Lawrence Berkeley National Laboratory Recent Work

Title
Determination of the Neutron Spin Function
Permalink
https://escholarship.org/uc/item/290868xm

Authors

Anthony, P.L.
Shapiro, G.
Publication Date
1993-03-01

$\boxed{\square}$ Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA Physics Division

Submitted to Physical Review Letters

Determination of the Neutron Spin Structure Function

The SLAC E142 Collaboration

March 1993

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Determination of the Neutron Spin Structure Function

The E142 Collaboration
Stanford Linear Accelerator Center, Stanford University
Stanford, CA 94309, USA

March 1993

This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, High Energy Physics Division, of the U.S. Department of Energy under Contract No. DE-AC03$76 S F 00098$.

Determination of the Neutron Spin Structure Function*

The E142 Collaboration

```
P.L. Anthony \({ }^{(6)}\) R.G. Arnold, \({ }^{(1)}\) H.R. Band, \({ }^{(13)}\) H. Borel, \({ }^{(4)}\) P.E. Bosted, \({ }^{(1)}\)
V. Breton, \({ }^{(2)}\) G.D. Cates, \({ }^{(9)}\) T.E. Chupp, \({ }^{(7)}\) F.S. Dietrich, \({ }^{(6)}\) J. Dunne, \({ }^{(1)}\)
```

R. Erbacher, ${ }^{(11)}$ J. Fellbaum, ${ }^{(1)}$ H. Fonvieille, ${ }^{(2)}$ R. Gearhart, ${ }^{(10)}$ R. Holmes, ${ }^{(12)}$
E.W. Hughes, ${ }^{(10)}$ J.R. Johnson, ${ }^{(13)}$ D. Kawall, ${ }^{(11)}$ C. Keppel, ${ }^{(1)}$ S.E. Kuhn, ${ }^{(8)}$
R.M. Lombard-Nelsen, ${ }^{(4)}$ J. Marroncle, ${ }^{(4)}$ T. Maruyama, ${ }^{(10)}$ W. Meyer, ${ }^{(10)}$
Z.-E. Meziani, ${ }^{(11)}$ H. Middleton, ${ }^{(9)}$ J. Morgenstern, ${ }^{(4)}$ N.R. Newbury, ${ }^{(0)}$
G.G. Petratos, ${ }^{(10)}$ R. Pitthan, ${ }^{(10)}$ R. Prepost, ${ }^{(13)}$ Y. Roblin, ${ }^{(2)}$ S.E. Rock, ${ }^{(1)}$
S.H. Rokni, ${ }^{(10)}$ G. Shapiro, ${ }^{(3)}$ T. Smith, ${ }^{(7)}$ P.A. Souder, ${ }^{(12)}$ M. Spengos, ${ }^{(1)}$
F. Staley, ${ }^{(4)}$ L.M. Stuart, ${ }^{(10)}$ Z.M. Szalata, ${ }^{(1)}$ Y. Terrien, ${ }^{(4)}$ A.K. Thompson, ${ }^{(5)}$ J.L. White, ${ }^{(1)}$ M. Woods, ${ }^{(10)}$ J. Xu, ${ }^{(12)}$ C.C. Young, ${ }^{(10)}$ G. Zapalac ${ }^{(13)}$
${ }^{(1)}$ American University, Washington, DC 20016
${ }^{(2)}$ LPC IN2P3/CNRS, Univ. Blaise Pascal, F-63170 Aubiere Cedex, France
${ }^{(3)}$ University of California and LBL, Berkeley, CA 94720
${ }^{(4)}$ Centre d'Etudes de Saclay, DAPNLA/SPhN, F-91191 Gif-sur-Yvette, France
${ }^{(5)}$ Harvard University, Cambridge, MA 02138
${ }^{(6)}$ Lawrence Livermore National Laboratory, Livermore, CA 94550
${ }^{(7)}$ University of Michigan, Ann Arbor, MI 48109
${ }^{(8)}$ Old Dominion University, Norfolk, Virginia 23529
${ }^{(9)}$ Princeton University, Princeton, NJ 08544
${ }^{(10)}$ Stanford Linear Accelerator Center, Stanford, CA 94309
${ }^{(11)}$ Stanford University, Stanford, CA 94305
${ }^{(12)}$ Syracuse University, Syracuse, NY 13210
${ }^{(13)}$ University of Wisconsin, Madison, WI 53706

Submitted to Physical Review Letters

[^0]
ABSTRACT

The spin structure function of the neutron g_{1}^{n} has been determined over the range $0.03<x<0.6$ at an average Q^{2} of $2(\mathrm{GeV} / \mathrm{c})^{2}$ by measuring the asymmetry in deep inelastic scattering of polarized electrons from a polarized ${ }^{3} \mathrm{He}$ target at energies between 19 and 26 GeV . The integral of the neutron spin structure function is found to be $\int_{0}^{1} g_{1}^{\prime \prime}(x) \mathrm{d} x=-0.022 \pm 0.011$. Earlier. reported proton results together with the Bjorken sum rule predict $\int_{0}^{1} \cdot g_{1}^{n}(x) \mathrm{d} x=-0.059 \pm 0.019$.

PACS numbers: $13.60 . \mathrm{Hb}, 29.25 \mathrm{Ks}, 11.50 . \mathrm{Li}, 13.88 .+\mathrm{e}$

For the past twenty years, results from deep inelastic scattering of polarized electrons and muons by polarized protons have been used to study the internal spin structure of the nucleon $[1-3]$. The experiments found large asymmetries over a large kinematic range as predicted by the Quark Parton Model (QPM). However, when interpreted by theoretical sum rules as described below, the data indicate that only a small fraction of the proton spin is carried by the quarks and that the strange sea polarization is large and negative. A complete understanding of nucleon spin structure requires information from neutron as well as more precise proton measurements. In this Letter we report new measurements of the neutron spin structure function g_{1}^{n} using longitudinally polarized electron scattering from a polarized ${ }^{3} \mathrm{He}$ target in End Station A at the Stanford Linear Accelerator Center (SLAC).

The spin structure functions G_{1} and G_{2} can be determined experimentally by measuring the difference in cross sections of polarized electrons on polarized nucleons between states where the spins are parallel and anti-parallel $[4,5]$,

$$
\begin{equation*}
\frac{d^{2} \sigma^{\dagger}}{d Q^{2} d \nu}-\frac{d^{2} \sigma^{\dagger}}{d Q^{2} d \nu}=\frac{4 \pi \alpha^{2}}{Q^{2} E^{2}}\left[M\left(E+E^{\prime} \cos \theta\right) G_{1}\left(Q^{2}, \nu\right)-Q^{2} G_{2}\left(Q^{2}, \nu\right)\right] \tag{1}
\end{equation*}
$$

Here M is the mass of the nucleon, ν is the electron energy loss, $q^{2}=-Q^{2}$ is the square of the four-momentum of the virtual photon, α is the fine structure constant, E^{\prime} is the scattered electron energy, E is the incident electron energy, θ is the electron scattering angle, and $d^{2} \sigma^{\dagger \dagger}\left(d^{2} \sigma^{\dagger \dagger}\right)$ is the differential scattering cross section for longitudinal target spins parallel (anti-parallel) to the incident electron spins. A corresponding relationship exists for scattering of longitudinally polarized electrons off a transversely polarized target [5]. In the scaling limit (ν and Q^{2}
large), these structure functions are predicted to depend only on $x=Q^{2} / 2 M_{u}$ yielding $M^{2} \nu G_{1}\left(\nu, Q^{2}\right) \rightarrow g_{1}(x)$ and $M \nu^{2} G_{2}\left(\nu, Q^{2}\right) \rightarrow g_{2}(x)$.

Bjorken [6] developed a sum rule relating the integrals over the proton and neutron spin structure functions to the weak coupling constants 9.4 and g_{1}. found in nucleon β decay:

$$
\begin{equation*}
\int_{0}^{1}\left(g_{1}^{p}(x)-g_{1}^{n}(x)\right) d x=\frac{1}{6} \frac{g_{A}}{g_{v}}\left(1-\alpha_{s}\left(Q^{2}\right) / \pi\right) \tag{2}
\end{equation*}
$$

where $\alpha_{s}\left(Q^{2}\right)$ is the QCD coupling constan [7.8] and $9.1 / 9 \cdot=1.257 \pm 0.003|9|$. The sum rule, first derived from current algebra, is a rigorous prediction of QCD. Ellis and Jaffe [10] have derived similar sum rules for the proton and neur ron based on $\operatorname{SU}(3)$ symmetry and the assumption that the strange sea is umpolarized:

$$
\begin{equation*}
\int_{0}^{1} g_{1}^{p(n)}(x) d x=\frac{1}{18}[9(6) F-1(4) D]\left(1-a_{s}\left(Q^{2}\right) / \pi\right) \tag{3}
\end{equation*}
$$

The constants F and D are $\mathrm{SU}(3)$ invariant matrix elements of the axial rector current where for neutron beta decay, $F+D=g . f / g_{1} \cdot|11|$. The integral over the spin structure functions has a simple interpretation in the QIM:

$$
\begin{equation*}
\int_{0}^{1} g_{1}^{p(n)}(x) d x=\frac{1}{2}\left(\frac{4}{9} \Delta u(d)+\frac{1}{9} \Delta d(u)+\frac{1}{9} \Delta s\right]\left(1-\alpha_{s}\left(Q^{2}\right) / \pi\right) \tag{4}
\end{equation*}
$$

where $\Delta u, \Delta d$, and Δs represent the integral over the quark momentum distributions of the up, down, and strange quarks of the proton defined by $\Delta q=\int_{0}^{1}\left(q^{\dagger}(x)-q^{!}(x)\right) d x$, where $q^{\dagger}(x)\left(q^{l}(x)\right)$ are the quark plus anti-quark momentum distributions for quark and anti-guark spins parallel (anti-parallel) to
the nucleon spin. From $S U(3)$ symmetry, the integral over the quark momentum distributions can be related to F and D via $\Delta d-\Delta s=F-D$. In the QPM, the Bjorken sum rule reduces to $\Delta u-\Delta d=F+D$. The EMC collaboration, which provided the first data for $x<0.1$, has reported a value $\int_{0}^{1} g_{1}^{p}(x) d x=$ 0.126 ± 0.010 (stat.) ± 0.015 (svst.) for the proton integral [3], which is smaller than the value 0.175 ± 0.018 [11] from Eq. (3). In the QPM this result can be interpreted to mean that the total quark contribution to the proton spin is small $(\Delta u+\Delta d+\Delta s=0.13 \pm 0.19)$. whereas the strange sea contribution is large and negative ($\Delta s=-0.16 \pm 0.08$).

The experimental quantities used to determine the spin structure functions are the two asymmetries:

$$
\begin{equation*}
A^{\| l}=\frac{d \sigma^{11}-d \sigma^{i 1}}{d \sigma^{11}+d \sigma^{i l}} \quad \text { and } \quad \mathrm{A}^{\perp}=\frac{\mathrm{d} \sigma^{1-}-\mathrm{d} \sigma^{i-}}{\mathrm{d} \sigma^{1-}+\mathrm{d} \sigma^{1-}} . \tag{5}
\end{equation*}
$$

Here $d \sigma^{1-}\left(d \sigma^{1-}\right)$ is the scattering cross section for beam spin anti-parallel (parallel) to the beam momentum and target spin direction transverse to the beam momentum and towards the direction of the scattered electron, and $d \sigma^{\dagger 1}\left(d \sigma^{i 1}\right)$ is defined in Eq. (1). The experimental asymmetries $A^{l l}$ and A^{\perp} are related to the virtual photon-mucleon longitudinal and transverse asymmetries, A_{1} and A_{2} respectively, via $A^{\|}=D\left(A_{1}+\eta A_{2}\right)$ and $A^{\perp}=d\left(A_{2}-\zeta A_{1}\right)$, where $D=\left(1-E^{\prime} \epsilon / E\right) /(1+\epsilon R), \eta=\epsilon \sqrt{Q^{2}} /\left(E-E^{\prime} \epsilon\right): d=D \sqrt{2 \epsilon /(1+\epsilon)}, \zeta=\eta(1+\epsilon) / 2 \epsilon$ and $\left.1 / \epsilon=1+2!+\left(\nu^{2} / Q^{2}\right)\right) \tan ^{2}(\theta / 2)$. Here R is the ratio of longitudinal to transverse virtual photoabsorption cross sections. The neutron spin structure function is extracted via $g_{1}^{n}=\left(A_{1}^{n} F_{1}^{n}+A_{2}^{n} F_{1}^{n}(2 M x / \nu)^{1 / 2}\right) /(1+2 M x / \nu)$, where F_{1}^{n} is the spin averaged structure function of the neutron.

The SLAC polarized electron beam was created by photoemission from an AlGaAs photocathode [12] illuminated by a flash lamp pumped dye laser [13]. The polarized source delivered between 0.5 and 2.0×10^{11} electrons per pulse at 120 Hz . The pulse length varied from 0.8 to $1.4 \mu \mathrm{sec}$. The electron helicity was reversed randomly on a pulse-to-pulse basis by reversing the source laser circular polarization. Frequent helicity reversal is important because it avoids the introduction of false asymmetries from drifts in the operation of the beam, target, or spectrometers. The beam polarization was measured by a single-arm Moller polarimeter and was observed to be very stable and constant over the full run with an average value of $38.8 \pm 1.6 \%$. The largest uncertainty arises from the measurement of the magnetization of the Møller target foils.

The ${ }^{3} \mathrm{He}$ nuclei in the gas target were polarized through spin-exchange collisions with optically pumped rubidium vapor. A two-chambered design was used [14] (Fig. 1). The target chamber had a length of 30 cm with 0.012 -cm-thick end windows and operated with a ${ }^{3} \mathrm{He}$ density of 2.3×10^{20} atoms/cc (8.6 atm at $0^{\circ} \mathrm{C}$). A small amount of nitrogen ($\sim 1.9 \times 10^{18}$ atoms $/ \mathrm{cc}$) increased the optical pumping efficiency. Five high-power laser systems produced 20 W cw of near-infrared laser light for optical pumping. The ${ }^{3} \mathrm{He}$ polarization was measured with NMR techniques with an uncertainty of $\Delta P_{t} / P_{t}=7 \%$. The largest contribution came from the uncertainty in the NMR calibration measurements of the thermal equilibrium polarization of protons in water. During the experiment, P_{t} varied slowly between 30% and 40%; its direction was reversed frequently to cancel systematic false asymmetries.

Figure 1. Schematic layout of the polarized "He target. Five sels of lasers optically pump rubidium vapor in the top chamber for polarization of ${ }^{3} \mathrm{He}$ nuclei. Incident electrons scatter off the nuclei in the bottom chamber. Two sets of Helmholtz coils hold the target spins in the longitudinal or transverse directions. Drive and pick up coils are used to measure polarization.

Data were collected at three different beam energies, 19.4, 22.7, and 25.5 GeV , covering a range in x from 0.03 to 0.6 with Q^{2} greater than $1(\mathrm{GeV} / \mathrm{c})^{2}$. The total event sample was $\sim 4 \times 10^{8}$ electrons collected in two single-arm magnetic spectrometers [15] at horizontal scattering angles of 4.5° and 7° (Fig. 2). The detectors in each spectrometer consisted of two N_{2} threshold Cerenkov counters, six planes of hodoscopes, and a 24 -radiation-length shower counter composed of 200 lead glass blocks. Each spectrometer accepted charged particles with momenta greater than $\sim 6 \mathrm{GeV} / \mathrm{c}$. The monentum resolution (rms) from hodoscope tracking was $\Delta E^{\prime} / E^{\prime} \sim 3 \%$ on average, and the shower energy resolution was typically $15 \% / \sqrt{E^{\prime}(\mathrm{GeV})}$.

The experimental asymmetry $A^{\| l}$ is derived from the measured raw counting rate asymmetry $\Delta=\left(N^{\dagger \dagger}-N^{\dagger \dagger}\right) /\left(N^{\dagger \dagger}+N^{\dagger \dagger}\right)=A^{\|} P_{t} P_{b} f$, where $N^{\dagger \dagger}$ and $N^{\dagger 1}$. represent the number of scattered electrons per incident beam electron in the spectrometer when the beam and target spins are parallel and anti-parallel,

Figure 2. Layout of the experimental sel up. Two independent single-arm spectrometers are shown.
respectively. Here, P_{t} and P_{b} are the target and beam polarizations. The dilution factor f is the fraction of events originating from polarized neutrons in the target ($f \sim 0.11 \pm 0.02$ and varies slowly with x). All counting rates were corrected for deadtime and normalized to the total incident charge as measured by two independent toroidal charge monitors. Beam charge differences between parallel and anti-parallel polarized electrons were measured to be on the order of one part in 10^{4}.

Electrons were identified by a coincidence of the two Cerenkov counters and a large pulse height in the shower counter. Electron energy and position in
the shower counter determined the x and Q^{2} of the event. Hodoscope tracking was used for systematic studies and for the absolute energy calibration of the lead glass. The electron background from charge-symmetric processes was determined to be $\sim 5 \%$ of the electron sample at low x by measuring the positron rate in runs with the spectrometer magnet polarity reversed. The background from misidentified pions was studied using a comparison of momentum from tracking to shower energy deposition and contributed about 2% to the electron sample at low
x. Contaminations in the high x bins were negligible. Glass cell runs with variable pressures of ${ }^{3} \mathrm{He}$ were used to study the dilution factor by separating contributions from scattering off ${ }^{3} \mathrm{He}$ and scattering off glass. The largest systematic uncertainty in this experiment comes from the determination of the dilution factor to $\pm 15 \%$ of its value. False asymmetries were found to be consistent with zero by comparing data with target spins in opposite directions.

Internal spin-dependent radiative corrections were calculated using the complete Kukhto and Shumeiko formulae [17] (exact integration, no peaking approximation). External radiative corrections followed Mo and Tsai [16], but were small because the target was thin ($\sim 0.3 \%$ radiation length). The total corrections amounted to a relative change in the asymmetry ranging from $30 \pm$ 15% at low x to $5 \pm 2 \%$ at high x. The uncertainty from the radiative corrections takes into account variations due to the model-dependence on the corrections.

A polarized ${ }^{3} \mathrm{He}$ nucleus is regarded as a good model of a polarized neutron for deep inelastic scattering $[18,19]$. The ${ }^{3} \mathrm{He}$ wavefunction is primarily in an S-state in which the two protons pair with opposite spins due to the Pauli exclusion principle, leaving the neutron spin as the dominant contribution to
spin-dependent scattering. A small correction from the polarization of the two protons in ${ }^{3} \mathrm{He}$ ($\sim-2.7 \%$ per proton) and a correction for the polarization of the neutron in ${ }^{3} \mathrm{He}(\sim 87 \%$) were applied to extract the neutron asymmetry from the measured ${ }^{3}$ He asymmetry $[20,21]$. For the proton correction, the asymmetry results from EMC were taken [3]. No other corrections were made for the fact that the polarized neution is embedded in the ${ }^{3} \mathrm{He}$ nucleus.

The physics asymmetry A_{1}^{n} versus x is presented in Fig. 3. Since no significant Q^{2} dependence of the measurements was observed, the data at different energies for fixed x bins are averaged over Q^{2}. A clear trend of negative asymmetries is evident. Measurements of the transverse neutron asymmetry A_{2}^{n} were found to be consistent with zero with statistical uncertainties of typically \pm 0.25 . The lower part of Fig. 3 shows the neutron spin structure function extracted from the measured asymmetries using the results from a global fit to SLAC structure function data [22]. Table 1 gives a summary of the results presented in Fig. 3.

The integral of the spin structure function over the measured range of x is $\int_{0.03}^{0.6} g_{1}^{n}(x) d x=-0.019 \pm 0.007$ (stat.) ± 0.006 (syst.) at an average Q^{2} of $2(\mathrm{GeV} / \mathrm{c})^{2}$. Propagating the unpolarized structure function to Q^{2} of $2(\mathrm{GeV} / \mathrm{c})^{2}$ for all x bins gives the same result. Extrapolation of the spin structure function outside the measured x range requires models of the neutron spin structure. Assuming perturbative QCD, the asymmetry A_{1}^{n} approaches 1 as x approaches 1. Using this constraint and a Regge parametrization ($A_{1}^{n} \sim x^{1.2}$) to fit the low x data [23], the neutron integral is extracted over the full x range, $\int_{0}^{1} g_{1}^{n}(x) d x=$ -0.022 ± 0.011. The extrapolations to low and high x amount to additions to the

Table I. Results of the measurement of the neutron spin asymmetries and structure functions. First error is statistical, and second error is systematic.

E142 results			
x range	$<Q^{2}>$	A_{1}^{n}	g_{1}^{n}
$0.03-0.04$	1.1	$-0.058 \pm 0.056 \pm 0.021$	$-0.175 \pm 0.169 \pm 0.052$
$0.04-0.06$	1.3	$-0.095 \pm 0.033 \pm 0.030$	$-0.228 \pm 0.079 \pm 0.061$
$0.06-0.10$	1.6	$-0.062 \pm 0.031 \pm 0.031$	$-0.095 \pm 0.048 \pm 0.026$
$0.10-0.15$	2.3	$-0.136 \pm 0.030 \pm 0.038$	$-0.133 \pm 0.029 \pm 0.031$
$0.15-0.20$	2.7	$-0.087 \pm 0.041 \pm 0.037$	$-0.057 \pm 0.027 \pm 0.014$
$0.2-0.3$	3.1	$-0.020 \pm 0.046 \pm 0.055$	$-0.008 \pm 0.019 \pm 0.006$
$0.3-0.4$	3.4	$0.029 \pm 0.091 \pm 0.068$	$0.006 \pm 0.020 \pm 0.003$
$0.4-0.6$	5.2	$0.030 \pm 0.219 \pm 0.100$	$0.003 \pm 0.024 \pm 0.002$

measured integral of $-.006 \pm 0.006$ and 0.003 ± 0.003, respectively. Combining the integral over the neutron spin structure function from this experiment with the proton integral from EMC [3] corrected to Q^{2} of $2(\mathrm{GeV} / \mathrm{c})^{2}$ gives the integral $\int_{0}^{1}\left(g_{1}^{p}(x)-g_{1}^{n}(x)\right) d x=0.146 \pm 0.021$. This is to be compared to a Bjorken sum rule prediction of 0.183 ± 0.007 using $\alpha_{s}=0.39 \pm 0.10$ at Q^{2} of $2(\mathrm{GeV} / \mathrm{c})^{2}$. Higher-order QCD corrections [24] or higher twist effects [25] may account for the apparent discrepancy:

The results from this experiment, in conjunction with the weak coupling constants from baryon decay, $F=0.47 \pm 0.04$ and $D=0.81 \pm 0.03$ [11], can be used to extract the integral over the quark spin distributions from the QPM using $\alpha_{s}=0.385$ at Q^{2} of $2(\mathrm{GeV} / \mathrm{c})^{2}$. The results yield $\Delta u=0.93 \pm 0.06, \Delta d=$ -0.35 ± 0.04, and $\Delta s=-0.01 \pm 0.06$. These results imply that the total quark contribution to the nucleon $\operatorname{spin}(\Delta u+\Delta d+\Delta s)$ is 0.57 ± 0.11. Thus, the

Figure 3. Results for neutron asymmetries A_{1}^{n} and the neutron spin structure function g_{1}^{n} as a function of x averaged over Q^{2}. Statistical and systematic errors are added in quadrature.
quarks contribute approximately one-half of the nucleon spin, and the strange sea contribution is small. Orbital angular momentum [26] and the spin of the gluons [27] may account for the remaining nucleon spin.

A new measurement on the deuteron by SMC combined with the EMC proton result leads to a neutron integral of -0.08 ± 0.04 (stat.) ± 0.04 (syst.) [28]. Within the six times larger error, this result is consistent with ours.

We have presented results on the neutron spin structure function and used them to test QCD. sum rules. When combined with the proton results from EMC, the results from this experiment differ from the Bjorken sum rule prediction evaluated to first order in α_{s} by about two standard deviations. Within present theoretical uncertainties on the corrections to the Bjorken sum rule, the discrepancy is of marginal significance. Our results give a reasonable QPM interpretation and good agreement with the updated value of the Ellis-Jaffe sum rule [11] $\int_{0}^{1} g_{1}^{n}(x) d x=-0.021 \pm 0.018$ at a Q^{2} of $2(\mathrm{GeV} / \mathrm{c})^{2}$. The striking difference between the EMIC QPM interpretation and ours is at the same two standard deviation level as the Bjorken sum rule difference. More precise proton data could help resolve whether the two standard deviation problem is real and clarify the QPM interpretation.

We are indebted to S. Bicknell, R. Boyce, B. Brau, J. Davis, S. Dyer, R. Eisele, C. Fertig, J. Hrica, C. Hudspeth, M. Jimenez, G. Jones, J. Mark, J. McDonald, N. Nicols, M. Racine, B. Smith, M. Sousa, R. Vogelsang, and J. White for their exceptional efforts in the preparation of this experiment, to the SLAC Accelerator Operations Group for delivering the polarized beam, and to the technical staffs of CE-Saclay and LPC-Clermont.

REFERENCES

[1] M.J. Alguard et al., Phys. Rev. Lett. 37, 1258 (1976); 37, 1261 (1976).
[2] G. Baum et al., Phys. Rev. Lett. 51, 1135 (1983).
[3] J. Ashman et al., Phys. Lett. B206, 364 (1988); Nucl. Phys. B328, 1 (1989).
[4] C.E. Carlson and W.-K. Tüng, Phys. Rev. D5, 721 (1972).
[5] A.J.G. Hey and J.E. Mandula, Phys. Rev. D5, 2610 (1972).
[6] J.D. Bjorken, Phys. Rev. 148, 1467 (1966); Phys. Rev. D1, 1376 (1970).
[7] J. Kodaira et al., Phys. Rev D20, 627 (1979).
[8] J. Kodaira et al., Nucl. Phys. B159, 99 (1979); B165, 129 (1980).
[9] Review of Particle Properties D45, 1 (1992).
[10] J. Ellis and R. Jaffe, Phys. Rev. D9, 1444 (1974).
[11] R.L. Jaffe and A.V. Manohar, Nucl. Phys. B337, 509 (1990).
[12] T. Maruyama et al., J. Appl. Phys. 73, 5189 (1993).
[13] M. Woods et al., SLAC-PUB-5965 (1992).
[14] T.E. Chupp et al., Phys. Rev. C45, 915 (1992); C36, 2244 (1987).
[15] G.G. Petratos et al., SLAC-PUB-5678 (1991).
[16] L.W. Mo and Y.S. Tsai, Rev. Mod. Phys. 41, 205 (1969).
[17] T.V. Kukhto and N.M. Shumeiko, Nucl. Phys. B219, 412 (1983).
[18] R.M. Woloshyn, Nucl. Phys. 496A, 749 (1989).
[19] C.Ciofi degli Atti et al., Univ. of Perugia preprint, DFUPG-75/93.
[20] B. Blankleider and R.M. Woloshyn, Phys. Rev. C29, 538 (1984).
[21] J.L.Friar et al., Phys. Rev. C42, 2310 (1990).
[22] L.W. Whitlow et al., Phys. Lett. B250, 193 (1990); B282, 475 (1992).
[23] A. Schafer, Phys. Lett. 208, 175 (1988).
[24] S.A. Larin and J.A.M. Vermaseren, Phys. Lett. B259, 345 (1991)
[25] I.I. Balitsky et al., Phys. Lett. B242, 245 (1990)
[26] J. Ellis and M. Karliner, Phys. Lett. B213, 73 (1988).
[27] G. Altarelli and G.G. Ross, Phys. Lett. B21, 391 (1988). [28] B."Ádeva et al., Phys. Lett. B362, 553 (1993).

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA
TECHNICAL INFORMATION DEPARTMENT
BERKELEY, CALIFORNIA 94720

[^0]: * This work was supported by Department of Energy contracts: DE-AC0376SF00098 (LBL), W-4705-Eng-48 (LLNL), DE-FG02-90ER40557 (Princeton), DE-AC03-76SF00515 (SLAC), DE-FG03-88ER40439 (Stanford), DE-FG0284ER40146 (Syracuse), DE-AC02-76ER00881 (Wisconsin); and National Science Foundation grants: 9014406,9114958 (American), 8914353, 9200621 (Michigan), and the Bundesministerium fuer Forschung und Technologie (W. Meyer).

