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The oral drug FTY720 affects sphingosine-1-phosphate (S1P) signaling on targeted cells that bear the
S1P receptors S1P1, S1P3, S1P4, and S1P5. We examined the effect of FTY720 treatment on the biology
of mouse neural progenitor cells (NPCs) after transplantation in a viral model of demyelination.
Intracerebral infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in an
acute encephalomyelitis, followed by demyelination similar in pathology to the human demyelinating
disease, multiple sclerosis. We have previously reported that intraspinal transplantation of mouse NPCs
into JHMV-infected animals resulted in selective colonization of demyelinated lesions, preferential
differentiation into oligodendroglia accompanied by axonal preservation, and increased remyelination.
Cultured NPCs expressed transcripts for S1P receptors S1P1, S1P2, S1P3, S1P4, and S1P5. FTY720
treatment of cultured NPCs resulted in increased mitogen-activated protein kinase phosphorylation and
migration after exposure to the chemokine CXCL12. Administration of FTY720 to JHMV-infected mice
resulted in enhanced migration and increased proliferation of transplanted NPCs after spinal cord
engraftment. FTY720 treatment did not improve clinical disease, diminish neuroinflammation or the
severity of demyelination, nor increase remyelination. These findings argue that FTY720 treatment
selectively increases NPC proliferation and migration but does not either improve clinical outcome or
enhance remyelination after transplantation into animals in which immune-mediated demyelination is
initiated by the viral infection of the central nervous system. (Am J Pathol 2015, 185: 2819e2832;
http://dx.doi.org/10.1016/j.ajpath.2015.06.009)
Supported in part by NIH grants R01 NS041249 and R01 NS074987
(T.E.L.), MH084812 (H.R.), and NS047718 (O.S.); the Hausman Family
Foundation and Dawn Beattie (T.E.L.); Cure Medical and Research for Cure
donations (O.S.); and private donations made directly to the laboratory (T.E.L.).

Disclosures: None declared.
Intracranial infection with the neurotropic JHM strain of
mouse hepatitis virus (JHMV) results in an acute encepha-
lomyelitis, followed by chronic demyelination characterized
by viral persistence within the central nervous system
(CNS), axonal damage, and demyelination.1e7 Previous
studies from our laboratory have used the JHMV model of
neuroinflammation-mediated demyelination to evaluate
the therapeutic benefit of mouse neural progenitor cell
(NPC) engraftment on remyelination.8e10 Transplantation
of mouse NPCs into the spinal cords of JHMV-infected
mice results in extensive migration and colonization
of areas of white matter damage and preferential
stigative Pathology.

.

differentiation into oligodendroglia.8e10 Engrafted NPCs
physically engage damaged axons, and this ultimately
leads to increased axonal integrity that correlates with
remyelination.8,11 These findings, along with others,12e14

argue that engraftment of NPCs may provide an important
unmet clinical need for treatment of human demyelinating
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diseases, including multiple sclerosis (MS), by facilitating
sustained remyelination that can restore motor function
and ameliorate clinical symptoms.

After engraftment of NPCs into the spinal cords of
JHMV-infected mice, transplanted cells migrate both rostral
and caudal from the implantation site.8,9 The chemokine
ligand CXCL12 is enriched within areas of demyelination,
and transplanted NPCs express the signaling receptor
CXCR4, resulting in colonization of areas of white matter
damage. Blocking CXCR4 signaling on NPC trans-
plantation impaired NPC migration, arguing for an impor-
tant role for this chemokine signaling pathway in
contributing to repair by mediating trafficking to sites of
myelin damage.9 However, the molecular mechanisms
governing positional migration of NPCs are likely complex
and consist of additional soluble factors that affect the
ability of NPCs to effectively congregate within areas of
white matter pathology.

Among potential molecules that may influence migration
is the lysophospholipid sphingosine-1-phosphate (S1P) that
is well documented in controlling proliferation and migra-
tion of numerous cell types.15e18 Although the importance
of S1P signaling in controlling lymphocyte homing and
egress from lymphatic tissues is well documented,19e21

increasing evidence indicates a functional role within the
CNS as glia and neurons express different combinations of
specific signaling receptors S1P1, S1P2, S1P3, S1P4, and
S1P5.22,23 Activation of these receptors yields different ef-
fects on migration and survival of astrocytes, microglia, and
oligodendrocytes.24e26 In addition, NPCs express S1P re-
ceptors, and signaling has previously been reported to in-
fluence in vitro differentiation.27 Moreover, Kimura et al28

demonstrated an important role for S1P signaling in con-
trolling migration of transplanted NPCs to an injury site in a
model of spinal cord injury.

We examined the functional role of S1P signaling after NPC
transplantation into the spinal cords of JHMV-infected mice.
FTY720 is a U.S. Food and Drug Administrationeapproved
oral drug for treatment of patients with relapsing
MS.22,23,29e31 FTY720 exerts immunomodulatory effects that
reduce acute relapses, new lesion formation, and disability
progression and brain volume loss in MS patients.32 The
mechanism(s) behind FTY720 functions are not yet defined;
however, the phosphorylated active form of FTY720
(FTY720P) is an S1P receptormodulator that inhibits egress of
lymphocytes from lymph nodes. FTY720 is a functional
antagonist of S1P1 on lymphocytes,20 yet also can act as a
nonselective agonist of S1P1, S1P3, S1P4, and S1P5.33

Therefore, the available evidence suggests that cellular
source and receptor expression profile are critical in terms of
how FTY720 affects S1P signaling, and likely lead to a
dampening of autoreactive T cells specific for myelin antigens
infiltrating into the CNS.More important, FTY720, because of
its lipophilic nature, penetrates the blood-brain barrier and
readily enters the CNS parenchyma. Furthermore, FTY720P is
detected in situ, suggesting that it may influence the biology of
2820
resident cells of the CNS. Our findings reveal that treatment of
cultured NPCs with FTY720P led to an active signaling
response, as determined by phosphorylation of mitogen-
activated protein (MAP) kinase, yet did not influence lineage
fate commitment. FTY720 treatment of JHMV-infected mice,
transplanted with NPCs, demonstrated enhanced migration
associated with increased numbers of NPCs compared with
vehicle-treated control animals. FTY720 treatment did not
affect the accumulation of T cells or macrophages within the
CNS. Finally, after treatment in animals in which demyelin-
ation is established, FTY720 did not augment the effects of
NPCs on influencing remyelination, indicating a selective
effect on migration/proliferation on spinal cord engraftment
into JHMV-infected mice.
Materials and Methods

Mice and Virus

Age-matched (5 to 7 weeks) S1P1 enhanced green fluo-
rescent protein (eGFP) knock-in mice (C57BL/6 back-
ground)34 and C57BL/6 mice were anesthetized with an i.p.
injection of 150 mL of a mixture of ketamine (Western
Medical Supply, Arcadia, CA) and xylazine (Phoenix
Pharmaceutical, Saint Joseph, MO) in Hanks’ balanced salt
solution. Mice were injected intracranially with 150 plaque-
forming units of JHMV (strain V2.2-1) suspended in 30 mL
saline.9 Clinical severity was assessed by blinded in-
vestigators (T.E.L. and C.A.B.) using a previously described
four-point scoring scale.35 FTY720 (2-amino-2-[2-(4-
octylphenyl) ethyl]-1,3-propanediol, hydrochloride) and
FTY720P (2-amino-2 [2-(4-octylphenyl) ethyl]-1,3-
propanediol, mono dihydrogen phosphate ester) were
purchased from Cayman Chemical Co (Ann Arbor, MI).
FTY720 or the vehicle was administered by daily i.p.
injections of 100 mL, starting at day 13 postinfection
(p.i.). Experiments for all animal studies were reviewed
and approved by the University of Utah (Salt Lake City)
and the University of California (Irvine) Institutional
Animal Care and Use Committees.
NPC Isolation and Culture

Neurosphere cultures were prepared from brains of perinatal
S1P1 eGFP knock-in mice, as previously described.8,36

Briefly, dissected striata were razor minced and triturated
in 0.05% trypsin for 10 minutes, followed by anti-trypsin to
inactivate the digestion. Single cells were resuspended in
Dulbecco’s modified Eagle’s medium:F12 (Invitrogen,
Carlsbad, CA) supplemented with B27 (Invitrogen), insulin-
transferrin-selenium-X (Invitrogen), penicillin-streptomycin
(Invitrogen), 40 ng/mL T3 (T67407; Sigma, St. Louis,
MO), and 20 ng/mL human recombinant epidermal growth
factor (E9644; Sigma). Cells were cultured for 6 days with
replacement of media every other day, at which point
ajp.amjpathol.org - The American Journal of Pathology
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FTY720 Enhances Migration of NPCs
mature neurospheres were isolated and GFP expression was
visualized by fluorescence microscopy.

PCR

Total RNA was extracted from neurospheres, DNase treated,
and purified via phenol-chloroform extraction. cDNA was
synthesized with a reverse transcription kit superscript VILO
(Invitrogen), according to the manufacturer’s instructions.
The following primers were used to identify S1P1-S1P5
mRNA expression: S1P1, 50-TTTCCATCGCCATCCTC-
TAC-30 (forward) and 50-GCAGGCAATGAAGACAC-
TCA-30 (reverse); S1P2, 50-TCTCAGGGCATGTCACTC-
TG-30 (forward) and 50-CAGCTTTTGTCACTGCCGTA-30

(reverse); S1P3, 50-GTGTGTTCATTGCCTGTTGG-30

(forward) and 50-TTGACTAGACAGCCGCACAC-30

(reverse); S1P4, 50-GGCTACTGGCAGCTATCCTG-30

(forward) and 50-AAGGCCACCAAGATCATCAG-30

(reverse); and S1P5, 50-GATCCCTTCCTGGGTCTAGC-
30 (forward) and 50-TAGAGCTGCGATCCAAGGTT-30

(reverse). Primers were purchased from Invitrogen.
Sequencing of PCR amplicons confirmed primer specificity.

Western Blot Analysis

NPCs were plated on Matrigel-coated 6-well plates and treated
with either 100 nmol/L FTY720 phosphate or vehicle for 5
minutes, 30 minutes, 1 hour, 2 hours, and 4 hours. The cells
were then lysed using radioimmunoprecipitation assay buffer
[50 mmol/L Tris-HCL (pH 7.4), 175 mmol/L NaCl, 5 mmol/L
EDTA, 1% NP-40, 0.1% SDS, and 0.5% deoxycholic acid]
supplemented in protease and phosphatase inhibitors (Roche).
P44/42 MAP kinase (1:2000; Cell Signaling, Danvers, MA)
and phosphorylated p44/42 MAP kinase (1:15,000; Cell
Signaling) were detected by Western blot analysis using
horseradish peroxidaseeconjugated secondary antibodies
(1:25,000; Jackson ImmunoResearch Laboratory, West Grove,
PA) and exposed to Supersignal West-Femto chemilumines-
cent reagent (Pierce, Rockford, IL).

NPC Differentiation

To assess differentiation potential, NPCs expressing
GFP8,9,11,37 were grown on Matrigel-coated chamber slides
with epidermal growth factor for 24 hours, at which point
growth factor was removed and NPCs were allowed to
differentiate for up to 7 days.8 Cells were treated daily with
100 nmol/L FTY720P or vehicle subsequently fixed in 4%
paraformaldehyde for 20 minutes at room temperature.
Immunofluorescence was performed using established
protocols: rabbiteanti-mouse Olig 2 (1:200; Millipore,
Darmstadt, Germany), rabbiteanti-mouse glial fibrillary
acidic protein (1:1000; Invitrogen), mouseeanti-mouse Map2
(1:750; Sigma), Alexa-594 anti-rabbit (1:500; Invitrogen), and
anti-mouse (1:1000; Invitrogen) were used as secondary an-
tibodies. Samples were then washed in phosphate-buffered
The American Journal of Pathology - ajp.amjpathol.org
saline (PBS), and coverslip was mounted with DAPI Vecta-
shield Mounting Medium (Vector Laboratories, Burlingame,
CA). The percentage of immunopositive cells for each stain
was determined by dividing the total number of immuno-
positive cells by the total number of DAPI-positive cells.

NPC Transplantation

Transplantation was performed on day 14 p.i. with JHMV, at
which point infected mice have established demyelin-
ation.8,9,11 Mice were anesthetized with an i.p. injection of
150 mL of a mixture of ketamine (Western Medical Supply,
Arcadia, CA) and xylazine (Phoenix Pharmaceutical, Saint
Joseph, MO) in Hanks’ balanced salt solution, a laminectomy
was performed at T9, and 2.5� 105 NPCs resuspended in 2.5
mL solution were injected into the spinal cord using a 10-mL
Hamilton syringe, as previously described.8,38e40 Recipient
mice also received daily i.p. injections of 3 mg/kg FTY720
starting at day 13 p.i., whereas a control group received
vehicle starting at day 13 p.i.

NPC Chemotaxis

In vitro chemotaxis assays were performed using aNeuroProbe
ChemoTx system, according to the manufacturer’s protocol.
Briefly, GFP-NPCs treated with 100 nmol/L, 10 nmol/L, and 1
mmol/L FTY720P or vehicle control were allowed to migrate in
response to recombinant mouse CXCL12 (Peprotech, Rocky
Hill, NJ). Migration after 16 hours of culture was assessed by a
fluorescent microplate reader (Synergy H1; BioTek, Winooski,
VT), according to manufacturer’s specifications.

Histology

Spinal cords were isolated at defined time points and fixed
overnight with 4% paraformaldehyde at 4�C. Individual
spinal cords were divided into sections, and twelve coronal
sections (1 mm thick) were cryoprotected in 20% sucrose
and embedded in OCT (VWR, Radnor, PA). Coronal sec-
tions (8 mm thick) were cut, and sections were stained with
luxol fast blue. Areas of total white matter and demyelinated
white matter were determined with ImageJ software version
1.48 (NIH, Bethesda, MD; http://imagej.nih.gov/ij).41

Demyelination was scored as a percentage of total demye-
lination along the entire length of the spinal cord. The total
numbers of GFP-positive cells were determined in each of
the twelve spinal cord sections surrounding the transplant
site by counting GFP-positive cells colocalized with DAPI-
positive nuclei. Determination of both the severity of
demyelination and numbers of GFP-positive cells was per-
formed blinded (T.E.L. and C.A.B.).

Electron Microscopy

Mice were perfused with 0.1 mol/L cacodylate buffer con-
taining 2% paraformaldehyde/2% glutaraldehyde, and spinal
2821
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Figure 1 FTY720 treatment activates cultured neural progenitor cells
(NPCs). Neurospheres were isolated from the subventricular zone of
sphingosine-1-phosphate receptor 1 (S1P1) enhanced green fluorescent
protein (eGFP) neonatal pups. A: Representative immunofluorescence
images confirm that neurospheres express S1P1, as evidenced by GFP
expression. B: Analysis of S1P receptor expression by NPCs at the mRNA
level demonstrates expression of transcripts specific for S1P1 to S1P5; the
sequence of amplicons confirmed primer specificity. C: Western blot
analysis of cultured NPCs treated with either vehicle or 100 nmol/L
phosphorylated active form of FTY720 (FTY720P) reveals increased
phosphorylation over time. D: Quantitative analysis of Western blot data
confirms increased phosphorylation of mitogen-activated protein kinase
(MAPK). Analyses of band intensity on films are presented as the relative
ratio of phosphorylated MAPK/actin. BF, brightfield microscopy; GAPDH,
glyceraldehyde-3-phosphate dehydrogenase.
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cords were isolated, and then embedded in Epon (Danbury,
CT) epoxy resin. Serial ultrathin sections were stained with
uranyl acetateelead citrate and analyzed as previously
described. Images at �1200 magnification were analyzed for
g-ratio using ImageJ software.42 A minimum of 150 axons
were analyzed per mouse, and the g-ratio was calculated by
dividing the axon diameter by the total fiber diameter.

Immunofluorescence

For immunophenotyping of glial cells, fixed spinal cord sec-
tions were incubated in 10% normal goat serum (Jackson
ImmunoResearch, West Grove, PA) and 1% bovine serum
albumin for 1 hour at room temperature. This was followed by
an overnight incubation at 4�C with the following primary
antibodies in 1% bovine serum albumin: rabbit anti-mouse
glutathione S-transferase (GST)-p (1:1000; MBL, Interna-
tional Corporation, Woburn MA), rabbiteanti-mouse glial
fibrillary acidic protein (GFAP; 1:1000; Invitrogen), and
rabbiteanti-mouse Ki-67 (1:300; Abcam, Cambridge, MA).
Sections were then washed in PBS and incubated for 1 hour
at room temperature with Alexa fluorescent-conjugated
secondary antibodies (goateanti-rabbit Alexa 594 or
goateanti-mouse Alexa 594; 1:1000 in PBS; Invitrogen).
Next, sections were washed in PBS and coverslip mounted
using DAPI Vectashield Mounting Medium (Vector Labo-
ratories). The percentage of immunopositive cells for each
stain was determined by dividing the total number of
immunopositive cells by the total number of DAPI-positive
cells.

Cell Isolation and Flow Cytometry

Brain, spinal cords, and blood were isolated at day 21 or 28
p.i. from infected mice treated with 3 mg/kg FTY720 or
vehicle, starting at day 13 p.i. and transplanted with GFP-
labeled NPCs. By using previously described protocols,41

tissues were then homogenized and immunophenotyped
by flow cytometry using the following antibodies: rateanti-
mouse CD4-allophycocyanin (1:50; Biolegend, San Diego,
CA), rateanti-mouse CD8-allophycocyanin (1:50; Biolegend),
S510 to S518 tetramer-phosphatidylethanolamine (1:300;
NIH), and M133 to M147 tetramer-phosphatidylethanolamine
(1:150; NIH). Blood was collected by cardiac heart punc-
ture, and cells were stained with rateanti-mouse CD4-
allophycocyanin and CD8-phosphatidylethanolamine after
red blood cell lysis. Samples were analyzed using a
BD-Fortessa X-20 Flow Cytometer (BD Biosciences,
Franklin Lakes, NJ).

Results

FTY720 Treatment Activates Cultured NPCs

FTY720 functions as both an antagonist and agonist for
members of the S1P receptor family whose natural ligand
2822
is S1P. Previous studies have demonstrated that FTY720
preferentially binds S1P1, S1P3, S1P4, and S1P5 re-
ceptors, including lower affinity for S1P4, but does not
bind to S1P2.19 We tested whether mouse NPCs expressed
S1P receptors and if FTY720 treatment affected defined
responses. Neurospheres were isolated from the subventricular
zone of day 1 old eGFP-S1P1 knock-in mice,8,36 and
immunofluorescence confirmed that NPCs express S1P1,
as evidenced by GFP expression (Figure 1A). Subsequent
analysis of additional S1P receptor expression by RT-PCR
demonstrated expression of transcripts for all five defined
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 FTY720 does not affect neural progenitor cell (NPC) differentiation. Exposure of cultured NPCs to daily 100 nmol/L phosphorylated active form of
FTY720 (FTY720P) for 5 days does not influence lineage fate commitment to either oligodendroglia (Olig2; A), neurons [mitogen-activated protein (Map) 2; B],
and astrocytes [glial fibrillary acidic protein (GFAP); C] compared with vehicle-controletreated cultures. D: Quantification of immunocytochemical staining for
defined cell lineages indicates similar frequencies of Olig2-, MAP2-, and GFAP-positive cells after treatment of cultured NPCs with either vehicle or FTY720P.
Data were presented as means � SEM (D). n Z 3 independent experiments (D).

FTY720 Enhances Migration of NPCs
S1P receptors (Figure 1B). Previous studies have
demonstrated that FTY720 treatment activates several
intracellular signaling cascades, including phosphoryla-
tion of MAP kinase.43,44 Treatment of cultured NPCs
with the activated FTY720P (100 nmol/L) resulted in
phosphorylation of MAP kinase in a time-dependent
manner, indicating receptor binding and activation
(Figure 1, C and D). These findings support earlier
studies15 demonstrating that NPCs express S1P receptors
The American Journal of Pathology - ajp.amjpathol.org
and FTY720 treatment initiates activation of intracellular
signaling pathways.

FTY720 Does Not Affect NPC Differentiation

We next tested whether exposure of cultured NPCs to
FTY720 influenced lineage fate commitment. Under defined
conditions, cultured NPCs will preferentially differentiate
into oligodendroglia, although astrocytes and neurons are
2823
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Figure 3 FTY720 treatment enhances migration of engrafted green fluorescent protein (GFP)eneural progenitor cells (NPCs). JHMV-infected mice were
treated with FTY720 (3 mg/kg daily via i.p. injection) or vehicle control beginning at day 13 postinfection (p.i.). GFP-expressing NPCs were transplanted into
the spinal cords at day 14 p.i., and migration of transplanted cells rostral and caudal to the implantation site was assessed 3 weeks posttransplant (p.t.). A:
Transplanted GFP-NPCs migrate both rostral and caudal from the implantation site in both control and FTY720-treated mice. Images represent spinal cord
sections rostral (1 to 4) and caudal (5 to 8) from the transplantation site. B: Transplanted GFP-NPCs congregate within areas of demyelination located in the
anterior and lateral funiculus in both FTY720-treated mice and vehicle control. C: Quantification of GFP-NPC cell numbers at defined spinal cord sections rostral
and caudal to the implantation site in vehicle control and FTY720-treated animals. D: Representative images depicting Ki-67 staining by transplanted GFP-NPCs
in vehicle control and FTY720-treated mice. Arrowheads represent Ki-67þ transplanted GFP-NPCs. E: Quantification of GFP-NPCs expressing Ki-67. Data
are presented as means � SEM (C and E). n Z 2 or more independent experiments with n Z 4 or more mice per group (C and E). *P < 0.05,
**P < 0.01.

Blanc et al
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Figure 4 FTY720 does not affect CXCR4 expression by neural progenitor cells (NPCs). A: Cultured NPCs were treated with increasing concentrations of
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FTY720 Enhances Migration of NPCs
also present.8,9 Exposure of NPCs to 100 nmol/L FTY720P
did not influence differentiation because we detected similar
frequencies of oligodendroglia (Olig2 positive), astrocytes
(GFAP), and neurons (Map2) when compared with vehicle-
controletreated cultures (Figure 2, AeD). Therefore, S1P
receptor antagonism does not affect NPC differentiation.

FTY720 Treatment Enhances Migration of Engrafted
GFP-NPCs

To test if FTY720 affects migration of engrafted NPCs, JHMV
and GFP-expressing NPCs (GFP-NPCs) were transplanted into
the spinal cord at day 14 p.i.,8,11,37,39 and FTY720 treatment
(3 mg/kg, daily, via i.p. injection) was initiated at day 13 p.i.
Control groups consisted of JHMV-infected mice transplanted
with GFP-NPCs treated with vehicle only.Mice were sacrificed
at 3 weeks posttransplant, and GFP-NPC distribution was
assessed histologically in spinal cord cross sections. In both
FTY720 and vehicle-treated control mice, GFP-NPCs were
distributed rostral and caudal from the implantation site and
colonized areas of demyelination within the ventral funiculus
and lateral white matter columns (Figure 3, A and B). Quanti-
fication ofGFP-NPCs in defined spinal cord sections rostral and
caudal to the implantation site indicated a significant (P< 0.05)
increase in numbers of GFP-NPCs in FTY720-treated animals
when compared with vehicle-treated mice (Figure 3C).
Immunostaining for Ki-67 revealed increased numbers of
Ki-67epositive GFP-NPCs throughout the spinal cord in
FTY720-treated mice, consistent with increased proliferation
(Figure 3, D and E).

These findings suggest a role in S1P receptor antagonism in
controlling proliferation and/or migration of NPCs engrafted
into the spinal cord.We have previously shown that CXCL12 is
critical in controlling the positional migration of engrafted
The American Journal of Pathology - ajp.amjpathol.org
NPCs by signaling through CXCR4 expressed on the surface of
NPCs.9 Furthermore, Kimura et al45 have reported that FTY720
treatment promotes migration of human CD34þ hematopoietic
progenitor cells by enhancing CXCR4 function. CulturedNPCs
were treated with increasing concentrations of FTY720P (10
nmol/L, 100 nmol/L, and 1 mmol/L), and the in vitromigration
in response to 200 ng/mL recombinant mouse CXCL12
resulted in a dose-dependent migration response (Figure 4A).
Flow analysis revealed that FTY720 treatment did not affect
surface expression of CXCR4 at any concentration tested
(Figure 4, B and C). Therefore, administration of FTY720 en-
hances migration of NPCs potentially by enhancing CXCR4
function, consistent with earlier studies.45

FTY720 Treatment of NPC-Transplanted Mice Does Not
Affect NPC Differentiation or Demyelination

FTY720 did not affect clinical disease in JHMV-infected
mice, regardless if transplanted with GFP-NPCs or treated
with vehicle (data not shown). We next examined if FTY720
treatment influenced the ability of engrafted NPCs to differ-
entiate into oligodendroglia, because our previous studies have
shown that most transplanted cells preferentially differentiate
into these cells.8,9 By 14 days posttransplant, FTY720 did not
affect lineage fate commitment of NPCs because similar fre-
quencies of GST-pepositive cells (a marker for mature
myelin-producing oligodendrocytes) were observed in
FTY720 versus vehicle-treated mice (Figure 5, A and B). The
severity of spinal cord demyelination in transplanted mice
treated with FTY720 was examined by staining serial coronal
sections rostral and caudal to the implantation site with luxol
fast blue and quantifying the percentage of white matter
damage.41,42 By day 14 posttransplant, the severity of demy-
elination was similar in transplanted mice treated with
2825
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Figure 5 FTY720 does not decrease the severity of demyelination. Mice were infected with 150 plaque-forming units of JHMV and 3 mg/kg FTY720 or
control vehicle treatment initiated at day 13 postinfection (p.i.) and transplanted with green fluorescent protein (GFP)eneural progenitor cells (NPCs) at day
14 p.i. In addition, JHMV-infected mice treated with FTY720 or vehicle alone served as an additional control. A: Representative glutathione S-transferase
(GST)-p immunofluorescence staining of spinal cords isolated at day 14 posttransplant (p.t.) from JHMV-infected mice engrafted with GFP-NPCs at day 14 p.i.
and treated with either FTY720 or control at day 13 p.i. Arrowheads represent GST-pepositive transplanted GFP-NPCs. B: Similar frequencies of GFP-positive
mature oligodendrocytes in GFP-NPCetransplanted mice treated with either FTY720 or vehicle. Twelve spinal cord sections per mouse were counted to
determine the frequency of transplanted GFP-NPCs that differentiated into GST-pepositive cells. C: Representative luxol fast blueestained spinal cord sections
from NPC-transplanted mice treated with either FTY720 or control vehicle, or nontransplanted mice treated with FTY720 or control vehicle at day 14 p.t. D:
Quantification of demyelination indicates no differences in the severity of white matter damage in experimental groups of mice at day 14 p.t. Data are
presented as means � SEM (B and D). n Z 2 independent experiments with n Z 4 or more mice per experimental group (B); n Z 2 independent experiments
with n Z 5 or more mice per experimental group (D). Scale bar Z 50 mm (A).
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FTY720 when compared with control animals (Figure 5, C
and D). Electron microscopic analysis of spinal cords from
experimental mice was performed to better assess whether
FTY720 treatment of mice promoted remyelination. Deter-
mination of the g-ratio, the ratio of the inner axonal diameter/
the total outer fiber diameter, is an established structural index
of remyelination, with lower ratios indicating more extensive
remyelination.42 Regions of spinal cord ventral and lateral
white matter tracts of JHMV-infected mice, transplanted with
GFP-NPCs and treated with FTY720 or vehicle, and JHMV-
infected mice treated with vehicle or FTY720 alone were
analyzed (Figure 6A).

We first determined whether FTY720 treatment alone
increased remyelination in JHMV-infected mice. Our findings
indicate that, although there was an overall trend toward
remyelination after FTY720 treatment compared with control
2826
mice, this did not reach significance (Figure 6, B, C, and F).
Increased remyelination was observed in JHMV-infected mice
that were transplanted with GFP-NPCs compared with vehicle
treatment alone (Figure 6, B, D, and F). However, FTY720 did
not result in a significant increase in remyelination in GFP-
NPCetreated animals compared with transplanted animals
treated with vehicle alone (Figure 6, B, E, and F). Therefore,
these findings argue that FTY720 treatment does not enhance
remyelination in JHMV-infectedmice regardless if transplanted
with GFP-NPCs.

Treatment with FTY720 Does Not Affect
Neuroinflammation in JHMV-Infected Mice

We have previously determined that FTY720 treatment of
JHMV-infected mice during acute disease results in
ajp.amjpathol.org - The American Journal of Pathology
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Figure 6 FTY720 treatment does not promote remyelination. A: Representative transverse spinal cord section; boxed areas indicate the regions in which
demyelinated and remyelinated axons were determined. Representative electron microscopic (EM) images of spinal cords of JHMVeinfected mice treated with
vehicle (VEH) alone (B), FTY720 (C), green fluorescent protein (GFP)eneural progenitor cells (NPCs) and vehicle (D), and GFP-NPCs and FTY720 (E). Black
arrows indicate myelinated axons; white arrows, demyelinated axons; asterisks, remyelinated axons. F: Calculation of g-ratio, as a measurement of axonal
remyelination, shows no significant differences between experimental mice. Data are presented as means � SEM (F). n Z 3 per group with n Z 150 or more
axons per mouse analyzed (F). Original magnification, �1200 (BeE).

FTY720 Enhances Migration of NPCs
increased mortality and limited infiltration of T cells into
the CNS, which correlated with impaired ability to control
viral replication within the CNS.41 We next examined
whether FTY720 treatment affected T-cell infiltration into
the CNS of mice either infected with JHMV or infected
and transplanted with GFP-NPCs. Mice were infected
intracranially with JHMV, and mice received daily i.p.
injections of FTY720 beginning at day 13 p.i. Flow anal-
ysis of T-cell infiltration into the spinal cords of infected
mice isolated at day 28 p.i. indicated no differences in
CD4þ or CD8þ T cells within the spinal cords of mice
treated with either FTY720 or vehicle alone (Figure 7, A
and B). Moreover, infiltration of virus-specific CD4þ and
CD8þ T cells was not affected after FTY720 treatment
(Figure 7, A and B).

Transplantation of GFP-NPCs into JHMV-infected mice
did not affect infiltration of total CD4þ and CD8þ T cells nor
virus-specific T cells into the spinal cord (Figure 7, C and D),
and this is consistent with our previously published studies.46

Similarly, administration of FTY720 to infected mice trans-
planted with GFP-NPCs did not prevent total T-cell or virus-
specific T-cell entry into the CNS (Figure 7, C and D). In
addition, FTY720 did not affect T-cell infiltration into the
brains of mice infected with JHMV alone or transplanted
with GFP-NPCs (data not shown). We confirmed the bio-
logical activity of FTY720 during chronic disease by
examining levels of circulating T cells within the blood.
FTY720 significantly (P< 0.05) diminished the frequency of
both CD4þ (Figure 8A) and CD8þ (Figure 8C) T cells within
the blood compared with control mice. In addition, by using
The American Journal of Pathology - ajp.amjpathol.org
S1P1 eGFP knock-in mice, we determined that surface
expression of S1P1, measured by eGFP expression, was also
decreased (P < 0.05) on circulating CD4þ (Figure 8B) and
CD8þ T cells (Figure 8D) in FTY720-treated mice when
compared with control animals. Therefore, FTY720 treat-
ment of JHMV-infected mice results in diminished levels of
circulating lymphocytes that correlates with decreased S1P1
expression, and this is consistent with our earlier findings.41

These results indicate that FTY720 does not affect T-cell
migration into the CNS during chronic disease in animals,
regardless of whether transplanted with GFP-NPCs or
vehicle alone.
Discussion

The use of stem cells for treatment of human demyelinating
diseases, such as MS, to induce tissue repair offers an
attractive therapy for promoting remyelination and poten-
tially sustained clinical recovery.11,42,47e50 After spinal
cord engraftment of mouse NPCs into JHMV-infected mice,
NPCs preferentially migrate to sites of demyelination by
responding to the chemokine CXCL12 via expression of the
receptor CXCR4.9 However, it is likely that other signaling
cues are present within this inflammatory demyelinating
environment that influence NPC migration. The S1P/S1P1
axis has been shown to be involved in NPC migration to
sites of damage in a model of spinal cord injury highlighting
the importance of S1P receptors in mediating positional
migration of NPCs.28 Treatment of mice with FTY720
2827
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Figure 7 Treatment with FTY720 does not affect neuroinflammation in JHMV infected mice. The effect of FTY720 treatment on T-cell infiltration into the
spinal cord after either JHMV infection alone or GFP-NPCs transplantation was examined. Spinal cords were removed at day 28 postinfection [p.i.; day 14
posttransplant (p.t.) of GFP-NPCs], and the frequency of total T-cell subsets and virus-specific T cells was determined. There is no difference in frequencies of
CD4þ (A) or CD8þ (B) T cells and virus-specific CD4þ (A) or CD8þ (B) T cells in JHMV-infected mice treated with either vehicle control or FTY720. FTY720 does
not reduce overall frequencies of infiltrating CD4þ (C) or CD8þ (D) T cells compared with vehicle-treated control mice nor are there differences in the fre-
quencies of virus-specific CD4þ (C) and CD8þ (D) T cells following spinal cord transplantation of GFP-NPCs. Data represent means � SEM (AeD). nZ 4 mice or
more per group (AeD).
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augments CXCR4 signaling and potentiates migration of
hematopoietic stem cells.45 Moreover, FTY720 readily
penetrates the CNS,19,24,33,51,52 arguing that it can modulate
the biology of transplanted NPCs by binding to S1P re-
ceptors. Indeed, Gonzalez-Cabrera et al53 have shown that
chronic FTY720 degrades and down modulates the receptor
in the CNS. FTY720 has a 17:1 brain/plasma ratio and is
accumulated in the brain, providing long-term steady-state
levels that drive complete receptor occupancy and degra-
dation. Therefore, we investigated the effects of FTY720
treatment in conjunction with NPC therapy in a viral model
of MS.

Herein, we show that FTY720 treatment of JHMV-
infected mice transplanted with GFP-NPCs results in
enhanced migration of transplanted cells when compared
with transplanted animals treated with vehicle control
(Figure 3, A and C). FTY720 treatment did not alter po-
sitional migration of transplanted NPCs because these cells
efficiently congregated within areas of demyelination
(Figure 3, A and B). The in vivo migration data support our
in vitro experimental results showing that FTY720
2828
treatment of cultured NPCs increases migration after
exposure to recombinant mouse CXCL12, and this was
independent of elevated surface expression of CXCR4 on
NPCs (Figure 4, A and B). These findings argue that a
mechanism underlying enhanced NPC migration could
involve an effect on CXCR4 function and/or the down-
stream signaling cascade, such as calcium mobilization or
cytoskeleton rearrangement.
Previous studies have shown that FTY720 activates the

phosphorylation of CXCR4 through S1P3 activation, fol-
lowed by downstream cascade activation of Src kinase and
Janus-activating kinase 2 in progenitor cells,54 and affects
CXCR4-mediated migration in hematopoietic stem cells
after exposure to CXCL12.45

Future work focusing on defining the specific S1P re-
ceptor(s) involved in elevated CXCR4 function will be
critical to better understand the molecular mechanisms
governing how receptor agonists/antagonists influence NPC
migration mediated by CXCR4.
Our findings also indicated increased numbers of GFP-

NPCs within demyelinated white matter tracts of GFP-NPCs
ajp.amjpathol.org - The American Journal of Pathology
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Figure 8 FTY720 induces lymphopenia and
down-regulates sphingosine-1-phosphate receptor
1 (S1P1) on T cells. Frequencies of CD4þ and CD8þ

T cells in the blood day 7 posttransplant with GFP-
NPCs into JHMV-infected S1P1 eGFP mice treated
daily with FTY720 or control starting at day 13
postinfection. FTY720 significantly diminishes the
frequency of both CD4þ (A) and CD8þ (C) T cells
and S1P1 expression measured by GFP expression
on CD4þ (B) and CD8þ (D) T cells. Data are pre-
sented as means � SEM (AeD). n Z 2 or
more experiments with a minimum n Z 4 per
group (AeD). *P < 0.05. FSC, forward scatter.

FTY720 Enhances Migration of NPCs
in JHMV-infected mice treated with FTY720 when
compared with transplanted mice treated with vehicle con-
trol, suggesting proliferation is increased in vivo. Collec-
tively, these results argue that FTY720 treatment increased
NPC migration and proliferation following engraftment.

We have recently shown that FTY720 treatment of
JHMV-infected mice during acute disease results in
increased mortality that is associated with impaired migra-
tion of virus-specific T cells into the CNS and elevated viral
titers within the CNS.41 Dampened neuroinflammation
correlated with increased cellularity of draining cervical
lymph nodes, consistent with previous reports indicating
that S1P antagonism impairs lymphocyte egress from
lymphatic tissue.19,20,51,52 More important, administration of
FTY720 to JHMV-infected mice during acute disease was
The American Journal of Pathology - ajp.amjpathol.org
associated with diminished severity of demyelination. These
findings highlight an important role for S1P signaling in
host defense during acute viral-induced neurological dis-
ease, most likely by enhancing T cells to efficiently migrate
from lymphatic tissue into the CNS. In marked contrast, the
present study indicates that when FTY720 treatment is
initiated at day 13 p.i. with JHMV, there is no effect on
T-cell accumulation within the CNS, and the severity of
demyelination is not affected. We believe these differences
in outcomes with regard to neuroinflammation reflect the
stage of disease at which point FTY720 is administered. As
indicated above, FTY720 treatment during acute disease
limited egress of virus-specific T cells from draining cer-
vical lymph nodes, thereby reducing the severity of neuro-
inflammation and demyelination. By day 13 p.i., surviving
2829
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mice have reduced viral titers below the level of detection as
a result of infiltration of virus-specific T cells into the CNS
that can effectively control viral replication. Correspond-
ingly, treatment with FTY720 would have limited-to-no
effect on disease progression at this stage of disease
because the bulk of virus-specific lymphocytes have already
expanded and exited the draining cervical lymph nodes and
subsequently infiltrated the CNS. In addition, these data also
indicate that T cells do not rely on S1P signaling for T-cell
migration to the CNS during chronic disease but rather use
other inflammatory signaling cues (eg, chemokines) to gain
access to the CNS of JHMV-infected mice.2,55

Although FTY720 treatment of cultured NPCs resulted in
activation, increased proliferation, and enhanced migration in
response to CXCL12, there was no effect on lineage fate
commitment because similar frequencies of oligodendroglia,
astrocytes, and neurons were observed compared with
NPCs treated with control vehicle. Similar frequencies of
GFP-positive oligodendroglia expressing GST-p were detec-
ted within spinal cords of GFP-NPCetransplanted mice
treated with either FTY720 or vehicle control. Although there
were increased numbers of GFP-NPCs within areas of
demyelination in FTY720-treated mice, we did not observe
any discernable increase in remyelination. Whether this is
because of functional deficits in these cells is currently
unknown and is the focus of ongoing studies.

We have previously shown that engrafted NPCs can
remyelinate demyelinated axons,11 and these findings
would argue that FTY720 does not increase the remyeli-
nation potential of engrafted NPCs in our model of viral-
induced demyelination. This is similar to previous
studies that determined that FTY720 does not induce
remyelination in either the cuprizone or lysophosphatidyl
choline models of demyelination.56 However, Miron et al57

have demonstrated that FTY720 treatment resulted in
increased remyelination in organotypic cerebral slices
where demyelination was induced by lysolecithin. These
findings support other studies demonstrating FTY720
treatment in augmenting neurogenesis and repair in models
of CNS injury, possibly by activating endogenous NPCs
and/or oligodendrocyte progenitor cells.58e62 We are
currently examining whether FTY720 activates endoge-
nous progenitor cells within the CNS of JHMV-infected
mice. The conflicting reports on the effects of FTY720
on remyelination highlight differences in model systems
used, emphasizing the potential importance of targeting
specific receptors for promoting OPC maturation and
myelin synthesis. For example, by using a lysophospha-
tidyl cholineeinduced model of demyelination, adminis-
tration of S1P5 agonist has been reported to have a greater
effect on remyelination compared with S1P1 agonists.63

FTY720 treatment of MS patients with the relapsing-
remitting form of disease reduced the risk of disability
progression; yet, it is not clear if this is because of an in-
crease in remyelination.64 The fact that we did not observe
any increase in remyelination in JHMV-infected mice
2830
treated with FTY720 alone would argue additional studies
in preclinical models of MS with more selective S1P
receptor agonists or antagonists to better understand the
effects on both endogenous glial cells and transplanted
NPCs with regard to promoting remyelination.
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