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Abstract

Nanosecond pulsed electric fields (nsPEF) induce apoptotic pathways in human cancer cells. The potential therapeutic
effective of nsPEF has been reported in cell lines and in xenograft animal tumor model. The present study investigated the
ability of nsPEF to cause cancer cell death in vivo using carcinogen-induced animal tumor model, and the pulse duration of
nsPEF was only 7 and 14 nano second (ns). An nsPEF generator as a prototype medical device was used in our studies,
which is capable of delivering 7–30 nanosecond pulses at various programmable amplitudes and frequencies. Seven
cutaneous squamous cell carcinoma cell lines and five other types of cancer cell lines were used to detect the effect of
nsPEF in vitro. Rate of cell death in these 12 different cancer cell lines was dependent on nsPEF voltage and pulse number.
To examine the effect of nsPEF in vivo, carcinogen-induced cutaneous papillomas and squamous cell carcinomas in mice
were exposed to nsPEF with three pulse numbers (50, 200, and 400 pulses), two nominal electric fields (40 KV/cm and
31 KV/cm), and two pulse durations (7 ns and 14 ns). Carcinogen-induced cutaneous papillomas and squamous carcinomas
were eliminated efficiently using one treatment of nsPEF with 14 ns duration pulses (33/39 = 85%), and all remaining lesions
were eliminated after a 2nd treatment (6/39 = 15%). 13.5% of carcinogen-induced tumors (5 of 37) were eliminated using
7 ns duration pulses after one treatment of nsPEF. Associated with tumor lysis, expression of the anti-apoptotic proteins Bcl-
xl and Bcl-2 were markedly reduced and apoptosis increased (TUNEL assay) after nsPEF treatment. nsPEF efficiently causes
cell death in vitro and removes papillomas and squamous cell carcinoma in vivo from skin of mice. nsPEF has the therapeutic
potential to remove human squamous carcinoma.
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Introduction

Nanosecond pulsed electric fields (nsPEF) have been shown to

cause cell apoptosis, and investigated as a potential application for

cancer therapy [1]. While other cancer therapies, such as

chemotherapy and radiotherapy can extensively damage sur-

rounding normal tissues, nanopulse therapy has a very localized

effect that can be efficiently delivered solely to the desired site [2].

Nanopulses influence cell activity by a number of means, notably

increasing plasma membrane and intracellular membrane perme-

ability and causing alterations of phosphatidylserine distribution

(demonstrated by Annexin V binding). Nanopulses also induce

intracellular events such as calcium release, caspase activation, and

release of cytochrome C into the cytoplasm [1,3,4,5,6,7,8].

Nanopulses can induce apoptosis in human cancer cells [3].

Recently, we found that both tumor and normal skin cells were

injured in vitro by nsPEF, and the damage to the tumor cells was

greater than damage to the normal cells [9]. Shorter duration

nsPEF of up to 20 KV/cm can deliver energy to cells without

increasing the temperature of exposed cells for pulse repetition

rates of 1 MHz or less [10].

Previous in vitro studies have shown that nanopulse therapy

inhibits growth of human cancer cells by inducing apoptotic

pathways [3,11]. In solid skin tumors, nanopulses can be directly

applied to malignant cells, making nanopulses a viable alternative

to surgery for skin cancer patients. Recent studies of melanoma

tumors using longer pulses on the order of hundreds of

nanoseconds showed that nanopulses stopped blood flow to

tumor cells and caused tumor nuclei to shrink. The nanopulses
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killed melanoma cells without permanently damaging surround-

ing healthy skin tissue [12,13], and eliminated the tumors with a

single treatment [14]. Full remission resulted after only two

treatment sessions (energy of 0.2 J per pulse and 100 pulses

delivered with temperature only increasing by 3uC in the

localized region) [2].

Nanopulse electric fields have the potential to be an effective,

minimally invasive treatment for skin tumors. The effect of

shorter duration (less than 30 ns) nanopulse exposure of

cutaneous squamous carcinoma has not been investigated in vivo.

To evaluate the responsiveness of cutaneous squamous carcino-

mas to nanopulse therapy, we applied nanopulses to transformed

keratinocyte derived cell lines [HaCaT, Actinic keratosis (AK),

Keratoacanthoma (KA)], squamous carcinoma cell lines (SRB-1,

SRB-12, SCC-13, and Colo-16), as well as 5 non-skin cancer cell

lines in vitro. Further, skin papillomas and squamous carcinomas

Figure 1. Treatment of cell lines in vitro with nsPEF. nsPEF exposure of Jurkat cells (Human T cell leukemia, 26106/mL) to 50, 100 or 200 pulses
of 30 ns duration, at 50 Hz and a varying peak voltage (Panel A, left), and at a fixed peak voltage resulting in a field of 30 kV/cm and a varying
number of pulses (Panel A, right). nsPEF exposure of 11 solid tumor cell lines (26106/mL in 1 mm cuvette): glioblastoma multiforme (GBM) cells
(U118, T98G, U373); colon cancer cells ( HCT116); skin cancer cells (SRB-1, SRB-12, SCC-13, Colo-16, HaCaT); as well as early transformed cells [AK
(actinic keratosis), KA (keratoacanthoma)]. Cells were exposed to 100 or 200 pulses of 30 ns duration, at 50 Hz and a varying peak voltage, and at a
fixed peak voltage resulting in a field of 30 kV/cm and a varying number of pulses (Panels B. C. D. E). The effect of nsPEF exposure on cell viability is
represented by the percentage of viable cells remaining after exposure calculated as a fraction of viable control cells, not exposed but handled
similarly. Trypan blue was used to measure viable cells after nsPEF exposure at one hour. The dashed lines indicate either the pulse number or peak
voltage associated with a 50% (ED50) reduction in cell viability. Results are values obtained from three experiments under identical conditions (mean
+ SD).
doi:10.1371/journal.pone.0043891.g001

Table 1. Required pulse number at 50, 100, or 200 pulses to
kill 50% cells (ED50) of various cancer types.

Cell name Cell type Pulses ED50 (kv/cm)

Jurkat T-cell leukemia/lymphoma 50 ,27

100 ,22

200 ,19

U118 GBM
(glioblastoma multiforme)

100 ,29

HCT116 Colon cancer 200 ,30

SRB-12 Skin cancer 200 ,31

doi:10.1371/journal.pone.0043891.t001

Papilloma/Squamous Carcinoma Therapy by nsPEF
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were induced in mice by exposing a patch of their skin to

MNNG and TPA. The effectiveness of nanosecond pulsed

electric fields in vivo against the induced papillomas and

cutaneous squamous carcinomas was investigated for first time.

Results

Nanosecond Pulsed Electric Fields Treatment in vitro
Trypan blue was used to assess viable Jurkat human T-cell

leukemia/lymphoma cells one hour after nsPEF exposure to

determine the effect of electric filed and pulse number on the

death of these cells. These cells were exposed to 50, 100 or 200

pulses (30 ns duration at 50 Hz) using various strength of electric

field. The percentages of viable cells were calculated compared to

unexposed control cells (Figure 1). Cell death caused by nsPEF

occurred in a voltage- and pulse number-dependent fashion. For

Jurkat cells, the electric field caused 50% cell death (ED50s)

following exposure to 50, 100 or 200 pulses at 27 KV/cm,

22 KV/cm and 19 KV/cm, respectively. In all cases (50, 100

and 200 pulses) at an electric field approaching 15 KV/cm, the

nsPEF exposure clearly started to cause death of Jurkat cells. At a

fixed peak electric field of 30 KV/cm and varying number of

pulses, the ED50 was approximately 40 pulses for Jurkat cells

(Figure 1 A). In further experiments, the cell viability of the other

11 cell lines was tested, including transformed keratinocyte cell

HaCaT, Actinic keratosis (AK), Keratoacanthoma (KA), squa-

mous carcinoma cell lines (SRB-1, SRB-12, SCC-13, and Colo-

16), glioblastoma multiforme cells (U118, T98G, U373) and

colon cancer cells (HCT116) (Figures 1 B. C. D. E). The ED50s

of electric field in 4 cell lines (Jurkat, U118, SRB12, and

HCT116) were between 19 KV/cm and 32 KV/cm (Table 1).

The ED50 in solid tumor cell lines was approximately 30 KV/

cm; therefore, 30 KV/cm was used to examine the pulse

numbers that achieved an ED50 in solid tumor cell lines. At

30 KV/cm, these cell lines had ED50s between 60 and 240

pulses (Table 2 and Figure 1).

Treatment in vivo with Nanosecond Pulsed Electric Fields
To study the efficiency of nsPEF in vivo, a two step

carcinogenesis protocol was used (initiator, MMNG; promoter,

TPA) to induce papillomas and squamous carcinomas as described

in Materials and Methods. After 4–6 months, 2–8 tumors

(papillomas and squamous carcinomas) developed on the backs

of these mice. In order to examine the ability of nsPEF to eliminate

these tumors, three experiments were performed varying different

parameters of the nsPEF generator (voltage, pulse duration, and

number of pulse). When any dimension of the lesion (length, width

or height) was larger than the spacing between the electrodes,

multiple sites on each lesion were treated (detail described in

Materials and Methods). Based on histology, size and appearance

of tumors, about 30% of the treated tumors were squamous cell

carcinomas showing signs of invasiveness and 70% were papillo-

mas. For experimental series #1, three different pulse counts were

examined at nominal field strength of 40 KV/cm, all at 50 Hz

frequency, 14 ns duration, and 1.75 mm tip. papillomas and

carcinomas (28/32 = 87.5%) were observed for clearance one

week after 50, 200 and 400 pulse treatment using nsPEF (as shown

in Figures 2, Table 3 and Table S1). 4 of 32 (12.5%) lesions were

reduced in size but not cleared after the first treatment were

retreated 1 week following the initial treatment and subsequently

cleared. For experimental series #2, the nominal electric field was

reduced from 40 KV/cm to 31 KV/cm at 50 Hz (by reducing

pulse amplitude from 7KV to 5.5KV), 14 ns duration, 200 pulses,

1.75 mm tip. With this reduced field, 5 out of 7 (71.4%)

papillomas and squamous carcinomas were cleared upon obser-

vation one week after one treatment (Figure 2 D). The remaining

lesions from experiment series #1 and #2 were cleared after a 2nd

treatment (6/39 = 15%). In the control experiments, the probe was

applied to the tumor without application of nanopulses to deliver a

‘‘sham’’ treatment, showing the effect of the penetrating electrodes

without any accompanying electrical energy. Under these

conditions, the papillomas and carcinomas continued to grow in

each case (Figure 2 E). For experimental series #3, the pulse

duration was reduced from 14 ns to 7 ns (40 KV/cm nominal

electric field, 50 Hz, 1.75 mm tip). The carcinomas significantly

shrunk or disappeared within one week after the first treatment

when using 400 pulses, but not after employing 50, 100, or 200

pulses. 13.5% of carcinogen-induced tumors (5 of 37) were

eliminated using 7 ns duration pulses after one treatment of nsPEF

(Figure 3 and Table S1).

The first day following treatment, the tumors became noticeably

darkened, nearly black in places. This dark hue persisted for about

5 days, after which the color faded to pink and then returned to

normal color and smoothness. The normal skin, when exposed to

the nsPEF, did not visibly show this phenomenon (Figure 4).

Figure 5 A shows the histology of these tumors before and after

nsPEF treatment. The normal mouse skin has one layer of

epidermal squamous cells (upper-left photo). Before treatment,

papilloma and/or squamous carcinoma have multiple layers of

epidermal squamous cells (lower photos). After treatment, the

tumors were eliminated and replaced with a normal layer of

epidermal cells (upper-right photo).

In a previous study employing similar short (,10 ns) pulse

durations, the nsPEF was shown to cause apoptosis of cells, evident

from the caspase release and phosphatidylserine translocation

observed [15]. In present study, we found that the nsPEF-

treatment of the carcinogen-induced tumors had decreased

expression of the apoptosis-protective proteins Bcl-xl and Bcl-2

as measured by immunohistochemistry, and the tumors had

increased apoptosis as measured by TUNEL assay (Figures 5 B C

and D).

To confirm the immunohistochemistry results, the anti-

apoptotic protein Bcl-xl was also examined using western blot.

Bcl-xl was markedly reduced within one hour after the cells were

treated in vitro using nsPEF under 30 KV/cm for either 100 or 200

Table 2. Sensitivity of different cell types to cell death (ED50)
caused by nsPEF (30k V/cm).

Cell name Cell type
ED50
(pulses)

Jurkat T-cell leukemia/lymphoma ,50

U118 GBM (glioblastoma multifore) ,100

T98G GBM ,60

U373 GBM ,70

HCT116 Colon cancer ,240

AK Actinic keratosis ,100

KA Keratoacanthoma ,120

SRB-1 Skin cancer ,100

SRB-12 Skin cancer ,220

SCC-13 Skin cancer ,170

Colo-16 Skin cancer ,170

Hacat Skin cancer ,200

doi:10.1371/journal.pone.0043891.t002

Papilloma/Squamous Carcinoma Therapy by nsPEF
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pulses (Figure 6 A). Because the anti-apoptosis Bcl-xl protein levels

in tumor cells decreased in vitro after treatment with nsPEF, the

expression of this protein was also examined in vivo. The first

approach was to perform a subcutaneous injection of the human

skin cancer cells (SRB12) in immunocompromised mice (Beige

Nude XID, NIH III, from Harlan Laboratories) and treat the

tumors one week later using nsPEF (nominal 40 KV/cm field,

50 Hz, 1.75 mm tip 200p). After one hour, these tumors were

dissected from the mice; the protein was extracted and western-

blot analysis was performed. The expression of Bcl-x1 reduced in

the treated tumors (Figure 6 B). In addition, carcinogen-induced

tumors were treated with nsPEF (nominal 40 KV/cm field,

50 Hz, 1.75 mm tip 200p), and proteins were extracted after 1 and

3 hours. Western-blot analysis showed that Bcl-x1 decreased

compared to the mock-treated control cells (Figure 6 C). These

results suggest that nsPEF caused apoptosis of the cancer cells both

in vitro and in vivo.

Discussion

Present studies examined the effects of nano-pulse fields on a

variety of cell lines in vitro and chemically-induced cutaneous

papilloma and squamous cell carcinomas in vivo. Previous studies

have generally used longer pulse widths (e.g. 60–300 ns) [2,16]. In

contrast, we investigated the effect of shorter (7 to 30 ns), lower

energy pulses to determine the energy relationships and other

characteristics of this pulse regime.

Our in vitro work helped first to identify a relationship between

field strength (voltage applied across a fixed distance between

electrodes) and induction of cell death. Second, various cell types

were examined to determine their sensitivity to the anti-apoptosis

effects of nsPEF.

After applying a set number of pulses to Jurkat cells at various

voltages using a standard cuvette, the threshold for producing a

marked effect was approximately 20 KV/cm, where the onset of

Figure 2. Treatment of induced papillomas and squamous cell carcinomas in vivo with nsPEF (14ns). Tumors were exposed to either 50,
200 or 400 pulses of 14 ns duration, 50 Hz and a 40 kV/cm nominal electric field (Panel A, n = 6, median size = 10.4 mm3 before treatment; B, n = 11,
median size = 15.9 mm3 before treatment; C, n = 15, median size = 11.1 mm3 before treatment;) and to 200 pulses of 14 ns duration 50 Hz and a
31 kV/cm nominal electric field (Panel D, n = 7, median size = 11.9 mm3 before treatment). Unexposed control skin (Panel E, n = 6, median
size = 7.3 mm3 before untreatment, 20.4 mm3 after untreatment). Tumor size was measured prior to exposure and 1-week post exposure. The solid
lines depict mean tumor size in each group.
doi:10.1371/journal.pone.0043891.g002

Figure 3. Treatment of induced papillomas and squamous cell carcinomas in vivo with nsPEF (7ns). nsPEF exposure (7 ns) of carcinogen
induced squamous cell carcinomas in vivo. Induced tumors were exposed to 50, 100, 200 or 400 pulses of 7 ns duration, at 50 Hz and 40 kV/cm peak
nominal electric field (Panels A, n = 7, median size = 6.4 mm3 before ureatment, 19.2 mm3 after treatment; B, n = 5, median size = 9.6 mm3 before
ureatment, 25.6 mm3 after treatment; C, n = 10, median size = 23.9 mm3 before ureatment, 11.2 mm3 after treatment; D, n = 15, median
size = 19.2 mm3 before ureatment, 2.1 mm3 after treatment). Tumor sizes were measured prior to and at 1-week post exposure. The solid lines depict
mean tumor size in each group. Images (Panel E) are representative of the experiments and show pre- and one week post-exposure to either 200 or
400 pulses.
doi:10.1371/journal.pone.0043891.g003

Papilloma/Squamous Carcinoma Therapy by nsPEF
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effect began at 15 KV/cm. With this threshold established, and

along with previous work showing Jurkat cells to be among the

more sensitive cell lines to the effects of nanopulse fields [11],

30 KV/cm was chosen as our fixed field strength to use across a

variety of cell lines.

ED50s indicated an efficiency of pulses delivered at a fixed-field

strength (30 KV/cm) and they were significant differences across

cell lines, suggesting that some cells are more sensitive to the

nsPEF than other cell types. When examined in aggregate, these

differences demonstrated a spread across the cell lines of

approximately 4-fold the ‘‘total field’’ required (or total energy

applied) in order to produce comparable effects on cell viability.

In experimenting with fairly high fields (50 KV/cm for the

Jurkat cell line), and a relatively large number of pulses (400

pulses), a considerable number of fragmented cells were observed

at the bottom of the cuvette, indicating that the outer cell

membranes of many cells were completely destroyed upon

exposure to these fields. This suggests that a necrotic effect on

Table 3. Effect of nanosecond pulse electric fields on squamous carcinomas in vivo.

Experiment
Frequency of pulses
(Hz)

Nominal Electric
Field (kV/cm)

Number of Pulses
per Treatment Site

Pulse
Duration (ns)

Carcinomas Eliminated
(see Table S1)

1 50 40 50 14 Yes (1 of 6 was retreated)

50 40 200 14 Yes (1 of 11 was retreated)

50 40 400 14 Yes (2 of 15 were retreated)

2 50 31 200 14 Yes (2 of 7 were retreated)

3 50 40 50 7 No (n = 7)

50 40 100 7 No (n = 5)

50 40 200 7 No (n = 10)

50 40 400 7 significantly shrunk or eliminated (n = 15)

doi:10.1371/journal.pone.0043891.t003

Figure 4. Visual changes over time following nsPEF exposure of induced papillomas and squamous cell carcinomas. Solid circle
surround squamous cell carcinomas and dash lines surround normal skin. Appearance at 24 hours (d1) post-exposure is shown following nsPEF at
200 and 400 pulses of 14 ns duration, 50 Hz and 40 kV/cm peak nominal electric field and at 200 pulses of 14ns duration, 50 Hz and 31 kV/cm peak
nominal electric field. Additional images are shown on alternate days up to one week (d3, d5 and d7) for nsPEF exposure of 200 pulses of 14ns
duration, 50 Hz and 40 kV/cm nominal electric field.
doi:10.1371/journal.pone.0043891.g004

Papilloma/Squamous Carcinoma Therapy by nsPEF
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the cellular membranes can be achieved once a large total energy

threshold is exceeded. While this is known and expected for longer

pulse lengths, such as 100 ns to several ms as used for

electroporation applications, this also appears to be the case for

short (30 ns) pulses, at least as observed in vitro.

Another goal was to understand the relationship between the

pulse counts and the field strengths required to destroy carcinomas

and pre-cancerous lesions (papillomas) growing in skin, specifically

in the epidermal layers of an immunocompetent mouse model. We

used a carcinogen-induced skin cancer model in order to be able

to test the efficiency of our treatment of skin conditions. Further,

using inbred, immunocompetent mice provided a test population

which were both healthy and could provide an immune response

following the application of pulses, which may contribute to the

desired effect of the therapy in clearing the lesions.

The carcinogen-induced skin cancer model produced, as shown

by our histopathological analysis, a mix of papillomas and

carcinomas, which is consistent with previous studies with this

tumor model [17,18,19,20]. After the papillomas and carcinomas

resolved, the area was recovered by fur gradually within 1–2 weeks

and no further lesion was observed in the same area. These areas

were generally observed for an 8 weeks period post treatment. The

papillomas occurring in this mouse model are analogous to human

hypertrophic actinic keratosis, a condition which is clinically quite

common (diagnosed in 14 percent of all visits to dermatologists).

Our results demonstrated that this technology is effective on pre-

cancerous lesions. Further, the application of the nanopulse

therapy was a fast, easy to use treatment modality, with the

potential for fewer side-effects and complications versus traditional

therapies including surgery.

The in vivo studies were designed to understand the number of

pulses required reliably to resolve the lesion with a single

treatment, as this is the eventual clinical goal for the technology.

Using 14 ns pulses, 200 pulses reliably resolved each lesion, with

Figure 5. Histology and immunohistochemistry examination. Histopathology (Hematoxylin and Eosin stain) of unaffected normal mouse skin
and induced papillomas and squamous cell carcinomas (prior to nsPEF exposure and 5 weeks following effective exposure to 200 pulses of 14 ns
duration, 50 Hz, 40 kV/cm) (Panel A). Carcinogen induced tumors were treated with nsPEF (40 kV/cm, 50 Hz, 1.75 mm tip 200p). After 3, 6 and
24 hours, immunohistochemistry was performed to detect the anti-apoptotic proteins Bcl-2 (brown in Panel B) and Bcl-xl (brown in Panel C), as well
as, apoptosis as shown by TUNEL assay (Terminal deoxynucleotidyl transferase dUTP nick end labeling) (red in Panel D). Scale bar: 50 mm.
doi:10.1371/journal.pone.0043891.g005

Papilloma/Squamous Carcinoma Therapy by nsPEF
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the lesion exposed to at least this number of pulses at multiple sites

with the positive electrode applied at approximate 2 mm intervals

across its surface (see Materials and Methods for treatment details).

As a non-uniform electric field is inherent in the 5 needle

arrangement used in these experiments combined with the

approximate nature of the electrode placement at multiple sites,

Figure 6. Expression of Bcl-xl in vitro and in vivo. Western blot analyzed the Bcl-xl expression post nsPEF exposure. Glioblastoma multiforme cell
line (U118) was exposed to varying numbers of pulses in vitro [20 ns duration, 50 Hz, and 30 kV/cm) in 1 mm cuvette]. 1 hour post nsPEF exposure,
Bcl-xl expression was measured (Panel A). Squamous carcinoma cell line (SRB-12) was injected subcutaneously into immunocompromised mice. After
one week, established tumors were exposed to nsPEF 200 pulses of 14 ns duration, 50 Hz and 40 kV/cm nominal electric field. One hour later, cells
were harvested and western blot was performed to measure Bcl-xl expression (Panel B). Three induced tumors were either untreated or treated with
nsPEF (40 kV/cm nominal electric field, 50 Hz, 1.75 mm tip 200p). Protein was extracted from these tumors after 1 and 3 hours, followed by Western
blotted and probed with antibody to Bcl-xl (Panel C). GAPDH was used as loading control.
doi:10.1371/journal.pone.0043891.g006

Figure 7. Nanosecond pulsed electric field generator. Image showing the experimental nanosecond pulsed electric field generator and hand
piece for delivery of nsPEF exposure to skin tumors in vivo (Panel A). Enlarged image showing nsPEF delivery tip; the tip is placed into the tumor
during exposure. Significant components of the tip include five short 30-gauge needle electrodes, the center electrode being the positive with four
surrounding return electrodes, each spaced 1.75 mm from the center electrode (Panel B). Image showing typical pulse waveform, with 7KV
amplitude and 14 ns pulse width (FWHM) delivered into a fixed 100 ohm load (Panel C).
doi:10.1371/journal.pone.0043891.g007

Papilloma/Squamous Carcinoma Therapy by nsPEF
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it is conceivable that some areas of each lesion treated received

more than the prescribed number of pulses (such as 200 pulses of

at least 40 KV/cm) intended for each treatment site, and some

areas of the surface could have received less if the center electrode

was further than 2 mm away from other treatment sites. The

algorithm which was adopted for determining the number of

treatment sites was designed to account for the non-uniform field

and ensure all areas of the lesion were exposed to fields at or above

40 KV/cm, and best efforts were used to evenly space the

treatment sites and ensure coverage of the entire lesion. The

clearance results achieved in these experiments suggests these

methods were effective.

For a given field strength, pulse duration and electrode

arrangement, a threshold appeared in terms of pulse count. Once

past this threshold, the tumors generally resolved in a single

treatment; and below the threshold, the lesions shrank or

disappeared less reliably and may require multiple treatments to

resolve completely. At shorter pulses (7 ns), a threshold of 400

pulses was required to eliminate lesions with a single treatment,

with similar overall results as compared to the 14 ns pulses once

this threshold was reached, but requiring over 4 times the ‘‘total

field’’ applied for a pulse duration half as long. This suggests a

non-linear, ‘‘square’’ relationship between total energy (or the

number of pulses) applied and pulse duration, and this confirms

findings theorized and suggested in previous studies [2].

Control tumors in multiple mice continued to grow in spite of

being penetrated with the 5 needle electrode tips in multiple sites

in a single tumor yet with no pulses delivered. While they may

initially have shrunk slightly due to the mechanical effects of the

penetrating needles, the tumors recovered and began to grow

within several days after the contact with the needle electrodes.

Areas of normal skin were also exposed to nsPEF, to observe the

effects of these short duration pulses qualitatively over the days

and weeks following treatment. Effects on normal skin were

resolved within 1 week and no significant scarring or lasting effects

were noted. In a separate in vitro study, comparing paired cancer to

normal skin cell lines after treated by nsPEF, both cancer cells and

normal cells could be injured by nsPEF, but the damage was more

extensive in the cancer cells and the recovery was quicker in the

normal cells [9]. The results of studies in vitro suggested that the

normal mouse skin cell could also be affected by nsPEF and

recover quickly in vivo.

Significantly, we were able to achieve complete clearance of

tumors and papillomas with a single treatment using nsPEF. This

can presumably lead to less collateral damage to surrounding

healthy tissue, reduced scarring, allow faster healing, and permit

the use of more efficient, more reliable and smaller devices for

clinical applications. Further, the use of fewer, shorter pulses leads

to reduced treatment time and increased physician productivity,

both valuable benefits which can aid adoption of a new treatment

paradigm such as nanosecond pulsed electric fields.

Materials and Methods

Cell culture
Squamous skin carcinoma cell lines were obtained from

American Type Culture (ATCC) or provided generously by Dr.

Reuben Lotan (The University of Texas, M. D. Anderson Cancer

Center) and maintained in K-SFM + supplements (Invitrogen

10724-011) +3% fetal bovine serum (FBS, GIBCO, Carlsbad,

CA). The other cell lines (from ATCC) were maintained in

DMEM growth media with 10% FBS and 1% penicillin/

streptomycin (GIBCO, Carlsbad, CA). All cells were grown in a

37uC, 5% CO2 tissue culture incubator.

Pulsed electric field application on cells in vitro
Monolayer cells were trypsinized, washed, pelleted and

resuspended at 16106 cells/ml of DMEM growth media with

10% FBS. Cell suspensions were exposed to electric pulses in

commercial electroporation cuvettes (Genetronics, Inc., San

Diego, CA) with 1 mm electrode spacing. The pulse generator

was a solid-state, resonant-charged, magnetic compression, diode-

opening switch-based system designed and fabricated at the

University of Southern California specifically for testing these

short pulses with in vitro loads. The device delivers 30 ns, 30 KV/

cm pulses at repetition rates of 50 Hz to low-impedance (10–20

ohm) loads. After pulsed electric field exposure, cells were

immediately diluted to 56105 cells/ ml and incubated in a

37uC, 5% CO2 tissue culture incubator. After 60 minutes of

incubation, cells were stained using typan blue, and viable cells

were counted using a light microscope.

Mouse model of induced skin squamous carcinoma
Cutaneous squamous carcinomas were induced in SENCAR

(SENsitivity to CARcinogenesis) and CD-1 mice. SENCAR mice

were developed from CD-1 mice by recurrent selection of mice

that are sensitive to chemical induced tumor development [14,15]

and were generously given to us by Linda Blumenauer (NCI-

Frederick). CD-1 mice were bought from Charles River. Both

SENCAR and CD-1 mice were maintained in Cedars Sinai

Medical Center’s animal facility. Cutaneous papillomas and

squamous carcinomas were chemically induced according to an

established protocol [14,15,16]. Carcinogen was applied on the

flank of the shaven murine skin using a cotton-tipped applicator.

Briefly, tumors were initiated using methyl-N’-nitro-N-nitrosogua-

nidine (MNNG, 2 mmol) on the first week followed by promotion

of the tumor using 12-O-tetradecanoylphorbol-13-acetate (TPA,

2ug) applied weekly. After 20–30 weeks, papillomas or carcinomas

were detected visually and characterized by rapid growth with

elevated margins. Morphology of induced tumors was periodically

examined using standard histology. The sizes of the tumors were

recorded and photographs were taken before and after each

nsPEF treatment.

Nanosecond pulsed electric field application on
cutaneous papillomas and squamous carcinoma in vivo

The pulse generator was a prototype medical device (Figure 7),

produced by the Alfred E. Mann Institute for Biomedical

Engineering at the University of Southern California, which is

capable of selectively delivering either 7 or 14 nanosecond

duration pulses (measured at full width, half maximum) at various

programmable amplitudes and frequencies. An applicator tip

consisting of five 30 gauge needles, each 5 mm long, in a

configuration with 1 positive electrode surrounded by 4 negative

electrodes was used for all experiments (Figure 7 B). The spacing

between the positive and negative electrodes was 1.75 mm. With

this electrode configuration, the resulting electrical field is non-

uniform, and this is illustrated in Figure 7 (D and E) which

indicates the field strengths generated across a horizontal slice of

the volume of tissue treated at the peak pulse amplitude of 7KV.

For simplicity, we refer to the field strengths at various pulse

amplitudes by their ‘‘nominal’’ values, which are obtained from

the peak pulse amplitude divided by the spacing between the

electrodes. To avoid the occurrence of air pockets between the

electrodes, both tumor and tip were covered with Aquasonic 100

ultrasound transmission gel (Parker Laboratories, Inc. Fairfield,

NJ., USA). A frequency (or repetition rate) of 50 Hz was chosen to

standardize upon for the in vivo experiments as it provided
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reasonable treatment times of several seconds per exposure site for

the pulse counts investigated, and matched the frequency used for

the in vitro work performed in this study. Two pulse durations

(14 ns and 7 ns) were used for the experiments with varying pulse

numbers and amplitude to determine the effect of varying these

parameters on tumor clearance (Figure 7 C).

The length, width and height of each lesion were measured.

The volume of lesion is 0.52366 length 6width 6height. When

any dimension of lesion was larger than the spacing between the

electrodes (1.75 mm), the pulses were applied to multiple

treatment sites on the surface of the lesion, spaced approximately

2 mm apart. This was done to ensure the entire tumor surface was

exposed to the nominal field of 40 KV/cm, which surrounds the

center electrode with a radius of 1 mm. The number of treatment

sites per lesion was determined according to the largest dimension

of the lesion. For example, when using 200 pulses, the lesion was

treated in 2 treatment sites for the 2 mm lesion (longest dimension)

with 200 pulses applied at each treatment site, 3 treatment sites for

the 3 mm lesion with 200 pulses applied at each treatment site, 4

treatment sites for the 4 mm length lesion, etc. The treatment sites

were distributed approximately evenly across the lesion surface to

ensure complete coverage of each lesion, with the center positive

electrode penetrating the lesion surface at each treatment site. Any

lesion smaller than 2 mm62 mm62 mm was treated at just one

treatment site, approximately in the center of the lesion. Lesions

still present after the initial treatment and requiring a 2nd

treatment were re-treated 1 week following the initial treatment.

The algorithm described above for determining the number of

treatment sites per lesion was used for those tumors requiring a 2nd

treatment, as well, based on the largest dimension of the lesion at

the time of re-treatment. Tumors were considered cleared

(eliminated) when no recurrence was detected within 4–8 weeks

after the last treatment.

Mice were given isofluorane anesthesia and positioned on a

warming bed for all procedures, each of which was approved by

the IRB of Cedars Sinai Medical Center Comparative Medicine

(IACUC002427).

Histology/Immunohistology
After mice had complete tumor regression in areas exposed to

nsPEF therapy for at least four weeks, skin samples were taken and

fixed for histology. The skin from tumor locations which had been

exposed to nsPEF therapy and had cleared, the skin from control

tumors which were penetrated by the applicator tip but not

exposed to nsPEF therapy, as well as a sample of normal skin were

excised and immediately placed in a 10% buffered formalin

solution for 24 hours at room temperature and then transferred

into 70% ethanol. After paraffin embedding, 5 mm sections were

cut every 0.5 mm across each skin sample and stained with H&E.

Stained slides were observed using microscopy.

The carcinogen-induced tumors were dissected before and after

nsPEF treatment and untreated tumors were dissected and

examined for their expression of anti-apoptosis protein Bcl-xl

and Bcl-2 using immunohistochemistry as previously described

[17]. Rabbit monoclonal antibodies to Bcl-2 and Bcl-xl (Abcam)

were applied at a dilution of 1:50 for 60 min at room temperature.

The sections were counterstained with hematoxylin. Tunnel assay

was also performed using a kit from Roche (Cat. No.

11684809910).

Western blot analysis
The samples were collected after nsPEF treatment in vitro and

in vivo. Western blot was performed as previously described [17].

All antibodies were bought from Santa Cruz Biotechnology Inc.

(California, USA).

Statistical Analysis
Differences between the results of experimental treatments were

evaluated by a t-test. Differences were considered significant at

values of p,0.05.

Supporting Information

Table S1 Lesion and Treatment Detail.
(DOCX)
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