally more suitable than others to be approached

through microtasking: those that can be easily partitioned, distributed, and worked on. For

instance, the most common use of microtasking involves tasks such as labelling images [84]

or transcribing video [47]. These tasks can easily be broken down into smaller parts, require

minimal context, and can be completed in a matter of seconds. Microtasking as an approach,

however, starts facing more challenges when the complexity of the work increases, as such

work often leads to interdependencies among microtasks that must be carefully orchestrated.

Work has begun to explore the use of microtrask crowdsourcing for tasks that require such

coordination, and the resulting need for knowledge sharing [49], giving rise to the creation

of workflows to coordinate crowdworkers’ work [16, 33, 42, 44, 47, 62].

2.4 Crowdsourcing in Software Engineering

The field of software engineering is also investing effort in exploring the role that crowd-

sourcing can play. Mao et al. [58] tailored the original crowdsourcing definition by Howe to

make it more specific to software engineering: “Crowdsourced Software Engineering is the

act of undertaking any external software engineering tasks by an undefined, potentially large

group of online workers in an open call format”. There are a number of crowdsourcing plat-

forms specifically targeting software engineering work. For instance, TopCoder organizes

competitions for tasks such as algorithm development and software design [81]. Bountify

runs programming competitions, but for small self-contained coding tasks [9]. uTest [83],

99tests [2], Passbrains [64], and Testbirds [77] are examples of several crowdsourcing plat-

forms for software testing. These testing platforms match client’s needs with crowdworkers,

10

providing a wide range of testing services, such as functional testing, usability testing, and

performance testing.

The research community has developed various crowdsourcing tools as well, in order to

explore the possibilities of crowdsourcing in addressing more complex software engineering

tasks (see [58] for an exhaustive literature survey up to May 2015). As a few examples, Lim et

al. introduced StakeSource, a tool that uses crowdsourcing to automate stakeholder analysis

[55] (available online at [74]); Tillmann et al. created Code Hunt, a gaming platform for

coding contests to practice programming skills [17, 79]; Xue explored CrowdBlaze, a system

that combines crowdsourced human testing efforts with automatic testing tools to improve

testing coverage for Android apps [87]; and Li et al. developed CrowdMine, a system that,

through gamification, recruits non-expert humans who can assist in the formal verification

process of a piece of code.

Despite all of its potential benefits, the use of microtasks to approach software engineering

work has been barely explored in the last few years, with only a few software engineering

activities that have been approached through microtasks. For instance, for software devel-

opment, CrowdCode [51] and Collabode [28, 29] are two web IDEs that each use a somewhat

different mechanism to break down programming into microtasks, allowing a large crowd

of developers to code various aspects of a program in parallel. For software debugging,

CrowdOracles [65] recruits workers on Amazon Mechanical Turk to check and fix unit test

assertions. For bug fixing, HelpMeOut [32] is a social recommender system that aids the

debugging of error messages by suggesting solutions that peers have applied in the past.

Notably absent in this set of examples is software design, the subject of this thesis.

11

2.5 Crowdsourcing and Design

This thesis studies crowdsourcing as it is applied to software design. Compared to other

kinds of crowdsourcing work, design represents a task with significant more complexity. Yet,

today’s the popularity of crowdsourcing as an approach to design should not be surpris-

ing: diversity of thinking leads to creativity [88], a phenomenon long observed by social

science research on creativity and brainstorming [13, 56, 60]. Design work, then, draws on

crowdsourcing benefits such as broad participation and the potential to generate diverse

ideas, stimulating the production of creative and innovative approaches to solve problems

[27, 40, 88].

Outside of software, many commercial platforms show evidence of early success of design

work through crowdsourcing. 99designs [1] excels in running design competitions for graphic

and web design. Tongal [80] (audiovisual content), Slogan Slingers [71] (slogan creation

for advertisement and marketing), Arcbazar [6] (architectural design), and CrowdStudio [20]

(music creation), are just a few of many examples of crowdsourcing platforms running design

contests for different purposes. Design competitions create temporary arenas of exploration

where innovative solutions can emerge at far lower cost than similar efforts in traditional

settings [46], offering a wide range of quality alternatives in a matter of one or a few weeks

[45].

The research community has explored different workflows to enable a crowd to produce high

quality design work as well. Flash Teams [67] is a framework for dynamically assembling

crowdsourced small expert teams, by linking modular tasks in order to build a sequence of

tasks that, together, address more complex work, such as design prototyping and animation.

Crowd vs. Crowd (CvC) [63] is a design crowdsourcing method in which several design teams

made up of designers and assorted crowds compete with each other. Yu and Nickerson [88]

proposed a sketch combination system, in which a large crowd participates in an iterative

12

process of design, evaluation, and combination to create a chair for children. In all of these

cases, findings suggest that crowd based design processes may be effective in obtaining quality

design outcomes with high levels of satisfaction for stakeholders.

In addition to generating designs, crowdsourcing has been used to provide feedback and

critique existing designs for further improvement. Several studies have explored different

workflows and platforms for this purpose. For instance, CrowdCrit [57] is a system that

allows designers to receive design critiques from non-expert crowd workers. In several studies

with the tool, it was found that: (1) the quality of crowd critiques approached that of expert

critiques, (2) designers who received crowd feedback perceived that it improved their design

process, and (3) designers were enthusiastic about crowd critiques and used them to change

their design. As another example, Voyant [86] is a system which gives users access to a

non-expert crowd to receive perception-oriented feedback on their designs. The authors

highlighted the utility of the feedback generated by a crowd-based system for users and their

designs.

In software design, crowdsourcing has primarily been used for user interface design. For

instance, Huang et al. [36] propose a crowd-based method for creating mobile UI design

pattern galleries, so designers can explore examples in the wireframing stage of the design

process. As another example, Lasecki et al. [47] present Apparition, a crowdsourcing system

which helps designers to create working interface prototypes in real-time by sketching and

describing its functionality in natural language. As a final example, Nebeling et al. [61]

introduce an approach for the development of web systems, involving crowds in composing

data-driven web interfaces in a plug-and-play manner.

Crowdsourcing for internal software design (e.g. architecture, modules, code) is less explored,

both in practice and in research. TopCoder [81] is one of the few platforms that supports

internal design, through its competitions for general software design. Despite its popularity,

some studies highlight limitations in the process it follows [48, 75]. Particularly, the com-

13

petition model presumes a waterfall process, requires clients to be intimately involved, and

evaluates quality only late in the process. LaToza et al. [48] propose some improvements

to the competition model, introducing a recombination phase during which participants had

access to other participants’ designs produced in the first phase. They could therefore borrow

ideas from those other designs to improve their own work. Work quality improved overall,

though the study also offers several input at recommendations to further improve software

design competitions.

What is notable is that, in all of these examples of crowdsourcing software design, microtask

crowdsourcing is notably absent as an approach. Our study aims to begin to fill this gap,

and specifically explores the application of microtask crowdsourcing to software design, both

for user interface design and for internal code design.

14

3

Experiment Design

Chapter 1 introduced our overall vision of using a morphological chart [23, 24, 72] to support

microtask crowdsourcing for software design. It also scoped the problem addressed to a

subquestion of the overall vision: Can a crowd identify solution alternatives? To begin

answering this question, we designed the experiment that is detailed in this chapter.

Returning to the morphological chart, remember that what we are trying to achieve is to get

crowdworkers to generate solution alternatives for given decision points. This is, a design

problem needs to first be decomposed into a set of small, partial design decisions that need

to be made in order to tackle the overall problem; we term these design decisions decision

points. Once the decision points have been determined, the challenge is to involve a crowd

to generate solution alternatives for each of the decision points. We mapped decision points

into tasks, with each worker being provided access only to the information for the particular

decision point they are assigned. They do not have access to the whole design problem, nor

to the complete morphological chart.

We conducted four separate experiments on Amazon Mechanical Turk. We posted one

human intelligence task (HIT) per experiment. For any of the four experiments, once a

15

Figure 3.1: Stages of the experiment.

worker decided to participate in the HIT, they had to follow a link to our platform, on which

they undertook the sequence of steps illustrated in Figure 3.1.

First, they had to read and ‘sign’ a consent form. Second, they had to provide basic de-

mographic information. Third, they had to qualify for the experiment by passing a test

consisting of five multiple choice questions. Finally, if they passed the test, the worker was

given access to the actual task. After the worker finished providing solution alternatives,

they were asked to complete a questionnaire about their experience, and were provided the

option to give any additional feedback. After that, the worker was provided with a unique

completion code, to be submitted on Amazon Mechanical Turk to facilitate payment.

In the following subsections, we detail each of these steps.

3.1 Experimental Conditions

Our first experimental condition is about the type of task. Naturally, when designing a

piece of software, design takes place at multiple levels, including architecture, user interface,

internal components, classes, algorithms, etc. We decided to make focus on two of those,

namely user interface (UI) design and internal code (IC) design, one being more outwardly

oriented and the other more internally oriented. Each, too, requires different expertise and

the kind of work may be different enough to reveal differences in how the designs are created

16

by a crowd.

Our second experimental condition is about the impact of examples on the resulting quality

and diversity. Specifically, we wanted to explore whether the availability of designs made

by others influenced the workers in choosing how to approach their tasks. This is because

previous research [48] reveals that designers often benefit from borrowing ideas from others.

For this reason, we allowed workers in one condition to see designs from other workers and

copy parts or entire sketches from other workers, and workers in the other condition to not

see any examples at all. We of course did not permit the submission of identical solutions.

Each of the four resulting experiments arises from one of the four possible combinations

between the two experimental conditions. The experiments were performed in sequence,

one after the other, starting from UI design without showing other workers’ work (UIplain),

followed by UI design with revealing others’ work (UIexamples), and repeating the same two

conditions for internal code design (ICplain and ICexamples, respectively).

3.2 Participant Recruitment

All participants were recruited via Amazon Mechanical Turk. We considered other platforms

(Topcoder [81] and Upwork [82]), but decided to use Amazon Mechanical Turk because of

its ubiquity. The HIT was posted as an open call, without any stipulated restrictions. We

did not promote the HIT, but rather let workers discover it on their own.

Workers were able to participate only once in our experiment. We set this restriction for

two reasons. First, we wanted to recruit a diverse pool of workers, so to obtain solution

alternatives from many workers instead of receiving many designs created by just few workers.

Second, we wanted to avoid a learning effect in workers.

17

Figure 3.2: HIT description for UIplain experiment.

Figure 3.2 shows the HIT description as participants saw it in Amazon Mechanical Turk.

The HIT described the steps, requirements, payment information, and provided a link to

complete the task.

3.3 Experiment Time

Our goal for each of the four experiments was to collect solution alternatives from 80 workers

(20 per each of four decision points). We decided upon this number of participants, because

we were interested in analyzing both quality and diversity of the solution alternatives pro-

duced. To guarantee we would obtain a reasonable sample per decision point, we aimed

for 20 workers per decision point. Because workers could submit from one to five solution

18

alternatives, we would be guaranteed a minimum of 20 solution alternatives and a maximum

of 100. We set a maximum time of one week per experiment, and we decided to post the

task twice within that timeframe. The reason why we opted to post the HIT twice instead

of keeping a single HIT running for seven days is because newer HITs are more likely to

be discovered by workers among the extensive list of tasks available in Amazon Mechanical

Turk.

3.4 Qualification Tests

Workers were eligible to participate in the task only if they passed a qualification test, so

to ensure that each worker actually had some knowledge related to the task (i.e., some UI

design knowledge or some coding knowledge). Workers were included based on their score

on the qualification test. If they answered at least three out of five questions correctly, they

could actually take the HIT and work on the task.

We prepared two different types of qualification tests, both of them following the same

multiple choice format. For the user interface experiments, questions in the qualification

test were about user interface design principles. For the internal code design, experiments

the test consisted of five questions about a Java code snippet. We prepared multiple tests

for each, to be randomly assigned to workers. Appendix B includes all qualification tests

that we used.

3.5 Tasks

To ensure breadth in our experimentation and analysis, and not accidentally bias the experi-

ment, we used four decision points per experiment. Each decision point committed a worker

19

to design a different aspect of the same software. Each single HIT, thus, had underneath it

four microtasks, one of which a worker would be randomly assigned to work on. To generate

these tasks, we examined existing (complete) designs that were previously created by profes-

sional software designers for an educational traffic light simulator (see [66] for an extensive

treatment of the design prompt). From these existing designs, we created a list of thirty key

decision points, out of which we selected eight to use: four related to user interface design

and four related to internal code design. Within the user interface decision points, we chose:

map creation, setting of traffic light timings, visualization of the state of the simulation,

and determining the flow of traffic. For the internal code design decision points, we selected

the following: how to represent cars, the algorithm by which cars move, how to internally

represent the road system, and the algorithm by which the traffic lights colors change.

All tasks followed the same structure. Each consisted of a brief description of its goal, four

precise requirements, a couple of hints, and a reminder of the overall goal of the HIT being to

generate solution alternatives. Figure 3.3 shows the task for the ‘representing cars’ decision

point (see Appendix C for all eight decision points).

The task asked a worker to provide at least one and up to five different solution alternatives

for a given decision point. We chose not to ask for just a single solution alternative, because

we were curious whether individual workers would contribute more than one solution alter-

native and, when they did provide multiple solution alternatives, whether those alternatives

were diverse (especially as compared to contributions made by other coworkers).

3.6 CrowdDesign Platform

To complete the HIT, workers had to use our proprietary CrowdDesign platform, which is

shown in Figure 3.4. On the left of the screen (marked with (1)), workers were provided

20

Figure 3.3: Task description for ‘representing cars’ decision point.

with all of the instructions necessary to complete the task. In the middle, the platform

provides a set of basic sketching features (2), which allow the worker to produce a sketch

illustrating their solution alternative on an empty canvas on the right (3). Note that the

canvas has two associated text fields: one for the name of the solution alternative, and the

other for a brief explanation of the solution alternative (4). Even though we were expecting

short descriptions, the textual field did not have any limit on the amount workers could

write, enabling workers to provide as much or as little detail as they considered necessary.

Scrolling down reveals four additional canvases and associated textual fields, to be used for

up to four additional solution alternatives (5). Once workers are content with their work or

21

Figure 3.4: CrowdDesign platform.

otherwise feel they are done, they use the “Review & Submit” button (6) to submit their

work and access the final survey.

Below the “Review & Submit” button is a “Quit” button. Workers had the option, at any

time, to abandon the task. They could simply close the browser if they decided they no

longer wanted to complete the task. However, by clicking the “Quit” button, they were

redirected to a questionnaire. In this way, we were able to collect information from people

who quit and analyze the reasons a worker had to abandoned the work.

Only for the two experiments where workers had access to their coworkers’ work (UIexamples

and ICexamples), the prototype has an additional section ((7) in Figure 3.4). On scrolling

down in this area, a worker can see other workers’ solution alternatives. This area not only

displays the previous work, but workers could select and copy parts of any example sketch

and include it in any of the five canvas as part of their own solution alternatives. They could

22

Figure 3.5: Copy and duplicate features in CrowdDesing platform.

even copy entire sketches. Figure 3.5 shows how a worker can use the copy and duplicate

features. After selecting (part of) the source sketch, the user can select any of the five

available canvases as the destination. If content already existed, the copied content would

be added.

3.7 Questionnaire

After completing the task, workers were asked to complete a survey with four questions (see

Figure 3.6). The first three questions asked them to rate on a one (easy) to seven (difficult)

scale three aspects: ability to complete the entire task, difficulty level of the decision point,

and adequacy of support by the tool. The fourth question was open ended, and asked workers

for any general feedback they might have.

Those workers who decided to click on the “Quit” button to abandon the task were redirected

to a different questionnaire (see Figure 3.7). In this case, we asked only two questions. The

first question asked the worker why they quit the task. We pre-defined four options capturing

23

Figure 3.6: Exit questionnaire.

Figure 3.7: Quit questionnaire.

the most common reasons for a worker to abandon a task (to lower the hurdle of collecting

this information). The second question was an open-ended question, where workers had the

chance to give more detail about the selected reason and provide additional feedback.

24

3.8 Review Procedure

We performed the review and payment process after workers submitted their work. To

support the review process, we built a complementary admin tool (shown in Figure 3.8). Its

main interface lists all of the workers who entered the tool, as updated in real time. The

admin tool, for internal access only, serves three main purposes. First, through the main

view, we could monitor the submissions and work distribution. Second, a different view gave

us access to each of the workers’ work in detail, a feature that was used to evaluate and judge

each of the solution alternatives. Last, once we completed judging the work of a worker, the

tool allowed us to keep track of rejections and payments.

For the payment process, we worked with the Amazon Mechanical Turk dashboard. Through

this dashboard we had access to the completion codes submitted by the workers. We verified

in the dashboard that each provided completion code corresponded to a worker’s set of

solutions. Once the set of solutions was identified in our tool, we checked the judgment and

paid the bonuses accordingly. Fake codes were rejected.

Figure 3.8: CrowdDesign admin tool.

25

3.9 Compensation

A worker who provided a valid completion code and demonstrated honest effort (i.e., clearly

attempting to address the design problem) was paid $2.00. Additionally, a worker was given

a bonus of $0.50 per valid sketch (i.e., a sketch that meaningfully illustrated the solution

alternative). Further, to encourage workers, we gave an extra $1.00 bonus for each solution

alternative that met at least three out of its four task requirements. Therefore, workers were

able to earn up to $9.50 per task by providing five complete sketches. This compensation is

based on the California minimal wage ($9.00 per hour) and our estimation that completing

five solution alternatives takes approximately an hour (given that these are small, partial

designs, not full designs).

26

4

Data Analysis

We performed a variety of analyses on the collected data. The key analysis, of course,

concerned the diversity and quality of the solution alternatives. That is to say, we studied

how many different conceptual approaches can be found within the set created both by the

as attributed to the crowd and to individual workers, and what is the overall quality of these

designs. However, we performed additional analyses, which helped us in understanding how

the crowd operated during the experiment and where the main difficulties for workers lied.

Bellow we detail how we approached each of our analyses.

4.1 Diversity

First and foremost, we were interested in whether a crowd can generate a diverse set of

decision points for a given solution alternative. To assess whether the solution alternatives

are diverse, we applied affinity diagramming [31] to sort and group the solution alternatives

within each of the decision points. For this purpose, we first printed all of the solutions

for each of the decision points of the four experiments. We partitioned the activity in

27

Figure 4.1: Affinity diagrams constructed during data analysis.

two, starting with the designs generated during both UI design experiments (UIplain and

UIexamples), and repeating the same procedure with the solutions generated during the

IC design experiments (ICplain and ICexamples). Six researchers (including the author of

this thesis) engaged in this activity, which consisted of iteratively clustering designs that

addressed the problem using a similar approach (again, per decision point), which then gave

rise to general and overarching categories. Figure 4.1 shows affinity diagrams constructed

during the analysis of the solution alternatives produced during UIplain and UIexamples.

The principal characteristic of affinity diagramming is that, instead of grouping notes in

predefined categories, the work is done from the bottom up, where categories emerge from the

designs themselves. For example, “Click and drag”, “Nodes”, and “Blocks” were categories

that emerged for the ‘creating maps’ decision point during the UI experiments.

The more categories were found for a decision point, the more diverse the set of solution

alternatives. We both examined the diversity of the full set of solution alternatives and the

diversity within each individual worker’s contributions.

4.2 Quality

Second, we were interested in the quality of the solution alternatives. Diversity is important,

but if none of the solution alternatives are of high (or even just reasonable) quality, then

our approach is not an appropriate way of designing software. To determine the quality

of the set of solution alternatives, each solution alternative was independently assessed by

28

an expert panel. We formed two panels, the first one to evaluate the solution alternatives

generated during the UIplain and UIexamples experiments, and the second one to assess

solution alternatives produced during the ICplain and ICexamples experiments. Each of

the panels was composed of three researchers, in addition to the author of this thesis. All

assessors had a background in design and were extensively familiar with the traffic simulator

design problem.

Each solution alternative was rated on a one (poor) to seven (excellent) scale in three crite-

ria: understandability, feasibility, and usability for UI design tasks, and understandability,

feasibility, and elegance for IC design tasks. An overall score was calculated by averaging

across the three criteria.

In addition, the panel assessed the completeness of each of the solution alternatives by

tallying how many of the four requirements of the relevant decision point were met. We

considered a requirement met if at least three out of four assessors declared it was met.

The process to evaluate the solution alternatives was the following. Each rater had access to

all solution alternatives they needed to rate, organized in buckets per decision point. Each of

the buckets contained solution alternatives from the two experiments under analysis, mixed

in a random order without any identification of the experimental condition or worker. That

is, all the solutions generated during UIplan and UIexamples were mixed, and the same for

the solution alternatives produced during the IC experiments. In order to ensure inter-rater

reliability, each of the panels had an initial meeting. During these meetings, we randomly

selected five solution alternatives for each decision point. Each of the raters gave a separate

score for each of the criteria, depending on the kind of task under evaluation (understandabil-

ity, feasibility, and usability for UI solution alternatives, versus understandability, feasibility,

and elegance for IC solution alternatives). During the same assessment, raters had to indi-

cate for each of the requirements in the task, if it was met by the solution alternative under

evaluation. We disclosed the scores after individually going through the five designs, and

29

discussed disagreements among raters. The remaining solutions were scored individually and

reported to the research team at the end.

As a result of the evaluation, each solution alternative was judged with a quality score

(numeric value from one to seven) and a completeness score (numeric value from zero to

four).

4.3 Difficulty

Third, we were interested in how difficult the workers found the HIT to be. For this, we

looked at the reasons they provided for quitting (if they chose not to complete the HIT and

simply exited our tool), examined the scores workers provided to the numerical questions

on the questionnaire, and, once again, performed affinity diagramming on the open-ended

feedback question to identify possible common themes in the responses. For example, “Did

not understand the task” and “Did not have time to complete the task” were categories we

identified during this analysis.

Second, we repeated the same procedure for workers who completed their tasks, examining

both the textual feedback and numerical scores workers provided at the end of the task. In

this case, “Problems with the tool” and “Task improvement suggestion” are examples of

some of the categories that emerged from the analysis of workers’ responses.

4.4 Collaboration

Fourth, we were interested in the degree to which workers borrowed ideas from previous

participants and how the exposure to solution alternatives produced by coworkers impacted

quality and diversity. We performed two different analyses. The first one looked at the use

30

Figure 4.2: Example of the use of ‘duplicate’ feature.
The top solution alternative is the source design. The bottom solution is the design from a

second worker who copied and improved their coworkers solution alternative.

of the copy and duplicate functions. The second analyzed the distance between appearances

of solution alternatives that belong to the same category.

In our first analysis, we employed a conservative approach in order to examine whether copy

and duplicate actually happened. Figure 4.2 illustrates an example of how a worker made

use of the ‘duplicate’ function to choose a design that they then improved.

First, we identified workers, such as the one in the example, who used the copy or duplicate

31

features, and paired their solution alternatives with the source solution. Through our admin

tool, we were able to track these instances because our platform logs all of these actions).

We then looked at the quality score and requirements met for each of the solutions (both

source and destination) and compared the values.

We also analyzed other aspects, such as, for instance, the average score of the source solution

alternatives to see whether workers were able to identify the good designs among all of the

available solution alternatives. As another example, we also calculated the distance between

source and destination solutions, in order to understand how much research do workers do

when looking for solution alternatives from which to copy.

Our second analysis looked at the entire set of solution alternatives generated during the

UIexamples and ICexamples experiments. We were interested in, independently of the ex-

plicit use of the ‘copy’ or ‘duplicate’ feature, the degree to which previous work influenced

the generation of solution alternatives. We used as input of this second analysis the analysis

that looked at the diversity generated by individual workers. In this case we inspected,

for each of the categories identified for a certain decision point, the distance (in number of

workers) between a solution within that category and the next appearance. In doing this for

each experimental condition, we sought to find possible patterns in workers behaviours.

32

5

Results

This chapter presents the results of each of the four experiments we performed on Amazon

Mechanical Turk. The first section describes general results across the four experiments.

After that, we unwrap each of the experiments, starting with UIplain, followed by ICplain,

and ending with the two experiments in which we revealed other workers’ work (UIexamples

and ICexamples). Last, we present additional analyses regarding demographics, results of

qualification tests, and an analysis about the ‘top designs’ for each of the four experiments.

5.1 General Results

Table 5.1 shows the participation across the four experiments. Despite the fact that between

19% and 27% of the participants did not continue after signing the consent form, for all of

the experiments the largest drop is in the qualification test (49% to 60%). An additional

small drop took place with workers who passed the test but did not enter into the tool (1.25%

drop on average). Between 72 and 94 workers eventually submitted their work. From these

workers, some did not submit any work of honest effort (again, work that clearly attempts

33

Table 5.1: Number of workers at each step of the experiment.

Figure 5.1: Example of a solution alternative which did not show honest effort.
The worker provided this solution for experiment ICplain, for the ‘moving

cars’ decision point.

to address the given design problem), meaning we rejected their work. An example of such a

rejected solution alternative is shown in Figure 5.1. The final row of the table, then, shows

the number of workers whose work we accepted, because they created at least one viable

solution alternative.

Participants whose work was accepted had different backgrounds. Table 5.2 shows the de-

mographics across the four experiments. We provided the following options to workers:

Undergraduate Student, Graduate Student, Professional Developer, Professional UI/UX de-

34

Table 5.2: Demographics.

signer, and Hobbyist. If any worker did not feel represented by these options, they could

select “Other” and detail their experience. Some of the most frequent examples of what

workers indicated in this field are professor (22 along the four experiments), system admin-

istrator (17), software tester (10), business analyst (9), and researcher (7). In most of the

experiments, the majority of our participants were hobbyists. The exception is experiment

ICexamples, for which 39% of the participants were self-declared professional developers.

There was also remarkable participation of professional developers and designers in the three

remaining experiments (25%, 18%, and 30%, respectively) and a notable difference in soft-

ware developer participation between the UI design tasks and the IC design tasks (higher in

IC design). Of note is, too, that we hoped for more UI professionals to participate.

Each UI experiment lasted seven days, during which 181 and 187 solution alternatives were

collected, respectively. The IC experiments lasted 11 days and 14 days, respectively, during

which 158 and 115 solution alternatives were collected. On average, each worker provided

two-and-a-half solutions for the UI tasks and two solutions for the IC tasks. Tables 5.3

and 5.4 show the distribution of how many accepted solution alternatives were produced by

how many workers during each experiment. We note that the majority of workers produced

one or two accepted solution alternatives. A good number (around 32% per experiment) of

workers provided three or more solution alternatives. This is not true for the last experi-

ment (ICexamples), where only 10 (15%) workers submitted two or more accepted solution

alternatives.

35

Table 5.3: Number of solution alternatives submitted per decision point (UI design).

Table 5.4: Number of solution alternatives submitted per decision point (IC design).

Each worker took, on average, six minutes for each provided solution for the UI experiments

and five minutes for the IC experiments. Despite the average being only five to six minutes,

a few workers spent between 30 and 45 minutes solving the task.

The kind of work each worker produced varied from worker to worker. Some workers chose

to draw a very simple sketch and provide a very long and detailed textual description (see

Figure 5.2 (A)). Others opted for sketching a very detailed mockup or diagram together with

minimal text (see Figure 5.2 (B)). Yet others were more balanced.

Within the UI design experiments, we mainly found drawings with UI elements such as

buttons, panels, and radio buttons. Some workers drew just elements necessary to describe

their solutions, whereas some others provided an entire depiction of what the screen would

look like. In the case of the IC experiments, workers chose to express their solutions through

class diagrams, flow diagrams, pseudocode, state machines, other informal notations, and

combinations thereof (see Figures 5.3 (A) and 5.3 (B)).

36

Figure 5.2: Designs submitted by workers for UI design task.

37

Figure 5.3: Designs submitted by workers for IC design task.

38

5.2 User Interface Design Without Examples (UIplain)

5.2.1 Diversity

Table 5.5 presents the results of a first analysis with respect to diversity. Each decision point

had at least ten categories of conceptually different solution alternatives, which is an impor-

tant result as it shows that the primary benefit of competitions (generating alternatives) can

be preserved in a microtask setting.

Table 5.5: Number of resulting categories per decision point for UIplain experiment.

Our second analysis looked at diversity of the solution alternatives per worker, per decision

point. Figure 5.4 shows the result for the ‘creating maps’ decision point. Each of the

rows represents a worker, with the name and color of each cell (up to five) illustrating the

category of the corresponding solution alternative. For instance, worker pMB5 submitted

five solution alternatives, with three of them belonging to the same conceptual approach –

creating the map in a “Pencil-Like (Draw)” manner. Most, though not all, of the workers who

submitted multiple solution alternatives ended up submitting a homogeneous set. Workers

pMB2, pMB11, and pMB21 are exceptions, with especially worker pMB2 submitting four

conceptually very different solution alternatives. This confirms that it is important for

diversity to involve multiple workers.

At the same time, Figure 5.5 brings up the question if asking for fewer alternative solutions

per worker might lead to the same result in terms of overall diversity. A careful examination

of Figure 5.4, however, reveals that pMB6 introduces a unique new category with solution

39

Figure 5.4: Diversity per worker for ‘creating maps’ design (UIplain).

Figure 5.5: Cumulative number of unique categories provided by workers
for ‘creating maps’ design (UIplain).

alternative 3 and pMB2 another new category with solution alternative 4. Repeating the

analysis for all decision points, to retain the same number of categories, a minimum of 4, 5,

3, and 4 solution alternatives per worker is needed, respectively. These results suggest that,

in addition to involve multiple workers, there is some value in asking individual workers for

multiple solution alternatives. Diversity also benefits from some key workers who provide

multiple conceptual approaches when contributing with more than one solution alternative.

40

We also wondered if fewer workers could provide the same diversity as the overall set. Ex-

amining Figure 5.5, which shows how many unique categories were identified at each point

in time, it can be observed that worker pMB9 is the last worker to introduce a completely

new approach to solve the ‘creating maps’ design problem. Repeating this analysis across

all decision points, to get the same number of categories, a minimum of 9, 19, 11, and 21

workers is needed, respectively. We can observe that, on one hand, there are two decision

points that saturate with around 10 workers, and, on the other hand, two other decision

points which saturate much later, requiring on the order of 20 workers. This represents a

significant difference, and possibly explained by the nature of each of the problems stated in

each of the decision points. Perhaps it is more easily to think of different solution alternatives

for some kinds of decision points than others.

5.2.2 Quality

Table 5.6 presents the results of our first analysis examining the quality of the work. For

each decision point, we counted the number of solution alternatives that score across the

range of 0–1 (lowest quality) to 6–7 (highest quality), as well as the totals and averages. It

is readily observed that work of the highest quality is relatively absent, though 39 solution

alternatives were rated 4–5 and 18 were rated 5–6, indicating an overall good quality for

those solution alternatives.

Table 5.6: Quality of solution alternatives (UIplain).

41

Table 5.7, however, tells a somewhat different story. It shows a count of the number of

requirements met, as decided by the same assessors. The majority of solution alternatives

(71) met three of the requirements and another 25 met all four of the requirements.

Table 5.7: Number of requirements met (UIplain).

We crossed both results (quality score and requirements met) to analyze the proportion of

results that combine good quality and completeness. A careful examination of Table 5.8

shows us that 55 solution alternatives are located in the bottom right of the table (shaded

area, which represents 30.4% of the total number of solutions). Overall, we are encouraged

by this result, even though it is clear (and not unexpected) that what might be considered

‘wasted effort’ exists. Having a great number of solution alternatives within the group of the

‘top designs’ suggests that the crowd did achieve the creation of a solid basis for next steps

in the work with the morphological chart.

A second reason why we are encouraged harkens back to the issue of diversity: many of

the ‘meeting two requirements’ solution alternatives fall in different categories and, as such,

Table 5.8: Crosstabulation of quality scores and requirements met.

42

Figure 5.6: Example of a top solution provided for ‘setting timing of traffic lights’ decision
point (UIplain).

represent out-of-the-box solutions that may well be useful to the designer of a system, or

that could serve as a basis for improved solution alternatives, with an extra step of iteration.

A third reason is that some of the 5-6 and 6-7 solution alternatives are quite exceptional in

describing complete and innovative solutions. For instance, consider the solution in Figure

5.6. It scored 6.75 as quality, and it meets all four of the requirements. It is especially

useful, because it is a very clear and understandable solution alternative, provides a very

simple mechanism for users to set traffic light timings, considers error information, and the

approach the worker is using is very appropriate for the particular problem.

We looked at the correlation between score and time spent on a solution alternative. We

found that there was a moderate positive correlation between these two variables (r=0.26,

p<0.001). We also looked at sketch complexity (approximated by the number of strokes in the

sketch area), relating this variable with the quality scores given. We found a stronger, but still

moderate relationship between sketch complexity and quality scores (r=0.435, p<0.0001).

Finally, we examined the description length (measured in amount of characters used in the

description text field to explain the solution). Again, there is a moderate correlation between

description length and solution quality (r=0.353, p<0.0001). These results suggest that there

43

is high variability between solutions, and not a ‘rule’ we can apply to automatically filter and

detect good results. This is in line with what we already highlighted: some workers choose

to be more visual, others more textual. Workers of each nature appear to be providing high

quality solution alternatives.

5.2.3 Difficulty

Most of the 282 workers who passed the qualification test and entered the tool to begin

their UI design task either did not finish the HIT (68.8%) or had all of their results rejected

(3.5%). Of those who quit, many left the tool without leaving any feedback. Of those who

did provide feedback, however, many expressed that the task was not clear or too hard.

One of the workers commented: “I did not realize how much programming knowledge was

actually required to complete this HIT. I don’t have any clue what to put in the sketch

boxes.” Another asked for more information or examples: “I have no idea what this task is

asking me to do. An example would have been helpful.”

Numerically, workers rated their ability to complete the entire task at an overall difficulty

level of 5.17 (out of 7), difficulty level of the decision point at 4.72 (out of 7), and adequacy

of support by the tool at 4.94 (out of 7). Overall, these numbers corroborate that the HIT

was not easy, but also that our tool could use improvement (which the written feedback

also highlighted). These improvements mostly refer to features of the sketching tool, such as

straight lines, arrows, and availability to fill objects. Yet, quite a few workers also commented

on having fun, and finding our HIT to be intriguing among the often monotone HITs of

Amazon Mechanical Turk.

44

5.3 Internal Code Design Without Examples (ICplain)

5.3.1 Diversity

Table 5.9 presents the results of a first analysis with respect to diversity for the ICexamples

tasks. Again, as in UIplain, each decision point had at least ten categories of conceptually

different solution alternatives and a maximum of 14 different categories.

Table 5.9: Number of resulting categories per decision point for ICplain experiment.

These similarities of the results of UIplain and across ICplain, both in terms of decision points

and in terms of experiments, hints that diversity saturates after a while. Despite having a

different number of collected solution alternatives for each of the decision points, the number

of categories remain relatively constant: between 10 and 14 categories. It seems to indicate

that more solution alternatives does not guarantee an increment in diversity. This could be

illustrated with the example of the ‘moving cars’ decision point. Despite being the decision

point with the greatest number of solution alternatives (47) for the ICplain experiment, it

is not the decision point with the best diversity (10 categories).

We examined the diversity in the categories of the solution alternatives each worker provided.

Figure 5.7 shows the result for the ‘moving cars’ decision point for the ICplain experiment.

Each of the rows represents a worker, with the name and color of each cell (up to five)

illustrating the category of the corresponding solution alternative. Most but not all of the

workers who submitted more than one solution ended up submitting variants of the same

solution that were conceptually still very similar. Some exceptions exist. For instance, worker

pDR2 submitted three conceptually different solutions. Similar to UIplain, this confirms that

45

Figure 5.7: Diversity per worker for ‘moving cars’ design (ICplain).

is important to involve multiple workers in the creation of alternatives.

We also looked at whether fewer solutions per worker could be sufficient to generate the same

level of diversity. In the case of the ‘moving cars’ decision point, asking for two solution

alternatives per worker would have been sufficient to generate ten categories. Across all

decision points, to get the same number of categories, we need a minimum of two, two, two

and four, respectively, which suggests that fewer solution alternatives per worker appear to

be sufficient for this kind of design as compared to UI design. Perhaps it is possible to more

easily think of alternative data structures, algorithms, or internal representations.

Examining Figure 5.8, which shows how many unique categories were identified at each point

in time, it can be observed that worker pDR8 is the last worker to introduce a completely

new approach to address the ‘moving cars’ design problem.

Across all decision points, to get the same number of categories, a minimum of 13, 8, 18, and

16 workers is needed, respectively. Compared to UIplain, less workers are needed to achieve

the same diversity. At the same time, while for UIplain we identified two groups of decision

points (one group needing about 10 workers, and the second one around 20 workers), the

values in ICplain are more spread out in range.

46

Figure 5.8: Cumulative number of unique categories provided by workers
for ‘moving cars’ design (ICplain).

5.3.2 Quality

Table 5.10 presents the results of our first analysis examining the quality of the submitted

work for the ICplain experiment. The absence of work of the highest quality is more pro-

nounced compared to UIplain, though 41 alternative solutions were rated 4-5 and 11 were

rated 5-6, indicating that an overall good level of quality is present. Using the independent

samples t-test, we did not find any significant difference in overall quality between UIplain

and ICplain (p<0.58).

Table 5.11 shows a count of the number of requirements met, as decided by the same assessors

Table 5.10: Quality of solution alternatives (ICplain).

47

Table 5.11: Number of requirements met (ICplain).

who rated the quality of the ICplain solution alternatives. Even though there is a high

number of solutions that address either three (35) or four (28) of the requirements, the

majority of solution alternatives (46) did not meet any of the four requirements. Compared

to the distribution in UIplain solution alternatives, the difference in requirements met is

significant (p<0.008): on average, the solution alternatives of the workers who participated

in ICplain met fewer requirements. The main difference lies in the increment of workers

not meeting any of the four requirements, meaning that workers did not address the design

problem presented in the task. This result could suggest that the overall goal of each of

the tasks in the ICplain experiment is harder or more complex, as compared to the tasks in

UIplain. It seems that an understanding threshold exists for understanding IC design tasks,

which is higher than the one for UI design tasks.

We plot the intersection of quality scores and requirements met in Table 5.12, with 25.3%

of the solution alternatives scoring three or higher and meeting three or more requirements,

at the same time. This is a lower percentage than UIplain. However, this difference is not

statistically significant (p<0.30).

Different from UIplain, where there was a moderate positive correlation between time spent

and quality score, there was no significant relationship between time spent and quality score

for ICplain (r=-0.16, p<0.063). Contrary to the results found for UIplain, we found low

strength but a statistically significant negative correlation between the sketch complexity

(approximated by the number of strokes in the sketch area) and quality score (r=-0.283,

48

Table 5.12: Crosstabulation of quality scores and requirements met (ICplain).

p<0.001), and low strength but a statistically significant positive correlation between de-

scription length (measured in amount of characters used in the description text field to

explain the solution) and quality score. Results suggest, once again, that there is high vari-

ability between solutions, and that here is no ‘rule’ we could apply to automatically filter and

detect good results. However, contrary to UIplain, there seems to exist a, still weak, indica-

tion that text is more important over graphics to produce a high quality solution alternative

for IC design tasks.

5.3.3 Difficulty

Out of the 125 workers who did not finish the task, 35 left feedback expressing the reason.

Once again, the most popular reason for quitting was the task’s lack of clearness. One of

the workers said “[...] I find I’m at a loss with how to move forward at this time. I suppose

that’s the exact problem you’re trying to tackle, just wish I had some inclination where to

start”. We also observed in the written feedback that workers found the HIT was more time

consuming than the average task they can find on Amazon Mechanical Turk: “I started this

task too late at night and I don’t think I have enough time to do it right.”

Workers who finished the task and submitted accepted work rated their ability to complete

the entire task at a difficulty level of 4.80 (out of 7), difficulty level of the decision point at

49

4.65 (out of 7), and adequacy of support by the tool at 4.32 (out of 7). Overall these numbers

again indicate that the HIT was not easy, but that this kind of task was perceived as slightly

less difficult than task of UIplain (ability to complete the entire task p<0.04; difficulty level

of the decision point p<0.11; adequacy of support by the tool p<0.07).

Once more, we found a few workers commenting on having fun: “Overall it was a fun

challenge for me and if the intent was to leave things open for interpretation for more

brainstorming, then it did a good job”.

5.4 Influence of Examples (UIexamples and ICexam-

ples)

5.4.1 Diversity

We repeated all of the previous analysis for the two experiments in which we revealed other

workers’ work as examples. Tables 5.13 and 5.14 show the total number of categories and

the number of unique categories identified in each decision point, for each of the four experi-

ments. Looking first at the total number of categories, we observe a reduction in the number

of categories, for all eight decision points, with the exception of the ICexamples for ‘repre-

senting cars’ decision point. This suggests that the exposition to examples negatively affects

the diversity, as workers who are exposed to examples create less diverse sets of solution

alternatives than workers working on their own.

Even though the crowd produced a less diverse set when exposed to examples, we noticed

that most of the categories overlap with categories identified in the previous experiments,

with some categories even being unique. There are two interesting observations out of

these results. First we note that, even though in the second experiment we recruited new

50

Table 5.13: Number of resulting categories per decision point (UIexamples).

Table 5.14: Number of resulting categories per decision point (ICexamples).

workers and they did not have access to solution alternatives from UIplain and ICplain

respectively, the same conceptual approaches emerged. Therefore, results are line with what

we already highlighted: solution alternatives for decision points saturate. However, still, new

conceptual approaches are provided by the second group of workers, but not as many as in

the respectively experiment without examples.

Replicating the second analysis for diversity, we are not only able to see the diversity pro-

duced by each individual worker, but also how each worker influences the approach of the

work of the workers that follow them. Figure 5.9 and Figure 5.10 show the diversity for the

‘creating maps’ (UI) and ‘moving cars’ (IC) decision points, respectively. It is interesting

to see how in Figure 5.4 the ‘map only’ approach repeats worker after worker, until eMB7

introduces new approaches, after which these influence the approaches taken by the next

workers.

Figures 5.11 and 5.12 reinforce the observation by showing how, in general, worker n much

more frequently repeats a past approach to solve the task. In these figures, the number in

the worker ID indicates the order in which workers submitted their solution alternatives (i.e.,

MB1 represents the first worker in submitting their worker for the ‘creating maps’ decision

51

Figure 5.9: Diversity per worker for ‘creating maps’ decision point (UIexamples).

Figure 5.10: Diversity per worker for ‘moving cars’ decision point (ICexamples).

point, MB2 the second, and so on). In UI examples, worker MB7 is the one who introduces

the new approaches, and that is when the set started to become more diverse. In the case

of Figure 5.12, the first three workers provided solution alternatives representing unique

categories, but not until worker DR9 is another new category introduced. In both charts we

52

Figure 5.11: Cumulative number of unique categories created by workers for ‘creating
maps’ design (UIexamples).

Figure 5.12: Cumulative number of unique categories created by workers for ‘moving cars’
design (ICexamples).

observe long flat lines, which indicates workers do not innovate in how to solve the problem,

but create variations of the same approach. Saturation, too, took place much later. The

pattern exists for the other decision points as well (see Appendix E).

53

5.4.2 Quality

Tables 5.15 (top) and 5.15 (bottom) show the quality scores for the solution alternatives

collected during the experiments in which we revealed examples. In the case of UI design,

there is a prominent increase in the number of low quality solutions (scores 0-1 and 1-2),

resulting in a reduction of the average quality by 0.9 points. This difference is statistically

significant (p<0.0001).

Looking at the ICexamples results we observe the opposite effect. The average quality

increased by 0.3 points and the number of low quality solutions (those solutions which

scored either 0-1 or 1-2) reduced from 27% of the total of solutions to 20% of the solutions.

However, these results are not statistically significant (p<0.07).

We looked at the data from various angles trying to answer the question as to why results

from the two experiments were so dissimilar. One particularly interesting answer emerged

when looking at just the first ten solution alternatives produced for each decision point. In

the case of UIexamples, the average quality of the first 10 solutions for each decision point is

Table 5.15: Quality of solution alternatives for UIexamples (top) and ICexamples (bottom).

54

1.0, 2.5, 2.9, and 1.8, respectively. In the case of ICexamples, the average quality per decision

point was 4.3, 3.0, 2.2, and 4.1 respectively. We suspect that the first solutions in each set

might therefore drive the quality of subsequent solutions, setting implicit expectations of the

quality that is needed.

Figure 5.13 shows the cumulative average quality score with each new solution, for the ‘cre-

ating maps’ decision point (UIexamples) and ‘representing cars’ decision point (ICexamples).

In the case of the ‘creating maps’ decision point, we can see that solution number 22 (which

scored 2.75) is the one that starts raising the cumulative average, which until that moment

was no greater than 1.01. Subsequent solutions started to score much higher (between 2.9

and 5.5), until solution alternative 34 scored 1.0 and after that there are 9 other solutions

following the low quality. Different from the previous decision point, in the case of the

‘representing cars’ decision point, we do not see the flat tails of low quality. Until solution

alternative number 15, which scored 1.25, the cumulative average quality score maintains

between 4.0 and 4.5. After solution number 15, we start to observe more variability in the

Figure 5.13: Cumulative average quality score for ‘creating maps’ decision point in the
UIexamples experiment (left), and ‘moving cars’ decision point in the ICexamples

experiment (right).

55

Table 5.16: Number of requirements met for UIexamples (top) and ICexamples (bottom).

quality scores. We presume that workers’ expectations about the needed quality is highly

influenced by the solution alternatives they have access to.

Tables 5.16 (top) and 5.16 (bottom) tell a similar story. The average number of requirements

that were met decreased from 2.3 to 1.6 in the case of UI design (p<0.0001), and increased

from 1.9 to 2.0 in the case of internal code design (however, with no statistical significance

(p<0.362)). These results are in line with the quality scores results: while for the UI de-

sign experiments, examples had a significant negative impact, we did not find significant

differences between ICplain and ICexamples.

As with the first two experiments, we analyzed the combination of the quality scores and

the requirements met. The shaded area in Table 5.17 presents the results for UIexamples,

with 18.7% of the solution alternatives falling within the highlighted area. Compared to the

UIplain experiment, where 30.4% of the solution alternatives where in this area, there is a

loss of 11.7%. As we highlighted before, we see a decrease in the number of top designs for

the UIexamples set of solutions.

56

Table 5.17: Crosstabulation of quality scores and requirements met (UIexamples).

In the case of the ICexamples experiment, 33.0% of the solution alternatives are within

the highlighted area (see Table 5.18). Compared to ICplain, this represents an increase of

7.7%. However, the major increase occurs in the intersection of 4-5 (quality score) and 3

(requirements met). There is still an absence of the highest quality solution alternatives.

Table 5.18: Crosstabulation of quality scores and requirements met (ICexamples).

5.4.3 Difficulty

Few workers left feedback when quiting their task. While the most popular complaint among

the people who quit in the previous two experiments was the lack of clearness, for both

experiments in which examples were shown, the most popular reasons for abandoning their

task were different. The difficulty of the task and the tool were the primary reasons provided.

This would suggest that workers did not have as much difficulty in understanding the task,

57

helped by their coworkers’ work.

Averages calculated for perceived difficulty are slightly lower than the corresponding exper-

iments not revealing examples. Table 5.19 shows the comparison between the results of the

questionnaires of the four experiments. A statistically significant difference between UIplain

and UIexamples exists, with workers in the UIexamples experiment perceiving the task as

less difficult than workers in the UIplain experiment. We did not find a significant difference

between ICplain and ICexamples.

We also examined whether one or a few of the decision points stood out as particularly

difficult as compared to the other ones. It turns out that, across the different experiments,

different decision points were deemed most difficult by the workers. When we examined this

with a one-way analysis of variance, we found no statistical significance between the average

score of difficulty level of the different decision points.

Table 5.19: Exit questionnaire results across the four experiments and comparisons.

5.5 Borrowing

5.5.1 Use of ‘Duplicate’ and ‘Copy’ Features

During the UIexamples and ICexamples experiments, participants had the opportunity to

copy any part of any solution and use what was copied in their work, either as a basis to

start from or integrated into what they already were working on. Even though we are aware

that it is a conservative analysis (as workers can also copy or be inspired by existing work

just by looking at it, and then incorporating ideas in on their solution alternative), we were

58

Table 5.20: Use of copy and duplicate feature (ICexamples).

interested in how many workers used the copy (or duplicate) feature and, when they did, if

those workers improved over the solution alternative that was copied.

Table 5.20 shows the results for the ICexamples experiment. Out of 62 workers who had

access to previous workers’ work (as the first four workers are assigned as the first worker in

each decision point and, thus, did not have any previous work to look at), only 12 workers

(19%) used the duplicate feature to copy an entire example, and none used the copy feature.

Some workers copied multiple solution alternatives (eCA10 and eDR9), and some solution

alternatives where copied multiple times (eDR7 and eTL2).

With a few exceptions (eDR3, eRS1, eRS5 and eTL10), most of the sources scored 4.0 or

higher (average 3.9) and met three or more requirements. This suggests that workers were

able to identify good solutions as the basis from which to work. Only 5 workers, however,

then went on to improved the source solution (see Table 5.20). eCA10, for instance, copied

from two solution alternatives, the average of which equals the score of the new solution.

However, the new solution met one requirement fewer than the source solution alternatives.

eDR9 also copied from two solutions, but in this case from two different workers. With

59

respect to the first example, the quality drastically improved. With respect to the second

one, however, the quality was reduced.

With the exception of workers eCA16 and eDR9, workers only borrowed from one of the two

immediately previous workers and not further from any before those. These results suggest

that workers did not browse across the solution alternatives. We can see in the table, where

the number in each of the workers ID represents the order in which workers submit their

work, how workers only looked at the work of at best two workers before them (e.g., eCA3

copied from eCA1, only two workers away).

Another interesting observation is that all workers who actively copied used the ‘duplicate’

function for the first solution alternative they created (with the exception of eTL4, who, in

addition to the first alternative, duplicated a sketch for their second solution alternative).

This could mean that the goal behind using the ‘duplicate’ function is to start the exploration

of the design space, having as a baseline another solution alternative.

Performing the same analysis for the UI design experiment (see Table 5.21), the results tell a

slightly different story. Only 10 workers out of 76 (13%) used the ‘copy’ or ‘duplicate’ func-

tions, with one worker (eVT21) using ‘copy’ and nine using ‘duplicate’. Workers copied from

Table 5.21: Use of copy and duplicate feature (UIexamples).

60

solution alternatives very diverse in quality, ranging from very bad to very good solutions.

The average quality of the sources is on the low side, and the same is true for the average

number of requirements met. A possible explanation for this could be that, as we showed in

the previous section, all of the initial workers scored between 0 and 2, therefore negatively

influencing future workers. Only four workers improved the source solution, scoring better

than the original, and just one new solution alternative met one extra requirement than the

original. As in ICexamples, workers did not borrow from workers further than two previous

workers, which suggest a lack of exploration of the available solution alternatives (MB12,

VT10, and VT21 are exceptions, who copied from 6, 4, and 8 workers before them). The

other workers copied from the previous two workers they had access to.

Results may be suggesting that we should probably experiment with different approaches.

Clearly, when borrowing from previous workers’ work, the overall quality tends to decrease,

especially when copying from low quality solution alternatives. There are many questions

that arise from this analysis. Would quality increase by giving workers the best examples?

Would workers be discourage by seeing top designs? In order to start to answer those and

many other questions, more experimentation needs to be done.

5.5.2 Solution Categories Distances

As not every worker copied previous solution alternatives, our second analysis looked at

the distance between solutions of the same category. Previously, in our diversity analysis,

we plotted the categories identified for the solution alternatives created by each worker (see

Figure 5.4 as an example of this analysis for UIplain experiment). Here, we take this analysis

further, focusing on the distance between repeated categories.

First, we did a visual examination to observe the spread of the categories along the experi-

ment. Figure 5.14 shows this analysis applied to the ‘creating maps’ decision point, for the

61

Figure 5.14: Occurrences of each category in a chronological order (‘creating maps’ decision
point, UIexamples experiment).

UIexamples experiment. Each row represents a worker (in chronological order) and each

column a category identified. Each of the green dots symbolizes a solution alternative under

the category at the top of the column. We can see how this representation helps to identify

some trends. First, as already observed, we can identify some categories being repeated

worker after worker. A notorious example is the ‘map only’ category: from worker eMB1 to

worker eMB6, the same conceptual approach was repeated over and over.

Second, we calculated the distance between categories for each of the decision points, for each

of the four experiments. Specifically, we counted how many workers separate one occurrence

of a category from a next instance. For example, if the category ‘assisted drawing’ was

identified in a solution submitted by worker eMB7 (7th worker) and next in a solution

submitted by worker eMB9 (9th worker) of the map building decision point, the distance

between these solutions is two. In other words, it took two submissions for this category to

be identified again in another solution alternative. We group under ‘new’ all the sketches

62

that represent the first occurrence of a category for that particular group.

Table 5.22 shows for each decision point, how many solutions with x distance were identified,

across the four experiments. In both kinds of tasks, experiments revealing examples (UIex-

amples and ICexamples) present an increase in the solutions with distance one and two, and

a decrease in solutions with distance higher than six as well as in novel approaches. That is

to say, solution alternatives with the same category in the experiments revealing examples

are closer to each other, while in the experiments without there is a higher distance between

solution alternatives in the same category. This could serve as an indicator of borrowing:

workers get influenced by solution alternatives created by their coworkers. At the same time,

we observe again that workers do not browse in the set looking for different alternatives, but

appear to just look at the first designs available in the set.

Table 5.22: Number of sketches with x distance for each of the four experiments.

63

5.6 Additional Analyses

5.6.1 Finding Subgroups within the Solution Alternatives

Earlier in this chapter we presented the analysis of the highest quality solution alternatives

for each of the four experiments. An important question concerns the diversity of the “best”

solution alternatives (those with high overall quality and high number of requirements met).

This set, after all, will form the basis for future design work (including, for morphological

chart, choosing overall designs by combining choices from the individual decision points). If

all of the best solutions are not diverse, this would represent a problem. In Tables 5.8, 5.12,

5.17, and 5.18 we highlighted what we consider the best subsets for each experiment. Here,

we analyze the results for diversity trying to find out if which is the ideal subset of solution

alternatives to work with.

Table 5.23 shows the resulting average quality (Q), the resulting average number of require-

ments met (Req), and number of categories (Cat) of the ‘top designs’ subset. An expected

result is a highly increase in both average quality and average number of requirements met.

Diversity, however, is drastically negatively affected. By keeping only ‘top designs’, we loose

about 50% of the categories collected across the four experiments, which is a percentage that

substantially hurts the diversity of the set.

However, a careful analysis of the actual categories dropped tells us something more nuanced.

Table 5.23: Resulting average quality, average number of requirements met, and total
diversity of the subset of ‘top designs’ (all experiments).

64

Table 5.24: Average quality and average number of requirements met for categories
identified for ‘creating maps’ decision point.

When examining the average quality and the average number of requirements met, we can

observe that some of the categories do not represent proper solutions for the design problem.

Table 5.24 shows an example for the ‘creating maps’ decision point, for the UI experiments.

We can see in the table that, for some of the categories, average quality and average number

of requirements met are not greater than 1.0. Categories such as “map only” or “traffic

light simulation” are examples of categories that cluster solution alternatives the approach

of which is not a viable solution for the problem. Figure 5.15 illustrates an example of a

such solution alternative within the “map only” group. The proposed solution alternative

does not represent a viable solution for the problem of ‘designing an interface mechanism

through which users build maps with roads and intersections’.

A somewhat similar story emerges when focusing on the number of requirements met. Table

5.25 shows the average quality (Q), the average number of requirements met (Req), and the

number of categories representing different kinds of overall solution approaches (Cat), per

experiment – when filtering by number of requirements met.

The first filter leaves out solution alternatives not meeting any requirement. If we look at

the reduction in categories resulting from taking out solution alternatives not meeting any

65

Figure 5.15: Example of a solution within the “map only” category (‘creating maps’
decision point, UIplain).

Table 5.25: Resulting average quality, average number of requirements met, and total
diversity when filtering out solutions with x requirements met (all experiments).

requirement in the internal code experiments, we see that categories such as “Graphical

maps” for the ‘representing cars’ decision point (for which workers drew roads and intersec-

tions without any detail about the actual implementation of cars), “traffic light rules” for

the ‘moving cars’ decision point (for which workers described the traffic light cycle, without

explaining how it affects the ‘moving cars’), and “traffic rules” for the ‘changing the colors of

traffic lights’ decision point (for which workers described general rules about traffic, and not

any detail about the implementation of an algorithm for a traffic simulator) are no longer

included. A similar phenomenon occurred in the case of the two user interface experiments:

66

“Map only” (for which workers drew final maps, not the mechanism to create them) for the

‘creating maps’ decision point and “traffic lights status” (for which workers indicated the

current status of certain traffic lights in the map, instead of the traffic status) for the traffic

visualization decision point are dropped. All of these categories represent groups of solution

alternatives which did not address the design problem. While diversity is reduced, only truly

non-viable solutions are eliminated.

Now, consider the right side of Table 5.25. By keeping all of the solution alternatives meet-

ing 3 and 4 requirements (unlike the ‘top designs’ analysis, conserving as well solutions

which a score lower than four), quality generously improves. More importantly, this filter

preserves valuable solution alternatives, which are novel and unique conceptual approaches

that contribute to a great diversity of the set. An example of a category that was kept by

including medium quality solution alternatives is ‘automated using input’ for the ‘creating

maps’ decision point (UI design), where the mechanism to create the maps is through tex-

tual specifications, instead of drawing-like interactions (see Figure 5.16). An average of at

Figure 5.16: Example of a solution within the “automated using input” category (‘creating
maps’ decision point, UIplain).

67

least five categories remain for each decision point in each experiment. This is a non trivial

amount of diversity, and, still, is more than individual designers or a team could generate

easily.

5.6.2 Finding Subgroups within the Crowd

Worker Experience

We first examined the differences between demographic groups. Table 5.26 shows the av-

erage quality (Q), the average number of requirements met (Req), and the total number of

categories (Cat) provided by each of the demographic groups in each of the experiments.

Additionally, the last column for each of the four experiments (Cat*) indicates the number

of meaningful categories identified by each of the demographic groups.

Across the four experiments, there is one demographic group that stands out. In general,

professional UI/UX designers performed better than the other demographic groups. At the

same time, it is unfortunately the least represented group: only five professional designers

participated across the first three experiments and none in the last experiment (see Table

5.2). Despite their excellent performance, given their low representation we cannot draw

strong conclusions about this group and their work, though it certainly appears that if more

participated, results would improve. Because few participated, however, we exclude them

from what follows bellow.

Table 5.26: Average quality, average number of requirements met, and total
diversity per demographic group.

68

We did not find a significant difference between groups in the UIplain experiment, both re-

garding quality scores (p<0.054) or requirements met (p<0.131). The distribution of quality

and requirements met is the same across demographic groups. In the case of ICexamples,

there is some evidence of significant differences between groups regarding quality (p<0.04),

but no differences as to requirements met (p<0.082). The groups which perform the worst

in this experiment are undergraduate students and hobbyists.

In terms of diversity, hobbyists had an important role, being the group which identified

the most categories. This may well be because it is the most represented group. In terms

of meaningful categories, professional developers (even though being least represented) are

very close to hobbyists in terms of contributions. We can see this, in particular, for the

UIexamples experiment. Even though hobbyists contributed 28 categories, only 10 (35.7%)

were meaningful categories, while in the case of software developers 11 of the 17 provided

categories (64.7%) represented meaningful categories.

Demographic groups had a more even performance in the internal code experiments. In the

case of ICplain, there is some evidence of differences between groups, both for quality scores

(p<0.053) and requirements met (p<0.051). The different demographic groups performed

practically even in the ICexamples experiment. We did not find any differences in quality

score (p<0.768) or requirements met (p<0.983).

In terms of diversity, hobbyists are again the group contributing the most diversity for

UIplain. Interestingly, software developers were not as effective this time. Only 39.1% of

the categories provided by this group were truly valid categories. ICexamples had greater

participation of software developers over other demographic groups, which is also reflected

in their contribution to diversity.

Overall, is surprising the fact that professionals do not stand out as much as are might be

expected as compared to other groups. This may be because they did not perform at the top

69

of their ability, perhaps being merely curious about the experiment. At the same time, the

results show that not only professional designers and developers can produce good designs.

A different analysis confirms this statement. Earlier in this chapter we showed the percent-

age of high quality solution alternatives for each of the four experiments. We now examine

the composition of the group which generated those designs. Table 5.27 shows the distri-

bution across demographics within this group of workers. At least one worker in each of

the demographic groups generated a top design. In fact, software developers were not the

group that contributed the most such designs (except for ICexamples). Hobbyists had a

more important role in generating top rated solution alternatives.

Table 5.27: Demographics of the group of workers who generated the best designs.

Qualification Test Score

Our second analysis examines the impact of the score that each of the workers obtained in

the qualification test. Workers needed at least three out of five correct answers to participate

in the experiment. As only four workers in the UIplain experiment and two workers in the

UIexamples experiment obtained the maximum score, for our analysis we divided workers

into two groups: (1) those workers who scored three out of five, and (2) workers with four

out of five correct answers together with workers with a perfect score. Table 5.28 shows,

per experiment, workers in each group (#W indicates the number of workers who obtained

a score of x on the test), the solution alternatives they produced (Q is the average quality

for workers on that group, and Req the average number of requirements met for the same

70

Table 5.28: Performance of workers with x correct answers out of five during the
qualification test per experiment.

group), and how each group contributed to diversity (Cat being the total number of categories

provided by the group, and Cat* the number of meaningful categories).

Overall, results suggest that workers who scored higher in the qualification test performed

better. However, the significance of the results vary from experiment to experiment. In the

case of UIplain, we found strong evidence of quality being significantly better on solutions

generated by people in the second group (p<0.0035) and weaker evidence of requirements met

also being higher in the case of workers who scored higher in the qualification test (p<0.079).

In the case of UIexamples, the strongest evidence is regarding requirements met (p<0.023),

and weaker evidence of quality being better in the second group (p<0.062). In the case

of ICplain, both average quality and average number of requirements met was significant

better in the set of solution alternatives created by the second group (quality p<0.0285;

requirements met p<0.018). We did not find any significant difference between the two

groups in the ICexamples experiment (p<0.258 for quality, and p<0.237 for requirements

met).

The great number of workers who scored three out five over workers who scored four or five

correct answers could possibly explain the reasons of why results on UIexamples were so much

worse. However, we do not have enough evidence to support such a claim. Nevertheless,

it might be worthwhile exploring balancing strong workers (i.e., high score on qualification

test) across different decision points.

Even though it seems advantageous in terms of quality to raise the qualification threshold for

workers who can participate in further experiments, we need to analyze how diversity would

71

then be affected. We can see in Table 5.28 how workers with a lower qualification test score

across the four experiments, and in particular in the UIexamples experiment, contributed

with meaningful unique categories. For instance, if we did not have people who scored three

out of five correct questions, we would have lost several novel categories, which were not

provided by the second group of workers. Some examples are “Automated using input”

for the ‘creating maps’ decision point (in which are indicated the map configurations and

the application draws the desired map; an example can be seen in Figure 5.16), or “Bars

indicating queues” for ‘visualizing the state of the simulation’ decision point (which indicates

traffic density through the length of bars in intersections) for the UI design, and “Traffic

Lights change based on Traffic density” for the ‘changing the colors of traffic lights’ decision

point.

Results suggest that there is a more significant difference between groups based on the

qualification test score than based on demographics. Our qualification test works better

than self declared work experience as an indicator for valuable contributors. However, at the

same time and as we highlighted before, it is important for diversity to involve, to a greater

or lesser extent, multiple workers with different skills.

72

6

Discussion

Our study demonstrates the potential of microtask crowdsourcing as applied to software

design. Across the four experiments, we show that it is feasible for a crowd of workers from

Amazon Mechanical Turk to generate a broad range of solution alternatives for small, partial

design problems. Our results represent merely a first step toward the broader research agenda

we are pursuing. Ultimately, we wish to understand whether microtask crowdsourcing,

through the use of morphological charts, may be a viable approach for software design.

It is important for diversity to involve multiple workers; individual workers did

not create diverse solution alternatives. Besides some rare exceptions, individual work-

ers did not create diverse solution alternatives. Instead, they worked on small variations of

the same conceptual approach. In contrast, when collecting solution alternatives from mul-

tiple workers, many different conceptual approaches were produced. We conclude that it is

important for diversity, and therefore the exploration of the design space, to involve multiple

workers in the creation of solution alternatives. Corroborating this further is the fact that

workers created solution alternatives that were not previously considered in previous designs

resulting from using the same design prompt in different settings (see [48] and [66]).

73

The majority of the workers provided only one or two solutions; just a few work-

ers provided three or more solutions. Across the four experiments, not many workers

submitted more than two solution alternatives. In fact, the majority of the workers chose to

provide only one. In the experiments where workers had to provide solution alternatives for

an internal code design task, particularly, only 23% of the workers provided three or more

solution alternatives. Some workers mentioned in their feedback that they did not under-

stand why we are interested in alternatives, since one good design was more than sufficient.

This phenomena is known as design fixation. Design fixation refers to a blind, and some-

times counterproductive, adherence to a limited set of ideas in the design process [38]. The

characterization of conceptual design as a discovery process means that the designer should

‘visit’ many points in both the concept space and the configuration space in order to reveal

more about the problem and potential solutions, thus discovering new aspects of the prob-

lem. Jansson and Smith [38] in 1991 report a series of experiments where they demonstrate

the existence of design fixation in engineering design. We can see that software design is

not exempt of design fixation. Even when workers had monetary incentives to provide more

than one solution, the majority of the workers decided to provide no more than one solution

alternative. Therefore, we reassert the idea that is necessary to involve multiple workers to

have a wide exploration of the design space.

When workers are exposed to previous workers’ work, the diversity of the overall

set decreases. In both kinds of tasks, UI and IC design, the exposure to previous workers’

work decreased the diversity of the set. When examples are available, we observed that

workers tend to repeat a limited number of conceptual approaches and, in most of the cases,

do not explore new ways to solve the design problem. In fact, most of the workers who

participated in UIexamples and ICexamples did not dive into the set of available solution

alternatives, but just took the solution alternative created by the last or second to last worker

and updated some. This is probably related to microtasking as a work model. Workers do

not want to spend too much time [25]. Even searching for the best previous examples appear

74

cut short by just picking the first one that looks “good enough” to use. Perhaps participants

thought other participants’ work represented the quality expected, so they might have felt

social pressure to conform to these designs or have felt relief in the task being something

they can do. Another cause could again be design fixation: once an idea (from an example

in this case) is in the worker’s head, it is difficult to step outside of it and create something

entirely new. This last phenomenon has been extensively studied in other design fields. As an

example, Kohn and Smith [43] performed several studies comparing the diversity generated

by groups whether exposed or not to other participants’ ideas. Similar to what we observed in

our experiments, they conclude that people conformed to ideas to which they were exposed,

the rate of conformity increased as the number of ideas exposed increased, and participants

exposed to other participants’ ideas were more likely to conform than participants who did

not see others’ ideas. To test these explanations, more experimentation is necessary, with

perhaps a particular focus on understanding workers’ motivations behind selecting certain

approaches to solve the design task.

The average quality in experiments revealing examples was equal to or worse

than the equivalent experiment not revealing examples. Contrary to what we ex-

pected, quality did not improve when workers were exposed to previous workers’ work. This

is probably related, again, to the microtasking model. Usually, workers in Amazon Mechan-

ical Turk tend to complete as many tasks as they can in the shortest possible time. When

workers are exposed to examples, it appears they adjust their work quality to what they

see, assuming that what is expected from them is what we are showing. In contrast, when

working on their own, they seem to push themselves more to deliver the work quality they

think might be necessary to get paid.

Solution alternatives range all over the quality spectrum. In our four experiments,

the quality of the solution alternatives varies considerably. Despite this variability, we are

encouraged by the results. A relatively high percentage of the solution alternatives fall within

75

the group that has both a high quality score and meets three or four requirements. There

was certainly still a lot of ‘wasted effort’, which means that we have to still explore different

mechanisms to improve the overall quality of the set and reduce the amount of solutions with

the lowest score. Some studies show the relationship between disclosing examples and overall

quality in the competition model. Boudreau and Lakhani [8] found, in a series of experi-

ment with Topcoder workers, that intermediate disclosure has the advantage of efficiently

steering development towards improving existing solution approaches. LaToza et al. [48]

showed that participants improved their designs after being exposed to other participants’

complete designs. Despite these findings being the result of a different crowdsourcing model

(competition), we think that lessons learned might transfer.

Not only professional designers and developers can produce good designs. The

crowd that participated in our experiments was very diverse, ranging from undergraduate

students, to hobbyists, to experienced professional developers. Our results show that all

of them contributed with high quality designs and novel solution alternatives. In most of

the cases, there was not a significant difference between professionals and non-professionals

regarding the quality of the solution alternatives they produced. Contrary to what prior

research highlights about software development and expertise (e.g., [59, 50, 68]), we did

not find that experienced professional software developers stood out among their coworkers.

Perhaps, high expertise does not correlate with work quality in a microtask setting.

The task is seen as difficult by many workers. Feedback from workers reveals that the

task is perceived as difficult. Even though workers who had examples stated the task was

less difficult than workers who did not have examples, they still stated the task to be on the

difficult side. Our task was unusual for the type of tasks workers usually find on Amazon

Mechanical Turk. HITs are typically simple, asking for mechanic and repetitive tasks. Our

task is definitely more difficult than that given its nature. It would be interesting to test

our approach with a different crowd, probably more specialized in software engineering work

76

(e.g., Topcoder [81] or Upwork [82]), and compare the results.

It takes time to collect a diverse set of solutions. It took us one week per experiment

to collect solution alternatives for the UI experiments, and twice the time to collect a similar

amount of solution alternatives for the IC experiments. Compared to the competition model,

in which tasks are usually on the order of a few weeks, these results do not represent the com-

petitive advantage of the microtask model as being fast, which was somewhat disappointing.

Individual workers did complete the task in a matter of minutes, as pointed out in many

other studies about Amazon Mechanical Turk (e.g., [25, 41]). Different from those studies

where the whole set of tasks is completed in a short time, in our experiments it became

harder to attract workers once the HIT started to be several days old, and the difference in

time between one worker finishing and the next worker joining started to increase over time.

Parallelism, thus, only resulted in diversity and quality being much broader, but not a speed

up. Perhaps this could be because the Amazon Mechanical Turk crowd has just not that

many software oriented workers. It would be interesting, again, to test how the approach on

different crowds and analyze the impact on speed.

77

7

Threats to Validity

As all studies, our study has several limitations. Several threats to validity exist that must be

kept in mind when considering our results. We first describe our internal threats to validity,

i.e., the factors that affect our ability to claim cause–effect relationships from the results.

Following, we describe the conditions of the experiment that may pose a risk to its external

validity, i.e., its ability to generalize to what workers do.

7.1 Internal Threats to Validity

Internal validity refers to whether or not an experimental treatment or experimental condi-

tion makes a difference in the results. First, while the CrowdDesign platform was exclusively

designed for the presented set of experiments, it could have limited the performance of the

workers. Many workers may have their favorite design tool, with features that differ from

the features of our platform. Moreover, because the platform has its own features, a learning

curve exists that may have negatively influenced the design performance.

Second, the breakdown of the traffic simulator problem into decision points was made based

78

on an extensive analysis of multiple designs created to solve it [66]. However, there could

exist multiple other ways to subdivide the problem into decision points, which in turn may

have lead to different results. Indeed, our results are based on just eight decision points thus

far. Their wording, specific instructions, and domain could have influence the performance

of workers.

Third, the design task may not be representative of design tasks in the real world. Even

though the structure of the task resembles the structure of a User Story [18] (with a general

goal and several acceptance criteria) and, even though the task has been used in other

experiments [48, 66], it may not be representative of design tasks in the real world.

Fourth, our results are based on a mix of quantitative and qualitative analysis. While data

analysis involving coding may introduce bias, we used several mechanisms to reduce and

mitigate potential sources of bias. In scoring solution alternatives, panelists independently

scored each of the designs. Members of the panel were blind to the worker and the ex-

periment, and the order in which solution alternatives were presented to the panelists was

randomized. In clustering solution alternatives and identifying categories, panelists also were

blind, both to the worker and the experiment. Finally, in analyzing the exit survey and quit

survey data, two members of the research team independently coded each response to iden-

tify insights before the coded insights were organized into themes. Overall, then, bias may

exist, but we have taken measures to mitigate it.

7.2 External Threats to Validity

Threats to external validity compromise our confidence in stating whether the study results

are applicable to other groups. For our particular study, the crowd that we attracted may

not be a crowd that is representative of what other design tasks may attract. Despite being

79

an open call, some factors influenced the recruitment of workers. For instance, all HITs were

posted between 7am and 9am EST. With this decision we sought to attract as many workers

as we could within the United States. Posts at other times may attract different crowds. As

another example, our HIT was refreshing and of interest to workers. If there are more HITs

like ours, self-selection of workers and tasks may differ.

Second, despite the qualification test being carefully designed, its structure could have af-

fected the participation. It may have attracted workers who are less qualified or failed to

attract workers of better competence.

Third, the characteristics of the Amazon Mechanical Turk crowd differ from other crowds

(e.g., Topcoder or Upwork). Therefore, our results can not be generalized to these other

crowds.

80

8

Conclusion and Future Work

Crowdsourcing is gaining a place in different fields as a viable approach for solving a variety of

problems. At this moment in time, the challenge is to use crowdsourcing for more complex

problems. So it is in software engineering where some “easy” problems can be and are

crowdsourced, but the applicability of crowdsourcing to complex activities is unclear.

In this thesis, we presented our first step in the exploration of microtask crowdsourcing for one

such more complex task: software design. We reported on the results of four experiments on

Amazon Mechanical Turk, where workers provided between one and five solution alternatives

for small, partial design problems for an educational traffic light simulator. We studied with

two experimental conditions: (1) the kind of design (UI design versus internal code design),

and (2) the exposure of workers to examples (workers being exposed to previous workers’

work versus workers working independently). We found that it is feasible for a crowd to

generate a broad range of solution alternatives, although these solutions are of a variety of

quality levels. Regarding the exposure to examples, we observed a drop in both terms of

quality and diversity when workers had access to previous workers’ work. What is important,

those solution alternatives that are quite exceptional in describing complete and innovative

81

solutions exists. We found in the set of solution alternatives a great number of ‘top designs’,

characterized for their high quality score and high number of requirements met. The crowd,

indeed, succeed in creating a solid basis for next steps designing through the morphological

chart. Further, the fact that we could successfully perform large-scale experiments related

to software design and the fact that we could involve non-professionals in the process, are

perhaps two of the most important general conclusions of this work.

Substantial work remains to be done. Future research might extend the reported experiment

in three ways. First, all our participant workers were recruited through Amazon Mechan-

ical Turk. Other populations, and in particular expert populations (such as Topcoder or

Upwork), might have different ways of solving and approaching software design microtasks.

Second, we want to explore whether filtering out “bad” examples could positively influence

the quality and diversity results. That is, we want to experiment with different quality levels

of the set of examples that are revealed to workers, and observe the effects on the resulting

designs both in quality and diversity.

Third, the approach might be extended towards a more iterative process. Perhaps solution

alternatives can be further improved with a second phase of revision, improvement, and,

possibly, recombination. Previous research in crowdsourcing design out of the software field

[88] has shown early success with such a two phase process in a competition model, and we

wonder if it is possible to obtain similar results in a microtasking model.

This thesis presented the results of the first step of a broader research agenda, in which

we addressed just one of three overarching research questions about microtasking software

design with a morphological chart. Our ultimate goal is to involve the crowd in carrying out

the whole creation of the morphological chart (decision points and solution alternatives), and

the identification of a final solution out of the resulting morphological chart. Future steps

include the exploration of mechanisms to involve workers in the break down of the design

82

problem into decision points, and mechanisms for selecting a single complete design from a

morphological chart.

83

Bibliography

[1] 99designs. http://99designs.com/.

[2] 99tests. https://99tests.com/.

[3] Amara. http://www.amara.org/.

[4] Amazon Mechanical Turk. https://www.mturk.com/.

[5] Araujo, R. M. 99designs: An analysis of creative competition in crowdsourced design.
First AAAI conference on Human computation and crowdsourcing (2013).

[6] Arcbazar. http://www.arcbazar.com/.

[7] Bernstein, M. S., Little, G., Miller, R. C., Hartmann, B., Ackerman, M. S., Karger,
D. R., Crowell, D., and Panovich, K. Soylent: a word processor with a crowd inside.
Communications of the ACM 58, 8 (2015), 85–94.

[8] Boudreau, K. J., and Lakhani, K. R. open disclosure of innovations, incentives and
follow-on reuse: Theory on processes of cumulative innovation and a field experiment
in computational biology. Research Policy 44, 1 (2015), 4–19.

[9] Bountify. https://bountify.co/.

[10] Brabham, D. C. Crowdsourcing as a model for problem solving an introduction and
cases. Convergence: the international journal of research into new media technologies
14, 1 (2008), 75–90.

[11] Breaux, T. D., and Schaub, F. Scaling requirements extraction to the crowd: Ex-
periments with privacy policies. IEEE 22nd International Requirements Engineering
Conference (RE) (2014), IEEE, pp. 163–172.

[12] Bugcrowd. https://bugcrowd.com/.

[13] Campbell, D. T. Blind variation and selective retentions in creative thought as in other
knowledge processes. Psychological review 67, 6 (1960), 380.

[14] CastingWords. https://castingwords.com/.

[15] Chawla, S., Hartline, J. D., and Sivan, B. Optimal crowdsourcing contests. Games and
Economic Behavior (2015).

84

http://99designs.com/
https://99tests.com/
http://www.amara.org/
https://www.mturk.com/
http://www.arcbazar.com/
https://bountify.co/
https://bugcrowd.com/
https://castingwords.com/

[16] Chilton, L. B., Little, G., Edge, D., Weld, D. S., and Landay, J. A. Cascade: Crowd-
sourcing taxonomy creation. Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (2013), pp. 1999–2008.

[17] Code Hunt. http://research.microsoft.com/en-us/projects/codehunt/.

[18] Cohn, M. User stories applied: For agile software development. Addison-Wesley Pro-
fessional, 2004.

[19] CrowdSource. http://www.crowdsource.com/.

[20] Crowdstudio. https://www.crowdstudio.com/.

[21] Dawson, R., and Bynghall, S. Getting results from crowds. Advanced Human Technolo-
gies San Francisco, 2012.

[22] Doan, A., Ramakrishnan, R., and Halevy, A. Y. Crowdsourcing systems on the world-
wide web. Communications of the ACM 54, 4 (2011), 86–96.

[23] Dym, C. L., and Little, P. Engineering design: A project based approach, 2000.

[24] Eppinger, S. D., and Ulrich, K. T. Product design and development. 1995 (1995).

[25] Gao, Y., Chen, Y., and Liu, K. On cost-effective incentive mechanisms in microtask
crowdsourcing. Computational Intelligence and AI in Games, IEEE Transactions on 7,
1 (2015), 3–15.

[26] Gengo. https://gengo.com/.

[27] Girotto, V. Collective creativity through a micro-tasks crowdsourcing approach. Pro-
ceedings of the 19th ACM Conference on Computer Supported Cooperative Work and
Social Computing Companion (2016), pp. 143–146.

[28] Goldman, M., Little, G., and Miller, R. C. Collabode: collaborative coding in the
browser. Proceedings of the 4th international workshop on Cooperative and human as-
pects of software engineering (2011), pp. 65–68.

[29] Goldman, M., Little, G., and Miller, R. C. Real-time collaborative coding in a web
ide. Proceedings of the 24th annual ACM symposium on User interface software and
technology (2011), pp. 155–164.

[30] Haik, Y., Shahin, T., and Sivaloganathan, S. Engineering design process. Cengage
Learning, 2010.

[31] Hanington, B., and Martin, B. Universal methods of design: 100 ways to research
complex problems, develop innovative ideas, and design effective solutions. Rockport
Publishers, 2012.

[32] Hartmann, B., MacDougall, D., Brandt, J., and Klemmer, S. R. What would other
programmers do: suggesting solutions to error messages. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (2010), pp. 1019–1028.

85

http://research.microsoft.com/en-us/projects/codehunt/
http://www.crowdsource.com/
https://www.crowdstudio.com/
https://gengo.com/

[33] Heer, J., and Bostock, M. Crowdsourcing graphical perception: using mechanical turk
to assess visualization design. Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (2010), pp. 203–212.

[34] Howe, J. The rise of crowdsourcing. Wired magazine 14, 6 (2006), 1–4.

[35] Howe, J. Crowdsourcing: Why the power of the crowd is driving the future of business.
Crown Business, New York (2008).

[36] Huang, Y.-C., Wang, C.-I., and Hsu, J. Leveraging the crowd for creating wireframe-
based exploration of mobile design pattern gallery. Proceedings of the companion pub-
lication of the 2013 international conference on Intelligent user interfaces companion
(2013), pp. 17–20.

[37] HYVE Crowd. https://www.hyvecrowd.net/.

[38] Jansson, D. G., and Smith, S. M. Design fixation. Design studies 12, 1 (1991), 3–11.

[39] Kaufmann, N., Schulze, T., and Veit, D. More than fun and money. worker motivation
in crowdsourcing-a study on mechanical turk. AMCIS (2011), vol. 11, pp. 1–11.

[40] Kittur, A. Crowdsourcing, collaboration and creativity. ACM Crossroads 17, 2 (2010),
22–26.

[41] Kittur, A., Chi, E. H., and Suh, B. Crowdsourcing user studies with mechanical turk.
Proceedings of the SIGCHI conference on human factors in computing systems (2008),
pp. 453–456.

[42] Kittur, A., Smus, B., Khamkar, S., and Kraut, R. E. Crowdforge: Crowdsourcing com-
plex work. Proceedings of the 24th annual ACM symposium on User interface software
and technology (2011), pp. 43–52.

[43] Kohn, N. W., and Smith, S. M. Collaborative fixation: Effects of others’ ideas on
brainstorming. Applied Cognitive Psychology 25, 3 (2011), 359–371.

[44] Kulkarni, A., Can, M., and Hartmann, B. Collaboratively crowdsourcing workflows
with turkomatic. Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work (2012), pp. 1003–1012.

[45] Lakhani, K., Garvin, D. A., and Lonstein, E. Topcoder (a): Developing software
through crowdsourcing. Harvard Business School General Management Unit Case, 610-
032 (2010).

[46] Lampel, J., Jha, P. P., and Bhalla, A. Test-driving the future: How design competitions
are changing innovation. The Academy of Management Perspectives 26, 2 (2012), 71–85.

[47] Lasecki, W. S., Kim, J., Rafter, N., Sen, O., Bigham, J. P., and Bernstein, M. S. Ap-
parition: Crowdsourced user interfaces that come to life as you sketch them. Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems (2015),
pp. 1925–1934.

86

https://www.hyvecrowd.net/

[48] LaToza, T. D., Chen, M., Jiang, L., Zhao, M., and Van Der Hoek, A. Borrowing from
the crowd: A study of recombination in software design competitions. Proceedings of the
37th International Conference on Software Engineering-Volume 1 (2015), IEEE Press,
pp. 551–562.

[49] LaToza, T. D., Di Lecce, A., Ricci, F., Towne, W. B., and van der Hoek, A. Ask
the crowd: Scaffolding coordination and knowledge sharing in microtask programming.
Visual Languages and Human-Centric Computing (VL/HCC), 2015 IEEE Symposium
on (2015), IEEE, pp. 23–27.

[50] LaToza, T. D., Garlan, D., Herbsleb, J. D., and Myers, B. A. Program comprehension
as fact finding. Proceedings of the the 6th joint meeting of the European software engi-
neering conference and the ACM SIGSOFT symposium on The foundations of software
engineering (2007), ACM, pp. 361–370.

[51] LaToza, T. D., Towne, W. B., Adriano, C. M., and Van Der Hoek, A. Microtask
programming: Building software with a crowd. Proceedings of the 27th annual ACM
symposium on User interface software and technology (2014), pp. 43–54.

[52] LaToza, T. D., Towne, W. B., Van Der Hoek, A., and Herbsleb, J. D. Crowd develop-
ment. 2013 6th International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE) (2013), IEEE, pp. 85–88.

[53] LaToza, T. D., and van der Hoek, A. Crowdsourcing in software engineering: Models,
motivations, and challenges. IEEE Software 33, 1 (2016), 74–80.

[54] Li, W., Seshia, S. A., and Jha, S. Crowdmine: towards crowdsourced human-assisted
verification. Proceedings of the 49th Annual Design Automation Conference (2012),
pp. 1254–1255.

[55] Lim, S. L., Quercia, D., and Finkelstein, A. Stakesource: harnessing the power
of crowdsourcing and social networks in stakeholder analysis. Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering-Volume 2 (2010),
pp. 239–242.

[56] Lorge, I., Fox, D., Davitz, J., and Brenner, M. A survey of studies contrasting the
quality of group performance and individual performance, 1920-1957. Psychological
bulletin 55, 6 (1958), 337.

[57] Luther, K., Tolentino, J.-L., Wu, W., Pavel, A., Bailey, B. P., Agrawala, M., Hartmann,
B., and Dow, S. P. Structuring, aggregating, and evaluating crowdsourced design cri-
tique. Proceedings of the 18th ACM Conference on Computer Supported Cooperative
Work & Social Computing (2015), pp. 473–485.

[58] Mao, K., Capra, L., Harman, M., and Jia, Y. A survey of the use of crowdsourcing in
software engineering. RN 15 (2015), 01.

[59] McConnel, S. What does 10x mean? measuring variations in programmer productivity.
Making Software, OReilly 16 (2011).

87

[60] Mullen, B., Johnson, C., and Salas, E. Productivity loss in brainstorming groups: A
meta-analytic integration. Basic and applied social psychology 12, 1 (1991), 3–23.

[61] Nebeling, M., Leone, S., and Norrie, M. C. Crowdsourced web engineering and design.
In Web Engineering. Springer, 2012, pp. 31–45.

[62] Noy, N. F., Mortensen, J., Alexander, P. R., and Musen, M. A. Mechanical turk as
an ontology engineer. Using microtasks as a component of an ontology engineering
workflow. Web Sci (2013).

[63] Park, C. H., Son, K., Lee, J. H., and Bae, S.-H. Crowd vs. crowd: large-scale cooperative
design through open team competition. Proceedings of the 2013 conference on Computer
supported cooperative work (2013), pp. 1275–1284.

[64] passbrains. https://www.passbrains.com/.

[65] Pastore, F., Mariani, L., and Fraser, G. Crowdoracles: Can the crowd solve the oracle
problem? Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth
International Conference on (2013), IEEE, pp. 342–351.

[66] Petre, M., and Van Der Hoek, A. Software Designers in Action: A Human-Centric
Look at Design Work. CRC Press, 2013.

[67] Retelny, D., Robaszkiewicz, S., To, A., Lasecki, W. S., Patel, J., Rahmati, N., Doshi, T.,
Valentine, M., and Bernstein, M. S. Expert crowdsourcing with flash teams. Proceedings
of the 27th annual ACM symposium on User interface software and technology (2014),
pp. 75–85.

[68] Robillard, M. P., Coelho, W., and Murphy, G. C. How effective developers investigate
source code: An exploratory study. Software Engineering, IEEE Transactions on 30,
12 (2004), 889–903.

[69] Saxton, G. D., Oh, O., and Kishore, R. Rules of crowdsourcing: Models, issues, and
systems of control. Information Systems Management 30, 1 (2013), 2–20.

[70] Schenk, E., and Guittard, C. Towards a characterization of crowdsourcing practices.
Journal of Innovation Economics & Management, 1 (2011), 93–107.

[71] Slogan Slingers. http://www.sloganslingers.com/.

[72] Smith, G., Richardson, J., Summers, J. D., and Mocko, G. M. Concept exploration
through morphological charts: an experimental study. Journal of mechanical design
134, 5 (2012), 051004.

[73] Stack Overflow. http://stackoverflow.com/.

[74] StakeSource. http://www0.cs.ucl.ac.uk/research/StakeSource/.

88

https://www.passbrains.com/
http://www.sloganslingers.com/
http://stackoverflow.com/
http://www0.cs.ucl.ac.uk/research/StakeSource/

[75] Stol, K.-J., and Fitzgerald, B. Two’s company, three’s a crowd: a case study of crowd-
sourcing software development. Proceedings of the 36th International Conference on
Software Engineering (2014), pp. 187–198.

[76] Surowiecki, J. The wisdom of crowds. Anchor, 2005.

[77] Testbirds. https://www.testbirds.com/.

[78] Threadless. https://www.threadless.com/.

[79] Tillmann, N., Bishop, J., Horspool, N., Perelman, D., and Xie, T. Code hunt: Searching
for secret code for fun. Proceedings of the 7th International Workshop on Search-Based
Software Testing (2014), pp. 23–26.

[80] Tonga. https://tongal.com/.

[81] Topcoder. https://www.topcoder.com/.

[82] Upwork. https://www.upwork.com/.

[83] uTest. https://www.utest.com/.

[84] Von Ahn, L., and Dabbish, L. Labeling images with a computer game. Proceedings of
the SIGCHI conference on Human factors in computing systems (2004), pp. 319–326.

[85] Wordy. http://wordy.com/.

[86] Xu, A., Huang, S.-W., and Bailey, B. Voyant: generating structured feedback on visual
designs using a crowd of non-experts. Proceedings of the 17th ACM conference on
Computer supported cooperative work & social computing (2014), pp. 1433–1444.

[87] Xue, H. Using redundancy to improve security and testing. PhD thesis, University of
Illinois at Urbana-Champaign, 2013.

[88] Yu, L., and Nickerson, J. V. Cooks or cobblers?: crowd creativity through combination.
Proceedings of the SIGCHI conference on human factors in computing systems (2011),
pp. 1393–1402.

[89] Zaidan, O. F., and Callison-Burch, C. Crowdsourcing translation: Professional quality
from non-professionals. Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies-Volume 1 (2011), Associa-
tion for Computational Linguistics, pp. 1220–1229.

[90] Zhang, H., Law, E., Miller, R., Gajos, K., Parkes, D., and Horvitz, E. Human compu-
tation tasks with global constraints. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (2012), pp. 217–226.

89

https://www.testbirds.com/
https://www.threadless.com/
https://tongal.com/
https://www.topcoder.com/
https://www.upwork.com/
https://www.utest.com/
http://wordy.com/

Appendices

A Consent Form and Demographics Questionnaire

90

91

92

B Qualification tests

B.1 User Interface Design Qualification Tests

93

94

95

96

B.2 Internal Code Design qualification Tests

97

98

99

C Tasks description

C.1 User Interface Design Tasks

Creating Maps

100

Setting Timing of Traffic Lights

101

Visualizing the State of The Simulation

102

Determining the Flow of Traffic

103

C.2 Internal Code Design Tasks

Representing the Road System

104

Representing Cars

105

Moving Cars

106

Changing the Colors of Traffic Lights

107

D Diversity per Worker

D.1 User Interface Decision Points

Creating Maps

UIplain

UIexamples

108

Setting Timing of Traffic Lights

UIplain

UIexamples

109

Visualizing the State of The Simulation

UIplain

UIexamples

110

Determining the Flow of Traffic

UIplain

UIexamples

111

D.2 Internal Code Decision Points

Representing the Road System

ICplain

ICexamples

112

Representing Cars

ICplain

ICexamples

113

Moving Cars

ICplain

ICexamples

114

Changing the Colors of Traffic Lights

ICplain

ICexamples

115

E Cumulative Number of Unique Categories Created

by Workers

E.1 User Interface Decision Points

Creating Maps

116

Setting Timing of Traffic Lights

Visualizing the State of The Simulation

117

Determining the Flow of Traffic

118

E.2 Internal Code Decision Points

Representing the Road System

Representing Cars

119

Moving Cars

Changing the Colors of Traffic Lights

120

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE THESIS
	Introduction
	Related Work
	Crowdsourcing
	Crowdsourcing Models
	Microtask Crowdsourcing
	Crowdsourcing in Software Engineering
	Crowdsourcing and Design

	Experiment Design
	Experimental Conditions
	Participant Recruitment
	Experiment Time
	Qualification Tests
	Tasks
	CrowdDesign Platform
	Questionnaire
	Review Procedure
	Compensation

	Data Analysis
	Diversity
	Quality
	Difficulty
	Collaboration

	Results
	General Results
	User Interface Design Without Examples (UIplain)
	Diversity
	Quality
	Difficulty

	Internal Code Design Without Examples (ICplain)
	Diversity
	Quality
	Difficulty

	Influence of Examples (UIexamples and ICexamples)
	Diversity
	Quality
	Difficulty

	Borrowing
	Use of `Duplicate' and `Copy' Features
	Solution Categories Distances

	Additional Analyses
	Finding Subgroups within the Solution Alternatives
	Finding Subgroups within the Crowd

	Discussion
	Threats to Validity
	Internal Threats to Validity
	External Threats to Validity

	Conclusion and Future Work
	Bibliography
	Appendices
	Consent Form and Demographics Questionnaire
	Qualification tests
	User Interface Design Qualification Tests
	Internal Code Design qualification Tests

	Tasks description
	User Interface Design Tasks
	Internal Code Design Tasks

	Diversity per Worker
	User Interface Decision Points
	Internal Code Decision Points

	Cumulative Number of Unique Categories Created by Workers
	User Interface Decision Points
	Internal Code Decision Points

