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one: assessing the effect of arbitrary cutoffs of propensity 
scores
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bDepartment of Statistics, Northwestern University, USA

cDepartment of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical 
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Abstract

Causal inference methodologies have been developed for the past decade to estimate the 

unconfounded effect of an exposure under several key assumptions. These assumptions include, 

but are not limited to, the stable unit treatment value assumption, the strong ignorability of 

treatment assignment assumption, and the assumption that propensity scores be bounded away 

from zero and one (the positivity assumption). Of these assumptions, the first two have received 

much attention in the literature. Yet the positivity assumption has been recently discussed in only a 

few papers. Propensity scores of zero or one are indicative of deterministic exposure so that causal 

effects cannot be defined for these subjects. Therefore, these subjects need to be removed because 

no comparable comparison groups can be found for such subjects. In this paper, using currently 

available causal inference methods, we evaluate the effect of arbitrary cutoffs in the distribution of 

propensity scores and the impact of those decisions on bias and efficiency. We propose a tree-

based method that performs well in terms of bias reduction when the definition of positivity is 

based on a single confounder. This tree-based method can be easily implemented using the 

statistical software program, R. R code for the studies is available online.
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1. Introduction

Randomized experiments have often been considered the gold standard by which causal 

relationships between variables can be established. When a treatment is randomly assigned 

to subjects in a study, randomization minimizes the potential confounding of treatment 

effects from any pre-treatment variables and the systematic differences induced by these 

variables. This desirable feature of randomized experiments strengthens the internal validity 

of the inferences from the experimental study. However, randomized experiments are not 

always feasible in practice and interest in causal relationships in observational and quasi-

experimental studies has led to a well established suite of methods for causal inference in 

these contexts. When treatment is not randomized, as in the observational study, assumptions 

are needed to derive unbiased estimates of the treatment effect. One such assumption is 

known as the positivity assumption (Westreich and Cole, 2010). In nonrandomized studies, 

the positivity assumption addresses the probability of receiving treatment, but this 

probability must be modeled in the absence of randomization. Propensity score methods are 

commonly used to estimate probabilities of receiving treatment by conditioning on 

observable confounders that are considered relevant to the potential treatment effects 

(Rosenbaum and Rubin, 1983). Formally, the positivity assumption requires that the 

propensity score, for all values of the treatment and all combinations of values of the 

confounders, be strictly between 0 and 1. In any study in which the positivity assumption is 

not met, estimates of treatment effects may be biased when the analysis includes subjects 

whose probabilities of receiving treatment violate this assumption (Hong, 2010; Schafer and 

Kang, 2008). For nonrandomized experiments, the problem of positivity implies that there 

exist subjects of one treatment group that have no comparable subjects in an alternative 

treatment condition so that estimates of causal effects for these individuals is questionable.

Violations of the positivity assumption are indicative of overlap problems in the distributions 

of the propensity scores, and consequently, of the observed confounders, among the 

treatment groups. Inference for subjects that lie off of the common support of the propensity 

scores is difficult and often requires extrapolation methods. A common method of 

addressing this overlap concern and identifying “non-positivity” subjects is to truncate the 

distribution of propensity scores so that only those subjects whose propensity scores lie on 

the common support are included in the analysis. Typically, this truncation is done using 

specified calipers or optimal caliper widths on the distribution of propensity scores (Austin, 

2011). Crump et al. (2009) proposed an alternative method that characterizes optimal 

subsamples by which the average treatment effect can be precisely estimated using the 

distributions of the propensity scores. Further work on the assessment of the positivity 

assumption has been done in previous studies (Petersen et al., 2012; Westreich and Cole, 

2010) using parametric models with the propensity score being randomly close to values of 

0 or 1.

Current methods of addressing violations in the positivity assumption concern the detection 

and identification of “non-positivity” subjects and this identification is inherently connected 

with the estimation of propensity scores. While these current methods of addressing “non-

positivity” perform well in practice, they depend on the specification of the propensity score 

model. Because the true propensity scores in observational studies are unknown in practice, 
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estimation of the propensity scores is sensitive to the assumptions of the model in model-

based approaches. This paper seeks to contribute to the current methods of detecting “non-

positivity” by considering cases where there exist subjects with propensity scores that are 

systematically 0 and 1. In practice, identification of “non-positivity” subjects in these 

contexts is challenging because model based estimation of propensity scores may not predict 

a propensity score of 0 or 1. We consider a new, yet simple, tree-based method to detect 

“non-positivity” subjects that facilitates estimation of causal effects by excluding systematic 

“non-positivity” subgroups using classification and regression trees (CART) and Jackknife 

resampling methods. An advantage of tree-based methods is that propensity scores of 0 and 

1 are accommodated. The proposed method shares similarities with established methods in 

Crump et al. (2009), but utilizes machine learning methods to precisely identify systematic 

“non-positivity” subjects. We evaluate combinations of various propensity score models, 

both parametric and nonparametric, with several causal inference methodologies such as 

matching with propensity scores, inverse propensity weighting (IPW), and regression-based 

G-computation methods in the presence of systematic “non-positivity” subjects. For each 

combination of causal inference methods and propensity score model, arbitrary cutoffs in the 

propensity scores were used to assess the performance of each method in terms of bias and 

efficiency. We illustrate that this method performs adequately when “non-positivity” is 

defined by a single confounder, specifically with a categorical confounder.

The paper is organized as follows. In Section 2, we begin with a brief review of the causal 

inference framework and propensity score methods. In Section 3, we review current tree-

based methods such as the CART method, boosted regression and random forest used to 

estimate propensity scores. Section 4 details the new proposed method of removing “non-

positivity” subjects using tree based methods to estimate the propensity scores. Section 5 

reviews various causal inference methods based on estimated propensity scores and these 

methods include IPW, matching with propensity scores, and G-computation. Section 6 

provides the simulation results of the conventional and new methods. Section 7 concludes 

with a discussion.

2. Review of causal inference framework and propensity scores

2.1. Defining causal effects

Rubin (1974, 1976, 1977, 1980a, 1980b, 1986) introduced the framework for defining causal 

effects and provided extensions of this framework to different study designs. Throughout 

this paper, we consider the simple case where we assume that the exposure, T, and outcome, 

Y, are binary random variables. Variables denoted in capital letters indicate random 

variables and lower case letters are their observed values. Consider a clinical study of the 

causal effect of smoking (denoted by T = 1 if smoking, T = 0 otherwise) on a binary heart 

outcome (Y = 1 if adverse lung condition; Y = 0 otherwise). In the interest of notational 

simplicity, we suppress i, the indicator for each study subject. Each study subject can have 

two potential outcomes, that is, Y(1) the potential outcome under T = 1 and Y(0) under T = 

0. Important covariates include measured confounders X and possible unmeasured 

confounders U as shown in Table 1. The measured confounders X include pretreatment 

variables such as patient history. In the case of continuous outcomes, one expression of the 
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causal effect is E(Y(1)) − E(Y(0)), where E(A) is the mathematical expectation of a random 

variable A. For binary outcomes, an analogous expression of the causal effect is given by the 

log odds ratio equation:

logit(E(Y(t))) = α + β ⋅ t, (2.1)

where logit(A) is log(A=(1 − A)), E(Y(1)) is P (Y(1) = 1), and β is logit(E(Y(1))) − 

logit(E(Y(0))), the causal log odds ratio.

Note that for each subject, only one potential outcome can be observed and the unobserved 

potential outcome is missing depending on the condition of the exposure T. Thus, T 
determines which potential outcome is observed. Suppose that T is randomized, so that T 
“discloses” the potential outcomes purely at random, regardless of (un)measured 

confounders. Then, because of randomization, the missing potential outcome of Y(1) has the 

same distribution as the observed Y(1) so that E(Y(1)) = E(Y(1)|T = 1) = E(Y|T = 1). Thus, 

randomization enables the observed log odds ratio

logit(E(Y(1) T = 1)) − logit(E(Y(0) T = 0)) (2.2)

to be causal in estimating β in Equation (2.1).

However, if T is not randomized, the treatment effect is confounded (correlated) with the 

confounders X and U. Thus, the potential outcomes Y(1) and Y(0) are dependent on T, and 

also on X and U as well. In most causal inference studies, researchers try to measure all 

confounders such that all or at least most of the confounding bias is removed. Thus far, there 

is no method developed to test this assumption on bias removal, but sensitivity analyses exist 

to analyze the effect of unmeasured confounders if it exists (Lin et al., 1998; Rosenbaum, 

2002; Brumback et al., 2004; Shen et al., 2011).

2.2. Propensity scores

In the absence of treatment randomization, conditioning on observable confounders creates a 

pseudo-randomized data set where T is disassociated with X. However, when X includes 

multiple confounders, the matching problem by which units in the treatment group, T = 1, 

are compared to those in the control, T = 0, quickly becomes a multidimensional problem. 

Propensity scores are scalar valued summaries of multi-dimensional confounders, where the 

propensity score of receiving treatment is defined as e(X) ≡ P(T = 1|X = x). In a randomized 

study, e(x) is a constant, usually 0.5, regardless of measured and unmeasured confounders. 

In non-randomized experiments, the true propensity scores are unknown since the 

mechanism by which subjects receive treatment is unknown. The propensity scores therefore 

must be estimated from observed data, and in an observational study, e(x) can range from 0 

to 1. Propensity scores are balancing scores where matching by the propensity scores is 

equivalent to matching by all the confounders used to estimate the propensity scores 

(Rosenbaum and Rubin, 1983). In matching, this reduces the multidimensional nature of the 

problem to a unidimensional nature.
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2.3. Assumptions for causal inference with propensity scores

Because nonrandomized studies lack the desirable properties of randomized treatment 

assignment, assumptions are needed to derive unbiased estimates of causal effects in 

observational studies. While the positivity assumption is the focus of this study, additional 

assumptions are necessary to define treatment effects in the propensity score framework.

Assumption 1. (Stable unit treatment value assumption (SUTVA) (Rubin, 
2005))—If SUTVA holds, the potential response of an individual is independent of the 
mechanism used to assign treatment and is independent of the treatments assigned to other 
individuals. Specifically, consider a study with N individuals and a binary treatment T 
indexed by T = 0; 1 and the outcome of interest, Y. Using this notation, let Yi(T) denote the 
potential outcome of individual i when exposed to treatment T, T = 0; 1. Under SUTVA, if 
individual i, i = 1;…; N is exposed to treatment T, the observed value of Y will be Yi(T) 

(Rubin, 1980a). Note that under SUTVA, Yi(t) depends only on the treatment Ti that 
individual i received and not on the treatment that another individual i′ received, where i ≠ i
′. In addition, SUTVA implies that there are no unrepresented versions of the treatments so 
that Yi(T) is independent of which version of T was administered (Rubin, 1980a).

Assumption 2. (Consistency (Cole and Frangakis, 2009))—Under this assumption, 

an individual’s potential outcome under the observed exposure is the individual’s observed 

outcome. That is, Y i
obs = Y i t i f T i = t.

Assumption 3. (Strong ignorability of treatment assignment (Rosenbaum and 
Rubin, 1983))—Let e(X) be the estimated propensity score and T = 1 be the indicator of 
receiving the treatment condition. Under strong ignorability, (Y(1); Y(0)) ⊥ T|e(X) and 0 < 

P(T = 1|e(X)) < 1. Strong ignorability is typically met in studies where treatment is 
randomly assigned to individuals. Importantly, the strong ignorability assumption implies 
that X contains all confounders that explain variation in the potential treatment effects and 
that the probability of any individual i receiving a treatment Ti is nonzero.

In addition to these assumptions and positivity, unbiased estimation of the treatment effects 

also requires correct specification of the causal model. Given that these assumptions hold, 

various methods have been proposed to derive unbiased estimates of the average causal 

effect. These include matching (Rosenbaum, 2010), stratification (Rosenbaum, 2010), and 

inverse of propensity weighted methods (Robins et al., 2000), all of which will be reviewed 

briefly in the later sections. Before discussing these methods of estimation of causal effects, 

we begin with a summary of existing tree-based methods of estimation of propensity scores 

that can predict propensity scores of 0 and 1.

3. Tree-based methods for estimation of propensity scores

3.1. Classification and regression trees (CART)

Decision trees (Breiman et al., 1984) are a class of nonparametric methods used in machine 

learning to solve classification and regression problems. Tree-based methods partition an 

entire data set into different subgroups based on values of significant predictors. For 
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example, consider a regression problem with continuous outcome Y and related binary 

predictors X1, X2 (0 or 1). Let S1 denote an entire undivided sample and LS1 denote the sum 

of the squared differences between Y and its mean, namely LS1 = ∑i ∈ S1
yi − yS1

2
, for 

subject i who belongs to S1. As usual, the sum of squared differences assesses the distance 

between Y and its mean. The goal of CART is to reduce this distance by partitioning the 

data so that

∑
i ∈ S1

yi − yi
2 > > ∑

k = 1

K
∑

i ∈ Sk

yi − ySk

2
, (3.1)

where k indicates subgroups with K being its total number and “A >> B” indicates that B is 

minimally smaller than A to the point that further division of the data is spurious. The 

distance measure ∑i ∈ Sk
yi − yi

2 in (3.1), which CART aims to optimize, is called the 

“impurity function” (Breiman et al., 1984) and can easily be replaced by likelihood (Kang, 

2012). Now given predictors Xj; j = 1; 2, CART will evaluate 

∑
i ∈ X j = 0

yi − yi
2 + ∑

i ∈ X j = 1
yi − yi

2, which is denoted by LSX j
. Here LSX1

 indicates 

the sum of the sums of squared differences between Y and its mean for two groups divided 

by the X1 values (0 or 1). If X1 is more predictive of and correlated to Y compared to X2, 

then LSX1
 will be much smaller than LSX2

. That is, X1 divides the data set into more 

homogeneous subgroups compared to X2 so that the average of the y′ s in subgroups 

divided by X1 have smaller variance (or standard deviation) from real data compared to the 

average of the y ′s in subgroups by X2 (Breiman et al., 1984). This can be generalized to p > 

2 confounders: X1; X2;…; Xp, where CART evaluates all these confounders as described 

above. The case with continuous confounders is defined analogously. Because different 

values of the same confounder can be used to determine each splitting, CART can evaluate 

the same confounder again, recursively. For this reason, the CART algorithm is sometimes 

called “recursive partitioning” (Zhang and Singer, 1999). This algorithm can be 

implemented in the R package RPART.

CART determines the total number of subgroups of a tree by pruning similar subgroups 

using a cost-complexity function

Rα(T) = R(T) + α T̆ , (3.2)

where R(T) is the average within group sum of squares ∑k
K ∑i ∈ Sk

yi − yi
2 and |Ť| is the 

number of subgroups of the subtree. The parameter α is the complexity parameter that 

contributes a penalty term for each additional subgroup (Deconinck et al., 2005). The 

parameter α is estimated with cross-validation techniques (Deconinck et al., 2005).
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In the case of a binary outcome, CART uses the entropy function –p · log(p)-(1-p) · log(1-p), 

where p is the proportion of binary response, an impurity function to be used in equation 

(3.1). The Bayes error, min(p; 1 − p), as well as the Gini index, p (1 − p are also used. All 

these impurity functions be zero if p is zero (Zhang and Singer, 1999). In particular, the 

entropy function is 0 because 0 · log(0) is defined to be 0 (Zhang and Singer, 1999). This is 

an important property of CART in terms of excluding subjects who always defy or accept a 

certain treatment.

Despite the many merits of CART, it has received criticism on its stability and other well-

known issues (Hastie et al., 2001). Though stability is a concern when interpreting the 

model, the focus of this paper is in the ability of a single CART tree to detect systematic 

“non-positivity” subjects. In the following section, we review the established methods that 

bypass some of the limitations of a single tree.

3.2. Random forest

Random Forest (RF) is a method that builds a forest of CART trees from bootstrap samples 

of observed data. RF is closely related to the concept of bagging. “Bagging” uses bootstrap 

aggregation to aggregate predictions that are repeatedly fitted based on bootstrap samples. It 

is well known that a bagging estimator gives better prediction than one single prediction 

model (Hastie et al., 2001, p.303). Unlike traditional single CART analysis, RF does not 

require pruning. Yet building a forest of many trees can bypass criticisms of the single 

CART method and enhance the prediction of a single CART tree model by averaging the 

entire forest of trees (Hastie et al., 2001, p.600). While mathematical properties of RF are 

still under study (Biau, 2012), the clear idea of building many trees in RF is to improve 

unbiased prediction solely by reducing variance (Hastie et al., 2001, p.600). In particular, RF 

uses randomly selected subsets of predictors at each splitting. Given a p-dimensional vector 

of predictor variables, a subset of variables is used to determine the best split in the tree 

(Breiman, 2001). The R package randomForest, which was used in our study, has default 

values: p for categorical responses and p/3 for continuous responses.

One criticism that is still under debate against RF is its potential overfitting (Hastie et al., 
2001, p.596). RF, while it does not prune, builds trees that are as different from amongst 

themselves as possible so that correlations among the trees become smaller and hence the 

overall variance of the prediction becomes smaller. Generally the performance of RF has 

been assessed with various measures for prediction errors such as misclassification errors 

and average absolute errors (Hastie et al., 2001, pp. 589–593). While these measures 

evaluate the general performance of RF over the entire training or test data set, we would 

like to focus on the particular subgroups where propensity scores (predictions) are strictly 

zero or one. In the next section, we explain the boosting method as a competitor model that 

has been used in observational studies.

3.3. Boosting method (Generalized Boosted Model; GBM)

One of the most widely used parametric methods of estimating propensity scores is with the 

logistic regression model. However, since the inception of the boosted regression model, 

which can be implemented in R packages GMB and TWANG, the boosting method has become 
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readily available to the public as a well-performing nonparametric procedure to estimate the 

true propensity score model (McCaffrey et al., 2004). The estimation goal of the logistic 

regression and that of the boosted model (option “bernoulli” in GBM package) is the same: 

both of them aim to achieve the maximum Bernoulli probability likelihood. Yet, they differ 

greatly: logistic regression requires that the functional form be known, that is, the main 

and/or interaction effect terms, while the boosting method does not make this requirement. 

The boosting model utilizes a collection of simple regression tree models that are added 

together to estimate the propensity scores (McCaffrey et al., 2004).

Boosting is a simple algorithm that iteratively and additively updates the candidate model to 

yield the best prediction model. To illustrate this, consider a typical algorithm that R 

package GBM estimates, p(x) = P(Y = 1|x) with its default “Bernoulli” option for a binary 

response. The clear goal of the “gbm” function with the default option “bernoulli” is to 

maximize the log-likelihood of the Bernoulli distribution with g(x) = logit(p(x)):

∑
i

y ⋅ g x − log 1 + exp g x , (3.3)

where the functional form of p(x) in g(x) is relaxed and in fact, unspecified. The log-

likelihood can be maximized with respect to g(x), which results in r(x) = y − (1 + exp(g(x)))
−1. Note that the nonparametric way in which the confounders, x, enter the prediction model

−is an interesting feature of boosted regression. This is seen in greater detail in the boosting 

algorithm (Freund et al., 1999).

Note that compared to a single tree from CART, the aggregation and inclusion of 

interactions among the variables in the boosting algorithm and model may restrain 

p(x) = expit ∑b = 1
B g(x)(b) , for b iterations, away from extreme values of 0 and 1 because of 

the aggregated nature. This constraint away from zero and one may or may not be beneficial. 

It may be beneficial because when p(x) is used as the propensity model in the IPW method, 

the estimation is relatively more stable as shown in our simulation study. But it may not be 

beneficial in detecting extreme propensity values as it approaches 0 or 1 compared to CART. 

We investigate the performance of this popular boosting method, packaged in GBM, to 

estimate the propensity model and binary outcome model in causal inference for 

observational studies with falsely included subjects whose propensity scores are 0 or 1.

4. JCART

In the earlier section regarding CART, we introduced a simple idea of detecting subgroups of 

subjects whose positivity assumption is systematically violated. These non-positivity 

subgroups, which were identified by one single tree, may affect the analysis and lead to 

spurious conclusions due to the instability of a single CART. To avoid such spuriosity, we 

use multiple CART estimates based on a randomly divided Jackknife resampling scheme 

(Phillip, 2001). This method is referred to as the Jackknifed CART (JCART) method.
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Let θ denote the target causal estimand, which, in the case of a binary outcome, may be the 

causal odds ratio, logit(E(Y(1)) − logit(E(Y(0))). The JCART method resamples E(Y(t)), t = 

0; 1 using the following steps:

1. Randomly divide the whole data into J groups. Each group has (1=J) · 100% of 

the original data set.

2. Delete group j out of J randomly divided groups and use the rest of the (J – 1) 

groups, denoted as Lj, for growing the CART with 10 folds cross-validation 

(“xval=10,” the default option in R package RPART).

3. Repeat Steps 1–2 for each of the J random samples so as to get J estimates, 

θ1, …, θJ, where θJ is the causal estimator of Lj. For each Lj group, let sj indicate 

subgroup s of sample Lj and P(sj) be the proportion of subjects in subgroup sj of 

Lj. Note that the subgroups sj are the homogeneous subgroups partitioned by the 

CART method in which the treatment effect is most precisely estimated. The 

causal estimator of Lj is given by logit E Ys j
(1) − logit E Ys j

(0) , and E Ys j
(1)  is 

estimated by ∑s j
E Ys j

| ts j
= 1 P s j , where E Ys j

| ts j
 can be simply modeled by 

expit αs j
+ βs j

⋅ I Ts j
= ts j

. One method of estimating the coefficients αs j
,βs j

 is 

through logistic regression using the subjects in subgroup sj.

The Jackknife point and variance estimates, respectively, are given by

θ Jack = 1
J ∑

j = 1

J
θ j, (4.1)

Var θ Jack = J − 1
J ∑

j
θ j − θ Jack

2 . (4.2)

Note that the Jackknife estimator θ Jack is the average of θ j, j = 1,…, J. An advantage of the 

Jackknife method over bootstrapping is that if one bootstrap sample is cross-validated with a 

9 : 1 ratio, the training sample of this bootstrap has only about 56:7% (= 63·9/10) of the 

original data (Kleiner et al.,2012). Using the bootstrap sample would lower the statistical 

power to assess true causal estimands and would produce possibly unnecessarily 

parsimonious CART models that may subsequently result in the under-adjustment of 

confounding variables. Alternatively, the Jackknife method gives about 87:75% (= 39=40 · 

100 · 9=10) of the original data when J = 40, an idea that was also used in recent work by Su 

et al. (2012). We use J = 40 for the simulation study in subsequent sections. JCART uses the 

nonparametric methods of CART to estimate propensity scores, with propensities of 0 and 1 

possible, while also inheriting the properties of unbiased point estimation and efficiency in 

variance estimation of the Jackknife resampling method. Table 2 summarizes the desirable 
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features of each of the tree-based methods of propensity score estimation used in the 

following study.

5. Existing methods of causal inference using propensity scores

In this section, we review several causal inference methods used to estimate treatment 

effects based on estimated propensity scores.

5.1. The IPW method

IPW is a method that was proposed to reduce bias in the estimation of population quantities 

(Horvitz and Thompson, 1952). IPW has also been used in epidemiology to draw causal 

conclusions (Robins et al., 2000). Let X denote a vector of confounders that contains some 

measured baseline information; T an exposure (or an intervention) variable; and Y a health 

outcome. Consider E(Y = 1|T = t), which can simply be modeled using

E(Y = 1 T = t) = expit α* + β* ⋅ I(T = t) (5.1)

where expit(a) is exp(a)/(1+exp(a)).

Since X confounds the relation between Y and T, β* is subject to bias. The IPW method 

weights estimating equation (5.1) with the inverse of the propensity score in order for β* to 

be the causal parameter β in equation (2.1). In particular, the weight for the causal effect of 

T is:

sw = P(T = t)
P(T = t X = x) . (5.2)

Weight sw in equation (5.2) is called a stabilized weight because the numerator probability 

makes the weight stabilized (or smaller) and makes the conditional expectation of the 

weights equal to the numerator (Robins et al., 2000).

5.2. Matching

Matched sampling was first introduced as a method to treat an observational study data set 

as a pseudo-randomized data set where groups are comparable or balanced with respect to 

baseline confounding factors (Rosenbaum and Rubin, 1983). Matching and the IPW method 

are tools commonly used to achieve the goal of turning an observational data set into a 

pseudo-randomized data set. In other words, both matching and IPW methods aim to 

disassociate the exposure variable from measured baseline confounding variables.

However, matching methods do not necessarily weight a data set in general (except Full 

matching (Rosenbaum, 2010)) while the IPW method weights each individual with the 

inverse probability. The matching method subsamples subjects from the exposure group (T = 

1) and the control group (T = 0) based on the baseline confounding variables. However, 

because of the multidimensional nature of the confounding variables, summary measures 

such as the propensity score have also been used in creating matched groups. If the 
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propensity score is used, it serves as a balancing score to balance the distributions of the 

confounders among the comparison groups. In this paper, three matching methods that are 

used are “full matching,” “nearest-neighbor matching,” and “coarsened exact matching.” 

Matching methods were implemented using the R package Matchit with options “cem,” 

“nearest,” and “full” for coarsened exact matching, nearest neighbor matching, and full 

matching, respectively.

5.3. G-computation (regression estimates) of the interaction effects

As Table 1 in Section 2 shows, Y(t) has missing data because both potential outcomes 

cannot simul-taneously be observed. But E(Y (t)) can be predicted (or imputed) with E(Y(t) 
T = t, x; θt), where θt is a vector of coefficients of the logistic regression model E(Y|T = t; x; 

θt) = expit(xθt). In particular, E(Y|T = t; x) is called the Q-model in the G-computation 

literature (Snowden et al., 2011). Note that t and x in E(Y|t; x) can have complex 

interactions. The interaction terms make the coefficient of t difficult to interpret as a causal 

effect and subsequently facilitate the reluctance of considering interaction terms for t and x 
in clinical studies. Yet the Q-model (E(Y|t; x)) allows these interaction terms because the Q-

model is used for predicting potential outcomes.

The Q-model is built in the following way. We fit a logistic regression model to estimate θt 

and predict E(Y(t)|x; θt) = π(t; θt). Let π(t; θt) denote E(expit(xθt)) = ∫ expit(xθt)dF(x), 

which is estimated by π 1; θ t = (1/n)∑i = 1
n expit xθ t . This technique is called G-

computation (Robins, 1986; Taubman et al., 2009; Westreich et al., 2012) or regression 

estimation. From this, the causal effect (causal odds ratio) is estimated by

η =
π 1; θ1 ⋅ 1 − π 0; θ0
π 0; θ0 ⋅ 1 − π 1; θ1

. (5.3)

Because the Q-model is the most important basis for predicting potential outcomes, the 

relation between T and X should be correctly modeled. With logistic regression, this is done 

by using linear combinations of T and X. Targeted maximum likelihood estimation (TMLE) 

is another approach that yields an efficient estimator, especially in the case when the starting 

density is incorrectly specified (van der Laan, 2013). Tree-based machine learning models 

consider nonparametric forms of interactions between T and X. Modeling E Y |T = t, x; θ t . 

requires careful effort because the lack of overlap in the support of x among the two groups 

defined by the binary conditions of T would result in the extrapolation of the imputation. If 

the positivity assumption were violated, the extrapolation over propensity scores of zero or 

one is overt. Results from our simulation study report biases with the G-computation method 

when systematic “non-positivity” subjects are falsely included.

6. Simulation study designs and analysis results

To analyze the performance of the tree-based methods of propensity score estimation in 

detecting systematic “non-positivity” subjects, we performed four simulation studies. The 

simulation studies were constructed using combinations of two factors, number of 
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confounders and definition of “non-positivity.” For the latter, “non-positivity” was 

considered in terms of the values of a specific confounder since the JCART method 

partitions the data based on the values of individual predictors. Because the partitioning 

procedure of tree-based methods performs well when the specific predictor is categorical, 

we explore the performance of each tree based method when the definition of “non-

positivity” has a simple definition (based on one predictor) and a slightly complex definition 

(based on more than one predictor). In addition, since the detection of subjects with e(X) = 

0; 1 is the goal of this paper, we hypothesize that propensity score estimation methods that 

predict such propensity scores will yield estimates of treatment effects that are the most 

efficient.

6.1. Simulation setup

The simulation used in this study comprised of four separate simulation studies, denoted by 

Sim1; Sim2; Sim3; Sim4. The sample size for each simulation was set at N = 1000 and the 

generated confounders, Xi, i = 1;…; 40, were all categorical. Sim1 and Sim2 were completed 

with four categorical confounders and Sim3; Sim4 were completed with 40 categorical 

confounders. For each pair of simulations, the “non-positivity” subjects were defined by one 

categorical confounder, X1, for Sim1 and Sim3, and by the sum of two categorical 

confounders, X12 = X1 + X2 for Sim2 and Sim4. The 10% and 90% quantiles of X12 were 

used to define the “non-positivity” subjects for Sim2 and Sim4. A description of the 

simulations is given in Table 3. The Xi were randomly sampled, with equal probability, from 

the interval [0:1; 1]. Table 4 describes the structure used to define the “non-positivity” group 

for each simulation, Simi, i = 1;…; 4.

The true propensity scores, e(X), were generated by the model 

expit ∑i = 1
J /2 Xi − ∑i = J /2 + 1

J Xi , were J = 4 for Sim1; Sim2 and J = 40 for Sim3; Sim4, and 

the propensity scores binary used to generate the binary exposure variable T. The binary 

potential outcomes, Y(t), t = 0; 1, were sampled using the probability structure given in 

Table 5. For example, subjects with 0 < e(x) < 1, will have their realized binary potential 

outcome Y(1) ssampled with fixed probability 0.6 for E(Y(1)) and probability 0.4 for 

E(Y(0)). Also, subjects with e(x) = 0 will have realized potential outcomes Y(1) and Y(0) 

sampled with respective probabilities 0:1 and 0:9. The probabilities were equivalent for both 

groups of “non-positivity” subjects so that both groups would have the same level of 

extreme outcomes. Note that these potential outcomes, Y(1); Y(0), were sampled with fixed 

probabilities within the subgroups defined by the propensity scores. The subgroups 

themselves were defined based on the ranges of the confounders Xi as described in Table 4. 

For example, under Sim1 and Sim3, if the covariate X1 had values 0:1 or 1, the potential 

outcome Y(1) for these subjects was sampled with fixed probability 0:1 whereas if the 

covariate X1 had values between 0:1 and 1, the potential outcome Y(1) was sampled with 

probability 0:6. While the potential outcomes are typically functions of the covariates, 

studies have also been done where the potential outcomes are functions of propensity scores 

(Little and An, 2004). In the current context, it is impossible in this data set to estimate 

E(Y(1)) for subjects with e (x)=0 so that they should be removed from the study. Similarly, 

subjects with e (x) = 1 should also be removed. The observed outcome Y, which was used 

for analysis, was defined as Y = T · Y(1) + (1 − T) · Y(0).
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The performance of JCART was compared with IPW estimation, G-computation with RF, 

and GBM in estimating the causal odds ratio. For each tree-based method, a total of 1000 

trees were used. Interactions of order 2 and 4 were considered in the GBM model, both of 

which are higher than the default. However, only the results for interactions of depth order 2 

were presented since results under order 4 were similar. To evaluate these methods with 

“non-positivity” subjects, we assessed the bias and efficiency using combinations of the 

methods with various truncation ranges in the propensity score values. Cole and Hernán 

(2008) explored the bias-variance tradeoff by considering several truncations of the weights 

in IPW. Using this recommendation, the truncated ranges of propensity scores ([0:025; 

0:975], [0:05; 0:95], and [0:1; 0:9]) were used to assess the ability of the proposed methods 

to detect and remove subjects whose propensities were zero or one from the analysis. Note 

that the range [0:1; 0:9] coincides with the recommended range proposed in Crump et al. 
(2009).

6.2. Performance of JCART using different propensity score ranges

A complete list of the methods used to estimate the average causal effect and the propensity 

scores is given in Table 6. In Table 6, the first column, “Method”, describes the method used 

to compute each estimate and is composed of two parts: the estimation method and the 

propensity score model. The names of the estimates are: “JCART” for the JCART method, 

“Match.near,” “Match.cem,” and “Match.full” for the matching methods using “nearest-

neighbor,” “coarsened exact matching,” and “full matching,” respectively, with propensity 

scores estimated by logistic regression and RF. “IPW.glm,” “IPW.gbm,” and “IPW.rf” 

indicate the IPW methods using logistic regression, GBM, and RF for the propensity score 

model, respectively. Finally, “GC.glm,” “GC.gbm,” and “GC.rf” represent the G-

computation method with propensity model based on logistic regression, GBM, and RF, 

respectively. The ranges in the subscripts attached to each name indicate the propensity 

score range by which the method was used to estimate the response. All methods, with 

exception to matching, were used to estimate the response on three truncated ranges of the 

propensity score: [0:025; 0:975]; [0:05; 0:95]; and [0:1; 0:9]. Methods without a range 

indicate estimation on the full [0; 1] propensity score range.

Tables 7–10 show the performance of the estimates of the IPW, matching, G-computation, 

and JCART methods. The tables are organized as follows, “Bias (mean)” indicates the 

average difference between estimates of causal effects and the true effect of log(2:25); “Bias 

(median)” indicates the median of differences between estimates of causal effects and the 

true effect; RMSE (Root Mean Square Error) is the square root of the average squared 

difference between causal estimates and the true effect.

Table 7 lists the results for Sim1, where four confounders were used in the study and one 

confounder, X1, determined the “non-positivity” subjects. Table 8 is structured analogously 

for Sim2 where the sum of two confounders, X12 = X1 + X2 was used to define the “non-

positivity” subjects. From Table 7, when a single categorical confounder was used to define 

the subjects with e(X) = 0; 1, the JCART methods showed superior performance across all 

measures of bias. Furthermore, several of the other methods that yielded estimates with 

magnitudes of bias close to zero used the tree-based method RF to estimate the propensity 
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scores. Closer analysis of the IPW estimates with propensities estimated by RF show that the 

magnitude of the bias becomes smaller as the range of propensity scores is restricted. This is 

not surprising as truncation of the propensity score range removes subjects whose true 

propensities lie close to or fall at the extremes.

By comparison, Table 8 shows the results for Sim2 when “non-positivity” is defined by a 

combination of two confounders. In this study, the performance of JCART is considerably 

worse compared to Table 7 where the average bias has a magnitude of 0:54 without 

truncation and improves as the range of propensity scores is truncated to [0:1; 0:9] with a 

magnitude of 0:3 in mean bias. The performance of the IPW method with propensities 

estimated by RF is comparable to the JCART methods and even superior for certain 

truncations of the propensity score range. Here, when the definition of “non-positivity” 

includes more than one covariate, the estimator is biased, but the bias decreases with an 

increasingly restrictive propensity score range. Some of the other methods, such as G-

computation with propensity estimated by RF show a small improvement compared to the 

JCART estimator. However, methods such as G-computation with propensity estimated by 

GBM yield estimates that are consistently biased, regardless of the truncation range. 

Although JCART estimates are biased under this framework, the bias is smaller than a 

majority of the other methods considered.

When 40 confounders were used in estimating the propensity score, results from Table 9 

show that the JCART estimates have small magnitudes of bias in terms of mean bias, but the 

RMSE is now much larger when compared to the case with only 4 confounders. The 

magnitude of the median bias is consistently at 0.01 across all truncation ranges for JCART 

with exception to [0:1; 0:9], but compared to Matching and G-computation, JCART 

estimates are less biased. Unlike the results from Table 7, the bias from the IPW estimates 

with RF is consistent at −0:76 while the range of truncation becomes more restrictive from 

[0; 1] to [0:05; 0:95], and the bias decreases only for the range [0:1; 0:9]. The extent of bias 

becomes worse as the definition of the “non-positivity” subjects includes two confounders, 

as illustrated by the results from Table 10. The results from Table 10 illustrate that 

estimation of the causal effect becomes inconsistent as the estimates underestimate the true 

value, which was also the case for Sim2 with 4 confounders. As shown in Table 9, the 

JCART estimates perform slightly better compared to the IPW.rf estimates, and though its 

performance is mixed compared to the other methods, the average mean bias continues to be 

smaller than a majority of the estimates considered.

7. Discussion

This paper is concerned with the performance of tree-based methods on various truncation 

ranges of propensity scores when subjects with systematic propensities of zero or one are 

falsely included in the study. The positivity assumption is assumed in all observational 

studies and it states that the propensities of being exposed to all possible exposure conditions 

for all combinations of observed confounders should be bounded away from zero and one. 

Subjects whose propensity scores are systematically zero or one, as determined by their 

baseline confounders, do not have a comparable set of subjects to be compared with in the 
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study. Failure to remove such subjects in an observational study will introduce bias, as 

demonstrated in our simulation studies.

Different combinations of propensity score estimation and causal inference methods were 

evaluated in the simulation studies. Though matching methods are natural in that they tend 

to exclude subjects whose propensities do not overlap across comparison groups, our 

simulation studies show that even after discarding these subjects, matching methods did not 

necessarily demonstrate superior performance compared to the JCART method. Our 

simulation study assessed the ability of several propensity score models to identify subjects 

whose propensity scores were zero or one. In particular, we used tree-based methods such as 

GBM, RF, and the JCART method to fit the propensities. A surprising result was that GBM 

was unable to detect subjects with propensities being zero and one. Though these three 

methods have been compared extensively, this study is the first to compare them in the 

context of causal inference and the positivity assumption over different truncation ranges of 

the propensity score. Further study should be done beyond the scope of checking the 

positivity assumption with these machine learning tools, but we see the trend of the GBM 

consistently bounded away from 0 and 1, perhaps too much to the point of introducing 

biases as shown in the simulations. Further theoretical arguments will have to be developed 

for GBM’s inability of precisely predicting the propensities which are (close to) zero or one.

The simulations used in the study only considered categorical confounders. Since JCART 

uses specific cutoff values to determine the sub-groups, categorical variables facilitate the 

partitioning so that assignment of a subject to a group is unambiguous. Though not done 

here, we suspect that similar partitioning with continuous confounders may lead to less 

homogeneous subgroups. This suggests that if there is a chance of having subjects whose 

positivity assumption is not valid, such subjects may be easier to detect if confounding 

factors are categorized rather than being left continuous.

However, the performance of JCART and whether it improves upon existing methods comes 

into question when the propensity score incorporates many confounders and when the 

definition of “non-positivity” is based on more than one categorical confounder. This was 

illustrated in simulations Sim3 and Sim4 as the number of confounders increased and in 

simulations Sim2 and Sim4 when two confounders were used to define subjects with e(X) = 

0; 1. A possible explanation lies in the fact that the definition of “non-positivity” becomes 

more complex with additional confounders to the extent that precise identification of such 

subjects becomes difficult. Although the definition of “non-positivity” in some applications 

may be more complex than a simple sum of two confounders, we use the example of two 

confounders as a simple way to demonstrate the potential drawbacks of JCART. In spite of 

this, the magnitude of bias becomes significantly smaller as a more restrictive range of 

propensity scores is used and this is the case for almost all of the methods across all 

simulations.

Our main motivation for using CART in detecting subjects whose positivity assumption is 

not met is that CART itself produces zero and one propensities in its tree structure. Because 

one single tree may not represent the whole data structure, we used the Jackknife resampling 

methods to account for the uncertainties of trees and to compute variance estimates of causal 
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effects. The rationale behind the use of the Jackknife over the bootstrap method lies in the 

higher percentage of information retention of an entire data set for the former compared to 

the latter. Further research in the use of JCART should incorporate more than two conditions 

of the exposure in general. The R code for the simulation studies of this paper are available 

online so that users can familiarize themselves with tree based methods for causal inference.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1:

Potential outcomes framework

Subject X U T Y Y(1) Y(0)

i = 1 x1 u1 1 Observed Observed Missing

i = 2 x2 u2 1 Observed Observed Missing

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

i = m xm um 1 Observed Observed Missing

i = m + 1 xm+1 um+1 0 Observed Missing Observed

i = m + 2 xm+2 um+2 0 Observed Missing Observed

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

i = n xn un 0 Observed Missing Observed
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Table 2:

Comparison of tree based methods of propensity score estimation

Method Features Drawbacks

CART

• Partitions dataset based on values of specified predictors

• Can predict propensity scores of 0 and 1 using entropy 
function

• Small changes in the target data set can 
cause instability in the model

• Selection of only one predictor at each 
node of the CART tree

RF

• Partitions data using multiple CART trees from bootstrap 
samples

• Uses subsets of predictors for division of homogenous 
groups

• Potential overfitting

GBM

• Estimates propensity scores using an aggregated 
collection of regression trees

• Functional form of propensity score model may be left 
unspecified

• Aggregated nature of method may not 
predict propensity scores of 0 and 1

JCART

• Uses CART on Jackknife subsets of data to estimate 
propensity scores

• Estimates are aggregated over all Jackknife samples

• Selection of only one predictor at each 
node of the CART tree

CART = Classification and Regression Trees, RF = Random Forest, GBM = Generalized Boosted Model, JCART = Jackknifed CART
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Table 3:

Description of simulations

Simulation Number of Confounders Definition of “Non-positivity”

Sim1 4 X1

Sim2 4 X12 =X1 +X2

Sim3 40 X1

Sini4 40 Xl2 = X1 + X2
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Table 4:

Assignment of non-positivity subjects

Propensity scores (e(X)) Sim1, Sim3 Sim2, Sim4

e(X) = 0 X1 = 0.1 X12 ≤ Q(0.10, X12)

e(X) = 1 X1 = 1.0 X12 ≥ Q(0.90, Xl2)

Note: Q(p; λ) denotes the p quantile of the quantity λ.
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Table 5:

Propensity structure for our simulation study

e(X) E(Y(1)) E(Y(0))

0 < e (x) < 1 0.6 0.4

e (x) = 0 0.1 0.9

e (x)= 1 0.1 0.9
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Table 6:

Description of propensity score and estimation models and methods

Methods Description

• JCART

• JCART[0.025,0.975]

• JCART[0.05,0.95]

• JCART[0.1,0.9]

The propensity score model is estimated using CART.
The prediction model is based on Jackknife subsamples from the data set.

• Match.ncar.logit

• Match.cem.logit

• Match.full.logit

• Match.near.rpart

• Match.cem.rpart

• Match.full.rpart

The propensity scores arc estimated using matching methods with distance criterion determined by 
“nearest-neighbor,” “coarsened exact matching,” and “full matching.”
The logistic regression model (“logit”) and Random Forest (“rpart”) are used in the propensity score 
model.

• IPW.glm

• IPW.glm[0.025,0.975]

• IPW.glm[0.05,0.95]

• IPW.glm[0.1,0.9]

Propensity scores are estimated using logistic regression.
The estimation model uses the IPW method to estimate causal effects.

• IPW.gbm

• IPW.gbm[0.025,0.975]

• IPW.gbm[0.05,0.95]

• IPW.gbm[0.1,0.9]

Propensity scores are estimated using GBM.
The estimation model uses the IPW method to estimate causal effects.

• IPW.rf

• IPW.rf[0.025,0.975]

• IPW.rf[0.05,0.95]

• IPW.rf[0.1,0.9]

Propensity scores are estimated using RF.
The estimation model uses the IPW method to estimate causal effects.

• GC.glm

• GC.glm[0.025,0.975]

• GC.glm[005,095]

• GC.glm[0.1,0.9]

Propensity scores are estimated using a generalized linear model.
Treatment effects are estimated using the G-computation method.

• GC.gbm

• GC.gbm[0.025,0.975]

• GC.gbm[0.05,0.95]

• GC.gbm[0.1,0.9]

Propensity scores arc estimated using GBM.
Treatment effects are estimated using the G-computation method.
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Methods Description

• GC.rf

• GC.rf[0.025,0.975]

• GC.rf[0.05,0.95]

• GC.rf[0.1,0.9]

Propensity scores are estimated using RF.
Treatment effects are estimated using the G-computation method.

CART = Classification and Regression Trees, JCART = Jackknifed CART, IPW = Inverse Propensity Weighting, GBM = Generalized Boosted 
Model, RF = Random Forest, GC = G-computation.
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Table 7:

Results for Simulation Sim1

Method Bias (mean) Bias (median) RMSE

JCART 0.00 0.00 0.03

JCART[0.025,0.975] 0.00 0.00 0.03

JCART[0.05,0.95] 0.00 0.00 0.03

JCART[0.1,0.9] 0.00 0.00 0.03

Match.near.logit −0.74 −0.74 0.75

Match.cem.logit 0.10 0.07 0.75

Match.full.logit −0.54 −0.54 0.56

Match.near.rpart 0.00 0.00 0.05

Match.cem.rpart 0.10 0.07 0.75

Match.full.rpart −0.02 −0.03 0.28

IPW.glm −0.57 −0.57 0.57

IPW.glm[0.025,0.975] −0.57 −0.57 0.57

IPW.glm[0.05,0.95] −0.57 −0.57 0.57

IPW.glm[0.1,0.9] −0.55 −0.55 0.55

IPW.gbm −0.57 −0.57 0.58

IPW.gbm[0.025,0.975] −0.57 −0.57 0.58

IPW.gbm[0.05,0.95] −0.57 −0.57 0.58

IPW.gbm[0.1,0.9] −0.57 −0.57 0.58

IPW.rf −0.64 −0.64 0.65

IPW.rf[0.025,0.975] −0.05 −0.06 0.07

IPW.rf[0.05,0.95] 0.00 0.01 0.05

IPW.rf[0.1,0.9] 0.01 0.01 0.08

GC.glm −0.42 −0.42 0.42

GC.glm[0.025,0.975] −0.42 −0.42 0.42

GC.glm[0.05,0.95] −0.42 −0.42 0.42

GC.glm[0.1,0.9] −0.41 −0.41 0.42

GC.gbm −0.56 −0.56 0.56

GC.gbm[0.025,0.975] −0.56 −0.56 0.56

GC.gbm[0.05,0.95] −0.56 −0.56 0.56

GC.gbm[0.1,0.9] −0.54 −0.54 0.54

GC.rf −0.46 −0.46 0.46

GC.rf[0.025,0.975] −0.46 −0.46 0.46

GC.rf[0.05,0.95] −0.46 −0.46 0.46

GC.rf[0.1,0.9] −0.45 −0.45 0.46

Note: Four confounders used with nonpositivity subjects defined by X1 only.

RMSE = Root Mean Square Error, JCART = Jackknifed Classification and Regression Trees, IPW = Inverse Propensity Weighting, GC = G-
computation.
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Table 8:

Results for Simulation Sim2

Method Bias (mean) Bias (median) RMSE

JCART −0.54 −0.55 0.56

JCART[0.025,0.975] −0.51 −0.52 0.52

JCART[0.05,0.95] −0.46 −0.46 0.47

JCART[0.1,0.9] −0.30 −0.29 0.32

Match.near.logit −0.87 −0.86 0.88

Match.cem.logit 0.02 0.05 0.79

Match.full.logit −0.61 −0.61 0.63

Match.near.rpart −0.92 −0.94 0.93

Match.cem.rpart 0.02 0.05 0.79

Match.full.rpart −0.55 −0.54 0.69

IPW.glm −0.67 −0.67 0.67

IPW.glm[0.025,0.975] −0.67 −0.67 0.67

IPW.glm[0.05,0.95] −0.66 −0.66 0.67

IPW.glm[0.1,0.9] −0.62 −0.61 0.62

IPW.gbm −0.77 −0.77 0.77

IPW.gbm[0.025,0.975] −0.77 −0.77 0.77

IPW.gbm[0.05,0.95] −0.77 −0.77 0.77

IPW.gbm[0.1,0.9] −0.77 −0.77 0.77

IPW.rf −0.78 −0.78 0.78

IPW.rf[0.025,0.975] −0.32 −0.32 0.32

IPW.rf[0.05,0.95] −0.17 −0.18 0.18

IPW.rf[0.1,0.9] −0.06 −0.06 0.10

GC.glm −0.35 −0.35 0.35

GC.glm[0.025,0.975] −0.35 −0.35 0.35

GC.glm[0.05,0.95] −0.35 −0.35 0.35

GC.glm[0.1,0.9] −0.34 −0.34 0.35

GC.gbm −0.70 −0.70 0.71

GC.gbm[0.025,0.975| −0.70 −0.70 0.71

GC.gbm[0.05,0.95| −0.70 −0.69 0.70

GC.gbm[0.1,0.9] −0.65 −0.64 0.65

GC.rf −0.57 −0.57 0.57

GC.rf[0.025,0.975] −0.56 −0.57 0.57

GC.rf[0.05,0.95] −0.56 −0.55 0.57

GC.rf[0.1,0.9] −0.52 −0.51 0.53

Note: Four confounders used with nonpositivity subjects defined by X1 only.

RMSE = Root Mean Square Error, JCART = Jackknifed Classification and Regression Trees, IPW = Inverse Propensity Weighting, GC = G-
computation.

Commun Stat Appl Methods. Author manuscript; available in PMC 2019 August 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kang et al. Page 27

Table 9:

Results for Simulation Sim3

Method Bias (mean) Bias (median) RMSE

JCART 0.00 −0.01 0.17

JCART[0.025,0.975] 0.00 −0.01 0.17

JCART[0.05,0.95] 0.00 −0.01 0.17

JCART[0.1,0.9] 0.00 0 0.17

Match.near.logit −0.73 −0.75 0.76

Match.cem.logit NA NA NA

Match.full.logit −0.61 −0.60 0.65

Match.near.rp art 0.00 −0.02 0.17

Match.cem.rp art NA NA NA

Match.full.rpart 0.00 −0.01 0.43

IPW.glm −0.64 −0.64 0.66

IPW.glm[0.025,0.975] −0.62 −0.62 0.64

IPW.glm[0.05,0.95] −0.60 −0.59 0.62

IPW.glm[0.1,0.9] −0.58 −0.56 0.61

IPW.gbm −0.58 −0.59 0.61

IPW.gbm[0.025,0.975] −0.58 −0.59 0.61

IPW.gbm[0.05,0.95] −0.58 −0.59 0.61

IPW.gbm[0.1,0.9] −0.58 −0.59 0.61

IPW.rf −0.76 −0.77 0.78

IPW.rf[0.025,0.975] −0.76 −0.77 0.78

IPW.rf[0.05,0.95] −0.76 −0.77 0.78

IPW.rf[0.1,0.9] −0.43 −0.44 0.46

GC.glm −0.55 −0.55 0.57

GC.glm[0.025,0.975] −0.57 −0.58 0.59

GC.glm[0.05,0.95] −0.57 −0.57 0.60

GC.glm[0.1,0.9] −0.57 −0.56 0.60

GC.gbm −0.57 −0.58 0.60

GC.gbm[0.025,0.975] −0.54 −0.55 0.57

GC.gbm[0.05,0.95] −0.52 −0.52 0.55

GC.gbm[0.1,0.9] −0.49 −0.49 0.52

GC.rf −0.64 −0.66 0.66

GC.rf[0.025,0.975] −0.61 −0.63 0.63

GC.rf[0.05,0.95] −0.59 −0.60 0.61

GC.rf[0.1,0.9] −0.55 −0.56 0.58

Note: 40 confounders used with nonpositivity subjects defined by X1 only.

RMSE = Root Mean Square Error, JCART = Jackknifed Classification and Regression Trees,IPW = Inverse Propensity Weighting, GC = G-
computation.
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Table 10:

Results for Simulation Sim4

Method Bias (mean) Bias (median) RMSE

JCART −0.56 −0.55 0.60

JCART[0.025,0.975] −0.52 −0.52 0.57

JCART[0.05,0.95] −0.45 −0.45 0.51

JCART[0.1,0.9] −0.30 −0.32 0.38

Match.near.logit −0.81 −0.81 0.84

Match.cem.logit NA NA NA

Match.full.logit −0.62 −0.61 0.70

Match.near.rpart −0.91 −0.93 0.95

Match.cem.rpart NA NA NA

Match.full.rpart −0.58 −0.56 0.77

IPW.glm −0.68 −0.69 0.70

IPW.glm[0.025,0.975] −0.61 −0.62 0.63

IPW.glm[0.05,0.95] −0.56 −0.57 0.59

IPW.glm[0.1,0.9] −0.51 −0.52 0.55

IPW.gbm −0.79 −0.79 0.82

IPW.gbm[0.025.0.975] −0.79 −0.79 0.82

IPW.gbm[0.05.0.95] −0.79 −0.79 0.82

IPW.gbm[0.1.0.9] −0.79 −0.79 0.82

IPW.rf −0.93 −0.93 0.95

IPW.rf[0.025,0.975] −0.93 −0.93 0.95

IPW.rf[0.05,0.95] −0.92 −0.92 0.95

IPW.rf[0.1,0.9] −0.75 −0.77 0.78

GC.glm −0.49 −0.51 0.52

GC.glm[0.025,0.975] −0.52 −0.54 0.55

GC.glm[0.05,0.95] −0.52 −0.53 0.55

GC.glm[0.1,0.9] −0.51 −0.52 0.55

GC.gbm −0.77 −0.78 0.80

GC.gbm[0.025,0.975] −0.70 −0.71 0.73

GC.gbm[0.05,0.95] −0.65 −0.66 0.68

GC.gbm[0.1,0.9] −0.59 −0.59 0.63

GC.rf −0.80 −0.79 0.82

GC.rf[0.025,0.975] −0.73 −0.73 0.75

GC.rf[0.05,0.95] −0.68 −0.68 0.71

GC.rf[0.1,0.9] −0.62 −0.61 0.66

Note: 40 confounders used with nonpositivity subjects defined by X12 = X1 + X2.

RMSE = Root Mean Square Error, JCART = Jackknifed Classification and Regression Trees, IPW = Inverse Propensity Weighting, GC = G-
computation.
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