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ABSTRACT OF THE DISSERTATION

Existence, Uniqueness and Stability of Slowly Oscillating Periodic
Solutions for Delay Differential Equations with Non-negativity
Constraints

by

David Lipshutz
Doctor of Philosophy in Mathematics
University of California, San Diego, 2013

Professor Ruth J. Williams, Chair

Deterministic dynamical system models with delayed feedback and state
constraints arise in a variety of applications in science and engineering. Under
certain conditions oscillatory behavior has been observed and it is of interest to
know when there are periodic solutions. Here we consider one-dimensional delay
differential equations with non-negativity constraints as prototypes for such mod-
els. We obtain sufficient conditions for the existence of slowly oscillating periodic
solutions of such equations when the delay/lag interval is long and the dynamics
depend only on the current and lagged state. Under further assumptions, including

possibly longer delay/lag intervals and restricting the dynamics to depend only on



the lagged state, we prove uniqueness and a strong form of asymptotic stability

for such solutions.
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Chapter 1
Introduction

Dynamical system models with delay in the dynamics arise in a variety of
applications in science and engineering. Examples include Internet rate control
models where the finiteness of transmission speeds leads to a delay in receipt of
congestion signals or prices [22, 23, 24, 25, 26, 27|, neuronal models where the
spatial distribution of neurons can result in a propagation delay [2, 9], epidemio-
logical models where incubation periods result in delayed transmission of disease
[5], and biochemical models of gene regulation where transcription and translation
processes can lead to a delay in signaling effects [1, 4, 11, 15, 21]. Oscillatory
(especially periodic) behavior can be important for the functioning of such sys-
tems [11, 21]. Furthermore, often the quantities of interest in such systems are
non-negative. For instance, rates and prices in Internet models, proportions of
a population that are infected, and concentrations of ions or molecules are all
non-negative. In a delay differential equation model for such systems, sometimes
the drift function may naturally constrain all components to be non-negative, but
sometimes (e.g., because of the delay), the dynamics need to be modified when
one of the components of the current state becomes zero, to prevent that compo-
nent from becoming negative. This can be thought of as imposing a regulating
control at the boundary, which creates a discontinuity in the right hand side of the
differential equation.

While there is a considerable mathematical literature on oscillatory solu-

tions of unconstrained delay differential equations (see e.g., [8]), there is limited



mathematical literature studying oscillatory solutions for constrained delay differ-
ential equations with discontinuous dynamics at the boundary. Some examples
tied to specific applications include a biochemical application studied in Mather et
al. [15], where a simple genetic circuit model exhibits oscillatory behavior that is
potentially critical to biological functioning; and an Internet rate control model in
which the existence of oscillatory behavior is shown numerically to arise from an
unstable equilibrium solution [16]. Even a one-dimensional delay differential equa-
tion with a non-negativity constraint is an interesting non-linear system whose
natural state descriptor is infinite-dimensional because of the need to track posi-
tion over the delay/lag period. The behavior of the constrained system can be
quite different from that of the unconstrained analogue. For example, as we will
show, in the case of dynamics that are linear in the unconstrained context, the ad-
ditional non-negativity constraint can turn an equation with unbounded oscillatory
solutions into one with bounded periodic solutions.

As a first step towards studying oscillatory solutions of constrained delay
differential equations, we provide sufficient conditions for existence, uniqueness,
and stability of periodic solutions for prototypical one-dimensional delay equations

with non-negativity constraints of the form

(#) :x(0)+/0 F)ds +y(t), £ >0, (1.1)

where z is a continuous function on [—7,00) and takes values in the non-negative
real numbers, 7 € (0,00) is the fixed length of the delay interval, z; = {z(t + s) :
—7 < s < 0} tracks the history of z(-) over the delay interval, f is a real-valued
continuous function defined on these continuous path segments, and y ensures x(t)
remains non-negative for all ¢ > 0 (y is a continuous, non-decreasing function that
can increase only at time ¢ if z(t) is zero — see Definition 2.1 for further details).
Given f, we refer to (1.1) as a delay differential equation with reflection (at the
boundary).

In this work, we focus on slowly oscillating periodic solutions. Here, “slowly
oscillating” refers to the fact that the solution oscillates about an equilibrium point
and the time spent above/below the equilibrium point per oscillation is greater

than the length of the delay interval (see Definition 3.2 for a precise definition and



Figure 5.3 for an example of such a solution). For our results on existence of slowly
oscillating periodic solutions, we restrict f to be a function that depends only on

the current and delayed state, i.e.,

fx) = g(a(t),z(t = 7)), t 20, (1.2)

where g is a real-valued locally Lipschitz continuous function on the non-negative
quadrant in two-dimensional Euclidean space satisfying a negative feedback type
condition. Our existence results are inspired by the prior work of Nussbaum [18],
Hadeler and Tomiuk [9], Mallet-Paret and Nussbaum [12], and, in particular, Atay
2], on the existence of slowly oscillating periodic solutions for unconstrained delay
differential equations. Our assumptions on ¢ are similar to those used in [2],
although we allow somewhat relaxed boundedness assumptions on ¢ since our
non-negativity constraint a priori prevents unbounded excursions in the negative
direction. For uniqueness and stability, we further restrict the function f to depend

only on the delayed state, i.e.,
flzy) = h(z(t—71)), t >0, (1.3)

where h is a real-valued continuously differentiable function on the non-negative
real numbers satisfying a negative feedback condition. Our conditions on h and our
proof of uniqueness and stability are inspired by an approach introduced by Xie
[30, 31] to prove the uniqueness and stability of slowly oscillating periodic solutions
of the unconstrained system. However, due to the discontinuous dynamics at the
boundary, methods used in the unconstrained case for studying uniqueness and
stability do not readily apply in the constrained setting. Therefore we develop
new techniques for understanding perturbations of solutions in the constrained
environment, which may be of independent interest.

The paper is organized as follows. A precise definition of a solution to
a delay differential equation with reflection is given in Section 2. Here our non-
negativity constraint is described and its relation to the one-dimensional Skorokhod
problem is explained (a formulation of the one-dimensional Skorokhod problem
is detailed in Appendix A). We also explain a parallel formulation using delay

differential equations with discontinuous dynamics. The main results of the paper



are stated in Section 3. Sufficient conditions are provided for existence of slowly
oscillating periodic solutions of (1.1) and further restrictions implying uniqueness
and stability are described. Applications of the results to biochemical and Internet
rate control models are presented in Section 3.4.

The proof of existence of slowly oscillating periodic solutions is presented
in Section 4. By linearizing g about an equilibrium point, we are able to describe
conditions under which solutions of the constrained delay differential equation os-
cillate about the equilibrium point and the equilibrium solution is locally unstable.
A version of Browder’s fixed point theorem implying the existence of a non-ejective
fixed point is used to show the existence of a non-constant fixed point of a cer-
tain mapping on a path space, which corresponds to a slowly oscillating periodic
solution of (1.1). This follows a similar approach used in prior works for analo-
gous unconstrained systems (see e.g., [2, 9, 12, 18]). The main difference in our
case is the presence of the non-negativity constraint, which prevents unbounded
oscillations, and therefore allows for a less restrictive class of functions g.

The proof of stability and uniqueness of slowly oscillating periodic solutions
is presented in Section 5. We show that if the delay interval length is sufficiently
large we can construct an approximate Poincaré map associated with a slowly
oscillating periodic solution of (1.1). If A/(s) approaches zero sufficiently fast as
s approaches infinity, then the operator norm of the derivative is less than one,
which is used to prove that the associated slowly oscillating periodic solution is
asymptotically stable (It would be sufficient to prove a weaker condition that the
spectral norm is less than one; however this would not improve our stability result.)
Uniqueness of the associated slowly oscillating periodic solution then follows from
its asymptotic stability and an application of theorems for fixed point indices.
This follows a similar approach used to prove analogous results for unconstrained
systems [30, 31]. Our conditions on h are similar to those imposed in [30], though
ours are more restrictive because the lower boundary prevents us from using a
single transformation to incorporate a linear dependence on the current state.
However, the presence of the lower boundary does allows us to relax conditions on

the asymptotic rate that the derivative h’ approaches zero at infinity.



In order to construct an approximate Poincaré map associated with a slowly
oscillating periodic solution, a linear variational equation for solutions of delay dif-
ferential equations with reflection is derived in Appendix C. Solutions of the linear
variational equation in the constrained setting can differ considerably from those in
the unconstrained setting. In the unconstrained system, a differentiability condi-
tion on f ensures that solutions of the linear variational equation are continuously
differentiable for sufficiently large times. However, adapting that approach here
is complicated by the presence of a lower boundary and indeed solutions of the
linear variational equation in the constrained setting are not necessarily continu-
ous. To derive the linear variational equation in our constrained setting, results on
the derivative of the one-dimensional Skorokhod reflection map are used. These
results were first presented by Mandelbaum and Massey [13] and generalized first
by Whitt [28] and then by Mandelbaum and Ramanan [14] (a specific formulation
of their results is presented in Appendix B).

We shall use the following notation throughout this paper. Let N denote
the set of positive integers {1,2,...} and let Ny = NU {0}. For n € N, let
R™ denote n-dimensional Euclidean space and let R} = {v € R" : v; > 0 for
i =1,...,n} denote the closed non-negative orthant in R". Given v € R", let |v|
denote the Euclidean norm of v. When n = 1, we suppress the n and write R
for the real numbers and R, for the non-negative real numbers. For r,s € R, let
rt = max(r,0), r~ = max(—r,0) and let r V s = max(r,s), 7 A s = min(r, s). For
a subset A of the real numbers, let 1, denote the indicator function of A defined
on the real numbers by

1, ifred,
1a(r) =
0, otherwise.

Let 7 € (0,00) denote a constant delay. For an interval of the form I =
[—7,t], [-7,00), [0,t], or [0,00), where ¢ > 0, we will be concerned with the
following spaces of functions from I into the real numbers. We let D; denote the
set of functions from [ into R that have finite left and right limits at each finite
value in I (at the left endpoint of I we only require a finite right limit and at a

finite right endpoint we only require a finite left limit). We let C; denote the set of



continuous functions from I into R and we let C; denote the subset of continuous
function from the interval I into R;. We endow C; and its further subsets with the
topology of uniform convergence on compact intervals in /. For a function x € Dy

and a compact interval J in I, we define
[z][; = sup [(t)].
ted

Note that Dj_. o and C|_, ¢ are Banach space under ||-||(—-q-

For a function « € Dy, we say x is non-decreasing (resp. non-increasing) on
I'if x(s) < x(t) (vesp. z(s) > x(t)) for each s <t in I. We say that z is increasing
(resp. decreasing) on [ if z(s) < z(t) (resp. z(s) > x(t)) for each s < ¢ in I. For
a function © € D_; ) and t > 0, let x; € D|_; denote the 7-length function
defined by

r(s)=x(t+s), —7<s<0.

We let & € Djy ) denote the restriction of = to the interval [0, 00). For a function
x € Dy, let 27,2~ € Dy denote the functions defined by x*(¢) = max(z(t),0) and
x~(t) = max(—x(t),0) for each ¢t € I. For a function z € Djy ), let T € Dy o)

denote the upper-envelope function defined by

Z(t) = sup x(s), t > 0.
0<s<t

We let L'(R,) denote the space of Lebesgue integrable functions on R

with finite L'-norm N
felln = [ lats)ids

Given two Banach spaces X and g/, we let £(X,Y) denote the space of
bounded linear operators from X into Y. We shall use ||| to denote the norm
on X or Y, depending on the argument, which will be clear from context. For
Le L(X,Y), welet ||L|| =sup{||Lz| : € X, ||z|| = 1} denote the operator norm
of L. For an open subset U of X and a function f: U — Y, we say f(z) = o(x) if
lim, ol £ @)/ 12]] = 0.

This chapter is based on the paper “Existence, Uniqueness and Stability of
Slowly Oscillating Periodic Solutions for Delay Differential Equations with Non-
negativity Constraints” written jointly with Ruth J. Williams and currently in

preparation.



Chapter 2

Delay Differential Equation with
Reflection (DDER)

In this section, we define what we mean by a solution of a delay differ-
ential equation with reflection and remark on its relation to the one-dimensional
Skorokhod problem and delay differential equations with discontinuous right hand
sides. Throughout this section, we fix a delay 7 € (0, 00) and a continuous function
f: C[t o R.

Definition 2.1. A solution of the delay differential equation with reflection
(DDER) associated with f is a continuous function x € C[tT o) Satisfying (1.1),

where y € C[Jg ~) 18 @ continuous and non-decreasing function such that y(0) = 0

and f(f z(s)dy(s) = 0 for all £ > 0.

Remark 2.1. Note that the requirement fotm(s)dy(s) = 0 for all ¢ > 0 can be
interpreted as meaning that y(-) can only have a point of increase at time ¢ > 0 if
x(t) =0.

Remark 2.2. Given a solution x of DDER, (1.1) can be rewritten for ¢ > 0 as
(t) = 2(t) + y(t) (2.1)

t
z(t) = z(0) +/ flzs)ds. (2.2)

0

It follows that (Z,y), where & denotes the restriction of = to the interval [0, 00), is

a solution of the one-dimensional Skorokhod problem for z (see Appendix A). Tt



is a well-known fact in the theory of the one-dimensional Skorokhod problem that
given z, y is uniquely defined by
y(t) = sup z7(s), t > 0. (2.3)
0<s<t

In the notation of Appendix A,

(7, y) = (@, ¥)(2). (2.4)

+

Remark 2.3. It will be assumed throughout the paper that given any ¢ € C[_T o)

there exists a unique solution z of DDER with initial condition zy = . We do

not prescribe any further conditions than continuity on f. Under this assumption,

+
[=7,00)?

given x € C z in (2.2) is well-defined; however, usually additional assump-
tions are required to guarantee existence and uniqueness of solutions. For example,
if f satisfies a local Lipschitz condition as in Lemma 2.1 below and a condition
for non-explosion of solutions in finite time is imposed, then existence and unique-
ness holds. Our assumptions (see Assumptions 3.1 and 3.2) for the existence of

periodic solutions will ensure the existence of a unique solution x of DDER given

pE C[J: L which is bounded for all time.

The following lemma provides sufficient conditions for continuity in the ini-
tial condition of solutions of DDER. The requirement of an a priori bound on
solutions of DDER is not as strong a condition as it may appear since a nega-
tive feedback condition that we will impose for the existence of slowly oscillating

periodic solutions (see Assumption 3.2) ensures that such a bound exists.
Lemma 2.1. Suppose that there exist C' > 0 and Ksc > 0 such that
(@) = F(N] < Kpelle = ¢l -ra, (2.5)

for all , o € C[tﬂo} satisfying ||¢||—ro) < C and ||¢'||(=ro) < C. If x and z' are
solutions of DDER bounded by C' on [—T,t| for somet > 0, then

|2 —2||[—rg < 2exp(2K08) |2 — 2| _rg), 0 < s <t (2.6)

Proof. Fix t > 0. Suppose x and z! are solutions of DDER bounded by C on
[—7,1]. Define z as in (2.2) and define z' as in (2.2), but with 7 and 2T in place



of z and z, respectively. Then by (2.2) and (2.5),
|dﬂ—ﬂ&ﬂ§u®%ﬂN®HJﬁp/H%—wwkwmhogrgt
0

Fix s € [0,t]. By taking the supremum over r € [0, s|, we obtain a uniform bound

on C[O,s}a
Iz = 20, < |2(0) — 21(0)] + KﬁC/ lz = @[l ir
0

By (2.4), the Lipschitz continuity of the Skorokhod map (see Proposition A.1) and

an extension of the uniform bound to the interval [—7, s], we have
o = o8l < 2l = ooy + 20 [ Nl = ol rdr
0
A simple application of Gronwall’s inequality yields (2.6). O

Recall that if a function z : [0, 00) — R is absolutely continuous, then it is
almost everywhere differentiable and there exists a Lebesgue integrable function

u : [0,00) — R such that

aw:xmy54EQM&zzq

dz(t)
t

and at almost every ¢ > 0, z is differentiable and =

= u(t).

Lemma 2.2. Suppose that z is a solution of DDER. Then on [0,00), x is locally
Lipschitz continuous and so is absolutely continuous. For the almost every t €

(0,00) at which x is differentiable, we have

dx(t) f(ze) if z(t) >0,
0 if x(t) = 0.

Furthermore, x is continuously differentiable at all t > 0 such that z(t) > 0.

Proof. By the fundamental theorem of calculus and the continuity of t — f(x;),
z defined in (2.2) is locally Lipschitz on [0, 00) and continuously differentiable on
(0, 00) with dil—sft) = f(x¢) at each t > 0. By (2.4) and Proposition A.2, x inherits the
local Lipschitz property from z on [0,00) and so is absolutely continuous there.

Consider a time ¢ > 0 where z(¢) > 0. Then y is constant in an open interval
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about t and so y is differentiable in a neighborhood of ¢ with derivative wit) _ ),

dt
By (2.1), = is continuously differentiable at ¢ with derivative dTi—Ef) = f(z;). Now

consider ¢t > 0 where z is differentiable and z(¢) = 0. By considering derivatives
from the left and the right and using the fact that z(s) > 0 for all s > 0, we see

dz(t) _
that o =0. O

Delay differential equations with discontinuous right hand side are often
used in engineering models (see e.g., [23, 24, 25, 26]) to account for state con-
straints. A consequence of the discontinuous right hand side is that solutions do
not have to be continuously differentiable. Consider, for example,

de(t) _ Jflze), ifa(t) >0, 2.8)

dt Fla)™, if a(t) = 0.

+

We consider solution of (2.8) to be an absolutely continuous function = € C[fT 00)

satisfying (2.8) at the almost every ¢ € (0,00) where z is differentiable. In the
following lemma we show that given ¢ € C[J: L there exists a unique solution of
(2.8) with initial condition ¢ and it coincides with the unique solution of DDER
with initial condition ¢ (Recall that we have assumed the existence of a unique

solution of DDER with initial condition ¢.)

Lemma 2.3. Suppose x is a solution of (2.8), then x is a solution of DDER. Con-
versely, if x is a solution of DDER, then x is a solution of (2.8). By assumption,

for each p € C[t there exists a unique solution x of DDER with initial condition

7—70];
p; therefore there exists a unique solution of (2.8) with initial condition .

Proof. Suppose x is a solution of (2.8). Then x satisfies

t t
‘I(t) = JI(O) +/ 1{x(s)>0}f(xs)d5 + / 1{x(s):0}f(xs)+d87 t > 0. (29>
0 0

We can rewrite (2.9) as

ZL‘(t) = ‘T(O) +/0 f(xs)ds +/0 1{x(s):0}f(xs)_dsv t Z 0.

If we define y € C;f ) by y(t) = f(f Liz(s)=0}.f (x5)"ds for all t > 0, then y is non-

[0,00

decreasing, y(0) = 0, and f(f z(s)dy(s) = 0 for all ¢ > 0. Therefore x is a solution
of DDER associated with f.
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Now suppose z is a solution of DDER. Let z and y be defined as in (2.2)
and (2.3), respectively. By Lemma 2.2, x is an absolutely continuous function
satisfying (2.7) for the almost every ¢ > 0 at which z is differentiable. Clearly,
(2.8) holds at such t > 0 if z(¢) > 0. On the other hand, consider such ¢ > 0 at

which z(¢) = 0. Then d"figt) = (0 and by the fundamental theorem of calculus and

the continuity of f, z is a continuously differentiable function and therefore y is
differentiable at ¢ with derivative given by

dy(t) _ dz(t)  dz(t)
dt dt dt

= —f(z) 20,

where the inequality follows since y is a non-decreasing function. Thus, for ¢ > 0

such that z is differentiable and z(t) = 0, we have d%—gt) = f(z¢)~ and so
dx(t) dz(t) dy(t) N
7 T N T fl@e) + flz)™ = flz)"

Hence z is a solution of (2.8). O
Remark 2.4. Note that if x is a solution of DDER and ¢ > 0 such that z(t) = 0
and z(-) is differentiable at ¢, it follows from Lemmas 2.2 and 2.3 that

dx(t)
dt

= f(z,)" =0. (2.10)

This chapter is based on the paper “Existence, Uniqueness and Stability of
Slowly Oscillating Periodic Solutions for Delay Differential Equations with Non-
negativity Constraints” written jointly with Ruth J. Williams and currently in

preparation.



Chapter 3

Main Results

In this section we present our main results on sufficient conditions for the
existence, uniqueness and stability of slowly oscillating periodic solutions to the
DDER.

3.1 Slowly Oscillating Periodic Solutions (SOPS)

We will be assuming that there is a positive equilibrium point for the DDER

which is defined as follows:

Definition 3.1. A point L > 0 is an equilibrium point of DDER if x = L on
[—7,00) is a solution of DDER.

A solution x of DDER that oscillates about an equilibrium point L and
such that the times at which = is at the equilibrium point are separated by more
than they delay 7 is called slowly oscillating. Throughout this paper, we consider

periodic solutions with this property.

Definition 3.2. A solution x of DDER is called a periodic solution with period
p>0if

z(t+p) =x(t) for all t > —7. (3.1)
Suppose L > 0 is an equilibrium point of DDER. Then a periodic solution x* of
DDER is called a slowly oscillating periodic solution (SOPS) if there exist ¢y > —T,

12
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¢1 > qo + 7, and g2 > ¢; + 7 such that (3.1) holds with p = g5 — qo, and

x*(q()) = L7
I*(t) > L7 qo < t< qi, (32)

0<z*(t) <L, 1 <t<qo.

See Figure 5.3 for an example of a SOPS of DDER when ¢y = —7 and
f is of the form exhibited in (3.9) and satisfies Assumptions 3.3 and 3.4 below.
Throughout the remainder of this paper we will use x* to denote a SOPS of DDER.

3.2 Existence of SOPS

To establish the existence of a SOPS, we assume that f is solely a function

of the current and delayed states of the system:

f(@) = gp(0), p(=7)), for all p € C_, (3.3)

where g : R2 — R is a continuous function that satisfies two sets of assumptions.
The first set of assumptions is used to establish the existence of an equilibrium

point and to specify regularity properties of g.

Assumption 3.1. The function g : ]R%r — R is locally Lipschitz continuous, there
is an L > 0 such that g(L, L) = 0, g is differentiable at (L, L) and

= —01g(L,L) >0, B= —0y9(L,L) > 0, (3.4)

satisfy B > A > 0. Here 0,9 denotes the first partial derivative with respect to

the " argument of g, for i = 1,2.

The condition (3.4) imposes a negative feedback condition on the local
linearization about the equilibrium; for this linearization, the condition B > A is
known to be necessary for the equilibrium solution to be unstable. The following

is a global negative feedback type of condition.

Assumption 3.2. For all r,s € R,
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(i) (g(r,s) —g(r,L))(s— L) <0ifs+# L, and

(i) (9(r,s) — g(L,))(r— L) <Oifr £ L.

Remark 3.1. Assumptions 3.1 and 3.2 imply that if » > L and s > L, then ¢(r, s) <
g(r,L) < g(L,L) = 0; similarly, if » < L and s < L, then g(r,s) > g(r,L) >
g(L, L) = 0. Hence Assumption 3.2 can be thought of as imposing a global negative
feedback condition. Also, by (i) and (ii), g(r,7)(r — L) < g(L,r)(r — L) < 0 for
r # L, and so g(r,r) = 0 if and only if » = L; this ensures that L is a unique
equilibrium point of DDER.

Previous results [2] on the existence of SOPS in the unconstrained setting
typically require a third set of conditions bounding ¢(L,-) and providing linear
growth conditions on ¢ in both components to prevent unbounded oscillations.
The presence of the lower boundary in (1.1) prevents unbounded oscillations and
a version of the third condition in [2] is instead a consequence of Assumptions 3.1

and 3.2, as follows.

Lemma 3.1. Under Assumptions 3.1 and 3.2, there exists G = G(g) > 0 such that
g(L,s) < G for all s € Ry. Additionally, there exist positive constants k1 = k1(g)
and Ko = K2(g) such that

lg(r,8)| < Ki|r — L| + kals — L|, 0 <r,s < L+ 7G. (3.5)

Proof. The continuity of g implies that g(L, -) is bounded on compact sets. There-
fore, there exists G > 0 such that g(L,s) < G for all s € [0, L]. For s > L, using
the fact that g(L, L) = 0 and part (i) of Assumption 3.2, we have that g(L, s) < 0.
Thus, g(L,s) < G for all s € R;. Additionally, since g is continuous on R? , locally
Lipschitz continuous at (L, L) and g(L, L) = 0, we have the linear growth bounds
in (3.5). O

Under Assumption 3.1, consider the unconstrained linear delay differential
equation obtained by linearizing g about its equilibrium point L and centering

about the origin:
du(t)

dt

— —Au(t) — Bu(t — 7). (3.6)
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Equation (3.6) has characteristic equation
A+ A+ Be =0, (3.7)

Let 0y be the unique solution in [7/2,7) to cosfy = —A/B and define

0o
VB A

If 7 > 79, the characteristic equation (3.7) will have a solution A with positive

(3.8)

T0 =

real part, from which it follows there exist solutions of the linear delay differential
equation (3.6) that exhibit unbounded oscillations (see [10], Chapter 7). Using
this we show that « = L is an unstable equilibrium solution for DDER and then
prove the following result on the existence of a non-constant (oscillating) periodic

solution.

Theorem 3.1. Under Assumptions 3.1 and 3.2, if 19 is given by (3.8), then for
any T > 1o, there exists a SOPS of the DDER (1.1).

The proof of Theorem 3.1 is given in Section 4. Our proof is similar to
proofs of the existence of SOPS for unconstrained one-dimensional non-linear delay
differential equations (see e.g., [2, 9, 12, 18]). The main difference in our work is
the presence of the lower boundary with the associated function y controlling the

dynamics in (1.1).

3.3 Uniqueness and Stability of SOPS

To establish uniqueness and stability of SOPS, we will now impose more
restrictive conditions on f; in particular, we only allow f to depend on the delayed

state:
f(p) = h(p(~7)), forall p € C_ . (3.9)

where h is a continuous function that satisfies two sets of assumptions. The first
set of assumptions imply Assumptions 3.1 and 3.2 used in proving the existence
of a SOPS. It includes further assumptions on the differentiability of A and its

asymptotic behavior at infinity.
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Figure 3.1: For a fixed parameter B > 0, the equilibrium solution x = L is

unstable for parameters 7 and A in the shaded region, which is given by {(A4,7) :

A€ 0,B) and T > 1}, where 7y is as in (3.8).

Assumption 3.3. The function h : R, — R is continuously differentiable on R,
there are positive constants «, § such that lim, . h(s) = —a, h(0) = (5, and there

is an L > 0 such that h(L) =0, K'(L) < 0 and (s — L)h(s) < 0 for all L # s € R,.

Lemma 3.2. Under Assumption 3.3, H = sup{|h(s)|:s € R} < o0. Ifz isa

solution of DDER associated with h, then x is uniformly Lipschitz continuous with

Lipschitz constant H :
lz(t) — z(s)| < H|t — s], 0 < s,t < 0. (3.10)

Proof. Since h is continuous on R, and has a finite limit at infinity, A is uniformly

bounded. By Lemma 2.2, if = is a solution of DDER, then it is absolutely contin-
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uous on [0, 00) and for the almost every ¢ € (0, 00) at which z is differentiable,

da(t) h(z(t — 7)) if z(t) >0,
g 0 if 2(t) = 0.

It follows that its almost everywhere in [0, 00) defined derivative is bounded by H
and (3.10) holds. O

On setting g(r, s) = h(s) for r, s > 0, Assumption 3.3 implies that g satisfies
Assumptions 3.1 and 3.2 (with A =0 and B = —h/(L)). Define

(e

0 TN

> 0. (3.11)

Then Theorem 3.1 ensures that for any 7 > 7 there exists a SOPS of DDER.
In order to prove the uniqueness and stability of a SOPS, we assume that h'(s)
converges zero sufficiently fast as s — oo. Recall that L!(R,) denotes the space

of Lebesgue measurable functions from R, into R with finite Z!'-norm.

Assumption 3.4. The function h : R, — R is continuously differentiable on R,
its derivative /' is in L'(R,) and m = sup{|sh/(s)| : s € R, } < 0.

Lemma 3.3. Under Assumption 3.4, K, = sup{|W/(s)| : s € Ry} < oo and so h

18 uniformly Lipschitz continuous with Lipschitz constant Ky, :

/Ts h' (u)du

Proof. Since k' is continuous and h/(s) — 0 as s — oo, A’ is uniformly bounded on

R, and (3.12) follows. O

|h(s) — h(r)| = < Kpls—r], 0<r s < oc. (3.12)

We say a SOPS z* of DDER is unique (up to time translation) if given
another SOPS z' of DDER, there exists ¢y > 0 such that x*(t) = (¢ + t,) for all

t > 0. The following is our main result on the uniqueness and stability of a SOPS.

Theorem 3.2. Under Assumptions 3.3 and 3.4, if 1o is given by (3.11), then there
exists T* > 1o such that for any T > 7%, there exists a SOPS x* of DDER with delay
T and it is unique (up to time translation). Furthermore, the SOPS satisfies the

following property, which we call (local) uniform exponential asymptotic stability:



18

there are positive constants €, v, K., and K, such that for any member x* of the
family of equivalent (up to time translation) SOPS and for p equal to the period
of x*, if p € C[tﬂo} satisfies || — x%||—r0) < € for some o € [0,p), then there is a
p € (—p,p) that satisfies

ol < Kl — a5 lli-ral; (3.13)

and is such that
20 = &1 pyoplli-ro) < Kye o — 25 [l 1-r0, £ >0, (3.14)
where x denotes the unique solution of DDER with initial condition .

The proof of Theorem 3.2 is given in Section 5. Our proof adapts an ap-
proach used in [30, 31] to prove uniform exponential asymptotic stability and
uniqueness of unconstrained slowly oscillating periodic solutions. The proof re-
lies on the construction of an approximate Poincaré map associated with a SOPS.
The construction requires a linear variational equation relative to constrained so-
lutions. Difficulties arise because solutions to the linear variational equation in the

constrained setting can be discontinuous.

3.4 Examples

We illustrate our results with some simple examples of deterministic models

of biochemical reactions and Internet rate control.

Example 3.1. Fix 7 > 0and A, B,C, D, E > 0. We consider a simple biochemical
model for the production and degradation of a protein X. In the model, protein
X is produced by components external to the system at rate A and each protein

molecule degrades at rate B, which is represented by the following reactions:
0= X, x 2 0,

where () denotes “nothing” (or a quantity external to the system). Furthermore,
X is a transcription factor activating the production of a protein Y, which, after

production, quickly eliminates a molecule of protein X if it is available or otherwise
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Y rapidly degrades. The production process for protein Y is a multistage process,
including lengthy transcription and translation stages, which leads to a delay in
its production. The production of protein Y and the subsequent degradation of
a molecule of X by a molecule of protein Y can be represented by the following
reactions:

x£x+y, x+v20 vEy,

where the double arrow indicates a delayed reaction. Both D and E are very
large constants with D considerably larger than E. As a simplification, we assume
that after a molecule of Y is produced, it eliminates a molecule of protein X
instantaneously if such a molecule of X is available or otherwise the molecule of Y
degrades instantaneously. With this simplification, a deterministic model for the

concentration of protein X at time ¢ is given by the DDER associated with

flp) = C = Ap(0) = Bp(=T), p € C -

If B > A, f clearly satisfies Assumptions 3.1 and 3.2 with equilibrium point
L= AJFLB. Let 75 be defined as in (3.8). If 7 > 7, then by Theorem 3.1 there exists
a SOPS of DDER.

In [4], Bratsun et al. analyzed a similar deterministic biochemical reac-
tion model with delayed dynamics and linear f, but without the non-negativity
constraint. If 7 > 7y, then an initial condition corresponding to a SOPS in the

constrained setting will correspond to a solution with unbounded oscillations as in

Figure 3.2.

Example 3.2. Fix 7 > 0 and «, 3,7, Cy, Ry > 0. We consider a simple model for a
biochemical reaction system in which the quantity of a repressor protein is affected
by three factors: production, enzymatic degradation and dilution. The protein
is self-regulating in that it represses its own production. It also has a lengthy
transcription and translation time. A simple model was proposed by Mather et al.
[15] where the deterministic dynamics of the system are described by the following
delay differential equation:
dz(t) aC? vy (t)
dt ~ (Cotx(t—71))° Ro+x(t)
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Figure 3.2: A SOPS of DDER (in black) and a solution of an unconstrained delay
differential equation (in gray) with identical initial conditions and identical linear

drift functions as described in Example 3.1.

where x(t) represents the concentration of the repressor protein at time ¢ and takes
values in the non-negative real numbers. The first term on the right is the protein
production rate with delayed negative feedback and the second and third terms
represent the effects of enzymatic degradation and dilution, respectively. In the
above model, the non-negativity of the protein concentration is ensured by the form
of the delay differential equation: if z(¢) = 0, then dfl—(:) > 0. In [15], Ry and S are
very small and the authors consider the limiting case of the deterministic system
where Ry = 0 and § = 0. However, in this formal limit, the delay differential
equation loses the inherent non-negativity of its solutions, and the equation must
be modified at the boundary, i.e., when z(¢) = 0. One way to account for the
non-negativity constraint is to consider solutions of our DDER associated with
aC?

(Co +¢(=7))
If « > 7, then f satisfies Assumptions 3.3 and 3.4 with equilibrium point L =
Co(y/a/y —1). Then by Theorem 3.1, if 7 > %CO\/W, there exists a slowly
oscillating periodic solution of the DDER. Furthermore, by Theorem 3.2, there
exists 7" > %C’OW such that if 7 > 7%, then any SOPS of the DDER is unique

flp) =

7 =% P EC g
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and uniformly exponentially asymptotically stable.

dimers % '\
@ O monomers
transcription/translation O O
(cause of delay)

O

enzymatic
degradation

repression

DNA

Figure 3.3: A depiction of the simple negative feedback circuit described in Ex-
ample 3.2. In our model x(t) denotes the concentration of the protein monomers
and the squared term in the denominator of the production term arises because

the dimerized form of the protein represses transcription.

Example 3.3. Deterministic delay differential equations have been used as approx-
imate (fluid) models for Internet rate control, where the finiteness of transmission
speeds leads to a delay in the dynamics. Here we consider the one-dimensional case
of a model introduced by Paganini, Doyle and Low [22], and studied by Paganini
and Wang [23], Peet and Lall [26], Papachristadolou [24], and Papachristadolou,
Doyle and Low [25]. The dynamics of the model are described by (2.8), where

e_a‘p(_T)

f(gO) = T - 17 Y e C[t7,0]7 (315)

7 > 0 is the fixed delay, 0 < ¢ < 1 is the capacity of a singe link, and o > 0
is a fixed constant. By Lemma 2.3, it follows that solutions of (2.8) are in one-
to-one correspondence with solutions of the DDER where f is as in (3.15). Since
f satisfies Assumptions 3.3 and 3.4 with equilibrium point L = —In(c)/a, by
Theorem 3.1, if 7 > 7/(2), then there exists a SOPS of the DDER. Furthermore,
by Theorem 3.2, there is a 7* > 7/(2a) such that for each 7 > 7%, there exists
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a unique SOPS, which is uniformly exponentially asymptotically stable. Internet
rate control protocols are typically designed to prevent such oscillatory behavior.
It is noted in [22] that as the delay 7 increases, solutions to (2.8) with f as in (3.15)
do exhibit oscillatory behavior. To counteract this problem, « is often designed
so as to depend on the delay 7, e.g., in [22] it is observed that if a(7) = 3/7 for
B € (0,7/2), then the equilibrium solution is asymptotically stable for all 7 > 0.

This chapter is based on the paper “Existence, Uniqueness and Stability of
Slowly Oscillating Periodic Solutions for Delay Differential Equations with Non-
negativity Constraints” written jointly with Ruth J. Williams and currently in

preparation.



Chapter 4

Existence of Slowly Oscillating

Periodic Solutions

In this section we prove Theorem 3.1 which provides sufficient conditions
for the existence of slowly oscillating periodic solutions (SOPS) of DDER. The
proof follows an argument similar to one used for unconstrained systems [2, 9, 18],
which utilizes a form of Browder’s fixed point theorem. New difficulties need to
be addressed in our context because of the lower boundary constraint and the
associated discontinuous dynamics. Throughout this section, we assume that f is

of the form exhibited in (3.3) and that Assumptions 3.1 and 3.2 hold.

4.1 Browder’s Fixed Point Theorem

Definition 4.1. Let X be a topological space, f : X — X a continuous function
and zg € X be a fixed point of f, so that f(z¢) = xo. Then xq is an ejective fized
point if there exists an open neighborhood U of xy such that for every x € U\ {zo},
there exists n = n(z) € N such that the n' iterate of f, f"(x), is not in U,

The following is a version of Browder’s fixed point theorem [6], proved
by Nussbaum (a special case of Corollary 1.1 in [18]), which provides sufficient

conditions for the existence of non-ejective fixed points.

23
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Theorem 4.1. Let K be a closed, bounded, convex, infinite-dimensional subset
of a Banach space. Suppose that f : K — K is a continuous, compact function.

Then f has a fixed point in K that is not ejective.

Briefly, our proof of Theorem 3.1 proceeds as follows. We first perform a
spatial shift and rescale time in (1.1) so that the equilibrium solution is at the
origin and the delay interval [—7,0] is normalized to [—1,0]. We show that it
suffices to prove existence of a corresponding slowly oscillating periodic solution
for this normalized equation. We denote solutions of the normalized equation with
a hat: z. Existence will be proved by finding a suitable set K in the Banach space
C[-1,0) and proving that if Z is a solution of the normalized equation such that Z
in IE, then there exists a time ¢ > 0 such that &, € K. A function A on K will map
Ty € K to Z; at the first time ¢t > 0 that the solution Z starting from z, reenters K.
An element of K that is mapped by A to itself corresponds to a periodic solution
(which may be constant). Under Assumptions 3.1 and 3.2, for 7 > 79, the unique
constant solution will be an ejective fixed point of the map A and Browder’s fixed
point theorem will imply the existence of a non-ejective fixed point, which will

correspond to a slowly oscillating periodic solution.

4.2 Normalized Solutions

It will be convenient to work with normalized solutions of the DDER (1.1),
obtained from a solution x of DDER by subtracting off L and rescaling time so
that the delay is of length one. The normalized solutions will satisfy a normalized
version of (1.1). We work with this normalized equation here in the proof of
existence, as well as in Section 5 in the proof of stability and uniqueness. There
is no loss of generality in this as there is a one-to-one correspondence between
solutions of the normalized equation and those of the original DDER, as we will
show below in Lemma 4.1.

We first need some definitions. Recall that g is assumed to satisfy Assump-

tions 3.1 and 3.2. Let § : [~ L,00)?> — R be the function defined by:

g(r,s)=g(r+L,s+ L), r,s € [—L,00). (4.1)
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Then ¢ inherits the following properties from g: the function g is locally Lipschitz
continuous, §(0,0) = 0, g is differentiable at (0,0) with

_alg(oa 0) = A Z 07 —82g<0, 0) =B > 07

where 9;§ denotes the first partial derivative with respect to the i*" argument of
g, fori=1,2, and B > A > 0 are defined in Assumption 3.1. By Assumption 3.2,

g satisfies the following inequalities for r, s € [—L, 00):

By (4.2) and (4.4), if r <0 and s < 0, then g(r, s) > 0 and similarly, by (4.3) and
(4.5), if r > 0 and s > 0, then g(r,s) < 0. Finally, for G = G(g), k1 = k1(g) and

Ko = Ka(g) as in Lemma 3.1, we have
.é(()u 8) S G; S 2 _La (46)

and

19(r, )| < wa|r| + als], =L < 7,5 <7G. (4.7)

We can now define a solution of a normalized delay differential equation

with reflection associated with g.

Definition 4.2. A continuous function & € C|_; ) is a solution of a normalized
delay differential equation with reflection (DDER™) associated with ¢ if z(t) > —L
for all t > —1 and satisfies

#(1) = 5(0) + T/O (i (s), (s — 1))ds + (1), £ > 0, (4.8)

where ¢ € C[Jg ~) 18 a continuous and non-decreasing function such that 3(0) = 0,

and [, (#(s) + L)dij(s) = 0 for all ¢ > 0.

For the remainder of this section, we use Z to denote a solution of DDER"™

associated with the ¢ defined in (4.1). From the conditions on g, the point 0 is the
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unique equilibrium point for DDER?®, i.e., £ = 0 is the only constant solution of

DDER". We define a slowly oscillating periodic solution (SOPS™) of DDER™.

Definition 4.3. A solution # of DDER" is called periodic if there exists p > 0
such that
z(t+p) = z(t), for all t > —1. (4.9)

A periodic solution z* of DDER" is called a slowly oscillating periodic solution
(SOPS™) if there exists gy > —1, ¢1 > ¢o+ 1, and ¢» > ¢; + 1 such that (4.9) holds
with }3 = qAQ — (jo, and

&% (o) = 0,

z*(t) > 0 for g < t < Gy, (4.10)
—L <z*(t) <0 for ¢ <t < o

See Figure 5.1 for an example of a SOPS™ of DDER" when ¢y = —1 and g is

of the form §(r, s) = h(s) where h is as in Section 5.1. Throughout the remainder

of this paper we will use * to denote a SOPS" of DDER". In the following lemma

we show that there is a one-to-one correspondence between solutions of DDER and

solutions of DDER™ as well as between SOPS and SOPS".

Lemma 4.1. If x is a solution of DDER associated with g and & € Cl_1 ) 15
defined by
(t) =ax(rt) — L, t > —1, (4.11)

then T is a solution of DDER™ associated with g. Furthermore, if x is a SOPS,
then  is a SOPS™. Conversely, if  is a solution of DDER™ associated with g and
T € C[two) is defined by

r(t)=2(r7 ')+ L, t > -1, (4.12)

then x is a solution of DDER associated with g. Furthermore, if & is a SOPS",
then x is a SOPS.

Proof. Suppose z is a solution of DDER. By subtracting L from both sides, scaling

time by 7, and performing a change of variables in the integration, we see that x
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satisfies
t
z(tt) — L=x(0) — L+ 7'/ §g(x(rs) — Lyx(rs — 1) — L)ds + y(7t), t > 0.
0

Define & € C_1,) as in (4.11) and § € C ) by §(t) = y(rt) for t > 0. Then
Z(t) > —L for all t > —1, and Z satisfies

i(1) = #(0) + T/O i (s), (s — 1))ds + §(8), £ > 0,

where y € C[J&OO) is non-decreasing, y(0) = 0 and fot L(~L,00)(Z(5))dy(s) = 0 for all
t > 0. Therefore z is a solution of DDER". Furthermore, if z is a SOPS with
period p and qq, q1, and ¢y are as in (3.2), then 2 is a SOPS" with period p = 77 1p
and o = 7 'q0, G = 7 'q1, and §» = 7 'q:. Now suppose & is a solution of
DDER". If we define z € C'_ ) as in (4.12) and y € Cg ., by y(t) = g(7'1),

then by reversing the above steps, we have that x is a solution of DDER and if &
is a SOPS", then z is a SOPS. O

By the unique correspondence between solutions x of DDER and z of
DDER™ described in Lemma 4.1, we have the following results for solutions =z

of DDER™.

Lemma 4.2. Suppose that & is a solution of DDER"™. Then, on [0,00), & is
locally Lipschitz continuous and so is absolutely continuous. For the almost every
€ (0,00) that z(-) is differentiable,

di(t) _ Jro(a(t),&(t 1), if @) > -L, (4.13)

0, if 2(t) = —L.

Furthermore, & is continuously differentiable at all t > 0 for which z(t) > —L.
Proof. This follows immediately from Lemmas 4.1 and 2.2. O]

Remark 4.1. By Lemmas 4.1 and 2.3, we have that if Z is a solution of DDER"
and z(-) is differentiable at t > 0, then

di(t) _ | 79(@(t). @t = 1), ifa(t) > L, (4.14)

r9(a(t), #(t — 1))*, if #(t) = —L.
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4.3 Slowly Oscillating Solutions

In this section we prove that solutions of DDER" with initial condition
in a certain subset of Ci_; ¢ are slowly oscillating. Throughout this section, let
G = G(g), k1 = k1(g), and Ky = K2(g) be as in Lemma 3.1 so that (4.7) holds.
Define

K = {@ €CH g p(-1) = 0} (4.15)
K ={¢ € K : exp(rk1-)@(-) is non-decreasing on [—1,0]} (4.16)
K={pek: el <76}, (4.17)

Then K is a closed, convex, bounded, infinite-dimensional subset of the Banach
space C_1 ] endowed with the supremum norm ||-||[_1,. The zero element of K is
the function ¢ € C_1,9) such that ¢ = 0 on [—1,0]. In this section we show that
the trajectory of a solution & of DDER" with initial condition Z( in K reenters K
at some time after time zero.

The following lemma gives a lower bound on the magnitude of § in a certain

set near the equilibrium point.

Lemma 4.3. For each n € (0,1), there exists § € (0, L) such that
|g(r, 8)| > n|Ar + Bs| for all (r,s) € By, (4.18)
where Bs := {(r,s) € R? : rs > 0 and |r|,|s| < d}.

Remark 4.2. Lemma 4.3 is similar to the converse statement of Lemma 3 in [2]

with the main difference being that here we allow A to equal zero.

Proof. Fixn € (0,1). Suppose that there does not exist § € (0, L) for which (4.18)
holds. Let {6,}22, be a sequence in (0, L) such that ¢,, goes to zero as n — oo.

Then there exists a sequence {(7,, s,)}>2, such that for each n, (r,,s,) € Bs, and
‘f](?“n, Sn)’ < U‘Arn + Bsn‘ (419)

Note that (4.19) ensures that either A > 0 or A =0 and s,, # 0 for all n. We first

treat the case where A > 0. By the definition of By, , for each n, r, and s, are
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both non-negative or both non-positive. It follows that we can take a subsequence,
also denoted {(rp, s,)}5°,, such that (i) 7, and s,, are both non-negative for all n
or both non-positive for all n, (ii) for each n, at least one of r,, s, is non-zero, and
(iii) (rp,sn) — (0,0) as n — o0o. We consider the case where 7, s,, are both non-
negative for each n, with the case that they are both non-positive being similar.
Dividing both sides of (4.19) by A|r,| + Blsx|, we have for all n sufficiently large
that

o ([(rn,50)])
14—V oo 4.20
Alral + Blsa| (4.20)

where we have approximated ¢ at the origin using its first partial derivatives. Note
that the mapping (r,s) — A|r| + B|s| defines a norm on R? so taking limits as
n — oo on both sides in (4.20) yields the contradiction 1 < 7, which proves the
lemma in the case A > 0.

We now consider the case where A = 0. As before, we can take a subse-
quence, also denoted {(r,, $,,)}°°, such that r,, and s,, are both non-negative for all
n or both non-positive for all n, s, # 0 for all n since A =0, and (r,, s,) — (0,0)
as n — o0o. Again, we treat the case where r,, s, are both non-negative for all
n, with the case that they are both non-positive being similar. Equation (4.19)
becomes

- Q(Tn, Sn) < nBSn- (421)

Since r, > 0 for each n, the inequality (4.5) implies that —g(0,s,) < —g(ry, Sn)

for all n and when combined with (4.21), we obtain that
—3(0,8,) <nBsy,. (4.22)

Substituting the first order approximation —g(0, s,) = BSs, + o(|s,|) into (4.22)

and dividing by B|s,| on either side, we have

o(lsnl)
1 . 4.23

Taking limits as n — oo on both sides in (4.23), we arrive at the contradiction

1 <7, which proves the lemma in the case A = 0. O]

To prove the existence of SOPS" of DDER", we first show that solutions of

DDER" with initial conditions in K are slowly oscillating. The next lemma is an
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adaptation of analogous results in the unconstrained setting, which are detailed
(for g satisfying various assumptions) in Lemma 2.3 of [18], Lemma 6 of [9] and
Lemma 4 of [2]. The main difference in the following lemma is the presence of the

lower reflective boundary.

Lemma 4.4. Suppose 7 > 1/B. Let ¢ € K such that ¢ # 0 and let & € Cl_1,00)
denote the unique solution of DDER"™ with initial condition ¢. Then there is a
positive constant ) depending only on g and L, and countably many points 0 <

1 < Gz < --- such that
(1) &(qx) =0 fork=1,2,...,

(1) 0 < ¢ <Q,
1<qu+1_qu<1+Qf0rk:1727"'7

(1ii) z(t) > 0 fort € (0,q),
z(t) <0 fort € (Gok—1,Gox) for k=1,2,...,
ZJAZ(t) >0 forte (koaCij—&-l) fork=1,2,...,

(iv) The function exp(Tky-)Z(-) is non-increasing on the intervals (Gog—1, Gor—1+1)

and non-decreasing on the intervals (Gox, Gor, + 1), k =1,2,..., and
(v) z(t) < 7G for allt > —1.

Remark 4.3. We call ¢, o, ..., the zeros of . Note that if 7 > 73, where 7 is

defined in (3.8), then 7 satisfies the condition in Lemma 4.4.

Proof. Fix 7> 1/B and ¢ € K such that » # 0. Let & denote the unique solution
of DDER"™ with initial condition ¢. By Lemma 4.2,  is absolutely continuous
on [0,00) and therefore can be recovered by integrating its almost everywhere
defined derivative. Additionally, at ¢ > 0 such that #(t) > —L, Z is continuously
B0 — rh(i(t),@(t — 1)) and at t > 0 such that
Z(t) = —L and 7 is differentiable, its derivative satisfies dz—gf) = 0.

Since 7 > 1/B, there exists n € (0,1) such that n7 > 1/B, and by Lemma

4.3 there exists d; € (0, L) such that

differentiable with derivative

|g(r, s)| > n|Ar + Bs| whenever (r,s) € Bs,,



31

where By, is as in Lemma 4.3. By choosing a smaller 4; if necessary, we can assume
91 < 7G. Since ¢ # 0 and ¢(t) > 0 for all t € [—1, 0], there exists ¢ty € [—1,0] such
that Z(tp) > 0. Therefore 2(0) > 0 since exp(7x1-)Z(+) is non-decreasing on [—1, 0].
By (4.3) and (4.5), for t > 0 prior to the first time after zero that & reaches zero,
we have §(z(t),z(t — 1)) <0 for ¢t > 0 and since #(0) < 7G, by (4.13), z(t) < 7G

for such t. We next prove that #(-) will become negative. Let
ty =inf{t > 0:2(t) <},

where by convention we define t; = oo if the infimum is taken over the empty set.
We first show that ¢; is finite. Suppose ¢t; > 1. Then z(t) > §; for t € [0,1]. By
(4.3) and (4.5),

—dy = max{g(r,s): 01 <r,s <7G} <0.

For t € [1,t1), where t; is possibly infinite, we have 2(t),Z(t — 1) > 41, and so

W) raa). it 1) < .

Therefore #(t) < 7G — 7dy(t — 1) for t € [1,t;) and it follows that ¢; is finite with

Define ¢ = inf{t > t; : z(t) < 0}. We will prove that ¢ < t; + 2. For a
contradiction, suppose ¢; > t; + 2. Then, for ¢t € [t; + 1,¢; + 2], we have §; >
Z(t—1) > &(t; + 1) since 7 is decreasing on the interval, and by (4.13) and Lemma

4.3, we have

T — gl 20 - 1)
< —nr(A#(t) + Bi(t — 1))
< —nTBz(t —1)
< —nTBz(t; + 1),

and so

B(t) @t +1)-[1— (t—t, — 1)yrB].
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Since nT > 1/B, the right hand-side of the inequality is negative for t = t; + 2.
This contradicts the assumption that ¢; > t; + 2. It follows that

TG—61 G
—. 4.24
a <3+d1 (4.24)

If g1 > 1, then by (4.13), (4.3) and the fact that (¢, — 1) > 0,

)| _ @), 2@ — 1))

(j1<t1+2<3+

=79(0,2(1 — 1)) <0,

To show this inequality also holds for ¢; < 1, we argue by contradiction. Suppose
that ¢ < 1 and 20 |,_s = 7§(0,2(¢ — 1)) = 0 (the derivative at t = §; must be
non-positive as having a positive derivative there would contradict the definition
of ¢1). Then by (4.2)-(4.3), 2(¢1 — 1) = Zo(G1 — 1) = 0. Since exp(7K1-)To(-)
is non-decreasing, Zo(—1) = 0 and Zy(¢t) > 0 for all t € [—1,0], it follows that
Zo(t) =0 for all t € [—-1, ¢ — 1]. Combining this with (4.5) and (4.7), we have, for
t €10, q),

0> (1), it — 1) = §(2(1),0) > —r|(1)] = —mi(0).

Thus, dflgt) > —7r12(t) for t € [0,G]. It follows that

2(q1) > exp(—71£1G1)2(0) > 0,

which contradicts the definition of ¢;. Hence %ﬁt”t:gl < 0.

Since dflsf) li=g, < 0, Z will be negative for an interval after ¢;. Indeed, we
show that 7 stays negative throughout the interval (¢, ¢ + 1). Note that
dz(t A e n
W = 250,206 — 1)) < 0
dt |

and the negative feedback condition on ¢ imply that Z(¢; — 1) > 0. Then by the
definition of ¢; and the fact that exp(r;-)z(+) is non-decreasing on [—1, 0], it follows
that 2(t—1) > 0 for all t € [¢1,¢1+1). Let ¢ = inf{t > ¢, : 2(¢) = 0} and suppose
G2 € (G1,G1 +1). Then ¢ — 1 € (¢1 — 1,41), so that #(ga — 1) > 0 and

di(t)
dt

— 74(0,7(qs — 1)) < 0.

=32
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Since z is continuously differentiable in a neighborhood of ¢y, & would be strictly
decreasing in a neighborhood of ¢», which contradicts the definition of ¢,. This
contradiction proves that Z is strictly negative on (g1, + 1).

For ¢ € [¢1,¢: + 1] such that &(t) > —L, we have z(-) is differentiable at ¢

and
%(exp(ﬂilt) L3 () = exp(rrrt) <T/<¢1x(t) + dfif))
= exp(Thit) (Tr12(t) + T§(2(8), 2(t — 1))
< exp(rrit)(Tr1z(t) +79(2(1),0))
< vy exp(rind) (B(t) + [#(8)]) = 0,

where we have used (4.13), (4.3) and (4.7) in the above. For t € [¢1,¢1 + 1] such
that #(t) = —L and z is differentiable at ¢, we have by (4.13) that

%(exp(ﬂﬁt) - Z(t)) = —Tr1Lexp(Trit) < 0.

Then by the absolutely continuity of &, exp(7k;-)Z(+) is non-increasing on [¢y, ¢;+1].
Since z(t) < 0 for some t € [1, ¢ + 1], it follows that Z(¢; + 1) < 0.

From the above, we have that ¢» > ¢; + 1 and since Z(t), z(t — 1) € [-L,0)
for t € (G1 + 1,G2), it follows from (4.2) and (4.4) that at times t € (G, + 1, G2)
we have g(z(t),z(t — 1)) > 0 and so for any such ¢ at which 7 is differentiable, it
follows from (4.14) that its derivative satisfies %&t) =71g(z(t),z(t — 1)) > 0. We
now show that ¢ is finite. Choose a fixed do € (0,01). Let

tz = 1nf{t Z qu +1: i’(t) Z —(52},

We first show that ¢y is finite. Suppose ts > ¢ + 2. Then #(t) < —4§, for t €
(¢ + 1,15, and so by (4.2) and (4.4), §(2(t),2(t — 1)) > 0 for t € [§; + 2 t2] By
(4.2) and (4.4),

de = min{g(r,s) : =L <r,s < —dy} > 0.

~

For t € [q1 + 2, 5], we have Z(t), Z(t — 1) < —ds, and so at anytime ¢ in this interval
where 7 is differentiable, by (4.14),
) _

di(t
dt

=79(z(t),z(t — 1)) > 7ds.
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Since Z is bounded below by —L, @(t) > —L + 7dy(t — ¢1 — 2) for t € [¢1 + 2, t5].
It follows that ?5 is finite and
L — 4y

t2<91+2+
Td2

Next we will prove that ¢» < t9 + 2. For a contradiction, suppose ¢ > to + 2.
Since ty > ¢1 + 1, we have #(t),2(t — 1) < 0 and therefore g(z(t),z(t — 1)) > 0 for
t € (t2,q2). It follows from (4.14) that Z is strictly increasing on (ts,g2) and for
t € [ta+ 1,89 + 2], we have —L < =0y < Z(t — 1) < &(t2 + 1). Therefore, as long
ast € [ty + 1,t5 + 2], Z is differentiable and by Lemma 4.3,

T (e, at - 1)
> —n7(Az(t) + Bi(t — 1))
> —nTB(t —1)
> —n7TBi(t: + 1),

and so

Since nT > 1/B, the right hand side of the last inequality is positive for ¢ = t5 + 2.
This contradicts the assumption that ¢ > t5+ 2 by continuity of z. It follows that

G LB
<T+ —+— 4.25
ng + dl + d2 ( )

L —
Go<ta+2<qr+4+

and ¢2 — ¢1 < 4+ LB/ds.

Since Z(t) is negative for t € (g1, G2) and Go > ¢ + 1, we have #(gx — 1) < 0,
and so by (4.13) and (4.2), 20|,_
that used before can be used to prove that Z(t) is strictly positive for ¢t € (o, Go+1)
and therefore is differentiable on this interval. By (4.13), (4.5) and (4.6), we have
B — 75 (t), @t — 1)) < 79(0,8(t — 1)) < 7G for t € [Ga, Gs + 1], and therefore
[L’( ) < 7G on [Ga, G2 + 1]. For t € [¢2, g2 + 1], 2(t) € [0,7G] and z(t — 1) € [-L, 0],

=7§(0,2(G2 — 1)) > 0. A similar argument to
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- (exp(Thit) - £(t)) = exp(Trat) (T'ﬁi’(t) - dfzit))

where we have used (4.13), (4.2) and (4.7) in the above.

The function %411 = {#(G2 + 1+ t),—1 < ¢t < 0} satisfies Z4,41 # 0 and
Tgo+1 € K. Thus 24,41 satisfies the conditions originally imposed on ¢ and by
shifting the time origin, the preceding argument can be repeated countably many
times to prove (i)-(iv). By (4.24)(4.25), (ii) holds for Q = 3+max(Gd; ", LBdy*).
To prove (v), we note that by assumption #(t) < 7G for t € [—1,0], & is non-
increasing on [0, ¢1], #(t) is strictly negative for ¢t € (¢1,¢2) and we have shown
(t) < 7G for t € [G2,G2 + 1]. Therefore &(t) < 7G for t € [—1,4, + 1] and the

argument can be repeated to complete the proof of (v). O

Consider the function A : K — Ci-1,0) defined for ¢ € K by A($) = ¢ when

» =0 and when ¢ # 0,
A(P) = Zgp11, (4.26)
where Z is the solution of DDER with initial condition ¢ and g5 is the second zero

of z, as in Lemma 4.4. The following two lemmas are used to prove the continuity
of A.

Lemma 4.5. There ezists a constant K; ;¢ > 0 such that if ¢, @' € IE, then
12 = 21 < 2exp2Kg6t)|0 = ¢'ll-10, >0, (4.27)

where & and ' denote the unique solution of DDER™ with respective initial condi-

tion ¢ and .

Proof. Let ¢, ¢t € K. By part (v) of Lemma 4.4 and the lower boundary —L, if
# and 2T are solutions of DDER® with respective initial conditions ¢ and ', then

|Z(t)] and |27(¢)| are bounded by LV 7G for all t > —1. It then follows from (4.12)
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that the corresponding solutions x and z' of DDER are bounded by L + 7G for
all £ > —7. Since g is locally Lipschitz continuous, there exists a positive constant
Ky 11+r¢ such that g is uniformly Lipschitz continuous with Lipschitz constant

K, 1+r¢ on the set [0, L + 7G| x [0, L + 7G]. Therefore, by Lemma 2.1,
|2 — 2| (—rry < 2exp(2Ky p1raTt) |2 — 21| (-0, t > 0. (4.28)
Then (4.27) follows from (4.11) and (4.28) with K;,¢ = 7K, 1+rc- O

Lemma 4.6. The function ¢ — G2, where Gy is the second zero of & as defined in

Lemma 4.4, is continuous as a function from K \ {0} into [0, 00).

Proof. Fix 0 # ¢ € lz, let & denote the unique solution of DDER" with initial
condition ¢ and let g, be defined as in (4.4). Choose 0 < < min(gi, 1). By part
(iii) of Lemma 4.4 we see that ¢s is bounded by 1 + 2@, which only depends on
g and L. By our choice of n and the definition of g, we have that 0 < ¢ — n <
@1 +n<g2—mnand

t) >0forallt e

1

t) <0Oforallte

(
a(t
a( 2
2(

) (@1 —n ¢
)<O0forallte (gi,¢1+n
) (G2 — 1, G2
t) (G2, G2 +m

> (0 for all £ € (s,

Finally, choose d > 0 satisfying
6 <inf {[&(t)] - £ € [0,G1 —n]U[Gr +n, G2 —n] U{G + n}} (4.29)

and ¢ > 0 satisfying
4]

< >
2exp(2K5,,6(1 +2Q + 1))
where K; ;¢ is as in Lemma 4.5. By (4.27), if $! € K and ¢ — ¢T||[-1,00 < €, then

£ (4.30)

|& — 27|/ 1,4o4nq < 0, where &' denotes the unique solution of DDER® with initial
condition ¢f. It then follows from (4.29) and the continuity of &' that 27(t) = 0
for some t € (§1 —n,¢1 + 1) and also for some t € (Go — 1,42 + n). Then by
(4.29) and the fact that the zeros of #T must be separated by at least one, we have
QI € (g1 —n,q1 +n) and cj; € (G2 — 1,G2 + 1), where qI and qg are the zeros of &7,

proving the desired continuity result. O]
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Lemma 4.7. A is a continuous and compact function mapping K into K.

Proof. The fact that A maps K into itself follows from the definition of g» and parts
(iv) and (v) of Lemma 4.4. The continuity of A at ¢ = 0 follows from part (iii) of
Lemma 4.4 and (4.27). The continuity of A at ¢ # 0 follows from the continuity
of the map ¢ — ¢y defined in Lemma 4.6, the continuity of &, part (iii) of Lemma
4.4, (4.27), and the triangle inequality:

IA2) = M@ -v0) < Naer = Eggallioro + g — 25 Nl

where # and &' denote the unique solutions of DDER" with respective initial
conditions To = ¢ and 555 = ¢l and ¢, and (j; denote the second zeros, defined in
Lemma 4.4, of 2 and 21, respectively. The compact property of A follows from the
Arzela-Ascoli theorem since () is bounded and differentiable on [gs, ¢2 4+ 1] with

bounded derivative:
dz(t o R
D) = 1rg(a), i - 1)

dt
<7 -sup{lg(r,s)| : (r,s) € [0,7G] x [-L,0]} < o0,

for all t € [¢1, > + 1], where we have used the fact that § is continuous on this

compact set. ]

4.4 Ejective Equilibrium Solution

In order to prove the existence of a SOPS, it remains to show that the
zero solution of DDER" is an ejective fixed point for A. It will then follow from
Theorem 4.1 that there exists another fixed point that is non-ejective which will
correspond to a SOPS". Since the ejective property of the equilibrium solution
is related to its local stability, we consider the approximation of DDER" by the
following unconstrained linear delay differential equation

du(t)
dt

= —7Au(t) — TBu(t — 1). (4.31)
The linear delay differential equation (4.31) has characteristic equation

A+ TA+7Be™ =0. (4.32)
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The following proposition is a standard result from stability theory for linear delay

differential equations.

Lemma 4.8. Let B > A > 0 and 7 > 7y, where 1 is given by (3.8). Then
the characteristic equation (4.32) has a solution A = p + iv satisfying p > 0 and

/2 <v <.

Proof. The lemma is a well-known result for linear delay differential equations and

a complete proof can be found in the appendix of [12]. O

Under the conditions of Lemma 4.8, there exist solutions of the linear delay
differential equation (4.31) that exhibit unbounded oscillations; namely, if A =
i+ iv is a solution of (4.32) such that 4 > 0 and v < 7, then the function
u(t) = et cos(vt), t > —1, is a solution of (4.31) with unbounded oscillations.
Therefore, we anticipate that the equilibrium solution & = L of (4.8) will be

locally unstable if 7 > 75. Indeed, we have the following lemma.

Lemma 4.9. Let 1y be given by (3.8). If 7 > 19 and A is defined by (4.26), then
@ =0 s an ejective fixed point of A.

Before proceeding with the proof of this lemma, we introduce a key lemma
which states that a solution of DDER® with nonzero initial condition in K will

eventually leave a certain neighborhood of the origin.

Lemma 4.10. There exists v > 0 such that for each 0 # ¢ € IE, the unique
solution & of DDER™ with initial condition ¢ satisfies

sup [ ()] > 7, (4.33)

t>q1

where G 1is the first zero of T defined in Lemma 4.4.

Remark 4.4. The proofs of Lemmas 4.9 and 4.10 are adaptations of the proofs for
Lemmas 2.6, 2.7 and 2.8 in [18], Lemmas 10 and 11 in [9] and Lemma 6 in [2], and
are given here for completeness. In [18], the author notes the basic idea behind

the proofs appears to be due to Wright (see Theorem 4 of [29)]).
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Proof. Define the positive constant T" by
1 _
T —mind £ OPETR) 1
2747 (k1 + K2)
By Lemma 4.8, the characteristic equation (4.32) has a solution A = p + iv with
>0 and 7/2 < v < 7. Define the positive constant ¢ by

c=inf{sin(vt): 1 -T <t <1}
and choose € > 0 such that
i
e<c T Bexp[—(u+ 7k1)).
Define the function P : [—L,c0)? — R by
P(r,s) = g(r,s) + Ar + Bs, for r,s > —L. (4.34)

Since ¢ is differentiable at the origin with first partial derivatives —A and —B,
respectively, the quotient |P(r,s)|/|(r,s)| approaches zero as 0 # |(r,s)| — 0.
Choose a positive v € (0, L) such that

|P(r,s)| < el|(r,s)| when |r| <~ and |s| < 7.

Let 0 # ¢ € K and Z be the solution of DDER" with initial condition ¢. Suppose
(4.33) is false, then
sup |z(t)] = < 7. (4.35)

t>q1
It follows that we can choose n > 1 and o € [¢y, Gn+1] such that £(o) = sup{|z(¢)| :
Gn <t < Gny1}y and |Z(0)| > 6/2. By assumption, &(t) > —y > —L for all
t > Gi, and therefore, by Lemma 4.2, z(-) is differentiable at all ¢ > ¢ with
di

dsf) =71g(2(t), z(t — 1)). We treat the case where n is even and ¢ is a maximum,

with the case that n is odd and ¢ is a minimum being similar.
Since Z(-) is bounded on [—1,00) by part (v) of Lemma 4.4, and p > 0 by
assumption, we can integrate by parts to obtain the following identity

/OO @exp(—kt)dt

wrier Al

— (G + 1+ T) exp[-A(Gn + 1+ T)] + A / #(t) exp(—At)dt. (4.36)
Gn+1+T
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Using (4.13) and (4.34), we can write the left hand side of (4.36) as

/OO di(t) eXp(_)\t)dt:T/oo P(&(t), #(t — 1)) exp(—A)dt

g1 A Gn+14+T
A / (1) exp(—A)dt — 7B exp(—\) / (1) exp(—\)dE. (4.37)
Gn+14+T Gn+T

Combining (4.36)—(4.37), multiplying both sides by exp[A(¢, +1+7')] and, in light
of the characteristic equation (4.32), substituting 7A+ X = —7Bexp(—\), we have

T/ P(&(t), &(t — 1)) exp[—A(t — G, — 1 — T)]dt
Gn+14T
Gn+14T

= —2(Gy +1+T) + TB/ z(t) exp[—A(t — ¢, — T')]dt. (4.38)
Gn+T

To reach a contradiction, we note that the left hand side of (4.38) is bounded above

by

726 | exp[=A(t — G — 1 — T)]|dt < 725 / exp(—pt)dt  (4.39)
Gn+14+T 0

< Tsé/fl

Next, we need to find a lower bound of the absolute value of the right hand side
of (4.38). To do so, we first show that Z(¢) remains non-negative for ¢t € [¢,, G, +
1+ T). By Lemma 4.4, the function exp(7x1-)Z(+) is non-decreasing on the interval

[Gns G + 1], hence
R . . 4]
2(gn+1) > 2(0) exp[—Tk1(Gn + 1 — 0)] > 3 exp(—7kK1).

Using this inequality, we can bound Z(t) for t € [, + 1,¢, + 1+ T:

t

B(t) = #(Gu+ 1) + 7 / 32 (s), 2(s — 1))ds (4.40)

Gn+1
ex

v

p(—r17) — T0(K1 + K2)(t — G — 1)

/€1T — T(/ﬁ?l -+ /ig)T

l\DI»—

v v
»-bloq S N>

Xp(—K1T),
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where we have used (4.7) and the definition of T'. The absolute value of the right
hand side of (4.38) is bounded below by the absolute value of the imaginary part,

which is equal to
Gn+14+T
B / (1) exp[—pu(t — G — T)] - sinfu(t — G — T)]dt
Gn+T

Gn+14+T
> TB/ z(t) exp[—u(t — G, — T)] - sin[v(t — ¢, — T')]dt, (4.41)
dn+1

where the non-negativity of the integrand follows since v € (7/2,7), &(t) is non-
negative for t € [G, + T,G, + 1+ T], and T < 1/2. Using (4.40), we have that
(4.41) is bounded below by

6 Gn+1+T
ZTB eXP(—/ﬁT)/ exp|—p(t — Gn — T)] - sinfv(t — ¢, — T)]dt

Gn+1

> ch - TBexp|— (k17 + p)].
Combining with (4.39), we have the following inequality
1o TBespl=(rms + )] < e,
which contradicts our choice of €. O

Proof of Lemma 4.9. Consider ¢ € K such that ¢ # 0 and let & denote the solution
of DDER" with initial condition given by ¢. For each n € N, let 0, € [Gn, Gnt1]
such that

[2(on)| = sup  [2(2)].

te[énydnJrl]

By the definition of ¢, for t € [, + 1,Gny1], T(t),2(t — 1) > 0 if n is even and
z(t),z(t — 1) < 0 if n is odd. It follows from (4.13) and (4.2)-(4.5) that & is
non-increasing on [§, + 1, G,11] if n is even and non-decreasing on [§, + 1, §nv1] if
n is odd. Therefore we may choose o,, € [¢n, G, + 1]. By Lemma 4.10, there exists

~v > 0, not depending on ¢, such that
|Z(on)| =
for some positive integer n. Let n > 0 such that

/Y
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To prove ejectivity, we show that

[Zgon+1ll[-10) = Z(020) 2 (4.43)

for some n € N. Suppose that Z(02,) < 7 for all n. Let tI = inf{t > Gony1 : 2(t) =
—7}. Since v < L, for n > 1 and t € [Gan11,1]], 2(+) is differentiable at ¢ and

e (CORI Y

79(0,2(t — 1))
—Tho|Z(t — 1)| = —TRoZ(t — 1)

(A%

\%

> —TKoT).

where we have used the fact that 2(¢) < 0 and (¢ — 1) > 0, as well as equations
(4.13), (4.4), (4.7) and (4.42). By (4.42), t > Gony1 + 1 and so 2(t) > —v for all
t € [Gon+1, Gont1 + 1]. It follows that

E(o2n41) > —
for all n and therefore |#(0,)| < v for all n. This contradicts (4.33), so (4.43)

holds for some n. Since A™(p) = Z4,,+1 for each n, the desired ejectivity property

follows and the proof of the lemma is completed. m

4.5 Proof of Existence

Proof of Theorem 3.1. By Browder’s fixed point theorem, the mapping A : K—K
has a non-ejective fixed point. By Lemma 4.9, the constant function ¢ = 0 is an
ejective fixed point of A and so there must be another fixed point 0 Z z € K. Let
Z denote the associated solution of DDER". By the uniqueness of solutions and
time homogeneity of DDER", # is periodic with period p = ¢ + 1 and by Lemma
4.4, 7 is a SOPS". Lastly, by Lemma 4.1, the associated solution x of DDER,
which is defined via (4.12), is a SOPS. O

This chapter is based on the paper “Existence, Uniqueness and Stability of
Slowly Oscillating Periodic Solutions for Delay Differential Equations with Non-
negativity Constraints” written jointly with Ruth J. Williams and currently in

preparation.



Chapter 5

Uniqueness and Stability of
Slowly Oscillating Periodic

Solutions

In this section we prove Theorem 3.2 which provides sufficient conditions
for the uniqueness and uniform exponential asymptotic stability of slowly oscil-
lating periodic solutions (SOPS) of the delay differential equation with reflection
(DDER) (1.1). Both the proof of uniqueness of SOPS and the proof of uniform
exponential asymptotic stability of SOPS are inspired by arguments used to prove
similar results in the unconstrained setting [30, 31]. In these papers the author
considered a Poincaré map associated with a slowly oscillating periodic solution
in the unconstrained setting and showed that the Floquet multipliers associated
with the slowly oscillating periodic solution are bounded by the spectral norm of
the derivative of the Poincaré map evaluated at the initial condition of the slowly
oscillating periodic solution. After providing conditions for the spectral norm to be
less than one, including long delay interval lengths, the author employed existing
theory relating Floquet multipliers to the stability of periodic solutions of delay
differential equations in the unconstrained setting to show that any slowly oscil-
lating periodic solution is uniformly exponentially asymptotically stable. Then
using theorems for fixed point indices, the author proved there must be exactly

one slowly oscillating periodic solution.

43
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Here, in the constrained setting, we consider an approximate Poincaré map
in a neighborhood of the initial condition of a SOPS. We show that it is contin-
uously Fréchet differentiable in this neighborhood and provide conditions for its
derivative evaluated at the initial condition of the SOPS to have operator norm less
than one, which is a sufficient condition for the SOPS to be uniformly exponen-
tially asymptotically stable. We then use theorems for fixed point indices to prove
their must be exactly one slowly oscillating periodic solution. This is a slightly
different approach because we are proving a stronger condition that the operator
norm of the approximate Poincaré map is less than one rather than proving the
spectral norm is less than one. The main reason for this is that the estimates we
use to prove that the spectral is less than one also prove that the operator norm is
less than one, so we would not obtain a stronger result by considering the spectral
norm.

To construct our approximate Poincaré map, new difficulties that arise be-
cause of the lower boundary constraint need to be overcome. In particular, a new
form of the linear variational equation needs to be developed and analyzed. In
Appendix C such an equation is derived for functions f that are more general
than the functions considered in this section. Throughout this section we assume
that f is of the form exhibited in (3.9) and that h satisfies Assumptions 3.3 and
3.4, although we note that the results in Section 5.2 only require that h satisfy
Assumption 3.3.

5.1 Normalized Solutions

As was done in Section 4.2, we normalize solutions of the DDER (1.1) by
subtracting off L and rescaling time so that the normalized delay interval is of
length one.

Let h: [—L,00) = R be the normalized function defined by:
h(s)=h(s+ L), s €[—L,o0). (5.1)

The function h inherits the following properties from h. By Assumption 3.3, the

function A is bounded by H = 2 lljo,00) = ||fALH[_L700) < oo and is continuously
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differentiable on [—L, c0),

~

sh(s) < 0 for all s # 0, (5.2)
there exist positive constants «, 5 > 0 such that fL(—L) = [ and
lim A(s) = —a < 0. (5.3)
S—00

By Assumption 3.4, the derivative of h, denoted by W [—L,00) — R, satisfies

1t ey = /L 17 (s)|ds < oo, (5.4)
and
sh'(s) — 0 as s — 00, (5.5)

and is uniformly bounded by K} = ||V||(0,00) = ||iAz’||[_L,oo) so that h satisfies
Ih(s) — h(r)| < Ku|s —r|, =L < r,s < co. (5.6)

On setting g(r, s) = h(s) for all 7, s > 0, Assumption 3.3 implies that Assumptions
3.1 and 3.2 hold for g, so Lemma 3.1 and Theorem 3.1 hold. It follows that
g(r,s) = h(s) for all r,s > —L, so we can define a solution of DDER® and a
SOPS" of DDER™ as in Definitions 4.2 and 4.3, respectively, and Lemmas 4.1-4.10
hold.

Given a solution & of DDER™, (4.8) can be rewritten for t > 0 as

T(t) = 2(t) + 9(t), (5.7)
S(t) = #(0) + /0 U (s — 1))ds. (5.8)
Adding L to either side of (5.7), we obtain
(@(t) + L) = (2(t) + L) + 4(¢), t = 0,

where Z(t)+L > 0 and fg(:i'(s)—i—L)dg)(s) = 0 forallt > 0. It follows that (z+L, ),
where & here is restricted to the interval [0, c0), is a solution of the one-dimensional

Skorokhod problem for 2 + L (see Appendix A) and by Proposition A.3,

y(t) = sup (2(s) + L)~, t > 0. (5.9)

0<s<t
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For the following, recall the definition of a SOPS" of DDER" from Definition
4.3 and note that we can use G = sup{h(s) : s € R} € (0, 00) for the G in Lemma
3.1.

Lemma 5.1. Under Assumption 3.3, let 2* be a SOPS™ of DDER™ such that
Go = —1. Then z* is bounded above by TG and satisfies:

(1) &* is positive on (—1,0], continuously differentiable on [—1,0] and is increas-

ing on (—1,0);

(ii) * is positive on [0, G, ), continuously differentiable on [0, ¢] and is decreasing

on (07 le];’
(11i) T* is negative on (Gr, ¢ + 1] and is non-increasing on [¢1, ¢ + 1];

(iv) &* is negative on [¢1 + 1, G4a) and is continuously differentiable and increasing

on (qu + 17(_?2]'

Furthermore, z* is negative on (G1, 1 + 1] and is decreasing on (¢1,¢ + 1) and &*,

Z* satisfy

T (t) = 2°(b), fort €[0,q], (5.10)

#*(t) = max(2*(t), — L), fort € (G1, ¢ + 1], (5.11)

T*(t) =" (1 + 1)+ (27(t) — 2" (1 + 1)), forte (Gn+1,p]. (5.12)
(1)

a1 g1 +1 P /
£ t
=L LN (2 NS

—L

Figure 5.1: An example of a SOPS" as described in Lemma 5.1.
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Proof. Proof of (ii): By (4.10), 2*(¢) > 0 for all t € [0,¢;) and 2*(t) > —L for all
t €[0,4:] and so ¢* is zero there. Then by (5.7), 2*(t) = 2*(t) for all t € [0, ¢;| and
it follows from (5.8), (5.2) and (4.10) that 2* is differentiable on [0, ¢;| with

di(t)  dz*(t)
dt  dt

= Th(i*(t —1)) <0, t € (0, ],

so 2* is decreasing on (0, ¢1].

Proof of (iii): By (4.10), #* is negative on (¢i,¢1 + 1] and since #* =
2 —g* > z* 2* is also negative there. It follows from (5.8), (5.2) and (4.10) that
z* is differentiable on [¢;, ¢; + 1) with derivative

dz*(t)
dt

By (ii) and (5.13), 2* is decreasing on (0, ¢, + 1), so by (5.9),

= Th(#*(t —1)) <0, t € [G1, 41 + 1). (5.13)

g (t)= sup (2*(s)+ L) =(Z"(t)+ L), t€[0,¢1 +1]. (5.14)

0<s<t

Then by (5.7) and (5.14), we have
T*(t) = 2°(t) + (2" (t) + L)” = max(2"(t), —L), t € [¢1,¢1 + 1], (5.15)

and since Z* is decreasing on (g1, ¢; + 1), £* is non-increasing there.
Proof of (iv) and (i): By (4.10), 2*(¢) < O for all t € (¢1+1, ¢2) and £*(t) > 0
for all ¢ € (—=1,0). Then by (5.8), (5.2), (4.10) and the fact that p = ¢ + 1, we

have
dz* (1)
dt
Therefore —Z* is decreasing on (¢; + 1,p) so by (5.9) and (5.14), we have, using

= Th(2*(t—1)) >0, t € (1 + 1, p).

the continuity of §* to obtain the value at p, for t € [¢; + 1, ],

gr(t) = sup (2%(s) + L)” = (@1 + D)+ L) =4 (1 +1). (5.16)

0<s<t

By (5.7) and (5.15)—(5.16), for t € [¢1 + 1, p],

) =20+ E @+ + L)
max (2" (¢ + 1), —L) + (2*(t) = 2°(¢1 + 1))

(@ + 1)+ (1) -2 +1)).

I
Q>
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*

Since Z* is continuously differentiable on (g, + 1,p], 2* is also continuously dif-

ferentiable with ddit = ddit there. Since Z* is increasing on (¢; + 1,p), 2* is also

*

increasing on (¢; + 1,p). Then by periodicity, 2* is differentiable and increasing
on (—1,0) with derivative bounded by supse(_y, o) Th(s) = SUDse(0,00) TH(S) = TG.
Lastly, the fact that 2*(t) < 7G for all t > —1 follows because of the properties of
#* described in (i)-(iv), the bound on the derivative of #* on the interval (—1,0)

and the periodicity of z*. m

5.2 Convergence of Scaled SOPS"

In this section we prove the convergence of a family of scaled SOPS" as
the delay 7 goes to infinity. The results in this section only require that h satisfy
Assumption 3.3.

Define 79 > 0 as in (3.11). By Theorem 3.1, for each 7 > 7 there exists a
SOPS of DDER with delay 7, which we denote by z7, and real numbers ¢j > —7,
q >q+71,q5 >q] +71,p" = ¢ + 7 such that 27 satisfies (3.1)—(3.2), but with
95, 47, g5 and p” in place of qy, ¢1, ¢ and p, respectively. Furthermore, since
DDER is time homogeneous, by performing a time shift on 27, we can assume that
q) = —7. By Lemma 4.1, for each SOPS z7, there is an associated SOPS", denoted
27, satisfying (4.9)-(4.10) with zeros ¢5 = 77'qf = =1, ¢] = 777, 5 = 7 'q}
and period p” = 771p". For each 7 > 79, define the scaled functions 77 € Cl-1,00),

TS C[—g’w) and z7 € C[O,oo) by

() =77127(), t > —1, (5.17)
y(t)=7197(t), t >0, (5.18)
2 (t) =77127(t), t > 0. (5.19)

By (5.7)—(5.9) and (5.17)—(5.19), Z7, §” and z" satisfy, for ¢ > 0,
() =2Z"(t)+y (1) (5.20)

Z7(t) = 7(0) +/O h(rz(s —1))ds, (5.21)
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where

Y (t) = sup (Z"(s) +7'L)". (5.22)

0<s<t
Note that if we add 77'L to either side of (5.20), we obtain (z"(¢) + 77 'L) =
(z7(t)+7'L)+ " (t) > 0 and fot(fT(s) +771L)dy"(s) = 0 for all ¢ > 0. Therefore
(z" +77'L,y"), where here 77 is restricted to the interval [0, c0), is a solution of
the one-dimensional Skorokhod problem for z™ + 771 L (see Appendix A) and so
(Z"+77'L,y7) = (®,9)(z" + 7 'L).

The following three lemmas are used to prove that 7 converges to a non-
trivial function in Cj_j ) as 7 — oo. The proof of Lemma 5.2 is relegated to
Appendix D as it is similar to the proof of Theorem 12 in [30]. The proof in
[30] relies on estimates for slowly oscillating periodic solutions of an unconstrained
delay differential equation and we provide analogous estimates for a SOPS" in
Appendix D. The main difference is that the estimates for our SOPS™ need to take

account of the lower boundary constraint.

Lemma 5.2. There exists 71 > 7y and v > 0 such that if T > 71, then &7 satisfies
177 1,000 = 177051 = - (5.23)

Proof. See Appendix D. O

For the following recall that by Assumption 3.3, H = ||A||j,.c) = ||lA1||[_L7OO)

< Q.

Lemma 5.3. For each 7 > 19, 7, §y" and Z7 satisfy, for 0 < s <t < 00,

77 (t) — 77(s)| < HI|t — s], (5.24)
77 (8) =y (s)| < H|t — s, (5.25)
27(t) — 27(s)| < HIt — 3. (5.26)

Proof. By (5.21), for 0 < s <t < 0o, we have

27(t) — 27(s)| < / (777 (u — 1))|du < H|t — s|.
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It follows that Osc(z7, [s,t]) < H|t — s|. Recall that (z7+771L,y7) = (®, ¥)(z7 +
771L). Then by Proposition A.2, for 0 < s <t < oo,

27(t) — 27(s)| < H[t — 5],
97(t) =" ()| < H|t — s|.

]

Lemma 5.4. The families {¢] : 7 > 10} and {¢5 : 7 > 70} are uniformly bounded

in [0, 00).

Proof. Since ¢] + 1 < 5 for each 7 > 7, it suffices to show that {¢] : 7 > 7}
is uniformly bounded. By Lemma 5.1(i), for each 7 > 75, 27(—1) = 0, 27 is
increasing on [—1,0] and is bounded by 7@ there. Therefore #, € K, where K is
defined as in (4.15)—(4.17), and we can apply Lemma 4.4(ii) to obtain that there
exists a positive constant (), which does depend on 7, such that ¢7 is bounded by

1+ 2Q. O

Let § = a~'3. Define 7 € C[tl’ to be a periodic function with period

q + 2 satisfying

o)

B(t+1) forte[-1,0],

I(t)=49B—at forte0,q, (5.27)
0 for t € [q,q + 1].
Define z € Cpp,o) and y € C[”&OO) by
t7
Z(t) = z(0) +/ h(z(s —1))ds, t >0, (5.28)
0
y(t) = sup (z(s))", t >0, (5.29)
0<s<t
where
_ —a, if s >0,
h(s) = (5.30)
B, if s =0.

Note that (z,7) = (P, V)(Z), where Z is restricted to the interval [0, 00). Therefore

(Z,7) is the unique solution of the one-dimensional Skorokhod problem for Z.
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1 0 g G+1 q+2
Figure 5.2: An example of Z as described in (5.27).

ATN 0l o X o= — = = —

Theorem 5.1. The family {(z7,y", 27,47, 45, D
+1,7+2) in Cl-1,00) X Cpo,00) X Clo,o0) X Ry x Ry x Ry as 7 — 0.

Proof. Fix a sequence {7,}>°, in (79,00) such that 7, — 0o as n — oo. By
(5.24), the periodicity of z7 and the fact that z7(—1) = 0 for all 7 > 79, the
family {z” : 7 > 79} is uniformly bounded and uniformly Lipschitz continuous
on compact intervals in [—1,00). Similarly, by (5.25)—(5.26) and the fact that
y™(0) =0, 27(0) = z7(0) and z7(0) is uniformly bounded as 7 varies, the families
{y" : 7>} and {7 : 7 > 7y} are uniformly bounded and uniformly Lipschitz
continuous on compact intervals in [0, 00). Therefore, by the theorem of Arzela
and Ascoli, there exist nested subsequences {n;;}32, D {ny;}32; D --- such that
for each k € N, 273, y™ s and 2™ki converge to continuous functions z*, y*
and 2* uniformly on the intervals [—1, k], [0, k] and [0, k], respectively, as j — oo.
By taking the diagonal subsequence {n;;}32,, we see that there exist continuous
functions 2° € C_1,x0), ¥° € Cpp,00) and 2° € Cjp ) that agree with z*, y* and 2* on
[—1, k], [0, k] and [0, k], respectively, for each k € N, and are such that x™is, y™iJ
and 2™ converge to 2%, ¢ and 2° uniformly on compact intervals in [—1, c0),

[0,00) and [0, 00), respectively, as j — oco. For notational purposes, henceforth,
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we will simply use {7,}72, to denote the subsequence {7, }5,.

By Lemma 5.4, {(¢],45) : 7 > 7o} is uniformly bounded in R? and hence
relatively compact. Therefore, by taking a further subsequence if necessary, we
have that (i) Z™ converges to a non-trivial continuous function z° in Cj_ ) as
n — oo; (ii) ™ and z™ converge in C ) to continuous functions y° and 29,
respectively, as n — oo; and (iii) ¢{" and ¢35 converge to non-negative real numbers
q) and ¢9, respectively, as n — oo. Additionally, since ¢*+1 < ¢3* and p™ = g5 +1
for each n € N, then ¢¥ +1 < ¢J and p° := lim, o p™ = ¢3 + 1. Furthermore,
since for each n > 1 we have 2™ (t) = 2™ (t+p™) for all t > —1, on taking n — oo,
we obtain 2%(t) = 2°(t + p°) for all t > —1, ie., 2° is periodic with period p°.
It follows from the convergence of z™ to 2, the periodicity and boundedness of

{p™ : 7 > 19}, and Lemma 5.2 that
12 1.00) = 7 > 0. (5:31)

For each n > 1, z™(t) = 7, '2™(t) > —7, 'L for all t > —1. Taking n — oo,
we have that z°(t) > 0 for all ¢ > —1. By Lemma 5.1(iii)—(iv), for each n > 1,
Z™(t) < 0forallt € [¢1",¢3"]. Combining this with the previous statement and the

~Tn ATn

fact that (¢, 45") — (¢%,¢3) as n — oo, we have that 2°(t) = 0 for all t € [¢?, ¢5].
It follows from this and (5.31) that z° is non-trivial, i.e., not identically constant.
By Lemma 5.1(i)—(ii), for each n > 1, ™ is positive on (—1,¢"), increasing on
[—1, 0] and decreasing on [0, ¢;"]. It follows that 2 is non-decreasing on [—1, 0] and
non-increasing on [0, ¢¢]. Combining the above we see that there exist t; € [—1,0)

and ty € (0, ¢}] such that

22(t) =0, t € [-1,4],
22(t) > 0, t € (t1,1,), (5.32)
2°(t) =0, t € [t2, 7] U 7, 3],

By (5.10), z™(t) = z™(t) for all t € [0,4q;"]. Taking n — oo, we have that

20(t) = 2%(t) for all t € [0, ¢Y].
We first show that ¢ — t; > 1. Suppose for a proof by contradiction that
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t
Zn(t) =2 (t1 + 1) + / h(1,@™ (s —1))ds, t € [t; + 1,2 + 1]. (5.33)
t1+1

Since h is bounded (see Assumption 3.3), we can pass to the limit as n — oo in
(5.33) to obtain

At)=—alt —t, —1), t €[ty + 1, +1]. (5.34)

Here we have used the facts that ™ (-) converges pointwise on [ty, s + 1] to 2°(-),
20(t; + 1) = 0 since ty < t1 +1 < @3, 29%(¢) > 0 for all t € (t1,12), T, — 00 as
n — oo and h(s) — —a as s — oo. Using that 2™ (t) = 7, 12™(t) — 2°(t) < 0 for

all t € (t; + 1,t3 + 1] and 7, — 00 as n — 00, we have that
Z(t) = 1,2 (t) = —oco asn — 00, t € (t1 + 1,t5 + 1]. (5.35)

If t; +1 < ¢° then for each t € (t; + 1,t5 + 1) we have that ¢t € (¢; + 1,4")
and 2™ (t) < 0 for all n sufficiently large, which contradicts (5.10) since 2™ (t) =
2™(t) > 0 for all t € (—1,4"). Thus, we must have ¢t; + 1 > ¢. Then, since
ty < ¢, we must have that [t; +1,ta+1] C [¢),¢)+1]. For each t € (t; +1,t2+1),
we can choose n sufficiently large enough so that ¢t € (¢{", 4" + 1), 2™(t) < —L
and by (5.11), 2™ (t) = —L. Hence, lim, o 7,27 (t) = lim,, 00 2™ (t) = —L for all
t € (t1+1,to +1). By (5.20), for t € [t1 + 2,15 + 2],

=2™(t +2) + (Z (1) = 27 (a+2) + (7 (1) = 57 (0 +2))
> 2™ (t +2) + /t h(T,2™ (s — 1))ds

t1+2

¢
> 7ML+ / h(1,2™(s — 1))ds,
t

1+2

where we have used that ™ (-) is non-decreasing. Since h is bounded, we can pass

to the limit as n — oo to obtain

22(t) > Bt —t1 —2), t € [ty + 2,1, + 2],
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Here we have used the fact that lim, , 7,2 (t) = —L for all t € (t; + 1,t5 + 1),
the continuity of & and that h(—L) = 8. It follows that z°(¢) > 0 for all ¢ €
(t1+2,ty+2) and 2°(ty +2) > B(ty —t1) > 0. Since 2° is continuous, 2 is positive
for some t > t5 4+ 2 and hence positive on an interval of length greater than t, — ¢y,
which contradicts (5.32) and the periodicity of 2°. With the contradiction thus
obtained, we must have to — t; > 1.

By (5.20),

t

Z™(t) = 2™ (to) +/ W, 2™ (s — 1))ds, t € [ta, ts + 1]. (5.36)

to

Taking limits as n — oo in (5.36), we have
2(t) = —a(t —ty), t € [ta, ta + 1]. (5.37)

Here we have used the facts that 2%(ty) = 2°(t5) = 0, that 2™ (-) converges point-
wise to 2%(+) on (to — 1,t5] C (t1,t2] and 2°(¢) > 0 for all ¢ € (t1,t), that 7, — oo
as n — oo that h is bounded and that lim,_. h(s) = —a. By (5.37), for each
t € (ta,ta + 1], 2°(t) < 0 and so z™ () < 0 and ¢* < t for all n sufficiently large.
Since this holds for each t € (t3,ts + 1], it follows that ¢} < t5. Combining this
with the fact that £, < ¢? as in (5.32), we have that ¢, = ¢7. Furthermore, since
z™ — 2% uniformly on compact intervals and (7", ¢7"+1) — (¢7,¢?+1) as n — oo,
we have that if t € (to,to + 1), then t € (¢{",¢" + 1) and 2™ (t) = 7,2 (t) < —L
for all n sufficiently large. Then for such n, by (5.11), 2™(t) = 7,2™(t) = —L.
Hence

lim 7,7™(t) = —L, t € (¢),¢) + 1) = (ta,t2 + 1). (5.38)

n—oo

For each t € [¢) + 1,4 + 2], we have

T () = 7 (1) + 77 (1) (5.39)
=7™"(@ + 1)+ (Z™(t) = 27 (@) + 1)) + @™ () = 5™ () + 1))

t

> 7™ () + 1) +/ (7, 2™ (s — 1))ds.
q?+1

Here we have used the fact that 3™ (+) is non-decreasing. Taking limits as n — oo,

we have that

) > Bt —¢) —1), t€[d) +1,¢) +2),
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where we have used the fact that 2°(¢? + 1) =, (5.38) and the continuity and
boundedness of h, as well as the fact that iL(—L) = (. It follows that for each
te (@ +1,¢"+2), 2°%) > 0, so for all n sufficiently large we have ™ (t) > 0
and ¢5* < t. Thus ¢ = lim, ,0 G3* < ¢¥ + 1. Combining this with the fact
that ¢ +1 < ¢ (since ¢* + 1 < g3 for all n), we have ¢ = ¢ + 1. Then we
have p° = ¢9 + 1 = ¢¥ + 2. Using that ™ converges to 2" uniformly on compact
intervals in [—1,00) and ¥ is positive on (g2, p°) = (¢¥ + 1, ¢} + 2), we have that
for each closed interval I contained in (¢¥ + 1,¢? + 2), z™ is positive on I for all
n sufficiently large and so ™ is constant on I for all such n. Since this holds for
all closed intervals I in (¢¥ + 1,¢} 4+ 2), ¢y must be constant on (¢¥ + 1,¢} + 2).
Then taking limits as n — oo in (5.39), we have 2°(t) = (¢t — ¢} — 1) for all
t €[+ 1,4} +2]. Finally, since 2° is periodic with period p°, 2°(t) = B(t + 1) for
all t € [-1,0] and so t; = —1.
For t € [0, ¢Y],

t
z™m(t) = z™(0) +/ (1,27 (s — 1))ds.
0
Taking n — oo, we have
2(t) = B —at, t €[0,q].

Here we have used the fact that 2°(¢) = 2°(¢) for all t € [0, ¢}] and lim,, o, Z™(t) =
20(t) > 0 for all t € (—1,¢0) = (t1, ), as well as the boundedness of i and the fact
that lim,_,o i(s) = —a. Furthermore, since 2°(¢%) = 0, we have that ¢0 = a~!5.
Using the fact that lim, . 2™ (t) = 2°(t) > 0 for all t € (—1,¢?) and the
fact that lim,_ A(s) = —a, we have that lim, e h(7,2™(t)) = h(z°(t)) = —«
for all t € (—1,¢%). By (5.38), the continuity of & and the fact that 2°(t) = 0 on
[, ¢% + 1], we have that lim, .0 k(7,2 (t)) = h(z°(t)) = S for all t € (¢2, ¢? +1).
Hence, lim,, o h(7,2™ (t)) = h(2°(t)) at all t # —1,¢%,¢*+1 in [—1, ¢ +1]. Since
29 is periodic with period p® = ¢ +2, we can repeat this argument countably many
times to obtain that lim,_. h(7,2™ (t)) = h(z°(t)) for all but countably many ¢

in [—1,00). Thus, by bounded convergence, we can take limits as n — oo in

~

Z(t) = 77 (0) + /Ot h(a7™ (s — 1))ds, ¢ > 0,
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to obtain .
22(t) = 2°(0) +/ h(z°(s — 1))ds, t > 0.
0

Finally, since 2™ — 20 uniformly on compact intervals in [0, c0),

y°(t) = lim g™ (t) = lim sup (2™ (s) + 7, 'L)” = sup (2°(s))".

n—o0 n—o0 0<s<t 0<s<t

We have shown that (2°,4°,2° ¢?,¢9,0°) = (Z,%,2,4,4+ 1,4 + 2). Since
{m.}52, was an arbitrary increasing sequence in (7, 00) with 7,, — 0o as n — oo,
it follows that the family {(z", 47,27, 47,45,p") : T > 70} converges to (T, ¥, Z,q, q
1,q+2) as 7 — oo. If not, there necessarily exists a sequence {7,}°2,, an € > 0,
a compact interval I, in [—1,00) and compact intervals I,, I, in [0, 00) such that
T, — 00 as n — oo and one of the following holds for all n: ||[z™ — Z||;, > e,

ATn

g7 — ls, > &, 12 = 2l > e | —al > &, 16 —q— 1] > e or [p™ —g—2| > <.

However, we have just shown that there must exists a subsequence {n;}32; such

(%,9,2,4,4+ 1,4+ 2) as T — 0o, completing the proof. O

In the following corollaries, we use Theorem 5.1 to further describe the

family {27 : 7 > 70} for 7 sufficiently large.

Corollary 5.1. There exists 7y > Ty, such that (i) for each T > 11, there ezists a

AT AT

unique (7 € (7,47 + 1) satisfying

0>37(t) > —L for all t € (¢],07)
F7(t) = —L for all t € [{7,47 + 1],

and (i) (7 — q as T — oc.

Proof. Fix 6 € (0,1). By Theorem 5.1 and (5.28), ] — g and 2" — Z as T — o0
and z(t) = —a(t — q) for all t € [g,q + 1]. Hence, there exists 7° > 7 such that
G+0 € (¢7,¢] +1)and 27(G+6) = 727 (G + 6) < —L for all 7 > 7°. By Lemma

5.1, 27(¢7) = 0 and 27 is decreasing on [¢], ¢] + 1], so by the continuity of 27, for



57

each 7 > 79, there exists a unique é{ € (47,47 + 1] such that

27(t) > —L for all t € [],07),
Z(0) = ~L,
27(t) < —L for all t € (7, ¢} + 1].

Moreover, /T € (47, G+08). Note that nominally the family {7 : 7 > 7°} depends on
0. However, because of the uniqueness, the families for two different values of § will
agree on the range of 7 that is common to both. Then by (5.11), 7(¢) = 27(t) >
—L for all t € (¢7,07) and 7 (t) = max(27(t), —L) = —L for all t € [7,4] + 1].
Let 7, = inf{r° : 6 € (0,1)}. If 7 > 7, then 7 > 7% for some §, € (0,1) and
the first part of the lemma holds with the sequence {é{ 7 > 7%} associated with
dp. Furthermore, using the uniqueness property mentioned above, it follows that

EA{ € (q7,q+0) forall 7 > 70V 7% for any 6 € (0,1), and so é{ —qgasT —o00. [

Corollary 5.2. There exists 7o > 1 such that if T > 7o, then 0 < é{ —q7 < %
and 0 < @5 — 47 —1 < (3 +3)%.

Proof. Let 6 = $min(g,1) > 0 and d = fmin(z(—1 + §),z(g — 6)) > 0. By
Theorem 5.1, Corollary 5.1 and (5.3), there exists 75 > 7 such that if 7 > 75, then
the following hold:

(1) —0< <l <qg+6<qg+1—0<qG+1<q§<qg+1+9,
(ii)) 27(t) > 7d for all t € [-1 46,7 — ¢], and
(iii) h(s) < —ar/2 for all s > 7d.

Combining the above, we have h(i™(t — 1)) < —a/2 for all t € [¢7, (7] and 7 > 7.
Fix 7 > 7. By Lemma 4.2, 27 is differentiable with %t(t) =rh(i7(t-1)) < —at1/2
for all t € (¢7,£7). Thus,

; a7 (qf) —a7(f]) _ 2L
ar/2 ~ar’

(5.40)

and by definition, ¢] > 7. Now consider 5 — ¢] — 1. If ¢ < T + 1, then
@G —q —1< KA{ — @] and the desired inequality holds. Suppose on the other hand
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that ¢ > ¢T+1. Then for ¢t € [(T+1,43] C [(T+ 1,47 +2], we have h(i™(t —1)) =
h(—L) = f. Since 27(-) > —L on (7 +1,¢5) and §3 —2 < §+6 < ¢7+1, by Lemma
4.2, &7 is differentiable with 220 = 7h(37(t — 1)) = 78 for all t € (] + 1,43).
Thus,

lGs — g1 — 1] <[5 — 07 — 1| + (] — 47 (5.41)
_E@) -G 20
- BT aT
L 2L
< — —_—.
~ Bt ar
O

5.3 Solutions of DDER near a SOPS

In this section we study solutions of DDER whose initial conditions are in
a neighborhood of the initial condition of a SOPS. Throughout this section we fix
a delay 7 > 75, where 75 is defined as in Corollary 5.2, and consider the associated
SOPS z7 from the family {27 : 7 > 79}. Since we are fixing the delay 7, we will
drop the superscript 7 notation and use z* to denote the SOPS 27 and use z, z
to denote solutions of DDER. We similarly use 2* to denote the associated SOPS"

27, so that Corollaries 5.1 and 5.2 hold with z* in place of z7.
Lemma 5.5. There exists {1 € (q1,q1 + T) such that x* satisfies

(i) x*(t) > L for all t € (—7,0], is increasing on [—7,0) and is continuously

differentiable on (—T,0];

(ii) x*(t) > L for all t € [0,q1), is decreasing on (0,q1] and is continuously
differentiable on [0, ¢1];

(111) 0 < x*(t) < L for allt € (qu,¢1), is decreasing on [q1, (1) and is continuously
differentiable on [q1,01);

(iv) z*(t) =0 for all t € [{1,q + T];
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(v) 0 < x*(t) < L for allt € (q1 + 7,q2), is increasing on (¢ + T,q) and is

continuously differentiable on (q1 + T, ga)-

Furthermore,
2L
0< ¥t — < E, (542)
and
0< < 2 + ! L (5.43)
—q1—T —+—=| L. .
42 — q1 a ' B

Moreover, z* is positive and decreasing on (q1,¢1) and negative and decreasing on

(l1,q1 +7) and

x*(t) = 2" (), fort €0, 4], (5.44)
z(t) =2+ 1)+ (27() — 2 (1 + 7)), fort € g+ 7,p). (5.45)
(1)

—IT qll 61 62 Cjz p
Figure 5.3: An example of a SOPS as described in Lemma 5.5, where ¢y = ¢; + 7.

Proof. By Lemmas 4.1, 5.1 (parts (i),(ii) and (iv)) and (5.10)—(5.12), we have that
(i), (ii), (v) and (5.44)—(5.45) hold. By Lemmas 4.1 and 5.1(iii) and Corollary 5.1,
we have that (iii) and (iv) hold. By Lemma 4.1 and Corollary 5.2, (5.42)—(5.45)
hold. ]

Lemma 5.6. Suppose x, z' are two solutions of DDER. The function z is defined
as in (2.2) and let 2' be defined as in (2.2) but with zt, 2z in place of x, z,
respectively. Then for each t > 0,

& — &Ml < 2exp(2Kpt) ||z — 27| (rg, (5.46)
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and

I = 2o < (1 + Knr) expEblle - o v, (5.47)
where Ky, is the Lipschitz constant for h.

Proof. Fixt > 0. Since h is uniformly Lipschitz continuous with Lipschitz constant
K}, we can apply Lemma 2.1, with f(¢) = h(¢(—7)), to obtain (5.46). By (2.2)
and (3.12), for s € [0, ],

0

[2(s) = 21(s)] < [(0) — 27(0)] +Kh/ j2(u) — @' (u)|du

HE [ () - of (u)ldu
0
< (14 Kyl = lnoy + 5 [ o= oo
0
< (1+ EKpr)|lo = 2 —rg + 2Kh/ Iz = 2[lp.udu.
0

The last inequality follows from (2.4) and the Lipschitz continuity of the Skorokhod
map ¢ (see Appendix A). Taking the supremum over s € [0,¢] and applying
Gronwall’s inequality yields (5.47). O

T @ bh-—qg qt7-0 qz—q1—T}

Lemma 5.7. Suppose ng > 0 satisfies g < min{2, L, i, e

There exists eg > 0 such that if x is a solution of DDER satisfying || — x*||[—r0 <
€0, then there exist points ¢f € (¢ — no,q1 + M), 7 € (€1 — no, 1 + Mo) and
a5 € (g2 — Mo, g2 + o) such that = satisfies

(i) z(t) > L for all t € [—T + 1o, Mo|;

(ii) x(t) > L for allt € [no,q7) and is decreasing and continuously differentiable

on [7707 Qf] ;

(111) 0 < x(t) < L for allt € (¢7,€7), is decreasing and continuously differentiable

on [qf, £%);
(iv) x(t) =0 for all t € [(5,qF + 7|;

(v) 0 < z(t) < L for all t € (¢f + 7,¢5) and is increasing and continuously
differentiable on t € (¢ + T, ¢3];
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(vi) x(t) > L for allt € (¢%,q5+T), is increasing on [q%, g5 +7) and is continuously
differentiable on [¢%, ¢ + 7];

(vii) x(t) > L for all t € [¢5 + 7,p + no|, is decreasing on (q5 + T,p + no] and is
continuously differentiable on [¢5 + T, p + 1]

Furthermore, h(z(t — 7)) <0 for allt € [no,q7 + 7), z is decreasing on [no, g7 + T)

and
—z(t) <0 for all t € 10, 07),
—z(t) >0, S_.(t) = {t} forallt € (¢, 47 + 7],
—z(t) >0, S_,(t) ={¢f + 7} forallt € (¢f +71,p+ o),

where S_.(t) = {s € [0,t] : —2z(s) = —z(t)}.
Proof. Fix ng as in the statement of the lemma. Let § = d(79) > 0 be given by
§=(z"(—=7+mn9) — L) A (z"(q1 — mo) — L) ANx*(€1 — o) (5.48)
AL —2*(q1 +10)) A (=" (b +10)) Az™ (g + 7 + o)
A (L —x"(g2 — o)) A (27 (g2 +10) = L) A (2" (p +m0) — L),

and define gy = g¢(19) > 0 by

)
0= max(2, 1 4+ K,7) exp(2Ku(p +10))

(5.49)

Suppose that x is a solution of DDER satisfying ||z — 2*||—rq < €o. Then by
(5.46)—(5.47) and (5.49),

|z = 2|7 ptmo) <6, (5.50)
and

2 = 2 lloptnm) < 6. (5.51)

We first note that by Lemma 5.5, (5.48) and (5.50)—(5.51), we have the following
bounds on = and z. Since 2*(—7) = 2*(¢1) = L and x* is increasing on [—7, 0] and

decreasing [0, ¢1], we have, for t € [—7 + 19, ¢1 — 10],

2(t) 2 2*(t) = |2 = 2"+ pno)

> L+ min{z*(—7 +no) — L, 2" (1 — no) — L} — 6,
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so by (5.48),
x(t) > L, t € [=7 +no,q1 — o). (5.52)

Since z*(¢1) = 0 and z is non-increasing on [0, /1], we have, for t € [g1 —no, {1 — o),
z(t) 2 *(t) = |z — 2"l =7 psne) > 27 (6r — 10) = 6,

so by (5.48),

Z’(t) >0,te [q1 — 7’]0,£1 — 770] (553)
Since z*(q1) = 2*(q2) = L, 2*(¢1) = 0 and z* is decreasing on (g, ¢1), constant on
[¢1,q1 + 7] and increasing on (q1 + 7, g2), we have, for t € [g1 + 70, g2 — 70},

z(t) < 2 (t) + [l = 2| =7 pno)
< L —min{L — z*(q1 +n0), L — 2"(q2 — m0) } + 9,

so by (5.48),

z(t) < L, t € [q1 + M0, g2 — 0] (5.54)
Since z*(¢1) = 0, and z* is decreasing on (¢1, q; + 7), we have, for t € [¢; + 19, ¢1 +
T = 770]7

2(t) = 27(t) + 12 = 2 llioprnl < 2°(6 +10) +6,
so by (5.48),
z2(t) <0, t €[l +no,q1 + 7T — 1] (5.55)

Since x*(q1+7) = 0 and z* is increasing on (¢, +7, p), we have, for t € [¢1+74n0, p),

z(t) = 2*(t) = (|2 = 2" pine] > 2" (1 + 7 +10) =6,
so by (5.48),
x(t) >0, t € [q1 + 7 + 1o, p- (5.56)
Since x*(q2) = L, x*(p + mo) > L, x* is increasing on (go,p) and x* is decreasing
on (p,p + 1), we have, for ¢ € [go + 10, p + 10},
z(t) = 2" (t) — [l = 2" —rp+no)

> L+ min{z* (g +n0) — L, 2" (p +no) — L} — 6,
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so by (5.48),
x(t) > L, t € [g2 4+ 0o, p + o). (5.57)

Proof of (i): By (5.52) and the fact that 1y < %, we have that x(t) > L for
all t € [—7 + 19, Mo).

Proof of (ii): By (5.52) and the fact that 7y < 7, we have that x(t —7) > L
for all ¢t € [ny,q1 + no]. It follows from the negative feedback condition on h,
Lemma 2.2 and (5.52)-(5.53) that x is differentiable and decreasing on the interval
(M0, ¢1 + Mo). Then by (5.52)—(5.54), there exists ¢f € (¢1 — 1m0, ¢1 + 1o) such that
x(t) > L for all t € [q1 —no,q7) and 0 < x(t) < L for all t € (¢7, q1 + no]-

Proof of (iii) and (iv): By (5.52) and the definition of ¢}, we have that
x(t—71) > L for all t € [ny,qf +7). It follows from the negative feedback condition
on h and (2.2) that z is differentiable and decreasing on the interval. By (5.52)—
(5.53), z(t) > 0 for all t € [0,¢; — no] and so y(t) = 0 and z(t) = =(t) > 0 on the
interval. Combining this with (5.55), we have that there exists ¢ € ({1 —mnq, {1+m0)
such that x(t) = z(t) > 0 for all ¢ € [¢],¢7) and z(t) < 0 for all t € (¢], ¢ + 7]. By
Lemma 2.2, the negative feedback condition on h and the fact that z(t —7) > L
for all ¢t € (¢f,47) C [no,qf + 7), x is differentiable and decreasing on (g, £7).
Furthermore, —z(t) < 0 and () > 0 for all ¢t € [0,¢7) and since —z is increasing
on [¢7,q7 + 7], it follows that —z(t) = —z(¢t) and =(¢) = 0 for all t € [¢7,q7 + 7).

Proof of (v): By the definition of ¢f, (iii)—(iv) and (5.54), we have that
x(t—7) < Lforallt e (¢f +7,q2— 1o+ 7). It follows from (2.2) and the negative
feedback condition on h that z is differentiable and increasing on the interval.
Therefore using the results from (iii)—(iv) above —z(t) = —z(¢f +7), z(t) = 2(t) —
2(gt+7) > 0for all t € (¢7 +7,q2 —no+7) and so z is differentiable and increasing
on the interval. Then by (5.54) and (5.57), there exists ¢§ € (g2 — 7o, g2 + 7o) such
that x(t) < L for all t € (¢f + 7,¢5) and x(t) > L for all t € (¢, g2+ mo)-

Proof of (vi): By the definitions of ¢ and ¢5 and the fact that ¢§ > ¢f + 7,
we have that z(t — 7) < L for all t € (¢3,¢5 + 7). It follows from the negative
feedback condition on h, Lemma 2.2 and (5.56) that z(¢) > L and is differentiable
and increasing at all t € (¢3,q5 + 7).

Proof of (vii): By the definition of ¢§ and (5.57), z(t — 7) > L for all
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t € (¢34, p+mno). It follows from the negative feedback condition on h, Lemma 2.2
and (5.57) that z(¢) > L and is differentiable and decreasing at all t € (¢5+7, p+no).

Since x(t) > 0 for all t € [0,¢7), y(t) = 0 there and by (2.1), 2(t) = z(¢) > 0
for all ¢t € [0,¢7). By the proof of (iv), z is decreasing on [¢7, ¢ + 7], so —z(t) =
—z(t) > 0 and S_,(t) = {t} for all t € [¢7,¢f + 7]. Then since z(t) > 0 for all
t € (¢f + 7,p + no| it follows from (2.1) and (2.3) that —z(t) = —z(t) — z(t) <
—z(t) = —z(q¢f + 7) there. O

For a solution z of DDER with ||z — 2*||(—10 < €o, define
g1 =¢e1(x) =0 — ||z — 2 ||[=r0) > 0, (5.58)

and
m = m(x) =no — max{|q; — qi|, [{T — l1|,|q5 — q2|} > 0. (5.59)

By the definition of 7y in Lemma 5.7 and (5.59), we have

(¢ —m,qi +m) C (@1 — 10, q1 + o), (5.60)
(67 =, 05 +m) C (62— 1m0, €1 + 10), (5.61)
(g3 —m. a3 +m) C (g2 — o, g2+ o) (5.62)

Suppose that z' is another solution of DDER satisfying ||z — 27|/, < 1. Then
by (5.58), we have

o — 2*lli—rg) < llz" — 2llro) + I — 2°i—rg) < o, (5.63)

and Lemma 5.7 holds with 2 in place of . The following lemma ensures that

t i i .
¥ — qF'|, [6% — £"] and |¢& — ¢%'| converge to zero as z' converges to x in C[tw].

Lemma 5.8. Suppose = is a solution of DDER satisfying ||x — z*||—rq < €o
and define €1 = e1(x) > 0 and n; = m(z) > 0 as in (5.58)~(5.59). For each
n € (0,m), there erists ¢ € (0,e1) such that if x' is solution of DDER sat-
isfying ||z — 2¥|l o) < e, then ¢f' € (¢f —mqf +n), €7 € (67 —n, 65 + 1),
g5 € (a5 — 1,95 +1).
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Proof. Fix a solution x of DDER satisfying ||z — 2*||[—r,0) < €0. Let n € (0,7:) and
define § > 0 by

6= (z(qf —n) — L) AN (L —x(qi +n)) A z(f —n) (5.64)
AN (=27 +n) AL —2(q5 —n)) A (2(gy +n) — L).

The strict positivity of ¢ follows from Lemma 5.7. Choose € € (0, &) satisfying

J

max(2, 1 + K,7) exp(2K,(p + n0)) (5.65)

€<

Suppose z' is a solution of DDER satisfying [|z' — z|||_,q < e. If we define 27

n (2.2), but with zf and z' in place of z and z, respectively, then by (5.63),
Lemma 5.7 holds with T and 2T in place of z and z, respectively. By (5.46)—(5.47)
and (5.65), we have

& = 2 =) < 0 (5.66)
and
1z = 2o p4mo) < & (5.67)

It follows from (5.64) and (5.66)—(5.67) and that

2 (gt —n) > L > 2" (qf +n), (5.68)
A5 —n) > 0> 21 +1n), (5.69)
2 (g5 —n) < L <a'(g5 +n). (5.70)

By Lemma 5.7, (5.60)—(5.62), (5.68)—(5.70) and the continuity of z! and 2T, we
have that 7' € (¢f —n,qf +n), ¢ € ((f =0, 65 +1) and 8 € (@5 —n, 5 +n). O

5.4 Linear Variational Equation (LVE)

In this section we consider solutions of a linear variational equation (LVE)
relative to solutions of DDER with initial conditions in a small neighborhood of the

initial condition of a SOPS. Linear variational equations have been well studied in
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the unconstrained setting, but require a first principles approach in the constrained
setting. Indeed, solutions of LVE in the constrained setting can exhibit consider-
ably different behavior than in the unconstrained setting. In particular, solutions
of LVE in the constrained setting can be discontinuous. A general definition and
properties of a solution of LVE relative to a solution of DDER are presented in
Appendix C. The treatment in the Appendix describes solutions of LVE relative
to solutions of DDER associated with a function f in (1.1) that is more general
than we need for the proof of stability and uniqueness of SOPS.

Throughout this section we assume that f is of the form (3.9) and satisfies
Assumptions 3.3 and 3.4. We fix 7 > 75, where 7y is as in Corollary 5.2, and
let x* denote the SOPS 27 so that Lemmas 5.5-5.8 hold. We briefly summarize
important definitions and properties from Appendix C regarding solutions of LVE
relative to a solution z of DDER satisfying ||z — 2*|||_ < €0, Where g5 > 0 is as
in Lemma 5.7. The following definition is a version of Definition C.1 specific to
this section. Recall that Dj_. ) denotes the set of functions from [—7,00) to R

with finite left and right limits at each ¢ > —7 and a finite right limit at —7.

Definition 5.1. Suppose x is a solution of DDER satisfying ||z — 2*||[_~0 < €o.
A function v € Dy, ) is a solution of LVE relative to z if v(t) > 0 at all t > —7
such that z(¢) = 0 and v satisfies

u(t) = D, ®(2)(t), t >0, (5.71)

where ® denotes the Skorokhod map given by (A.1)~(A.2), z € Cpp,) is defined in
(2.2), w € Cjg o0y is defined by

w(t) = v(0) + /0 h'(x(s —7))v(s — 7)ds, t >0, (5.72)

and the directional derivative of ® at z in the direction w is denoted by 0,,P(2),

is well defined as an element of Dy ) by Theorem B.1 and is given by

0, ®(2)(t) = w(t) + R(—z, —w)(t), (5.73)
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where
SUPes_ (1 (—w(s)) if —z(t) >0,
(=2, —w)(t) = { sup.g_o(~w() VO =20 =0,  (574)
0 if —z(t) <0,
and
S_.(t) = {s € [0,4] : —z(s) = —2(1)}. (5.75)

A solution v of LVE relative to x and with initial condition vy € Cj_ can
be thought of as the direction that x is perturbed in when its initial condition
xo is perturbed in the direction vy. In general, the element vy is constrained by
the fact that the initial condition of a solution of DDER cannot be perturbed in
the negative direction at points that it is at the boundary. However, in the case
that ||z — 2*||[_~0 < €0, it follows from Lemma 5.7 that the initial condition z, is
strictly above the lower boundary, so we can take vy to be any element of C|_, .
For each € > 0 sufficiently small so that zf = xy + cvg € C[J: L let ¢ denote the
unique solution of DDER with initial condition zj and define v° € C|_; ) by

(t) —x(t
v (t) = M e (5.76)
Also, if z is defined as in (2.2) and z°¢ is defined as in (2.2), but with z° and 2° in
place of x and z, respectively, then we can define w® € Cjg o) by

we(t) = M t>0. (5.77)

The following proposition is a version of Theorem C.1 specific to this section.
Recall that the family {u® : € > 0} in C|_; ) converges to u € D[_; ) uniformly
on compact intervals of continuity as € — 0 provided that for each compact interval
I in [—7,00) such that u is continuous on I, u® converges to u uniformly on [ as

e — 0.

Proposition 5.1. Suppose x is a solution of DDER satisfying ||x — x*||[—~0 < €0
and ¢ € Ci_rq. Then there exists a unique solution v of LVE relative to x with
initial condition ¢ and v is Borel measurable. Furthermore, if v* and w® are

defined is (5.76)—(5.77), then v® converges to v pointwise and uniformly on compact
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intervals of continuity in [—7,00) as € — 0 and w® converges to w uniformly on

compact intervals in [0,00) as e — 0.
In the following lemma we further describe solutions of LVE.

Lemma 5.9. Suppose x is a solution of DDER satisfying ||x — *||[—rq < €0. If

v € D|_7.0) @5 a solution of LVE relative to x, then v satisfies

(0) + fg R (z(s —71))v(s — 7)ds, t€10,47),

i) - (0(0) + 5 W (a(s = ))ols = )ds) ¢ =65, s,

0, te (5,qf + 7],

S W (a(s — 7)u(s — 7)ds, t e (g +7,p+ 0.

\Jg7+7
If v! € Di_; ) also satisfies (5.78) and v'(t) = v(t) at almost every t € [—,0],
then vT(t) = v(t) for all t € [0, p + no).

Furthermore, if v is a solution of LVE relative to x*, then v satisfies

p) + fkpﬂ R (z*(s — 7))v(s — 7)ds, t€10,0),
+
v(kp) + [0 h’(x*(s —Tm)u(s—71)ds) , t=1I,
v(kp +1t) = ( Ji )
07 te (617q1+7—]7
o W (@ (s = 7))o(s — 7)ds, te(q+7,p),

(5.79)
for each k € No. If v' € Di_, ) also satisfies (5.79) and vi(t) = v(t) at almost
every t € [—7,0], then vi(t) = v(t) for all t > 0.

Proof. First consider the case that || — 2*||[—r0) < €0 and v is a solution of LVE
relative to x. It follows from Lemma 5.7 and parts (i), (ii) and (iv) of Lemma C.4
(with 0., f(zs) = h'(z(s—7))) that v satisfies (5.78). To prove uniqueness, suppose
that v € D, ) also satisfies (5.78) and v'(t) = v(t) at almost every ¢ € [—,0].
By (3.12), for t € [0,7 A £5),

[0t (t) —v(t)] < Kh/o [vi(s —7) —v(s —7)|ds = 0.
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v(t)

| \ 0 — L
—7 — af +7 S~

x(t)

. = @+ P+ 1o

Figure 5.4: An example of a solution of LVE (on the top) relative to a solution
of DDER (on the bottom). Here h(z(t — 7)) = ﬁ — 7, where @ > v >0
and Cy > 0 as in Example 3.2.

If /¥ > 7, we can iterate this argument to obtain v'(t) = v(t) for all t € [—7,(%).
At t = €7, we have that of(¢) = (/&))" = (W(E-)" = v(f). By (5.78),
vi(t) = v(t) =0 for all t € (¢%,¢F + 7]. Since v'(¢f + 7+ 1) = v(qf + 7 + t) for
all t € [—7,0], we can apply a similar argument as we did on the interval [0, £{) to
obtain that vf(t) = v(t) for all t € [¢F + T,p + no].

Now consider the case that v is a solution of LVE relative to z*. It follows
from Lemma 5.5, the periodicity of z* and parts (i), (ii) and (iv) of Lemma C.4
that v satisfies (5.79) for k = 0,1,.... Suppose that v’ also satisfies (5.79) and
v1(t) = v(t) at almost every t € [—7,0]. By the same argument as above, we have
that v'(t) = v(t) for all ¢t € [0, p]. By iterating this argument for k = 1,2,..., we
see that vT(t) = v(t) for all ¢t > 0. O

Lemma 5.10. Suppose x is a solution of DDER satisfying ||x — x*(|[—rq < €0. If
a,b € R and v,v' € D|_; ) are solutions of LVE relative to x and if vt is the
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unique solution of LVE relative to x with initial condition vg = avy + bvg, then
vH(t) = av(t) + bo'(t) for allt € [—7,p+no) \ {£5}. (5.80)

Proof. Suppose that a,b € R and v,v' € D|_; ) are solutions of LVE relative to
. Let v! denote the unique solution of LVE relative to x satisfying vf = avy + b

By (5.78), we have, for t € [0, £7),
(av + bu")(t) = (av + bv")(0) + /0 B (2(s — 7)) ((av + bv") (s — 7))ds.

By (5.78) and the fact that v*(t) = av(t) + bv'(¢) for all t € [—7,0], we have, for
t e 0,7],

|vi(t) — (av +bu")(1)| < /0 | (z(s — T))(vi(s —7)— (av + bUT)(S —7))|ds
= 0.

We can iterate this argument for ¢ € [7,¢%) to obtain that v*(t) = av(t) + bv'(t) for
all t € [0,4%). By (5.78), we have v}(t) = av(t) + bv'(t) = 0 for all t € (¢%,¢% + 7).
Again by (5.78), we have, for t € [¢f + 7, p + 0],

t

(av + bu)(£) = / W (a(s — 7)) ((av + bo')(s — 7))ds.

ar+T

By (5.78) and the fact that v*(t) = av(t) + bv'(¢) at all but one t € [¢¥, ¢¥ + 7], we
have, for t € [¢] + T, ¢f + 27],

\vi(t) — (av + bUT)(t)| < / \h (z(s — T))(vi(s —7) — (av + b (s — 7))|ds

ai+

=0.

Again iterating this argument for ¢ € [¢f + 27,p + o], we have that vi(t) =
av(t)+bvi(t) for all t € [¢F +27, p+no] and the conclusion of the lemma follows. [

For a solution z of DDER, define & : [0,00) — R by

o) = h(z(t — 7)), if z(t) >0, (5.81)
0, if z(t) = 0.
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By Lemma 2.2, 7 is equal to the derivative of x at the almost every t € [0, 00) that

x is differentiable. By Lemma 5.7, if x satisfies ||z — 2*||[—r,0] < €0, then & satisfies

h(z(t — 1)), forallt e |0,7),
i(t) = 40, for all t € [¢2,¢7 4 7], (5.82)

h(z(t — 7)), forallt e (¢f +7,p+ no.

Since h and x are continuous and ¢f + 7 < p — T — 1y, where 7, is defined as in
Lemma 5.7, we have that @; € C_.q for all t € (p —no,p + 10). For a SOPS z*,
we can uniquely define #* on [—7, 00) by requiring that &* satisfy i*(p+t) = @*(t)

for all t > —7.
Lemma 5.11. The function £* s a solution of LVE relative to x*.

Proof. To show that z* € D[_; ), it suffices to show that z* has finite left and
right limits at each ¢ € [0, p] (finite right limit at 0 and finite right limit at p).
Since z*(+) is positive on [0, ¢;) and on (g, + 7, p|, we have that ©*(t) = h(z*(t — 7))
for all t € [0,¢,) U (q1 + 7, p]. By the continuity of h and z*, #* is continuous there.
For t € [ly,q1 + 7], *(t) = 0, so &*(t) = O there. It follows that #* has finite
left and right limits at each ¢ € [0,p], so #* € D|_, ). By Proposition 5.1, since
15 € C—r ), there exists a unique solution of LVE with initial condition #j. Then
by Lemma 5.9, it suffices to show that i* satisfies (5.79) for all ¢ > 0. Since z*
is absolutely continuous with its almost everywhere defined derivative equal to &*,
we have z*(t9) = x*(t1) + j;tf’ *(s)ds for all ty,ty € [—T, 00).

For t € [0,41), *(t) > 0 so by (5.81), @*(t) = h(z*(t — 7)). Since h is con-
tinuously differentiable and x* is positive and therefore continuously differentiable
on [—7, ¢, — 7], it follows from the fundamental theorem of calculus and chain rule
that ,

#*(t) = £*(0) +/0 B (x*(s—7))2*(s — 7)ds, t € [0,47). (5.83)

By (5.83), the fact that i*(t) = h(a*(t — 7)) for all ¢ € [0,¢;), the continuity of h
and z*, the negative feedback condition on h and the fact that *(¢; —7) > L, we
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have

By (5.81) and the fact that 2*(¢1) = 0, we also have #*(¢;) = 0. For t € ({1, ¢+ 7],
x*(t) = 0, so by (5.81), *(t) = 0. For t € (q1 + 7,0, +7), *(t) > 0, so by (5.81),
#*(t) = h(z*(t — 7)). Since h is continuously differentiable, x* is continuously
differentiable on [g1, ¢1) and h(z*(q1)) = h(L) = 0, it follows from the fundamental
theorem of calculus and chain rule that for t € [¢; + 7,61 + 7),

P (t) = h(z*(t — 7)) (5.84)

= h(z*(q1)) + / B (z*(s—71))&*(s — 7)ds

q1+T1

:/qt W (2 (s — 7))d" (s — 7)ds.

1+7
Att =tl14+71, 2" (l1+7) > 0, s0 by (5.81), &*(¢1+7) = h(x*(¢1)). By the continuity
of h and z* and by (5.84), we have

#* (0 +7) = limh(2*(1) = lim h(a®(t 7)) (5.85)
t
o . !/ * _ 5k _
= A, ), M e e
Q+7
l1+1
= / h'(x*(s — 7))2*(s — T)ds.
q+7

For t € (01 + 7,q1 + 27, 2*(t) > 0, so by (5.81), i*(t) = h(z*(t — 7)). Since
¥t —7) =0forallt € [(; +7,q1 + 27|, 2*(t) = h(z*(t — 7)) = h(0) for all
t € [l + 7,1 + 27]. By the continuity of h and z*, (5.85) and the fact that



73

#*(t —7) =0 for all t € [¢; + 7,¢q1 + 27], we have, for t € [(; + T,q1 + 27,

P (1) = i (6 + 7) (5.86)

For t € [¢1 + 27,p],

l1+T1
= / B (z*(s —7))z* (s — T)ds
Q+T
¢

_ /q B (2" (s — 7))a" (s — 7)ds.

1+7

xz*(t) > 0, so by (5.81), #*(t) = h(z*(t — 7)). Since h is

continuously differentiable and z* is continuously differentiable on [¢; + 7, p — 7], it

follows from the fundamental theorem of calculus and (5.86) that for ¢ € [¢; 427, p),

#*(t) = h(z

(t=1))

t

= h(z*(q1 + 7)) + / h'(x*(s —7))2*(s — T)ds

¥

1+7

t

q+2T

B (z*(s —7))2*(s — 7)ds

Therefore &* satisfies (5.79) for £ = 0. Since both z* and &* are periodic with

period p, we can repeat the previous argument to observe that z* also satisfies

(5.79) for all k =1,2,...,

which concludes the proof of the lemma. O

Lemma 5.12. Let v be a solution of LVE relative to x* and define © € D_; o) by
0(t) = v(rt) for allt > —1. Then 0 satisfies

o(t) = (
0,

k7'At W (i

q1+1

where h is as in (5.1), &

and iy = 7.

+Tf0h’

2k

(s —1))0(s — 1)ds, tel0,4y),
) LR (s — 1) (3—1)ds) , tzﬁi, 57
€ (b1, ¢ + 1],
(s — 1))d(s — 1)ds, t € (g1 +1,p+ o).

is as in Lemma 4.1, {, = 7Yy, G = 7 qr, p=7'p
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Proof. 1f v is a solution of LVE relative to z*, then by (5.78),

f” W(at(s = )u(s —7)ds,  TtE00),
. +
(s —T))u(s—T1)ds) , Tt =/,
v(Tt) = o D ) ) 1
0 Tt € (b, q1 + 7],
I (s = 7)els = ), € layrp okl

~ ~
~ A~

By substituting expressions in terms of v, h, 2%, ¢1, {1, p and 7y, for v, h, ¥, ¢,

¢y, p and 19, we obtain (5.87). ]

Lemma 5.13. There exist a constant My, > 0, which does not depend on 7, and a

constant T3 > T such that if T > 13 and v is a solution of LVE relative to x*, then
[0lli—rp) < Mp|v][{—r0)- (5.88)

Proof. Let § = $min(g,1). By Theorem 5.1, Corollary 5.1 and (5.3), there exist
constants 73 > 7 and d > 0 such that if the fixed 7 > 73, then the following hold:

(1) —0<G <l <qg+d<g+1—0<g<qg+1+0,
(i) 2*(t) > d for all t € [-1 + 0,7 — J], and
(iii) 2*(t) = —L and B(:i“*(t)) = forallt e€[g+d,q + 1]

Suppose 7 > 73 and let v be a solution of LVE relative to x*. If we define 2* as in
Lemma 4.1 and ¢ as in Lemma 5.12, then z* is a SOPS" that satisfies (i)-(iii) and
|vll=r,7g = 0|1, for all ¢ > 0. Thus, letting p = 7~ 'p, we have that (5.88) is
equivalent to

1011161 < Mnl|9[](-1.0)- (5.89)

By (5.87), for t € [0, d],

6(1)] < [0 |+T/ 1/ (3% (s — 1))i(s — 1)|ds (5.90)

Got+t
< 8l (1 [ |h'<az~*<s>>|ds> .
q2
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Here we have used the fact that #*(s — 1) = &*(go+ ) for all s > 0. If £, +1 < o,
then by (i) and the definition of 4, [Ga, Go + 6] C [l + 1,G + 2]. Since #*(t) > —L
and 2*(t — 1) = —L for all t € [§2, G2 + 0], it follows from Lemma 4.2 that z* is

differentiable on the interval with derivative

d:e;t( ) Th(i*(t — 1)) = Th(—L) = 78, t € [G2, G2 + ). (5.91)

Hence i*(Go +t) = 70t for all t € [0,0]. By (5.90), for ¢ € [0, 4],

[o(t)] < ||0]|=1,0 (1—|—T/ ‘h/ (18s) ]ds) (5.92)

< |1l 101( —||h||L1[ Loo)))

where
1A (= L,00)) = / W (s)|ds < oo
-L

is finite by Assumption 3.4. The second inequality follows from performing the
substitution u = 78s. Alternatively, if gy < ¢; + 1, then by (5.6), (5.90)—(5.91),
we have, for t € [0, 0],

1+7/1 ]ﬁ’(i:*(s))]derT/qQ |h/<;ﬁ*(s))\ds> (5.93)

Corollary 5.2 and (iii),

[0@)] < [[9][-1,0
G2 l1+1

S ||1A}||[_1,0] 1+7—Kh|£1_q1|+7—/ |h/ El—f— )—{—7’58)|d8)

QLKh *(01+1)+785 )
1 R (u)|d
sty () d

f1+1

R 2L K, N
< ||9|lj=1,0 (1 Tt BHh'HLl([—L,oo))) -

Here the third inequality follows from performing the substitution u = z* (@1 +1)+

< [[oll-1.0

70s. Taking the supremum over ¢ in the interval [—1, 6], using (5.92)—(5.93), we
have the following bound, which does not depend on the relation between 0+ 1

and qA27 oL K
h

) 1, - A
nwuﬂ§0+ +ﬁWbmmw)Mhm- (5.94)
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By (i) and the definition of §, [—1 +, - 1] C [-1+446,G — 6] and so the property
in (ii) holds on the interval. If /; < § + 1, then by (5.87), we have, for t € [5, 1],

001 < o)+ 7 [ I (s~ D)ols - s
< |0(8)] + < | ’W*(S)”*(s)'|@<s>|ds)

—1+46 |2*(s)]
1)
N m N
< |o(8)] + = |0(s)|ds
—146
R m
< foli-rear (1+ 57

where m = Supye(_y, o) |sh/(s)| is finite by Assumption 3.4. Alternatively, if /; >
d + 1, then by (5.87) and Gronwall’s inequality, we have, for ¢t € [4, él],

6(8)] < 0(8)] + / H(@" (s — 1))0(s — 1)|ds
Swwﬂ+<j/|M@WMﬁSMM$MQ

“146 12*(s)|
(t=1)Aé (t=1)Vé
<o) + 2 lo(s)|ds + = 16(s)|ds
d J 145 d Js

< loll-rrsn (1+5) exp (St —1-8)*).

By (5.87), 0(t) = 0 for all t € (/1,4 + 1]. Taking the supremum over ¢ in the

interval [—1, ¢; + 1], we have

m

) m p .
[Pl raen € (14 5) exp (0 =10 ) ollrg. (5.95)

By (5.87) and Corollary 5.2, we have, for t € [¢; + 1,0 + 1],

w@ngT/ B (s — 1))i(s — 1)ds

1+1
< 7K |[0]lg, 09160 — @1

2LK}y,

< ———lollg, a1

For t € (6, + 1,4, + 2], 9(t — 1) = 0, so by (5.87),

2LK},
«

[o()] = lo(l + 1)] < 121l6,.2.)-



7

Taking the supremum over ¢ in the interval [—1, ¢; + 2], we have
2LK;,

[0l -1.6142) < 191114,y (5.96)

By (5.87) and Corollary 5.2, we have, for ¢ € [g1 + 2, ({; + 2) A B,

(L142)Ap

0()] < [6(d +2)| + 7 / W(8(s — 1))d(s — 1)]ds
g1+2
<16 + 2|+ K], 14,4l — i
o 2LK,, .
< |0(¢1 +2)| + T||U||[ql+1,él+1]-

Taking the supremum over ¢ in the interval [—1, (El + 2) A p|, we have

2L K, R
) olliv.0 51 (5.97)

||ﬁ||[71,(21+2)/\ﬁ] < (1 +

If /; + 2 < p, then consider the interval [¢; + 2,p]. By (i)-(ii), if t € [¢, + 2, 7],
then t —1 € [, +1,45] C [ly + 1,4, +2]. By Lemma 4.2, &* is differentiable on

(1+1,G,+2] with €8 — 7h(2*(t—1)) = 78. By (5.87), we have, for t € [{1+2, ),
dt

t

16(2)] < [o(f1 + 2)| + 7'/ W (2% (s — 1))d(s — 1)|ds

{142
. (t—b-2)* .
< Jo(hy +2) + 7190, 41y / (8 (6, + 1) + 755)|ds

& (A1) +7B(p—b1—2)

) L.
<106 +2)+ ol | i (wldu

T* (£1+1)

o | )
< |o(l +2)| + BHh/HLl([—L,oo))HUH[élH,qz}'

The third inequality follows by performing the substitution u = i*(él +1)+708s
and for the fourth inequality we have used that ¢, = p — 1. Taking the supremum
over t in the interval [—1, p|] and using (5.94)—(5.97), we have

) 1 ) i
0]l < (1 + g”h”ﬂ({—uoo))) 1ol goviar+2y < Millolli-v0,

where

ZLKh) 2LK;, <1 N 7;1)

M, =1+ 1]|iz|| 1+
h — B Ll([—L,oo)) o

. exp (%(& ~1-9)") (1 4 2LE

(07

1 i
; Bnhnm_m») 1ol v
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Lemma 5.14. Suppose x is a solution of DDER satisfying ||v — 2*||[—rq < €o.
For each § > 0, there exists € > 0 such that whenever ' is a solution of DDER
satisfying ||z — x'||_r.0) < €, and ¢ € Ci_q) satisfies ||[¢||—ro) < 1, then

xT

ol
HU -v ||[P_7—_7707P+770] <9, (5'98>

where v and v denote the unique solutions of LVE relative to x and x', respec-

tively, with initial conditions v¥ = vi = 1.

Proof. Fix § > 0. Define &1 = ¢1(z) > 0 and n; = n1(z) > 0 as in (5.58)—(5.59).
Let

My = 2(p + 1) exp(2K(p +10)) + 2Kn (01 +10)° exp(3K (01 +10)),  (5.99)
My = 2K}, exp(2Kp,(p + no)). (5.100)
For a solution z' of DDER and t > 0, define
dp (2", t) = sup |W(x(s — 7)) = W (z'(s — 7))|. (5.101)
s€[0,t]
Note that dp(z, ', +) is an increasing function and by (5.46) and the continuity of
W, we have that for each fixed ¢t > 0, dp (z,z%,t) — 0 as ||z — 2| _.0) — 0.
Choose n € (0,7,) such that

)
< .
18 M5 exp(Kn(q2 — q1 + 2m0))

Given 7, we can choose € € (0,¢1) such that the conclusion of Lemma 5.8 holds

U (5.102)

and

)
4My exp(Kp(g2 — q1 + 2n0))

di (7,27, qo) < (5.103)

whenever ||z — z||_,q < e.
Define z as in (2.2). Let ¢ € Cj_- such that ||[¢||—r0 < 1 and let v®, v
be defined as in the lemma. By Definition 5.1, we have that v” satisfies (5.71)—

T

(5.75), but with v* and w?® in place of v and w, respectively. Similarly, v " satisfies

(5.71)—(5.75), but with 2t 2T 0" and w® in place of z,z,v and w, respectively.

ot

By (C.8) (with v = 0 and v?, v*" in place of v), we have that v*, v* are bounded

on compact intervals by

07| (=7 < 2exp(2Kxt) and ||UIT||[_T7,5] < 2exp(2Kyt) for allt > 0. (5.104)
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Here we have used the fact that |[v*||[_r0 = v =m0 = [[¥]l[=r0) £ 1.

We first consider [v”(t) — v* ()| when ¢ € [0,¢% — n]. By Lemmas 5.7-5.8,
7" > 07— and so —2(t) < 0 and —zf(t) < 0 for all t € [0,6% — ). It follows
from (5.74) that R(—z, —w®)(t) = R(—z", —w®")(t) = 0 for all ¢ € [0,47 — 5. By
(5.71)-(5.72), (5.101), (5.104), (3.12) and the fact that v¥ = v¥' = ¢, we have, for
t < [0,6 =],

() =¥ ()] = [u?2) — ' (0)
< /Ot W (x(s — 7)o" (s — T) — h'(xT(s — T))vxT(s —7)|ds
< [ Wtats =) = Wlatls = o7 (s — s
# [ WG =)l s =) = s = s

t
< dp(z, 2", t)2t exp(2Kt) + Kh/ v (s) — vxT(s)|ds.
0

Applying Gronwall’s inequality, we obtain

W () — " (£)| < di(z, 2t )2t exp(3K,ut), t € [0, 65 — 7). (5.105)
Second, we consider [v7(t) — v*' (¢)| when t € [(* —n, (¥ +n]. By (5.104),

we have,
0(0) = o (O] < [0 + 1 oy < Aep@EA(E +7). (5.106)

Third, we consider [v*(t) —v® (t)| when ¢ € [ + 1, ¢* +7 —1)]. By Lemmas
5758, 17 < i 4+n < g +7—n< ¢ 47 and so we have that S_,(t) =
S_.t(t) = {t} and =z(t),—zf(t) > 0 for all t € [(* + n,¢' + 7 —n]. Then by
(5.74), R(—z, —w®) = —w®(t) and R(—z!, —w®") = —w®'(t), so by (5.71)~(5.73),
v (t) = v* (t) = 0 for all t € [(¥ + 1, ¢" +7 — 7).

Fourth, we consider [v*(¢) — v®' ()| when ¢ € [¢F +7 —1,¢% + 7 +1n]. By
(5.104), we have

02 (8) — o (B)] < [0 o + 107 N0 < Aexp@Eu(F +7+n),  (5.107)

Fifth, we consider |v*(t) — v” (t)| when ¢ € [¢¥ + 7 +1,p +10]. By (5.71)-
(5.73),

0" (t) — o™ ()] < [w” () — w” ()] + [R(—2, —w")(t) — R(—=2, —w™ (). (5.108)
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By (5.72), the first term on the right hand side of (5.108) satisfies
t
[w* (1) — w*' (¢)] < / W (2(s — 7)) = W (2¥(s = 7))] - [v"(s — 7)lds (5.109)
0

n / W (s = )] - [0 (s = 7) — o7 (s — )lds

£i—n
< dp(z,x", )2t exp(2Kt) + Kh/ [v*(s) — UxT(3)|d3
0

44 ;
+Kh/ 7(s) — o™ (s)|ds
l

]
qi+7+n .
b K, / w7(s) — o™ (5)|ds
a+T—n
! t
+ Kh/ [v®(s) — v (s)|ds
qi+7+n
< dp(z, 27, )2t exp(2K,t)
+dy (w27, 6] = ) 2K, (67 — 1) exp(3Kx (6] — 1))
+ 8Ky exp (2K, (€7 + 1)) + 8Kun exp(2K4 (g + 7 + 1))
t
+ Kh/ V% (s) — v* (s)|ds
qi+7+n
< Mydy (x, z7, 1) + 8Man)
t
+ K, / " (s) — v* (s)|ds.
q

T+7+1n

The second inequality follows from (5.104), (3.12) and because v¢ = v = ¢ and
v*(s) = v*'(s) = 0 for all s € [(¥ +1,¢" +7 — 7). The third inequality follows
from (5.105)—(5.107). The constants M; and M, are defined in (5.99)—(5.100). By
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(5.74), the second term on the right hand side of (5.108) satisfies
|R(—2, —w")(t) = R(==", —w™)(8)] < |R(=2, —w®)(t) = R(=z,—uw" )(¢)|
(5.110)
+ [R(=z, —w™)(t) = R(==1, —w™)(1)]
< Jw®(gf +7) — w® (¢f +7)]
+ (g +7) = w” (gf' +7)]
< [w*(qf +7) = w” (¢F +7)
+ |0 g1l
< [w*(gf +7) — w” (¢ + )| + Man,
The second inequality follows from (5.74) and Lemma 5.7. The third inequality

follows from (5.72) and because |¢¥ — ¢*'| < n. The fourth inequality follows from
(5.104) and the definition of M,. By (5.72),

[w* (g} +7) = w* (¢ +7)| < /Oql T [P (2(s — 7)) = W (2¥(s = 7))[ - [v"(s — 7)lds

(5.111)

ai+T ;

+/ |h/($T(8—T))||Ux(S—T)—UI (s —7)|ds
0
< dw(z, 2t qf + 7)2(qf + 7) exp(2K (g7 + 7))
CIiDJr‘r ;
—i—Kh/ V(s —7) — v (s — 7)|ds
0

< dy(z, 2", g7 +7)2(q7 + ) exp(2Kn(gi + 7))
+dy (z,2",q7 + 7)2K3(q7 +7)* exp(3K5(q7 + 7))
< Mydy (z, 2% qF + 7).
The second inequality follows from (5.101), (5.104), (3.12) and uses the fact that

vE = v¥ = 1. The third inequality follows from (5.105) and because ¢& < (% — 7.
By (5.108)—(5.111), for t € [¢F + T + 0, p + 1o,

t
W () — v* (8)] < 2Mydp (z, 2T, ¢F + 7) + IMon + K, / W% (s) — v (s)|ds.

T +7+n

Applying Gronwall’s inequality, we obtain

W (1) — ™ ()| < @Mudy (z, 37, ¢F +7) + IMan) exp(Ku(t — ¢ — 7 — 1)), (5.112)
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for all t € [¢f +7 4+ n,p+ no]. By Lemma 5.8, we have that ¢1 + 7 < ¢f + 7+ n <
G +7T+n<qg—1n=p—T—1n. Then by (5.112) and (5.102)—(5.103), we have

[v" — H[P—T—HO,P-H?O] < |lv* —w H[q?f+7+n,p+no}
< (2Mydp (2,27, ¢2) + 9IMan) exp(Ky (g2 — g1 + 210))

< 0.

5.5 Semiflow and Approximate Poincaré Map

In this section we define a semiflow and an approximate Poincaré map that
will be used to prove the uniform exponential asymptotic stability of a SOPS.
Throughout this section we fix a 7 > 73, where 73 is defined as in Lemma 5.13,
and we use x* to denote the associated SOPS x” defined in Section 5.2.

Define the semiflow > : R, x C[tr,o] — C[J:T,O] by

X(t, ) = xy, (5.113)
where z is the unique solution of DDER with initial condition ¢. Note that
Y(t,X(s,0)) = X(t, 15) = vy = (s + 1, 0), (5.114)
by time-homogeneity of DDER and uniqueness of solutions to DDER.
Lemma 5.15. The semiflow ¥ : R, X C[tT,o] — C[JQT’O] is continuous.

Proof. Suppose that (¢, ¢) and (1, ¢") are in R x C[tT o- Let z and x' denote the

unique solutions of DDER with respective initial conditions ¢ and ¢f. By (5.46),
for t > 0,

15(t, ) — St @M l—rol < o — 27| —ry < 2exp2K3t) I — @' |org-  (5.115)

By (3.10) with z' in place of x, for ¢, > 0,

1St 0") = S, ) oy = sup [2(t+ ) — ' (¢ + )] (5.116)
u€[—7,0]
< H|t —t1].

Joint continuity then follows from (5.115)—(5.116) and the triangle inequality. [
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Recall 9 > 0 and gy > 0 as introduced in Lemma 5.7. Define the neighbor-
hood U of (p, x) in the Banach space R xC_. o (with norm [|(Z, 0)| = [t|V||¢]l[-r.0)
by

U={(t, o) ERXCrq: |t —p| <moand || — zf|[—ro <0} - (5.117)
By the definition of ny and ¢y, we have U C R, x C[J:T o

Lemma 5.16. The semiflow X is continuously Fréchet differentiable on U and for

each (t, ) € U, the derivative DX(t, p) € L(R X Cj—r0),Cl—r0)) at (t, ) is given by
DX(t, ) (s,v) = sty + vy, for all (s,9) € R x Ci_r ). (5.118)

Here x denotes the unique solution of DDER with initial condition , x is defined
as in (5.81) and v denotes the unique solution of LVE relative to x with initial

condition 1.

Remark 5.1. Note that if (¢,¢) € U and x is the unique solution of DDER with
initial condition ¢, then by Lemma 5.7 and the definition of U, x,(s) > 0 for all
s € [=,0]. Thus, by (5.81), &y = {h(z(t+s—7)) : =7 < s <0} € Cj_r ).

Proof. For each (t,¢) € U, define the operator F(t, ) : R x Cj_; 0 = C[—rq by
F(ta 90)<S71/}) = Sjjt + Vg, (57 w> c R x C[—T,O]- (5119)

We first show that for each (¢, ) € U, F(t, ) is a bounded linear operator
from R x Cj_rq) into C_r, i.e., F(t,) € LIR X C[_rq],Cl—r0))- Fix (t,¢) € U. To
show that F'(t, ¢) is linear, let a,b € R, s,s" € R and ¢, 9" € C|_, . Let = denote
the unique solution of DDER with initial condition ¢, and let v and v! denote
the unique solutions of LVE relative to x with respective initial conditions v and
Y. Let v* denote the unique solution of LVE relative to 2 with initial condition
a) + bypT. By Lemma 5.10 and the fact that ||z — 2*||(_.q < €0 and ¢ & [t — 7,1],

we have vf = av, + bu]. Hence,
F(t,0)(as + bst, arp + bpt) = (as + bs") iy + o]
= a(si + v,) 4 b(s'd + o))
= aF(t,¢)(s,¥) + bF(t,)(s", ).
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To show that F(t,¢) is a bounded linear operator, consider (s,v) € R x Cj_.
such that |s| V [|[¢]/=rq = 1. By (3.10) and (C.8) with v =0,

1 @) (s, Do) < 2ell-r0) + [vell1-rop < H + 2 exp(2Knt).

Since the bound is only subject to the constraint |s| V ||[¢||—rq = 1, F(t,¢) is a
bounded linear operator.

We now show that the function (¢, @) — F (¢, ) is continuous as a mapping
from U into L(Rx,Cj_r0},Cl-r0)- Fix (t,¢) € U and § > 0. Let = denote the
unique solution of DDER with initial condition . By Lemma 5.14, we can choose
et > 0 such if 27 is another solution of DDER and satisfies ||z — |- < &' and
¥ € Cl_rq satisfies |[9][_rg < 1, then [[v* — v*" || p_rnopine] < ¢ where v* and
v®" denote the unique solutions of LVE relative to  and ', respectively, and both
with initial condition 1. By choosing a possibly smaller e > 0, we can assume

that e satisfies
1

< .
~ 2K [H + exp(2K5(p + m0))]
Now choose (&1, ¢") € U satistying [tT —t| V || — ¢'||-r,q < '. Let z! denote the

el (5.120)

unique solution of DDER with initial condition ¢'. Consider (s,1) € R x C_,q
such that |s| V [|1)||[—-r0) = 1. Define & as in (5.81). Let v* be the unique solution
of LVE relative to x with initial condition ¢ and let v™' be the unique solution of

LVE relative to ' with initial condition 1. By the triangle inequality

1t ) (s,9) — F(Y, ") (5, 9) | 1-r (5.121)
< E(t 0)(s,9) = (1, 0)(5,9) | -r0)
+ ||F(tT7 90)(S7w) - F(tT7 QOT)(S’ 77ZJ>||[—7',0]-
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For the first term on the right hand side of (5.121), by (5.81) and (5.78),

1F(t, 0)(s,0) = (¢, 0) (5,9 li=ro) < e = @t lj=roy + 107 = v lj=roy  (5.122)
< sup |h(z(t+u) = h(z@t +u))

wE[—27,—7]

/t T )t () dr

T-‘,—u

+  sup

u€[—27,—7]

<Ky osup |o(t+u) — x(th + u)

u€[—271,—7]
+ Kl[o" | —r pen) |t — t7]

< Ku[H + exp(2K5(p + m0))]|t — 1]

20
5

The third inequality follows from (3.12). The fourth inequality follows (3.10) and
(C.8) with v = 0. The final equality follows from our choice of £'. For the second
term on the right of (5.121), we have

IF(t, ) (s, ) = F(t', ") (s, 0)li-r0) (5.123)

. . T
< ldg — &5 [l =m0 + 105 = V5 l=r)-

For the first term on the right hand side of (5.123), we have

|y — x’LH[,T,O] < s[up ] |h(:zc(tT —T+u))— h(m%ﬁT —7+u))| (5.124)
ue|—7,0
<Ky sup |z(t' —7+u) -2t — 7+ )|
u€[—T,0]

< Kylle = o'l _ra_s

< 2K, exp(2Kn(p +m0)) [l — ' [l 1=r0

<5
1

The second and fourth inequalities follow from (3.12) and (5.46), respectively. The
final inequality follows from (5.120). For the second term on the right hand side,
we have

o v ot 0
HUH — Ut H[*ﬂO} <" —w H[prfno,prno} < 1 (5.125)
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Combining (5.121)—(5.125), we see that if [t — ¢| V [l¢ — ¢'[|_rq < &', then
|F(t, ) (s,0) — F(tt, o) (s,¢)||=rq < 0. Since this bound was obtained only

subject to the restriction that |s| V ||[¢]/_r0 = 1, we have

where ||-|| denotes the operator norm on L(R X Cj_;q],Cj—rq)). It follows that the
function (t,¢) — F(t, ) is continuous at each (¢, ¢) € U and therefore continuous
onU.

We now show that for each (¢, ) € U and (s,7) € R x Cj_, g,

YN(t+es,p+e) —X(t )

F(t,0)(5,9) = O 2(t; ) = lim . : (5.126)

where the convergence is taken to be uniform on [—7,0]. Fix (¢t,¢) € U and
(5,9) € RxC[_+0. Let x denote the unique solution of DDER with initial condition
@. Define & as in (5.81) and let v be the unique solution of LVE relative to « with
initial condition . For ¢ > 0 sufficiently small so that (¢ +es, o +ev) € U, let x°
denote the unique solution of DDER with initial condition zf = ¢ + ¢ and define

£

v° = e (2 — x) € C_r0). By the triangle inequality, for such £ > 0,

»(t — (¢
H (ttes o) ~ b)) F(t,w(s,w' (5.127)
< [~7,0]
_ x§+€8 — Tt o Si’t — v
< [~7,0]

< 5_1 Hxi—o—es - [Ei - 581.}“[_7_70] + ||U156 - Ut”[_TvO] ’
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For the first term on the right hand side of the inequality in (5.127), we have

ESs
|2fes — 2] — 53@“[_7,0} = s[upo]/ |2°(t +u+7r) — 2(t + u)|dr
ue|—r, 0

= sup /0€s|h(x€(t—|—u—r+r))—h(:c(t+u—7))|dr

u€[—T,0]

ES
< K, sup / |zt +u—71+7)—2(t+u—71)dr
u€[—7,0] JO

ESs
< K} sup / lz*(t+u—7+71)—2°(t+u—71)|dr
u€[—7,0] JO

+ Kj sup / |2t +u—7)—2(t+u—T)|dr
| JO

u€[—T,0

gKhH/ rdr
0

+ sup Kpesla®(t+u—7)—x(t+u—7)]
ue[—7,0]

1
< §KhH€252 + 2K s exp(2Kt).

The second equality follows from (5.81) and the fact that (by our choice of € > 0)
x and x° are positive in the |es| neighborhood of [t — 7,¢]. The first and third
inequalities follow from (3.12) and (3.10), respectively. The final inequality follows
from (5.46), but with z¢ in place of z'.

It follows that the first term on the right hand side of the inequality in
(5.127) converges to zero as € — 0. For the second term on the right hand side of
the inequality in (5.127), by (5.78) and the fact that [t —7,¢] C [p—7—n0, p+m0] C
lqf +7,p+ 0], v is continuous on [t — 7, ] and so by Proposition 5.1, ||v; — v¢||[—r0]
converges to zero as € — 0. Then by (5.126)—(5.127) and because the convergence
holds for each (t,¢) € U and (s,9) € R x Ci_rq), F(t,)(5,%) = Os,p) (1, @) for
all (t,) € U and (s,v) € R X Cl_r).

We have shown that (¢,¢) — F(t,¢) is a continuous function from ¢ into
L(R x Cp—r0],Cl-r0) and that O ) X(t, ) exists and is equal to F(t,p)(s,1) at
each (t,¢) € U and (s,v) € RxCj_.¢. Then by Proposition F.1, 3 is continuously
Fréchet differentiable on ¢/ and DY = F'. O
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Define the function Z : R, x C[tT,o] — R by
Z(t, ) = 2(), (5.128)

where if x is the unique solution of DDER with initial condition ¢, then z is defined
as in (2.2). Recall 779 > 0 and gy > 0 as introduced in Lemma 5.7. Define the
neighborhood V of (¢, ) in the Banach space R x Cj_; ¢ by

V= {(t,gp) eR, x C[tﬂo] Dt = 4] < mo and || — z5[[=rg < 50}.

Note that by the definition of 7y > 0 and gy > 0 in Lemma 5.7, V C R, x C[tﬂo].

Lemma 5.17. The function Z is continuously Fréchet differentiable on V and for

each (t,p) €V, the derivative DZ(t,p) € LR x Ci_,q,R) at (¢, p) is given by
DZ(t,¢)(s,7) = sz(t) +w(t), for all (s,) € R x Ci_r . (5.129)

Here z € Cppo0) 15 defined by 2(t) = h(x(t — 7)) for allt > 0, and if v is the unique
solution of LVE relative x with initial condition v, then w is defined by

t
w(t) = v(0) +/ W (2(s — 7))o(s — 7)ds, t > 0. (5.130)
0
Proof. For each (¢, p) € V, define the operator G : R x C_.o = R by
G(t,0)(s,9) = s&(t) +w(t), (s,v) € Rx Ci_rq. (5.131)

We first show that for each (¢, ) € V, G(t, ¢) is a bounded linear operator
from R x C_, o into R, ie., G(t,p) € LR x Ci—r0,R). Fix (t,) € V. To show
that G(t, ) is linear, let a,b € R, s,s" € R and ¢,9" € Cj_, . Let z denote the
unique solution of DDER with initial condition ¢ and define z as in (2.2). Let
v and v’ denote the unique solutions of LVE relative to 2 with respective initial
conditions ¢ and . Define w as in (5.72) and define w' as in (5.72), but with
vT and w' in place of v and w, respectively. Let v* denote the unique solution of
LVE relative to x with initial condition ai) + by" and define w* as in (5.72), but
with v* and w* in place of v and w, respectively. By Lemma 5.10 and the fact that
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U+ o — 7 < £F, we have, for t € [0, ¢1 + o),
wh(t) = v*(0) + /Ot B (z(s — 7))vt(s — 7)ds
= av(0) + bv'(0) + /Ot R (z(s —7))(av(s — ) + bv'(s — 7))ds
= aw(t) + bw'(t),
from which we obtain that G(t, ¢) is linear:
G(t, @) (as + bs',ap + byt) = (as + bs")2(t) + (aw(t) + bw'(t))

= a(s2(t) +w(t)) +b(sT2(t) +w'(t))
= aG(t, ©)(s,9) + bG(t, ) (s", 1)

To show that G(t, ) is a bounded linear operator, consider (s,v) € R x Ci_,
such that |s| V [|[¢]|=r0) = 1. Then by (5.72), (3.12) and (C.8) with v’ =0,

w(t)] < [v(0)] +/0 |7 (2(s — 7))l[v(s — 7)lds
< 1A+ Knl[ollir.1-490) (€1 + 10)

< 14 2K}, exp(2K5,(61 +10)) (61 + no).

It follows that
|G(t,0)(s5,0)] < |2@#)] + [w(t)] < H + 1+ 2K, exp(2K5 (€1 + o)) (1 + 10)-

Since the bound was obtained only subject to the constraint [s| V ||¢||—r0 = 1,
G(t, ) is a bounded linear operator.

We now show that the function (¢, ¢) — G(¢, ¢) is continuous as a mapping
from V into L(R,C_+,0,R). Fix (¢,¢) € V and 6 > 0. By (5.46) and the continuity
of k', we can choose a possibly smaller ef > 0 such that if ||¢ — ¢'||_,,q < &*, then

1)
su "(z(u)) — b (zf (u .
e B e e AR DR )

By choosing a possibly smaller ¥ > 0, we have that ¢t satisfies
1
et < .
Kn(H + 2exp(2K, (41 4+ no))

(5.132)
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Suppose (t',¢") € V satisfies [t — tT| V ||¢ — ¢T||_r,g < €. Let z and z' denote
the unique solutions of DDER with respective initial conditions ¢ and ¢!. Define
z as in (2.2) and define 2 as in (2.2), but with 2" and 2" in place of z and z,
respectively. Consider (s,v) € R x C_- such that |s| V ||¢||—r0 = 1. Let v* be
the unique solution of LVE relative to x with initial condition ¢ and let v™' be
the unique solution of LVE relative to x! with initial condition 1. Define w® as
in (5.72), but with v* and w” in place of v and w, respectively and define w* as
in (5.72), but with v*" and w®' in place of v and w, respectively. By the triangle

inequality,

|G<t7 ()0)(87 W - G<tT7 SOT)<S7 Yﬂ)\ < |G(t7 90)<87 1/}) - G(tTv @)(57 2ﬂ)| (5133>
+ ’G<ﬂ7 90)<3> w) o G(Ha @T)(Sa w)’
For the first term on the right hand side of (5.133), we have
|G (t,9)(s5,9) = Gt 9)(s,0)] < [2(8) = 2(tN)]| + |w(t) — w(th)] (5.134)
< [h(x(t = 7)) = ha(t" - 7))

/tt b (x(u—7))v(u —7)du

+

+

< Kple(t—71) — x(tJr —7)|
+ Kh”””[—r,mﬂﬂt - tT|

< Kn(H +2exp(2K, (6 + o))t — t']

20
5

The third inequality follows from (3.12). The fourth inequality follows from (3.10)
and (C.8) with v' = 0. The final inequality follows from our bound on &* in (5.132).
For the second term on the right hand side of (5.133), we have

(G, 0)(s,0) = G, 1) (s, 9)] < [2(81) = (D) + |w™ (¢)) — ™ ()], (5.135)
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For the first term on the right hand side of (5.135), we have

2(t) = 21D < [h(a(th = 7)) = h(z"(t" - 7))

< Kyllz — xT||

(5.136)

[z neet)

< 2K, exp(2Ku (01 +m0))le — ¢l -ra)

=2

I

The second inequality follows from (3.12). The third inequality follows because of

(5.46) and because, by Lemma 5.7, £%, (" € (¢, —no, {1 4+ 1). For the second term
on the right hand side of (5.135), we have, for r € [0, 1],

r—

wrr) o) <

-7

() () — @ ))o! (w)d

(5.137)

< /OTT |1 (@(w)] - [o" () = v"" (u)|du

[ ) - K)o ()

-7

<K [ () - w (u)du
0

0 e [ G0) — WG )l

—T

<K [ " Jw(u) — ' ()| du

+ 2exp(2Kulq) (€1 + no)

sup

[ ((u)) = I (2" (u))].

ue[—T,tt—7]

The second inequality follows because v*(u) = v* (u) = h(u) for all u € [—7,0].

The third inequality follows from (3.12) and the fact that, by (5.72) and (5.78),

w”(u) = v*(u) for all u € [0, ), w* (u)

— v*" (u) for all u € [0,£¢"), and by Lemma

5.7, 02,05 & (0,0, + 1y — 7). The fourth inequality follows from (C.8), but with

t
Um

in place of v and with vf = 0. Applying Gronwall’s inequality and our choice
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of et yields

w® (1) — w (t)] < 2exp(3Ku (L1 +n0)) (61 + o) (5.138)
sup  |B/(w(s)) — B (27(s))]

s€ [_T7£1 _T‘H?O]

0
1

It then follows from (5.133)—(5.138) that if |t — ¢T| V |l — ¢'||-rq < &*, then
|G(t,0)(s,9) — G(tT,¢")(s,%)| < 6. Since this bound was obtained only subject
to the restriction that |s| V ||¢||-~q = 1, we have

IG(t, ) — Gt ") <6,

where |[|-|| denotes the operator norm on L(R x Ci_,q,R). It follows that the
function (¢, p) — G(t, ) is continuous at each (¢, ) € V and therefore continuous
on V.

We now show that for each (¢, ) € V and (s,v¢) € R x Ci_, ),

. L(t+es,po+e) — Z(t,
G(t,0)(s5,90) = O Z(t, @) = }Tg% ( ® - ) ( 90)'

(5.139)

Fix (t,o) € V and (s,9) € R x Ci_,(. Let  be the unique solution of DDER
with initial condition ¢, z be defined as in (2.2), v be the unique solution of LVE
relative to z, and w be defined as in (5.72). For ¢ > 0 sufficiently small that
(t +es,0 +ep) € V, let 2° denote the unique solution of DDER with initial
condition ¢ + €1 and define z° as in (2.2), but with z° and z° in place of x and z,

respectively, and define w® = e71(2° - z2) € C—70- Then by the triangle inequality,

Z(t+es,p+e)—Z(t,p)

| :

25(t+es) — 2°
€

— sz(t) — w(t)' (5.140)

- si(0) ~ ult)

<e MeE(t+es) — 25 () —esi(t)| + |wo(t) — w(t)).
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For the first term on the right hand side of the inequality in (5.140), we have

|25(t +es) — 2°(t) —esz(t)| =

/OES h(z®(t+u—7)) — h(z(t — 7))du

<K, /0 (4w — 7) — 2t — 7)|du

< K, /OES |25 (t+u—7) — 2°(t — 7)|du
+ Kpeslz®(t — 1) — x(t — 7)|

< K;H /OES udu

+ Knes||v® — 2|70 90

< —KpHe*s* + 2K s exp(2K, (41 + no)).

N

The first inequality follows from (3.12). The third inequality follows from (3.10).
The final inequality follows from (5.46) with z¢ in place of z'. It follows that
the first term on the right hand side of the inequality in (5.140) converges to
zero as € — 0. Then by Proposition 5.1, second term on the right hand side of the
inequality in (5.140) converges to zero as ¢ — 0. Hence G(t, ¢)(s,¢) = 050 Z (L, @)
for all (t,¢) € V and (s,9) € R x C_+ .

We have shown that (¢,¢) — Z(t,¢) is a continuous function from V into
L(R x C—70,R) and that s 4)Z(t, ) exists and is equal to G(t,¢)(s,1)) at each
(t,¢) € V and (s,9) € R x C_~q. Then by Proposition F.1, Z is continuously
Fréchet differentiable on V and DZ = G. [

Lemma 5.18. There exists a neighborhood W of xf in C[tT and a continuously

0]
Fréchet differentiable function A : W — R such that A(xj) =0, |[A(p)| < ny and

Z(l1 4+ A(p), ) =0 for all p € W.
It follows that A(p) = €7 — £y, where (5 is as in Lemma 5.7. Furthermore, at xj,
DA(z}) is given by

w(ly)
2(y)

where w is given by (5.72) with x replaced by x* and v is the solution of LVE

DA(zg) = —

for all € C_r, (5.141)

relative to x* with initial condition 1.
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Proof. By Lemma 5.17, Z is continuously Fréchet differentiable on V, which is
an open neighborhood of (¢;,xj) in the Banach space R x C_;q. We also have
that Z(6y,x5) = 2*(¢1) = 0 and D1 Z (41, x8) = 2*(¢1) # 0, where D1 Z(4y, xf) =
(DZ(ty,25))(1,0). By Proposition F.2, there exists a neighborhood W of zfj and a
unique continuous function A* : W — R such that Af(z3) = 41, (A%(¢),¢) € V and
Z(A%(p), @) = 0 for all ¢ € W. Moreover, A’ is continuously Fréchet differentiable

with derivative at x(, given by

DA (wg)tp = —[D1Z (b, 25)] ™ Do Z (0, 5)t) = —

If we define A : W — R by A(p) = Af(p) — ¢, for each ¢ € W, A is continuously
Fréchet differentiable, A(zf) = 0 and (41 + A(p), ¢) € V, so by the definition of V,
|A(p)] < no. To see that A(p) = £, note that if ¢ € W, then [j¢ — |- < €0,
so by Lemma 5.7 there exists a unique ¢ € ({1 — 19, ¢1 + 1) such that z(¢7) = 0.
Since |A(p)| < no and z(¢; + A(p)) = Z( + A(p)) = 0, it follows that A(y) =
05 — 1. O

We can now define an approximate Poincaré map I' : W — C[t 0] by

I(p) = S(p+ Ap), ). (5.142)

Since ¥ is continuously Fréchet differentiable on U, A is continuously Fréchet
differentiable on W and (A(p), ) € U for all p € W, it follows that I' is also
continuously Fréchet differentiable on WW. Note that zj is a fixed point of I' and

DI (x5) = D1X(p, x5) DA(x5) + D2 X(p, xp). (5.143)

By Lemma 5.16 and (5.141),

l
DT (z5)y = —:i((gll)) Ty 4 vp, for all ¢ € Ci_.q). (5.144)

Here v denotes the unique solution of LVE relative to «* with initial condition

and w is defined as in (5.72), but with z* in place of x.
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5.6 Proof of Stability

In this section we prove that if the delay 7 is sufficiently large, then any
SOPS, z*, of DDER with delay 7 is uniformly exponentially asymptotically stable.
In Section 5.7, we prove that such a SOPS (with 7 fixed but sufficiently large) z*

is unique (up to time translation), which will complete the proof of Theorem 3.2.

Lemma 5.19. Let 6 > 0 and {7 : 7 > 19} denote the family of SOPS defined
in Section 5.2. Then there exists T° > 73 such that if T > 70 and x* denotes the

SOPS z7, then ||DI'(z§)|] < 9.

Proof. Fix § > 0. Let 2* be the associated SOPS" defined by (4.11). By Theorem
5.1, Corollary 5.1(ii) and (5.27), there exist constants d > 0 and 7° > 73 such that
if the fixed delay satisfies 7 > 79, then —1 < ¢, — 1 < lh—1<q<io<ii+2,
i*(t) > rd for all t € [¢ — 1,6, — 1], and h(rd) < —a/2. Then by (4.12),
—T<q—T<UO—-T<TG<q@<q+27r,2*(t) > L+7dforallt e [q—71,0—T]
and h(L + 7d) < —a/2. By choosing a possibly larger 7°, we have that 70 satisfies

3 <2thL2<1 + Kn)(2MaH + a)(25 + a>) 51 (5.145)

a36d
Suppose that 1 € C_ ) satisfies [|¢[/[_rg = 1. By (5.144), we have

w(ly)
2*(4y)

where @* is defined via (5.81) and @j € C_, since x* is positive on [—7,0], v

DU (x5)y = — Ty + Up, (5.146)

denotes the unique solution of LVE relative to x* with initial condition ¢ and w
is defined as in (5.72) with x* in place of x there.
Let § € D|_; ) denote the unique solution of LVE relative to * with initial

condition &, = —;((2)) 15+ € C_r 0. Note that &, satisfies

[w(f)]
|2*(£1)]

Here we have used that z(¢; —7) > L+ 7d and so 2(¢1) = h(z(l; — 7)) < —a/2;

1€oll—r0) < 145 =0 + [ ll—1.07 < 207" My, H + 1. (5.147)

we have used that & is bounded by H = ||h]/p,); and we have used (5.79) and
(5.72) to deduce that w(t) = v(t) for all ¢ € [0,¢;) and so by the continuity of w,
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|w(y)| = limgy, |w(t)] = limpy, |v(t)| < Mp. By Lemma 5.11, 2* is a solution of

LVE relative to z*. By Lemma 5.10,with a =1, b = — wity)

=) and £* in place of vT,

we have
() =— l,U(gl) T (t) +o(t), t € [-1,p] \ {1} (5.148)
()
Since ¢ & [p — 7, p], by (5.146) and the periodicity of x*,
0y
& = w((gl)) g +vp = DI'(x5)1),

By (5.79) and (5.148), for t € [0, (1),
60 = €0 + [ Wia(s - Ptlo =
= 61 (x (s — 7))z (s — T)dS)

+/ B (z*(s —7))v(s — 7)ds

= — w(t) z(t—T w
— z‘*(él)h< (t—1))+w(t).

Here we have used that h is continuously differentiable, x is continuously dif-

ferentiable on [0, ¢;) with derivative equal to &* there, #*(0) = h(z*(—7)), the

fundamental theorem of calculus, the chain rule and (5.72). Taking the limit as

t 1 {q, we have

. _ w(gl) ; _
grgllf(t) T h(z* (¢ — 7)) + w(ty) = 0, (5.149)

)
where we have used that 2*(¢;) = h(z*(¢; — 7)). By (5.79), for ¢1 < s <t </,
£l = €05) = [ W (= 7)ECu T
t
Then taking the limit as ¢ 1 ¢; and using (5.149), we have, for s € [q1, 1),

4y
£(s)] < / W (& (u — 7)€ (u — 7)|du (5.150)
SOp (2w — ) (u — T
<H€H[—T,m/ P — ) lu =1,

N |2 (u = 7)|

< M6, — Q1|m

[1€0l (-0
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The final inequality follows from Lemma 5.13, Assumption 3.4 and the fact that
x*(u) > L+ 7d for all u € [¢y — 7,01 — 7).

By (5.79), £(t) = 0 for all t € (¢1,q; + 7] so by (5.149), £ is continuous at
1. It then follows from (5.150) that

M|ty — q1|m

|’€H[Q1,f11+ﬂ < —d HfOH[—T,O]- (5.151)

By (5.79) and (3.12), for t € [q; + 7, ¢1 + 7],

l1+T1
€(1)] < / |1 (2% (s = 7))&(s — 7)|ds < Knlly — qullI€lfgr a4,

1+7

Fort e [ty +7,q1+27],£(t —7) =0, so by (5.79), £(t) = £(¢1 + 7) and hence

Hf”[qﬁ—ﬂql-&-%} < Kth - QI|||§||[q17q1+T]- (5'152)

By our choice of 7° at the beginning of the proof, ¢ < ¢ + 27. Then by (5.79)
and (542)7(543)7 for ¢ S [QI + 2T7 p] = [Q1 + 27—7 q2 + T]v
P
€0 <l 20|+ [ (s = el = lds

qQq+27

< (T+ Kh)lge — a1 — 7€ gy +7g1 427 -

Then by (5.145), (5.147), (5.151)—(5.152) and (5.42)—(5.43),

2
16l = (QthL (14 Khjéi];;;]{ + a)(28 + a)) <

(5.153)

Since (5.153) holds for all 1 € C|_ ¢ satisfying ||v||[—~0] = 1, the conclusion of the

lemma follows. [

Corollary 5.3. Suppose that {z™ : 7 > 70} is a family of SOPS such that for each
T > 1, 7 is a SOPS of DDER with delay 7 and qo = —7. Then for each § > 0,

there exists 0 > 7y such that if T > 7°, then

(i) the semiflow X, defined in (5.113) but with x™ in place of x*, is continuously
Fréchet differentiable in a neighborhood of (p7, ), where p™ is the period of

T.
'1.7
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(i) the function Z, defined in (5.128) but with x™ in place of x*, is continuously
Fréchet differentiable in a neighborhood of (¢7,x]), where (] is defined as in

Lemma 5.5, but with ™ and ¢] in place of x* and (y;

(#i) the functions A and T' are well defined in a neighborhood W of x as in
Lemma 5.18 and (5.142), respectively, but with ™ in place of x*, and A and

I’ are continuously Fréchet differentiable in WW;
(iv) the Fréchet derivative DI' satisfies | DI'(x])| < 6.

Proof. This is an immediate consequence of Lemmas 5.16-5.19 and the fact that
the family {z" : 7 > 70} of SOPS we chose in Section 5.2 was only subject to the
constraint that for each 7 > 795, ™ denoted a SOPS of DDER with delay 7 and
such that go = —7. O

Theorem 5.2. For each 6 > 0 there exists 7° > 1y such that if T > 7° and z* is a

SOPS of DDER with delay T such that gy = —7, then

(i) the semiflow 3, defined in (5.113), is continuously Fréchet differentiable in
a neighborhood of (p, xf);

(i) the function Z, defined in (5.128), is continuously Fréchet differentiable in a
neighborhood of ({1, xy);

(iii) the functions A and T are well defined in a neighborhood W of z§ as in
Lemma 5.18 and (5.142), respectively, and A and T' are continuously Fréchet
differentiable in WV,

(iv) the Fréchet derivative DT satisfies ||DI'(z§)]| < 9.

Proof. We give a proof by contradiction. Fix § > 0. Suppose that such a 7 > 7,
does not exist. Then there exists a sequence of delays {7,}22, such that 7,, > 7
for all n and 7, — o0 as n — oo, and an associated sequence {z"}>°, of SOPS
where for each n, 2" is a SOPS of DDER with delay 7, and ¢y = —7,,, and for
each n at least one of (i)—(iv) does not hold with 2™ in place of z*. To obtain a

contradiction, embed the sequence {z"}>°, into a family of SOPS {27 : 7 > 7}
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such that (a) for each 7 > 79, 27 denotes a SOPS of DDER with delay 7 and such
that o = —7; and (b) for each n € N, ™ = 2. Then by Corollary 5.3 there
exists 70 > 7y such that (i)-(iv) hold for all 7 > 7°. Then there exists n € N
such that 7,, > 7° and so (i)—(iv) hold with 2" in place of z*. This contradicts our

assumption, proving the theorem. O

Theorem 5.3. Fiz &y € (0,1) and 7 > 7%. Let 2* be a SOPS of DDER with delay
T such that qo = —7. Then there ewist constants € > 0 and K, > 0 such that given

any

N < “0g50‘

0< (5.154)

there exists K, > 0 such that if p € C[tT o satisfies | — x5 |[[-ro) < € for some
o € [0,p), then there exists p € (—p,p) satisfying

ol < K, llp — 23l (5.155)
and such that

¢ = 27 oy pipllier) < Krye o — 25|l i—r ) for all t >0, (5.156)
where x is the unique solution of DDER with delay T and initial condition .

Remark 5.2. Note that since o is non-negative and |p| < p, it follows that ¢ + o +
p+p > 0forallt>0andsory,,,,,in (5.156) is well defined for all ¢ > 0. When
o+p>0ai,,,is well-defined for all £ > 0, so by the periodicity of z*, we can

* 3 *
replace zy, . ., with zy, .

Proof. In this proof, all solutions of DDER are with the fixed delay 7 > 7%. Note
that by (3.10), for any solution x of DDER, for all 7 < s <t < o0,

|ze — 26lll=rg) = sup |z(t+u) —x(s +u)| < H[t — 5| (5.157)
u€[—7,0]
For the SOPS z*, by periodicity and (5.157), for all 0 < s < t < o0,

27 = il = 271, = oiplli-ro) < HIt = 5. (5.158)

We break the proof into three parts:
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(a) First, we show that for each v satisfying (5.154), there exist positive constants
e1(), I?p(v) and K () such that if ¢ € C[tﬂo} satisfies || — 2§l —r0 < €1(7),
then there exists p € (—p,p) such that (5.155) holds with K,(7) in place of
K, and (5.156) holds with o = 0 and K;(7) in place of K.

(b) Second, we show there exist positive constants e, and K, such that for each
7 satisfying (5.154), there exists K5(y) > 0 such that if ¢ € C[tT,o] satisfies
lo — @il (=70 < €2, then there exists p € (—p,p) such that (5.155) holds with
K, in place of K, and (5.156) holds with ¢ = 0 and Kj3(7) in place of K.,.

(c) Lastly, we prove the statement of the theorem.

Proof of part (a): suppose v > 0 satisfies (5.154). Let § = e 7. Then
d € (do,1). By parts (iii) and (iv) of Theorem 5.2, I' is continuously Fréchet
differentiable in a neighborhood W of zj and || DI'(zf)|| < dp < 0 < 1, there exists
a possibly smaller neighborhood W? of x such that

IT(¢) = @5ll-ro) < 6l = @5lli—rg) for all o € WP, (5.159)

By part (iii) of Theorem 5.2, A is also continuously Fréchet differentiable in W
and A(x§) = 0, so we can choose €1(7), Ka(y) > 0 such that

W) = {9 € ¢ g+ lle = aillra < 21(1) } €W
and
A@)] < Ka(llp = willi-ro) for all o € W1 (7). (5.160)

By choosing a possibly smaller €1(y) > 0 such that £, (7)K2(y) < 7, (5.160) ensures
that
|A(p)] < 7 for all p € W(e1(7)). (5.161)

Given ¢ € W(e1(7)), since § < 1 we can iterate (5.159) to obtain that I'*(p) €
W (e1(7)) for each k € N and

IT*(0) = a5llirar < 8l = 25l j—rio) = €0 = 25l ir01- (5.162)
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For each k € N, define

Ap, k) = '_ A (Fj(go)) , (5.163)
tk = kp+ Ay, k), (5.164)

where I'’(p) = ¢. Let x denote the unique solution of DDER with initial condition
¢. We will show by induction that T'*(p) = z;, for all k € N. By the definition of
[ in (5.142), T'(¢) = x,. Now suppose that T'*(¢) = x;, for some k > 1. Then

M) =T (M(9) = X (p + AT (), 21,)
=% (p+ A*(9)), B(tx, ¢))
=3tk +p+ AT ), »)

= xtkH.

where the third equality uses the semiflow property of ¥. Therefore, by the induc-
tion principle, I'*(¢) = z;, for each k € N. Define t; = 0 and note that by (5.161),
IA(p)| < 7 < &, 50t <ty for each & € Ny. By (5.160) and (5.162), for each
k € N we have

A (T(p)) | < Ka(y)e ™llp — aplli-r)- (5.165)
Define
p=—lim A(p, k), (5.166)
k—o00

where the convergence follows from (5.163) and (5.165). By (5.163) and (5.165)—
(5.166), we have for each k € N,

Ak < S IAT ()] < By lo — 2illra (5.167)
=0
ol < SIAT )] < Kol — oo (5.168)
=0
and
o+ Ao )| < S IAD Q)] < Bo)e e — illng, (5169)

=k
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where

o 1 —e*’YP'

Ry() = Kal) Yo e = K20 (5.170)

J
By choosing a possibly smaller £1(y) > 0 such that 51(7)}?,3(7) < p, it follows from
(5.178) that p € (—p, p).
Now let I}, = [ty, tg41] for each k € Ny. By (5.164), (5.167) and the fact that
51(7)%p(7) < p, b, = 00 as n — 00, 50 | Jpe, Ik covers [0,00). By (5.163)—(5.165)
and (5.167), we have that for ¢ € W(e1(7)) and k € Ny,

tirn —te = p+ ATH(9) < p+ K (7)er1 (7). (5.171)

By (5.46), for K3(v) = 2exp[2K(p + K,(7)e1(7))], we have

lae — aliro) < Ks()lle — gl i-rg (5.172)

for all o € W(e1(y)) and 0 < t < p+ K,(v)e1(7). It follows from (5.162), (5.171)~
(5.172), the fact that T*(p) = z,, and the semiflow property of X that for ¢ € I},

e — 27y, Nimro) = 150t = tr, 20,) — Bt — tr, 25) || (=r.0)
< K3(7)IT*(¢) — bl (=0
< K(v)e ™|l — x| 1—r0)-

Also, by (5.158), (5.164) and (5.169), for all ¢ € I,

Hx:—tk - $I+p+p||[—f70] = ||x:—tk+(k+1)p - I:—&-p—i—p”[_ﬂo]

< Hlp — kp + t;]
< H|p+ Ap, k)]
< HE,(7)e ™|l — x4l -rg).

Combining the previous two inequalities yields
lz: — 231yl om0 < Ky(v)e ™|l — x|||_r0 for all t € Iy, (5.173)

where

Ky(7) = Ka(y) + HE (7). (5.174)
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Further, by (5.164) and (5.167), we have
tert = kp = p+ Al b +1) < p+ Ky (1)ea (7). (5.175)
Therefore, by (5.173) and (5.175), for all t € I,
e = 274 pplliroy < Ka(y)e 0179 o — il (5.176)
< Ki(me Ml = xglli-ra,

where K;(v) = K4(7)67(p+l~(ﬂ(7)51(7)). From (5.168) and (5.176), we see that part
(a) holds.
We now prove part (b): fix ¥ > 0 satisfying (5.154) and set

g2 = €1(7), Fp = Kp(’_Y)-

By part (a), if ¢ € C[tT o satisfies || — a{[-r0) < €2 and z denotes the unique
solution of DDER with initial condition ¢, then for ¢ > 0,

o0 = Tapaplino) < Ka(P)e e — a8l e (5177
where p € (—p, p) satisfies
ol < Kyl — gl i=ro. (5.178)

Now take any v > 0 satisfying (5.154) and set
1 Ki(¥
T(v) = max {0, ~ log ( 1(7)‘52) } . (5.179)
v e1(y)
By (5.177) and (5.179), if ¢ € C[tﬂo] satisfies ||¢ — xj||[--0) < €2 and x denotes the
unique solution of DDER with initial condition ¢, then for ¢t > T'(v),

lwe = 274 pllro) < Ka(We M Ml = 2illira) < 1(7). (5.180)
Let
ty =n,p — p, (5.181)
where n, = min{k € N : kp > T(v) + 2K ,}. Note that by (5.179) and the fact
that p € (—p, p),

— 1 Ki(7)e —
0<t, <T()+eK,+p+|p < %log ( ;%)) 2) +eK,+2p.  (5.182)
1
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Then, by (5.178), we have that t., > n.,p — 2K, > T(7). Therefore, by (5.180)-
(5.181) and the periodicity of z*, we have

e, — 2oll-r0 = 20, — 2% 1 pll =m0 < €1(7)- (5.183)
Define z7 € CEQT o) DY 27(t) = x(ty + ) for all £ > —7, so that 27 is a solution of
DDER with initial condition x5 = x, . By (5.183), ||z — 2§|/[-r0 < €1(7), so by
part (a), there exists p € (—p, p) such that for all ¢ > 0,

27 = 2 plli—ro < Ka()e ™ l2g — 25l —ro) (5.184)

From the definition of 27 and (5.180)-(5.184), for ¢ > 0,

||95t+t7 - $z+p+ﬁ||[—f70] = |l — $:+p+ﬁ||[—ﬂ°] (5.185)
< Ki(y)e " lag — glli-r)
< Ki(y)e oy, — Ty spiplli=r0]
< Ki(y)e K1 (9)e " o — apllir0-

By (5.180)—(5.183), (5.185) and the fact that ||¢ — |-~ < €2, for t > 0,

2f — 23y pislliro) = 17840, 4p — Tepasl (5.186)
< erth.erp = Zoyty o) + | Tere, — 2 pisll—ro)
< Ki(e e — a5l i-ro
+ Ki(V K (Y)e e o — 2l -r0)

— 0 ast — oo.

It follows that x*(t) = «*(t + p+ p) for all t > 0. If not, then there exists ¢y > 0
such that |z*(to) — z*(to + p + p)| > 0. By the periodicity of x*, it follows that
|z*(to + np) — 2*(to + (n + 1)p+ p)| > 0 for all n > 1, which contradicts (5.186).
Hence, 2*(t) = 2*(t + p+ p) for all t > 0, so x* is periodic with period p + p.
Since p is the minimal period of x*, p is an integer multiple of p. Then using that

1p| < p, p=0. By (5.185), with p = 0 and ¢ replaced by t —t.,, we have, for t > ¢,,
0 = 2y v € Ka(DELDe 0o — st (5187
< Ki(ME(7)e" " Vel — @il -ro

< Kg(v)e e — zglli-r0»
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where Kg(y) = Ki(7) K1 (7). For 0 <t < ¢, by (5.177) and (5.182), we

have

e = 2y llro) < Ki (e o = illi-n (5.188)
< Ky(7)e™e g — willi-ra

Ki(7)e2

v/
e Mo — ki,
202) iy - a3l

< K1 () exp(y(e2K, + 2p)) <
< Kr()e Ml — aplli-ra,

— _ /7
where K7(v) = Ki1(7) exp(y(e2K, + 2p)) (%)7 ", Combining (5.187)(5.188)

and letting Kj5(v) = max(K4(y), K7(7)) we have, for ¢ > 0,

2~ 2 pipllicnn) < Ks(e e = 5llra) (5.180)

It follows from (5.178) and (5.189) that part (b) holds.
We now complete the proof. Suppose o € [0,p) and ¢ € C[tf,o]' Let x
denote the unique solution of DDER with initial condition ¢. By (5.46), with

x*(0 + ) in place of 7(+), for ¢ € [0,p) and 0 < t < p,
a0 sy lro) < 205p(2Kip) [ — 33 | ra (5.190)

Choose ¢ > 0 satisfying
e < °2
~ 2exp(2Knp)
Fix v > 0 satisfying (5.154) and suppose ¢ € C[+_T o satisfies [|¢ — z7 |70 < € for

some o € [0,p). By (5.190), for 0 <t < p — o,

(5.191)

|z — 231 ol -r0) < 2exp(2Knp)|l¢ — 27 [[[—r0 (5.192)
< 2exp(2Kpp)ePe " o — 2} || (-0

By (5.190)—(5.191), we have
2o — bl < 2epCEDg — 5l rg S22 (5.198)

Then by part (b) and (5.193), there exists K5(y) > 0 and p € (—p,p) such that
fort > 0,

2esmo = T pipllizra) < Ks(Me ™ [zpmg — 23l (5.104)

< 2K5(7) exp(2Knp)e "l — 25 ll—rg
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and

|P| < F,;”ZEP_U - xé”[—T,O} < QF/) eXp(Qth)H(,O - x;”[—T,O]- (5195)

Set K, = 2K , exp(2K;p) so that (5.155) holds. By (5.194) and the periodicity of
z* fort > p—o,

o0 = 2%y pll o) < 2K5(1) exp@Eap)e o — a3l . (5.196)

By (5.192), (5.158) and (5.195), we have for 0 <t < p — o that

120 = 2 prosplli-ro) < 170 = 2o =m0 + 12 ps0 — Tiiprotolli-ro) (5.197)
< 2exp(2Kpp)ePe "o — zk || 1=

+ QHFP exp(2Kp,p)ee || — 25| (=70

Upon setting K., = 2 exp(2K;,p) max(Ks(7),e?(1 + HK,)), we see from (5.196)—
(5.197) that (5.156) holds, which completes the proof. ]

5.7 Proof of Uniqueness

In this section we show that if the delay 7 is sufficiently large, then any
SOPS z* of DDER with delay 7, is unique up to time translation, which will allow
us to complete the proof of Theorem 3.2. The main tool which we use to prove the
uniqueness of a SOPS is the fized point inder. For an in-depth discussion of the
fixed point index and its properties, see [20]. We briefly summarize some important
definitions and properties regarding the special case of the fixed point index used
here. Suppose that X is a Banach space, K is a closed, convex subset of X and U
is a relatively open subset of K. Assume that f : K — K is a continuous, compact
map and S = {z € U : f(zr) = z} is compact (possibly empty). Then there is
defined an integer tx(f, U) called the fixed point index of f on U. If tx(f,U) # 0,
then f has a fixed point in U. If U = K, then since f is continuous and compact
and K is closed, S = {z € K : f(z) = x} is a compact set and so tx(f, K) is well

defined. The following proposition is a special case of Corollary 3 in [17].

Proposition 5.2. Suppose that K is bounded. Then vx(f, K) = 1.
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The following property is known as the additivity property of the fixed

point index.

Proposition 5.3. Suppose that Uy and Uy are disjoint subsets of U that are rela-
tively open in K and such that S C Uy U Us, then tx(f,U;) is defined for j = 1,2

and

[’K(faU) :LK(f7U1)+LK(f>U2)'

For the following, recall the definition of an ejective fixed point from Defi-

nition 4.1.

Proposition 5.4. Suppose K is bounded and infinite-dimensional. If xo € K is
an ejective fized point of f and U is a relatively open neighborhood of x¢ in K such

that the closure of U does not contain another fized point of f, then vx(f,U) = 0.
Proof. See Corollary 1.1 in [18]. O

Definition 5.2. Suppose xo € K is a fixed point of f. Then zq is an attractive
fized point if there exists a relatively open neighborhood U of xy in K such that
if V' is any relatively open neighborhood of xy in K, there exists ng = no(V') € N
such that f™(x) € V for all n > ng and x € U.

Proposition 5.5. Suppose that xq € K is an attractive fized point of f. If V is a
relatively open neighborhood of x¢ in K such that xq is the only fixed point of f in
V, then v (f,V) = 1.

Proof. See Theorem 3.5 in [20] O

For the following, recall the definitions of K and A : K — K from (4.15)—
(4.17) and (4.26), respectively.

Lemma 5.20. Fiz §, € (0,1) and let 7 > 7% be as in Theorem 5.2. Suppose
that * is a SOPS of DDER with delay T such that qo = —7. Let * denote
the associated solution of DDER™ defined via (4.11). Then &% € K and & is an
attractive fized point of A.
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Proof. By Lemma 5.1 and the periodicity of 2*, 25 € K and A(2}) = 4. To
show that 2 is an attractive fixed point of A, we need to find an €* > 0 such
that for each 0* > 0, there exists ng = no(0*) € N such that if 3 € K satisfies
| — 25l [—1,00 < €%, then ||A™(@) — &§|[—r0 < 0* for all n > ny.

Let €, v, K, and K, be positive constants as in Theorem 5.3. Recall that if
Y e IE, then by Lemma 4.4, the unique solution  of DDER"™ with initial condition
¢ is slowly oscillating, i.e., there are 0 < ¢¥ < ¢% < --- (called the zeros of ) such

that

(i) #(¢%) =0forn=1,2,...,
i) ¢ >0and ¢¢,, — ¢ >1forn=1,2,...,
1 n+1 n

(iii) #(¢) > 0 for t € [0, %),
2(t) <0fort € (gy, ;,45) forn=1,2,...,
&(t) > 0fort € (¢5,,45,.,) forn=1,2,....
We will show by induction that A™(p) = T4 4 for all n € N. By definition
A(p) = 24241 Suppose that A"(p) = & 4, for some n € N. Define
¢ =inf{t > 0:2(G, +1+t) =0}
{2 G + 10 a(0) = 0} — g, — 1

AT AT
= Qo1 — Qon — 1,

@y =inf{t > ¢ : 2(¢5, +1+1t) = 0}
=inf{t > ¢5,., : 2(t) =0} — G5, —
= Qy(ner) = Gan — L.
Then ¢} and ¢5 denote the first and second zeros of the unique solution of DDER

with initial condition Z; ., € K. Then by the definition of A, the induction
hypothesis and the semiflow property of ¥,

AA(P)) = Mg 41)
(G 4 Ly 1) = 2@, + 1+ +1,9)

A ()

I
=

eyt
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Therefore, by the induction principle, A"(¢) = Tge 41 for all n € N If z is the
solution of DDER associated with & via (4.12) and 0 < ¢f < ¢§ < --- are given by
¢© = 7G% for each n € N, then these are the times in [0, 00) where z(-) is equal to

L (called the “zeros” of z) and for each n € N,
IA"(2) = Zoll -0 = [[€ag, 4+ = woll1-70]- (5.198)

Let —7 = q¢o < ¢1 < @2 < --- denote the zeros of z*. Let 0 < n <

smin{r,q1}. Then 0 < ¢ —n < q +1 < ¢ —n and

z*(t) > L for all t € [-7 +n,q1 — 1), (5.199)
z*(t) < L for all t € [q1 +1n,q2 — ). (5.200)

By (5.199)—(5.200) and the continuity of z*, we can choose d > 0 satisfying
d <min{|z"(t) = LI : t € [-T+n,¢1 —n] Ug1 + 1,92 — ]} (5.201)

Let € > 0 and K, be as in the statement of Theorem 5.3. Fix 7 such that (5.154)
holds and let K., be the associated constant from Theorem 5.3. Choose * € (0, ¢)
satisfying

d n
* < mi . 5.202
° = mm <K7 Y HK, 2Kp> (5:202)

Then if || — 2j|/[-r0 < €7, there exists p € (—p,p) satisfying (5.155) such that
(5.156) holds with o = 0 and ¢* in place of . It then follows from (3.10), (5.156),
(5.201)—(5.202) and the periodicity of z* that for each n € Ny and all ¢ € [ga,, +
7, Gan+1 — M|, the solution x of DDER with delay 7 and initial condition ¢ satisfies

w(t) = 2" (t) = 2" (t) = 2"t + p)| = |2*(t + p) = =(?)]
>L+d—(HK,+ K,e ")e* > L.

Similarly, for each n € Ny and all ¢ € [gant1 + 7, G2ns2 — 1),

z(t) < @*(t) + 2" (t) — 2" (t + p)| + 2" (¢ + p) — x(t)]
<L—d+ (HK,+ K,e e < L.

Since z is continuous, its zeros are separated by at least 7, n < %, ¢f > 0, 2(t) > L

for all t € [—7 +n,q1 —n] and z(q1 +n) < L, we have ¢ € (¢1 — n,q1 +n) and x
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does not have another zero in (¢; — 1, ¢; +1). By iterating this argument, we have
that ¢¢ € (¢, — 1, ¢, + 1) for each n € N.

Now fix 6* > 0. Choose n* € (0,%2) such that n* < 2. Let d* =
min{|z*(¢2 — n*) — L|, |*(q2 + n*) — L|}. Since gq,, — 00 as n — 00, there exists

no = no(d*) € N such that for all n > ny,

1 2K, &*
don — 1" — || >max{§log (d* /:2*) ,0}.

Then by (5.156) with ¢ = 0 and the periodicity of z*, for t > gon, — 7 — p,

x d*
”xt - x:—f—p”[*ﬂ()] < Kfyg*e_'Y(QQ"O_n P < 5

Hence for n > ng,

T(gon = 0" = p) S & (@2n — ") + [27(g2n — ") — 2(g2n — 1" — p)| < L
and

z(qan + 0" —p) 2 2" (gon + 1) — |2 (q2n +0") — 2(q2n + 1" — p)| > L.

It follows that there exists t,, € (qan — p — 1%, Go2n — p + 1*) such that x(t,) = L.
By (5.155) and (5.202), |p| < 2. This combined with our choice of #* implies that

tn € (Gan — 1, q2n +n) and since ¢35, is the unique zero of x in the open interval

(920 =15 G20 + 1), 45, = tn € (G2n — P — 1", g2n — p+1"), and 0 |q5, — p— gan| < 1"
Thus, by (5.156), the periodicity of z*, (3.10), the definition of n* and our choice

of ng, for all n > ny,

[2gg,+r — T3l —r0) < llgg, +r — $Z§n+r+p+p|’[—710} + ||x2§n+‘r+p I | [
< K,Yeﬂ(qgnﬁ)ﬂxo _ x8||[_770] + H|gZ, — qon — p

< 0",
By (5.198), for all n > ny,
A" (@) — Zll 1,00 = 1Tgg, +r — Tl {—r0) < 07,

which completes the proof that 2j is an attractive fixed point of A. n



111

Theorem 5.4. Fiz § € (0,1) and let 7 > 7. Then there exists a unique SOPS
x* of DDER with delay T such that g9 = —T.

Proof. Fix 7 > 7%. Recall that if we let g(r,s) = h(s) for all (r,s) € R%, then g
satisfies Assumptions 3.1 and 3.2. Define K and A as in (4.15)(4.17) and (4.26).
Recall that DDER"™ has a unique constant solution £ = 0. By Lemma 4.9, the
constant function ¢ = 0 is an ejective fixed point of A. If ¢ is a non-constant fixed
point of A and Z is the unique solution of DDER" with initial condition ¢, then &
is periodic and by Lemma 4.4,  is a SOPS" such that ¢y = —1. Conversely, if £*
is a SOPS" such that ¢y = —1, then by Lemma 5.1, 2j € K and is a non-constant
fixed point of A. Furthermore, since z* is the normalized version of a SOPS z*
satisfying go = —7, by Lemma 5.20, zj is an attractive fixed point of A. It follows
that there is a one-to-one correspondence between non-constant fixed points of A
and SOPS", z*, such that gy, = —1, and furthermore, all non-constant fixed points
of A are attractive fixed points.

Recall that K is a closed, bounded, convex, infinite-dimensional subset of
a Banach space and A : K — K is continuous and compact by Lemma 4.7. By
Proposition 5.2, the fixed point index of A on K is defined and Le(A, E) = 1. Let
S =1{p €K :AY) = ¢}, the set of fixed points of A. Since A is continuous
and compact, S is compact. By Lemma 4.9, the unique constant fixed point of
A, ¢ = 0, is ejective, and so there exists a neighborhood U of ¢ = 0 that does
not contain another fixed point of A in its closure. By the paragraph above, non-
constant fixed points of A are attractive, and so for each non-constant fixed point ¢
of A, there exists a neighborhood V; of ¢ that does not contain another fixed point
of A. Since § is compact and each point in S is a fixed point that is contained
in an open set that does not contain another fixed point, it follows that § is a
finite set. By the additivity property described in Proposition 5.3 and the fact
that S € U U (U%SW_&O V¢> c K,

1= c(AK) = c(0 )+ Y A V)= Y 1
PES:P#0 PES:@#0

where the last equality follows by Propositions 5.4 and 5.5. Therefore S contains

exactly one point besides ¢ = 0 and so A has exactly one non-constant fixed



112

point. By the one-to-one correspondence between non-constant fixed points of A
and SOPS" with ¢y = —1, there is a unique SOPS"™ of DDER"™ with ¢y = —1 and
hence by Lemma 4.1, there is a unique SOPS of DDER with ¢y = —7. m

Proof of Theorem 3.2. Choose & € (0,1). Define 7% > 73 as in Theorem 5.2 and

)

set 7 = 7. Fix a 7 > 7". By Theorem 5.4 there exists a unique SOPS z* of

DDER such that ¢qg = —7. Suppose z! is also a SOPS of DDER as defined in

+
[—T,OO)

by Z(t) = a (¢} +7+1) for all t > —7. Then &' is a SOPS of DDER such that its
associated value of ¢y is —7. By Theorem 5.4, z* = &' and so z*(t) = ' (¢} +7+1)

for all ¢ > —7. Hence z* is the unique (up to time translation) SOPS of DDER

Definition 3.2, but with qg, qI and q; in place of qg, q; and go. Define ' € C

with delay 7. Since 7 > 7%, we can choose positive constants ¢, 7, K, and K, as
in the statement Theorem 5.3. Let = be a member from the family of equivalent
(up to time translation) SOPS, i.e., there exists t; > 0 such that x*(t) = 21 (t + 1)
for all ¢ > —7. Suppose that ¢ € C[J:nO] satisfies [|p — z||_r0 < & for some
o €0,p). Let n =min{k € N: o +kp—1ty > 0}. Then o' =0 +np—1ty € [0,p)
and [|¢ — 27 |l=r0 = [l¢ — 2] ||[=r.0) < €. By Theorem 5.3, we have that there is a
p € (—p,p) satistfying

Pl < Kpllo = aZilli-ro) = Kollp = 2l lli-r0

and such that, for ¢ > 0,

||xt - $I+p+a+p||[*7',0] = ||xt - x:fk—l-p—&—a’f-s-p”[*ﬂo}

< Kye Ml = a5illiro = Kye "o — 2l i,
where x denotes the unique solution of DDER with initial condition . O

This chapter is based on the paper “Existence, Uniqueness and Stability of
Slowly Oscillating Periodic Solutions for Delay Differential Equations with Non-
negativity Constraints” written jointly with Ruth J. Williams and currently in

preparation.



Appendix A

One-dimensional Skorokhod

Problem

Define the one-dimensional Skorokhod map (®,V) : Cjo0) — C[g’oo) X C[J&OO)

by
D(2)(t) = 2(t) + U(2)(t), t >0, (A.1)
U(z)(t) = Os<u1<)tz_(s)7 t>0. (A.2)

Here we note some well known properties of the one-dimensional Skorokhod map.
Proposition A.1. For z, 2 € Clo,00) and t > 0,

19(2) = 2(=N [0y < 2[12 = 2" llj0.,

1(2) = ®(zNlog < NIz = 2" loa-

It follows that the map (2,¥) : Clooo) = Cf oy X Cpf o 18 continuous (Recall that

Clo,00) 15 endowed with the topology of uniform convergence on compact intervals.)
Proposition A.2. For z € Cp ),

Osc(P(z2), [t1,ta]) < Osc(z, [t1, ta]),
Osc(V(2), [t1,ta]) < Osc(z, [t1,ta]),
for each 0 <ty <ty < o0, where for any u € Cp ),

Osc(u, [t1,t2]) =  sup |u(t) — u(s)|.

t1<s<t<tg
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To ensure that solutions of (1.1) remain non-negative, we have employed
the well known (one-dimensional) Skorokhod problem constraining a continuous

function to be non-negative.

Definition A.1. Let z € Cjp ) satisfy z(0) > 0. A pair (z,y) € C; ) X C[Jg’oo) is

[0,00

a solution of the (one-dimensional) Skorokhod problem for z if the following hold:
(i) x(t) = =(t) + y(t), £ =0,
(i) =(t) =0, t >0,

(iii) y satisfies the following:

(b) v is non-decreasing,
(c) Jyx(s)dy(s) =0, t > 0.

Remark A.1. Here y is the reflection or regulator term that prevents x(¢) from
taking negative values. Condition (iii)(c) ensures that y(-) does not increase in an

interval [s,t] where z(-) is positive.

Proposition A.3. Suppose z € Cp) satisfies z(0) > 0. Then there exists a

+

unique solution (x,y) € C[oOo

) X C[g’oo) of the Skorokhod problem for z, given by

(2, y) = (&, ¥)(2).
Proof. See Section 8.2 of [7]. O

This appendix is a formulation of known results and based on a similar
formulation of these results contained in the paper “Existence, Uniqueness and
Stability of Slowly Oscillating Periodic Solutions for Delay Differential Equations
with Non-negativity Constraints” written jointly with Ruth J. Williams and cur-

rently in preparation.



Appendix B

Derivative of the One-dimensional

Skorokhod Map

Throughout this section we use the following notation. Fix an interval [
in R. Given a family {u® : ¢ > 0} in C; that converges pointwise to u € Dy as
e — 0, we say that u® converges to u uniformly on compact intervals of continuity
(u.0.c.c.) provided that for any compact interval J C I such that u is continuous
on J, u® converges to u uniformly on J as ¢ — 0. For 2z € Cjp,o) and ¢ > 0, consider
the set of times in the interval [0, ¢] that the function z is coincident with its upper
envelope function at time ¢, i.e.,

S.(t) = {s € [0,t] : z(s) = 2(t)}, where z(t) = max z(s). (B.1)

0<s<t

For z,w € Cjp,o0) and t > 0, define

0 if Z(t) <0,
R(z,w)(t) = < S(z,w)(t) VO if z(t) =0, (B.2)
S(z,w)(t) if 2(t) > 0,

where

S(z,w)(t) = sup w(s). (B.3)
s€S;(t)

Let (B, W) : Cjppo) — C

0.00) X C[ngoo) be the one-dimensional Skorokhod map
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defined in (A.1)~(A.2). For z,w € Cjp ), define 05, ®(z2),0;,¥(2) € Cjo,) by
O(z +ew) — D(2)

05,0(2) = 5 =w+ 0, ¥(z), (B.4)
(s = LEF 8“2 — (=) (B.5)

In the following we prove that if z,w and {w® : 0 < ¢ < ¢*} are in C ) such
that w® — w uniformly on compact intervals in [0, 00), then 95.®(z) and 05.¥(2)
converge pointwise as ¢ — 0 and we denote the limits by 0,®(z) and 9, ¥(2),
respectively. We refer to 0,®(z) and 0, V(z) as the directional derivatives of ®
and U, respectively, in the direction w at z. The existence of these limits (and a
bit more) is given by Theorem B.1. The theorem follows from Theorem 9.5.3 in

[28] and a proof is provided here for completeness.

Theorem B.1. Let z,w and {w® : 0 < ¢ < €*} be in Cp o) such that w* — w
uniformly on compact intervals in [0,00) as e — 0. If 05.®(z) and 05V (z) are
defined via (B.4)—(B.5) for e € (0,¢*], then as e — 0,

0 P(2) — 0uP(2) pointwise and u.o.c.c.,

05 V(z) = 0,V(z) pointwise and u.o.c.c.,
where 0, P(z) and 0,V (z) are given by

Ow®(2) = w+ 0, ¥(2),
Ow¥(z) = R(—2z, —w).

—
o
D

N~—

Further, 0,®(z) and 0,¥(z) are both in Dy ).

Before proving the theorem, we introduce the following lemma which is
similar to Lemma 5.2 in [13], Theorem 9.4.3 in [28] and Theorem 3.2 in [14]. The
proof of the lemma is adapted from the proofs in [13, 14, 28] and provided here

for completeness.

Lemma B.1. Let z,w, {w® : 0 < e <"} be in Co ooy such that w® — w uniformly
on compact intervals of [0,00) as e — 0. Then as € — 0,

z24+ewtEV0O—-—2ZVO0
€

— R(z,w) pointwise and u.o.c.c.
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Proof. Fix t > 0. We first prove that

lim {6—12 TuE(t) — 5—1z(t)} — S(z,w)(1). (B.8)

e—0

For each € € (0,¢*), choose s. € [0,t] such that
(el 2+ wf)(s.) = e 1z + we(t).

Since w® — w w.o.c. and w is continuous and therefore bounded on [0, ], there

exists g9 € (0,&*] such that sup.¢ (g ., [|w® |0, is finite. It follows that

lim z(s.) = lg% {z+ews(t) — ew(s.)} = z(t). (B.9)

Now we have
etz Fwe(t) — e 12(t) = wi(s.) + e z(se) — 2()] < wf(s.),

and therefore

lim sup {8_12’ + we(t) — 5—1z(t)} < lim sup w®(s;). (B.10)

e—0 e—0

Let {&,}22, be a sequence in (0, &g| such that &, — 0 as n — oo and

lim w® (s, ) = lim sup w(s.).
n—00 e—0

Since {s., }22, is uniformly bounded, we can assume (by taking a further subse-
quence if necessary) that there exists so € [0,¢] such that lim, . s., = so. By
(B.9), z(so) = z(t), so so € S,(t). Thus,

limsup w®(s.) = lim w™ (s, ) = w(sg) < sup w(s).
e—0 n—00 s€ES.(t)

Combining with (B.10) this yields

lim sup {5—12 + we(t) — 5—1z(t)} < sup w(s). (B.11)
e—0 s€S.(t)

To establish the limit we need to show the reverse inequality

lim inf {5*12 + we(t) — 6*12(15)} > sup w(s).
€0 €S (t)
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Suppose s € S,(t), then

etz we(t) —e1z(t) > (e 2 +wd)(s) — e 2(t) = w(s).

Since w® — w uniformly on compact intervals of [0, 00) as € — 0, we have

lim inf {m(t) - aflz(t)} > w(s).

e—0

Taking supremums over s € S,(t) yields

lim inf {5—12 + we(t) — 5—12(25)} > sup w(s).
=0 s€S,(t)

The above inequality along with (B.11) establishes the pointwise limit

lim {g— s T w(t) — = z(t)} — Sgél}()t)w(s) = S(z,w)(t).

We now treat the three cases: z(t) > 0, Z(t) = 0 and z < 0. Suppose
Z(t) > 0. Since sup.¢(.l|w |l < 00, 2 +ew?(t) > 0 for all € > 0 sufficiently

small. For such ¢ we have

ez 4w (t) VO —elz(t) VO =tz +we(t) — e 12(t).

The above equality along with (B.8) establishes the pointwise limit

lim {5—1z Twr(t) V0 — 2 T2(t) v o} = S(z,w)(t) = R(z,w)(t).

e—0

Suppose z(t) = 0. Then,

elz+wi(t) VO —elz(t) V0 = {8*12 + we(t) — 8*12(t)} V0.

The above equality along with (B.8) establishes the pointwise limit

lim {5_12 Twr () V0 — =T (t) v o} = S(z,w)(t) V0 = R(z,w)(t).

e—0

Suppose z(t) < 0. Since sup.¢(q,llwllpg < o0, etz +ws(t) < 0 for all

€ > 0 sufficiently small. Hence, for such ¢,

e7lz4ws(t) V0O —etz(t) V0O =0,



and so

lim {5—12 Twr(t) VO — g——lz(t)} =0 = R(z,w)(t).

e—0

This proves pointwise convergence.

Note that for z,w € Cy ),

Z(t) —w(t) < z—w(t), for each t > 0.
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(B.12)

If t = 0, the result is trivial. For ¢ > 0, let s € [0,¢] be such that z(s) = Z(t), then

|
—~
~~
N—
|
gl
—~
~
SN—
I
x
—~
V)
SN—
|
gl

(1) < z(s) —w(s) <z —w(t).

We now show the convergence is u.o.c.c. By (B.12),

ellz+w—elz+w < (g7 —e3h)z.

If &1 < &9, then it follows that

eflztw—ellz<eglztw—gy'2

Therefore {5_12 +w:0<e< g*} is a monotone decreasing sequence as € — 0.

Convergence of monotone decreasing continuous functions to a continuous limit

must be u.o.c., so ez +w — e~z — S(z,w) w.o.c.c. By (B.12),

—w—wf <elz4wt—elz+w < w —w,

and since w® — w — 0 u.o.c., it follows that

ez +we —elz = (5—12 4+ we —elz 4+ w) + (5—12 +w — 5—1,2)

— S(z,w) u.o.c.c.

Proof of Theorem B.1. By (A.2), (B.5) and Lemma B.1, we have
U(z 4 cw®) — U(z)

£
—z—cwtV0——2zVO0

05 (2) =

€

— R(—2z, —w) pointwise and u.o.c.c. as ¢ — 0.

The convergence of 05, ®(z) follows from (B.4). The fact that 0,,®(z) and 9,,¥(2)

lie in Dy ) follows from Theorem 1.1 in [14].

]
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Lemma B.2. For z,w,w' € Clo,c) and t >0,

10,2 (2) = 01 ()0, < 2[lw — w'[ljo., (B.13)
10,9 (2) = Bt (=) lj0.) < w — wl|jog. (B.14)

Proof. The Lipschitz condition for 0.®(z) follows from (B.6) and (B.14). The
Lipschitz condition from 0.W(z) follows from
10,9 (2) = 01 ¥ (2)llio. < 1 R(—2, —w) — (=2, —w")|joz
< [I8(=2, —w) = S(=2, —w")ljoz
S Hw - wTH[O,t]a
where the second inequality follows from the fact that for any r, s € R,

rv0O—sVvoO|<|r—s|,

and the third inequality follows from the fact that for any ¢ > 0,

sup (—w(s)) — sup (—wl(s))| < sup |w(s) —wi(s)] < [w—w'oy
sES_4(t) sES_L(t) sES_4(t)

]

This appendix is a formulation of known results and based on a similar
formulation of these results in the paper “Existence, Uniqueness and Stability of
Slowly Oscillating Periodic Solutions for Delay Differential Equations with Non-
negativity Constraints” written jointly with Ruth J. Williams and currently in

preparation.



Appendix C

Linear Variational Equation
(LVE)

In this section, we introduce a linear variational equation relative to a solu-
tion x of DDER. We prove that a solution of the linear variational equation relative
to x can be represented as a pointwise limit of the difference between x and solu-
tions of DDER with perturbed initial conditions. As we will see, solutions of our
linear variational equation differ considerably from those of the analogous equation
in the unconstrained setting. In particular, the lower boundary constraint in the
DDER can result in discontinuous solutions of the linear variational equation.

Recall that Dj_, is the space of functions from the interval [—7,0] to R
that have finite left and right limits at each ¢ € (—7,0) and finite right limits at

—7 and finite left limits at 0. For each ¢ € C[t define D¥ to be the directions

7,0]’
in D|_, o that we allow ¢ to be perturbed:

D? ={ € Di_,0 :(s) 2 0if ¢(s) =0, s € [-7,0]}. (C.1)

For ¢ € C[tﬂo}, let C¥ ={¢Y €Clq:p+eve C[tT,o] for all e sufficiently small},
the directions in Cj_; in which we allow ¢ to be perturbed. To ensure that the
linear variational equation is well-defined, we assume that the function f in (1.1)

satisfies the following regularity properties.

Assumption C.1. The function f : C[t o R satisfies the following uniform
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Lipschitz continuity property:

1£(@) — f(eN)] < Kflle — @'l =ro) (C.2)

for all ¢, o € C[t 0] and some fixed finite positive constant Ky.

Assumption C.2. At each ¢ € C[J:T o for each ¢ € D¥, there is a unique deriva-
tive of f in the direction 1, denoted 0y f(¢), that satisfies the following:

(i) Whenever {1}, is a uniformly bounded sequence in Cj_, ¢ that converges
pointwise to ¥ € D? as n — oo and {g,}5°, is a sequence of positive real
numbers such that €, — 0 as n — oo and ¢ + €,9,, € C[tT B for each n, we

have that

(i) If r,s € R and v, ¢! € D¥ such that ) + syt € D?, then
Orpysut [ (0) = 10y f () + sO41 f (0)-
(iii) For all 4,4 € D¥
10y f () = By F(0)] < Kl — D17,

where Ky is as in (C.2).

Lemma C.1. Let f : C[tTo] — R be given by

Fl) = /H C(e())duls) for all p € CF .

where ¢ : Ry — R is uniformly Lipschitz continuous (with Lipschitz constant K. )
and continuously differentiable on Ry and p is a finite measure on the interval

[—7,0]. Then f satisfies Assumptions C.1 and C.2 with Ky = K.pu([—7,0]) and
00 = [ Cel)uls)ints),
[=7,0]

for all ) € D¥, where (' : R, — R denotes the first derivative of C.
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Proof. To prove that Assumption C.1 holds, suppose that ¢, ¢! € C[t o Then

£0) = 1NN < [ 16els) = e (5Dldics)

[_7—70}

<K [ 1o~ 0l

< Kcllo = oM imrou([—7,0)).

To prove that Assumption C.2 holds, suppose that {1, }>° ; is a bounded sequence
in C_ ) that converges pointwise to ¢» € D¥ as n — oo and {e,}72, is a sequence
of positive real numbers such that ¢, — 0 as n — oo and ¢ + €,¢,, € C[t 0] for

each n. For each s € [—7,0]

o S + 20t(5)) = ()

lim g = Clp()(s).
Let m = sup,, ||¢y||[-r,0) < 00. Then for each n,
068 + b)) = o] _ e

En
Therefore, by bounded convergence,

n—0o0 En

- [ o)

Part (ii) of the assumption follows because the integral is linear in . Part (iii)

then follows from the fact that ¢’ is bounded by K, and so

105.f () = Oy f(0)] < Kclltr = ¢l -rgpp =T, 0]).

Example C.1. Let f : C[tT o) — R be given by

fle) = h(g(=7)) for all p € CZ_ .

where h : R, — R is continuously differentiable with uniformly bounded derivative
on R;. Then by Lemma C.1, with ( = h and p equal to the point mass at s = —7,
f satisfies Assumptions C.1 and C.2 with

Opf(p) = W' (p(=7))0(=T),

for all ¢ € D¥, where h' : Ry — R denotes the first derivative of h.
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Throughout the remainder of this section, we assume that f satisfies As-

sumptions C.1 and C.2 and we fix a solution x of DDER and define z as in (2.2).

Definition C.1. A function v € D|_; ) is a solution of the linear variational
equation (LVE) relative to x if for each s > 0, vy € D%, the function s — 0, f(z5)

is measurable and integrable on each compact set in [0, 00), and v satisfies
v(t) = 0,P(2)(t), t >0, (C.3)

where ® denotes the Skorokhod map given by (A.1)-(A.2), z € Cpp,~) is defined in
(2.2), w € Co o0y is defined by

w(t) =v(0) + /Ot Oy, f(zs)ds, t > 0. (C4)

and the directional derivative of ® at z in the direction w is denoted by 0, (2)

and is well defined as an element of Djg ) by Theorem B.1.

Suppose 1» € C*. Then there exists ¢* > 0 such that xo + e € C[tT 0]
for all € € (0,¢*]. For each ¢ € (0,¢*] there exists a unique solution z° of DDER

satisfying x5 = xg + €1. Define v* € C|_; «) by

ve(t) = M, t>—7. (C.5)

Furthermore, for each € € (0,¢*] define 2° € Cjg ) as in (2.2) but with = and =z

replaced with 2 and 2%, respectively, and define w® € C ) by

ws(t) — M — w(o) 4 /t f(ZES + SUE) — f($s>ds’ t>0. (06)

39

Recall that a family {u®: 0 < e < &*} in Dy o) converges to u € Dy oy uniformly
on compact intervals of continuity (u.o.c.c.) as € — 0 if for each compact interval
I contained in [0, 00) on which u is continuous, u® converges to w uniformly on
as ¢ — 0. We have the following theorem on the existence and uniqueness of a
solution of LVE given an appropriate initial condition as well as the pointwise and

u.o.c.c. convergence of v° to v as € — 0.
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Theorem C.1. Suppose 1 € C*. Then there exists a unique solution v of LVE
relative to x with initial condition Y and v is a Borel measurable function. Fur-
thermore, v — v pointwise and uniformly on compact intervals of continuity in
[—7,00) as e = 0 and w® — w uniformly on compact intervals in [0,00) as e — 0,
where w is defined by (5.72) and for each € € (0,e*], v° and w® are defined by
(C.5) and (C.6), respectively.

In preparation for proving Theorem C.1, we prove the following lemmas.

Lemma C.2. Suppose that v¢ is defined as in (C.5), then
10l -r < 2019 ll-r0 exp(2K4t), ¢ 2 0. (C.7)
Proof. Fix t > 0. By (C.6) and (C.2), for each ¢ € (0,£*] and all s € [0, t] we have

|w5(s)| < W}(O)‘ _,_/: | f(z, +€Ui) - f(xr)|d7“

3

< @l oy + K / -

By taking the supremum over s in the interval [0,¢], using (2.4) and applying the
Lipschitz continuity of the Skorokhod map (see Proposition A.1) we have

[0°][j0,g = € |2 — 2| oy

< 2672 = 2llpg = 2llw o,
t

< 2ilcnor + 2K7 | 107l
0

We can easily extend the supremum norm on the left to the interval [—7,¢] and

then apply Gronwall’s inequality to complete the proof. O
Lemma C.3. Suppose v,v! are solutions of LVE relative to x. Then we have

o= lrg < K (®)llo =0T raps £ 20, (C8)
where IN(f(t) = 2exp(2Kyt).

Proof. Suppose v and v' are solutions of the linear variational equation relative to

x. Let w € Cjp ) be given by (5.72) and wh e Clo,00) also be defined as in (5.72),
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but with o' instead of v. By definition, the restrictions @, 7’ of v, vT (respectively)

to [0, 00) satisfy
0= 0,P(2), V' = 0, P(2),

where z is defined as in (2.2). Fix t > 0. By (5.72) and Assumption C.2(iii), for
s € [0,t], we have

w(s) — w(s)] < [v(0) — oF(0)] + / B0 f () — O, £ () ldr
< 10(0) = O]+ K7 [ o= ol

By taking the supremum over s in the interval [0,¢] and using the Lipschitz conti-

nuity of D.®(z) (see Appendix B), we have
lo = vl = [10w®(2) = 0t ®(2) 0. < 2]Jw — wl|py
¢
< 2w — || gy + 2Kf/0 o — 01|y

The supremum norm on the left can clearly be extended to the interval [—7, ¢] after

which a simple application of Gronwall’s inequality yields (C.8). O

Proof of Theorem C.1. We first establish uniqueness, suppose that v and v’ are
solutions of LVE such that vy = v} = 1. By (C.8),

v = vl < Ky (@)l = Pl r0) = 0,

for all t > 0 and so v = v'.
We now establish existence. First, we prove that the family {w®: 0 < ¢ <
€*} is relatively compact in Cp o). Fix ¢t > 0. For 0 <t; <, <t, by (C.2) and

Lemma C.2 we have

ds

W (ts) — w ()] < / 2 f(xs +evl) — f(xs)]

t1 En

to
< K, / 1 rgds
t1

< K[| ng) exp(2K )t — ],
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Hence {w® : 0 < & < &*} is uniformly bounded and uniformly Lipschitz continuous
on each interval [0,¢]. Since this holds for each ¢ > 0, by the Arzela-Ascoli theorem
and a diagonal sequence argument, {w*® : 0 < ¢ < €*} is relatively compact in Cjg o).

It follows that for any sequence {£,}°°, in (0,&*] such that £, — 0 as
n — oo, there exists a subsequence, also denoted {e,};;, and a w € Cjy ) such
that w® converges to w uniformly on compact intervals in [0,00) as n — oo. By
extending {w™}>°; to a family {w° : 0 < ¢ < €*} that converges to w as € — 0,
where w® = w* when ¢ = ¢,,, and applying Theorem B.1 in Appendix B, we have
for each t > 0,

lim o5 (8) = Tim S =)

n—00 n—r00 En
i 2 E)(0) - S0
n—o0 5n
= 0,2(2)(1).

where 0,,®(2) is defined as in (B.6) and the convergence is pointwise at all times
and uniform on compact intervals in [0,00) on which 9,®(z)(-) is continuous.
Define v € Dj_; ooy by v(t) = 9(t) for t € [—7,0] and by v(t) = 0,P(2)(t) for t > 0
(Note that v is well-defined at zero because 9,,(z)(0) = w(0) = 1(0).) Then
v¥" — v pointwise on [—7,00) as n — o0.
For each s > 0, 25" = z, + e,05" € C[t rq for all n, so it follows from
Assumption C.2(i) that
lim f(s + eavir) — flzs)

n—00 En

= avsf(xs)' (Cg)
By (C.2) and Lemma C.2, for each n we have

f(xs + 5n’U§n> — f(xs)

€n

< Kpllo v < 2K4[[Qll-r0) exp(2Kys). (C.10)

Since the function s — 0,, f(zs) is the pointwise limit of a sequence of measur-
able functions, it is also measurable. Furthermore, by (C.9)-(C.10), the function
is bounded and hence integrable on compact sets in [0,00). It then follows by
bounded convergence that w satisfies

im f T + 5nU€n) - f(xs> _ !
w(t) =(0) + 1i / ds = 1(0) —i—/o Oy, f(z5)ds

n—o0
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for all ¢ > 0. This establishes the existence of a solution v of LVE relative to x with
initial condition ¢ and that each sequence along which ¢ — 0 in {v°: 0 <e <&*}
has a subsequence that converges pointwise on [0, 00) and uniformly on compact
intervals of continuity to a solution of LVE relative to x. By the uniqueness of
solutions, it follows that this limit is always v and since v is the pointwise limit of
continuous functions, v is Borel measurable.

We show that the family {v° : 0 < ¢ < &*} converges to v pointwise and
uniformly on compact intervals of continuity as ¢ — 0. Suppose not, then there
exists a subsequence {v"}>° , and n > 0 such that one of the following holds: (i)
there exists s > 0 such that [v°"(s) — v(s)| > n for all n > 1 or (ii) there exists a
compact interval I C R, such that v is continuous on [ and |[v®" — vl||; > 7 for all
n > 1. However, as we have shown above, there must exist a further subsequence
{v° }22, such that |v°(s) — v(s)] — 0 and |[v®™* —wv|; — 0 as k — oo, a
contradiction. Therefore the family {v° : 0 < & < &*} converges to v pointwise and

uniformly on compact intervals of continuity as € — 0. O]

In the following lemma we further describe solutions of LVE relative to a

solution x of DDER.
Lemma C.4. Suppose v is a solution of LVE relative to x. For 0 < t; < ty:

(i) If x(t) > 0 fort € (t1,t2), then
v(t) = v(t) +/ Ov, f(xs)ds, t € [t1,12).
(11) If x(t2) = 0 and x(t) > 0 fort € (t1,t2), then

o(ts) = <t1 / Dy f(3)d )

(11i) If x(t) =0 fort € [t1,t2] and f(z;) =0 for all t € [ty,1s], then

tl /avsf ms d3+ sup <_U(t1)_/ avsf(xs)ds) \/07
refty,t] t1

for all t € [ty1,1s].
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() If x(t) =0 for t € (t1,ts] and f(xy) <0 for allt € (t1,t2), then

U(t) = 0, t e (tl,tg].

Proof. By Appendix B, we have v = w + R(—z, —w) where R, z and w are defined
by (B.2), (2.2) and (5.72), respectively. For ¢; < t, we have

w(t) =w(ty) + /t Oy, f(xs)ds (C.11)
= olt)+ [ 0 (s = R=z—w)()

Proof of (i): Suppose z(t) > 0 for t € (t1,t2). Then —z(t) < —z(t) VO for all
t € (t1,t2). Given t € (t1,t2), if —z(t) < 0, then —z(t1) < 0 and R(—z, —w)(t) =
R(—z,—w)(t;) = 0. Therefore, by (C.11),

v(t) =w(t) + R(—z,—w)(t) = v(t1) + /t Oy, f(x5)ds.

If —2(t) > 0, then —z(s) < —z(t) for all s € (t1, 1] (since z(s) > 0 for all s € (¢1,1]),
so S_,(t) =S_.(t1). Therefore R(—z,—w)(t) = R(—z,—w)(t1) and by (C.11),

v(t) =w(t) + R(—z, —w)(t)
=v(ty) + /t Oy, [(xs)ds — R(—z, —w)(t1) + R(—z, —w)(t)
=ou(ty) + /tt Oy, f(xs)ds.

Proof of (ii): Suppose x(t) > 0 for ¢t € (t1,t2) and x(tz) = 0. Then for
t € (t1,12), as for (i), —2(t) < —z(t) VO < —z(t2) V0. At t = t9, x(t2) = 0 implies
—z(tg) = —z(ta) > 0. Therefore S_,(t2) = S_,(t1) U{t2} and by (C.11) (with ¢, in
place of t),

v(t2) = w(tz)
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Proof of (iii): Suppose z(t) = 0 on [t1,ts] and f(x;) = 0 for all ¢ € [ty,ts].
Then —z(t) = —z(t) > 0 for all t € [t1, 1] and z and is constant on [ty to]. It follows
that S,Z(t) = sz(tl) U [tl,t] for all ¢t € [tl,tg]. Then by (Cll), fort € [tl,tg],

v(t) =w(t) + R(—z, —w)(t)
=w(t)+ R(—z,—w)(t1) V sup (—w(s))

s€[t1,t]

=v(ty) / Oy, [(z5)ds + ( sup (—w(s)) — R(—z, —w)(t1)> VO

s€[t1,t]

v(ty) / Op. f(z5)ds + sup (—v(tl) —/ 8va(xT)d'r’> V0.
sE[t1,t] t1

Proof of (iv): Suppose z(t) = 0 on (t1,t5] and f(z;) < 0 for all t € (t1,t2).
Then —z(t) = —z(t) > 0 for all t € (¢,t5] and since —z is strictly increasing on

(t1,t2), we have S_,(t) = {t} and —z(t) > 0 for t € (¢,ts]. Thus for ¢ € (1, ta],
v(t) =w(t) + (—w(t)) = 0.
[

This appendix is based on the paper “Existence, Uniqueness and Stability of
Slowly Oscillating Periodic Solutions for Delay Differential Equations with Non-
negativity Constraints” written jointly with Ruth J. Williams and currently in

preparation.



Appendix D
Proof of Lemma 5.2

In this section we prove Lemma 5.2, which provides a lower bound on
|Z7[|{=1,00) for sufficiently large delays 7, where {Z" : 7 > 7} is the family of scaled
SOPS" defined in Section 5.2. We first need the following propositions, which
follow directly from Lemmas 1 and 3 of [19] and Lemmas 5 and 6 of [30] once we
extend our function h to be defined on the whole real line. For this, we define the

function i : R — R by

>

(—=L), ifs<—L,
h(s), ifs>—L,

Then —h satisfies H1 and H2 in [19] and so Lemmas 1 and 3 hold for the function
—h. The function —h also satisfies the conditions in H1 of [30], except for the
condition that —A be a smooth function. Instead —h is continuously differentiable
on (—L,00) and smooth on (—oo, —L). However, as we will show, Lemmas 5 and

6 in [30] still hold for the function —Ah.

Proposition D.1. There exists a constant Cj, > 1 such that

~ ~

h(ry) > Cyh(ry) for all0 <r; < (D.1)

and

~ ~

h(s1) < Cph(sa) for all — L < sy < s1 <0. (D.2)

]fﬁ 1s non-increasing, then we can take Cp, = 1.
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Proof. As stated in Remark 1 of [19], this is a straightforward consequence of the
facts that h is a continuous function, sh(s) < 0 for all s # 0, h/(0) exists and
W (0) < 0, and A has finite, non-zero limits at oo. O

Proposition D.2. Define the function ¢, : [—L,00) — R by

L[ h(s)ds, ifr#0,
Gu(r)y=<""° (D.3)
0, if r=0.
Then (, satisfies the following properties:

(i) ¢ is continuous on [—L, 00);

~

(11) lim, o Cp(r) = limg_,o0 h(s) = —a;
(i1i) there is a constant d, > 0 such that
[Cu(r)| = dalr|,  for|r] <1,
()| = dn,  for|r| > 1;
(iv)
Gu(r1) = CiGu(ra),  for 0 <1y <,

szzgh(52) > Cn(s1), for — L < sy <51 <0;

(v) Then for 0 <r; <19 or —L <1y <711 <0,

/ h(uw)du

Here C}, is as in Lemma D.1.

> C; %|ry — 1] |Ca(r2).

Proof. Properties (i)—(iv) follow from parts (1)-(4) of Lemma 1 in [19]. From
equation (2) in [19], we see that for 0 < r; <ryor —L <1y <1 <0,

7‘2~ _
7"2_1/ h(u)du‘> |7"2 7“1\|Ch(7“2)‘

T ro =1+ Cilm|

In the case that 0 < 1 < rq, property (v) follows from the fact that
2 > L
To —T1 +C}%T1 - O}%
The case —L < ry < r; < 0 follows similarly. ]
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Proposition D.3. Let —oco < t; <ty < 00 and u : [t1,ts] = R be a continuously
differentiable function such that u(t;) > 0 and u(te) > 0. Assume that there exists
a constant C > 1 such that 24 t)]t o < C (d“(t |i= 81) for all t; < s1 < sy < tg.
Then

(t = t)u(ta) + C(ty — t)ulty)

u(t) 2 (t—t1) + Clts — 1)

forallty <t <ts. (D.4)

Alternatively, suppose there exists C' > 1 such that C (d“ t)| _32) < dul t)|t s, for
allty < 81 < 89 <ty. Then

Ot — t)ults) + (ta — tu(ty)

u(t) 2 Clt—t1) + (tr— 1)

for all t; <t < ts. (D.5)

Proof. This follows from an application of the mean value theorem; see Lemma 3
n [19]. Note that [19] assumes that u(t;) > 0, but the proof still applies when

Remark D.1. Suppose u : [t1,t3] — R is continuously differentiable with u(¢;) <0
and u(ty) < 0 and there exists C' > 1 such that d“(t lizs, > C (dzgt) — ) for all

t; < 51 < 89 < ty. Then by considering the functlon —u in place of u in the above

lemma, we have

(t = t)u(ty) + C(ty — t)ulty)

u(t) < (t—t) + Clts — 1)

for all t; <t <t,. (D.6)

Alternatively, suppose there exists C' > 1 such that C (d“(t 1= 82) > du t)|t s, for
all t; < s; < 59 <5, then

C(t — ty)u(te) + (ta — t)u(ty)
Ct—t1) + (ta — 1)

u(t) <

for all tl S t S tg. (D?)

Proposition D.4. For M > m > 0, there exist two constants v > 0 and 7" > 0
such that, if m <r < M, |s| > 7|h(rs)| and 7 > 7', then

|s| > ~T.

Proof. The proposition follows from applying the proof of Lemma 5 in [30] to —h

Uand 7' in place of ;' and considering the restriction of

with 7 in place of £~
h to the interval [~L,c0). The main difference is that the function f in [30] is

assumed to be smooth. However, the proof of Lemma 5 only requires that f is
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continuous, f(0) = 0, f/(0) exists and is non-zero, sf(s) > 0 for all s # 0 and f has
finite, non-zero limits at foco. Since —h satisfies these properties, the conclusion

of Lemma 5 holds for h as well. O]

Proposition D.5. For each M > 0, there exists Cpy > 1 such that

Cith(s) = h(r) = Cash(s) (D.8)
whenever r, s > 0 with M~ < (r/s) < M, and

Cith(s) < h(r) < Cash(s) (D.9)

whenever r,s < 0 with M~ < (r/s) < M.

Proof. The proposition follows from applying the proof of Lemma 6 in [30] to —h
and considering the restriction of & to the interval [—L, c0). The main difference is
that the function f in [30] is assumed to be smooth. However, the proof of Lemma
6 only requires that f satisfy the properties stated in the proof of Proposition
D.4. Since —h also satisfies these properties, the conclusion of Lemma 6 hold for
—h. O

Suppose that z* is a SOPS™ of DDER" such that gy = —1. In Lemmas D.1,
D.2 and D.3 below, we provide bounds on z* that are dependent on the distance
between its zeros. The lemmas and proofs are adapted from Lemmas 8, 10 and 11
in [30]. The main difference is that the SOPS™ 2* is bounded below by —L. For

notational convenience, we define ¢o1 = G2 — (¢1 + 1).

Lemma D.1. If ¢ < 1, then T* satisfies

)2 T -0, e l0.al
(D.10)

*(t) < max <_?}Qf21)(t_gl),_L), t € q,1],
(D.11)

t*(t) < max (—3;’3(21) (1—¢q1)— CL,% Ch (x*Cf)> ‘ (t—1), —L) , tell,q +1].
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If Go1 <1, then &* satisfies

» (@ +1)] . L
B (t) < _%(QQ —t), telg+1,4¢), (D.13)
h42,1
. 7 (G + 1 ) o
z*(t) > %(t — Ga), t € G2, g1 + 2], (D.14)
hd2,1
. 2% (¢ + 1) )
() > ———(1 — D.15
(t) > o (1= G2,1) (D.15)
T .f,’*(ql +1) “ R R
+C_2Ch(c—h)‘(t_QI_2)a te g +2,q+1].
Lemma D.2. If1 < ¢ < 3/2, then
. z*(0 . . .
#(t) < max (—é gh< CE )(2—q1))‘(t—q1),—L), telg,2,  (D.16)
h h
. z*(0 . . .
Z*(t) < max (—é Ch < C(’ )(2 — q1)> ‘ (2 — ql),—L) , t€[2,qg+1]. (D.17)
h h
If1 < goy1 <3/2, then
. T z*(g; +1 R R o
02 Gl (T8 e w) |00ty 01
h h
o (1 + 1 . . . .
*(t) > é Ch (%(2 - %1)) (2—4¢21), te[qi+3,¢2+1]. (D.19)
h h

Lemma D.3. There exists 7" > 0 and 60" > 0 such that if 7 > 7", then
(Z) cj271 < 3/2 and

(ii) if ¢ > 3/2, then
z*(t) > 76", t € 10,1 — 1]. (D.20)

Proof of Lemma D.1. Suppose that ¢; < 1. By parts (i) and (ii) of Lemma 5.1, z*
is positive on (—1, ¢;), continuously differentiable on [—1, ¢;], increasing on (—1,0)
and decreasing on (0, ¢;]. Then for 0 < t; <ty < ¢1, 2*(t1 — 1) < Z*(ta — 1) and
so by (4.13) and (D.1),

WO i@ (4 — 1)) > Curhl@ (8 — 1)) = Oy

dt t=t1 t=to

Applying (D.5) to #* on the interval [0, ¢;] and with Cj, in place of C', we obtain

Cuta*(q1) + (G1 — )2*(0) N (1 —)2*(0)

= = — , t € 10,41 D.21
Cpt + (¢ — ) Crn 0. ( )

z(t) =
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By (5.8), (D.1), (5.10) and the facts that ¢; < 1, 2*(¢;) = 0 and Z* is non-negative

and non-decreasing on [—1, 0], we have
‘. G (i — 1)) — g
z*(t):T/ hat(s — 1))ds < A ZDIE=d) e (pag)
i Ch
By (5.8) and (5.10) and since ¢; < 1, 2* is non-negative and non-decreasing on
[—1,0], and using (D.1), we have
qar “
_#(0) = T/ B(#* (s — 1))ds > rCWh(E (61 — 1))dr. (D.23)
0
Combining (D.22)—(D.23) yields
- z*(0 N N
1) <~ ), refan1), (D.24)
nd1
(D.25)

:2*(0)< _qu),—L> , € [d,1].

and so by (5.11),
Chr

2*(t) < max (—
Now by (5.8), (D.1), (D.21) and part (v) of Proposition D.2, for t € [1,q; + 1],

t
(1) — 54(1) = T/ B (s — 1))ds
1
T [t <i*(0) )
< — h — (g1 +1—35))ds
Cn i Crgn @ )
5 Cy e (0) .
< :% / ' h(s)ds
2*(0) Jicna 1 @—t+1a+(0)
< Jhoa[E 0@t Do) | (2 0)
- #%(0) Ch Chan Ch
T(t—1 2*(0
< T (20|
h h
After combining the above with (D.24), it follows from (5.11) that, for ¢ € [1, ¢ +1],
0)1—q) (-1 z*(0)
— —-L). D.26
C}% h Ch ) ( )

R a*(
2*(t) < max | — -
(0 < ( C}%Ql
Now suppose that ga1 = ¢2 — (¢1 +1) < 1. By part (iii) of Lemma 5.1, 2* is
non-positive and non-increasing on (gi,¢; + 1] and continuously differentiable on

(G1 +1,¢2]. Then by (4.13) and (D.2), for ¢; + 1 < t; < t5 < o,
di*(t)

= Th(#"(t1 = 1)) < Cprh(&"(t, — 1)) = C)

dt

t=to

di* (t)

dt

t=t1
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For each ty € (¢1 + 1, ¢2], &* is continuously differentiable on [ty, G|, so by (D.7)
with tl = to, tg = (jg and C = Ch,

Cu(t —t0)2"(G2) + (g2 — )" (to)

T < Cu(t —to) + (G2 — 1)

) te [t07qA2]‘

Since this holds for each ¢; +1 < tg <t < o, by the continuity of z*, we have, for
G+ 1<1< g,

sy < Ol = (@ + >>(fc @)+ (8- + (D.27)

Cr(t = (@1 + 1)) + (G2 — 1)
(1 +1)(G2 — 1)
Chiz,

where we used the fact that C, > 1 for the last inequality. By (4.13), the fact that
Z* is positive on [§2, ¢1 2], and non-positive and non-increasing on [¢o —1, ¢ +1] C

[¢1,¢1 + 1], part (iv) of Lemma 5.1, and (D.2),

(1) = T/th(:f;*(s 1)yds > THE (G ;hl”(t “®) elgat2 (D)

By (4.13) and the fact that @*(t) > —L for all t € (¢1 + 1, ¢2), part (iii) of Lemma
5.1, the fact that 2* is non-positive and non-increasing on [Gy, g2 — 1] C [¢1, ¢1 + 1]

and (D.1), we have
G .
i G +1) = 7/ B(#* (s — 1))ds < Chrh(3* (45 — 1))da. (D.29)
g1+1

Combining inequalities (D.28)—(D.29) yields

DV
() > -2 (4 +2?( ) >0, t € [Go, G1 + 2] (D.30)
OhQQ,l

Now by (D.2), (D.27) and part (v) of Proposition D.2, for t € [§; + 2, ¢z + 1], w
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have

t

# () — (G + 2) :T/ B(i* (s — 1))ds

G1+2
t Ax (A N
> T ;L(-T (Q1+1)(?2 8+1))d8
Ch Jg 42 Cho,1
Tq2,1 Cy et (Gi+1)

> T h(u)du
24(q1 + DI J(Cpann) 12 (@ +1) @2 —t41)

S _ T L@+ (@ —t+ D)2 +1) ‘
3G+ 1)) Ch Cho,1
2*(q1 +1)
¢ ——
h

| \/

T(t — ( C]1+2 ‘C (A* CJ1+1)>"

Combining with (D.30), we have that, for ¢t € [¢; + 2, ¢ + 1],

G (”3*@1 il ”) ‘ . (D31

[2%(G1 + D|(1 = Gan) n T(t — (¢ +2))
Ch

r*(t
IE(>_ ChQQl C;?’L

The conclusion then follows from (D.21), (D.25)-(D.27) and (D.30)-(D.31). O

Proof of Lemma D.2. Suppose that 1 < ¢; < 3/2. By part (i) of Lemma 5.1, 2* is
non-negative and non-decreasing on [—1, 0], so by (D.1), for 0 <¢; <ty <1,

T i 1) < 7l - 1) = 0

t=to

Ch -

t=t1

By part (ii) of Lemma 5.1 and the fact that ¢; > 1, £* is non-negative and contin-
uously differentiable on [0, 1], so we can apply (D.5) to * on the interval with Cj,

in place of C' to obtain

Coti*(1) + (1= 0a"(0) _ #*(0)
Citr(1—t) = G,

(1) > (1—1), te[0,1]. (D.32)

By (5.10), 2*(¢1) = 2*(¢1) = 0. Then by (5.8), (D.1), (D.32) and part (v) of
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Proposition D.2; for ¢; <t < 2,

(1) :T/ B (s — 1))ds (D.33)

41

“af ()

LT O)e-q)
<= / h(u)du
2*(0) Joa+ 0)(2-0)

EINE S

Since ¢; > 1, 2* is non-negative on [¢; — 1, ¢1], and then by (5.8) and the negative

feedback condition on h, Z* is non-increasing on [G1, ¢; + 1]. It follows that

20 <2@ <G lo (-0 e-w reRaril

By (5.11) and (D.33)f(D.34), we have
s (20
Sl (T2 2—ql)‘ 2= ) L), te R+ 1l (D30)
3/2

t — Q1 > y t e [(jl, 2], <D35)

2*(t) < max (—@

Now suppose that 1 < ¢p; < By part (iii) of Lemma 5.1, z* is

non-positive and non-increasing on [Gi,¢1 + 1]. Then by (4.13) and (D.1), for
q+1<ti<ta<q+2
di* (t)
s -
"t

 Curh(i(t — 1)) > Th(i*(t — 1)) = U

t=to

t=t1
By part (iv) of Lemma 5.1 and the fact that ¢ = ¢ — (¢1 + 1) > 1, 2* is non-
positive on [§; + 1, ¢ + 2] and continuously differentiable on (¢; + 1, ¢; + 2]. Then
by (D.7), for g1 + 1 <tg <t < ¢ + 2,
Ch(t — t0)2*(¢1 +2) + (¢1 + 2 — )" (fo)
Ch(t —to) + (1 +2—1) '
Since z* is continuous, we have, for ¢; +1 <t < ¢; + 2,
o) < Gl = @+ D)@ +2) + (6 +2 = 0" (@ + 1
- Cht = (@ + 1))+ (@1 +2-1)
< (G +1)

< Cn

T(t) <

(D.37)

(1 +2—1).
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Note that ¢o = ¢1 + 1+ Go1 < ¢1 +5/2. By (4.13) and the fact that 2*(¢) > —L for
all t € [Go, 1 +3], (D.2), (D.37) and part (v) of Proposition D.2, for t € [G2, ¢1 + 3],

~

B () = / B (s — 1))ds (D.38)

T (@t )
> — ——— (@1 +3—5)|ds
_Ch/q2 < Ch (@1 )

- Cpta* (G1+1)(2—G2,1)
= A*A—/ h(u)du
@+ 1) Jorten@en@+a—o

Ch (%:1)(2 - (?2,1)> ' (t —ga).

>

v

-
Ci
By the periodicity of 2*, part (i) of Lemma 5.1 and the fact that a1 = ¢o—(¢1+1) >
1, 2* is non-decreasing on [Gs, ¢1 + 3|, so by (D.38), for ¢t € [G1 + 3, G2 + 1],

o e T (¢ + 1 . .
Tt (t) = 2% (1 +2) 2 o Ch <—(q(17 )(2 - Q2,1)> ' (2 = G2,1) (D.39)
h h
The lemma then follows from (D.35)—(D.36) and (D.38)—(D.39). O

Proof of Lemma D.3. Fix ¢ € (0,1/2). Let r = §/C}, and choose positive constants
m and M satisfying 0 < m < r < M. Let v > 0 and 7” > 0 be such that 7" > Lé—(“;h
and the conclusion of Proposition D.4 holds with 7" in place of 7’ there. Let
0" = g—z. In the following, fix 7 > 7.

First suppose that ¢; > 3/2. By part (ii) of Lemma 5.1, * is continuously
differentiable on [¢; — d, ¢1] and Z* is positive and decreasing on [§; — 6 — 1, ¢ — 1].

Then by Lemma 4.2, the fact that 2*(¢;) = 0 and (D.1), we have

(G — 8) = —7 /q_ h(#* (s — 1))ds

G1—9
o[
> T [ B (@ —1))ds
Ch G1—9
> T (@ - 1)
——h(z —1)).
=70, q1
Then by applying the conclusion of Proposition D.4 with s = w, we have
)
(g —1) > 22 = s, (D.40)
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Then (D.20) follows from the fact that #* is decreasing on [0, ¢; — 1].

Now suppose instead that ¢o1 = ¢ — (1 + 1) > 3/2. We will obtain a
contradiction. Since ¢2 > ¢; +5/2 and ¢a — 1 — § > ¢; + 1, by part (iv) of Lemma
5.1, Z* is continuously differentiable on [§, — d, ¢2] and Z* is negative and increasing

on [¢ga — 6 —1,¢> — 1]. Then by (D.2), we have
G2
(G — 0) = —T/ B (s — 1))ds

@
< —— h(z*(gy — 1))ds
<G | M@=

P
<~ @@ = 1),

It follows from the conclusion of Proposition D.4, with s = w, that

)
(@ —1) < — = (D41)
Ch
However, this implies that 2*(¢, — 1) < —L, a contradiction and so we must have

ég,l < 3/2 O

Lemma D.4. There exists v > 0 and 71 > 79 such that if T > 71 and &* is a
SOPS"™, then

12 [=1,00) = 12" l1057 = 7. (D.42)

Proof. Let 7" > 0 and §” > 0 be as in the statement of Lemma D.3. Define 77 > 0

by
4C10(L v 1)?
T " h
T max{T T AT } (D.43)
and v > 0 by ( )
. . (LA 1)dy, I6;
W—mln{d, iCl ’4(L\/1)C;4L}’ (D.44)

where C}, > 1 and dj, > 0 are the constants from Propositions D.1 and D.2. Fix
7 > 71. Then by part (i) of Lemma D.3, g2 < 3/2. We consider the following

remaining cases:

(11) 1 Sdl < 3/2 and 1 SQQJ <3/27
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(i) 1< ¢ <3/2and 1/2 < o, < 1,
(iv) 1< g1 <3/2and 0 < oy < 1/2,
(v) 1/2< ¢ <land 1< ¢, <3/2,
(vi) 0 < @1 <1/2and 1 < g3 < 3/2,

(Vll) 0<q < m and 0 < 61271 < 1/2,

(vill) 0 < ¢ < gzuper and 1/2 < g1 < 1,

(IX) m §q1 S 1 and 1/2§qu71 S 1,

(X) mgcjlgland0<cjm§1/2.

(i) Suppose ¢; > 3/2. By Lemma D.3, we have ||2*|[_1,0c) > 70" > 77.

(i) Suppose 1 < ¢ < 3/2 and 1 < ¢21 < 3/2. By (D.19), the periodicity
of 2%, (D.17), the facts that p = g2+ 1, 2 — §o; > 1/2 and 2 — ¢; > 1/2, and part
(iii) of Proposition D.2, we have

o 7d T + 1
2(0) > 20’}% <| (210h ) /\1) : (D.45)

RN . Tdh i’*(O)
* 1| > — 1),L). D.4
G+ ) = min (52 (G201 1) (D.46)

First, consider the case that %1:1) ¢ (—1,1). By (D.45), 2*(0) > % >

T7.

Second, consider the case that "’3*(2401:1)

(D.45)-(D.46), we obtain

)

and QCQC(S are in (—1,1). Combining

#(0) > Zg’jl min (Zg’; #*(0), L) . (D.47)
h h

We show that min (%i*(O),L) = L. For a proof by contradiction, suppose
h

that instead min (%i*(O),L) = %i*(()) < L. Rearranging (D.47), we obtain

4
T < %, which contradicts our choice of 7. Hence min <Z—g’m*(0), L) = L and by
h

substituting back into (D.47), we have £*(0) > ch";f > 1.
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Third, consider the case that %lhﬂ) € (—1,1) and 22*(,(*2) ¢ (—1,1). By

(D.46) and our choice of 7, |2*(¢; +1)| > min (%, L> = L. It follows from (D.45)
that 2*(0) > 1‘18; > T7.
(iii) Suppose 1 < ¢ < 3/2 and 1/2 < @21 < 1. By (D.15), the periodicity

of ilA'}*, the fact that (jg - ((jl + 1) = qu71 > 1/2, (Dl?), the fact that 2 — qu > 1/2,

and part (iii) of Proposition D.2, we have

. Tdy, (127(g +1)| >
z*(0) > A1 D.48
e . ([ 1dy (2*(0)
* D] > — ANL), L. D.49
First, consider the case that %1;1) ¢ (—1,1). Then by (D.48), z*(0) >
=T

j;ég) ¢ (—1,1). Then by (D.49) and our

choice of 7, |#*(¢1 + 1)] > L. Combining this with (D.48), we have #*(0) >
s (&A1) = 25 (LAGY) > 32 (LA > 7.
: : &*(q1+1) & (0)
Third, consider the case that “=Z— € (—1,1) and 55> € (=1,1). By

(D.48)~(D.49),

Second, consider the case that

d d
#(0) > ;C’; min (ZOZ:%*(O), L) . (D.50)
h h

We show that min (%’éi*(@),L) = L. For a proof by contradiction, suppose

that instead min (%i*(O),L) = %j*(O) < L. Rearranging (D.50), we obtain
h h
V8CH Tdp, A%

> which contradictions our choice of 7. Hence min (mx (0), L) = L and
h
by substituting back into (D.50), we have 2*(0) > % > 7.
h
(iv) Suppose 1 < ¢ < 3/2 and 0 < ¢o3 < 1/2. By (D.15)—(D.17), the

periodicity of z*, the facts that QQ% > 2 and 2 — ¢ > 1/2, and part (iii) of

T <

Proposition D.2, we have

o |# (@ £ D)

O (D.51)
&*(8)] > min (% (”;é? A 1) (t - cm,L) te (a2 (D.52)
4*(8)] > min (% (gé? A 1) (2 d), L> teRa+1l.  (D53)
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First, consider the case that (0) € (—1,1). By (D.51)—(D.53),

. . (Tdp . .
|#* ()| > min <4_C’;|x (G + 1)|,L> Lt [G+1/2,6,+1]. (D.54)
h

We show that min (%ﬁ*(q} +1)], L) = L. For a proof by contradiction, suppose
h

that instead min (%]iz*((jl + 1), L) = %| A*((f1+1)| < L. By considering (D.54)

6
with t = ¢; + 1 and rearranging, we obtain 7 < 7 , which contradicts our choice

of 7. Hence min <%|x (G +1)], L) = L and by substituting back into (D.54),
h
we have |2*(t)| > L for all t € [¢1 +1/2,¢, + 1].

Second, consider the case that Z*éz) ¢ (—1,1). By (D.52)—(D.53),

4*(6)] > min (%’%,L) —Lotei+1/2.d+1],
where the last equality follows our choice of 7.
It follows that |2*(t)] > L for all t € [¢1 + 1/2,¢1 + 1] (independent of
(—1,1) or not). By part (iii) of Lemma 5.1, —L < 2*(t) < 0 on
the 1nterval, and so 2*(t) = —L for all t € [§1+1/2,¢1+1]. Then by the periodicity

of #*, the fact that #* is non-decreasing on [§1,+1, ¢2 + 1], (5.12), (5.8) and the
fact that ¢o = ¢1 + 1 + Go1 < ¢1 + 3/2, we have

2*(0) = 2*(¢2 + 1) > 2" (¢1 + 2)
Q+2

zae*(ql+3/2)+¢/ h(—L)ds

G1+3/2
BT
2

v

> TY.

(v) Suppose 1/2 < ¢ <1land 1< gy <3/2. By (D.19), the periodicity of
&*, the fact that 2 — g7 > 1/2, (D.12) and part (iii) of Proposition D.2, we have

#(0) > ;g’% ('I(glcj DIpA 1> (D.55)
(6 + 1)| > min (;g’; ( CE? A 1) ,L) (D.56)

First, consider the case that (q—1+1) ¢ (—1,1). By (D.55), we have 2*(0) >

Tdp
20f = T7-



145

Second, consider the case that % € (—1,1) and %(0) € (—1,1). Com-
h h
bining (D.55)—(D.56), we obtain

s Tdh . Tdh s
z*(0) > iy min (QC’ﬁx (0),L) . (D.57)
We show that min (%i*(O), L) = L. For a proof by contradiction, suppose that
h
instead min (;—g’};i*(O),L) = %i*(O) < L. Then rearranging (D.57), we obtain
h h
T < \/jfﬁ, which contradicts our choice of 7. Hence min (%?;:%*(0), L) = L and
h
after substituting back into (D.57), we have #*(0) > T%L > 7+,

4cp
Third, consider the case that %lhﬂ) € (—1,1) and I*(f) ¢ (—1,1). By

c
(D.55)—(D.56) and our choice of T,

z*(0) > Tdn min <

Tdh TdhL
L > T7.
AC} ) =

o >
203" ) = act =

(vi) Suppose 0 < ¢; < 1/2 and 1 < ¢o1 < 3/2. By (D.19), the facts that
q%l >2and 2 — go; > 1/2, (D.12) and part (iii) of Proposition D.2, we have

o 7d (1 + 1
i*(0) > 20% (' (210h I a 1) (D.58)

5+(0
|2*(¢1 + 1)| > min (xC(Q),L) : (D.59)
h

First, consider the case that %1:1) ¢ (—=1,1). Then by (D.58), z*(0) >

% > T7.
Second, consider the case that %1:1) € (—1,1). Combining (D.58)—(D.59),
we have
" Tdp (2%(0)
z*(0) > 4—02m1n ( c2 ,L> . (D.60)

*

We show that min (z

C(QO ),L> = L. For a proof by contradiction, suppose that
h
(0

instead min <i*c(§),L> = C(fb) < L. Then rearranging (D.60), we obtain 7 < %,

which contradicts our choice of 7. Hence min (:z«*(o) L> = L and by substituting

T
back into (D.60), we have £*(0) > Z‘é’;é > T17.

(vii) Suppose 0 < ¢; < m and 0 < ¢o; < 1/2. By (D.11)—~(D.12),
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(D.15), the periodicity of * and the fact that 1;2—4?1 > 1, we have

X . (2%(0)
Z*(t)| > min -
(0] > min (T

" 2*(¢1 + 1)]

(D.62)

Combining (D.61)—(D.62) yields

27(¢1 + 1)]

|:f:*<t>!2min< - <tA1—ql>,L),41Stsql+1. (D.63)
ChQ1

Since ¢; < }l, we have

(@G + Dl .
—(1 - >3 1)[.

cig LT @) >3 @+ )]
Substituting this inequality into (D.63) when t = ¢; + 1, we obtain |#*(¢, + 1)| >
min (3|2*(¢1 + 1)|, L). Since |2*(¢1 + 1)| # 0, we must have |2*(¢; + 1)] = L. In

light of this and the fact that ¢; < W, (D.63) implies that
h

|2*(¢)] = min( L)y>Lforall g +1/2<t< g +1.

Chtr”

By part (iii) of Lemma 5.1, —L < 2*(¢t) < 0 for all ¢ +1/2 < ¢ < ¢1 + 1, so
2*(t) = —L on the interval. Then by (5.12), (5.8) and the fact that ¢» < ¢; + 3/2,
we have

a2

F(G +2) = 3G +3/2) + 7 / Bt (s — r))ds > B > 1.
G1+3/2 2

(viil) Suppose 0 < ¢ < W{ and 1/2 < ¢o; < 1. By (D.12), the fact
that lg—fl > 3, (D.15), the periodicity of *, and part (iii) of Proposition D.2, we

have
el . (32*(0
251 +1)] = mln( C,(f ),L> : (D.64)
; Tdn (12%(@ +1)]
*(0) > AL D.65
w0235 (5 D65
First, consider the case that %1:1) ¢ (—1,1). Then by (D.65), 2*(0) >
Tdy,

ﬁZT’Y
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Second, consider the case that £+ ¢ (—1,1). By (D.64)—(D.65),

Ch,
" Tdp . (32%(0)
z*(0) > Q_Cfmm( c2 L. (D.66)
We show that min (35”0*50), L) = L. For a proof by contradiction, suppose that
instead min (3’20*50),L> = ¥ ( ) < L. Then rearranging (D.66), we have 7 < 336,

which contradicts our choice of 7. Hence min (396 © L) = L and by substituting

cz o
back into (D.66), we have z*(0) > 72%5 > T17.

(ix) Suppose m <@ <land1/2 < gy <1. By (D.15), (D.12), the

(LV1)
periodicity of z*, part (iii) of Proposition D.2, and the lower bound on §;, we have

. Tdp (12°(¢ +1)|
*(0) > A1 D.67
(o) > g (110 (D.67)

Tdh Zi'*(0>
1) > 1),L]. D.
|2* (g1 + 1)| mm(él(L\/l)CZ(Ch /\), ) (D.68)
First, consider the case that %1:1) ¢ (—1,1). Then by (D.67), 2*(0) >
% > T7.

Second, consider the case that %1:1) € (—1,1) and %(h()) ¢ (—1,1). By
(D.68) and our choice of 7, |2*(¢; + 1)| > min (W, L) = L. Then by (D.67),
i°(0) > 5ar > 7.

Third, consider the case that @ € (—1,1) and i*c(:) € (—1,1). Then

by (D.67)—(D.68),

N Tdh Tdh N
(0 ——F—2"(0),L | . D.69
1 >_2C4mm<4(L\/1)O,§$( ) ) (D-69)
We show that min (Wi*@) L) = L. For a proof by contradiction, sup-
pose that instead min (ﬁncﬁx (0), L) = 4(;\/‘11’30 #*(0) < L. Then rearranging

/ 6
(D.69), we obtain 7 < %, which contradicts our choice of 7. It follows

that min( (L</d1h)08 i*(O),L) = L and by substituting back into (D.69), we have

i°(0) > 3¢ > 7.
(x) Suppose W < ¢ <1landO0 < g, <1/2. By (D.15), the period-
h

icity of z*, the fact that % > 1, (D.12) and part (iii) of Proposition D.2, we
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have

2 (¢ + 1))
()ZT,

012 min (T (42 A1) (- 1.L) e€ L+ 1

Combining the above inequalities, we have

o
m%w|zxmn(7ﬁ‘(m<%;*)’A1)(t—1%L),te[Ldy+u. (D.70)
C’h Ch

If we set t = ¢; + 1 in (D.70) and use the fact that ¢; > W, then we obtain
h

a . Tdp, |2%(q1 + 1)
u%+Mmm< ( AL),L). (D.71)
4(LVv1)CF cp

First, consider the case that % ¢ (—1,1). By (D.71) and our choice
h

of T,

. Tdp,
(g + 1) > — = L) =1L.
G+ )] 2 min (g7 e )

Second, consider the case that % € (—1,1). By (D.71),
h

ks A . Td,,
|2*(¢1 + 1)| > min (W|£B (1 + 1), L) (D.72)

We show that min (W\i‘*(cﬁ + 1)\,L> = L. For a proof by contradiction,

suppose that instead min (W’j*@l + 1)],L> = (L\T/Cllhcmhr (1 +1)] < L.
Rearranging (D.72) and using the fact that 2*(¢; + 1) # 0 yields 7 < %,

which contradicts our choice of 7. Hence, min (W@*(dl +1)|, L) = L and
so |2*(q1 +1)| > L.

Thus, |Z(¢; + 1)| > L in either case and because —L < 7*(g; + 1) < 0, we
must have 2*(¢; + 1) = —L. Then by (D.70), the fact that ¢ >
choice of 7, for t € [1 + ¢1/2,1 + ¢1],

A . Tdy, L . Tdy, L N1
(t)] > — | =< A1) ,L) > ——— L) =1L.
ol (e () +) 2o (o)
By Lemma 5.1, since ¢ < 1, —L < 2*(t) < Oforall t € [1+ ¢/2,1+ ¢1] C
(41, ¢1 + 1], so @*(t) = —L on the interval. Then by (5.8), (5.12) and the fact that

W and our
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Go=q1+1+G21 < ¢1/2+ 2, we have

(G +2) > & IR /QHQ h(—L)ds > ™o
xz i —_— T — S — T7Y.
nTe =0 4y =s@vyci=""

2

Thus for 7 > 71, we have ||#*||[_100) > 77 in each case, which completes

the proof of the lemma. n

Proof of Lemma 5.2. Since 77 = 77127 and 27 is a SOPS®, by Lemma D.4, there
exists 71 > 0 and v > 0 such that [|Z7||—100) = T |27[|[=1,00) > 7 for all 7 >

f O
T'.

This appendix is based on the paper “Existence, Uniqueness and Stability of
Slowly Oscillating Periodic Solutions for Delay Differential Equations with Non-
negativity Constraints” written jointly with Ruth J. Williams and currently in

preparation.



Appendix E

The Space D

Fix —oo < a < b < 0co. Let Di,p denote the space of real valued functions
on [a,b] with finite left and right limits at each time ¢ in (a, b), finite right limits
at a and finite left limits at b.

Lemma E.1. The space Dj,y is a Banach space under the uniform norm ||-||q-

Remark E.1. Note that Dy, is not a separable Banach space under the uniform

norm (see e.g., [3]).

Proof. 1t is simple to check that D,y is a vector space under ||-||j4,5, S0 in order
to prove that D, is a Banach space, it is left to show that Dy, is complete.
Let {u,};2, be a Cauchy sequence in Dj,p. Then for each t € [a, b], the sequence

{un,(t)}22, is Cauchy in R, so we can define the real-valued function w on [a, b] by

w(t) = lim u,(t), t € [a,b].

n—so0
Since {u,}2, is Cauchy in Dj,y), for each € > 0 there exists n. € N such that
|tn, — ul|[ap) < € for all n > n..

We now prove that u € Dy, . Fix t € (0,1]. For each n € N, u,, has a finite
left limit at ¢, which we denote by u, (t—). Since |, (t—) =t (t—=)| < [[un — Um0
for all n,m € N, it follows that u(t—) = lim, o u,(t—) exists. Fix ¢ > 0 and
choose n. € N such that [|u — uy || < € for all n > n.. Now fix 6 > 0 such that
for all s € (t — 0,t), |un(t—) — uy(s)| <e. Then for all s € (t — 7,1),

u(t=) = u(s)] < |u(t=) = un(t=)| + [un(t=) — un(s)| + [un(s) —u(s)| < 3e.
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Therefore limg u(s) = u(t—) < oo. Since t € (a,b] was arbitrary, u has a finite
left limit at each ¢ € (a,b]. Following a similar approach on [a,b), we can show

that u has a finite right limit at each t € [a,b). Hence u € Djyy). O

This appendix is based on the paper “Existence, Uniqueness and Stability of
Slowly Oscillating Periodic Solutions for Delay Differential Equations with Non-
negativity Constraints” written jointly with Ruth J. Williams and currently in

preparation.



Appendix F
Some Functional Analysis Results

Here we review some results extending the concepts of differential calculus
to the infinite-dimensional Banach space setting. The following results and more
can be found in Chapter 4 of [32]. Let X, Y and Z denote Banach spaces. Let
U be an open subset of X and let V' be an open subset of X x Y. Recall that
L(X,Y) denotes the space of bounded linear operators from X to Y.

Definition F.1. A function f : U — Y is Fréchet differentiable at xg € U if there
exists L € L(X,Y) such that

flzo+h) — f(xg) — Lh =0(h) as h — 0.

We denote L by D f(zg) if it exists. If f is Fréchet differentiable at all x € U, then
f is Fréchet differentiable on U. If x — D f(z) is continuous as a function from

U— L(X,Y), then f is continuously Fréchet differentiable on U.

Definition F.2. A function f : U — Y is differentiable at o € U in the direction
he X if

Onf (o) = lim f(zo+ el;) — f(zo)

exists, where the convergence is taken to be in the Banach space Y. We call

Onf (o) the directional derivative of f at z( in the direction h.

Proposition F.1. Let f : U — Y be a continuous function. Suppose that

Onf(zx) exists for all z € U and h € X, and there exists a continuous function
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L:U — L(X,Y) such that L(x)h = Opf(x) for allx € U and h € X. Then f is
continuously Fréchet differentiable on U with deriwative Df = L.

The following proposition is a version of the implicit function theorem for
the general Banach space setting. For a Fréchet differentiable function g : V —
Z, define (D1g(zo,10))(-) = (Dg(zo,40))(-,0) : X — Z and (Dag(xo,%0))(-) =
(Dg(z0,90))(0,-) : Y — Z.

Proposition F.2. Suppose (xg,y0) € V and g : V — Z is continuously Fréchet

L exists

differentiable on V', g(xo,y0) = 0 and the inverse operator [Dag(xg,yo)]
and is in L(Z,Y). Then there is an open neighborhood W of xy in X and a
unique continuous function u : W — Y such that u(xo) = yo, (x,u(z)) € V
and g(z,u(z)) = 0 for all x € W. Moreover, W can be chosen such that u is

continuously Fréchet differentiable on W and

Du(z) = —[Dag(, u(x))] "' Drg(w, u(x)) for all x € W,

where © — [Dag(x,u(z))] ™

into L(Z,Y).

s well-defined and continuous as a function from W

This appendix is a formulation of known results based on a similar formu-
lation of these results in the paper “Existence, Uniqueness and Stability of Slowly
Oscillating Periodic Solutions for Delay Differential Equations with Non-negativity

Constraints” written jointly with Ruth J. Williams and currently in preparation.
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