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Abstract of the Dissertation

Measuring transversity in polarized p+p collisions with di-hadron correlations at
√
s = 200 GeV at the STAR experiment

by

Keith David Landry

Doctor of Philosophy in Physics

University of California, Los Angeles, 2016

Professor Huan Z. Huang, Chair

The transversity distribution, h1(x), of a transversely polarized proton de-

scribes the probability of partons with polarization parallel to the parent proton,

carrying a momentum fraction x of the parent proton. This distribution is fun-

damental for our understanding of the proton spin structure but still very much

unknown for values of x larger than about 0.15. We study transversely spin-

polarized proton collisions at
√
s = 200 GeV from STAR, because polarized p+p

collisions at RHIC can access this x region and, with a higher scale and transverse

momentum, probe a different kinematic regime than SIDIS. We find sizable spin

asymmetries in di-hadron correlations, which can be used to directly probe the

transversity distribution of quarks inside protons because they arise from a trans-

versely spin polarized quark fragmenting into two hadrons by the Interference

Fragmentation Function.
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CHAPTER 1

Introduction

We have carried out measurements of asymmetries in pion pair production

from spin polarized proton collisions, which will allow for the extraction of the

transversity distribution function, a fundamental function intrinsic to the descrip-

tion of the proton’s internal structure. In this chapter we will give an introduction

to important historical milestones leading to the current state of affairs. There-

fore before delving into my analysis, I will include a brief overview of the relevant

physics and motivation.

1.1 Substructure of the atom

From the ancient philosophers to modern scientists, people have always been

curious about the structure of matter. In the early 1800s John Dalton took the

first major step down an even longer path. Dalton noticed that elements reacted in

ratios of small whole numbers. As an explanation, he proposed the idea of atoms.

The next step came in 1897 when J.J. Thomson discovered the electron. He

observed that cathode rays would bend in the presence of a magnet and therefore

concluded that the rays were actually streams of particles carrying an electric

charge. He was able to measure the charge to mass ratio which turned out much

larger than expected. This indicated that the mass of the particle was very small.

He deduced this particle to be a constituent of the atom, but incorrectly proposed

a “plum pudding model” where the electrons were suspended in the accompanying

positive charge making the neutral atom. Thomson’s incorrect model of the atom

1



was not adjusted until 1911 by Rutherford.

Rutherford challenged Thomson’s model when he scattered alpha particles

(not yet known to be helium nuclei) into a sheet of gold foil. If the plum pudding

was correct, Rutherford expected the alpha particles to be deflected only slightly.

What he observed was the opposite. Although most of the particles passed straight

through, some of them were deflected wildly. This indicated the positive charge of

the atom was concentrated in a very small nucleus. Rutherford named the nucleus

of the lightest atom proton, but it was not until Chadwick discovered the neutron

in 1932 other nuclei could be understood [24].

As heavier nuclei were being described as multiple protons and neutrons, a

natural question came up. What is holding the nucleus together? In fact with

multiple protons all positively charged, one would expect the nucleus to fly apart.

There must be another stronger force keeping it together. This conveniently be-

came known as the strong force. In 1934 Yukawa proposed a theory for the strong

force. It had to be very short ranged as we don’t feel its effects on a large scale.

Because of this Yukawa proposed it was mediated by a heavy particle, much like

the electromagnetic force is mediated by the photon. It wasn’t until 1947 when

Powell discovered Yukawa’s predicted particle and named it the pion. At the same

time another lighter particle was discovered that behaved similarly to an electron

and given the name muon. The proton and neutron were grouped together and

called baryons, or heavy weight particles, the electron and muon were light weight

particles called leptons, and the pion was in between and classified as a meson

[24].

1.2 Quantum Mechanical Spin

The Pauli exclusion principle and atomic spectra in the presence of an external

magnetic field both hinted at the need for the electron to have another quantum

2



number. This was thought to be due to the electron spinning about an axis.

Today we think of the electron as a point particle which cannot rotate, however

the name “spin” stuck. The electron spin has an associated magnetic moment,

which could naturally describe the atomic spectra seen from the Zeeman-effect.

�µs =
−ge

2me

�S ≈ µB (1.1)

The magnitude of the magnetic moment is approximately equal to the Bohr mag-

neton. The difference is due to QED corrections.

The eigenvalues of the spin operators and its z component are

S
2|s,ms� = �2s(s+ 1)|s,ms� Sz|s,ms� = �ms|s,ms� (1.2)

As the spin-statistics theorem states, all particles with half integer spins are

considered fermions, subject to the Pauli exclusion principle, and follow Fermi-

Dirac statistics. All integer spin particles are considered bosons, follow Bose-

Einstein statistics, and are allowed to occupy the same quantum states.

1.3 Nucleon Structure

Since the proton is a fermion with spin 1/2, it is expected to have a spin mag-

netic moment similar to that of the electron. Just as the electron’s spin magnetic

moment was approximately equal to the Borh magneton, the proton’s spin mag-

netic moment was expected to be approximately equal to the nuclear magneton

µN = e�/2mp. However the measured value of the proton’s spin magnetic moment

is µp ≈ 2.8µN . Moreover, the neutron’s spin magnetic moment, which should be

zero due to the neutron’s lack of charge, was found to be µn ≈ −1.9µN . These

deviations from the expected values were unexplainable but hinted at the fact that

nucleons were not elementary particles. This was not the only evidence that nu-

3



Figure 1.1: The dashed line shows expectation if positive charge was uniformly

distributed in a) the atom and b) the proton [24].

cleons were not elementary. In a similar way Rutherford’s scattering experiment

suggested the positive charge was confined to a volume inside the atom which was

much smaller than that for the negative charge, deep inelastic scattering experi-

ments at SLAC showed evidence (Fig. 1.1) that the charge of the proton was not

distributed uniformly. Instead there was evidence of three substructures in the

proton. It wasn’t until the quark model this could be explained.

1.4 quark model

In parallel with these developments, experiments detected particles that be-

haved differently from those currently known. In 1949 a neutral particle, eventu-

ally called the K0, was found to decay into a π+ and a π−. In 1950 another neutral

particle was found which decayed into a proton and a negatively charged pion.

These newly discovered particles were labeled strange. By 1953 this strange label

was found to be a quantum number that had to be conserved just like electric

charge, which follows from the fact that these new strange particles are always

created in pairs. In 1961 Gell-Mann was able to organize all the known particles

using what he called the Eightfold Way. All the known mesons and baryons were

arranged in a hexagon based on their electric charge and strangeness. Gell-Mann

4



went even further by proposing that these meson and baryons were actually com-

posed of smaller particles called quarks. He used these quarks to explain why

the mesons and baryons were able to be grouped so nicely. His model consisted

of three quarks, the up quark, the down quark, and the strange quark. He also

theorized these quarks were bound together by a force mediated by a gluon; a spin

1 boson. The quark makeup of the eight lightest baryons are shown in Table 1.1.

Today we know that there are six quarks, not just the three that were originally

proposed.

particle quark content rest mass isospin J
p charge strangeness

p uud 938.27 MeV/c2 1/2 1/2+ +1 0

n udd 939.57 MeV/c2 1/2 1/2+ 0 0

Σ+ uus 1189.37 MeV/c2 1 1/2+ +1 -1

Σ0 uds 1192.64 MeV/c2 1 1/2+ 0 -1

Σ− dds 1197.45 MeV/c2 1 1/2+ -1 -1

Λ0 uds 1115.68 MeV/c2 0 1/2+ 0 -1

Ξ0 uss 1314.86 MeV/c2 1/2 1/2+ 0 -2

Ξ− dss 1321.71 MeV/c2 1/2 1/2+ -1 -2

Table 1.1: The eight lightest baryons in the quark model

1.5 Electron-Proton Scattering and Structure Functions

The proton structure can be investigated through the study of electron-proton

scattering. The differential cross section for electron-proton deep inelastic scat-

tering, such as the experiments performed at SLAC, can be written in terms of

two proton structure functions W1(Q2
, x) and W2(Q2

, x).

dσ

dΩ
=

�
dσ

dΩ

�

mott

�
2W1 tan

2

�
θ

2

�
+W2

�
(1.3)
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where
�
dσ
dΩ

�
mott

is the well-known Mott cross section.

In the deep inelastic scattering limit, where the momentum transfer Q2 → ∞

and proton momentum p → ∞, but x = − q
2

2q·p stays fixed, Bjorken predicted the

Q
2 dependence of the structure functions would disappear. We call this Bjorken

scaling.

lim
Q2→∞,x fixed

MW1(Q2
, x) = F1(x) (1.4)

lim
Q2→∞,x fixed

− q
2

2Mx
W2(Q2

, x) = F2(x) (1.5)

Although Bjorken scaling cannot hold exactly in any relativistic field theory [3],

experiments have shown approximate Bjorken scaling. The structure functions in

equations 1.4 and 1.5 can be written as F1(Q2
, x) and F2(Q2

, x) with the depen-

dence on Q
2 being logarithmic. This can be seen in Fig. 1.2. It was found that

Bjorken scaling up to logarithmic violations could be explained in asymptotically

free field theories [25]. This led to the asymptotically free theory of Quantum

Chromo Dynamics we have today.
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Figure 1.2: The proton stucture funtion shows approximate Bjorken scaling [39].
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1.6 Factorization theorem and the unpolarized parton dis-

tribution function

The factorization theorem says that in the DIS limit, scattering occurs between

free partons. Because of this, we are able build up the structure functions for the

proton from distributions of its constituent partons.

F1(Q
2
, x) =

�
a

1�
x

dξ
ξ
fa(ξ, µ)H1a

�
x

ξ
,
Q

µ
, αs(µ)

�
+ remainder (1.6)

1

x
F2(Q

2
, x) =

�
a

1�
x

dξ
ξ
fa(ξ, µ)

ξ

x
H2a

�
x

ξ
,
Q

µ
, αs(µ)

�
+ remainder (1.7)

Here fa(ξ, µ) is the unpolarized parton distribution function of flavor “a”. It

gives the probability of finding a free quark for flavor a inside the proton with

momentum fraction ξ. The renormalization scale, µ, is free to be chosen. The

functions H1a and H2a are the hard scattering coefficients which can be calculated.

The convenient choice of µ = Q will be used [20]. At leading order, the form of

the structure functions simplify [24].

F2(Q
2
, x) = 2xF1(Q

2
, x) =

1

2

�

a

e
2
a
fa(x,Q) (1.8)

Where ea is the charge of parton a.

The factorization theorem can also be applied directly to the cross sections. In

this manner, we can write the cross section of electron-proton scattering directly

in terms of parton distribution functions and parton cross sections as seen in

Fig. 1.3b.

σep =
�

a

1�

x

dξfa(ξ)σ̂ea

�
x

ξ
,Q

2

�
(1.9)

Where σ̂ea is a calculable cross section for electron scattering off a parton of type

a. In this way the factorization theorem can be generalized to other high energy

processes [20]. The unpolarized distribution function f1(x) is well known. It can be

extracted by fitting a large number of data points from different DIS experiments

8



(a) Electron proton scattering (b) Scattering becomes electron off quark a

in factorization picture

Figure 1.3: Factorization theorem of e + p → X

at different values ofQ2 and x [9]. In Fig. 1.4 the unpolarized distribution functions

for different partons are shown. Not surprisingly partons carrying the largest

momentum fraction x are the up quark and down quark.
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Figure 1.4: The unpolarized parton distribution functions as a function of x at

initial scale Q
2
0 = 2 GeV2 in the NLO approximation [9].
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CHAPTER 2

Spin Physics

While the unpolarized distribution tells us some information about the number

density of quarks inside a proton, it does not give a complete picture, and does

nothing to answer the question about the origin of proton spin. For this we

need to look at spin-dependent physics, which gives rise to spin-dependent parton

distribution functions. One of which will be of interest in the remainder of this

thesis.

2.1 Logintudinally Polarized Deep Inelastic Scattering

A good starting point for the study of spin physics is the polarized version of

deep inelastic scattering. Specifically we are interested in a longitudinally polar-

ized lepton beam scattering off of a longitudinally polarized proton. Similarly to

the unpolarized case, we can describe it in terms of two structure functions G1

and G2. The difference in cross sections when the beam and proton are polarized

in the same versus opposite directions is given by

d2
θ
←
←

dΩdE � −
d2
θ
←
→

dΩdE � =
4α2

E
�

Q2E

�
(E + E

�
cosθ)MG1(ν,Q

2)−Q
2
G2(ν,Q

2)
�
, (2.1)

where E and E
�
are the energies of the lepton in the initial and final states,

ν = p · q/M , and G1 and G2 are spin-dependent structure functions. In the deep

inelastic scattering limit the structure functions G1 and G2 can be written in terms
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of dimensionless structure functions that show approximate Bjoken scaling [13].

lim
Q2→∞,x fixed

M
2
G1(ν,Q2) = g1(x) (2.2)

lim
Q2→∞,x fixed

Mν
2
G2(ν,Q2) = g2(x) (2.3)

At leading twist1, the contribution from g2 vanishes. The spin-dependent structure

function g1 can be built up from parton distribution functions in the same way as

the unpolarized structure functions. At leading order g1 is given by

g1(x,Q
2) =

1

2

�

a

e
2
a

�
∆fa(x,Q

2) + ∆f̄a(x,Q
2)
�
. (2.4)

Called the “helicity distribution function”, ∆f describes, in the infinite momen-

tum frame of the proton, the number of quarks inside a longitudinally polarized

proton with their spin aligned minus the number of quarks with their spin anti-

aligned with the proton’s spin, carrying momentum fraction x [13].

In 1997 the HERMES collaboration measured g1 using a combination of in-

clusive and semi-inclusive lepton-nucleon deep inelastic scattering data [4]. The

data was taken with 27.6 GeV longitudinally polarized positron beam scattering

off a longitudinally polarized hydrogen gas target. They constructed a single spin

asymmetry A|| in the number of scattered positrons.

A|| =
N

−
L
+ −N

+
L
−

N−L+
P
+N+L

−
P

(2.5)

Where N
+(N−) is the number of positrons scattered when the target spin is

parallel(antiparallel) to the positron beam spin. The luminosities are L
+, L

−

when the target spin is parallel or antiparallel with the beam spin, while L
+
P
, L−

P

are weighted luminosities. The structure function g1 was extracted based on its

relation to this asymmetry,

g1

F1
=

1

1 + γ2

�
A||

D
+ (γ − η)A2

�
(2.6)

1Twist t relates to order 1/Qt−2 [30]
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Figure 2.1: The helicity distribution as a function of momentum fraction x for Q2

= 2 GeV2 and 10 GeV2 [4].

where γ = 2Mx/

�
Q2. Here A2 was previously measured to be small [4][1].

HERMES is not the only collaboration to extract the helicity distribution. The

HERMES data, along with other data from other experiments, is shown in figure

2.1.

2.2 Proton Spin Crisis

However the spin of the proton comes about, it must be conceived from the

spin of the quarks, Σ, the orbital angular momentum of the quarks, Lq, the orbital

angular momentum of the gluons, Lg, and the spin of the gluon, ∆G. These must

sum to equal the spin of the proton.

1

2
=

1

2
Σ + Lq + Lg +∆G (2.7)

In the naive quark model, it was expected that the entirety of the proton spin

would be carried by the three valence quarks. In a relativistic theory with QCD

corrections, only about 60% of the proton spin is thought to be carried by the

quarks. The initially measured value of
1�
0

dxg1(x), however corresponds to a value
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of Σ of 0.120±0.16 or consistent with zero [32]. This suggests that virtually none of

the proton spin in carried by valence quarks. More recent measurements provide

a value of 0.27 ± 0.05 for Σ, still much smaller than the theoretical expectation

from relativistic models [32].

It is possible that the contribution to proton spin from gluon spin is larger

than previously thought. A global analysis of data from both STAR and PHENIX

suggest the contribution from ∆G is sizable after all [23]. More data is needed to

form a more conclusive answer.

2.3 Transversity Distribution Function

So far only logintudinal spin has been taken into account. Another piece to the

proton spin puzzle deals with transverse spin. This can be described by another

parton distribution function (written h1 or ∆Tf), which wasn’t even considered

until Ralston and Soper introduced it in 1979 [38], called the “transversity dis-

tribution function”. This distribution function describes the number of quarks

with their spin aligned minus the number of quarks with their spin anti-aligned

with the proton’s spin carrying momentum fraction x when the proton’s spin is

perpendicular to its direction of motion. One might think this is equivalent to

the helicity distribution function as the probability of finding a parton whose spin

is aligned versus anti-aligned with the proton spin shouldn’t depend on the di-

rection of the proton spin. This is true for a proton in its rest frame. However

this interpretation of the helicity and transversity distributions are only viable in

the infinite momentum frame of the proton. In a relativistic setting such as this,

Lorentz boosts cause these distributions to differ [11].

Unlike the helicity distribution function, the transversity distribution function

does not appear in lepton inclusive deep inelastic scattering due to its chiral-odd

nature. In order to observe its effects, it must be paired with another chiral-odd
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object to create a chiral-even observable, making it harder to access. Because of

this, the transversity distribution function is currently not very well-known.

2.4 First Experimental Measurements of Transversity

2.4.1 In Single Hadron Production semi-inclusive DIS

The detection of a single hadron in the final state introduces another chiral-

odd piece to the cross section in the form of a quark fragmentation function which

describes how probable it is for a quark to fragment into a given hadron. When

paired with the transversity distribution, a chiral-even observable is created, allow-

ing the transversity distribution to be probed. This was first done by HERMES

through semi-inclusive DIS of positrons off of a polarized proton target with a

single hadron detected in the final state [5, 8],

e+ p
↑ → e+ h+X. (2.8)

Just as in the experiment to measure the helicity distribution, a single spin asym-

metry was detected [5],

A
h

UT
(φ, φS) =

1

|ST |
N

↑
h
(φ, φS)−N

↓
h
(φ, φS)

N
↑
h
(φ, φS) +N

↓
h
(φ, φS)

(2.9)

where N
↑(↓)
h

(φ, φS) is the number of hadrons produced at azimuthal angle φ and

angle φS to the proton spin when the spin is polarized up(down), and |ST | is the

polarization of the target proton spin.

There are two sources of this asymmetry present in the cross section. These

are the Collins azimuthal moment �sin(φ+φS)�hUT
and the Sivers moment �sin(φ−

φS)�hUT
. These were both measured and can be seen in figures 2.2a, 2.2b. From

these transversity could be extracted [8].
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Figure 2.2: Single Spin Asymmetry in SIDIS single hadron production measure-

ments from HERMES [5]

(a) Measurement of Collins moment (b) Measurement of Sivers moment

2.4.2 In Double Hadron Production semi-inclusive DIS

Quark fragmentation into two hadrons in the same jet, as described by the

interference fragmentation function (IFF) and shown in Fig. 2.3, can also be paired

with transversity to create a chiral-even observable [22, 15]. This was done by the

COMPASS collaboration [17] and the HERMES collaboration [16] via the process

e+ p
↑ → e+ (π+

, π
−)jet +X. (2.10)

Figure 2.3: an outgoing quark fragments into a π+
π
− pair. This is described by the

Interference Fragmentation Function (IFF). The Vector �R gives the orientation of

the pair.
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Figure 2.4: Single Spin Asymmetry measured by the HERMES collaboration [16]

Once again a singe spin asymmetry was measured. This is shown in figure 2.4

for HERMES data. This asymmetry is related to the transversity distribution by

[16],

A
sin(φR⊥+φS) sin θ

UT
= − 1− y

1− y − y2

2

1

2

�

1− 4
M2

π

M2
ππ

�
q

e
2
q
h
q

1(x)H
�,sp
1,q (z,Mππ)

�
q

e2
q
f
q

1 (x)D1,q(z,Mππ)
(2.11)

where y = (P · q)/(P · k), q and k are the momenta of the virtual photon and

incoming positron respectively, H�,sp
1,q (z,Mππ) is the IFF describing the probability

of transversely polarized quark q fragmenting into a pion pair with invariant mass

Mππ retaining momentum fraction z of the fragmenting quark, and D1,q(z,Mππ)

is the unpolarized partner of the IFF, hq

1(x) is the transversity distribution for

parton q while f
q

1 (x) is the unpolarized parton distribution for parton q.

The asymmetry observed in this dihadron production does not depend on par-

ton transverse momentum allowing it to be analyzed in the collinear framework.

The single hadron production must be analyzed in the Transverse Momentum

Dependent (TMD) framework. TMD factorization has been shown to depend on

physical processes; however, collinear factorization is the same from process to

process. This makes the asymmetry in dihadron production a useful observable
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when comparing results in lepton scattering and hadronic collisions as well as

when making predictions [35].

2.4.3 Transversity measurement in p+ p Collisions

There are several benefits in measuring the transversity distribution in proton-

proton collisions as well. First of all, it can test the universality of the parton

distributions. Furthermore, in proton-proton collisions, the momentum fraction

carried by the interacting quarks is much higher than the fixed target SIDIS

experiments previously discussed. This allows us to extend our knowledge we

have of the transversity distribution into a new kinematic regime.

There are several ongoing measurements at STAR which are sensitive to the

transversity distribution, and will thus test the consistency of the extracted transver-

sity. One such experiment uses a single charged hadron, typically a pion, produc-

tion p
↑+p → π+X at mid-rapidity coupled to the Collins Fragmentation Function.

Another is mid-rapidity W and Z boson production coupled to the Sivers Func-

tion. At forward rapidity, neutral pion production is sensitive to the transversity

distribution through the Collins function.

The rest of this thesis will cover the measurement of transversity through

double charged hadron production p
↑ + p → h

+
1 h

−
2 + X at mid-rapidity. As

mentioned in chapter 2.4.2, this is coupled with the Interference Fragmentation

Function. Therefore in order to obtain useful information about the transversity

distribution, we need a measurement of the IFF.
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2.5 Measuring the Interference Fragmentation Function

at BELLE

In our experiment, transversity only shows up as a convolution with the in-

terference fragmentation function, h1H
�
1 . In order to isolate transversity in our

data we need to know how the interference fragmentation function behaves. The

BELLE experiment at KEK has already done this work [42]. They performed

an electron-positron annihilation experiment detecting back-to-back π
+
π
− pairs.

The relative angle between the two pions was determined and the modulation, a12,

of the number of back-to-back pairs found at different values of the relative angle

was measured. This modulation, called the Artuo-Collins asymmetry, is related

to two IFFs.

a12 ∝
1

2

sin2
θ

1 + cos2 θ

�
�

q,q̄

e
2
q
z
2
1z

2
2H

�q
1 (z1,m

2
1)H

�q̄
1 (z2,m

2
2)

�

×
�
�

q,q̄

e
2
q
z
2
1z

2
2D

q(z1,m
2
1)D

q̄(z2,m
2
2)

�−1

(2.12)

Here θ is the polar angle defined between the beam axis and the reference

axis, Dq is the unpolarized equivalent of the IFF, z1(2) is the energy fraction pion

pair 1(2) has, and m1(2) is the invariant mass of pair 1(2). BELLE reported

the modulation a12 for different z1, z2 bins as well as different m1,m2 bins for

different quark flavors [42]. The modulation a12 is shown in Fig. 2.5 plotted versus

the invariant mass. With this data, Courtoy et al [10] were able to extract the

Interference Fragmentation Function.
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Figure 2.5: Asymmetry in the number of back-to-back pion pairs seen at BELLE

plotted vs the invariant mass [42].

2.6 Extracting IFF

The interference fragmentation function was extracted from the BELLE data

using the replica method [10]. N sets of replica data points were produced by

shifting the experimentally determined data points by gaussian noise with the

same width as the measured error. It was found that roughly 100 replicas were

sufficient for the mean and standard deviation of the replicated data points to

accurately reflect the measurements [36].

By integrating over the antiquark jet, the Arturo-Collins asymmetry from

equation 2.12 becomes proportional to

a12 ∝
H(z1,m1;Q2)

D(z1,m1;Q2)
, (2.13)

where D(z1,m1;Q2) is estimated from PYTHIA calculations [21]. Restricting to

only up and down quarks and requiring n
↑
u
(Q2) = −n

↑
d
(Q2) gives

H(z1,m1;Q
2) =

|R|
m1

H
�u
1 (z1,m1;Q

2)n↑(Q2). (2.14)
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Figure 2.6: The ratio R(z,Mh) as a function of Mh for three values of z: z =

0.25(purple), z = 0.45(green), and z = 0.65(red). The left panel is for αs = 0.125,

and the right pannel is for αs = 0.139 [37]. Note: In their notation, Mh = m1 is

the invariant mass of the pion pair coming from the quark.

Here the normalization n
↑(Q2) =

�
dz

�
dm1H(z1,m1;Q2).

The theoretical value, HTH(z1,m1, Q
2; {p}), is a complicated function [37] with

parameter vector {p} containing 9 parameters. These best-fit parameters were

found for each replicated data set by minimizing the error

E
2
r
({p}) =

�

ij

�
H

TH

ij
(z1,m1, Q

2; {p})−Hij(z1,m1;Q
2)
�2

/σ
2
ij

(2.15)

where index i runs over the data points in invariant mass bin j. This results in

N = 100 different parameter vectors. A value of H�u
1 (z1,m1;Q2) is calculated

from H
TH(z1,m1, Q

2; {p}) using the best fit parameters for each replica. The

largest and smallest 16% of the N calculated values are rejected leaving a 68%

confidence interval for the IFF.

R(z1,m1) =
|R|
m1

H
�u
1 (z1,m1;Q2)

D
u

1 (z1,m1;Q2)
(2.16)

To visualize the IFF, a ratio, which can be seen as a function of m1 for different

values of the fractional energy z in Fig. 2.6, is constructed. Each colored band

represents one of these values of z and corresponds to 68% of the 100 replicas.

Now armed with H
�
1 , we can access the transversity in our analysis.
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2.7 Summary

To leading order, the parton kinematics inside a proton can be described by

three parton distribution functions (Fig. 2.7); the unpolarized distribution func-

tion, f1(x), the helicity distribution function ∆f(x), and the transversity distri-

bution function, h1(x) [28]. The first two are well-known from DIS experiments,

while the transversity distribution is not. Due to its chiral odd nature, a differ-

ent type of experiment is required to probe the transversity of partons inside the

proton. The IFF, which is used to describe how a transversely polarized quark

fragments into a pair of oppositely charged pions is used as the second chiral odd

object to pair with the transversity distribution function in order to construct an

observable. A more detailed overview of the physics involved in the analysis will

be given in chapter 4.

22



Figure 2.7: Top: Unpolarized distribution function f1(x)

Middle: Helicity distribution function ∆f(x)

Bottom: Transversity distribution function h1(x)
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CHAPTER 3

RHIC and The STAR Experiment

3.1 The RHIC complex

The Relativistic Heavy Ion Collider (RHIC), located at Brookhaven Nation

Laboratory, is the only collider in the world that allows for spin-polarized proton

collisions, as well as heavy nuclei collisions as the name suggests. The RHIC

complex, shown in Fig. 3.1, is composed of a chain of accelerators which boost

the energy in steps before finally injecting the particles into the large ring of

RHIC. Heavy nuclei are first delivered to the Booster Synchrotron where they

are accelerated to 95 MeV per nucleon. After which they are transferred to the

Alternating Gradient Synchrotron (AGS). Here they are re-bunched into four

bunches and accelerated to 10.8 GeV per nucleon, at which point they are injected

into the RHIC ring and accelerated to their final energy. The highest energy RHIC

can accommodate for heavy ions is 100 GeV per nucleon for gold nuclei. The story

for protons is a little different. They are injected already spin polarized into the

Booster Synchrotron from an older LINAC accelerator. From this point they are

accelerated in the Booster and AGS before being injected into the RHIC storage

ring. Here they are accelerated up to a maximum 250 GeV. In order to keep the

spin polarization for the proton beam, special magnets called Siberian Snakes are

used. These magnets flip the proton spin twice per revolution by 180 degrees

in two orthogonal directions. The RHIC storage ring itself actually consists of

two independent rings 3.8 km in circumference. This allows for the collisions of

different species. The independent rings intersect at six locations. the STAR

24



detector is located at one such intersection points [33].

Acceleration of polarized protons in a circular accelerator can encounter reso-

nant conditions which act to depolarize the beam. Special magnets called Siberian

Snakes are used to overcome these depolarizing resonances. Each Siberian Snake

consists of 4 superconducting helical dipole magnets. The role of the Siberian

Snakes are to rotate the proton spin as shown in Fig. 3.2. If the spin rotation

from the Siberian Snakes is much larger than that of the depolarizing resonances,

the beam polarization is kept intact. In the RHIC ring, this is achieved with a

pair Siberian Snakes in each ring which rotate the proton spin by 180 degrees in

orthogonal directions for each orbit. The lower energy of the AGS calls for only

partial Siberian Snakes which rotate less than 180 degrees, but still enough to

maintain beam polarization [26]. Along with the Siberian Snakes, spin rotators

are located at the experimental interaction points. These allow for the proton spin

to be rotated from the transverse plane to the longitudinal plane before collisions,

depending on the requirements of each experiments [26].

Polarized protons start out as polarized H
− ions produced from an optically

pumped proton ion source (OPPIS). This source produces 9× 1011 polarized H
−

ions per 300µs pulse. These polarized ions are then accelerated to 200 MeV

in the LINAC. They are then stripped of the electrons and injected into the

Booster where they are further accelerated to 10.5 GeV. From here they are sent

to the AGS and accelerated to 25 GeV. The final step is a transfer to RHIC for

acceleration to a maximum of 250 GeV and storage [26].
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Figure 3.1: The RHIC complex
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Figure 3.2: 180 degree proton spin flip by Siberian Snake

3.2 The STAR Detector

The Solenoid Tracker at RHIC (STAR) is located at the 6 o’clock position

on the RHIC ring. It consists of several sub-detectors working in conjunction to

detect, identify, and track particles.

3.2.0.1 Time Projection Chamber

One of they key detectors of STAR is the Time Projection Chamber (TPC).

It is tasked with tracking particles, measuring momenta, and detecting ionization

energy loss, dE/dx, to aid in particle identification. The TPC is the large cylin-

drical gas chamber covering ±1.8 units of pseudorapidity around the interaction

point. It’s filled with a mixture of 10% methane and 90% argon at a pressure

of 2 mbar above atmospheric pressure. As a charged particle passes through the
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Figure 3.3: STAR Time Projection Chamber

TPC, the gas is ionized, leaving a trail of electrons in it’s wake. These electrons

drift to the end caps of the TPC under a uniform electric field of about 135 V/cm

where they are collected in a proportional chamber to record their drift time and

location in the r − φ plane and along the z direction. This information can be

analyzed to reconstruct the track of the ionizing particle. The particle’s path

will curve due to the presence of STAR’s magnetic field an amount proportional

to the particles charge and it’s velocity, allowing for the measurement of particle

momenta, charge, and ionization energy loss.

At the center of the TPC is a central membrane which splits the TPC in two

halves. This membrane is kept at 28 kV while the two end caps are at ground.

A field cage is located around the TPC to create 182 equipotential slices in the

TPC. This set up allows for a very uniform electric field to be kept.

A mixture of 10% methane and 90% argon is chosen for the TPC gas due to

its relatively large drift velocity. This drift velocity also peaks at the operating
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electric field (135 V/cm) making it relatively unaffected by subtle fluctuations in

the electric field.

The TPC gas drift velocity is calibrated with a laser system. Thirty six alu-

minum stripes are positioned on either side of the central membrane and are illu-

minated with an ultraviolet laser. This causes photo-ejection of electrons which

drift to the end caps where they are read. The position of the aluminum stripes are

known with such precision that the time it takes the ejected electrons to reach the

end cap readouts, as well as the position they reach, can be used for calibration.

The end cap is equipped with 12 modular sectors arranged covering 180 degrees

in azimuth. These sectors are arranged like a clock with only 3 mm separating

them. Each sector, shown in figure 3.4, has a grid of readout pads and a wire pro-

portional chamber consisting of three wire grids; a gating grid, a shield (or ground)

grid and an anode grid. The gating grid is required to keep boundary conditions

with the central membrane and field cage in order to achieve the uniform electric

field, and is thus arranged to do so. It prohibits ions generated from avalanches

on the anode wire from drifting back into the main TPC region and effecting the

drift field. The anode wire plane is made up of 20µ wires aligned radially around

the sector. This is to achieve maximum precision of the measurement of momenta

from high momentum (straight) tracks. The anode grid is completed by wires in

the other direction separated by 4 mm.

As the drifting electrons reach the anode grid an avalanche occurs triggering

a temporary image charge to be induced on the read-out pads. The width of each

read-out pad is optimized to ensure that at least three read-out pads will share the

signal from a single avalanche. This allows for the best centroid reconstruction.

The grid of read-out pads is broken up into two sections. The outer portion of

the grid has continuously packed read-out pads measuring 6.7 mm by 20 mm

optimized for good dE/dx resolution. These pads are located 4 mm behind the

anode grid. The inner portion has smaller read-out pads measuring 3.35 mm by
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Figure 3.4: One of the 12 anode sectors of the TPC. The outer portion has densely

packed pads, while the inner portion is composed of wider rows.

12 mm optimized for good 2-hit detection. This helps with the large track density

seen in the inner portion of the TPC. Due to the nature of the small pads, the

space for electronics was limited. Unfortunately the electronic boards for read-out

were not compact enough in the late 1990’s when the TPC was constructed to fit

in this available space. Because of this, it was impossible to have continuous radial

coverage for the inner section as in the outer section. Instead they are arrange

in strips as seen in Fig. 3.4. This arrangement prohibits the inner section to be

much help in dE/dx resolution [7].
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Figure 3.5: Ionization energy loss in TPC gas. Different species show different

energy loss signature. This aids in particle identification.
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3.2.0.2 Barrel Electromagnetic Calorimeter

Figure 3.6: Barrel Electromagnetic Calorimeter (BEMC)

The Barrel Electromagnetic Calorimeter (BEMC) is a large array of lead and

plastic scintillator sampling calorimeter sitting outside the TPC and inside the

STAR magnet. At η = 0 the BEMC is roughly 20 radiation lengths thick allowing

it to contain electromagnetic showers up to 60 GeV. Optical fibers are used to

carry scintillation light from the BEMC array to outside the STAR magnet where

it is fed into photomultiplier tubes (PMT).

The BEMC is composed of a total of 4800 towers, each one subtending 0.05◦

in φ and 0.05 units in η. A tower consists of 20 layers of 5 mm thick lead, 19 layers

of 5 mm thick scintillator, and two layers of 6 mm thick scintillator. The tower

geometry is projective toward the nominal interaction point, as seen in Fig. 3.8.

The BEMC is equipped with a pre-shower detector which provide readings of

the longitudinal shower development after 1 to 1.5 radiation lengths. Made up

of the first two (6 mm) scintillating layers of the tower, the pre-shower detector
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aids in distinguishing between π
0 and γ as well as between electrons and hadrons.

Electrons will typically have a larger energy loss inside the BEMC than hadrons

resulting in roughly 63% of electrons showering before the pre-shower volume and

84% by the middle of the pre-shower detector compared to only 3% and 6% for

hadrons. The pre-shower detector consists of two 6 mm thick layers of scintillator

instead of the 5 mm thick scintillator layers in the rest of the BEMC.

The active scintillating layers, both pre-shower and regular, are made of Ku-

raray SCSN81 and light from each layer is carried out with wavelength-shifting

fiber embedding into the scintillator layer. The scintillation light from each layer

is transferred to a 2.1 m long optical fiber which carries it through gaps in the

magnet steel to boxes containing an array of photomultipliers which are mounted

outside the magnet. Here the light from all 21 layers in a tower, including the

two pre-shower layers, are combined and fed into a single PMT. The pre-shower

detector also passes a second sample of scintillation light from layers 1 and 2 to a

separate PMT, this time not combined with light from any other layers.

Some neutral particles, such as π
0, ρ, etc. do not ionize the TPC gas, but

may decay to daughter particles which interact electromagnetically. The BEMC

is tasked with providing spatial resolution of such species. Instead of making the

size of each tower of the BEMC comparable to the Moliere radius in the lead-

plastic scintillator, a shower maximum detector (SMD) is added into the BEMC

for spatial resolution. The SMD, set at about 5.6 radiation lengths at η = 0, is

composed of an aluminum plate with channels on either side. As seen in Fig. 3.9,

a 50µm gold-plated tungsten anode wire lies in each channel. The wires run along

the barrel. As e+ e
− pairs generated in the electromagnetic shower enter the gas

volume, a large ionization signal is generated. Detection strips are located on the

top and bottom faces of the aluminum plate. One set of strips runs parallel to the

wires and provides the spatial distribution of the shower in the η direction. The

other set, running perpendicular to the wires provides the spatial distribution in
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Figure 3.7: The BEMC is located outside the TPC but inside the STAR magnet

and magnet flux return bars. The scintillation light is transported through gaps

in the flux return bars where it is read out by PMTs.
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Figure 3.8: Each geometrical shape of each tower of the BEMC is projective, back

to the nominal interaction region of STAR. The shower max detector as well as

the individual scintillator/lead layers are shown.

35



Figure 3.9: Cross sectional view of the shower max detector. Aluminum extrusion

in the center containing two sets of anode wires. Cathode strips on the top and

bottom face run either parallel or perpendicular to the anode wires.

Figure 3.10: Schematic of spatial reconstruction in SMD. The cathode strips on

the top and bottom faces read the induced charged in the φ and η directions

separately.

the φ direction. A schematic of this is shown in Fig. 3.10. Together they give a

full description of the shower position [14].

3.2.0.3 Time of Flight

STAR has a time-of-flight system for particle identification. The system is

composed of two different detectors, the Time of Flight Patch Detector (TOF)

and the Vertex Position Detector (VPD). Together these detectors allow for direct

2σ π/K/p identification for track momenta up to about 1.7 GeV/c.

36



Figure 3.11: The VPD detector is mounted in the assembly.

The VPD is responsible for starting the clock of the time-of-flight system.

It consists of two segmented plastic scintillator detectors, one on either side of

the STAR interaction region, at a distance of 5.6 m from the center of the STAR

detector. Both are positioned very close to the beam pipe and detect very forward,

high energy photons produced in the collision. The average of the start time for

both detectors to see this photon pulse is declared the “start time” for the event.

The scintillation light is read out by PMTs.

The VPD starts the clock for the event and the TOF stops it. The TOF

uses the multi-gap resistive plate chamber (MRPC) technology developed by the

ALICE group. The MRPC, shown in Fig. 3.12, is a stack of resistive plates with

uniform gas gaps in between. Applying a high voltage to electrodes on the outer

plates creates a strong electric field in each gap. An avalanche is generated in the

gaps when a charged particle passes through. Copper pickup pads located outside

the electrodes are used to read out the signal [19].

The TOF consists of 120 ”trays”. Each tray, shown in Fig. reffg:starToF,

consists of 32 MRPC modules. The trays are arranged at the outer radius of the

TPC, 60 on the east side and 60 on the west. In total they cover two units in

pseudorapidity (−1 < η < 1), and give full azimuthal coverage. The total time

resolution of the TOF system is 87 ps [19].
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Figure 3.12: multi-gap resistive plate chamber (MRPC) used in the TOF detector

[19]

Figure 3.13: One tray of the Time-of-Flight Detector is shown at the 7 o’cock

position of STAR. Also shown here are the two VPD detectors on either side of

the STAR detector.
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Once the clock is stopped a value of β for the track can be calculated as in

Eqn. 3.1.

1

β
=

cτ

s
(3.1)

Here c is the speed of light, τ is the time measured by the time-of-flight system,

and s is the path length of the track using the reconstructed path of the TPC.

From here the mass of the particle can be found using the momentum of the track

measured in the TPC.

M
2 =

p
2

β2
− p

2 (3.2)

39



Figure 3.14: Particle mass resolution of the STAR TOF system. Solid lines cor-

respond to tracks near η = 0, dashed lines correspond to tracks near η = 1.

Particles can be identified with greater than 2σ confidence in areas where lines do

not overlap [19].
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CHAPTER 4

Theoretical Background for Analysis

One of the most theoretically clean ways to access the transversity distribution

function is through the observation of a single spin asymmetry(SSA) in a semi-

inclusive deep inelastic scattering(SIDIS) process between transversely polarized

and unpolarized protons where a hadron pair is detected [6]. This thesis will be

focused mainly on the case where the hadron pair is π+
π
− . At leading twist, only

one source for a SSA exists [6].

The process we are interested in is pap
↑
b
→ π

+
π
−+X, where unpolarized proton

a collides with transversely polarized proton b with spin sb. Outgoing pions with

momentum ph,1 for the positively charged pion and ph,2 for the negatively charged

pion are detected. The total pair momentum Ph is the sum of ph,1 and ph,2, the

transverse component of which is written as P
π
+
π
−

T
. The difference of the pion

momenta is defined as R = (ph,1 − ph,2)/2.

The difference between cross sections when proton b is polarized up and down

can be written in a factorized form which includes the transversity distribution

h1, and the IFF, H�
1 .

dσ↑ − dσ↓ = dσUT = 2P π
+
π
−

T

�

a,b,c,d

|sb|
|R|

M
π+π−
inv

sin(φRS)

�
dxadxb

8π2zc
f1(xa)h1(xb)

d∆σ̂ab↑→c↑d

dt̂

× sin θH�c
1

�
z̄c, cos θ,M

π
+
π
−

inv

2
�

(4.1)

Where θ is the angle between ph,1 in the center of mass frame of the pair and Ph

in the lab frame. In the above expression, φRS = φS − φR, where φS is the angle
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between the spin vector of proton b and the scattering plane and φR is the angle

between the scattering plane and the two hadron plane. These angles are shown

in Fig. 4.1 and defined as [6]

cosφS =
(P̂b × Ph)

|P̂b × Ph|
· (P̂b × Sb)

|P̂b × Sb|

cosφR =
(P̂h × Pa)

|P̂h × Pa|
· (P̂h ×R)

|P̂h ×R|

sinφS =
(Ph × Sb) · P̂b

|P̂b × Ph||P̂b × Sb|

sinφR =
(Pa ×R) · P̂h

|P̂h × Pa||P̂h ×R|

(4.2)

where Pa and Pb are the momenta of protons a and b respectively.

Also appearing in Eqn. 4.1 is the calculable hard scattering cross section of

parton a scattering off of transversly polarized parton b into transversely polarized

parton c and parton d. Parton c then goes on to fragment into a π+
π
− pair keeping

a fraction zc of parton c’s momentum as described by H
�
1 .

Comparing this to the cross section when both initial state quarks are unpo-

larized we see several similarities.

dσUU = 2P π
+
π
−

T

�

a,b,c,d

�
dxadxb

8π2zc
f
a

1 (xa)f
b

1(xb)
dσ̂ab→cd

dt̂
D

c

1(z̄c, cosθC ,M
2
C
) (4.3)

As similar as Eqns. 4.1 and 4.3 look, there are some important differences worth

noting. Obviously the polarization isn’t there since we now are dealing with

unpolarized scattering. The sinusoidal modulation has also disappeared. The

transversity distribution has turned into a second unpolarized distribution, and

the IFF has turned into D
c

1 which is the unpolarized counterpart to the IFF.

The most important thing to mention is that the sine modulation seen in

unpolarized-transversely polarized (U-T) scattering is not seen in unpolarized-

unpolarized (U-U) scattering. This means that there is a bias to the yield of

π
+
π
− pairs in U-T scattering when compared to U-U scattering. We can observe

this by looking at the number of π+
π
− pairs at a given value of φRS when the

polarization of the proton beam is ŷ vs the number when the polarization is −ŷ.

We then normalize by the number we see at that value of φRS for U-U scattering,
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which gives the Single Spin Asymmetry (SSA) AUT .

AUT sin(φRS) =
1

|sb|
dσ

↑ − dσ
↓

dσUU

(4.4)

In our experiment we never scatter unpolarized protons, so we have to be clever

about the cross section seen in the denominator of Eqn. 4.4. If we sum over the two

spin states we are left with the entire unpolarized cross section dσ
↑+dσ

↓ = dσUU .

Using this, Eqn. 4.4 can be rewritten as [6, 11, 29]

AUT sin(φRS) =
1

|sb|
dσ

↑ − dσ
↓

dσ↑ + dσ↓ . (4.5)

This is the only source of a single spin asymmetry at leading twist [6]. It is

important to keep this single spin asymmetry differential in as many kinematic

variables as possible, otherwise it is likely to average to zero [27]. In this analysis

the asymmetry will be kept differential in M
π
+
π
−

inv
, P π

+
π
−

T
, and η

π
+
π
−
individually.

η
π
+
π
−
acts as a surrogate for momentum fraction x, as partons with higher x will

fragment into hadrons at larger η. The asymmetry will also be kept differential

in two of the three variables simultaneously (i.e., Mπ
+
π
−

inv
/P π

+
π
−

T
, Mπ

+
π
−

inv
/ηπ

+
π
−
,

and P
π
+
π
−

T
/ηπ

+
π
−
).

Important physics can be seen by performing a partial-wave expansion of the

cross section [12]. Expanding sin θH�
1 and looking at the first two terms,

sin θH�c
1 (z̄c, cos θ,M

π
+
π
−

inv

2
) ≈H

�c
1,ot(z̄c,M

π
+
π
−

inv

2
) sin θ

+H
�c
1,lt(z̄c,M

π
+
π
−

inv

2
) sin θ cos θ (4.6)

The first term, S/P wave interference, is due to the interference between ampli-

tudes for a decay into an L = 0 π
+
π
− pair and an L = 1 transversely polarized

π
+
π
− pair. The second term, P/P wave interference, is due to the interference be-

tween amplitudes for a decay into an L = 1 π
+
π
− pair and an L = 1 transversely

polarized π
+
π
− pair. The L = 1 contributions comes from a π

+
π
− pair that went
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Figure 4.1: Visual representation of angles φR and φS. φRS = φR − φS

�ph,1 is the momentum of the positive hadron while �ph,2 is the momentum of the

negative hadron.

through a spin-1 intermediate state. One such intermediary we have the ability

and statistics to look for is the ρ meson. We expect there to be an enhancement

in the IFF, and thus the asymmetry, in the invariant mass region of the ρ (770

MeV) [6, 41].
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CHAPTER 5

2006 Analysis and Simulation

The 2006 data set gave us the first glimpse of this asymmetry in p+p collisions.

The analysis of the 2006 data set was done mostly by Dr. Anselm Vossen from

Indiana University with an integrated luminosity of 1.8 pb−1 of 200 GeV transverse

proton proton collisions. The average beam polarization was 60% [2].

Figure 5.1 shows the asymmetry as a function of the pion pair invariant mass.

As hinted from the theory there is an increase in the asymmetry around the ρ

meson mass for both forward (η > 0) and backward pairs (η < 0).

Varying the opening angle of the pion pair addresses the z dependence of

the asymmetry. The fraction of the fragmenting quark momentum the pion pair

retains, z, influences the size of the IFF. It turns out the asymmetry increases as

the opening angle decreases as seen in Fig. 5.2.

As stated previously, ηπ
+
π
−
acts as a surrogate for the momentum fraction of

the polarized parton, as a larger partonic momentum fraction will cause the pion

pair to be produced in a more forward direction. The asymmetry is plotted as

a function of ηπ
+
π
−
in Fig. 5.3. As one might expect, the asymmetry is larger

the more forward the pion pair is. This is explained by the fact that pairs from

more forward pseudorapidity result from polarized partons with larger momentum

fractions, allowing for a larger spin transfer.

A supplemental analysis was done on simulated data to investigate partonic

momentum fractions as well as biases introduced by STAR triggers. Figure 5.4

shows the momentum fraction of the fragmenting quark for pairs in the forward
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Figure 5.1: Asymmetry versus invariant mass of the π
+
π
− pair for the 2006 data

set for pairs scattering in the forward direction (red) and in the backward direction

(blue).
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Figure 5.2: Asymmetry versus invariant mass of the π
+
π
− pair for the 2006 data

set for different opening angles of pairs are scattered into the forward direction.
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Figure 5.3: Asymmetry versus ηπ
+
π
−
for the 2006 data set

and reverse directions. This bias toward higher x events is shown in Fig. 5.5. A

more in-depth discussion about the need for an analysis on simulated data as well

as the results of the analysis on the 2012 simulation is given in appendix B.

These results are the first sign of non-zero asymmetries in π
+
π
− pair correlation

in polarized proton collisions. More can be read about the 2006 study in reference

[2].
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Figure 5.4: Partonic momentum fraction x obtained from simulation for the parton

from the polarized proton in the forward (red) and backward (blue) direction

49



 [GeV/c]
-+

TP
4 5 6 7 8 9 10

X

0

0.05

0.1

0.15

0.2

0.25

0.3
 > 0-+ < 0   and  -+,   

-+

Inv
 integrated over M

-+

T
 vs PX

 < 0  Triggered EventsX1    
 < 0  All EventsX1    
 > 0  Triggered EventsX1    
 > 0  All EventsX1    

Figure 5.5: The averge momentum fraction x of the polarized quark (quark 1)

is larger for triggered events than for all events. This effefct is seen in both the

forward and backward directions and for all π+
π
− transverse momenta. Note:

this figure is caclulated for the 2006 detector configuration and triggers.
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CHAPTER 6

2012 IFF Analysis

6.1 Data Set, Triggers, and Cuts

The total integrated luminosity for the 2012 200GeV transverse proton data

set was 7.74 pb−1 [18]. The runs from the 2012 production that passed quality

tests and are eligible to be used in the analysis are listed in the table below. The

average beam polarization from pairs found in these runs is 61.618 ±.003%.

13044126 13045001 13045003 13045005 13045006 13045007 13045012 13045029

13045056 13045133 13045134 13045135 13045138 13045145 13045146 13045164

13046001 13046002 13046003 13046004 13046011 13046012 13046013 13046014

13046015 13046017 13046121 13047003 13047004 13047022 13047023 13047024

13047026 13047027 13047028 13047029 13047030 13047031 13047032 13047033

13047034 13047035 13048010 13048011 13048012 13048013 13048014 13048015

13048016 13048017 13048018 13048019 13048030 13048031 13048032 13048040

13048041 13048042 13048043 13048044 13048045 13048046 13048049 13048050

13048051 13048052 13048053 13048087 13048088 13048089 13048090 13048091

13048092 13048093 13049031 13049032 13049035 13049039 13049041 13049042

13049044 13049045 13049046 13049047 13049048 13049049 13049050 13049072

13049073 13049080 13049081 13049082 13049089 13049093 13049094 13049096

13049098 13049099 13049101 13050001 13050007 13050009 13050011 13050012

13050015 13050016 13050020 13050022 13050023 13050028 13050029 13050031

13050032 13050033 13050036 13050037 13050038 13050039 13050041 13050043

13050044 13050046 13050047 13050049 13050050 13051011 13051012 13051015

13051016 13051017 13051019 13051020 13051021 13051022 13051023 13051024

13051026 13051028 13051074 13051080 13051081 13051083 13051085 13051086

13051087 13051088 13051092 13051093 13051095 13052001 13052002 13052003

13052004 13052005 13052009 13052010 13052011 13052012 13052013 13052014

13052015 13052016 13052017 13052018 13052020 13052021 13052022 13052037

13052039 13052042 13052043 13052045 13052048 13052050 13052051 13052052

13052053 13052054 13052056 13052088 13053004 13053005 13053006 13053007

13053012 13053013 13053015 13053027 13053028 13054022 13054023 13054044

13054045 13054060 13054061 13054062 13054063 13054064 13054065 13054066

13054068 13054069 13054084 13054085 13055004 13055006 13055007 13055008

13055009 13055010 13055011 13055014 13055016 13055017 13055018 13055019

13055020 13055021 13055022 13055023 13055024 13055035 13055036 13055037

13055038 13055039 13055068 13055070 13055072 13055075 13055076 13055080

13055081 13055082 13055086 13055087 13056005 13056007 13056008 13056020

13056021 13056022 13056023 13056024 13056025 13056026 13056027 13056028

13056029 13056030 13056031 13056033 13056034 13056035 13056037 13056038

51



13056039 13057011 13057014 13057015 13057016 13057017 13057018 13057019

13057021 13057022 13057023 13057024 13057025 13057026 13057027 13057044

13057045 13057046 13057047 13057048 13057049 13057050 13057051 13057052

13057053 13057055 13057056 13057057 13057058 13058002 13058015 13058016

13058017 13058018 13058025 13058026 13058028 13058029 13058030 13058031

13059084 13060010 13061024 13061025 13061026 13061030 13061031 13061035

13061054 13061055 13061059 13061060 13061061 13062001 13062002 13062004

13062005 13062006 13062007 13062013 13062025 13062026 13062028 13062029

13062049 13062050 13062052 13062059 13062060 13062061 13062062 13062063

13063009 13063010 13063011 13063020 13063022 13063023 13063030 13063031

13063032 13063033 13063034 13063035 13063036 13063053 13063054 13063062

13063063 13063065 13063067 13063068 13063071 13063072 13063073 13063074

13063076 13064001 13064002 13064003 13064004 13064005 13064006 13064012

13064014 13064020 13064021 13064022 13064023 13064024 13064025 13064026

13064028 13064029 13064030 13064031 13064032 13064052 13064055 13064056

13064057 13064059 13064061 13064064 13064065 13064066 13064068 13064070

13064074 13064075 13065005 13065006 13065007 13065008 13065009 13065013

13065014 13065015 13065016 13065017 13065018 13065019 13065020 13065021

13065022 13065047 13065048 13065049 13065050 13065052 13065053 13065055

13065056 13065058 13065059 13065060 13066021 13066022 13066023 13066024

13066025 13066026 13066027 13066028 13066029 13066030 13066031 13066033

13066034 13066035 13066036 13068084 13068088 13068090 13069001 13069002

13069003 13069004 13069005 13069006 13069007 13069014 13069016 13069017

13069018 13069020 13069021 13069022 13069023 13069024 13069026 13069027

13069029 13069030 13069031 13069035 13069036 13069066 13069067 13069068

13069069 13069073 13070006 13070008 13070010 13070011 13070012 13070014

13070015 13070016 13070017 13070018 13070019 13070020 13070021 13070022

13070024 13070025 13070026 13070027 13071009 13071010 13071011 13071012

13072006 13072014 13072015 13072016 13072017 13072018 13072019 13072020

From these runs, events were selected which triggered at least one of the fol-

lowing STAR triggers of interest: JP0, JP1, JP2, AJP, BHT0VPD, BHT1VPD,

BHT2BBC, or BHT2. These were chosen because they were most similar to the

triggers used to select events in the 2006 analysis, thus allowing for a proper com-

parison of the results. The thresholds for these triggers can be found in table

6.2.

Tracks from these triggered events were then scrutinized. As the BEMC only

covers a finite range in η, tracks at pseudorapidity greater than 2 and less than −2

were rejected. To ensure good track resolution in the TPC necessary for particle

identification, tracks with less than five fit points were also rejected. Since different

trajectories in the TPC offer a different number of possible fit points, tracks are

also required to have at least half of the possible fit points. The position of the

vertex the track originated is required to be less than 60 cm from the center of the
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Trigger Threshold

BEMC-JP0 20

BEMC-JP1 28

BEMC-JP2 36

BEMC-HT0 11

BEMC-HT1 15

BEMC-HT2 18

VPD-TACdiff-MAX 4083

VPD-TACdiff-MIN 3883

VPD-East-ADC-SUM 10

VPD-West-ADC-SUM 10

BBC-Small-TACdiff-MAX 4933

BBC-Small-TACdiff-MIN 3267

BBC-Small-East-ADC-SUM 20

BBC-Small-West-ADC-SUM 20

Table 6.2: Relevant Trigger Thresholds

STAR detector. This helps the detector reconstruct the correct kinematic location

of the particle. The track is also required to have a transverse momentum larger

than 1.5 GeV/c. If a track possesses all the required attributes, it is included in

the analysis.

6.2 Particle Identification and Contamination

Once a track is selected for the analysis, identification of the particle type is

an important next step. As charged particles traverse the TPC, they lose energy

when ionizing the TPC gas. This specific energy loss is a function of velocity,
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Figure 6.1: Ionization energy loss as a function of particle momentum divided by

electric charge for TPC tracks

and is therefore different for different particles at a given momentum. A value,

nσ(π), is given to each track in an event describing how many standard deviations

away it’s energy loss is from the expected energy loss for a pion on the ionization

energy loss curve shown in Fig. 6.1; the ideal curves showing the expected energy

loss for each species are given as black lines. Each track is also given values of

nσ(p), nσ(k), and nσ(e) describing how close they are to ideal protons, kaons, and

electrons. For example if a track has an nσ(π) value of zero and a momentum

at which the ideal energy loss curves don’t intersect, it is very likely a pion and

should be included in the analysis.

If the data set strictly contained pions, the nσ(π) distribution would be gaus-

sian centered around zero. However as seen in Fig. 6.2 it is not exactly gaussian.

Although it looks gaussian near nσ(π) = 0, there is a clear shoulder on the left

side due to kaon and proton contamination and a smaller shoulder to the right

from electron contamination. To account for this contamination, we fit the nσ(π)
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distribution with a 5-gaussian fit; one gaussian for each particle species plus one

gaussian to account for the tail at high nσ(π) most likely due to pile up or merged

tracks.

Several of the degrees of freedom of the fit can be constrained for physical

reasons. First, the expected nσ(π) value of an ideal kaon can be readily found

from fitting a plot of nσ(π) vs nσ(k) as in Fig. 6.3. The separation between the

pion and kaon gaussians in the 5-gaussian fit is required to be equal to the value

of nσ(π) at nσ(k) = 0. This is repeated to constrain the separation between

the pion and proton gaussians, as well as the separation between the pion and

electron gaussians. Secondly, kaons and protons are required to have the same

width. Third the “pile up” gaussian is required to have a smaller amplitude and

be located at a larger nσ(π) than the electron gaussian. This is to make sure it

actually does fit the high nσ(π) tail. This tail is more prominent at higher track

momentum but is sometimes absent at lower momentum.

Armed with this fitting procedure, the location and amount of each particle

species becomes clear (Fig. 6.4). A clean sample of pions can be found by selecting

tracks with an nσ(π) between −1 and 2.5. This choice maximizes the number of

pions included in the analysis while not compromising the purity of the pion

sample too much.

When interpreting the asymmetry results, it is important to quantify the pion

purity of the data. As the ionization energy loss curves show (Fig. 6.1), the energy

loss depends on track momentum. More importantly, each particle species displays

a different energy loss behavior. Some of these energy loss curves even cross each

other at track momentum between 1 and 2 GeV/c, making it hard to determine

the contamination in the pion data set all at once. Instead the data set is broken

into 5 bins in track momentum and 5 in detector θ (the polar angle measured

with respect to the beam direction). In each of these bins, the 5-gaussian fitting

procedure is repeated. The 5 gaussian fits are shown in Fig. 6.5 to 6.9. For the
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Figure 6.3: nσ(π) versus nσ(k) The blue line is a 3rd order polynomial fit of the

profile. The nσ(π) value at nσ(k) = 0 is taken as the separation between the pion

gaussian and the kaon gaussian in the 5-gaussian fit.
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Figure 6.4: 5-gaussian fit of nσ(π) distribution. The pion peak is shown in pink,

the kaon peak in green, the proton peak in yellow, the electron peak in blue,

and the pile up peak in orange. Right panel is a log scale for better visibility

of smaller peaks. The red line is the sum of all gaussian fits and matches the

histogram almost perfectly. The dashed lines indicate the −1 < nσ(π) < 2.5

range chosen for the analysis.
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four highest track momentum bins, the pion fraction is calculated by integrating

the pion gaussian from nσ(π) = −1 to nσ(π) = 2.5 and dividing by the integral of

the total fit in the same range. As seen in Fig. 6.1, the proton and pion energy loss

curves start to overlap in the smallest track momentum bin used (1.5 GeV/c <

p < 2.04 GeV/c). This prohibits an accurate determination of the pion fraction

using the same method. Luckily in this low momentum range, the time-of-flight

can accurately distinguish protons and pions. A two dimensional histogram of

M
2 versus nσ(π) given in Fig. 6.10 shows how the protons are distinguished from

pions. Any particle above the red line is taken to be a proton. The proton fraction

is then computed by dividing the number of tracks above the red line by the total

number of tracks. The kaon, electron, and pile up fractions can still be computed

from integrating the 5-gaussian fits, and the pion fraction is determined by the

relationship: 1− Fk − Fp − Fe − Fpile−up = Fπ.

Since the actual asymmetry analysis is binned in pion pair transverse momen-

tum, invariant mass, and pseudorapidity, we need to find pion fractions for these

bins. These purity fractions were computed from the known pion fractions found

in the track momentum and detector θ bins using a weighted mean. The purity

values for the analysis binning can be found in tables 6.3 and 6.4. The error for

these purity values are on the order of 1× 10−3.

Table 6.3: pion purity for 1D binning

ηπ+π−
pion %

-2.00 − -0.60 95

-0.60 − -0.30 95

-0.30 − 0.00 95

0.00 − 0.40 95

0.40 − 0.75 95

0.75 − 2.00 92

Mπ+π−
inv pion %

0.00 − 0.38 94

0.38 − 0.44 94

0.44 − 0.50 94

0.50 − 0.56 94

0.56 − 0.62 95

0.62 − 0.72 95

0.72 − 0.86 95

0.86 − 1.10 94

1.10 − 100 94

Pπ+π−
T pion %

3.00 − 3.70 93

3.70 − 4.15 95

4.15 − 4.63 95

4.63 − 5.19 95

5.19 − 5.87 95

5.87 − 6.80 95

6.80 − 7.80 94

7.80 − 10.00 94

10.00 − 50.00 94
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Table 6.4: pion purity for 2D binning

Mπ+π−
inv ηπ+π−

pion %

0.00 − 0.40 -2.00 − -0.50 96

0.00 − 0.40 -0.50 − 0.00 94

0.00 − 0.40 0.00 − 0.50 94

0.00 − 0.40 0.50 − 2.00 94

0.40 − 0.60 -2.00 − -0.50 96

0.40 − 0.60 -0.50 − 0.00 94

0.40 − 0.60 0.00 − 0.50 94

0.40 − 0.60 0.50 − 2.00 94

0.60 − 0.80 -2.00 − -0.50 96

0.60 − 0.80 -0.50 − 0.00 94

0.60 − 0.80 0.00 − 0.50 94

0.60 − 0.80 0.50 − 2.00 94

0.80 − 1.00 -2.00 − -0.50 96

0.80 − 1.00 -0.50 − 0.00 94

0.80 − 1.00 0.00 − 0.50 94

0.80 − 1.00 0.50 − 2.00 94

1.00 − 100.50 -2.00 − -0.50 96

1.00 − 100.50 -0.50 − 0.00 95

1.00 − 100.50 0.00 − 0.50 94

1.00 − 100.50 0.50 − 2.00 94

Pπ+π−
T Mπ+π−

inv pion %

3.00 − 4.00 0.00 − 0.40 94

3.00 − 4.00 0.40 − 0.60 94

3.00 − 4.00 0.60 − 0.80 94

3.00 − 4.00 0.80 − 1.00 94

3.00 − 4.00 1.00 − 100.50 94

4.00 − 5.00 0.00 − 0.40 94

4.00 − 5.00 0.40 − 0.60 94

4.00 − 5.00 0.60 − 0.80 94

4.00 − 5.00 0.80 − 1.00 94

4.00 − 5.00 1.00 − 100.50 94

5.00 − 6.50 0.00 − 0.40 95

5.00 − 6.50 0.40 − 0.60 94

5.00 − 6.50 0.60 − 0.80 94

5.00 − 6.50 0.80 − 1.00 94

5.00 − 6.50 1.00 − 100.50 94

6.50 − 8.00 0.00 − 0.40 94

6.50 − 8.00 0.40 − 0.60 94

6.50 − 8.00 0.60 − 0.80 94

6.50 − 8.00 0.80 − 1.00 94

6.50 − 8.00 1.00 − 100.50 94

8.00 − 50.00 0.00 − 0.40 94

8.00 − 50.00 0.40 − 0.60 94

8.00 − 50.00 0.60 − 0.80 94

8.00 − 50.00 0.80 − 1.00 94

8.00 − 50.00 1.00 − 100.50 94

Pπ+π−
T ηπ+π−

pion %

3.00 − 4.00 -2.00 − -0.50 95

3.00 − 4.00 -0.50 − 0.00 93

3.00 − 4.00 0.00 − 0.50 93

3.00 − 4.00 0.50 − 2.00 94

4.00 − 5.00 -2.00 − -0.50 96

4.00 − 5.00 -0.50 − 0.00 95

4.00 − 5.00 0.00 − 0.50 94

4.00 − 5.00 0.50 − 2.00 94

5.00 − 6.50 -2.00 − -0.50 96

5.00 − 6.50 -0.50 − 0.00 95

5.00 − 6.50 0.00 − 0.50 94

5.00 − 6.50 0.50 − 2.00 94

6.50 − 8.00 -2.00 − -0.50 96

6.50 − 8.00 -0.50 − 0.00 94

6.50 − 8.00 0.00 − 0.50 94

6.50 − 8.00 0.50 − 2.00 94

8.00 − 50.00 -2.00 − -0.50 95

8.00 − 50.00 -0.50 − 0.00 94

8.00 − 50.00 0.00 − 0.50 93

8.00 − 50.00 0.50 − 2.00 94

6.3 Finding π
+
π
− Pairs

Once a clean pion sample is found, π+s and π
−s must be combined into π

+
π
−

pairs. An example of an event of interest can be seen in Fig. 6.11a. Here we see a

positively charged pion and negatively charged pion produced in close proximity

by the proton collision. This is what we refer to as a pion pair. Every combination

of π+ and π
− in an event is checked. Since the two pions are required to be from

the same fragmenting quark, they are taken as a pair and used in the analysis if

they pass the individual track cuts and if they are contained in a cone of a certain

radius in η − φ space (Fig. 6.11b). For 1D binning, radii of 0.2, 0.3, and 0.4 are

used, while 0.7 is used in 2D binning in order to increase statistics. Even the

largest of these radii should still be effective to ensure the the two pions are from

the same fragmenting quark.
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Figure 6.11: Schematic of Analysis

(a) pion pair produced in collision (b) radius check on pion pair

6.4 Pair Distributions

The entire data set provides 17544516 π
+
π
− pairs in a radius between 0.05

and 1.0 in η, φ space before trigger information is used. The minimum radius cut

of 0.05 is used because when the tracks are very close together, the uncertainty in

track position can cause the orientation of the pairs to flip. Since the orientation

of the pair is so important to the observed asymmetry, this is unacceptable for

our analysis.

Once the data set was ready, quality tests were performed on the pion pairs.

These included looking at the invariant mass, transverse momentum, and pseu-

dorapidity distributions for the pairs. Quality control plots of relevant kinematic

variables of individual pions and pion pairs with a maximum radius of 0.3 can be

seen in Figs. 6.12 to 6.29.
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Figure 6.12: PT distribution of π+
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Figure 6.13: PT distribution of π−
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Figure 6.14: φ distribution of π+
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Figure 6.15: φ distribution of π−
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Figure 6.16: η distribution of π+
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Figure 6.17: η distribution of π−
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Figure 6.18: PT distribution of π+
π
− pair
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Figure 6.19: φ distribution of π+
π
− pair
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Figure 6.20: η distribution of π+
π
− pair
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Figure 6.21: Invariant mass distribution of π+
π
− pair
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Figure 6.22: φR distribution of π
+
π
− pair with reference to the yellow beam

polarization
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Figure 6.23: φR distribution of π+
π
− pair with reference to the blue beam polar-

ization
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Figure 6.24: φS distribution of π
+
π
− pair with reference to the yellow beam

polarization
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Figure 6.25: φS distribution of π+
π
− pair with reference to the blue beam polar-

ization
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Figure 6.26: φRS distribution of π+
π
− pair with reference to the yellow beam po-

larization. This is the angle of interest in the sinusoidal modulation in asymmetry

and is expected to be flat when spin state is integrated over as it is here.
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Figure 6.27: φRS distribution of π+
π
− pair with reference to the blue beam polar-

ization. This is the angle of interest in the sinusoidal modulation in asymmetry

and is expected to be flat when spin state is integrated over as it is here.
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Figure 6.28: θ distribution of π+
π
− pair
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Figure 6.29: cos θ distribution of π+
π
− pair
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Figure 6.30: Invariant mass of π+
π
− pairs (black) and π

+
π
+,π−

π
− pairs (red).

The histograms are normalized to a total area of 1 unit to account for differing

numbers of opposite and same sign pairs found.
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6.5 Calculating The Asymmetry

6.5.1 Luminosity Method

The asymmetry is calculated as in Eqn. 6.1. We take the ratio of the difference

of pion pairs from spin up events and spin down events, weighted by the luminosity

of the beam state, to the total number of pion pairs produced.

AUTP sin (φRS) =
N

↑

L↑ − N
↓

L↓

N↑

L↑ + N↓

L↓

(6.1)

Where φRS can take values from −π to π.

This method requires the knowledge of beam luminosity. Since this is not

known exactly, the presence of the luminosity in the calculation introduces another

source of error. This is not ideal especially for such a sensitive analysis. We

introduce here another way to determine the asymmetry.

6.5.2 Cross Ratio Method

A more clever way of constructing the asymmetry is with the cross ratio

method [34]. I break the angle φRS up into 32 bins. I then count the number

of pion pairs in that φRS bin when the polarization is up N
↑
φRS

.

N
↑
φRS

= L
↑
IφRS(θ) [1 + AUTP sin(φRS)] (6.2)

In the above equation IφRS(θ) is the unpolarized cross section into the designated

φRS bin and polar angle θ, L↑ is the luminosity when the beam is in the spin up

polarization, and P is the polarization of the beam. Next we look at the number

of pairs we see in the same φRS bin when the spin is down.

N
↓
φRS

= L
↓
IφRS(θ) [1− AUTP sin(φRS)] (6.3)

This time the spin is down so the plus sign in Eqn. 6.2 becomes a negative. Next

we want to look at what happens when we change the φRS bin by π. Still counting
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when the polarization is spin down we see that:

N
↓
φRS+π

= L
↓
IφRS+π(θ) [1 + AUTP sin(φRS)] (6.4)

Since sin(x + π) = − sin(x), the negative sign from Eqn. 6.3 has flipped again.

Finally if we look at bin φRS + π, with a spin up polarization we see the sign flip

one more time.

N
↑
φRS+π

= L
↑
IφRS+π(θ) [1− AUTP sin(φRS)] (6.5)

We then define “left” and “right”1 as

L =
�

N
↑
φRS

N
↓
φRS+π

=
�
L↑L↓IφRSIφRS+π [1 + AUTP sin(φRS)] (6.6)

R =
�

N
↓
φRS

N
↑
φRS+π

=
�

L↑L↓IφRSIφRS+π [1− AUTP sin(φRS)] (6.7)

The combination L−R
L+R gives an expression independent of luminosities.

L −R
L+R =

�
N

↑
φRS

N
↓
φRS+π

−
�

N
↓
φRS

N
↑
φRS+π�

N
↑
φRS

N
↓
φRS+π

+
�

N
↓
φRS

N
↑
φRS+π

= AUTP sin(φRS) (6.8)

or in other words

AUT sin (φRS) =
1

P

�
N

↑
φRS

N
↓
φRS+π

−
�

N
↓
φRS

N
↑
φRS+π�

N
↑
φRS

N
↓
φRS+π

+
�
N

↓
φRS

N
↑
φRS+π

(6.9)

Equation 6.9 is called the cross ratio and is used throughout this analysis. As

stated above, this form of the asymmetry has the advantage that luminosity and

detector effects are canceled. This helps us for multiple reasons. The uncertainty

in luminosity is difficult to pin down as the luminosity can fluctuate. So not

1Called left and right because the cross ratio was first used in experiments measuring asym-
metries in particle production detected in two different detectors. One of these detectors was
situated to the left of the incident beam and the other to the right.
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having to take this into account is very beneficial. Also detector irregularities

causing more pairs to be found near a “hot tower” are canceled.

One thing to note is that only 16 of the original 32 φRS bins are unique because

of double-counting. This is because I use the same number for N↑
φRS

for φRS bin

1 and for N↑
φRS+π

for φRS bin 9. The unique range of φRS I choose to use is −π/2

to π/2

In order to extract the asymmetry, a histogram of 1
P

L−R
L+R is constructed. This

is then fit with a sine function with the resulting amplitude of the fit is taken

as AUT . This is done for different kinematic bins. An example of this fitting for

different pair transverse momentum bins and a radius cut of 0.3 is shown in figure

6.31.

The errors for N↑ and N
↓ in each φRS bin is taken as the poisson error of

√
N↑

or
√
N↑ for that bin. By propagating this through, we find the relevant bin error:

δ

�
1

P

L −R
L+R

�

φRS

=
1

P 2

��
N

↑
φRS

N
↓
φRS+π

+
�
N

↓
φRS

N
↑
φRS+π

�2

×
�

P 2
�
N

↑
φRS+π

N
↓
φRS

�
N

↓
φRS+π

+N
↑
φRS

�
+N

↓
φRS+π

N
↑
φRS

�
N

↑
φRS+π

+N
↓
φRS

��

(6.10)

A smaller contribution to the total error due to the error on the polarization

measurement is neglected because it is significantly smaller than the term shown

above.
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Figure 6.31: Example of the sine fitting. Here different pair transverse momentum

ranges are fit with a sine. as the transverse momentum increases, the amplitude

of the fit, and thus the asymmetry AUT , increases.
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6.6 Analysis Code

The analysis code is broken up into two stages. The first stage finds pion pairs

in the raw data and saves them in a “pion pair tree”. The second stage analyses

all the pairs and calculates the asymmetry.

The relevant files for the first stage are:

/star/u/klandry/ucladisk/2012IFF/xml/2012 200GeV FinalRunList.txt

/star/u/klandry/ucladisk/2012IFF/xml/makeTrees.xml

/star/u/klandry/ucladisk/2012IFF/xml/submitMakeTrees.sh

/star/u/klandry/ucladisk/2012IFF/StRoot/pionPair/pionPair.h

/star/u/klandry/ucladisk/2012IFF/StRoot/pionPair/pionPair.cxx

/star/u/klandry/ucladisk/2012IFF/StRoot/pionPairTreeMaker/pionPairTreemaker.h

/star/u/klandry/ucladisk/2012IFF/StRoot/pionPairTreeMaker/pionPairTreemaker.cxx

/star/u/klandry/ucladisk/2012IFF/makeTrees.C

/star/u/klandry/ucladisk/2012IFF/StRoot/LoadLibs.C

A diagram of the code flow can be seen in Fig. 6.32.

The first step is to call submitMakeTrees.sh. This loops through the good

runs we will use for the analysis in 2012 200GeV FinalRunList.txt and submits

makeTrees.xml to the scheduler with the run number as an input. All the relavent

MuDst files for the specific run number are found by the scheduler and made into

a file list. Inside makeTrees.xml, this file list is passed as an argument when

makeTrees.C runs. In makeTrees.C, a chain of makers is created to carry out the

work, one of which is pionPairTreeMaker. This class looks through each event.

If two oppositely charged pions are found which pass nσ(π), vertex, PT , and η

cuts, it will save the two tracks in an instance of the class pionPair, provided the

two pion are less than 1 unit apart in η, φ space. The class pionPair stores all the

track information for each pion, as well as the trigger and other event information.

It also handles all the angle calculations. A .root file is created as output from

makeTrees.C for each job. After all jobs are processed, all these files are combined

and the second stage is ready to begin.
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Figure 6.32: Diagram of analysis code flow
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The second stage consists mainly of two files:

/star/u/klandry/ucladisk/2012IFF/calcAsym CR.C

/star/u/klandry/ucladisk/2012IFF/calcAsym 2dCR.C

They are almost identical except calcAsym 2dCR.C keeps the asymmetry differ-

ential in two kinematic variables simultaneously while calcAsym CR.C only keeps

it differential in one at a time.

This step carries out the asymmetry calculation. During this calculation, AUT

must be kept differential in as many kinematic variables as possible. For this

reason, P π
+
π
−

T
, Mπ

+
π
−

inv
, and η

π
+
π
−
are divided into different bins. The binning

scheme can be seen in table 6.5. The 2D binning scheme used in calcAsym 2dCR.C

is shown in table 6.6. For each of these bins, a set of several histograms are

created. Two of these histograms are responsible for storing the number of pairs

from spin up and from spin down beam states. The x-axis of these histograms,

which represents φRS, is divided into 32 bins and range from −π to π. For every

pair, these histograms are incremented by one at the corresponding value of pair

φRS. In this manner they hold the number of pairs from spin up and down protons

at every value of φRS. A third histogram is created for each bin to store every

pair’s kinematic value to be plotted against the calculated asymmetry. The final

piece needed in the asymmetry calculation is the polarization of the beam. A final

histogram for each bin is required to hold the polarization for each pair.

Since both beams are polarized, we first treat the blue beam as the polarized

beam. The histograms are filled according the this beam’s polarization. The

pair is then revisited with the yellow beam considered the polarized beam, and

the histograms are filled again according to this beam’s state. Positive η
π
+
π
−

corresponds to the direction of the “polarized” beam. This gives us two values

for each pair. Since only one beam is considered polarized at a time, the spin

state of the other beam is integrated over. Once all the pairs are processed, the

asymmetry calculation begins.
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Table 6.5: Binning for asymmetries differential in one kinematic variable

P π
+
π
−

T
binning Mπ

+
π
−

inv
binning ηπ

+
π
−
binning

3.0 - 3.7 0.0 - 0.38 -2 - -0.6

3.7 - 4.15 0.38 - 0.44 -0.6 - -0.3

4.15 - 4.63 0.44 - 0.50 -0.3 - 0.0

4.63 - 5.19 0.50 - 0.56 0.0 - 0.4

5.19 - 5.87 0.56 - 0.62 0.4 - 0.75

5.87 - 6.80 0.62 - 0.72 0.75 - 2

6.80 - 7.8 0.72 - 0.86

7.8 - 10.0 0.86 - 1.1

10.0 - 50.0 1.1 - 100.5

As part of the asymmetry calculation, another histogram is created for each

kinematic variable bin. It is constructed to be the right hand side of equation

6.9. Like the pion number histograms, it’s x-axis corresponds to φRS. The bin

errors for this new histogram are calculated using equation 6.10. These new his-

tograms are then fit with a sine function. The amplitude is taken as the value

of AUT for that kinematic bin. The output of calcAsym CR.C is a root file con-

taining all the histograms. These can then quickly be refit and plotted using

/star/u/klandry/ucladisk/2012IFF/makePlots.C.

6.6.1 Advanced Treatment of Beam Polarization

The polarization varies from fill to fill due to differences in source and accel-

erator conditions. Because of this, I attempted a more advanced treatment of the
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Table 6.6: Binning for asymmetries differential in two kinematic variables

P
π
+
π
−

T
binning M

π
+
π
−

inv
binning η

π
+
π
−
binning

3.0 - 4.0 0.0 - 0.4 -2 - -0.5

4.0 - 5.0 0.4 - 0.6 -0.5 - 0.0

5.0 - 6.5 0.6 - 0.8 0.0 - 0.5

6.5 - 8.0 0.8 - 1.0 0.5 - 2

8.0 - 50.0 1.0 - 100.5

polarization. The following section will be a detailed explanation of how exactly

it is calculated. As an example, I will focus on just one of the kinematic bins with

the assumption that this will be done in each kinematic bin separately.

To handle the polarization, histograms are created for each of the 32 φRS bins.

These histograms store the beam polarization of pairs from spin up and down

events, as well as the error of the beam polarization squared from spin up and

spin down events. The latter will be used when calculating errors. Because the

average polarization can differ between spin up and down pairs as well as between

φRS bins, I alter how the polarization is used in the calculation compared to

equation 6.9. Instead of having one value for the polarization, I use several values

for the polarization, one for each spin state and φRS bin.

AUT sin(φRS) =

�
N

↑
φRS�

p
↑
φRS

�
N

↓
φRS+π�

p
↓
φRS+π

� −
�

N
↑
φRS+π�

p
↑
φRS+π

�
N

↓
φRS�

p
↓
φRS

�

�
N

↑
φRS

N
↓
φRS+π

+
�

N
↑
φRS+π

N
↓
φRS

(6.11)

Where
�
p
↑
φRS

�
,

�
p
↓
φRS+π

�
,

�
p
↑
φRS+π

�
, and

�
p
↓
φRS

�
are the average beam polar-

izations in pairs from spin up, down events and at angle φRS, φRS + π. Therefore

the number of pairs from each spin state and angle are weighted by their own

separate average polarization.
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The histogram responsible for storing the values to be fit is now used. The

x-axis of this histogram is also separated into 32 φRS bins and ranges from −π to

π. For each φRS bin the left hand side of Eqn. 6.11 is calculated and used to set

the value of the corresponding φRS bin in the fit histogram.

The bin errors seen in Fig. 6.31 are calculated by a somewhat more complicated

procedure.

Let E =

�
N

↑
φRS�

p
↑
φRS

�
N

↓
φRS+π�

p
↓
φRS+π

� −
�

N
↑
φRS+π�

p
↑
φRS+π

�
N

↓
φRS�

p
↓
φRS

�

�
N

↑
φRS

N
↓
φRS+π

+
�

N
↑
φRS+π

N
↓
φRS

(6.12)

The error on E is defined as δE =
�

E
2
stat + E

2
pol
. Where E

2
stat

is the statistical

error and E
2
pol

is the error from the polarization uncertainty. Let’s look at these

two individually starting with the statistical error term.

To make our lives easier let’s introduce two new variables, a =
�

N
↑
φRS

N
↓
φRS+π

and b =
�

N
↑
φRS+π

N
↓
φRS

Rewriting Eqn. 6.12 with these new variables, gives

E =

a��
p
↑
φRS

��
p
↓
φRS+π

� − b��
p
↑
φRS+π

��
p
↓
φRS

�

a+ b
(6.13)

With this notation, the statistical error becomes

E
2
stat

=

�
∂E
∂a

�2

δa
2 +

�
∂E
∂b

�2

δb
2 (6.14)

The errors on a and b are similarly calculated.
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δa
2 =

�
∂a

∂N
↑
φRS

�2 �
δN

↑
φRS

�2
+

�
∂a

∂N
↓
φRS+π

�2 �
δN

↓
φRS+π

�2
(6.15)

δb
2 =

�
∂b

∂N
↑
φRS+π

�2 �
δN

↑
φRS+π

�2
+

�
∂b

∂N
↓
φRS

�2 �
δN

↓
φRS

�2
(6.16)

Taking the errors on the number of pairs in a bin as δN =
√
N ,

δa
2 =

1

4

�
N

↑
φRS

+N
↓
φRS+π

�
(6.17)

δb
2 =

1

4

�
N

↑
φRS+π

+N
↓
φRS

�
(6.18)

Putting everything together Estat becomes

E
2
stat

=
1

4

1

(a+ b)4




1��

p
↑
φRS

��
p
↓
φRS+π

� +
1��
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��
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�


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(6.19)

×
�
b
2
�
N

↑
φRS

+N
↓
φRS+π

�
+ a

2
�
N

↑
φRS+π

+N
↓
φRS

��

Assuming all Ns and polarizations are equal, we see that the statistical error

scales like E
2
stat

∼ 1
p2N

; as expected from the simple treatment of the error.

The error from the polarization uncertainty is a little bit trickier to tackle.

Since each pair comes with it’s own polarization uncertainty, I want to take all of

them into account. To do this I have to change how I write E . Namely I want to

explicitly write out how each pair’s polarization comes in instead of the average

polarization.

E =

�����
N

↑
φRS

2
N

↓
φRS+π

2

N
↑
φRS�
i=1

pi

N
↓
φRS+π�
j=1

pj

−

�����
N

↓
φRS

2
N

↑
φRS+π

2

N
↓
φRS�
n=1

pn

N
↑
φRS+π�
m=1

pm

a+ b
(6.20)
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To obtain this form of E I have used, �px� = 1
Nx

Nx�
x=1

px.

By writing E as in Eqn. 6.20, we obtain how the polarization uncertainty

propagates to the error of E .

E
2
pol

=

N
↑
φRS�

i=1

�
∂E
∂pi

�2

δpi
2+

N
↓
φRS+π�

j=1

�
∂E
∂pj

�2

δpj
2+

N
↓
φRS�

n=1

�
∂E
∂pn

�2

δpn
2+

N
↑
φRS+π�

m=1

�
∂E
∂pm

�2

δpm
2

(6.21)

Computing the derivative ∂E
∂pi

gives,

∂E
∂pi

=
−1

2(a+ b)

a
2

N
↓
φRS+π�
j=1
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
N

↓
φRS+π�
j=1

pi

N
↓
φRS+π�
j=1

pj


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3/2

(6.22)

Using again the fact that �px� = 1
Nx

Nx�
x=1

px, it follows that

N
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N
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a
4
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3
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φRS

2
�

�
p
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φRS

�3 �
p
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φRS+π

� (6.24)

Each term has a similar form. Putting them all together gives the error from the
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polarization uncertainty.

E
2
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=
1

4(a+ b)2
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�

To compare this error to the statistical error, lets check to see how it scales with

the number of pairs in the same way we did before. It turns out E
2
pol

∼ 1
p2N

δp
2

p2
.

In other words the error due to the polarization uncertainty is smaller than the

statistical error by a factor of δp
2

p2
. A typical value for this is .01. The total bin

error is then

E =
�

E
2
stat + E

2
pol
. (6.26)

The difference between taking a uniform polarization for the run or the correct

fill-by-fill values is negligible. This can be seen in Fig. 6.33.
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Figure 6.33: The black squares are obtained by treating the asymmetry and error

as in Eqns. 6.9 and 6.10. The red circles are obtained using the advanced treatment

of beam polarization in Eqns. 6.11 and 6.26. The red circles are shifted to a higher

mass by 0.015 GeV/c2 to avoid overlap.
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CHAPTER 7

Results

7.1 One Dimensional Kinematic Binning

The first step was to recreate the results of the 2006 study shown in chapter

5. The larger data set from the 2012 run allowed for more bins in each kinematic

variable. The results can be seen in figures 7.1, 7.2, and 7.3. The dependence

of the asymmetry on P
π
+
π
−

T
and η

π
+
π
−
mostly agrees within errors between 2006

and 2012 analyses. The mass dependence shows the same trend but there seems

to be some differences between the two years. The large errors of the 2006 data

prohibit us from determining anything other than the two years to be anything

other than consistent within errors.

Changing the radius changes the invariance mass, transverse momentum rela-

tionship.

M
π
+
π
−

inv
= 2P π

+

T
P

π
−

T

�
cosh

�
η
π
+ − η

π
−
�
− cos

�
φ
π
+ − φ

π
−
��

(7.1)

As the difference in η and φ of the π
+ and π

− decreases, the quantity in the

square brackets in Eqn. 7.2 also decreases. To keep the same invariant mass,

the transverse momenta must increase. Examining the asymmetry in the same

invariant mass bins across several different cone radii, we expect the smaller radii

to have a larger average transverse momentum. As we have seen previously, a

larger transverse momentum corresponds to an increased asymmetry. Therefore a

smaller radius should result in a larger asymmetry for each invariant mass. This

can be seen in Fig. 7.5. This gives us a hint at how the IFF and transversity
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depend on z. Recall that z is the fraction of fragmenting quark momentum the

pion pair retains.

z =
�Pπ+ + �Pπ−

�Pq

(7.2)
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Figure 7.4: Asymmetry vs P
π
+
π
−

T
for different cone radii ηπ

+
π
−
> 0.

Figure 7.5: Asymmetry vs M
π
+
π
−

inv
for different cone radii ηπ

+
π
−
> 0.
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Figure 7.6: Asymmetry vs η
π
+
π
−
for different cone radii.

7.2 Check for Asymmetry in Same Sign Pairs

In order to test if the asymmetry we see is due to the physics we are investi-

gating, or some other actuation, we perform the same analysis on pion pairs of

the same charge. We would expect the asymmetry to be zero for same sign pairs

since the IFF only results in oppositely charge pairs due to the sequential nature

of parton fragmentation. I have performed exactly the same procedure described

above, except matching up same-sign pions in each event instead of opposite-sign

pions. The analysis was performed over the entire pseudorapidity range. A com-

parison of the asymmetry of opposite-sign and same-sign pion pairs can be seen in

Fig. 7.7. As expected, the asymmetry for same sign-pairs is consistent with zero.

This is a good indication that our analysis for the opposite sign pairs is correct

and does not contain a significant contribution from pions whose charge sign is

mis-identified.
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Figure 7.7: Comparison of the asymmetry in same-sign pairs and opposite-sign

pairs.
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7.3 Check For Other False Asymmetries

In order to make sure the asymmetries we detect are not caused by some

detector factor or an error in the code, we perform checks on situations where zero

asymmetry is expected. The first check is done by analyzing the same data but

randomly assigning a spin state to the polarized proton. A randomly chosen spin is

assigned correctly half the time and incorrectly the other half. Looking at the cross

ratio formula from earlier (Eqn. 6.8) for both cases we see the asymmetry should

vanish. The correct spin assignment is represented to the left of the plus sign in

Eqn. 7.3, and the incorrect assignment to the right. The incorrect assignment is

taken into account by the change in the spin orientation superscripts right of the

plus sign in Eqn. 7.3. The two factors cancel exactly with enough statistics and

should lead to zero observed asymmetry.
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(7.3)

You can see in Fig. 7.8 we see no false asymmetry for random proton spin assign-

ment.

Just as we randomly assigned the spin state of the proton, we also randomly

assign the charges on the π
+
, π

−. This changes the direction of R.

sin(φR) =
(PB ×R)P̂h

|P̂h × PB||P̂h ×R|
(7.4)

cos(φR) =
P̂h × PB

|P̂h × PB|
P̂h ×R

|P̂h ×R|
(7.5)

By making the substitution R → −R in equations 7.4 and 7.5, it is seen that

φR → φR + π (or φR → φR − π because φR is restricted to the range −π to π).
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Since R doesn’t appear in the definition of sin(φS) or cos(φS), φS is unchanged.

This leads to φRS → φRS + π (or φRS → φRS − π again because of the restriction

on the values of φRS). Just like the random spin assignment, the random pion

charge assignment will be correct half the time and incorrect the other half. By

substituting φRS → φRS ± π into the cross ratio equation 6.8 half the time, we

come to an equation similar to equation 7.3 with both factors canceling.
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(7.6)

Again, as figure 7.9 shows, we detect no asymmetry from randomly assigned pion

charges.
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7.4 Two Dimensional Kinematic Binning

We have obtained a much larger data set in 2012 than 2006. This enabled us

to not only divide each kinematic variable into more bins but also bin in multiple

kinematic variables simultaneously. This is ideal for extracting the transversity

distribution. The asymmetry is determined as a function of Mπ
+
π
−

inv
and η

π
+
π
−

(Figs. 7.10 and 7.11), as function of ηπ
+
π
−
and P

π
+
π
−

T
(Figs. 7.12 and 7.13), and

as a function of Mπ
+
π
−

inv
and P

π
+
π
−

T
(Figs. 7.14 and 7.15). A cone radius cut of

0.7 was used for all 2D binning measurements. There is an η
π
+
π
−
> 0 cut used

when measuring the asymmetry as a function of Mπ
+
π
−

inv
and P

π
+
π
−

T
. Again there

is an increase in the asymmetry around the ρ mass, and the highest mass bin

M
π
+
π
−

inv
> 1GeV/c

2 shows decreased asymmetry as in the 2006 analysis.

101



0.2
0.4

0.6
0.8

1
1.2

1.4

−1

−0.5

0

0.5

1
−0.02

0

0.02

0.04

Mπ+π−

inv GeV/c2ηπ+π−

A
U
T

Figure 7.10: AUT vs M
π
+
π
−

inv
and η

π
+
π
−
. Different colored stands denote different

η
π
+
π
−
bins. Note: zero is suppressed in this plot.

Figure 7.11: 2D view of AUT vs M
π
+
π
−

inv
for different ηπ

+
π
−

102



3
4

5
6

7
8

9
10

11

−1

−0.5

0

0.5

1
−0.02

0

0.02

0.04

0.06

0.08

P π+π−

T GeV/cηπ+π−

A
U
T

Figure 7.12: AUT vs P
π
+
π
−

T
and η

π
+
π
−
. Different colored stands denote different

η
π
+
π
−
bins. Note: zero is suppressed in this plot.

Figure 7.13: 2D view of AUT vs P
π
+
π
−

T
for different ηπ

+
π
−

103



4

6

8

10

0.5

1

1.5

−0.02

0

0.02

0.04

0.06

0.08

P π+π−

T GeV/cMπ+π−

inv GeV/c2

A
U
T

Figure 7.14: AUT vs M
π
+
π
−

inv
and P

π
+
π
−

T
. Different colored stands denote different

P
π
+
π
−

T
bins. Note: zero is suppressed in this plot. (ηπ

+
π
−
> 0)

Figure 7.15: 2D view of AUT vs M
π
+
π
−

inv
for different P π

+
π
−

T
, ηπ

+
π
−
> 0

104



7.5 Asymmetry with partial wave expansion

As stated in chapter 4, the cross section for the scattering process can be

expanded.

sin θH�c
1 (z̄c, cos θ,M

π
+
π
−

inv

2
) ≈H

�c
1,ot(z̄c,M

π
+
π
−

inv

2
) sin θ

+H
�c
1,lt(z̄c,M

π
+
π
−

inv

2
) sin θ cos θ (7.7)

Starting from 6.2, one can come up with a relationship for the yield of pion

pairs from spin up and spin down after the expansion. This time the polarization

is encapsulated in the asymmetry coefficients Asp and App.

N
↑ = L

↑ [1 + sin(θ) (Asp + App cos(θ)) sin(φRS)] (7.8)

N
↓ = L

↓ [1− sin(θ) (Asp + App cos(θ)) sin(φRS)] (7.9)

The data was separated into two different sets, one for spin up collisions and

one for spin down, and fit simultaneously with the corresponding yield relationship

using an unbinned maximum likelihood fit. The luminosity values and asymmetry

coefficients are both determined from the fit. As a cross-check, the number of pairs

from up and down were counted separately and compared to the luminosity values

determined from the fit. These were always consistent. A histogram of the data in

φRS and θ is shown in Fig. 7.16a, and an example of with the unbinned maximum

likelihood fit can be seen in Fig. 7.16b.

The fitting procedure was done for pairs in the forward direction (η > 0) in the

same invariant mass and transverse momentum bins as the previous section, and

the results are shown below. Since the polarization was folded into the asymmetry

coefficients in the fit the values here must be scaled by 1/polarization in order to

make a fair comparison to the values shown in the previous section. The average
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Figure 7.16: Data and unbinned maximum likilihood fit

polarization for data analyzed is 61.6%. This puts the black points in Fig. 7.17

very close to the values seen in the original two dimensional analysis. This makes

sense because if θ is integrated over, as was the case in the previous 2D binning,

only Asp would survive. The red points corresponding to the App coefficient are

consistent with zero, and have no noticeable trend. If one looks hard enough, the

sign of App seems to be positive at lower invariant mass and negative at higher

invariant mass, the change coming at the ρ mass. However the size of the error

bars make this not significant.
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7.6 Kaon Pion Pairs

We can perform a similar analysis for other dihadron pairs. In this section,

we focus on kaon-pion pairs. Since Kπ pairs go through an intermediate vector

meson K∗(892) the IFF for the fragmentation of a transversely polarized quark

into a kaon and a pion, and therefore observed asymmetry, should be enhanced

in this range just like in the ρ mass range for π+
π
− pairs [29].

In the π+
π
− pair analysis the identification of pions was relatively simple and

unimportant because there are so many more pions than kaons or protons. We

attempt to cut as many kaons and protons out as possible and the rest just come

as a dilution to the pion sample. It is a lot more difficult to look specifically

for kaons. To do this we have to use the ToF as well as the ionization energy

loss in the TPC to distinguish between pions and kaons accurately. Figure 7.18

shows a heat map of the particle mass determined by the ToF vs the track nσ(π)

determined by the ionization energy loss. This is separated into 11 different track

momentum ranges. Looking at the first momentum range in the upper left hand

plot, the protons are seen as the faint green region at an time of flight mass of

just under one GeV/c2. As expected the pions are located around the bright red

region at centered at nσ(π) = 0. The kaons are the faint green region just above

and to the left of the pion region. Since protons are so far away from kaons and

pions, they are easily removed from the sample with a ToF mass cut. However

in order to correctly identify kaons, we need to make a distinction between them

and pions.

Looking at each momentum bin individually I constructed the interface be-

tween the pion region and the kaon region. I then removed the overlap region

where it is impossible to distinguish pions and kaons. This can be seen for the

lowest momentum bin in Fig. 7.19. Everything between the white lines is not

included in the analysis. Particles above the top line is taken to be a kaon, except
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Figure 7.18: 2D histograms of mass determined from ToF vs nσ(π) for differnet

track momenta

for the clear proton region which is removed by a horizontal ToF mass cut. Ev-

erything below the bottom line is declared a pion. I was able to do this method

with varying success for the first four momentum bins. The bin limits can be seen

in table 7.1. The pion, kaon, and sometimes even proton regions in the remaining

bins overlapped too much and were not included in the analysis. As the track

momentum increases the exclusion region between the white lines increases.

Once Kπ pairs are found, the analysis continues as in the π
+
π
− pair case,

however with much lower statistics. Figure 7.20 shows the asymmetry vs the

invariant mass of the Kπ pair for η
Kπ

> 0. The lower limit on invariant mass

in now 633.25 MeV/c2 and the invariant mass bins are changed accordingly. The

low statistics only allow for three invariant mass bins. More bins result in huge
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Figure 7.19: Separation of kaons and pions. Tracks between the white lines are

discarded.
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Table 7.1: Track momentum bins for Kπ analysis

momentum bin momentum range (GeV)

1 1.5 - 1.9

2 1.9 - 2.3

3 2.3 - 2.7

4 2.7 - 3.1
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Figure 7.20: Asymmetry vs Invariant Mass for Kaon Pion Pairs. Nonzero asym-

metry is only seen in the mass bin containing the K∗(892) mass. ηKπ
> 0

error bars in the largest bin. Just like the π
+
π
− pair scenario, we expect an

enhancement to the asymmetry in the vicinity of K∗ mass (892 MeV/c2). As

shown in Fig. 7.20, we do see an enhancement in this mass region, however we

also see a sizable negative asymmetry in the mass region directly before it. It

is possible that the asymmetry near the K
∗ mass may just be do to statistical

fluctuations and our low statistics. More investigation is needed to make a clear

statement.

We know from the π
+
π
− pair case that the asymmetry should increase with
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Figure 7.21: Asymmetry vs Invariant Mass for Kaon Pion Pairs. Nonzero asym-

metry is only seen in the mass bin containing the K∗(892) mass. ηKπ
> 0.50

the pseudorapidity of the pair. In Fig. 7.20 we had a lower ηKπ limit of 0. If we

increased the lower limit, we should see an increase in the asymmetry. Seeing an

increase in the asymmetry near the K
∗ could be evidence that the asymmetry is

real and not a product of statistical fluctuations. The asymmetry when η
Kπ

> 0.5

can be seen in Fig. 7.21.

The third mass bin has an asymmetry of 0.0530 ± 0.0197 when the lower ηKπ

limit is 0.5 and 0.0371 ± 0.0105 when the lower ηKπ limit is 0. This suggests the

asymmetry in this bin could be physical. Not only that but the asymmetry in the

second bin has decreased when the lower ηKπ limit was changed to 0.5.

In the π
+
π
− analysis, the pions were ordered by electric charge; the positive

pion always chosen to be hadron 1 in the calculation of the vector R (refer to

chapter 4). In the Kπ analysis, it is not so clear. The two particles could be

ordered by charge or by particle type. As a check, the asymmetry was determined

in K
+
π
− and K

−
π
+ pairs separately when using charge ordering. This can be

seen in Fig. 7.22. With the exception of the lowest mass bin, which is hindered

by low statistics, the asymmetry is equivalent between K
+
π
− and K

−
π
+ pairs.
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Figure 7.22: Asymmetry vs Invariant Mass for different charge cobininations of

Kaon Pion Pairs. ηKπ
> 0

As with the pion pair analysis, I would like to explore the effect of the ra-

dius cut on the asymmetry. Since there is only one invariant mass bin with a

significant asymmetry, I look at the asymmetry in this bin for different radii. In

the pion analysis, the smallest radius cut (0.2) resulted in the highest observed

asymmetries. In the Kπ analysis, this same radius cut results in zero observed

asymmetry. To investigate this more deeply, I measured the asymmetry at the

same three values which were used in the pion analysis (0.2, 0.3, 0.4), as well as

other intermediate values of the radius cut. The results are shown in Fig. 7.23.

As in the pion analysis, the asymmetry decreases with increasing radius cut, with

the exception of the smallest cuts. Since only three radii were used in the pion

analysis, it is not clear whether a decrease in asymmetry would have been seen

at lower radii. This may be something to investigate, as it could give insight into

very low z behavior of the IFF.

Unfortunately, this is all we could have done so for Kπ pairs. The statistics

are so sparse that we cannot do a multivariable analysis as we did for π+
π
− pairs.

Since the only nonzero asymmetry we see is in the vicinity of K∗ integrating over
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Figure 7.23: Asymmetry vs radius cut for the highest invariant mass bin. ηKπ
> 0

the invariant mass washes out any asymmetry we see. Thus investigating how the

asymmetry behaves with P
Kπ

T
or ηKπ when the invariant mass is integrated over

results in zero asymmetry. With more statistics it would be interesting to look at

how varying the transverse momentum affects the asymmetry near K∗.
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CHAPTER 8

Comparison with Theoretical Calculations

With the IFF extracted from electron positron annihilation at BELLE (see 2.6)

half the puzzle is complete. Once the IFF is known, the transversity distribution

can be extracted, also using the replica method [10] described in Sec. 2.6, from the

observed asymmetry in di-hadron lepto-production [37]. Combining the results of

the extraction of the IFF and the transversity distribution, Radici et. al. made

predictions for the observed asymmetry in hadron collisions [35] by replacing the

IFF and the transversity distribution in

AUT = 2P π
+
π
−

T

�

a,b,c,d

|R|
M

π+π−
inv

�
dxadxb

16πzc
f1(xa)h1(xb)

d∆σ̂ab↑→c↑d

dt̂
H

�c
1

�
z̄c,M

π
+
π
−

inv

2
�

(8.1)

with the extracted replica. These replicas are first evolved to the STAR transverse

momentum scale using the DGLAP evolution equations [35].

8.1 Comparison for 2006 data

Predictions for AUT as a function of invariant mass of the π
+
π
− pair are

shown in Fig. 8.1. The grey band corresponds to the predicted value of 68% of

the replicas. It is superimposed behind the data points shown in Fig. 5.1 for η > 0.

The 68% replica band does well to predict the data. The prediction for AUT as

a function of ηπ
+
π
−
can be seen in Fig. 8.2. The convention used is opposite to

the one used in this thesis - the direction of the polarized beam is taken to be in
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Figure 8.1: Comparison of theoretically calculated asymmetry and 2006 exper-

imental result versus pion pair invariant mass for forward pairs. The grey The

uncertainty band corresponds to the 68% of all replicas.

the negative η direction. The 68% replica band does not do as well to predict the

results especially in the most forward direction. Three replicas (6, 31, and 43)

are shown that fall outside the 68% replica band but predict the result with more

accuracy.
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Figure 8.2: Comparison of theoretically calculated asymmetry and 2006 experi-

mental result versus pion pair pseudorapidity.

8.2 Comparison for 2012 data

The predictions for 2012 are done in the same manner as for 2006. With more

data from the 2012 production, these predictions can be put to better test. Figure

8.3 shows the prediction values of AUT as a function of ηπ
+
π
−
and the 2012 data

points shown in Fig. 7.3. This time the predicted 68% replica band perfectly

matches the data. In Fig. 8.4, the prediction for AUT is shown as a function of

M
π
+
π
−

inv
along with the 2012 data for π+

π
− pairs in the direction of the polarized

beam (ηπ
+
π
−
< 0, in the convention of the authors). There is a slight discrepancy

between the prediction and the 2012 data at larger M
π
+
π
−

inv
. There is also one

data point from 2012 at higher M
π
+
π
−

inv
that has been left off. This data point,

which can be see in Fig. 7.2 at Mπ
+
π
−

inv
> 1.2, would disagree with the prediction

even further. Figure 8.5 shows the prediction for pairs in the backwards direction

from the polarized beam. Here the calculations do a better job. The accuracy

seen in these calculations, although not excellent, hints at the universality of the

transversity distribution function.
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Figure 8.3: Comparison of theoretically calculated asymmetry and 2012 experi-

mental result versus pion pair pseudorapidity

Figure 8.4: Comparison of theoretically calculated asymmetry and 2012 experi-

mental result versus pion pair invariant mass for forward pairs.
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Figure 8.5: Comparison of theoretically calculated asymmetry and 2012 experi-

mental result versus pion pair invariant mass for backward pairs.
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CHAPTER 9

Discussion

The goal of this thesis was to measure the spin dependent asymmetry in the

production of pion pairs. This was done differentially in M
π
+
π
−

inv
, P

π
+
π
−

T
, and

η
π
+
π
−
. The possibility of this asymmetry in kaon-pion pairs was also investigated.

In the near future, the transversity distribution will be extracted from a global

fit of the STAR data presented here as well as the 500 GeV analysis by Mike

Skoby in conjunction with the HERMES/COMPASS data [35]. This should give

us the best understanding of the transversity distribution to date. At that point

the universality of the transversity distribution as well as the Q
2 evolution of

the transversity distribution can be investigated. In the following appendix, I

present a supplemental analysis on simulated data to aid in the comparison of the

asymmetries measured here and theorists lattice calculations of the asymmetry.
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APPENDIX A

Pythia Tune Selection

Typically additional information is needed to frame experimental results which

are not accessible experimentally. For this purpose we use embedding with events

generated by Pythia and detector simulation with Geant. This year, much work

was done by Kevin Adkins (University of Kentucky) to select Pythia settings in

such a way that the simulated events reflect the actual data as well as possible.

The first step was selecting which Pythia tune produced particle yields most

comparable to the STAR data. A total of five tunes were investigated. Figure A.1

shows the ratio of π+ yields in simulation to real data as a function of transverse

momentum. Perugia 0 seems to be the worst fit out of all the tunes. The only

Pythia tune to match at low pT is CDF Tune A which doesn’t match for higher

pT . Perugia 2012 seems to be the best fit overall even though the it doesn’t match

at low pT .

One idea is to decrease the value of the primordial kT in Perugia 0 which has

a high default kT value at 2 GeV/c. This parameter accounts for the infrared

effects [40]. The quality of the Perugia 0 is drastically increased when changing

this parameter from 2 GeV/c to 0.5 GeV/c as seen in Fig. A.2. It seems as though

this corrected disagreement at low pT as caused Perugia 0 to be satisfactory fit at

higher pT as well. In fact, it worked so well that the primordial kT was decreased

to 0.5 GeV/c in Perugia 2012 and Perugia 6 as well. As with Perugia 0, low pT

yields for Perugia 2012 are also improved with the change in primordial kT , as

seen in Fig. A.3. It is possible that, although it corrects particle yields, altering
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Figure A.1: Ratio of simulated pion yield to real data pion yield for five different

Pythia tunes as a function of pion transverse momentum.

the default primordial kT value could have adverse effects on different properties

of the data. Because of this we want to keep in mind the Pythia tune which

performs best at nominal kT . This seems to be Perugia 2012 as seen in Fig. A.1.

With two possible tunes in hand we investigate the effect of our choice of

parton distribution function set. Figure A.4 shows the π
+ yield ratio for default

PDF sets for nominal kT and for reduced kT . By comparing the yield ratio of the

default PDF set to other we find the most suitable PDF set to be NNPDF 3.0 Lo

for nominal kT Perugia 2012 shown in figure A.5, and CT10 for reduced kT and

Perugia 0 shown in figure A.6

The best two candidates are Perugia 0 with PDF set CT10 and reduced kT

and Perugia 2012 with PDF set NNPDF 2.0 Lo and nominal kT . The next thing

to look at is if each generates jets with subprocess fractions similar to NLO The-

ory calculations. Figure A.7 shows how the Pythia subprocess fractions compare

to NLO theoretical curves for both candidates. It is clearly seen that Perugia 0
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Figure A.2: Ratio of simulated pion yield to real data pion yield for five different

Pythia tunes as a function of pion transverse momentum with reduced kT for

Perugia 0.

Figure A.3: Ratio of simulated pion yield to real data pion yield for best three

Pythia tunes as a function of pion transverse momentum all with reduced kT .
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Figure A.4: Pion yield ratios for Perugia 0 and Perugia 2012 for nominal kT and

reduced kT .

Figure A.5: The best PDF set for Perugia 2012 and nominal kT is NNPDF 3.0

Lo.
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Figure A.6: The best PDF set for Perugia 0 and reduced kT is CT10.

matches the theoretical curves much better than Perugia 2012. After this investi-

gation we will choose Perugia 0 with PDF set CT10 and reduced kT to generate

the simulated data for the embedding analysis.
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Figure A.7: Comparison of subprocess fractions from different pythia tunes. The

CT10 tune with primordial kt = 0.5 GeV/c (right) reproduces the NLO calcula-

tions better.

126



APPENDIX B

Trigger Bias and Embedding Analysis

The way the STAR triggers select events introduces a bias to our sample.

It does this in two ways. First, it can trigger on quark jets and gluon jets in

a different ratio than they are produced in the collisions. This is important to

quantify because a theorist interpreting results from this analysis will assume the

ratio of quark jets to gluon jets is consistent with their production ratio. To

investigate how this affects the asymmetry we will start by revisiting Eqns. 6.2

through 6.5. It is convenient to introduce two variables g = Ng/2π and q = Nq/2π,

where Ng and Nq are the total number of pion pairs from gluons jets and quark jets

at any angle φRS. Since pairs from gluons don’t contribute to the asymmetry [31,

6], the number of gluon jets at any angle φRS is simply g. There is no sinusoidal

modulation associated with pion pairs from gluons as you would see with pion

pairs from fragmenting quarks. Using these two new variables, Eqns. 6.2 through

6.5 can be rewritten as:

N
↑
φRS

= L
↑
IφRS(θ) [g + q + qAUTP sin(φRS)] (B.1)

N
↓
φRS

= L
↓
IφRS(θ) [g + q − qAUTP sin(φRS)] (B.2)

N
↓
φRS+π

= L
↓
IφRS+π(θ) [g + q + qAUTP sin(φRS)] (B.3)

N
↑
φRS+π

= L
↑
IφRS+π(θ) [g + q − qAUTP sin(φRS)] (B.4)
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By defining L and R in the same manner as before,

L −R
L+R =

�
N

↑
φRS

N
↓
φRS+π

−
�
N

↓
φRS

N
↑
φRS+π�

N
↑
φRS

N
↓
φRS+π

+
�
N

↓
φRS

N
↑
φRS+π

= f
detector

q
AUTP sin(φRS) (B.5)

where f
detector

q
= q

q+g
is the fraction of pion pairs originating from quarks after

trigger selection has occurred. What was measured in the analysis should actu-

ally be thought of as A
experiment

UT
= f

detector

q
AUT , where AUT is now the “true”

asymmetry due solely to pion pairs from fragmenting quarks.

The theorist will have a similar result,

L −R
L+R =

�
N

↑
φRS

N
↓
φRS+π

−
�

N
↓
φRS

N
↑
φRS+π�

N
↑
φRS

N
↓
φRS+π

+
�
N

↓
φRS

N
↑
φRS+π

= f
collision

q
AUTP sin(φRS). (B.6)

This time f
collision

q
is the fraction of pion pairs originating from quarks before

triggers are taken into account. Their perception of the asymmetry is A
theory

UT
=

f
collision

q
AUT . From this, it can be seen that

A
experiment

UT
=

f
detector

q

f collision
q

A
theory

UT
. (B.7)

The values for fdetector

q
and f

collision

q
can be determined from simulated data. These

are shown in Fig. B.1.

It turns out that, for the most part, there are about the same number pion pairs

originating from quarks in the both triggered and untriggered samples. This is

unexpected. It turns out that the triggered sample contains an increased number

of qiqj → qiqj events and a decreased number of gg → gg events when compared to

the untriggered sample, while maintaining roughly the same number of qig → qig

events. This would seem to indicate there is a larger number of pairs from quarks,

however the percentage of pairs matched with gluons in qig → qig events is about

five percent higher in the triggered sample than the untriggered sample. This
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Figure B.1: Ratio of number of pairs coming from quarks to number coming from

gluons (covers full η range)

effect seems to balance the effect of triggering on more qiqj → qiqj events and less

gg → gg events.

The trigger also has a bias toward events coming from a parton carrying a

high momentum fraction x. A quark with a large x will lead to outgoing products

carrying more energy. These products will have a greater chance to be over the

trigger threshold. This bias toward higher x events is shown in Fig. B.2.

There is also a bias introduced toward pairs carrying a lower momentum frac-

tion, z, of the fragmenting parton. Because the triggers fire mainly on neutral

energy, triggered pairs will belong to a jet with substantial neutral energy. Since

so much energy from the fragmenting parton must be allocated to neutral en-

ergy, triggered pairs tend to carry a smaller momentum fraction. An untriggered

pair does not need this requirement. The difference in z between triggered and

untriggered pairs can be seen in Fig. B.3.
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Figure B.2: The averge momentum fraction x of the parton from the polarized

beam (beam 1) is larger for triggered events than for all events.

Figure B.3: The averge momentum fraction x of the polarized quark (quark 1) is

larger for triggered events than for all events.
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APPENDIX C

Sine fits for all results
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Figure C.1: sine fits for different mass bins with radius cut 0.2, η > 0
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Figure C.2: sine fits for different transverse momemtum bins with radius cut 0.2,

η > 0
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Figure C.3: sine fits for different mass bins with radius cut 0.3, η < 0
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Figure C.4: sine fits for different mass bins with radius cut 0.3
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Figure C.5: sine fits for different mass bins with radius cut 0.3, η > 0
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Figure C.6: sine fits for different transverse momemtum bins with radius cut 0.3,

η < 0
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Figure C.7: sine fits for different transverse momemtum bins with radius cut 0.3
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Figure C.8: sine fits for different transverse momemtum bins with radius cut 0.3,

η > 0
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Figure C.9: sine fits for different mass bins with radius cut 0.4, η > 0
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Figure C.10: sine fits for different transverse momemtum bins with radius cut 0.4,

η > 0
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Figure C.11: sine fits for different pseudorapidity bins with radius cut 0.2
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Figure C.12: sine fits for different pseudorapidity bins with radius cut 0.3
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Figure C.13: sine fits for different pseudorapidity bins with radius cut 0.4
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Figure C.14: sine fits for 2D binning in invariant mass and pseudorapidity
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Figure C.15: sine fits for 2D binning in transverse momentum and pseudorapidity
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