
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Semidefinite Relaxations Approach to Polynomial Optimization and Its Extensions /

Permalink
https://escholarship.org/uc/item/2918g7zv

Author
Wang, Li

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2918g7zv
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Semidefinite Relaxations Approach to Polynomial Optimization and Its
Extensions

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Li Wang

Committee in charge:

Professor Jiawang Nie, Chair
Professor J. William Helton, Co-Chair
Professor Philip E. Gill
Professor Gert Lanckriet
Professor Sonia Martinez Diaz
Professor Mauricio de Oliveira

2014



Copyright

Li Wang, 2014

All rights reserved.



The dissertation of Li Wang is approved, and it is ac-

ceptable in quality and form for publication on microfilm

and electronically:

Co-Chair

Chair

University of California, San Diego

2014

iii



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 Introduction to Polynomial Optimization . . . . . . . . . . . . 1
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Definitions and Preliminaries . . . . . . . . . . . . . . . . 2

1.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Preliminaries on Polynomials . . . . . . . . . . . . 4

1.3 Semidefinite Programming . . . . . . . . . . . . . . . . . 6
1.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Outline of The Thesis . . . . . . . . . . . . . . . . . . . . 13

Chapter 2 Semidefinite Relaxations For Polynomial Optimization . . . . 15
2.1 Lasserre’s SDP Relaxation . . . . . . . . . . . . . . . . . 15

2.1.1 Algorithm Description . . . . . . . . . . . . . . . 16
2.1.2 Finite Convergence Certification . . . . . . . . . . 19
2.1.3 Example . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Jacobian SDP Relaxation . . . . . . . . . . . . . . . . . . 22
2.2.1 Algorithm Description . . . . . . . . . . . . . . . 22
2.2.2 Weakened Convergence Condition . . . . . . . . . 25
2.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Large Scale Polynomial Optimization . . . . . . . . . . . 32
2.3.1 Interior Point Method vs. Regularization Method 32
2.3.2 Numerical Experiments . . . . . . . . . . . . . . . 34

Chapter 3 Minimizing Rational Functions . . . . . . . . . . . . . . . . . 40
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Equivalent Reformulation by Homogenization . . . . . . 42
3.3 On the Generality of Closedness at 1 . . . . . . . . . . . 48
3.4 Using the Jacobian SDP Relaxation . . . . . . . . . . . . 51

iv



3.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . 55
3.5.1 Unconstrained Rational Optimization . . . . . . . 55
3.5.2 Constrained Rational Optimization . . . . . . . . 59

Chapter 4 Semi-Infinite Polynomial Programming . . . . . . . . . . . . . 62
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 SIPP with Compact Index Set . . . . . . . . . . . . . . . 63

4.2.1 A Semidefinite Relaxation Algorithm . . . . . . . 64
4.2.2 Global Convergence Properties . . . . . . . . . . . 65
4.2.3 Numerical Experiments . . . . . . . . . . . . . . . 66
4.2.4 Application of SIPP to PMI problems . . . . . . . 69

4.3 SIPP with Noncompact Index Set . . . . . . . . . . . . . 72
4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Equivalent Reformulation by Homogenization . . 75
4.3.3 On the Generality of Closedness at 1 . . . . . . . 79
4.3.4 Numerical Experiment . . . . . . . . . . . . . . . 83

Chapter 5 Best Rank-1 Tensor Approximations . . . . . . . . . . . . . . 86
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Nonsymmetric Tensors . . . . . . . . . . . . . . . 87
5.1.2 Symmetric Tensors . . . . . . . . . . . . . . . . . 88

5.2 Semidefinite Relaxation Algorithms . . . . . . . . . . . . 90
5.2.1 Symmetric Tensors of Even Orders . . . . . . . . 90
5.2.2 Symmetric Tensors of Odd Orders . . . . . . . . . 95
5.2.3 Nonsymmetric Tensors . . . . . . . . . . . . . . . 97

5.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . 100
5.3.1 Symmetric Tensor Best Rank-1 Approximation . . 101
5.3.2 Nonsymmetric Tensor Best Rank-1 Approximation 104

Chapter 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

v



LIST OF FIGURES

Figure 4.1: Feasible region of PMI problem (4.9) in Example 4.2.12. . . . . 71
Figure 4.2: Feasible region of PMI problem (4.10) in Example 4.2.13. . . . 72
Figure 4.3: Feasible region of Example 4.3.1 at each iteration. . . . . . . . 79
Figure 4.4: The feasible region U in Example 4.3.15. . . . . . . . . . . . . . 84

vi



LIST OF TABLES

Table 2.1: A list of size of SDP (2.27). . . . . . . . . . . . . . . . . . . . . . 33
Table 2.2: Computational results for random Example 2.3.1 of degree 4 . . 36
Table 2.3: Computational results for random Example 2.3.1 of degree 6 . . 36
Table 2.4: Computational results for random Example 2.3.1 of degree 8 . . 36
Table 2.5: Computational results for random Example 2.3.1 of degree 10 . 37
Table 2.6: Computational results for sensor network localization problems. 38
Table 2.7: Computational results for random Example 2.3.3 . . . . . . . . . 38

Table 4.1: Computational results for small SIPP problems. . . . . . . . . . 67
Table 4.2: Computational results for random SIPP problems . . . . . . . . 69

Table 5.1: Computational results in Example 5.3.6. . . . . . . . . . . . . . 105
Table 5.2: Computational results for Example 5.3.11 with m = 3. . . . . . . 108
Table 5.3: Computational results for Example 5.3.11 with m = 4. . . . . . . 109
Table 5.4: Computational results for Example 5.3.11 with m = 5. . . . . . . 109

vii



ACKNOWLEDGEMENTS

At the very beginning of my Ph.D. thesis, I would like to express my grat-

itude to all people that helped me to finish my Ph.D. study.

First and foremost, I would like to express my deepest thanks to my aca-

demic advisor Professor Jiawang Nie. He provided me with the great opportunity

to work with the cutting-edge global optimization technique and gave me a lot of

help to start this thesis. I am really fortunate to study under his guidance.

My grateful thanks to my academic co-advisor, Professor J. William Hel-

ton for his continuous support and his patience in explaining some interesting

engineering problems, which gave me great help in understanding research.

I would also like to thank Postdoctoral Feng Guo, who gave me great help in

studying polynomial optimization. It is a wonderful experience to study together

with him, and we have successfully finished two research papers.

Special thanks to my parents and brother and sister in law. They gave me

support and encouragement, which helped me to finish my study at UCSD.

Chapter 1 subsection 1.3.2, in part, and Chapter 2 Sections 2.1 and 2.3,

in full, are reprint of the material as it appears in the article “Regularization

Methods for SDP relaxations in Large Scale Polynomial Optimization” by Jiawang

Nie and Li Wang, in SIAM Journal on Optimization, Volume 22, No.2(2012). The

dissertation author was one of the authors of this paper.

Chapter 2 Section 2.2 and Chapter 3, in full, are reprint of the material

as it appears in the article “Minimizing Rational Functions by Exact Jacobian

SDP relaxation Applicable to Finite Singularities” by Feng Guo, Li Wang and

Guangming Zhou, in the Journal of Global Optimization in volume 58, No.2(2014).

The dissertation author was one of the authors of this paper.

Chapter 4, in full, is a reprint of the material as it appears in the arti-

cle “Semidefinite Relaxations for Semi-Infinite Polynomial Programming” by Li

Wang and Feng Guo, in Computational Optimization and Applications, Volume

58, No.1(2014). The dissertation author was the first author of this paper.

Chapter 5, in full, is a reprint of the material that has been submitted for

publication as it may appear in the article “Semidefinite Relaxations on Tensor

viii



Best Rank-1 Approximation” by Jiawang Nie and Li Wang, in SIAM Journal on

Matrix Analysis and Applications, 2014. The dissertation author was one of the

authors of this paper.

ix



VITA

2002-2006 B. S. in Computational Mathematics, China University of
Mining and Technology, P.R.China

2006-2009 M. S. in Computational Mathematics, Xi’an Jiaotong Uni-
versity, P.R.China

2009-2014 Ph. D. in Mathematics, University of California, San Diego

PUBLICATIONS

1) Jiawang Nie, Li Wang. Semidefinite Relaxations on Tensor Best Rank-1 Ap-
proximation. Submitted to: SIAM Journal on Matrix Analysis and Applications.
Revised, 2014.

2) Li Wang, Feng Guo. Semidefinite Relaxations for Semi-Infinite Polynomial Pro-
gramming. Computational Optimization and Applications, 58(1):133-159, 2014.

3) Jiawang Nie, Li Wang. Regularization Methods for SDP Relaxations in Large
Scale Polynomial Optimization. SIAM Journal on Optimization, 22(2):408-428,
2012.

4) Feng Guo, Li Wang, Guangming Zhou. Minimizing Rational Functions by Exact
Jacobian SDP Relaxation Applicable to Finite Singularities. Journal of Global
Optimization, 58(2):261-284, 2014.

x



ABSTRACT OF THE DISSERTATION

Semidefinite Relaxations Approach to Polynomial Optimization and Its
Extensions

by

Li Wang

Doctor of Philosophy in Mathematics

University of California, San Diego, 2014

Professor Jiawang Nie, Chair
Professor J. William Helton, Co-Chair

The goal of this thesis is to study a special nonlinear programming, namely,

polynomial optimization in which both the objective and constraints are polyno-

mials. This kind of problem is always NP-hard even if the objective is nonconvex

quadratic and all constraints are linear. The semidefinite (SDP) relaxations ap-

proach, based on sum of squares representations, provides us with strong tools to

solve polynomial optimization problems with finitely many constraints globally.

We first review two SDP relaxation methods for solving polynomial op-

timization problems with finitely many constraints: the classic Lasserre’s SDP

relaxation and Jacobian SDP relaxation. In general, these methods relax the poly-

xi



nomial optimization problem as a sequence of SDPs whose optima are the lower

bounds of the global minimum and converge to the global minimum under certain

assumptions. We also prove that the assumption of nonsingularity in Jacobian

SDP relaxation method can be weakened to have finite singularities.

Then, we study the problem of minimizing a rational function. We refor-

mulate the problem by the technique of homogenization, the original problem and

the reformulated problem are shown to be equivalent under some generic condi-

tions. The constraint set of the reformulated problem may not be compact, and

Lasserre’s SDP relaxation may not have finite convergence, so we apply Jacobian

SDP relaxation to solve the reformulated polynomial optimization problem. Some

numerical examples are presented to show the e�ciency of this method.

Next, we consider the problem of minimizing semi-infinite polynomial pro-

gramming (SIPP). We propose an exchange algorithm with SDP relaxations to

solve SIPP problems with a compact index set globally. And we extend the

proposed method to SIPP problems with noncompact index set via homogeniza-

tion. The reformulated problem is equivalent to original SIPP problem under some

generic conditions.

At last, we study the problem of finding best rank-1 approximations for

both symmetric and nonsymmetric tensor. For symmetric tensors, this is equiva-

lent to optimizing homogeneous polynomials over unit spheres; for nonsymmetric

tensors, this is equivalent to optimizing multi-quadratic forms over multi-spheres.

We use semidefinite relaxations approach to solve these polynomial optimization

problems. Extensive numerical experiments are presented to show that this ap-

proach is practical in getting best rank-1 approximations.

xii



Chapter 1

Introduction to Polynomial

Optimization

Polynomial optimization is a specific nonlinear programming, in which the

objective and constraints are all polynomials. The general formulation of polyno-

mial optimization that we will concern with is:
8
>>>><

>>>>:

f

min

:= min
x2Rn

f(x)

s.t. h
i

(x) = 0, i 2 {1, · · · ,m
1

},

g

j

(x) � 0, j 2 {1, · · · ,m
2

},

(1.1)

where f(x), h
i

(x), g
j

(x) 2 R[x], and R[x] := R[x
1

, · · · , x
n

] denotes the ring of mul-

tivariate polynomials in the n-tuple of variables (x
1

, · · · , x
n

) with real coe�cients.

m

1

,m

2

are integers. Let K be the feasible region of problem (1.1). Problem (1.1)

is generally nonconvex and NP-hard even when the objective function is noncon-

vex quadratic and the constraints are linear [59]. If K = Rn, problem (1.1) is

reduced to general unconstrained polynomial optimization problem. If m
1

= 1 or

m

2

= 1, problem (1.1) is called semi-infinite polynomial programming (SIPP).

In this thesis, we firstly focus on solving problem (1.1) by semidefinite (SDP)

relaxations methods, which will be presented in detail in Chapter 2. Then we

discuss how to apply the SDP relaxation methods to solve three kinds of problems:

(1) Minimizing rational functions; (2) Semi-infinite polynomial programming; (3)

Best rank-1 tensor approximation problems.

1



2

1.1 Notation

The symbol N (resp., R) denotes the set of nonnegative integers (resp.,

real numbers). For any t 2 R, dte denotes the smallest integer no less than t. For

x 2 Rn, x
i

denotes the i-th component of x, that is, x = (x
1

, . . . , x

n

). Sn�1 denotes

the n � 1 dimensional unit sphere {x 2 Rn : x2

1

+ · · · + x

2

n

= 1}. For ↵ 2 Nn,

denote |↵| = ↵

1

+ · · · + ↵

n

. The symbol Nk

denotes the set {↵ 2 Nn : |↵|  k},
and N

k

denotes {↵ 2 Nn : |↵| = k}. For each i, e
i

denotes the i-th standard

unit vector. The 1 denotes a vector of all ones. For a finite set T , |T | denotes
its cardinality. For x 2 Rn and ↵ 2 Nn, x↵ denotes x

↵

1

1

· · · x↵n
n

. For a matrix

A, AT denotes its transpose. The I

N

denotes the N ⇥ N identity matrix, and

SN

+

denotes the cone of symmetric positive semidefinite N ⇥N matrices. For any

vector u 2 RN , kuk =
p
u

T

u denotes the standard Euclidean norm. For integer

n > 0, [n] denotes the set {1, · · · , n}. For a symmetric matrix W , W ⌫ 0(� 0)

means that W is positive semidefinite (definite). The symbol ⌃
n,m

denotes the

cone of sum of squares forms in n variables and of degree m. For two tensors

X ,Y 2 Rn

1

⇥···⇥nm , define their inner product as

hX ,Yi =
X

1i

1

n

1

,...,1imnm

X
i

1

,...,imYi

1

,...,im .

If m = 2, this is the general matrix inner product.

1.2 Definitions and Preliminaries

In this section, we will introduce some basic definitions and results from

linear algebra and algebra geometry needed for later discussion.

1.2.1 Definitions

Definition 1.2.1. (Nonnegative Polynomials)

Given a polynomial f(x) 2 R[x]. We say f(x) is positive semidefinite (PSD) or

nonnegative over K, if the evaluation f(x) � 0 for every x 2 K.

Definition 1.2.2. (Sum of Squares)



3

A polynomial is Sum of Squares (SOS) if it is a sum of squares of other polynomials,

i.e., for given polynomial f 2 R[x], there exists q

j

2 R[x], such that

f =
rX

j=1

q

2

j

.

Obviously, if a polynomial f(x) is SOS, then f(x) is positive semidefinite

or nonnegative.

Definition 1.2.3. (Semialgebraic Set)

In real algebraic geometry, a semialgebraic set of Rn is defined to be a set of the

form:

S = {x 2 Rn : h
1

(x) = · · · = h

m

1

(x) = 0, g
1

(x) � 0, · · · , g
m

2

(x) � 0}, (1.2)

where h

i

, g

j

2 R[x].

Definition 1.2.4. (Quadratic Module)

Let S be the semialgebraic set defined by polynomials h

i

, g

j

2 R[x]. The quadratic

module generated by the defining polynomials of S is the set

M(S) =

(
m

1X

i=1

'

i

h

i

+
m

2X

j=0

�

j

g

j

: each �
j

is SOS

)
.

Here g

0

= 1.

Definition 1.2.5. (Preordering)

Let S be the semialgebraic set defined by polynomials h
i

, g

j

2 R[x]. The preordering
generated by the defining polynomials of S is the set

P (S) =

8
<

:

m

1X

i=1

'

i

h

i

+
X

⌫2{0,1}m2

�

⌫

g

⌫

1

1

· · · g⌫m2

m

2

: each �
⌫

is SOS

9
=

; .

Here g

0 = 1.

Definition 1.2.6. (Ideal and Variety)

A subset I of R[x] is an ideal if p · h 2 I for any p 2 I and h 2 R[x]. The variety

of an ideal I is the set of all common complex zeros of the polynomials in I, i.e.

V (I) = {x 2 Cn : p(x) = 0 for all p 2 I}.



4

If g
1

, · · · , g
m

2 R[x], then hg
1

, · · · , g
m

i denotes the smallest ideal containing

the g

i

, which is the set of all polynomials that are polynomial linear combination

of the g

i

, i.e.

hg
1

, · · · , g
m

i =
mX

i=1

h

i

g

i

, 8 h

i

2 R[x], i 2 [m].

Definition 1.2.7. (Radical Ideal)

Given any ideal I 2 R[x], its radical is the ideal

p
I = {q 2 R[x] : q

m 2 I for some m 2 N}.

Then I ✓
p
I, and we say ideal I is radical if I =

p
I.

Definition 1.2.8. (Cone and Dual Cone)

A set C is a cone if ax 2 C for all a > 0 and x 2 C. The dual cone of C is the

set:

C

⇤ = {y : hy, xi � 0, 8x 2 C}.

Definition 1.2.9. (Flat Extension of Matrix)

Let X be a symmetric matrix with the block form

X =

"
A B

B

T

C

#
.

We say that X is a flat extension of matrix A if rank X = rank A or, equivalently,

if B = AW and C = B

T

W = W

T

AW for some matrix W .

1.2.2 Preliminaries on Polynomials

Denote the two sets of polynomials:

P

n,d

= {f 2 R[x] : f(x) is PSD of degree d},

⌃
n,d

= {f 2 R[x] : f(x) is SOS of degree d}.
(1.3)

Theorem 1.2.10. (Hilbert Theorem [11]). ⌃
n,d

✓ P

n,d

and the equality holds if

and only if (1) n = 1, or (2) d = 2, or (3) (n, d) = (2,4).



5

This theorem implies that if a univariate polynomial f(x) is nonnegative,

then f(x) must be SOS. Actually it must be a sum of two squares [42]. Not all

nonnegative polynomials is SOS. For examples [65],

• Motzkin polynomial:

M(x, y, z) = x

4

y

2 + x

2

y

4 + z

6 � 3x2

y

2

z

2

• Robinson Polynomial:

R(x, y, z) = x

6+y

6+ z

6� (x4

y

2+x

2

y

4+x

4

z

2+x

2

z

4+y

4

z

2+y

2

z

4)+3x2

y

2

z

2

• Choi-Lam:

F (x
1

, x

2

, x

3

; y
1

, y

2

, y

3

) = x

2

1

y

2

1

+ x

2

2

y

2

2

+ x

2

3

y

2

3

+ 2(x2

1

y

2

2

+ x

2

2

y

2

3

+ x

2

3

y

2

1

)

� 2x
1

x

2

y

1

y

2

� 2x
1

x

3

y

1

y

3

� 2x
2

x

3

y

2

y

3

Theorem 1.2.11. (Hilbert Basis Theorem [10])

Every ideal I ⇢ R[x] has a finite generating set, i.e., I = hg
1

, · · · , g
m

i for some

g

1

, · · · , g
m

2 I.

Theorem 1.2.12. (Hilbert Weak Nullstellensatz [10])

Given an ideal I 2 R[x] with V (I) = ; , then 1 2 I.

Theorem 1.2.13. (Hilbert Strong Nullstellensatz [10])

Given an ideal I 2 R[x], then I(V (I)) =
p
I.

Theorem 1.2.14. (Putinar’s Positivstellensatz [63])

Let S be a compact semialgebraic set. Suppose there exists R > 0 such that

R� kxk2 2 M(S).

If f(x) is positive on S, then f(x) 2 M(S).

Theorem 1.2.15. (Schmüdgen’s Positivstellensatz [70])

Let S be a compact semialgebraic set. If f(x) is positive on S, then f(x) 2 P (S).



6

1.3 Semidefinite Programming

In this section, we review some terminologies and duality theory in Semidef-

inite Programming (SDP). SDP has been an active research area over the past two

decades, which is motivated by its importance in both optimization theory and

wide applications. We refer to the review paper [45] and the book [17] for theory

and applications on SDP.

1.3.1 Theory

Consider the primal problem of standard SDP:
8
<

:
p

⇤ := inf
X2SN

C •X

s.t. A(X) = b, X ⌫ 0.
(1.4)

Here SN denotes the space of N ⇥ N real symmetric matrices, X ⌫ 0 (resp.

X � 0) means X is positive semidefinite (resp. definite), and • denotes the

standard Frobenius inner product, i.e., for given A,B 2 SN , we have

A •B = hA,Bi = tr(AT

B) =
NX

i,j=1

a

ij

b

ij

.

The C 2 SN and b 2 Rm are constant, and A : SN ! Rm is a linear operator

given by A(X) = (A
1

•X, · · · , A
m

•X)T , where A

i

2 SN

, 8 i 2 [m].

The dual problem of (1.4) is

8
<

:
d

⇤ := sup
y2Rm

,Z2SN

b

T

y

s.t. A⇤(y) + Z = C, Z ⌫ 0.
(1.5)

Here A⇤ is the adjoint of A given by A⇤(y) =
mP
i=1

y

i

A

i

. Let SN

+

be the set of N ⇥N

positive semidefinite matrices, then SN

+

is a closed convex cone. Moreover, the

cone SN

+

is self-dual, i.e.,

(SN

+

)⇤ = {Z 2 SN : hX,Zi � 0, 8 X 2 SN

+

} = SN

+

.



7

Theorem 1.3.1. (Weak Duality) For any feasible X for primal problem (1.4),

and feasible y for dual problem (1.5), it holds that C •X � b

>
y. We have

p

⇤ � d

⇤
. (1.6)

Proof. It is easy to see that, for any feasible X and (y, Z) for problems (1.4) and

(1.5) respectively, we have

C •X � b

T

y = X • Z � 0.

Then the proof is completed.

It is possible that p⇤ or d⇤ are not achievable, and the equality in (1.6) does

not hold. For example:

Example 1.3.2.

(1) min

"
0 1

1 0

#
•X, s.t.

"
�1 0

0 1

#
•X = �1,

"
0 0

0 �1

#
•X = 0, X ⌫ 0.

Its dual problem is

max � y

1

s.t.

"
y

1

1

1 y

2

#
⌫ 0.

It holds that p⇤ = d

⇤ = 0, but d⇤ is not achievable.

(2) min

"
0 0

0 0

#
•X, s.t.

"
1 0

0 0

#
•X = 0,

"
0 1

1 0

#
•X = 2, X ⌫ 0.

This SDP problem is infeasible, so p

⇤ = +1. Its dual problem is

max 2y
2

s.t.

"
�y

1

�y

2

�y

2

0

#
⌫ 0.

The optimal value d

⇤ = 0, and we have p

⇤
> d

⇤.

(3) min

2

664

0 0 0

0 0 0

0 0 1

3

775•X, s.t.

2

664

1 0 0

0 0 0

0 0 0

3

775•X = 0,

2

664

0 1 0

1 0 0

0 0 2

3

775•X = 2, X ⌫ 0.

Any feasible solution X for the above has the form
2

664

0 ⇠

1

⇠

2

⇠

1

⇠

3

⇠

4

⇠

2

⇠

4

1� ⇠

1

3

775 ⌫ 0.



8

The optimal value is p⇤ = 1. Its dual problem is:

max 2y
2

s.t.

2

664

�y

2

�y

2

0

�y

2

0 0

0 0 1� 2y
2

3

775 ⌫ 0.

The optimal value is d⇤ = 0. Both p

⇤ and d

⇤ are achievable, but p⇤ > d

⇤
.

Theorem 1.3.3. (Strong Duality [45, Theorem 3.1]) If there exists X � 0 which is

feasible for problem (1.4) and problem (1.5) has feasible solution, then p

⇤ = d

⇤ and

the supremum of problem (1.5) is achievable; Similarly, if there exists y, Z � 0

which is feasible for problem (1.5) and problem (1.4) has feasible solution, then

p

⇤ = d

⇤ and the infimum of problem (1.4) is achievable.

For convenience, in the following, we assume that optima of the primal and

dual problems (1.4) and (1.5) are achievable, and we use min and max instead of

inf and sup.

SDPs are convex programs that are always regarded as an extension of lin-

ear programming (LP) where all the vector inequalities are replaced with matrix

inequalities. The strong duality Theorem 1.3.3 implies the di↵erence between SDPs

and LPs. Recall that for LP, either the primal or the dual is feasible and bounded,

then the primal and dual optimal values are equal and achievable. For SDPs, the

results in Theorem 1.3.3 are weaker. However, the similarities between SDPs and

LPs motivate us to generalize the e�cient algorithms for LPs to solve SDPs. And

following the success of the methods for large scale linear programming, many e�-

cient algorithms have been proposed to solve SDPs. Among them, one of the most

popular algorithms is the primal-dual central path following method [17], which

tackles both the primal and dual problems simultaneously. Even though it has

polynomial worst-case complexity [45], it is slow in solving very large scale SDPs.

In subsection 2.3.1, we will show its di�culty in solving polynomial optimization

problems.



9

1.3.2 Algorithms

In this subsection, we give a brief overview of primal-dual interior point

method and regularization method for solving SDPs. Since the SDP relaxations

for constrained polynomial optimization often have block diagonal structure, e.g.,

(2.11), we consider the standard SDPs with block diagonal structures.

Let K be a cross product of several semidefinite cones

K = SN

1

+

⇥ · · ·⇥ SN`
+

.

Consider the general conic semidefinite optimization problem:

(P ) :

(
min C •X
s.t. A(X) = b, X 2 K.

(1.7)

Here C 2 M, b 2 Rm, and A : M ! Rm is a linear operator. The dual of (1.7) is

(D) :

(
max b

T

y

s.t. A⇤(y) + Z = C, Z 2 K.

(1.8)

K belongs to the space M = SN

1 ⇥ · · · ⇥ SN`
. Each X 2 M is a tuple X =

(X
1

, . . . , X

`

) with every X

i

2 SNi . So, X could also be thought of as a symmetric

block diagonal matrix, and X 2 K if and only if its every block X

i

⌫ 0. The

notation X ⌫K 0 (resp. X �K 0) means every block of X is positive semidefinite

(resp. definite). For X = (X
1

, . . . , X

`

) 2 M and Y = (Y
1

, . . . , Y

`

) 2 M, we define

their inner product as X • Y = X

1

• Y
1

+ · · ·+X

`

• Y
`

. Denote by k · k the norm in

M induced by this inner product. Similar to one block case, K is also a self-dual

cone, that is,

K⇤ = {Y 2 M : Y •X � 0, 8 X 2 K} = K.

For a symmetric matrix W , denote by (W )
+

(resp. (W )�) the projection

of W into the positive (resp. negative) semidefinite cone, that is, if W has spectral

decomposition

W =
X

�i>0

�

i

u

i

u

T

i

+
X

�i<0

�

i

u

i

u

T

i

,

then (W )
+

and (W )� are defined as

(W )
+

=
X

�i>0

�

i

u

i

u

T

i

, (W )� =
X

�i<0

�

i

u

i

u

T

i

.



10

For X = (X
1

, . . . , X

`

) 2 M, its projections into K and �K are given by

(X)K = ((X
1

)
+

, . . . , (X
`

)
+

), (X)�K = ((X
1

)�, . . . , (X`

)�).

The optimality conditions for primal (P ) and dual (D) problems are:

8
>>>>>><

>>>>>>:

A(X) = b,

A⇤(y) + S = C,

XS = 0,

X 2 K, S 2 K.

(1.9)

To design e�cient interior point method, we define the central path XS = µI,

where I is the block identity matrix with proper size and µ is a parameter. The

basic iterations of primal-dual interior point method can be described as follows.

Algorithm 1.3.4. (Primal-Dual Interior Point Method [2])

Input: Choose a strictly feasible X

0

for (P ) and (y
0

, S

0

) for (D), µ > 0, ⌧ 2
(0, 1), ✓ 2 (0, 1), ✏ 2 (0, 1). Set k = 0.

Output: Optimal solution (X⇤
, y

⇤
, Z

⇤) of primal dual problems (1.7)-(1.8).

Step 1: Compute Newton’s Direction (�X,�y,�S) from

8
>>><

>>>:

A(�X) = b�A(�X

k

)

A⇤(�y) +�S = C �A⇤(y
k

) + S

k

�XS

k

+ S

k

�X +X

k

�S +�SX

k

= 2µI � (X
k

S

k

+ S

k

X

k

).

(1.10)

Step 2: Compute the step-length:

↵

k

= max{↵ 2 (0, 1] : (X
k

+ ↵�X)
j

� 0, (S
k

+ ↵�S)
j

� 0, j 2 [`]}.

Step 3: Update X

k+1

= X

k

+ ↵

k

�X, S
k+1

= S

k

+ ↵

k

�S and y

k+1

= y

k

+ ↵�y.

Step 4: Set k = k + 1. If kXS � (X
k

• S
k

/n)Ik
F

> ⌧X

k

• S
k

/n, then go to Step

1. Otherwise, go to Step 5.

Step 5: If µ > ✏, update µ = ✓µ and go to Step 1, otherwise, stop.

Please refer to [2] for some variations and convergence properties of primal-

dual interior point methods. Next, we consider the regularization method for conic



11

SDPs. They are natural generalizations of regularization methods introduced in

[26, 27, 81] for solving standard SDP problems of one block structure.

There are two typical regularizations for SDP problems: Moreau-Yosida

regularization for the primal (1.7) and Augmented Lagrangian regularization for the

dual (1.8). They would be naturally generalized to conic semidefinite optimization

(1.7) and its dual (1.8). The Moreau-Yosida regularization for (1.7) is

8
<

:
min

X,Y 2M
C •X + 1

2�

kX � Y k2

s.t. A(X) = b, X 2 K.

(1.11)

Obviously (1.11) is equivalent to (1.7), because for each fixed feasible X 2 M the

optimal Y 2 M in (1.11) is equal to X. The Augmented Lagrangian regularization

for (1.8) is

8
<

:
max

y2Rm
,Z2M

b

T

y � (Z +A⇤(y)� C) • Y � �

2

kZ +A⇤(y)� Ck2

s.t. Z 2 K.

(1.12)

When K = SN

+

is a single product, it was shown (see Section 2 of [26]) that for

every fixed Y , (1.12) is the dual optimization problem of

min
X2M

C •X +
1

2�
kX � Y k2 � y

T (A(X)� b)� Z •X.

By fixing y 2 Rm and optimizing over Z ⌫ 0, Malick, Povh, Rendl, and Wiegele

[26] further showed that (1.12) can be reduced to

max
y2Rm

b

T

y � �

2

k(A⇤(y)� C + Y/�)Kk2 + 1

2�

kY k2. (1.13)

When K = SN

+

is a single product, Malick, Povh, Rendl, and Wiegele [26]

proposed a general framework (see Algorithm 4.3 of [26]) of regularization methods

for solving large scale SDP problems. It can be readily generalized to the case that

K is a product of several semidefinite cones.

Denote by '

�

(Y, y) the objective in (1.13). When K = SN

+

, '
�

(Y, y) is

di↵erentiable [26, Proposition 3.2] and

r
y

'

�

(Y, y) = b� �A
⇣
(A⇤(y)� C + Y/�)K

⌘
.



12

The above is also true when K is a cross product of semidefinite cones. For fixed

Y

k

, we need to solve the following maximization problem

max
y2Rm

'

�

(Y
k

, y). (1.14)

Since '
�

is concave in y, a point ŷ is a maximizer of (1.14) if and only if

r
y

'

�

(Y
k

, ŷ) = 0.

The function '
�

(Y, y) is not twice di↵erentiable, so the standard Newton’s method

is not applicable. However, the function '
�

(Y, y) is semismooth, and semismooth

Newton’s method could be applied to get local superlinear or quadratic conver-

gence, as pointed out in [81, Section 3.2]. Thus, the generalized Hessian of '
�

is

required in computation. We refer to [81, Section 3.2] for a numerical method of

evaluating r2

y

'

�

(Y, y). It is important to point out that the Hessian r2

y

'

�

(Y, y)

does not need to be explicitly formulated. It would be implicitly available such

that the matrix vector product r2

y

'

�

(Y, y) · z would be evaluated e�ciently.

Generally, we always have r2

y

'

�

(Y, y) ⌫ 0, and r2

y

'

�

(Y, y) � 0 if some

nondegeneracy conditions hold ([81, Proposition 3.2]). Therefore, an approximate

semismooth Newton direction d

new

for (1.14) can be determined from the linear

system ⇣
r2

y

'

�

(Y, y) + ✏ · I
N

⌘
d

new

= r
y

'

�

. (1.15)

Here ✏ > 0 is a tiny number ensuring the positive definiteness of the above linear

system. When m is huge, it is usually not practical to solve (1.15) by direct

methods like Cholesky factorization. To avoid this di�culty, conjugate gradient

(CG) iterations are suitable, as proposed in [81].

Now we describe the Newton-CG Augmented Lagrangian regularization

method for solving (1.7)-(1.8) as follows.

Algorithm 1.3.5. (Newton-CG Regularization Method [81])

Input: Choose ✏in, ✏out 2 (0, 1), ✏ > 0, � 2 (0, 1), ⇢ > 1, �
max

, K 2 N. Choose

X

0

, Z

0

2 K, y
0

2 Rm, �
0

and set k = 0.

Output: Optimal solution (X⇤
, y

⇤
, Z

⇤) of primal dual problems (1.7)-(1.8).

Procedure:



13

Step 1: If kZ
k

+A⇤(y
k

)� Ck < ✏

out, stop; otherwise, go to Step 2.

Step 2: Set Y
k

:= X

k

. Set j = 0 and y

k,j

= y

k

.

I If kr
y

'

�k
(Y

k

, y

k,j

)k < ✏

in, go to Step 3; otherwise, go to Step 2(II);

II Set g
j

= r
y

'

�k
(Y

k

, y

k,j

).

Compute d

new

in (1.15) by applying preconditioned CG at most K steps.

Find the smallest integer ↵ > 0 such that

'

�k
(Y

k

, y

k,j

+ �

↵ · d
new

) � '

�k
(Y

k

, y

k,j

) + �

↵ · gT
j

d

new

. (1.16)

Set y
k,j+1

:= y

k,j

+ �

↵ · d
new

.

Compute the projections:

X

k

= �

k

(Y
k

/�

k

+A⇤(y
k,j+1

)� C)K, Zk

= �(Y
k

/�

k

+A⇤(y
k,j+1

)� C)�K.

Set j := j + 1.

Step 3: Set y
k+1

:= y

k,j

. If �
k

 �

max

, set �
k+1

= ⇢�

k

.

Set k := k + 1, go to Step 1.

When K = SN

+

is a single product, the convergence of Algorithm 1.3.5

has been discussed in [81, Theorems 3.5, 4.1, 4.2]. These results could be readily

generalized to K being a product of several SN

+

. We refer to [26, 66, 67, 81] for the

convergence of Algorithm 1.3.5.

1.4 Outline of The Thesis

This thesis is organized as follows: In Chapter 2, we introduce two SDP re-

laxation methods for solving polynomial optimization problems with finitely many

constraints: Lasserre’s SDP relaxation (Section 2.1) and Jacobian SDP relaxation

(Section 2.2). In Chapter 3, we discuss how to minimize rational functions by

Jacobian SDP relaxations. We reformulate the problem as a polynomial optimiza-

tion problem by the technique of homogenization. The two problems are shown

to be equivalent under some generic conditions, and some numerical examples are



14

presented to support the superiority of our approach. In Chapter 4, we discuss

how to solve semi-infinite polynomial programming (SIPP) problems by SDP re-

laxation methods. We first propose an exchange algorithm with SDP relaxations

to solve SIPP problems with compact index set. Then we extend the proposed

method to SIPP problems with noncompact index set via homogenization. Nu-

merical results show that the algorithm is e�cient in practice. In Chapter 5,

we study the problem of finding best rank-1 approximations for both symmetric

and nonsymmetric tensors. For symmetric tensors, this is equivalent to optimiz-

ing homogeneous polynomials over unit spheres; for nonsymmetric tensors, this

is equivalent to optimizing multi-quadratic forms over multi-spheres. We propose

semidefinite relaxations to solve these polynomial optimization problems. And ex-

tensive numerical experiments are presented to show that this approach is e�cient

in practice. We conclude this thesis in Chapter 6.

Chapter 1 subsection 1.3.2, in part, is a reprint of the material as it ap-

pears in the article “Regularization Methods for SDP relaxations in Large Scale

Polynomial Optimization” by Jiawang Nie and Li Wang, in SIAM Journal on Op-

timization, Volume 22, No.2(2012). The dissertation author was one of the authors

of this paper.



Chapter 2

Semidefinite Relaxations For

Polynomial Optimization

In this Chapter, we study how to solve the following polynomial optimiza-

tion problem with finitely many constraints:
8
>>>><

>>>>:

f

min

:= min
x2Rn

f(x)

s.t. h
i

(x) = 0, i 2 [m
1

],

g

j

(x) � 0, j 2 [m
2

],

(2.1)

where f(x), h
i

(x), g
j

(x) 2 R[x]. Based on the Positivstellensatz, considerable works

have recently been done on solving (2.1) by means of SDP relaxation. Generally

speaking, these methods relax (2.1) as a sequence of SDPs whose optima are lower

bounds of f
min

and converge to f

min

under some assumptions. We first introduce

the classic Lasserre’s SDP relaxation [39] and then Jacobian SDP relaxation [51]

with the property of finite convergence.

2.1 Lasserre’s SDP Relaxation

In this section, we review Lasserre’s SDP relaxation [39] and show the

construction of SDP relaxations for constrained polynomial optimization problems

in detail as an example.

15



16

2.1.1 Algorithm Description

Denote K as the feasible set of (2.1). Let F := {h
1

, . . . , h

m

1

, g

0

, g

1

, . . . , g

m

2

}
and g

0

= 1. The k-th truncated quadratic module generated by F is defined as

Q

k

(F) :=

8
<

:

m

1X

j=1

�

j

h

j

+
m

2X

i=0

�

i

g

i

�����
�

i

are SOS, �
j

2 R[x], 8 i, j

deg(�
i

g

i

)  2k, deg(�
j

h

j

)  2k

9
=

; .

The k-th Lasserre’s SDP relaxation [39] for solving (2.1) (k is also called the

relaxation order) is

f

k

:= max � s.t. f(x)� � 2 Q

k

(F). (2.2)

The relaxation (2.2) is equivalent to a semidefinite program and could be solved

e�ciently by numerical methods like interior-point method [45] and regularization

method [81]. Clearly, f
k

 f

min

for every k and the sequence {f
k

} is monotonically

increasing. The quadratic module generated by F is

Q(F) :=
1[

k=1

Q

k

(F).

Definition 2.1.1. The set Q(F) satisfies the Archimedean Condition if there exists

 2 Q(F) such that inequality  (x) � 0 defines a compact set in x 2 Rn.

Note that the Archimedean Condition implies the feasible set K is compact

but the inverse is not necessarily true. However, for any compact K we can always

“force” the associated quadratic module to satisfy the Archimedean Condition by

adding a “redundant” constraint, e.g., ⇢� kxk2 � 0 for su�ciently large ⇢.

The convergence for Lasserre’s hierarchy (2.2), i.e., lim
k!1 f

k

= f

min

, is

implied by Putinar’s Positivstellensatz (Theorem 1.2.14):

Theorem 2.1.2. ([60]) If a polynomial p is positive on K and the Archimedean

Condition holds, then p 2 Q(F).

We next consider the dual optimization problem of (2.2). Let y be a trun-

cated moment sequence (tms) of degree 2k, i.e., y = (y
↵

) be a sequence of real

numbers which are indexed by ↵ := (↵
1

, . . . ,↵

n

) 2 Nn with |↵| := ↵

1

+ · · ·+ ↵

n





17

2k. The associated k-th moment matrix is denoted as M

k

(y) which is indexed

by Nn

k

, with (↵, �)-th entry y

↵+�

. Given polynomial p(x) =
P

↵

p

↵

x

↵ where

x

↵ := x

↵

1

1

· · · x↵n
n

, denote d

p

= ddeg(p)/2e. For k � d

p

, the (k � d

p

)-th local-

izing moment matrix L

(k�dp)
p

(y) is defined as the moment matrix of the shifted

vector ((py)
↵

)
↵2Nn

2(k�dp)
with (py)

↵

=
P

�

p

�

y

↵+�

. Denote by M
2k

the space of all

tms whose degrees are 2k. Let R[x]
2k

be the space of real polynomials in x with

degree at most 2k. For any y 2 M
2k

, a Riesz functional L
y

on R[x]
2k

is defined as

L
y

 
X

↵

q

↵

x

↵

1

1

· · · x↵n
n

!
=
X

↵

q

↵

y

↵

, 8 q(x) 2 R[x]
2k

.

For convenience, we hereafter still use q to denote the coe�cient vector of q(x) in

the graded lexicographical ordering and denote hq, yi = L
y

(q). From the definition

of the localizing moment matrix L

(k�dp)
p

(y), it is easy to check that

q

T

L

(k�dp)
p

(y)q = L
y

(p(x)q(x)2), 8 q(x) 2 R[x]
k�dp .

The dual optimization problem of (2.2) is ([39, 40])
8
>>>><

>>>>:

f

⇤
k

:= min
y2M

2k

hf, yi

s.t. L
(k�dhj

)

hj
(y) = 0, j 2 [m

1

], L

(k�dgi )

gi (y) ⌫ 0, i 2 [m
2

],

M

k

(y) ⌫ 0, h1, yi = 1.

(2.3)

Let

d = max{1, d
gi , dhj | i 2 [m

1

], j 2 [m
2

]}.

Lasserre [39] shows that f
k

 f

⇤
k

 f

min

for every k � max{d
f

, d} and both {f
k

}
and {f ⇤

k

} converge to f

min

if the Archimedean Condition holds.

We say Lasserre’s hierarchy (2.2) and (2.3) has finite convergence if

f

k

1

= f

⇤
k

1

= f

min

for some order k
1

< 1. (2.4)

Interestingly, Nie proved that under the Archimedean Condition, Lasserre’s SDP

relaxation has finite convergence generically ([52, Theorem 1.1]). Since f

min

is

usually unknown, a practical issue is how to certify the finite convergence if it

happens. Moreover, if it is certified, how do we get minimizers?



18

Let y⇤ be an optimizer of (2.3). By [9, Theorem 1.1], f ⇤
k

= f

min

for some k

if the flat extension condition (FEC) [9] holds, i.e.,

rank M

k�d

(y⇤) = rank M

k

(y⇤). (2.5)

By solving some SVD and eigenvalue problems ([18]), we can get r := rank M

k

(y⇤)

global optimizers for (2.1). In subsection 2.1.2, we will show the extraction pro-

cess in details. However, (2.5) is not a generally necessary condition for checking

finite convergence of Lasserre’s hierarchy ([53, Example 1.1]). To certify the finite

convergence of (2.2) and get minimizers of (2.1) from (2.3), a weaker condition was

proposed in [53]. We say a minimizer y⇤ of (2.3) satisfies flat truncation condition

(FTC) if there exists an integer t 2 [max{d
f

, d}, k] such that

rank M

t�d

(y⇤) = rank M

t

(y⇤). (2.6)

If an optimizer of (2.3) has a flat truncation, by [9, Theorem 1.1] again, we still have

f

⇤
k

= f

min

. Moreover, if there is no duality gap between (2.2) and (2.3), we obtain

f

k

= f

min

. More importantly, [53, Theorem 2.2] shows that the flat truncation

is also necessary for Lasserre’s hierarchy (2.2) under some generic assumptions.

Furthermore, assuming the set of global minimizers is nonempty and finite, [53,

Theorem 2.2 and 2.6] show that the Lasserre’s hierarchy has finite convergence if

and only if the flat truncation condition holds.

Algorithm 2.1.3. (Lasserre’s SDP relaxation)

Input: Objective function f(x), constraint functions h

i

(x), g
j

(x) and maximal

relaxation order k

max

.

Output: Global minimum and minimizers of problem (2.1).

I Set d := max{1, d
f

, d

hi , dgj} and initial relaxation order k = d.

II Solve primal and dual SDP problems (2.2) and (2.3) by standard SDP solver

(e.g., SeDuMi [74], SDPT3 [77], SDPNAL [83]).

III For t 2 [d, k], check condition (2.6).

1 If (2.6) holds for some t, get minimizers by Extraction Algorithm [18] and

stop;



19

2 Otherwise, go to Step IV.

IV If k > k

max

, stop; otherwise, set k = k + 1 and go to Step II.

2.1.2 Finite Convergence Certification

In this subsection, we present how to certify and find all the global min-

imizers if the finite convergence of Lasserre’s SDP relaxation happens. As men-

tioned in above subsection, Lasserre’s hierarchy has finite convergence if and only

if the flat truncation condition (2.6) holds. If (2.6) holds, we are supposed to find

r := rank M

t

(y⇤) global minimizers. Next we review how to extract the solutions

x

⇤(j) by using the method described in [18].

Let M

k

(y⇤) be the kth moment matrix. Since M

k

(y⇤) ⌫ 0, its Cholesky

factorization gives a lower triangular matrix V , such that M
k

(y⇤) = V V

T . Reduce

V to column echelon form

U =

2

66666666666666666664

1

⇤
0 1

0 0 1
...

...
...

. . .

0 0 0 · · · 1

⇤ ⇤ ⇤ · · · ⇤
...

...
...

...
...

⇤ ⇤ ⇤ · · · ⇤

3

77777777777777777775

by elementary column operations. Notice that the rows of U are indexed by mono-

mials x↵ up to degree k. Let �
1

, · · · , �
r

be the indices corresponding to the ones in

the above U . Let w = [x�1 , · · · , x�r ]T . Then [x]
k

= Uw for all solutions x = x

⇤(j),

j 2 [r]. Thus for each variable x

i

, i 2 [n], we can extract the r ⇥ r submatrix N

i

from U such that

N

i

w = x

i

w, i 2 [n].

This means x
i

is an eigenvalue of N
i

. Now let N =
nP

i=1

⇢

i

N

i

, where ⇢
i

2 (0, 1) are



20

random numbers such that
nP

i=1

⇢

i

= 1. Then compute the ordered Schur decompo-

sition N = QDQ

T where Q = [q
1

, · · · , q
r

] is orthogonal and D is real and upper

triangular with diagonal entries sorted increasingly. Then the extracted solutions

are

x

⇤
i

(j) = q

T

j

N

i

q

j

, i 2 [n], j 2 [r].

2.1.3 Example

In this subsection, we present one example to clearly show how to imple-

ment Lasserre’s SDP relaxation on polynomial optimization problems with only

inequality constraints.

Consider the following polynomial optimization problem
8
<

:
f

con

min

:= min
x2Rn

f(x)

s.t. g

1

(x) � 0, . . . , g
`

(x) � 0,
(2.7)

where f(x) and g

1

(x), . . . , g
`

(x) are all polynomials in x and their degrees are

no greater than 2d. When ` = 0, problem (2.7) is the standard unconstrained

polynomial optimization problem. The d-th Lasserre’s SDP relaxation (d is also

called the relaxation order) for (2.7) is
8
>>>>><

>>>>>:

f

con

sos

:= max �

s.t. f(x)� � = �

0

(x) + g

1

(x)�
1

(x) + · · ·+ g

`

(x)�
`

(x),

�

0

(x), �
1

(x), . . . , �
`

(x) are SOS,

deg(�
0

), deg(�
1

g

1

), . . . , deg(�
`

g

`

)  2d.

(2.8)

Let N(k) =
�
n+k

k

�
, d

i

= ddeg(g
i

)/2e and g

0

(x) = 1. Then, � is feasible for (2.8) if

and only if there exists X(i) 2 SN(d�di) (i = 0, 1, . . . , `) such that

f(x)� � =
`P

i=0

g

i

(x)[x]T
d�di

X

(i)[x]
d�di =

`P
i=0

X

(i) • (g
i

(x)[x]
d�di [x]

T

d�di
),

X

(0) ⌫ 0, X(1) ⌫ 0, . . . , X(`) ⌫ 0.

Define constant symmetric matrices A(0)

↵

, A

(1)

↵

, . . . , A

(`)

↵

such that

g

i

(x)[x]
d�di [x]

T

d�di
=

X

↵2Nn
:|↵|2d

A

(i)

↵

x

↵

, i = 0, 1, . . . , `. (2.9)



21

Denote A
↵

= (A(0)

↵

, A

(1)

↵

, . . . , A

(`)

↵

), X = (X(0)

, X

(1)

, . . . , X

(`)), and define a cone of

products

K = SN(d�d

0

)

+

⇥ SN(d�d

1

)

+

⇥ · · ·⇥ SN(d�d`)

+

.

Recall that Un

2d

= {↵ 2 Nn : 0 < |↵|  2d}. If f(x) = f

0

+
P

↵2Un
2d
f

↵

x

↵, then � is

feasible for (2.8) if and only if there exists X satisfying

A

0

•X + � = f

0

,

A

↵

•X = f

↵

8↵ 2 Un

2d

,

X 2 K.

9
>>=

>>;

Now define A, b, C as

A(X) = (A
↵

•X)
↵2Un

2d
, b = (f

↵

)
↵2Un

2d
, C = A

0

. (2.10)

The vector b has dimension m = N(2d)� 1. Then, (2.8) is equivalent to the SDP

problem up to a constant

(
f

con

sdp

:= min C •X
s.t. A(X) = b, X 2 K.

(2.11)

Its dual optimization is

(
max b

T

y

s.t. A⇤(y) + Z = C, Z 2 K.

(2.12)

The adjoint A⇤(y) is defined as

A⇤(y) =
X

↵2Un
2d

y

↵

diag
�
A

(0)

↵

, A

(1)

↵

, . . . , A

(`)

↵

�
.

Note the relation f

con

sos

= �f

con

sdp

+ f

0

 f

con

min

.

Suppose (X⇤
, y

⇤
, Z

⇤) is an optimal triple for (2.11)-(2.12). Then �f

con

sdp

+ f

0

is a lower bound of the minimum f

con

min

. The information for minimizers could be

obtained from Z

⇤. Note Z

⇤ = (Z⇤
0

, Z

⇤
1

, . . . , Z

⇤
`

). Since Z

⇤ 2 K, every Z

⇤
i

⌫ 0.

If Z⇤
0

satisfies FTC (2.6), one or several global minimizers could be obtained by

extraction algorithm presented in subsection 2.1.2.



22

2.2 Jacobian SDP Relaxation

In Section 2.1, we have reviewed the standard Lasserre’s SDP relaxation

method. However, the convergence of Lasserre’s SDP relaxations (2.2) and (2.3)

might be asymptotic for some instances, i.e., only lower bounds are found for each

order k. To overcome this hurdle, Nie [51] proposed a refined reformulation of (2.1)

by a “Jacobian-type” technique whose SDP relaxation has finite convergence. In

this section, we first introduce the exact Jacobian SDP relaxation proposed in [51]

to solve problem (2.1), then we give a weakened assumption, under which the SDP

relaxation in [51] still exact. Some specific examples are present at last.

2.2.1 Algorithm Description

Roughly speaking, Jacobian SDP relaxation is to add auxiliary constraints

to (2.1) which represent optimality conditions under the assumption that the op-

timum f

min

is achievable. The basic idea is that at each optimizer, the Jacobian

matrix of the objective function, the equality constraints and the active inequality

constraints must be singular, i.e., all its maximal minors vanish.

Let m = min{m
1

+m

2

, n� 1}. For convenience, denote

h := (h
1

, . . . , h

m

1

) and g := (g
1

, . . . , g

m

2

).

For a subset J = {j
1

, . . . , j

k

} ✓ [m
2

], denote g

J

:= (g
j

1

, . . . , g

jk
). Symbols rh and

rg

J

represent the gradient vectors of the polynomials in h and g

J

, respectively.

Denote the determinantal variety of (f, h, g
J

)’s Jacobian being singular by

G

J

=
�
x 2 Cn | rank B

J(x)  m

1

+ |J |
 
,

where

B

J(x) = [rf(x) rh(x) rg

J

(x)] .

Instead of using all maximal minors to define G

J

, [51, Section 2.1] discusses how

to get the smallest number of defining equations. Let ⌘J
1

, . . . , ⌘

J

len(J)

be the set of

defining polynomials for G
J

where len(J) is the number of these polynomials. For



23

each i = 1, . . . , len(J), define

'

J

i

(x) = ⌘

J

i

·
Y

j2Jc

g

j

(x), where J

c = [m
2

]\J. (2.13)

For simplicity, we list all possible 'J

i

in (2.13) sequentially as

'

1

,'

2

, . . . ,'

r

, where r =
X

J✓[m

2

],|J |m�m

1

len(J).

Define the variety

W := {x 2 Cn | h

1

(x) = · · · = h

m

1

(x) = '

1

(x) = · · · = '

r

(x) = 0}. (2.14)

We consider the following optimization
8
>>>><

>>>>:

f

⇤ := min
x2Rn

f(x)

s.t. h
i

(x) = 0 (i 2 [m
1

]), '
j

(x) = 0 (j 2 [r]),

g

⌫

(x) � 0, 8⌫ 2 {0, 1}m2

,

(2.15)

where g

⌫

= g

⌫

1

1

· · · g⌫m2

m

2

.

We now construct N -th order SDP relaxation [39] for (2.15) and its dual

problem. Let  (x) be a polynomial with deg ( )  2N and define symmetric

matrices A(N)

↵

such that

 (x)[x]
d

[x]T
d

=
X

↵2Nn
:|↵|2N

A

(N)

↵

x

↵

, where d = N � ddeg ( )/2e.

Then the N -th order localizing moment matrix of  is defined as

L

(N)

 

(y) =
X

↵2Nn
:|↵|2N

A

(N)

↵

y

↵

, (2.16)

where y is a moment vector indexed by ↵ 2 Nn with |↵|  2N . Denote

L

f

(y) =
X

↵2Nn
:|↵|deg (f)

f

↵

y

↵

for f(x) =
X

↵2Nn
:|↵|deg (f)

f

↵

x

↵

.

The N -th order SDP relaxation [39] for (2.15) is the SDP
8
>>><

>>>:

f

(1)

N

:= min L

f

(y)

s.t. L(N)

hi
(y) = 0 (i 2 [m

1

]), L

(N)

'j
(y) = 0 (j 2 [r]),

L

(N)

g⌫
⌫ 0, 8⌫ 2 {0, 1}m2

, y

0

= 1.

(2.17)



24

Now we present the dual of (2.17). Define the truncated preordering P (N) generated

by g

j

as

P

(N) =

8
<

:
X

⌫2{0,1}m2

�

⌫

g

⌫

�����
deg (�

⌫

g

⌫

)  2N

�

⌫

’s are SOS

9
=

; ,

and the truncated ideal I(N) generated by h

i

and '
j

as

I

(N) =

8
<

:

m

1X

i=1

 

i

h

i

+
rX

j=1

�

j

'

j

�����
deg ( 

i

h

i

)  2N 8i

deg (�
j

'

j

)  2N 8j

9
=

; .

It is shown [39] that the dual of (2.17) is the following SDP relaxation for (2.15):
8
<

:
f

(2)

N

:= max �

s.t. f(x)� � 2 I

(N) + P

(N)

.

(2.18)

By weak duality, we have f (2)

N

 f

(1)

N

 f

⇤. For any subset J = {j
1

, . . . , j

k

} ✓ [m
2

],

let

V (h, g
J

) = {x 2 Cn | h
i

(x) = 0, g

j

(x) = 0, i = 1, . . . ,m
1

, j 2 J}.

We make the following assumption.

Assumption 2.2.1. (i) m
1

 n. (ii) For any feasible point u, at most n�m

1

of

g

1

(u), . . . , g
m

2

(u) vanish. (iii) For every J = {j
1

, . . . , j

k

} ✓ [m
2

] with k  n�m

1

,

the Jacobian [rh rg

J

] has full rank on V (h, g
J

).

Under the above assumption, the following main result is shown in [51].

Theorem 2.2.2. ([51, Theorem 2.3]) Suppose Assumption 2.2.1 holds. Then

f

⇤
> �1 and there exists N

⇤ 2 N such that f (1)

N

= f

(2)

N

= f

⇤ for all N � N

⇤.

Furthermore, if the minimum f

min

of (2.1) is achievable, then f

(1)

N

= f

(2)

N

= f

min

for all N � N

⇤.

Algorithm 2.2.3. (Jacobian SDP relaxation)

Input: Objective function f(x), constraints functions h
i

(x), g
j

(x), maximal relax-

ation order k

max

.

Output: Global minimum and minimizers of problem (2.1).

I Construct the auxiliary polynomials '
l

(x)’s.



25

II Set d := max{1, d
f

, d

hi , dgj , d'l
} and initial relaxation order k = d.

III Solve (2.15) by Algorithm 2.1.3.

IV For t 2 [d, k], check condition (2.6).

1 If (2.6) holds for some t, get minimizers by Extraction Algorithm [18] and

stop;

2 Otherwise, go to Step V.

V If k > k

max

, stop; otherwise, set k = k + 1 and go to Step III.

In contrast to Lasserre’s SDP relaxation, Jacobian SDP relaxation is more

complicated due to the auxiliary polynomials '
l

(x)’s. We refer to [51, Section 4]

for some simplified versions of Jacobian SDP relaxation method.

2.2.2 Weakened Convergence Condition

According to Theorem 2.2.2, it is possible to solve the polynomial opti-

mization (2.1) exactly by a single SDP relaxation, and it is also shown in [51] that

Assumption 2.2.1 is generically true. In this subsection, we prove that the condi-

tion (iii) in Assumption 2.2.1 can always be weakened such that the conclusions in

Theorem 2.2.2 still holds, i.e., the Jacobian SDP relaxation [51] is still exact under

the weakened Assumption 2.2.5.

Definition 2.2.4. For every set J = {j
1

, . . . , j

k

} ✓ [m
2

] with k  n�m

1

, let

⇥
J

= {x 2 V (h, g
J

) | rank [rh rg

J

] < m

1

+ |J |} and ⇥ =
[

J✓[m

2

],|J |n�m

1

⇥
J

.

Assumption 2.2.5. (i) m

1

 n. (ii) For any u 2 S, at most n � m

1

of

g

1

(u), . . . , g
m

2

(u) vanish. (iii) The set ⇥ is finite.

Let K be the variety defined by the KKT conditions

K =

8
>><

>>:
(x,�, µ) 2 Cn+m

1

+m

2

rf(x) =
m

1X

i=1

�

i

rh

i

(x) +
m

2X

j=1

µ

j

rg

j

(x)

h

i

(x) = µ

j

g

j

(x) = 0, 8(i, j) 2 [m
1

]⇥ [m
2

]

9
>>=

>>;



26

and

K

x

= {x 2 Cn | (x,�, µ) 2 K for some �, µ}.

Under Assumption 2.2.1, [51, Lemma 3.1] states that W = K

x

. We now improve

this result as follows.

Lemma 2.2.6 (Revised Version of Lemma 3.1 in [51]). Under conditions (i) and

(ii) in Assumption 2.2.5, W = ⇥ [K

x

.

Proof. The proof of [51, Lemma 3.1] shows that W\⇥ ✓ K

x

✓ W . With a similar

argument, we prove ⇥ ✓ W . Recall that BJ = [rf(x) rh(x) rg

J

(x)]. Choose

an arbitrary u 2 ⇥ and let u 2 ⇥
I

for some I ✓ [m
2

]. If I = ;, then [rh] and

B

J(u) are both singular for any J ✓ [m
2

], which implies '
i

(u) = 0 and u 2 W . If

I 6= ;, write I = {i
1

, . . . , i

t

}. Let J = {j
1

, . . . , j

k

} ✓ [m
2

] be an arbitrary index set

with m

1

+ k  m.

Case I * J At least one j 2 J

c belongs to I. By the choice of I and the

definition of '
i

(x),

'

J

i

(u) = ⌘

J

i

·
Y

j2Jc

g

j

(u) = 0.

Case I ✓ J Then [rh rg

I

] and [rf(x) rh(x) rg

J

(x)] are both singular.

Hence, all polynomials 'J

i

(x)’s vanish at u.

Combining the above two cases, we have all 'J

i

(x) vanish at u. Thus, u 2 W

which implies W = ⇥ [K

x

.

Lemma 2.2.7. Under conditions (i) and (ii) in Assumption 2.2.5, if the minimum

f

min

of (2.1) is achievable, then f

⇤ = f

min

.

Proof. By the construction of (2.15), f ⇤ � f

min

. Suppose f

min

= f(x⇤) where x

⇤

is a feasible point of (2.1). If x⇤
/2 ⇥, then the linear independence constraint

qualification (LICQ) is satisfied at x⇤ which implies x⇤ 2 K

x

[56, Theorem 12.1].

Since W = ⇥[K

x

by Lemma 2.2.6, we have x⇤ 2 W which implies f ⇤ = f

min

.

Next we show that the conclusion in [51, Lemma 3.2] still holds under

Assumption 2.2.5.



27

Lemma 2.2.8 (Revised Version of Lemma 3.2 in [51]). Suppose Assumption 2.2.5

holds. Let T = {x 2 Rn | g
j

(x) � 0, j = 1, . . . ,m
2

}. Then there exist disjoint

subvarieties W

0

,W

1

, . . . ,W

r

of W and distinct v
1

, . . . , v

r

2 R such that

W = W

0

[W

1

[ · · · [W

r

, W

0

\ T = ;, W

i

\ T 6= ;, i = 1, . . . , r,

and f(x) is constantly equal to v

i

on W

i

for i = 1, . . . , r.

Proof. Denote Zar(K
x

) the Zariski closure of K
x

and let ⌦ = W\Zar(K
x

). By

Lemma 2.2.6, we have Zar(K
x

) ✓ W and ⌦ ✓ ⇥. With the proof of [51,

Lemma 3.2], we can conclude that there exist disjoint subvarieties W
0

,W

1

, . . . ,W

t

of Zar(K
x

) and distinct v
1

, . . . , v

t

2 R such that

Zar(K
x

) = W

0

[W

1

[ · · · [W

t

, W

0

\ T = ;, W

i

\ T 6= ;, i = 1, . . . , t,

and f(x) is constantly equal to v

i

on W

i

for i = 1, . . . , t. We now consider the set

⌦. Let W
0

= V (E
0

), then for any u 2 ⌦ \ Cn, W
0

[ {u} = V (E
0

) [ V (hx� ui) =
V (hx � ui · E

0

). Since ⌦ \ Cn ✓ ⇥ is a finite set by Assumption 2.2.5, if we

group W

0

and ⌦ \ Cn together, then we get a new subvariety. We still denote it

by W

0

for convenience. Then W

0

\ T = ;. Take any w 2 ⌦ \ Rn, if f(w) = v

i

0

for some i

0

2 {1, . . . , t}, then we put w into W

i

0

and get a new subvariety by

the same reason as W
0

. We still write the resulting subvariety as W
i

0

. If for any

i 2 {1, . . . , t}, f(w) 6= v

i

, then let W

t+1

= {w} and v

t+1

= f(w) 2 R. Since

⌦\Rn ✓ ⇥ is a finite set, the above process will terminate and we can obtain the

required decomposition of W .

Since we get the same result as in [51, Lemma 3.2] under the weakened

Assumption 2.2.5, [51, Theorem 3.4] which is based on [51, Lemma 3.2] can be

restated as follows.

Theorem 2.2.9 (Revised Version of Theorem 3.4 in [51]). Suppose Assumption

2.2.5 holds. Then f

⇤
> �1 and there exists N

⇤ 2 N such that for all " > 0

f(x)� f

⇤ + " 2 I

(N

⇤
) + P

(N

⇤
)

. (2.19)

Since " in (2.19) is arbitrary, by Lemma 2.2.7, Theorem 2.2.2 becomes



28

Theorem 2.2.10 (Revised Version of Theorem 2.3 in [51]). Suppose Assumption

2.2.5 holds. Then f

⇤
> �1 and there exists N

⇤ 2 N such that f (1)

N

= f

(2)

N

= f

⇤

for all N � N

⇤. Furthermore, if the minimum f

min

of (2.1) is achievable, then

f

(1)

N

= f

(2)

N

= f

min

for all N � N

⇤.

Remark 2.2.11. We now compare the conditions (iii) in Assumption 2.2.1 and

2.2.5. For any J = {j
1

, . . . , j

k

} ✓ [m
2

] with k  n�m

1

, suppose the ideal hh, g
J

i
is radical and its codimension is m

1

+ |J |. Then the condition (iii) in Assumption

2.2.1 requires the variety V (h, g
J

) is nonsingular for every subset J . In this section,

we have proved that if the singularities of V (h, g
J

) are finite, i.e. the condition

(iii) in Assumption 2.2.5 holds, the Jacobian SDP relaxation [51] is still exact.

Corollary 2.2.12. Suppose that

(a) For each subset J ✓ [m
2

] with |J |  n �m

1

, hh, g
J

i is a radical ideal and its

codimension is m

1

+ |J |;

(b) V (h) is a smooth variety of dimension  2.

Then the condition (iii) in Assumption 2.2.5 always holds. Therefore, if conditions

(i) and (ii) in Assumption 2.2.5 are satisfied, then the conclusions of Theorem

2.2.10 hold.

Proof. For any subset J ✓ [m
2

] with |J |  n � m

1

, by (a), ⇥
J

is the set of

singularities of V (h, g
J

). If J = ;, then ⇥
J

= ; by (b). If J 6= ;, then by [28,

Proposition 3.3.14], dim⇥
J

< dimV (h, g
J

). Since dimV (h, g
J

)  1 by (a) and

(b), ⇥
J

is a finite set for each J ✓ [m
2

] with |J |  n � m

1

. Thus the condition

(iii) in Assumption 2.2.5 always holds.

We now give an example to illustrate the finite convergence of the Jacobian

SDP relaxation [51] under the weakened Assumption 2.2.5.

Example 2.2.13. Consider the following polynomial optimization
8
><

>:

min
x

1

,x

2

2R
f(x

1

, x

2

) := x

1

x

2

2

+ x

1

s.t. h(x
1

, x

2

) := �x

3

1

+ x

2

2

= 0.



29

Clearly, the minimum f

min

= 0 is achieved at (0, 0). However, it is easy to verify

that (0, 0) is a singular point and does not satisfy the KKT conditions. Since (0, 0)

is the only real singularity, Assumption 2.2.5 holds which is also guaranteed by

Corollary 2.2.12. In the following, we show the finite convergence of the Jacobian

SDP relaxation [51] by giving the exact equation (2.19).

By the construction of (2.15), m
1

= 1,m
2

= 0 and r = 1. '(x
1

, x

2

) :=

2x
2

(x2

2

+ 1) + 6x3

1

x

2

. For any " > 0, let

�

0

(x
1

, x

2

) := 16

✓
"+

(x
1

x

2

2

+ x

1

+ 1)2

4
+ (x

1

x

2

2

+ x

1

� 1)2x2

2

◆
x

6

1

+ (4x3

1

+ 1)2"

✓
1 +

x

1

x

2

2

+ x

1

2"
� (x

1

x

2

2

+ x

1

)2

8"2

◆
2

.

 (x
1

, x

2

) := 8x
1

+ 8"� 12x8

1

x

4

2

� 24x8

1

x

2

2

+ 24x7

1

x

2

2

+ 8x
1

x

2

2

+ 4x3

1

+ 32"x3

1

� x

3

1

"

2

+
x

4

1

8"3
� 2x6

1

"

2

+
x

7

1

4"3
+ 8"x2

2

+
x

1

x

2

2

64"3
� x

2

2

8"2
+

x

1

64"3
� 1

8"2
+ 4x3

1

x

2

2

+ 4x5

1

x

2

2

+ 4x5

1

+ 24x4

1

� 243x10

1

x

2

2

256"3
� 3x10

1

x

6

2

16"3
� 45x7

1

x

4

2

128"3
� 311x7

1

x

2

2

1024"3

� 3x7

1

x

6

2

32"3
+

3x3

1

x

4

2

32"2
+

33x9

1

x

2

2

8"2
+

29x6

1

x

2

2

32"2
� 45x4

1

x

4

2

1024"3
� 45x10

1

x

4

2

64"3
� 17x3

1

x

2

2

32"2

+
3x9

1

x

4

2

2"2
+

3x6

1

x

4

2

4"2
+

47x4

1

x

2

2

1024"3
� 3x4

1

x

6

2

256"3
.

�(x
1

, x

2

) :=� x

10

1

x

5

2

32"3
� 15x10

1

x

3

2

128"3
+

x

9

1

x

3

2

4"2
� x

7

1

x

5

2

64"3
� 81x10

1

x

2

512"3
� 2x8

1

x

3

2

+
11x9

1

x

2

16"2

� 15x7

1

x

3

2

256"3
� 4x8

1

x

2

+
x

6

1

x

3

2

8"2
� x

4

1

x

5

2

512"3
� 337x7

1

x

2

2048"3
+ 4x7

1

x

2

+
59x6

1

x

2

64"2

� 15x4

1

x

3

2

2048"3
� 2x5

1

x

2

+
x

3

1

x

3

2

64"2
� x

4

1

x

2

16"3
+

7x3

1

x

2

16"2
� 2x3

1

x

2

� 4x
1

x

2

� x

1

x

2

128"3

+
x

2

16"2
� 4"x

2

.

It can be verified that

f(x
1

, x

2

) + " = �

0

(x
1

, x

2

) +  (x
1

, x

2

)h(x
1

, x

2

) + �(x
1

, x

2

)'(x
1

, x

2

).

Since each term on the right side of the above equation has degree  20, we take

N

⇤ = 10 in (2.19). Because �
0

(x
1

, x

2

) is a sum of squares of polynomials, we have

�

0

(x
1

, x

2

) 2 P

(10) and  (x
1

, x

2

)h(x
1

, x

2

) + �(x
1

, x

2

)'(x
1

, x

2

) 2 I

(10). Therefore,

f(x
1

, x

2

) + " 2 I

(10) + P

(10) for any " > 0. Hence, we have f

(1)

N

= f

(2)

N

= f

min

= 0

for all N � 10.



30

As an application, [53, Corollary 4.2] also points out that if (2.1) has a

nonempty set of finitely many global minimizers and Assumption 2.2.1 is satis-

fied, then the flat truncation is always satisfied for the hierarchy of Jacobian SDP

relaxations. Since we have proved that Assumption 2.2.1 can be weakened as

Assumption 2.2.5, we have

Corollary 2.2.14 (Revised Version of Corollary 4.2 in [53]). Suppose (2.1) has a

nonempty set of finitely many global minimizers and Assumption 2.2.5 is satisfied.

Then, for all N big enough, the optimal value of (2.18) equals the global minimum

of (2.1) and every minimizer of (2.17) has a flat truncation.

2.2.3 Examples

To clearly see how to define the redundant equations, in the following, we

give some examples with specific constraints.

Example 2.2.15. (Feasible set K = Rn)

Consider the following polynomial optimization problem:

min
x2Rn

f(x). (2.20)

There is no constraint. The KKT condition is just r
x

f(x) = 0, i.e., there are n

redundant polynomials defined as:

'

1

(x) = @f(x)

@x

1

, . . . ,'

n

(x) = @f(x)

@xn
.

(2.21)

Example 2.2.16. (Feasible set K is a ball)

Consider the following polynomial optimization problem:
8
<

:
min
x2Rn

f(x)

s.t. kxk2  R

2

.

(2.22)

There is only one inequality constraint. By using Jacobian method, there are 3n�3

redundant polynomials defined as follows:

(R2 � kxk2) @f(x)
@xi

= 0, i = 1, . . . , n,
P

i+j=`

⇣
@f(x)

@xi
x

j

� x

i

@f(x)

@xj

⌘
= 0, ` = 3, . . . , 2n� 1.

(2.23)



31

Example 2.2.17. (Feasible set K is a box)

Consider the following polynomial optimization problem:
8
<

:
min
x2Rn

f(x)

s.t. a  x  b,

(2.24)

where a, b 2 Rn.

There are n interval constraints, and each interval is equivalent to an in-

equality constraint  
i

(x) = (a
i

+ b

i

)x
i

� x

2

i

� a

i

b

i

� 0, i 2 [n]. The number

of active constraint |J | has n possibilities. When |J | = 0, there are n redun-

dant polynomials: '

j

(x) =

✓
nQ

i=1

 

i

(x)

◆
@f(x)

@xj
= 0, j 2 [n]. When |J | = 1,

the n constraints have the same possibility to be active constraint. If  
j

(x)

is the chosen active constraint, there are 2n � 1 � j redundant polynomials:

'

`

(x) =

 
nQ

i=1,i 6=j

 

i

(x)

!
@f(x)

@x`+2�j
(a

j

+ b

j

� 2x
j

) = 0 for ` = j � 1, . . . , 2n � 3. List

all possible |J | in sequence, and we get all redundant polynomials.

Example 2.2.18. (Feasible set K is a simplex)

Consider the following polynomial optimization problem:
8
>><

>>:

min
x2Rn

f(x)

s.t.
nX

i=1

x

i

= 1, x

i

� 0, i = 1, . . . , n.
(2.25)

There is one equality constraint in problem (2.25), so the number of active con-

straints 1  |J |  n�1. Denote the first equality constraint as  
0

(x) =
nP

i=1

x

i

�1 =

0, and the other n constraints as  
i

(x) = x

i

� 0, i 2 [n]. When |J | = 1, there

is no inequality constraint to be active, there are 2n � 3 redundant polynomi-

als '
`

(x) =

✓
nQ

i=1

x

i

◆
·

P
i+j=`+2

⇣
@f(x)

@xi
� @f(x)

@xj

⌘
= 0, ` = 1, . . . , 2n � 3. Similarly,

when |J | > 1, there are |J | � 1 inequalities to be active, choose |J | � 1 ac-

tive inequalities, denote as A, and redenote the rest [n] \ A inactive variables

as x
1

, . . . , x

n+1�|J |, there are 2(n� |J |)� 1 redundant polynomials, which are de-

fined as '
`

(x) =

 
n+1�|J |Q

k=1

x

i

!
·

P
i+j=`+2

⇣
@f(x)

@xi
� @f(x)

@xj

⌘
= 0, ` = 1, . . . , 2n�2|J |�1.

There are totally r =
n�1P
|J |=1

�
n

|J |�1

�
· (2n� 2|J |� 1) redundant polynomials.



32

2.3 Large Scale Polynomial Optimization

In this section, we study how to solve Lasserre’s SDP relaxations for large

scale polynomial optimization.

2.3.1 Interior Point Method vs. Regularization Method

Consider the standard SDP problem (1.4) and its dual problem (1.5). Let

X be optimal for (1.4) and (y, Z) be optimal for (1.5), then the triple (X, y, Z)

satisfies the optimality condition

A(X) = b

A⇤(y) + Z = C

X,Z ⌫ 0, X • Z = 0

9
>>=

>>;
. (2.26)

For interior point method, it generates a sequence {(X
k

, y

k

, Z

k

)} converging

to an optimal triple. At each step, a search direction (�X,�y,�Z) needs to be

computed. To compute �y, typically an m⇥m linear system needs to be solved.

To compute �X and �Z, two linear matrix equations need to be solved. The

cost for computing �y is O(m3). When m = O(N), the cost for computing �y is

O(N3). In this case, solving SDP is not very expensive if N is not too big (like

less than 1, 000). However, when m = O(N2), the cost for computing �y would

be O(N6), which is very expensive even for moderately large N (like 500). In this

case, computing �y is very expensive. It requires storing a matrix of dimension

m⇥m in computer and O(m3) arithmetic operations.

Unfortunately, SDP relaxations arising from polynomial optimization be-

long to the bad case that m = O(N2), which is why the SDP solvers based

on interior point methods have di�culty in solving big polynomial optimization

(like degree 4 with 100 variables). We explain why this is the case by uncon-

strained polynomial optimization. Let p(x) be a polynomial of degree 2d. Then,

p(x) is SOS if and only if there exists X ⌫ 0 [61] such that p(x) = [x]T
d

X[x]
d

,

where [x]
d

denotes the column vector of all monomials up to degree d in graded

lexicographical ordering. Note the length of [x]
d

is N =
�
n+d

d

�
. If we write



33

Table 2.1: A list of size of SDP (2.27).

(In each pair (N,m), N is the length of matrix and
m is the number of equality constraints.)

n= 20 30 40 50
2d = 4 (231,10625) (496,46375) (861,135750) (1326,316250)
n= 60 70 80 90
2d=4 (1891,635375) (2556,1150625) (3321,1929500) (4186,3049500)
n= 15 20 25 30

2d = 6 (816,54263) (1771,230229) (3276,736280) (5456,1947791)
n= 10 15 20 25

2d = 8 (1001,43757) (3876,490313) (10626,3108104) (23751,13884155)
n= 8 9 10 15

2d = 10 (1287,43757) (2002,92377) ( 3003,184755) (15504,3268759)

p(x) =
P

↵2Nn
:|↵|2d

p

↵

x

↵

1

1

· · · x↵n
n

, then p(x) being SOS is equivalent to the ex-

istence of a symmetric N ⇥N matrix X satisfying

A

↵

•X = p

↵

8↵ 2 Nn : |↵|  2d,

X ⌫ 0.
(2.27)

Here A

↵

are certain constant symmetric matrices. The number of equalities is

m =
�
n+2d

2d

�
. For any fixed d, m = O(n2d) = O(N2). The size of SDP (2.27) is

huge for moderately large n and d. Table 2.1 lists the size of SDP (2.27) for some

typical values of (n, 2d). In Table 2.1, each pair (N,m), N is the length of matrix

and m is the number of equality constraints.

As we have seen earlier, when interior point type methods are applied to

solve (1.4)-(1.5), at each step we need to solve an m⇥m linear system and two ma-

trix equations. To compute �y, we need to store an m⇥m matrix and implement

O(n6d) arithmetic operations. This is very expensive for even moderately large n

and d, and hence severely limits the solvability of SDP relaxations in polynomial

optimization. For instance, on a regular computer, to solve a general quartic poly-

nomial optimization, it is almost impossible to apply interior point methods when

there are more than 20 variables.

For regularization method, in each step, only �y needs to be computed,

which is well designed to solve SDP problems whose number of equality constraints



34

m is significantly bigger than the matrix length N . The numerical experiments

in [26, 27, 81] show that these methods are practical and e�cient in solving large

scale SDP problems. In next subsection, we present numerical examples to show its

e�ciency on solving polynomial optimization problems. By regularization meth-

ods, significantly bigger problems could be solved on a regular computer, which is

almost impossible by interior point method.

2.3.2 Numerical Experiments

This subsection presents some numerical examples of applying regulariza-

tion method (i.e., Algorithm 1.3.5) on solving polynomial optimization by Lasserre’s

SDP relaxation with the lowest relaxation order. An excellent implementation of

Algorithm 1.3.5 is software SDPNAL [83]. We use it to solve the SDP relaxations

(its earlier version in 2010 was used). The computation is implemented with Mat-

lab 7.10 on a Dell 64-bit Linux Desktop running CentOS (5.6) with 8GB memory

and Intel(R) Core(TM) i7 CPU 860 2.8GHz. We use the following parameters of

SDPNAL �

0

= 10, K = 500, Tol = 10�6. Set

R

P

=
kA(X)� bk

2

1 + kbk
2

, R

D

=
kA⇤(y) + Z � Ck

2

1 + kCk
2

,

which measure the feasibilities of the computed solutions for the primal and dual

problems respectively. We terminate the algorithm when max{R
P

, R

D

}  Tol.

Other parameters are set to be the default ones of SDPNAL.

If the computed dual optimal solution Z

⇤
0

of (2.3) or (2.12) satisfies FTC

(2.6), we extract one or several global minimizers x⇤ by using the Extraction Algo-

rithm [18] reviewed in subsection 2.1.2; otherwise, we just set Z⇤
0

(2 : n+ 1, 1) as a

starting point and get a local optimal solution x

⇤ by using nonlinear programming

methods (e.g., use Optimization Toolbox in Matlab). In either case, the error of

computed x

⇤ is measured as

errsol =
|f(x⇤)� f |

max{1, |f(x⇤)|} , (2.28)

where f is a lower bound returned by solving the SDP relaxation. The error of a



35

computed optimal triple (X, y, Z) for SDP relaxation itself is measured as

errsdp = max

⇢
|b>y � hC,Xi|

1 + |b>y|+ |hC,Xi| , RP

, R

D

�
. (2.29)

The consumed computer time is in the format hr:mn:sc with hr (resp. mn,

sc) stands for the consumed hours (resp. minutes, seconds). In the tables of

this thesis, min, med and max respectively stands for the minimum, median, and

maximum of quantities like time, solution error, etc.

The testing problems in our experiments are in two categories: (a) ran-

dom unconstrained polynomial optimization; (b) random constrained polynomial

optimization.

Example 2.3.1 (Random Unconstrained Polynomial Optimization).

We test the performance of Algorithm 1.3.5 (implemented by SDPNAL [83])

in solving SDP relaxations for random polynomial optimization. To ensure the

existence of a finite global minimum, we generate f(x) randomly as

f(x) = f

T [x]
2d�1

+ [xd]TF T

F [xd],

where f/F is a Gaussian random vector/matrix of a proper dimension. Here [xd]

denotes the vector of monomials of degree equal to d. The computational results

are shown in Tables 2.2-2.5. There (N,m) denotes the size of the corresponding

SDP relaxation (2.2)-(2.3). If N < 1000, we test 20 instances randomly; if N 2
[1000, 1500], we test 10 instances randomly; and if N > 1500, we test 3 instances

randomly.

When f(x) has degree 4 (d = 2), SDP relaxation (2.2)-(2.3) is solved quite

well. For n = 20 ⇠ 30, the computation takes up to half a minute; for n = 40 ⇠ 60,

it takes a couple of minutes; for n = 70 ⇠ 80, it takes less than one hour; for

n = 90 ⇠ 100, it takes a few hours. When f(x) has degree 6 (d = 3), for n = 15,

solving (2.2)-(2.3) takes up to a few hours; for n = 20 ⇠ 25, it takes a couple of

hours. When f(x) has degree 8 (d = 4), for n = 10, solving (2.2)-(2.3) takes a

couple of minutes; for n = 12 ⇠ 15, it takes about one to ten hours. When f(x)

has degree 10 (d = 5), for n = 8, solving (2.2)-(2.3) takes a couple of minutes;

for n = 9, it takes less than one hour; for n = 10, it takes a few hours. From



36

Table 2.2: Computational results for random Example 2.3.1 of degree 4

n (N,m) time(min,max) errsol(min,max) errsdp(min,max)
20 (231,10625) 0:00:02 0:00:09 (4.1e-7, 1.6e-4) (2.5e-7, 1.3e-6)
30 (496,46375) 0:00:12 0:00:31 (1.3e-7, 1.5e-4) (3.2e-7, 1.0e-6)
40 (861,135750) 0:00:57 0:01:24 (7.8e-7, 3.1e-4) (4.2e-7, 9.6e-7)
50 (1326,316250) 0:02:44 0:04:08 (1.3e-5, 2.3e-4) (5.6e-7, 8.3e-7)
60 (1891,635375) 0:07:55 0:09:48 (4.6e-5, 5.1e-4) (4.8e-7, 9.5e-7)
70 (2556,1150625) 0:17:38 0:22:33 (8.0e-5, 3.3e-4) (4.1e-7, 9.2e-7)
80 (3321,1929500) 0:38:45 0:42:46 (9.3e-5, 9.6e-4) (3.7e-7, 9.9e-7)
90 (4186,3049500) 1:37:04 2:02:01 (1.1e-4, 6.4e-4) (4.3e-7, 9.5e-7)
100 (5151,4598125) 2:48:03 3:35:27 (2.1e-4, 4.5e-4) (7.1e-7, 8.7e-7)

Tables 2.2 to 2.5, we can see that the SDP relaxations are solved successfully.

The obtained solutions for polynomial optimization are also reasonably very well.

They are slightly less accurate than the computed solutions of the SDP relaxations

themselves. This is probably because the SDP relaxation (2.2)-(2.3) is not exact

in minimizing the generated polynomials.

Table 2.3: Computational results for random Example 2.3.1 of degree 6

n (N,m) time(min,max) errsol(min,max) errsdp(min,max)
10 (286,8007) 0:00:07 0:00:36 (2.7e-7, 6.6e-5) (2.4e-8, 1.1e-6)
15 (816,54263) 0:01:12 3:07:37 (5.1e-6, 7.0e-5) (2.0e-7, 9.6e-7)
20 (1771,230229) 2:54:42 15:10:08 (1.4e-4, 4.0e-4) (3.1e-7, 6.0e-7)
25 (3276,736280) 2:02:59 7:34:03 (1.6e-3, 4.7e-2) (2.6e-6, 5.7e-5)

Table 2.4: Computational results for random Example 2.3.1 of degree 8

n (N,m) time(min,max) errsol(min,max) errsdp(min,max)
8 (495,12869) 0:00:18 0:01:11 (1.6e-7, 5.6e-4) (1.0e-7, 4.1e-6)
10 (1001,43757) 0:04:46 0:08:05 (3.9e-5, 5.3e-4) (2.4e-7, 3.0e-6)
12 (1820,125969) 0:26:32 1:02:37 (1.3e-5, 5.7e-3) (1.1e-7, 5.3e-6)
15 (3876,490313) 6:31:11 10:21:21 (6.8e-4, 4.5e-3) (9.9e-7, 5.6e-6)

The computations here show that Algorithm 1.3.5 would solve large scale

polynomial optimization. A quartic polynomial optimization with 100 variables

would be solved within a couple of hours on a regular computer. This is almost

impossible by using SDP solvers based on interior point methods.



37

Table 2.5: Computational results for random Example 2.3.1 of degree 10

n (N,m) time(min,max) errsol(min,max) errsdp(min,max)
6 (462,8007) 0:00:10 0:00:32 (3.6e-7,1.4e-4) (3.2e-8,3.1e-6)
8 (1287,43757) 0:04:13 0:10:23 (5.6e-6,3.1e-4) (2.2e-7, 1.8e-6)
9 (2002,92377) 0:13:13 0:43:28 (2.2e-4,8.4e-4) (1.1e-6,2.9e-6)
10 (3003,184755) 3:53:13 4:02:11 (2.3e-3,4.1e-3) (4.7e-7,4.2e-6)

Example 2.3.2 (Sensor Network Localization).

Given a graph G = (V,E) and a distance for each edge, the sensor network

localization problem is to find locations of vertices so that their distances are equal

to the desired ones. This problem can be formulated as follows: find a sequence

of unknown vectors (sensors) u
1

, u

2

, . . . , u

s

2 Rk (typically k = 1, 2, 3, we focus on

k = 2 in this example) such that the distances between these sensors and some

other fixed vectors (anchors) a

1

, . . . , a

`

are equal to given distances. Recently,

there is much work on solving sensor network localization by SDP techniques, like

[4, 47, 68]. Given edge subsets

E
S

⇢ {(i, j) : 1  i < j  s}, E
A

= {(i, j) : 1  i  s, 1  j  `},

for every (i, j) 2 E
S

, let d

ij

be the distance between u

i

and u

j

, and for every

(i, j) 2 E
A

, let e
ij

be the distance between u

i

and a

j

. Denote u
i

= (x
ki�k+1

, . . . , x

ki

)

for i = 1, . . . , s. The sensor network localization problem is equivalent to finding

coordinates x
k1

, . . . , x

ks

satisfying the equations

ku
i

� u

j

k2
2

= d

2

ij

8 (i, j) 2 E
S

, ku
i

� a

j

k2
2

= e

2

ij

8 (i, j) 2 E
A

.

It is also equivalent to the quartic polynomial optimization problem

min
u

1

,...,us

X

(i,j)2ES

�
ku

i

� u

j

k2
2

� d

2

ij

�
2

+
X

(i,j)2EA

�
ku

i

� a

j

k2
2

� e

2

ij

�
2

. (2.30)

Typically, it is large scale. We use SDPNAL to solve its SDP relaxation (2.2)-(2.3).

To test its performance, we randomly generate sensors u
1

, . . . , u

s

from the square

[�0.5, 0.5] ⇥ [�0.5, 0.5]. Fix four anchors as (±0.45, ±0.45). For each pair (i, j),

select it to ES with probability 0.6 and to EA with probability 0.3. For each

instance, we test 15 times. Then compute each distance d
ij

and e

ij

. After the SDP



38

Table 2.6: Computational results for sensor network localization problems.

#sensor time(min,max) RMSD(min,max) errsdp(min,max)
15 0:00:24 0:02:02 (8.1e-6, 1.4e-4) (1.1e-7, 1.6e-6)
20 0:02:04 0:09:12 (1.5e-5, 1.5e-4) (2.9e-7, 2.0e-6)
25 0:14:18 1:12:21 (4.3e-5, 2.2e-4) (2.4e-7, 1.6e-6)
30 1:22:18 5:51:36 (2.3e-5, 2.7e-3) (9.2e-8, 5.3e-4)
35 09:59:35 27:08:37 (1.3e-3, 2.2e-3) (6.5e-6, 6.5e-4)
40 48:33:59 61:19:58 (1.2e-3, 2.7e-3) (2.2e-3, 4.0e-3)

relaxation is solved, we use Z

⇤(2 : n+ 1, 1) as a starting point and apply function

“lsqnonlin” (in Matlab Toolbox) to get a local solution (û
1

, . . . , û

s

) of (2.30) (we

use the same technique as in [68]). The errors of computed locations are measured

by the Root Mean Square Distance RMSD = (1
s

⌃s

i=1

kû
i

� u

⇤
i

k2)1/2, as used in [4].

The computational results are shown in Table 2.6. We can see that the

SDP relaxation of (2.30) is solved reasonably well. In general instances, FEC (2.5)

or FTC (2.6) is not satisfied, so we can only get a local minimizer of (2.30) by

using the technique from [68]. The true locations of sensors are found with small

errors. Possible reasons for FTC (2.6) fails might be: the SDP relaxation was not

solved accurately enough, or it is not exact for (2.30).

Example 2.3.3 (Random Constrained Polynomial Optimization).

Table 2.7: Computational results for random Example 2.3.3

(n,2d) time(min,max) errsol(min,med,max) errsdp(min,med,max)
(30,4) 0:00:28 0:02:47 (5.6e-8, 1.3e-6, 6.9e-6) (1.3e-7, 8.1e-7, 2.9e-6)
(40,4) 0:03:35 0:10:32 (8.8e-8, 1.8e-6, 9.5e-6) (2.2e-7, 1.0e-6, 4.5e-6)
(50,4) 0:20:34 0:24:59 (5.7e-6, 5.6e-6, 7.0e-6) (2.7e-6, 2.8e-6, 3.4e-6)
(60,4) 0:35:02 1:20:38 (1.5e-7, 3.5e-6, 2.5e-5) (1.7e-7, 1.7e-6, 1.2e-5)
(20,6) 0:36:31 0:49:17 (8.5e-7, 2.7e-6, 4.4e-6) (5.8e-7, 1.3e-6, 2.7e-6)
(12,8) 0:27:11 0:59:30 (5.5e-7, 2.8e-6, 9.0e-6) (9.0e-7, 1.3e-6, 4.2e-6)
(9,10) 0:16:31 0:40:53 (2.6e-7, 3.3e-6, 1.4e-5) (2.7e-7, 1.6e-6, 6.3e-6)
(80,4) 10:52:30 15:57:30 (5.3e-6, 5.5e-6, 2.2e-1) (2.6e-6, 2.6e-6, 2.7e-3)
(25,6) 10:38:04 12:57:59 (5.9e-3, 6.6e-3, 1.4e-2) (3.6e-3, 5.8e-3, 6.1e-3)

We test the performance of Algorithm 1.3.5 (implemented by SDPNAL [83])



39

in minimizing polynomials over the unit ball. Generate f(x) randomly as

f(x) =
X

↵2Nn
:|↵|2d

f

↵

x

↵

,

where the coe�cients f

↵

are Gaussian random variables. We solve the SDP re-

laxation (2.11)-(2.12) by SDPNAL. The cases of degrees 4, 6, 8, 10 are tested. For

each instance, we test 10 times. The computational results are shown in Table 2.7.

When (n, 2d) = (80, 4) or (25, 6), the SDP relaxations are not solved very well

sometimes. This is probably because of the incurred ill-conditioning. In all the

other cases, the SDP relaxations are solved quite well, and accurate global mini-

mizers of polynomials over the unit ball are found.

Chapter 2 Sections 2.1 and 2.3, in full, are reprint of the material as it

appears in the article “Regularization Methods for SDP relaxations in Large Scale

Polynomial Optimization” by Jiawang Nie and Li Wang, in SIAM Journal on

Optimization, Volume 22, No.2(2012). The dissertation author was one of the

authors of this paper.

Chapter 2 Section 2.2, in full, is a reprint of the material as it appears

in the article “Minimizing Rational Functions by Exact Jacobian SDP relaxation

Applicable to Finite Singularities” by Feng Guo, Li Wang and Guangming Zhou,

in the Journal of Global Optimization in volume 58, No.2(2014). The dissertation

author was one of the authors of this paper.



Chapter 3

Minimizing Rational Functions

3.1 Introduction

Consider the problem of minimizing a rational function
8
>>>><

>>>>:

r

⇤ := min
x2Rn

p(x)

q(x)

s.t. h
i

(x) = 0, i 2 [m
1

],

g

j

(x) � 0, j 2 [m
2

],

(3.1)

where p(x), q(x), h
i

(x), g
j

(x) 2 R[x] := R[x
1

, . . . , x

n

]. As a special case, when

deg (q) = 0, (3.1) becomes a multivariate polynomial optimization which is NP-

hard as discussed in Chapter 1 and Chapter 2.

Some approaches using sum-of-squares relaxation to solve (3.1) are proposed

in [29, 54] and the core idea therein is in the following. Let S be the feasible set of

(3.1). Suppose that r⇤ > �1, and q(x) is nonnegative on S (otherwise replace p(x)

q(x)

by p(x)q(x)

q

2

(x)

), then � 2 R is a lower bound of r⇤ if and only if p(x) � �q(x) � 0 on

S. Thus the problem (3.1) can be reformulated as maximizing � such that p(x)�
�q(x) is nonnegative on S, which is related to the representation of a nonnegative

polynomial on a semialgebraic set. As is well-known, a univariate polynomial is

nonnegative on R if and only if it is SOS [65] which can be e�ciently determined

by solving a semidefinite program [61, 62]. However, when n > 1, due to the fact

that a nonnegative multivariate polynomial might not be an SOS [65], the problem

(3.1) becomes very hard even if there are no constraints.

40



41

Let M(S) be the quadratic module generated by the defining polynomials

of S, and P (S) be the preordering. If S in (3.1) is archimedean or compact, we can

apply Putinar’s Positivstellensatz (Theorem 1.2.14) or Schmüdgen’s Positivstellen-

satz (Theorem 1.2.15) to maximize � such that p(x) � �q(x) belongs to M(S) or

P (S).

In this chapter, we present a di↵erent way to obtain the minimum r

⇤. Given

a polynomial f 2 R[x], let x̃ = (x
0

, x

1

, . . . , x

n

) 2 Rn+1 and f

hom be the homoge-

nization of f , i.e. f

hom(x̃) = x

deg (f)

0

f(x/x
0

). We reformulate the minimization of

(3.1) by the technique of homogenization as the following polynomial optimization

8
>>>>>>><

>>>>>>>:

s

⇤ := min
x̃2Rn+1

p̃(x̃)

s.t. hhom

i

(x̃) = 0, i 2 [m
1

],

g

hom

j

(x̃) � 0, j 2 [m
2

],

q̃(x̃) = 1, x

0

� 0,

(3.2)

where p̃(x̃) := x

max{deg (p),deg (q)}
0

p(x/x
0

) and q̃(x̃) := x

max{deg (p),deg (q)}
0

q(x/x
0

). We

show that these two problems are equivalent under some general conditions. As a

special case, they are always equivalent if there are no constraints in (3.1). The

relations between the achievabilities of r⇤ and s

⇤ are discussed.

Therefore, the problem of solving (3.1) becomes to e�ciently solving prob-

lem (3.2). Let S̃ be the feasible set of problem (3.2). If S̃ is Archimedean, the

standard Lasserre’s SDP relaxation presented in Section 2.1 can be applied to solve

problem (3.2) e�ciently. When the optimum of problem (3.2) is an asymptotic

value, we refer to the approaches proposed in [15, 71, 78, 79]. However, the finite

convergence of the above methods is unknown which means that we need to solve

a big number of SDPs until the convergence is met. Jacobian SDP relaxation

presented in Section 2.2 is exact under some generic assumptions on the feasible

set and it has finite convergence guarantee under weaker assumptions, so in this

chapter we employ the Jacobian SDP relaxation to solve (3.2).



42

Another possible and natural reformulation of (3.1) is

8
>>>>>>><

>>>>>>>:

s̄

⇤ := min
x2Rn

,y2R
p(x)y

s.t. h
i

(x) = 0, i 2 [m
1

],

g

j

(x) � 0, j 2 [m
2

],

q(x)y = 1.

(3.3)

Clearly, if r⇤ is achievable in (3.1), then (3.3) is equivalent to (3.1) and we always

have r

⇤ = s̄

⇤. One might ask why we solve (3.3) instead of (3.2). The reason is

that when we employ Jacobian SDP relaxation [51] to solve (3.2) or (3.3), we need

to assume that the optimum is achievable. Actually, s⇤ in (3.2) is more likely to

be achievable than s̄

⇤ in (3.3). To see this, note that when r

⇤ is not achievable, s̄⇤

can not be reached either. However, s⇤ might still be achievable when r

⇤ is not.

Some su�cient conditions are given in Theorem 3.2.8 and they are not necessary

(see Example 3.5.2 and 3.5.5). For a simple example, consider the problem

min
x

1

2R

1

x

2

1

+ 1
.

Obviously, r⇤ = s̄

⇤ = 0 and they are not achievable. However, we can reformulate

it as 8
><

>:

s

⇤ := min
x

0

,x

1

2R
x

2

0

s.t. x2

1

+ x

2

0

= 1.

Then s

⇤ = 0 and we have two minimizers (0,±1) which verify that r

⇤ is not

achievable by (c) in Theorem 3.2.8.

3.2 Equivalent Reformulation by Homogenization

In this section, we reformulate the minimization of (3.1) as polynomial

optimization (3.2) by the technique of homogenization and investigate the relations

between the achievabilities of the optima of these two problems.

Given a polynomial f 2 R[x], let x̃ = (x
0

, x) = (x
0

, x

1

, . . . , x

n

) 2 Rn+1 and

f

hom(x̃) be the homogenization of f , i.e. fhom(x̃) = x

deg (f)

0

f(x/x
0

). We define the



43

following sets:

S := {x 2 Rn | h
i

(x) = 0, g

j

(x) � 0, i 2 [m
1

], j 2 [m
2

]} ,
e
S

0

:=
�
x̃ 2 Rn+1 | hhom

i

(x̃) = 0, g

hom

j

(x̃) � 0, x

0

> 0, i 2 [m
1

], j 2 [m
2

]
 
,

e
S :=

�
x̃ 2 Rn+1 | hhom

i

(x̃) = 0, g

hom

j

(x̃) � 0, x

0

� 0, i 2 [m
1

], j 2 [m
2

]
 
.

(3.4)

Let closure(S̃
0

) be the closure of S̃
0

in Rn+1. From the above definition, we

immediately have

Proposition 3.2.1. f(x) � 0 on S if and only if fhom(x̃) � 0 on closure(S̃
0

).

Proof. We first prove the “if” part. Suppose f

hom(x̃) � 0 on closure(S̃
0

). If there

exists a point u 2 S such that f(u) < 0, then (1, u) 2 e
S

0

. Thus f

hom(1, u) =

f(u) < 0 which is a contradiction.

Next we prove the “only if” part. Suppose f(x) � 0 on S and consider

a point (u
0

, u) 2 Rn+1 in closure(S̃
0

). There exists a sequence {(u
k,0

, u

k

)} 2 e
S

0

such that lim
k!1

(u
k,0

, u

k

) = (u
0

, u). Since u

k,0

> 0 for all k 2 N, we consider the

sequence {u
k

/u

k,0

}. For i = 1, . . . ,m
1

and j = 1, . . . ,m
2

, we have h

i

(u
k

/u

k,0

) =

h

hom

i

(u
k,0

, u

k

)/(u
k,0

)deg(hi) = 0 and g

j

(u
k

/u

k,0

) = g

hom

j

(u
k,0

, u

k

)/(u
k,0

)deg(gj) � 0. It

implies that {u
k

/u

k,0

} 2 S. Thus

f

hom(u
0

, u) = lim
k!1

f

hom(u
k,0

, u

k

) = lim
k!1

u

deg (f)

k,0

f(u
k

/u

k,0

) � 0,

which concludes the proof.

Let d = max{deg (p), deg (q)}, and define

p̃(x̃) = x

d

0

p(x/x
0

) and q̃(x̃) = x

d

0

q(x/x
0

).

We reformulate the minimization problem (3.1) as the following constrained poly-

nomial optimization:
8
>>>>>>><

>>>>>>>:

s

⇤ := min
x̃2Rn+1

p̃(x̃)

s.t. hhom

i

(x̃) = 0, i 2 [m
1

],

g

hom

j

(x̃) � 0, j 2 [m
2

],

q̃(x̃) = 1, x

0

� 0,

(3.5)

We now investigate the relations between r

⇤ and s

⇤.



44

Assumption 3.2.2. If r⇤ is achievable, then there exist a minimizer x

⇤ of (3.1)

and a neighborhood O of x⇤ such that q(x) > 0 for every x 2 O \ S; if r⇤ is not

achievable, then q(x) > 0 for every x 2 S with Euclidean norm kxk su�ciently

large.

If Assumption 3.2.2 does not hold, then we can replace p(x)

q(x)

by p(x)q(x)

q(x)

2

. Note

that we do not assume q(x) is nonnegative on the whole feasible set S as in [29, 54].

Definition 3.2.3. ([51]) If there exists a point 0 6= (0, u) 2 S̃ but (0, u) /2
closure(S̃

0

), then we say S is not closed at 1; otherwise, we say S is closed at

1.

Theorem 3.2.4. It always holds that s⇤  r

⇤, and the equality holds if one of the

following conditions is satisfied:

(a) S is closed at 1;

(b) deg(p) > deg(q);

(c) s

⇤ is achievable and x

⇤
0

> 0 for at least one of its minimizers x̃

⇤ = (x⇤
0

, x

⇤).

Proof. We first show that s⇤  r

⇤. For any u 2 S in a neighborhood of a minimizer

of (3.1) or with su�cient large Euclidean norm if r⇤ is not achievable, if p(x)

q(x)

is

defined at u, then q(u) > 0 by the Assumption 3.2.2. Let t = q(u)1/d = q̃(1, u)1/d.

We have q̃(1/t, u/t) = 1 and (1/t, u/t) 2 e
S, so

p(u)

q(u)
=

p̃(1, u)

q̃(1, u)
=

p̃(1/t, u/t)

q̃(1/t, u/t)
= p̃(1/t, u/t) � s

⇤
,

then we have s

⇤  r

⇤. Therefore, to show r

⇤ = s

⇤, we only need to show r

⇤  s

⇤.

(a) For any feasible point (u
0

, u) of (3.2), i.e., (u
0

, u) 2 e
S and q̃(u

0

, u) = 1,

since S is closed at1, there exists a sequence {(u
k,0

, u

k

)} in e
S such that u

k,0

> 0 for

any k 2 N and lim
k!1

(u
k,0

, u

k

) = (u
0

, u). Due to the continuity of q̃, lim
k!1

q̃(u
k,0

, u

k

) =

1. Hence, we can always assume that for any k 2 N, q̃(u
k,0

, u

k

) > 0. For each

k 2 N, let t

k

= q̃(u
k,0

, u

k

)1/d and consider the sequence {(u
k,0

/t

k

, u

k

/t

k

)}. We

have lim
k!1

(u
k,0

/t

k

, u

k

/t

k

) = (u
0

, u

k

) and q̃(u
k,0

/t

k

, u

k

/t

k

) = 1. For i = 1, . . . ,m
1

,



45

j = 1, . . . ,m
2

,

0 =
1

t

deg (hi)

k

h

hom

i

(u
k,0

, u

k

) = h

hom

i

(u
k,0

/t

k

, u

k

/t

k

) =
1

t

deg (hi)

k

u

deg (hi)

k,0

h

i

(u
k

/u

k,0

),

0  1

t

deg (gj)

k

g

hom

j

(u
k,0

, u

k

) = g

hom

j

(u
k,0

/t

k

, u

k

/t

k

) =
1

t

deg (gj)

k

u

deg (gj)

k,0

g

j

(u
k

/u

k,0

),

which imply (u
k,0

/t

k

, u

k

/t

k

) 2 e
S and u

k

/u

k,0

2 S for all k. Hence

p̃(u
k,0

/t

k

, u

k

/t

k

) =
p̃(u

k,0

/t

k

, u

k

/t

k

)

q̃(u
k,0

/t

k

, u

k

/t

k

)
=

p(u
k

/u

k,0

)

q(u
k

/u

k,0

)
� r

⇤

and p̃(u
0

, u) = lim
k!1

p̃(u
k,0

/t

k

, u

k

/t

k

) � r

⇤ which means r⇤  s

⇤.

(b) If deg(p) > deg(q), then x

0

divides q̃(x̃). By q̃(x̃) = 1, we have u

0

> 0

for any feasible point (u
0

, u) of (3.2) and it is easy to see that u/u
0

2 S, then

p̃(u
0

, u) =
p̃(u

0

, u)

q̃(u
0

, u)
=

p̃(1, u/u
0

)

q̃(1, u/u
0

)
=

p(u/u
0

)

q(u/u
0

)
� r

⇤
,

which means r⇤  s

⇤.

(c) Since x

⇤
0

> 0, we have x

⇤
/x

⇤
0

2 S and

s

⇤ = p̃(x⇤
0

, x

⇤) =
p̃(x⇤

0

, x

⇤)

q̃(x⇤
0

, x

⇤)
=

p(x⇤
/x

⇤
0

)

q(x⇤
/x

⇤
0

)
� r

⇤
,

which implies r⇤ = s

⇤.

If there are no constraints in (3.1), then S = Rn is closed at 1 since

{x̃ 2 Rn+1|x
0

� 0} is the closure of {x̃ 2 Rn+1|x
0

> 0}. Therefore,

Corollary 3.2.5. If S = Rn, then r

⇤ = s

⇤.

Remark 3.2.6. If S = Rn, we can remove x

0

� 0 in (3.2). In fact, if there are

no constraints, according to the proof of Part (a) in Theorem 3.2.4, we only need

u

k,0

6= 0 to get the same result. Therefore, the global minimization

r

⇤ := min
x2Rn

p(x)

q(x)

is equivalent to 8
<

:

s

⇤ := min
x̃2Rn+1

p̃(x̃)

s.t. q̃(x̃) = 1.
(3.6)



46

We would like to point out that not every S is closed at 1 and s

⇤ might

be strictly smaller than r

⇤ in this case. For example,

Example 3.2.7. 8
>>>><

>>>>:

r

⇤ := min
x

1

,x

2

2R

x

1

(x
1

� x

2

)2

s.t. x2

1

(x
1

� x

2

) = 1,

x

1

� 1 � 0.

(3.7)

Clearly, we have r

⇤ = 1. However, [49, Example 5.2 (i)] shows that the set

{(x
1

, x

2

) 2 R2 | x2

1

(x
1

� x

2

)� 1 = 0}

is not closed at 1. Actually,

S := {(x
1

, x

2

) 2 R2 | x2

1

(x
1

� x

2

)� 1 = 0, x
1

� 1 � 0}

is not closed at 1, either. To see it, we have

e
S := {(x

0

, x

1

, x

2

) 2 R3 | x2

1

(x
1

� x

2

)� x

3

0

= 0, x
1

� x

0

� 0, x
0

� 0}.

Consider the point (0, 0, 1) 2 e
S. Suppose that there exists a sequence {(x

k,0

, x

k,1

, x

k,2

)}
in e

S such that lim
k!1

(x
k,0

, x

k,1

, x

k,2

) = (0, 0, 1) and x

k,0

> 0 for all k 2 N. Then for

0 < " < 1/2, there exists N 2 N such that for any k > N , we have

0 < x

k,0

< ", |x
k,1

| < ", |x
k,2

� 1| < ".

Thus

0 < x

3

k,0

= x

2

k,1

(x
k,1

� x

k,2

) < x

2

k,1

("� 1 + ") < 0

which is a contradiction. Therefore, S is not closed at 1 and if we reformulate

(3.7) by homogenization as the following problem

8
>>>><

>>>>:

s

⇤ := min
x

0

,x

1

,x

2

2R
x

0

x

1

s.t. (x
1

� x

2

)2 � 1 = x

2

1

(x
1

� x

2

)� x

3

0

= 0,

x

1

� x

0

� 0, x
0

� 0,

then we have s

⇤ = 0 < r

⇤.



47

Let

b
S := {x 2 Rn | ĥ

i

(x) = 0, ĝ

j

(x) � 0, i = 1, . . . ,m
1

, j = 1, . . . ,m
2

}

where ĥ

i

and ĝ

j

denote the homogeneous parts of the highest degree of h
i

and g

j

,

respectively. Denote p

d

(x) and q

d

(x) the homogeneous parts of degree d of p(x)

and q(x), respectively.

Theorem 3.2.8. If one of the conditions in Theorem 3.2.4 holds, then the follow-

ing properties hold.

(a) r

⇤ is achievable if and only if s⇤ is achievable at a minimizer x̃⇤ = (x⇤
0

, x

⇤) with

x

⇤
0

6= 0;

(b) If neither p(x) and q(x) have real common roots in S, nor p

d

(x) and q

d

(x)

have real nonzero common roots in b
S, then s

⇤ is achievable.

(c) If s⇤ is achievable and x

⇤
0

= 0 for all minimizers x̃

⇤ = (x⇤
0

, x

⇤) of (3.2), then

r

⇤ is not achievable. For each minimizer x̃⇤ = (0, x⇤) of (3.2), if there exists a

sequence {x̃
k

} = {(x
k,0

, x

k

)} in e
S such that lim

k!1
x̃

k

= x̃

⇤ and x

k,0

> 0 for all

k 2 N, then lim
k!1

p(xk/xk,0)

q(xk/xk,0)
= r

⇤.

Proof. If one of the conditions in Theorem 3.2.4 holds, we have r

⇤ = s

⇤.

(a) Let x⇤ be a minimizer of (3.1) such that t = q̃(1, x⇤)1/d = q(x⇤)1/d > 0 by

the Assumption 3.2.2. It is easy to verify that (1/t, x⇤
/t) 2 e

S and q̃(1/t, x⇤
/t) = 1.

We have p̃(1/t, x⇤
/t) = r

⇤ = s

⇤ which means (1/t, x⇤
/t) is a minimizer of (3.2). If

s

⇤ is achieved at x̃⇤ = (x⇤
0

, x

⇤) 2 e
S with x

⇤
0

> 0, then r

⇤ is achieved at x⇤
/x

⇤
0

2 S.

(b) To the contrary, we assume that s

⇤ is not achievable. Then there ex-

ists a sequence {x̃
k

} in e
S such that lim

k!1
||x̃

k

||
2

= 1, lim
k!1

p̃(x̃
k

) = s

⇤ and for

all k 2 N, q̃(x̃
k

) = 1. Consider the bounded sequence {x̃
k

/||x̃
k

||
2

} ✓ e
S. By

Bolzano-Weierstrass Theorem, there exists a subsequence {x̃
kj/||x̃kj ||

2

} such that

lim
j!1

x̃

kj/||x̃kj ||
2

= ỹ for some nonzero ỹ = (y
0

, y) 2 e
S since e

S is closed. Let

p̃(x̃
kj) = s

kj , then lim
j!1

s

kj = s

⇤. Since p̃(x̃
kj) = (||x

kj ||
2

)dp̃(x̃
kj/||x̃kj ||

2

) and

lim
j!1

||x̃
kj ||

2

= 1, we have p̃(ỹ) = lim
j!1

p̃(x̃
kj/||x̃kj ||

2

) = 0. Similarly, we can prove

q̃(ỹ) = lim
j!1

q̃(x̃
kj/||x̃kj ||

2

) = 0. Thus p̃(x̃) and q̃(x̃) have real nonzero common root



48

ỹ on unit sphere Sn+1. We have y
0

= 0, otherwise y/y
0

is a real common root of p(x)

and q(x) in S. Therefore 0 = p̃(ỹ) = p

d

(y), 0 = q̃(ỹ) = q

d

(y), 0 = h

hom

i

(ỹ) = ĥ

i

(y)

and 0  g

hom

j

(ỹ) = ĝ

j

(y), i.e. p
d

(x) and q

d

(x) have real nonzero common root y in

b
S which is a contradiction.

(c) By (a), if x⇤
0

= 0 for all minimizers of (3.2), r⇤ is not achievable. Suppose

x̃

⇤ = (0, x⇤) is a minimizer of (3.2) and there exists a sequence {x̃
k

} = {(x
k,0

, x

k

)}
in e

S such that lim
k!1

x̃

k

= x̃

⇤ and x

k,0

> 0. Then for each k 2 N, x
k

/x

k,0

2 S. Since

p̃ and q̃ are continuous, lim
k!1

p̃(x
k,0

, x

k

) = s

⇤ and lim
k!1

q̃(x
k,0

, x

k

) = 1. Therefore,

lim
k!1

p(x
k

/x

k,0

)

q(x
k

/x

k,0

)
= lim

k!1

p̃(x
k,0

, x

k

)

q̃(x
k,0

, x

k

)
= s

⇤ = r

⇤
.

Here completes the proof.

In this section, we reformulate the minimization of (3.1) as the polynomial

optimization (3.2) by homogenization. Suppose S is closed at 1 which is always

true when S = Rn, then r

⇤ = s

⇤. If we have no information about whether S is

closed at 1 or not, but deg(p) > deg(q) or s⇤ is achieved at (x⇤
0

, x

⇤) with x

⇤
0

6= 0,

we still have r

⇤ = s

⇤. Optimum s

⇤ in (3.2) is achievable under some su�cient

conditions (a) and (b) in Proposition 3.2.8. If r

⇤ = s

⇤, the relations between

the achievabilities of r⇤ and s

⇤ are discussed. In next section, we will discuss the

assumption that S is closed at 1 is a generic condition.

3.3 On the Generality of Closedness at 1

Although we have counter example in Example 3.2.7, we next show that a

given set S in (3.4) is generically closed at 1. Therefore, if the constraints in (3.1)

are generic, (3.1) and (3.2) are equivalent.

Let us first review some elementary definitions about resultants and dis-

criminants. More details can be found in [13, 49, 51]. Let f

1

, . . . , f

n

be ho-

mogeneous polynomials in x = (x
1

, . . . , x

n

). The resultant Res(f
1

, . . . , f

n

) is a

polynomial in the coe�cients of f
1

, . . . , f

n

satisfying

Res(f
1

, . . . , f

n

) = 0 , 9 0 6= u 2 Cn

, f

1

(u) = · · · = f

n

(u) = 0.



49

Let f

1

, . . . , f

m

be homogenous polynomials with m < n. The discriminant for

f

1

, . . . , f

m

is denoted by �(f
1

, . . . , f

m

), which is a polynomial in the coe�cients of

f

1

, . . . , f

m

such that

�(f
1

, . . . , f

m

) = 0

if and only if the polynomial system

f

1

(x) = · · · = f

m

(x) = 0

has a solution 0 6= u 2 Cn such that the Jacobian matrix of f
1

, . . . , f

m

does not

have full rank.

Suppose S is not closed at 1, then by definition there exists (0, u) 2
S̃\closure(S̃

0

) where u 2 Rn. Let J(u) := {j 2 [m
2

] | ghom
j

(0, u) = 0}. Then

g

hom

j

(0, u) > 0 for all j 2 [m
2

]\J(u). We have the cardinality m

1

+ |J(u)| � 1,

otherwise, (0, u) is an interior point of S̃ and (0, u) 2 closure(S̃
0

). Let

V (u) := {x̃ 2 Rn+1 | hhom

i

(x̃) = 0, g

hom

j

(x̃) = 0, i 2 [m
1

], j 2 J(u)}.

For any � > 0, let

B((0, u), �) = {(x
0

, x) 2 Rn+1 | k(x
0

, x)� (0, u)k  �}.

Lemma 3.3.1. Suppose S is not closed at 1, then there exists � > 0 such that

for all (x
0

, x) 2 B((0, u), �) \ V (u), we have x

0

 0.

Proof. Suppose that � does not exist. Consider a sequence {�
k

} with �
k

> 0 and

lim
k!1

�

k

= 0. Then for each k, there exists a point (u
k,0

, u

k

) 2 B((0, u), �
k

) \ V (u)

such that u

k,0

> 0. By the continuity, there exists N such that for all k � N ,

g

hom

j

(u
k,0

, u

k

) > 0 for each j 2 [m
2

] \ J(u) which implies (u
k,0

, u

k

) 2 S̃ for all

k � N and (0, u) 2 closure(S̃
0

). The contradiction follows.

Let J(u) = {j
1

, · · · , j
l

} and

A(u) :=

2

666666666664

@h

hom

1

@x

1

(0, u) · · · @h

hom

1

@xn
(0, u)

...
...

...
@h

hom

m
1

@x

1

(0, u) · · · @h

hom

m
1

@xn
(0, u)

@g

hom

j
1

@x

1

(0, u) · · · @g

hom

j
1

@xn
(0, u)

...
...

...
@g

hom

jl
@x

1

(0, u) · · · @g

hom

jl
@xn

(0, u)

3

777777777775

=

2

666666666664

@

ˆ

h

1

@x

1

(u) · · · @

ˆ

h

1

@xn
(u)

...
...

...
@

ˆ

hm
1

@x

1

(u) · · · @

ˆ

hm
1

@xn
(u)

@ĝj
1

@x

1

(u) · · · @ĝj
1

@xn
(u)

...
...

...
@ĝjl
@x

1

(u) · · · @ĝjl
@xn

(u)

3

777777777775

,



50

where ĥ

i

and ĝ

j

denote the homogenous parts of the highest degree of h

i

and

g

j

, respectively. Combining Lemma 3.3.1 and Implicit Function Theorem [35,

Theorem 3.3.1], we have

Lemma 3.3.2. Suppose S is not closed at 1 and m

1

+ |J(u)|  n, then rank

A(u) < m

1

+ |J(u)|.

Proof. Let m = m

1

+ |J(u)|. Suppose rank A(u) = m. Then there exist m

independent columns in A(u). Without loss of generality, we assume the last m

columns of A(u) are independent, i.e., the Jacobian determinant

@(hhom

1

, · · · , hhom

m

1

, g

hom

j

1

, · · · , ghom
jl

)

@(x
n�m+1

, · · · , x
n

)
(0, u) 6= 0.

Partition (0, ũ) as (ũa

, ũ

b) where ũ

a = (0, u
1

, · · · , u
n�m

), ũb = (u
n�m+1

, · · · , u
n

).

Then by the Implicit Function Theorem, there exists an open set W ✓ Rn�m+1

containing ũ

a and k-th continuous functions f
1

, · · · , f
m

on W such that

h

hom

i

(x
0

, . . . , x

n�m

, f

1

(x̃a), . . . , f
m

(x̃a)) = 0, i 2 [m
1

],

g

hom

j

(x
0

, . . . , x

n�m

, f

1

(x̃a), . . . , f
m

(x̃a)) = 0, j 2 J(u),

for every x̃

a 2 W . Here x̃a = (x
0

, · · · , x
n�m

). Therefore, (x̃a

, f

1

(x̃a), . . . , f
m

(x̃a)) 2
V (u) for every x̃

a 2 W . Since W is open and f

1

, · · · , f
m

are continuous, we can

choose x̃a close enough to ũa such that (x̃a

, f

1

(x̃a), . . . , f
m

(x̃a)) 2 B((0, u), �)\V (u)

with x

0

> 0 for every � > 0, which contradicts the conclusion in Lemma 3.3.1.

The following theorem shows that if the defining polynomials of S are

generic, then S is closed at 1.

Theorem 3.3.3. Suppose S is not closed at 1, then

(a) If m
1

+ |J(u)| � n, then Res(ĥ
1

, · · · , ĥ
m

1

, ĝ

j

1

, · · · , ĝ
jn�m) = 0 for every subset

{j
1

, · · · , j
n�m

1

} ✓ J(u);

(b) If m
1

+ |J(u)| < n, then �(ĥ
1

, · · · , ĥ
m

1

, ĝ

j

1

, · · · , ĝ
jl
) = 0.

Proof. Since ĥ

i

(u) = h

hom

i

(0, u) = 0, ĝ
j

(u) = g

hom

j

(0, u) = 0 for all i 2 [m
1

], j 2
J(u), then the conclusion in (a) is implied by the properties of resultants. If m

1

+



51

|J(u)| < n, then by Lemma 3.3.2, the Jacobian matrix of (ĥ
1

, · · · , ĥ
m

1

, ĝ

j

1

, · · · , ĝ
jl
)

does not have full rank at u. Hence, the conclusion in (b) follows by the properties

of discriminants.

This theorem shows that if S is defined by some generic polynomials, then

it is closed at 1. Hence, the assumption that S is closed at 1 is a generic

condition. Therefore, problems (3.1) and (3.2) are equivalent in general. Now

the problem becomes how to e�ciently solve polynomial optimization (3.2). The

feasible set of the reformulated problem (3.2) may not be compact, then Lasserre’s

SDP relaxations may not have finite convergence. In next section, we consider

to apply the Jacobian SDP relaxation [51] presented in Section 2.2 to solve the

reformulated problem (3.2).

3.4 Using the Jacobian SDP Relaxation

In this section, we apply the Jacobian SDP relaxation discussed in Sec-

tion 2.2 to solve the reformulated problem (3.2). Consider the number of new

constraints added when we employ Jacobian SDP relaxation to solve (3.2). As

mentioned in [51], the number of new constraints in (2.15) is exponential in the

number of inequality constraints. Hence, if the number of inequality constraints

is large, (2.15) becomes more di�cult to solve numerically. In the following, we

employ the Jacobian SDP relaxation to reformulate (3.2) as (2.15). We show that

the number of the new equality constraints '
i

’s in (2.15) can be reduced due to

the special inequality constraint x
0

� 0 in (3.2).

In (3.2), for convenience, let

h

hom

m

1

+1

(x̃) := q̃(x̃)�1 = 0, g

hom

m

2

+1

(x̃) := x

0

� 0 and m := min{m
1

+m

2

+2, n}.

Denote

r
x̃

:=

✓
@

@x

0

,

@

@x

1

, · · · , @

@x

n

◆
.

According to (2.13) and (2.2.1), we need to consider all subsets of [m
2

+ 1] with

cardinality m�m

1

�1. Let l = min{m�m

1

�1,m
2

}. We first consider the subsets



52

without m

2

+ 1, i.e., every subset J = {j
1

, . . . , j

k

} ✓ [m
2

] with k  l. Denote

h

hom = (hhom

1

, . . . , h

hom

m

1

, h

hom

m

1

+1

) and g

hom

J

= (ghom
j

1

, . . . , g

hom

jk
). Let {⌘

1

, . . . , ⌘

len(J)

}
be the set of the defining equations for the determinantal variety

G

J

:= {x̃ 2 Cn+1 | rank [r
x̃

p̃ r
x̃

h

hom r
x̃

g

hom

J

]  m

1

+ |J |+ 1}.

For each i = 1, · · · , len(J), define

'

J

i

(x̃) = ⌘

i

·
Y

j2Jc

g

hom

j

(x̃), where J

c = [m
2

+ 1]\J.

For every subset J considered above, denote J 0 = J [ {m
2

+ 1} ✓ [m
2

+ 1]. It can

be checked that the collection of these J ’s and J

0’s contains all subsets of [m
2

+1]

with cardinality  m�m

1

� 1 and some possible J

0’s with cardinality = m�m

1

(which will happen when n < m

1

+m

2

+ 1).

Case |J 0|  m�m

1

�1 All these J 0’s compose of the subsets of [m
2

+1] containing

m

2

+1 with cardinality  m�m

1

� 1. It is easy to see that the set of the defining

equations for the determinantal variety

G

J

0 := {x̃ 2 Cn+1 | rank [r
x̃

p̃ r
x̃

h

hom r
x̃

g

hom

J

r
x̃

x

0

]  m

1

+ |J |+ 2}

is a subset of {⌘
1

, . . . , ⌘

len(J)

}. We generally suppose it to be {⌘
1

, . . . , ⌘

t(J)

} with

t(J) < len(J). For i = 1, · · · , t(J), define

'

J

0

i

(x̃) = ⌘

i

·
Y

j2Jc

g

hom

j

(x̃), where J

c = [m
2

+ 1]\J.

Case |J 0| = m�m

1

It is easy to check that G
J

0 = Cn+1. Thus for convenience,

we set t(J) = 0 in this case.

Then for every subset J ✓ [m
2

] with |J |  l, we have

'

J

i

(x̃) = '

J

0

i

(x̃) · x
0

, i = 1, · · · , t(J). (3.8)

Now consider the SDP relaxations [39] for the following polynomial optimization
8
>>>>>>>>>><

>>>>>>>>>>:

p

⇤ := min
x̃2Rn+1

p̃(x̃)

s.t. hhom

1

(x̃) = · · · = h

hom

m

1

(x̃) = h

hom

m

1

+1

(x̃) = 0,

'

J

i

(x̃) = 0,'J

0

j

(x̃) = 0

(i 2 [len(J)], j 2 [t(J)], J ✓ [m
2

], |J |  l),

g

hom

⌫

(x̃) � 0, 8⌫ 2 {0, 1}m2

+1

,

(3.9)



53

where g

hom

⌫

= (ghom
1

)⌫1 · · · (ghom
m

2

+1

)⌫m2

+1 . We now show that for each J ✓ [m
2

] with

|J |  l, constraints 'J

1

(x̃) = · · · = '

J

t(J)

(x̃) = 0 can be removed from (3.9). Con-

sider the N -th order SDP relaxation (2.17) for (3.9). By (3.8) and the properties

of localizing moment matrices in [42, Lemma 4.1], we have

L

(N)

'

J0
j

(y) = 0 implies L

(N)

'

J
j
(y) = 0, j 2 [t(J)], J ✓ [m

2

], |J |  l.

In the dual problem (2.18), by (3.8), the truncated ideal
8
>>><

>>>:

P
J✓[m

2

],|J |l

 
len(J)P
i=1

�

i

'

J

i

+
t(J)P
j=1

⇣

j

'

J

0
j

!
+

m

1

+1P
k=1

 

k

h

hom

k

deg (�
i

'

J

i

)  2N 8i

deg (⇣
j

'

J

0

j

)  2N 8j

deg ( 
k

h

hom

k

)  2N 8k

9
>>>=

>>>;
.

agrees with
8
>>><

>>>:

P
J✓[m

2

],|J |l

 
len(J)P

i=t(J)+1

�

i

'

J

i

+
t(J)P
j=1

⇣

j

'

J

0
j

!
+

m

1

+1P
k=1

 

k

h

hom

k

deg (�
i

'

J

i

)  2N 8i

deg (⇣
j

'

J

0

j

)  2N 8j

deg ( 
k

h

hom

k

)  2N 8k

9
>>>=

>>>;
.

(3.10)

Therefore, we can remove 'J

1

(x̃) = · · · = '

J

t(J)

(x̃) = 0 in (3.9) and improve the

numerical performance in practice. Hence we consider the following optimization
8
>>>>>>>>>><

>>>>>>>>>>:

p

⇤ := min
x̃2Rn+1

p̃(x̃)

s.t. hhom

1

(x̃) = · · · = h

hom

m

1

(x̃) = h

hom

m

1

+1

(x̃) = 0,

'

J

i

(x̃) = 0,'J

0

j

(x̃) = 0

(i = t(J) + 1, . . . , len(J), j 2 [t(J)], J ✓ [m
2

], |J |  l),

g

hom

⌫

(x̃) � 0, 8⌫ 2 {0, 1}m2

+1

,

(3.11)

The N -th order SDP relaxation [39] for (3.11) is the SDP
8
>>>>>>>>>><

>>>>>>>>>>:

p

(1)

N

:= min L

p̃

(y)

s.t. L(N)

h

hom

1

(y) = · · · = L

(N)

h

hom

m
1

(y) = L

(N)

h

hom

m
1

+1

(y) = 0,

L

(N)

'

J
i
(y) = 0, L(N)

'

J0
j

(y) = 0

(i = t(J) + 1, . . . , len(J), j 2 [t(J)], J ✓ [m
2

], |J |  l),

L

(N)

g

hom

⌫
⌫ 0, 8⌫ 2 {0, 1}m2

+1

, y

0

= 1.

(3.12)



54

The dual problem of (3.12) is

8
><

>:

p

(2)

N

:= max
�2Rn+1

�

s.t. p̃(x̃)� � 2 I

(N) + P

(N)

.

(3.13)

where I

(N) is the ideal defined in (3.10) and

P

(N) =

8
<

:
X

⌫2{0,1}m2

+1

�

⌫

g

hom

⌫

�����
deg (�

⌫

g

hom

⌫

)  2N

�

⌫

’s are SOS

9
=

; .

Definition 3.4.1. For every set J = {j
1

, . . . , j

k

} ✓ [m
2

+ 1] with k  n�m

1

, let

⇥
J

= {x̃ 2 V (hhom

, g

hom

J

) | rank
⇥
r

x̃

h

hom r
x̃

g

hom

J

⇤
< m

1

+ |J |+ 1}

and

⇥ =
[

J✓[m

1

+1], |J |n�m

1

⇥
J

.

Assumption 3.4.2. (i) m

1

 n; (ii) For any u 2 e
S in (3.4), at most n �m

1

of

g

hom

1

(u), . . . , ghom
m

2

+1

(u) vanish; (iii) The set ⇥ is finite.

By Theorem 2.2.10 and 3.2.4, we have

Theorem 3.4.3. Suppose Assumption 3.4.2 holds. Then p

⇤
> �1 in (3.11) and

there exists N

⇤ 2 N such that p

(1)

N

= p

(2)

N

= p

⇤ for all N � N

⇤. Furthermore,

if one of the conditions in Theorem 3.2.4 holds and the minimum s

⇤ of (3.2) is

achievable, then p

(1)

N

= p

(2)

N

= r

⇤ for all N � N

⇤.

Corollary 3.4.4. If S = Rn in (3.1) and s

⇤ is achievable in (3.6), then there exists

N

⇤ 2 N such that p(1)
N

= p

(2)

N

= r

⇤ for all N � N

⇤ in (3.12) and (3.13).

Proof. Since the only constraint is q̃ � 1 = 0 and q̃ is homogeneous, regarding

rq̃ and x̃ as vectors in Rn+1, then d · q̃ = rq̃

T · x̃ by Euler’s Formula. Thus

r(q̃ � 1) = rq̃ = 0 implies q̃ = 0, i.e. ⇥ = ;. Hence, Assumption 3.4.2 is

always true for (3.6). Then by Corollary 3.2.5 and Theorem 3.4.3, the conclusion

follows.



55

Theorem 3.4.3 and Corollary 3.4.4 show that we can apply Jacobian SDP

relaxations to solve (3.2) in finite steps under some generic assumptions on the

feasible set. This result is more interesting theoretically than practically since the

additional polynomials '
j

’s are complicated and the preordering instead of the

quadratic module is used in (2.17). Generically, Lasserre’s SDP relaxation [39] has

finite convergence as shown in [52]. Therefore, in practice, we can use Lasserre’s

SDP relaxation (Algorithm 2.1.3) to solve (3.2).

In the end of this section, we would like to point out that s⇤ in (3.2) might

not be achievable in some cases. If the infimum of a constrained polynomial opti-

mization is an asymptotic value, some approaches are proposed in [15, 79]. Hence,

we can use these approaches to solve (3.2). However, the finite convergence for

these methods is unknown.

3.5 Numerical Experiments

In this section, we present some numerical examples to illustrate the e�-

ciency of our method for solving (3.1). We use the software GloptiPoly [20] to solve

(3.12) and (3.13).

3.5.1 Unconstrained Rational Optimization

In the following, Example 3.5.1 and 3.5.2 are constructed fromMotzkin polynomial,

M(x
1

, x

2

, x

3

) = x

4

1

x

2

2

+ x

2

1

x

4

2

+ x

6

3

� 3x2

1

x

2

2

x

2

3

, (3.14)

which is well-known nonnegative on R3 but not SOS [65].

Example 3.5.1. ([54, Example 2.9])

Consider the minimization problem

min
x

1

,x

2

2R
r(x

1

, x

2

) :=
x

4

1

x

2

2

+ x

2

1

x

4

2

+ 1

x

2

1

x

2

2

. (3.15)

Taking x

3

= 1 in Motzkin polynomial, we have x

4

1

x

2

2

+ x

2

1

x

4

2

+ 1 � 3x2

1

x

2

2

� 0 on

R2. Since r(1, 1) = 3, we have r

⇤ = 3 and there are four minimizers (±1,±1).



56

However, x4

1

x

2

2

+ x

2

1

x

4

2

+ 1� r

⇤
x

2

1

x

2

2

is not SOS. To solve this problem, the authors

in [54] used the generalized big ball technique. More specifically, it is assumed

that one of the minimizers of (3.15) lies in a ball B(c, ⇢) and the numerator and

denominator of r(x
1

, x

2

) have no common real roots on B(c, ⇢). However, it is not

easy in general to determine the radius ⇢ of this ball. We now solve this problem

by using our method without the assumptions in [54].

We first reformulate the problem as the following polynomial optimization

problem by homogenization.
8
><

>:

min
x

0

,x

1

,x

2

2R
p̃(x

0

, x

1

, x

2

) := x

4

1

x

2

2

+ x

2

1

x

4

2

+ x

6

0

s.t. q̃(x
0

, x

1

, x

2

) := x

2

1

x

2

2

x

2

0

= 1.

By using Jacobian SDP relaxation, we need 3 more equations:

'

1

(x
0

, x

1

, x

2

) = 4x3

1

x

3

2

x

2

0

(x2

1

� x

2

2

) = 0

'

2

(x
0

, x

1

, x

2

) = 4x
1

x

2

2

x

0

(2x4

1

x

2

2

+ x

2

1

x

4

2

� 3x6

0

) = 0

'

3

(x
0

, x

1

, x

2

) = 4x2

1

x

2

x

0

(x4

1

x

2

2

+ 2x2

1

x

4

2

� 3x6

0

) = 0

By the condition x

2

1

x

2

2

x

2

0

= 1, the above three equations can be simplified as

'

1

(x
0

, x

1

, x

2

) = x

2

1

� x

2

2

= 0

'

2

(x
0

, x

1

, x

2

) = 2x4

1

x

2

2

+ x

2

1

x

4

2

� 3x6

0

= 0

'

3

(x
0

, x

1

, x

2

) = x

4

1

x

2

2

+ 2x2

1

x

4

2

� 3x6

0

= 0

We need to solve the following new problem
8
>>>><

>>>>:

min
x

0

,x

1

,x

2

2R
x

4

1

x

2

2

+ x

2

1

x

4

2

+ x

6

0

s.t. x2

1

x

2

2

x

2

0

� 1 = 0, 2x4

1

x

2

2

+ x

2

1

x

4

2

� 3x6

0

= 0,

x

2

1

� x

2

2

= 0, x

4

1

x

2

2

+ 2x2

1

x

4

2

� 3x6

0

= 0.

Using GloptiPoly to solve this problem, we get the following results:

• N = 3. The optimum is 3, but extracting global optimal solutions fails.

• N = 4. We get 8 optimal solutions for (x
0

, x

1

, x

2

): (±1,±1,±1) from which

we get all the optimal solutions to original problem: (±1,±1).



57

Example 3.5.2. ([54, Example 2.10])

Consider the following problem

min
x

1

,x

2

2R
r(x

1

, x

2

) :=
p(x

1

, x

2

)

q(x
1

, x

2

)
=

x

4

1

+ x

2

1

+ x

6

2

x

2

1

x

2

2

. (3.16)

Taking x

2

= 1 in Motzkin polynomial (3.14), we have r

⇤ = 3 with 4 minimizers

(±1,±1). The denominator and numerator have real common root (0, 0). In [54],

the SDP relaxation extracts 6 solutions, 2 of which are not global minimizers but

the common roots of p(x) and q(x). We reformulate it as the following polynomial

optimization and solve it by Jacobian SDP relaxation.
8
><

>:

min
x

0

,x

1

,x

2

2R
p̃(x

0

, x

1

, x

2

) := x

4

1

x

2

0

+ x

2

1

x

4

0

+ x

6

2

s.t. q̃(x
0

, x

1

, x

2

) := x

2

1

x

2

2

x

2

0

= 1.
(3.17)

Using GloptiPoly, we can still extract 8 solutions of (3.17) and obtain all the 4

optimal solutions of (3.16) as in Example 3.5.1. In our method, the constraint

q̃(x
0

, x

1

, x

2

) = 1 prevents extracting the common real roots of p(x) and q(x). This

example also shows that condition (b) in Theorem 3.2.8 is only su�cient but not

necessary. ⇤

The following example is generated from the Robinson polynomial

x

6

1

+ x

6

2

+ x

6

3

� (x4

1

x

2

2

+ x

2

1

x

4

2

+ x

4

1

x

2

3

+ x

2

1

x

4

3

+ x

4

2

x

2

3

+ x

2

2

x

4

3

) + 3x2

1

x

2

2

x

2

3

which is nonnegative on R3 but not SOS [65].

Example 3.5.3. Consider the following problem

min
x

1

,x

2

2R
r(x

1

, x

2

) :=
p(x

1

, x

2

)

q(x
1

, x

2

)
=

x

6

1

+ x

6

2

+ 3x2

1

x

2

2

+ 1

x

2

1

(x4

2

+ 1) + x

2

2

(x4

1

+ 1) + (x4

1

+ x

4

2

)
.

(3.18)

Taking x

3

= 1 in Robinson polynomial, we have p(x
1

, x

2

) � q(x
1

, x

2

) � 0 on

R2. Since r(1, 1) = 1, r⇤ = 1. We reformulate it as the following polynomial

optimization problem:
8
><

>:

min
x

0

,x

1

,x

2

2R
x

6

1

+ x

6

2

+ 3x2

1

x

2

2

x

2

0

+ x

6

0

s.t. x2

1

(x4

2

+ x

4

0

) + x

2

2

(x4

1

+ x

4

0

) + x

2

0

(x4

1

+ x

4

2

) = 1.
(3.19)

The numerical results we obtain are:



58

• For relaxation order N = 5, 6, we get the optimum s

⇤ = 1, but the minimizers

can not be extracted.

• For relaxation order N = 7, we extract 20 approximate minimizers of (3.19):

(�0.0000,±0.8909,±0.8909), (±0.8909,±0.8909,�0.0000),

(±0.8909,�0.0000,±0.8909), (±0.7418,±0.7418,±0.7418).

The above solutions correspond to the exact minimizers of (3.19):
✓
0,± 1

6

p
2
,± 1

6

p
2

◆
,

✓
± 1

6

p
2
,± 1

6

p
2
, 0

◆
,

✓
± 1

6

p
2
, 0,± 1

6

p
2

◆
,

✓
± 1

6

p
6
,± 1

6

p
6
,± 1

6

p
6

◆
.

There are four solutions with the first coordinate x

⇤
0

= 0 which indicate that

minimum r

⇤ = 1 is also an asymptotic value at 1 by Theorem 3.2.8. In fact,

lim
x

1

,x

2

!1

p(x
1

, x

2

)

q(x
1

, x

2

)
= 1 = r

⇤
.

From the other 16 solutions, according to (a) in Theorem 3.2.8, we get 8 global

minimizers of (3.18): (±1,±1), (±1, 0), (0,±1). ⇤

Example 3.5.4. ([54, Example 3.4])

Suppose function  (z) and �(z) are monic complex univariate polynomials

of degree m such that:

 (z) = z

m +  

m�1

z

m�1 + · · ·+  

1

z +  

0

�(z) = z

m + �

m�1

z

m�1 + · · ·+ �

1

z + �

0

It is shown in [30] that finding nearest GCDs becomes the following global mini-

mization of rational functions

min
x

1

,x

2

2R

p(x
1

, x

2

)

q(x
1

, x

2

)
=

| (x
1

+ ix

2

)|2 + |�(x
1

+ ix

2

)|2
m�1P
k=0

(x2

1

+ x

2

2

)k
(3.20)

where deg(p) = 2m and deg(q) = 2(m� 1). Let

 (z) = z

3 + z

2 � 2, �(z) = z

3 + 1.5z2 + 1.5z � 1.25.



59

By using our method, for relaxation order N = 5, we get four optimal solutions of

the polynomial optimization reformulated from (3.20) by homogenization:

(0.7050,�0.7073,±0.7763), (�0.7050, 0.7073,±0.7763).

The corresponding minimizers of (3.20) are

(x
1

⇡ �1.0033, x
2

⇡ ±1.1011) (x
1

⇡ �1.0033, x
2

⇡ ±1.1011).

Hence there are two global minimizers (�1.0033,±1.1011) which are the same as

in [54]. The minimum is r⇤ ⇡ 0.0643. ⇤

3.5.2 Constrained Rational Optimization

In this subsection, we give some numerical examples of minimizing of ratio-

nal functions with polynomial inequality constraints. We first consider an example

for which p(x) and q(x) have common roots.

Example 3.5.5. ([54]) Consider the following optimization problem

8
><

>:

min
x2R

r(x) :=
1 + x

(1� x

2)2

s.t. (1� x

2)3 � 0.

(3.21)

As shown in [54], the global minimum r

⇤ = 27

32

⇡ 0.8438 and the minimizer x⇤ =

�1

3

⇡ �0.3333. If the denominator and numerator have common roots, SDP

relaxation method proposed in [54] can not guarantee to converge to the minimum.

Reformulating the above problem by homogenization, we get
8
>>>><

>>>>:

min
x

0

,x

1

2R
x

4

0

+ x

1

x

3

0

s.t. x4

0

� 2x2

1

x

2

0

+ x

4

1

= 1,

x

6

0

� 3x4

0

x

2

1

+ 3x2

0

x

4

1

� x

6

1

� 0, x

0

� 0.

(3.22)

For relaxation order N = 7, by the Jacobian SDP relaxation, we get the optimal

solution of (3.22) x̃⇤ ⇡ (1.0607,�0.3536) and the minimum s

⇤ ⇡ 0.8437. According

to (a) in Theorem 3.2.8, we find the minimizer of (3.21): x⇤ ⇡ �0.3334. ⇤



60

We next consider Example 3.5.3 with some constraints.

Example 3.5.6. Consider optimization

r

⇤ := min
x2S

p(x
1

, x

2

)

q(x
1

, x

2

)
=

x

6

1

+ x

6

2

+ 3x2

1

x

2

2

+ 1

x

2

1

(x4

2

+ 1) + x

2

2

(x4

1

+ 1) + (x4

1

+ x

4

2

)
.

(3.23)

(1) S = {(x
1

, x

2

) 2 R2 | x2

1

+ x

2

2

 1}. It is easy to check that S is closed at

1. By Theorem 3.2.4, r⇤ is equal to the optimum of the following polynomial

optimization problem:
8
>>>><

>>>>:

s

⇤ = min
x

0

,x

1

,x

2

2R
x

6

1

+ x

6

2

+ 3x2

1

x

2

2

x

2

0

+ x

6

0

s.t. x2

1

(x4

2

+ x

4

0

) + x

2

2

(x4

1

+ x

4

0

) + x

2

0

(x4

1

+ x

4

2

) = 1,

x

2

0

� x

2

1

� x

2

2

� 0, x

0

� 0.

(3.24)

Using Jacobian SDP relaxation, for relaxation order N = 7, we get r⇤ = s

⇤ = 1

and four approximate minimizers:

(0.8909,±0.8909,�0.0000), (0.8909,�0.0000,±0.8909),

which correspond to the exact minimizers:
✓

1
6

p
2
,± 1

6

p
2
, 0

◆
,

✓
1
6

p
2
, 0,± 1

6

p
2

◆
.

Then we get four minimizers of (3.23): (±1, 0), (0,±1).

(2) S = B(0,
p
2)c = {(x

1

, x

2

) 2 R2 | x2

1

+ x

2

2

� 2}. S is noncompact but closed at

1. By Theorem 3.2.4, we solve the following equivalent optimization:
8
>>>><

>>>>:

s

⇤ := min
x

0

,x

1

,x

2

2R
x

6

1

+ x

6

2

+ 3x2

1

x

2

2

x

2

0

+ x

6

0

s.t. x2

1

(x4

2

+ x

4

0

) + x

2

2

(x4

1

+ x

4

0

) + x

2

0

(x4

1

+ x

4

2

) = 1,

x

2

1

� x

2

2

� 2x2

0

� 0, x

0

� 0.

(3.25)

For relaxation order N = 7, we get the minimum s

⇤ = r

⇤ = 1 and 8 approxi-

mate minimizers of (3.25):

(0.0002,±0.8909,±0.8909), (0.7418,±0.7419,±0.7419),



61

which correspond to the exact minimizers:
✓
0,± 1

6

p
2
,± 1

6

p
2

◆
,

✓
1
6

p
6
,± 1

6

p
6
,± 1

6

p
6

◆
.

The former solutions indicate that r⇤ = 1 is also an asymptotic values at 1.

From the latter solutions, we get four minimizers of (3.23): (±1,±1).

⇤

Chapter 3, in full, is a reprint of the material as it appears in the article

“Minimizing Rational Functions by Exact Jacobian SDP relaxation Applicable to

Finite Singularities” by Feng Guo, Li Wang and Guangming Zhou, in the Journal

of Global Optimization in volume 58, No.2(2014). The dissertation author was one

of the authors of this paper.



Chapter 4

Semi-Infinite Polynomial

Programming

4.1 Introduction

Consider the Semi-Infinite Polynomial Programming (SIPP) problem:

(P ) :

8
<

:
f

⇤ := min
x2X

f(x)

s.t. g(x, u) � 0, 8 u 2 U,

(4.1)

where
X = {x 2 Rn | ✓

1

(x) � 0, · · · , ✓
m

2

(x) � 0},

U = {u 2 Rp | h
1

(u) � 0, · · · , h
m

1

(u) � 0}.
Here f(x), ✓

i

(x) are polynomials in x 2 Rn, h
j

(u) are polynomials in u 2 Rp and

g(x, u) is a polynomial in (x, u) 2 Rn ⇥ Rp. Throughout this chapter, we assume

that X is compact and U is an infinite index set, i.e., there are infinitely many

constraints in (P ). The SIPP problem is a special subclass of the semi-infinite

programming (SIP) which has many applications, e.g., Chebyshev approximation,

maneuverability problems, some mathematical physics problems and so on [21, 44].

There are various algorithms for SIP problems based on discretization schemes of

U , such as central cutting plane method [12], Newton’s method [73], SQP methods

[75] and the like. Most of algorithms for SIP problems, however, are only locally

62



63

convergent or globally convergent under some strong assumptions, like convexity

or linearity, few of them are specially designed for SIPP problems exploiting fea-

tures of polynomial optimization problems. Parpas and Rustem [60] proposed a

discretization like method to solve min-max polynomial optimization problems,

which can be reformulated as SIPP problems. Using a polynomial approximation

and an appropriate hierarchy of semidefinite relaxations, Lasserre presented an

algorithm to solve the generalized SIPP problems in [41].

One main di�culty in solving a SIP problem is that there are infinite num-

ber of constraints. How to deal with the infinite index set U is the key di↵erence

among various SIP algorithms. Exchange method is commonly used in SIP com-

putation, and is regarded as the most e�cient method on solving SIP problems

[21, 44]. The general steps of exchange method are determined algorithmically as

follows [21]. Given a subset U
k

✓ U in iteration k with |U
k

| < 1, compute at least

one global solution x

k of

min
x2X

f(x) s.t. g(x, u) � 0, 8 u 2 U

k

, (4.2)

and solutions u
1

, . . . , u

t

of the subproblem

g

k := min
u2U

g(xk

, u). (4.3)

If gk � 0, stop; otherwise, set U
k+1

= U

k

[ {u
1

, . . . , u

t

} and go to next iteration.

Therefore, to successfully apply exchange method to solve SIPP problems, we

need to globally solve subproblems (4.2)-(4.3) and extract global minimizers in

each iteration. In next section, we will present the SDP relaxation methods for

SIPP problems in detail and discuss the global convergence properties.

4.2 SIPP with Compact Index Set

The two SDP relaxation algorithms shown in Sections 2.1 and 2.2 provide

strong tools to globally solve polynomial optimization problems with finitely many

constraints. In this section, we will discuss how to use them to solve SIPP problems

globally.



64

4.2.1 A Semidefinite Relaxation Algorithm

The specific description of exchange method with SDP relaxations for SIPP

problems is shown in the following.

Algorithm 4.2.1. (Semidefinite Relaxations for SIPP)

Input: Objective function f(x), constraint function g(x, u), semi-algebraic sets

X, U , tolerance ✏ and maximum iteration number k

max

.

Output: Global optimum f

⇤ and set X⇤ of minimizers of problem (P ).

Step 1 Choose random u

0

2 U and let U
0

= {u
0

}. Set X⇤ = ; and k = 0.

Step 2 Use Algorithm 2.1.3 to solve

(P
k

) :

8
<

:
f

min

k

:= min
x2X

f(x)

s.t. g(x, u) � 0, 8 u 2 U

k

.

(4.4)

Let S
k

= {xk

1

, · · · , xk

rk
} be the set of the global minimizers of problem (P

k

).

Step 3 Set U
k+1

= U

k

. For i = 1, · · · , r
k

,

(a) Use Algorithm 2.2.3 to solve

(Qk

i

) : g

k

i

:= min
u2U

g(xk

i

, u). (4.5)

Let T k

i

=
�
u

k

i,j

, j = 1, · · · , tk
i

 
be the set of global minimizers of (Qk

i

).

(b) Update U

k+1

= U

k+1

S
T

k

i

.

(c) If gk
i

� �✏, then update X

⇤ = X

⇤S{xk

i

}.

Step 4 If X⇤ 6= ; or k > k

max

, stop;

otherwise, set k = k + 1 and go back to Step 2.

Remark 4.2.2. Subproblems (P
k

) and (Qk

i

) in Algorithm 4.2.1 can be solved

by both Algorithm 2.1.3 and 2.2.3. Finite convergence can be guaranteed by

Algorithm 2.2.3 which, however, produces SDPs of size exponentially depending

on the number of the constraints. Since U
k

enlarges as k increases, subproblem (P
k

)



65

consequently becomes hard to be solved by Algorithm 2.2.3. Therefore, we solve

(P
k

) by Algorithm 2.1.3 which is also proved to have finite convergence generically

[52]. Because the index set U is fixed and compact, Algorithm 2.2.3 is a better

choice for solving (Qk

i

).

4.2.2 Global Convergence Properties

In this subsection, we discuss the global convergence properties of Algorithm

4.2.1.

Proposition 4.2.3 (Monotonic Property).

For optimal values of (P
k

) in (4.4), we have

f

min

1

 · · ·  f

min

k

 f

min

k+1

 · · ·  f

⇤
. (4.6)

Proof. Because

U

1

✓ · · · ✓ U

k

✓ U

k+1

✓ · · · ✓ U.

So the feasible sets of (P
k

) and (P ) satisfy

K ✓ · · · ✓ K

k+1

✓ K

k

✓ · · · ✓ K

1

,

we obtain the conclusion.

We have the following convergence analysis of Algorithm 4.2.1:

Theorem 4.2.4. Suppose that X is compact. If at each step k,

(a) subproblems (P
k

) and each (Qk

i

) are globally solved,

(b) intermediate results S

k

and at least one T

k

i

are nonempty,

then either Algorithm 4.2.1 stops with solutions to (P ) in a finite number of iter-

ations or for any sequence {xk} with x

k 2 S

k

, there exists at least one limit point

as k increases and each of them solves (P ).



66

Proof. At each step, if (a) holds, then global optima f

min

k

and g

k

i

are obtained and

monotonic property (4.6) is true. Additionally, if (b) is satisfied, then Algorithm

4.2.1 either stops in a finite number of iterations or proceeds without interrupt as

k increases.

If Algorithm 4.2.1 stops at k-th iteration with k < k

max

, then g

k

i

� 0 for

some i, which implies that the associated x

k

i

is feasible for (P ). Moreover, xk

i

is a

global minimizer of (P ) by (4.6). Now we assume g

k

i

< 0 for each k and i which

implies T k

i

6✓ U

k

and U

k

⇢ U

k+1

for all k. The following argument is based on the

proof of [21, Theorem 7.2]. For any x 2 X, define

v(x) := min{g(x, u), u 2 U}.

Obviously, v(x) is continuous. Fix a sequence {xk} with x

k 2 S

k

, then a limit point

x̄ 2 X always exists sinceX is compact. Without loss of generality, assume xk ! x̄.

By (4.6), it su�ces to prove that x̄ is feasible for (P ). Let v(xk) = g(xk

, u

k) and

X

k

be the feasible set of (P
k

). Since U
k

⇢ U

k+1

, we have x̄ 2 \1
k=1

X

k

and therefore

g(x̄, uk) � 0. Then

v(x̄) = v(xk) + [v(x̄)� v(xk)]

= g(xk

, u

k) + [v(x̄)� v(xk)]

� [g(xk

, u

k)� g(x̄, uk)] + [v(x̄)� v(xk)].

By the continuity of v and g, we have v(x̄) � 0, i.e., x̄ is feasible for (P ).

If X and U are compact, then the optima of (P
k

) and (Qk

i

) are achievable.

By applying SDP relaxations Algorithm 2.1.3 and Algorithm 2.2.3 to (P
k

) and

(Qk

i

), (a) and (b) are generically satisfied no matter what initial U
0

we choose. In

section 4.3, we will consider the case when U is noncompact for which the conver-

gence of Algorithm 4.2.1 might fail if we choose an arbitrary initial U
0

(Example

4.3.1). We will deal with this issue by the technique of homogenization.

4.2.3 Numerical Experiments

This subsection presents some numerical examples to illustrate the e�-

ciency of Algorithm 4.2.1. The computation is implemented with Matlab 7.12 on



67

a Dell 64-bit Linux Desktop running CentOS (5.6) with 8GB memory and Intel(R)

Core(TM) i7 CPU 860 2.8GHz. Algorithm 4.2.1 is implemented with software

Gloptipoly [20]. SeDuMi [74] is used as a standard SDP solver. Throughout the

computational experiments, we set parameters k
max

= 15, ✏ = 10�4 in Algorithm

4.2.1. After Algorithm 4.2.1 terminates, let X⇤ be the output set of global mini-

mizers of (P ), f ⇤ be the value of the objective function f over X⇤ and Iter be the

number of iterations Algorithm 4.2.1 has proceeded. Let

Obj2 := min
x

⇤2X⇤
min
u2U

g(x⇤
, u).

By the discussion in Subsection 4.2.1, the global minimizers in X

⇤ can be certified

by inequality Obj2 � �✏.

(1) Examples of small SIPP problems

We test some small examples taken from [3, Appendix A]. For nonpoly-

nomial functions, e.g., sine, cosine or exponential function, we use their Taylor

polynomial approximations. Let X = [�100, 100]n. Test results are reported in

Table 4.1. The Iter column in Table 4.1 indicates that Algorithm 4.2.1 takes a very

few steps to find the global minimizer which are certified by the Obj
2

column.

Table 4.1: Computational results for small SIPP problems.

No. x

⇤ Iter f

⇤ Obj
2

Example 4.2.5 (-0.0008, 0.4999) 2 -0.2504 6.4744e-7
Example 4.2.6 (-0.7500, -0.6180) 3 0.1945 3.5305e-7
Example 4.2.7 (-0.1514, -1.7484, 2.5725) 2 9.6973 7.8870e-5
Example 4.2.8 (-1,0,0) 2 1 6.2320e-5
Example 4.2.9 (0,0) 2 0 -1.1578e-12
Example 4.2.10 (0,0,0) 2 4 -4.7070e-12
Example 4.2.11 (0,0) 2 0 1.9285e-12

Example 4.2.5. Let U = [0, 2] and

f(x) =
1

3
x

2

1

+
1

2
x

1

+ x

2

2

� x

2

, g(x, u) = �x

2

1

� 2x
1

x

2

u

2 + sin(u).

Replace the function sin(u) by u� u

3

6

.



68

Example 4.2.6. Let U = [0, 1] and

f(x) =
1

3
x

2

1

+ x

2

2

+
1

2
x

1

, g(x, u) = �(1� x

2

1

u

2)2 + x

1

u

2 + x

2

2

� x

2

.

Example 4.2.7. Let U = [0, 1] and

f(x) = x

2

1

+ x

2

2

+ x

2

3

, g(x, u) = �x

1

� x

2

e

x

3

u � e

2u + 2 sin(4u).

Replace function e

x

3

u by 1 + x

3

u + 1

2

x

2

3

u

2 + 1

6

x

3

3

u

3 + 1

24

x

4

3

u

4, function e

2u by 1 +

2u+ 2u2 + 4

3

u

3 + 2

3

u

4, and function sin(4u) by 4u� 32

3

u

3.

Example 4.2.8. Let U = [0, 1]2 and

f(x) = x

2

1

+x

2

2

+x

2

3

, g(x, u) = �x

1

(u
1

+u

2

2

+1)�x

2

(u
1

u

2

�u

2

2

)�x

3

(u
1

u

2

+u

2

2

+u

2

)�1.

Example 4.2.9. Let U = [0, ⇡] and

f(x) = x

2

2

� 4x
2

, g(x, u) = �x

1

cos(u)� x

2

sin(u) + 1.

Replace function sin(u) by u� 1

6

u

3 and cos(u) by 1� 1

2

u

2 + 1

24

u

4.

Example 4.2.10. Let U = [0, ⇡] and

f(x) = (x
1

+ x

2

� 2)2 + (x
1

� x

2

)2 + 30min(0, (x
1

� x

2

))2,

g(x, u) = �x

1

cos(u)� x

2

sin(u) + 1.

Like in [41], let x
3

= min(0, (x
1

�x

2

)), then f(x) = (x
1

+x

2

�2)2+(x
1

�x

2

)2+30x2

3

.

We add new constraints x2

3

= (x
1

� x

2

)2 and x

3

� 0 in X. Replace function sin(u)

by u� u

3

6

+ y

5

5!

.

Example 4.2.11. Let U = [�1, 1] and

f(x) = x

2

, g(x, u) = �2x2

1

u

2 + u

4 � x

2

1

+ x

2

.

(2) Examples of random SIPP problems

We test the performance of Algorithm 4.2.1 on some random SIPP problems

which are generated as follows.



69

Table 4.2: Computational results for random SIPP problems

No. n p d

1

d

2

Inst U time (min, max) Obj
2

(min, max)
1 5 3 3 2 10 U

1

0:00:17 0:00:28 1.3479 2.0779
2 5 3 2 2 10 U

3

0:00:06 0:00:12 -9.5236e-9 0.6343
3 6 2 2 2 10 U

1

0:00:19 0:00:22 1.7144 2.1185
4 6 3 2 2 10 U

1

0:00:19 0:00:24 1.0450 1.7220
5 7 3 3 2 10 U

3

0:00:26 0:00:59 3.7797e-8 0.3198
6 8 3 2 2 10 U

1

0:04:52 0:05:18 1.3213 1.8438
7 9 2 2 2 5 U

1

0:45:26 0:49:28 1.5850 2.2807
8 9 2 2 2 5 U

3

0:44:40 0:52:49 1.7521e-8 2.9119e-7
9 5 2 2 2 5 U

2

0:57:17 1:04:02 1.3116e-6 1.6986e-5

Let x = (x
1

, . . . , x

n

) and u = (u
1

, . . . , u

p

). Given d 2 N, let [x]
d

and [u]
d

be

the vectors of monomials with degree up to d in R[x] and R[u], respectively. Denote
h[x]

d

, [u]
d

i as the vector obtained by stacking [x]
d

and [u]
d

. Let f(x) = ⌘

T [x]
2d

1

be

the objective function where ⌘ is a Gaussian random vector of matching dimension.

Let g(x, u) = ⌧�h[x]
d

2

, [u]
d

2

iTMh[x]
d

2

, [u]
d

2

i, where ⌧ is a random number in [1, 10]

and M is a random positive semidefinite matrix of matching dimension. Let X =

B

n

(0, 1) be the unit ball in Rn and U varies among U

1

= B

p

(0, 1), U

2

= [�1, 1]p

and U

3

= �
p

where �
p

is the p dimensional simplex.

The results using Algorithm 4.2.1 are shown in Table 4.2 where the Inst col-

umn denotes the number of randomly generated instances, the consumed computer

time is in the format hr:mn:sc with hr (resp. mn, sc) standing for the consumed

hours (resp. minutes, seconds). The column Obj
2

shows that Algorithm 4.2.1

successfully solves all the random problems.

4.2.4 Application of SIPP to PMI problems

In this subsection, we apply Algorithm 4.2.1 to the following optimization

problem with polynomial matrix inequality (PMI):

f

min := min
x2Rn

f(x) s.t. G(x) ⌫ 0, (4.7)

where f(x) 2 R[x] and G(x) is an m⇥m symmetric matrix with entries G
ij

(x) 2
R[x]. PMI is a special SIPP problem and has been widely arising in control system

design, e.g., static output feedback design problems [19]. PMI is also interesting



70

in optimization theory, e.g., SDP representation of a convex semialgebra set [48].

Some traditional methods for globally solving (4.7) are based on branch-and-bound

schemes and alike [14] which, as pointed in [19], are computationally expensive.

Recently, some global methods based on SDP relaxations are proposed in [23, 32]

as well as in [14] in a dual view.

Define

X := {x 2 Rn | G(x) ⌫ 0} and U := {u 2 Rm | kuk2 = 1}.

Then problem (4.7) is equivalent to the following SIPP problem

8
<

:
min
x2Rn

f(x)

s.t. g(x, u) = u

T

G(x)u � 0, 8 u 2 U.

(4.8)

Assume the feasible set X is compact, then we can apply Algorithm 4.2.1 to solve

SIPP problem (4.8). The following examples show that Algorithm 4.2.1 is e�cient

to solve PMI problems.

Example 4.2.12. Consider the following PMI problem:
8
>>>>>><

>>>>>>:

min
x2R2

f(x) = x

1

+ x

2

s.t. G(x) =

2

664

4� x

2

1

� x

2

2

x

1

x

2

x

1

x

2

2

� x

1

x

1

x

2

x

2

x

1

x

2

x

2

1

� x

2

3

775 ⌫ 0.
(4.9)

The characteristic polynomial of matrix G(x) is:

p(t, x) = det(tI
3

�G(x)) = t

3 � g

1

(x)t2 + g

2

(x)t� g

3

(x)

where

g

1

(x) = 4� x

1

� x

2

,

g

2

(x) = x

2

1

x

2

� 4x
2

� x

4

1

+ x

1

x

2

� x

4

2

� 2x2

1

x

2

2

+ x

1

x

2

2

� 4x
1

+ 3x2

1

+ 3x2

2

,

g

3

(x) = x

2

1

x

2

+ 4x
1

x

2

+ 2x2

1

x

2

2

+ x

1

x

2

2

� x

3

1

x

2

� 4x3

1

+ x

2

2

x

3

1

� x

3

2

x

1

� 4x3

2

� x

4

1

� x

4

2

+ x

5

1

+ x

5

2

+ x

2

1

x

3

2

.



71

Figure 4.1: Feasible region of PMI problem (4.9) in Example 4.2.12.

According to Descartes’ rule of signs [19], the feasible set of (4.9) is

�
x 2 R2 | g

1

(x) � 0, g

2

(x) � 0, g

3

(x) � 0
 

which is shown shaded in Figure 4.1. We first reformulate (4.9) as a SIPP problem

(4.8), then apply Algorithm 4.2.1 to it. After 5 iterations, we get a global mini-

mizer x⇤ ⇡ (�1.2853,�1.2763) which is certified by Obj
2

= �1.4523⇥ 10�4. The

accuracy of this result can be seen from Figure 4.1. ⇤

Example 4.2.13. Consider the following PMI problem:
8
>>>>>>>>><

>>>>>>>>>:

min
x2R2

f(x) = x

1

� x

2

s.t. G(x) =

2

666664

10� x

2

1

� x

2

2

x

1

�x

2

1

+ x

2

x

2

+ 3

x

1

x

2

2

x

1

� x

2

2

x

1

�x

2

1

+ x

2

x

1

� x

2

2

x

1

+ 2x2

2

x

2

x

2

+ 3 x

1

x

2

x

2

2

3

777775
⌫ 0.

(4.10)

Similar to Example 4.2.12, we obtain the feasible set of (4.10) by Descartes’ rule of

signs [19] and show it shaded in Figure 4.2. Applying Algorithm 4.2.1 to the refor-

mulation (4.8) of problem (4.10), we get global minimizer x⇤ ⇡ (0.5093,�1.0678)



72

Figure 4.2: Feasible region of PMI problem (4.10) in Example 4.2.13.

and minimum f(x⇤) ⇡ 1.5771 which are certified by Obj
2

= �9.4692⇥10�5. From

Figure 4.2, we can see this result is accurate. ⇤

We end this section by pointing out a trick hidden in the reformulation

(4.8) of (4.7). PMI optimization problem (4.7) can be regarded as a SIPP problem

with noncompact index set e
U = Rm. Since the constraint function g(x, u) is

homogenous in u, we can restrict e
U to the unit sphere U . By Theorem 4.2.4, to

guarantee the convergence of Algorithm 4.2.1, the optimum of (Qk

i

) needs to be

achievable for each k which might fail if U is noncompact. The reformulation (4.8)

of (4.7) gives us a clue for dealing with SIPP with noncompact U by the technique

of homogenization. We will go into detail about this technique in next section.

4.3 SIPP with Noncompact Index Set

In this section, by homogenization technique, we reformulate the SIPP prob-

lem (P ) with noncompact index set U as the problem ( eP ) with compact index set

e
U which can be globally solved by Algorithm 4.2.1. Under the assumption that

set U is closed at 1 which is a generic condition, we show the two problems are



73

equivalent.

4.3.1 Motivation

At some k-th iteration of Algorithm 4.2.1, if the global minima g

k

i

of (Qk

i

)

are not achievable for all xk

i

2 S

k

, then either

case 1. T

k

i

= ;, then U

k+1

can not be updated and consequently S

k+1

remains the

same as S
k

, or

case 2. U

k+1

is updated by T

k

i

which consists of KKT points or singular points of

the feasible set of (Qk

i

) rather than global minimizers.

As we have discussed in Subsection 4.2.1, the convergence property of Algorithm

4.2.1 might fail or wrong global minimizers might be outputted if the above cases

happen. For example,

Example 4.3.1. Consider the following problem:
8
>>>><

>>>>:

f

⇤ := min
x

1

,x

2

2R
� x

1

� x

2

s.t. x
1

(u2

1

� 1) + (x
2

� u

1

u

2

)2 � 0, 8 u

1

, u

2

2 R,

x

2

1

+ x

2

2

= 2.

(4.11)

We choose u

1

, u

2

such that x

2

� u

1

u

2

= 0. By letting u

1

tend to infinity and 0

respectively, we obtain that x
1

= 0 for any feasible point x. Therefore, there are

only two feasible points (0,±
p
2) and the global minimum is �

p
2 with minimizer

(0,
p
2).

We claim that Algorithm 4.2.1 fails to solve (4.11) if we set initial U
0

=

{(u0

1

, u

0

2

)} such that

(u0

1

, u

0

2

) /2 U := {u 2 R2 | u
1

u

2

=
p
2, u2

1

< 2
p
2� 2}.

We prove it in the following. First, we show that for any (u
1

, u

2

) 2 R2 there always

exists (x̄
1

, x̄

2

) with x̄

1

> 0, x̄
2

> 0 such that

g(x̄, u) := x̄

1

(u2

1

� 1) + (x̄
2

� u

1

u

2

)2 � 0, x̄

2

1

+ x̄

2

2

= 2.



74

This is true if g((0,
p
2), u) > 0 or g((

p
2, 0), u) > 0 by the continuity of g(x, u).

Now we assume

g((0,
p
2), u)  0 and g((

p
2, 0), u)  0.

From the first inequality, we get u

1

u

2

=
p
2. Then by the second inequality, we

have u

2

1

 1�
p
2 which is a contradiction. Therefore, the following subproblem

(P
0

) :

8
<

:

f

min

0

:= min
x2R2

� x

1

� x

2

s.t. x2

1

+ x

2

2

= 2, g(x, u) � 0, 8 u

1

, u

2

2 R,

has global minimizer S
0

= {(x̃
1

, x̃

2

)} with x̃

1

> 0, x̃
2

> 0. Then we solve subprob-

lem

(Q0) : g

0 := min
u2R2

g(x̃, u) = x̃

1

(u2

1

� 1) + (x̃
2

� u

1

u

2

)2. (4.12)

Obviously, g0 = �x̃

1

is not achievable. Applying Jacobian SDP relaxation

Algorithm 2.2.3, we obtain T

0 = {(0, 0)} which consists of the only critical point

(0, 0) of map g(x0

, u) with critical value x̃

2

2

� x̃

1

. If x̃2

2

� x̃

1

� 0, then Algorithm

4.2.1 terminates and outputs X⇤ = {(x̃
1

, x̃

2

)} which is a wrong solution. Now we

assume x̃

2

2

� x̃

1

< 0 and continue. By Algorithm 4.2.1, U
1

= {(ū
1

, ū

2

), (0, 0)}.
Then we go to the next iteration and solve

(P
1

) :

8
>>>><

>>>>:

f

min

1

:= min
x2R2

� x

1

� x

2

s.t. x2

2

� x

1

� 0, g(x, ū) � 0,

x

2

1

+ x

2

2

= 2.

Let K
1

be the feasible set of (P
1

), then

case 1. There exists no (x̄
1

, x̄

2

) 2 K

1

with x̄

1

> 0, x̄
2

> 0. The global minimizer

of (P
1

) is S

1

= {(0,
p
2)} and g

1 := min
u2R2

g((0,
p
2), u) � 0. Therefore, the

correct global solution of (4.11) is outputted. In this case, by the continuity

of g(x, u), we have g((0,
p
2), ū)  0 and g((1, 1), ū) < 0. From these two

inequalities, we get (ū
1

, ū

2

) 2 U .

case 2. There exists (x̄
1

, x̄

2

) 2 K

1

with x̄

1

> 0, x̄
2

> 0. Then the global minimizer

of (P
1

) is S

1

= {(x̂
1

, x̂

2

)} with x̂

1

> 0, x̂
2

> 0. Similar to g

0, g1 is not



75

achievable and U

1

= {(ū
1

, ū

2

), (0, 0)} can not be updated. Consequently,

the same process will be repeated in the following iterations.

Now we have proved the claim. Since the set U is a subset of a Zariski closed set

of R2, Algorithm 4.2.1 fails if we choose a generic initial U
0

= {(u
1

, u

2

)}. ⇤

Hence, Algorithm 4.2.1 might fail to solve SIPP problem (P ) if the optima

of subproblems (Qk

i

) can not be reached for all xk

i

2 S

k

which might happen when U

is noncompact. As we have mentioned at the end of Section 4.2, the reformulation

(4.8) of (4.7) sheds light on this issue by the technique of homogenization. In the

following, we apply this technique to general SIPP problem (P ) with noncompact

index set U .

4.3.2 Equivalent Reformulation by Homogenization

For given polynomial q(u) 2 R[u] := R[u
1

, . . . , u

p

] with degree d = deg(q),

let q̃(ũ) = u

d

0

q(u/u
0

) be the homogenization of q(u) where ũ = (u
0

, u) 2 Rp+1.

Define

g̃(x, ũ) = u

dg

0

g(x, u/u
0

) where d

g

= deg
u

g(x, u)

and
U := {u 2 Rp|h

1

(u) � 0, · · · , h
m

1

(u) � 0},

U

0

:= {ũ 2 Rp+1|h̃
1

(ũ) � 0, · · · , h̃
m

1

(ũ) � 0, u
0

> 0, kũk2 = 1},
e
U := {ũ 2 Rp+1|h̃

1

(ũ) � 0, · · · , h̃
m

1

(ũ) � 0, u
0

� 0, kũk2 = 1}.

Proposition 4.3.2. q(u) � 0 on U if and only if q̃(ũ) � 0 on closure(U
0

).

Proof. “If ” direction. Suppose there exists v 2 U such that q(v) < 0. For i 2 [m
1

],

we have h

i

(v) � 0. Let ṽ =

✓
1p

1+kvk2
,

vp
1+kvk2

◆
, then

h̃

i

(ṽ) = (1 + kvk2)�
deg(hi)

2

h

i

(v) � 0, i 2 [m
1

],

which implies ṽ 2 U

0

and

q̃(ṽ) = (1 + kvk2)� d
2

q(v) < 0.

It contradicts the assumption that q̃(ṽ) � 0 on closure(U
0

).



76

“Only if” direction. Let ṽ = (v
0

, v) 2 closure(U
0

), then there exists a

sequence ṽ

k = (vk
0

, v

k) 2 U

0

such that lim
k!1

(vk
0

, v

k) = (v
0

, v) with v

k

0

> 0 for all k.

We have

h

i

(vk/vk
0

) = (vk
0

)� deg(hi)
h̃

i

(ṽk) � 0, i 2 [m
1

], for all k.

Therefore, the sequence {vk/vk
0

} 2 U and q(vk/vk
0

) � 0. Since q is continuous,

q̃(ṽ) = lim
k!1

q̃(ṽk) = lim
k!1

(vk
0

)dq(vk/vk
0

) � 0,

which shows q̃(ṽ) � 0 on closure(U
0

). The proof is completed.

Corollary 4.3.3. A polynomial q(u) � 0 on Rp if and only if q̃(ũ) � 0 on {ũ 2
Rp+1 | kũk2 = 1}.

Proof. From the proof of Proposition 4.3.2, we can see the inequality u

0

> 0 can

be removed from U

0

such that q(u) � 0 on Rp if and only if q̃(ũ) � 0 on

closure({ũ 2 Rp+1 | kũk2 = 1}) = {ũ 2 Rp+1 | kũk2 = 1}.

By Proposition 4.3.2, we have the following equivalent reformulation of

problem (P ):

(P
0

) :

8
<

:
f

⇤ := min
x2X

f(x)

s.t. g̃(x, ũ) � 0, 8 ũ 2 closure(U
0

).

Some natural questions arise: how to get the explicit expression of semi-algebraic

set closure(U
0

)? Is it true that closure(U
0

) = e
U? Clearly, we have

closure(U
0

) ✓ e
U. (4.13)

Unfortunately, the equality does not always hold even if set U is compact (cf. [49,

Example 5.2]).

Definition 4.3.4. ([49]) U is closed at 1 if closure(U
0

) = e
U .



77

Since it might be hard to express closure(U
0

) for a given particular SIPP

problem, we consider to solve the following problem in general:

( eP ) :

8
<

:
f̃

⇤ := min
x2X

f(x)

s.t. g̃(x, ũ) � 0, 8 ũ 2 e
U.

As set eU is compact, the semidefinite relaxation Algorithm 4.2.1 in Section 4.2 can

successfully solve this problem with any arbitrary initial U
0

. Next we investigate

the relation between problem (P ) and problem ( eP ).

We define
M = {x 2 Rn|g(x, u) � 0, 8 u 2 U}.
f
M = {x 2 Rn|g̃(x, ũ) � 0, 8 ũ 2 e

U}.

Proposition 4.3.5. We have f
M ✓ M and the equality holds if U is closed at 1.

Proof. By Proposition 4.3.2, we have

M = {x 2 Rn|g̃(x, ũ) � 0, 8 ũ 2 closure(U
0

)}.

Then the conclusion follows due to the relationship (4.13).

Consequently, we have

Theorem 4.3.6. f̃ ⇤ � f

⇤ and the equality holds if U is closed at 1.

Corollary 4.3.3 shows that U = Rp is closed at 1 and therefore,

Corollary 4.3.7. The following two problems are equivalent:
8
<

:
min
x2X

f(x)

s.t. g(x, u) � 0, 8 u 2 Rp

,

8
<

:
min
x2X

f(x)

s.t. g̃(x, ũ) � 0, 8 ũ 2 e
U,

where e
U = {ũ 2 Rp+1 | kũk2 = 1}.

Example 4.3.1 (Continued). We reformulate the problem (4.11) as
8
>>>><

>>>>:

f̃

⇤ := min
x

1

,x

2

2R
� x

1

� x

2

s.t. x
1

(u2

1

� u

2

0

) + (x
2

u

2

0

� u

1

u

2

)2 � 0, 8 ũ 2 e
U,

x

2

1

+ x

2

2

= 2,

(4.14)



78

where e
U = {(u

0

, u

1

, u

2

) 2 R3 | u2

0

+ u

2

1

+ u

2

2

= 1}. By choosing u

0

= 1, we know

f
M ◆ {(0,±

p
2)} which, obviously, are feasible to (4.14). Therefore, f̃ ⇤ = f

⇤ =

�
p
2 with minimizer (0,

p
2). Choosing U

0

= {(1, 0, 0)} in Algorithm 4.2.1, Figure

4.3 shows the feasible regions of subproblems (P
k

) for iterations k = 0, 1, · · · , 5.
Let h(x) = x

2

1

+ x

2

2

� 2. At i-th iteration, the feasible region is defined by

K

i

:= {x 2 R2 | h(x) = 0, g
0

(x) � 0, . . . , g
i

(x) � 0}

where
g

0

= �x

1

+ x

2

2

,

g

1

⇡ 0.026046� 0.319630x
1

� 0.19679x
2

+ 0.371710x2

2

,

g

2

⇡ 0.054893� 0.115770x
1

� 0.18811x
2

+ 0.161160x2

2

,

g

3

⇡ 0.068650� 0.049084x
1

� 0.14992x
2

+ 0.081854x2

2

,

g

4

⇡ 0.072498� 0.025711x
1

� 0.12039x
2

+ 0.049977x2

2

,

g

5

⇡ 0.073368� 0.018151x
1

� 0.10683x
2

+ 0.038891x2

2

.

For each i, the feasible region K

i

is the intersection of the left parts of the circle

x

2

1

+x

2

2

= 2 devided by hyperbolas g
i

(x) = 0, i = 0, · · · , 5. From Figure 4.3, we can

see the minimizers of subproblems (P
k

) converge to (0,
p
2) which is the minimizer

of problem (4.11). ⇤

We would like to point out that if U is not closed at 1, we might have

f̃

⇤
> f

⇤. For example,

Example 4.3.8. Consider the following SIPP problem:
8
>>>><

>>>>:

f

⇤ := min
x2R

x

2

s.t. x(u
1

� u

2

+ 1) � 0, 8 u 2 U,

x 2 [1, 2],

(4.15)

where

U = {u 2 R2 : u

2

1

(u
1

� u

2

)� 1 = 0}.

Since for all u 2 U ,

g(1, u) = u

1

� u

2

+ 1 =
1

u

2

1

+ 1 > 0,



79

Figure 4.3: Feasible region of Example 4.3.1 at each iteration.

x

⇤ = 1 is feasible and furthermore the minimizer of problem (4.15). Hence, f ⇤ = 1.

By definition,

e
U = {ũ 2 R3 : u

2

1

(u
1

� u

2

)� u

3

0

= 0, u

0

� 0, u

2

0

+ u

2

1

+ u

2

2

= 1}.

As is shown in [16, 49], U is not closed at 1 because there exists a point (0, 0, 1) 2
e
U but (0, 0, 1) /2 closure(U

0

). Since for any x 2 [1, 2],

g̃(x, (0, 0, 1)) = �x < 0,

we have f
M = ;. Therefore, f̃ ⇤ = 1 > f

⇤. ⇤

Example 4.3.8 shows that the problem ( eP ) might not be equivalent to (P )

when set U is not closed at 1. In the following, however, we show that U is

closed at 1 in general. In other words, U is closed at 1 if it is defined by generic

polynomials.

4.3.3 On the Generality of Closedness at 1

Suppose that U is not closed at 1, then by definition there exists (0, ū) 2
e
U\closure(U

0

) with 0 6= ū 2 Rp. Let ĥ

i

denote the homogeneous part of highest



80

degree of h
i

for i 2 [m
1

] and

{j
1

, . . . , j

`

} := {j 2 [m
1

] | h̃
j

(0, ū) = ĥ

j

(ū) = 0}.

Then ū is a solution to the polynomial system

ĥ

j

1

(ū) = · · · = ĥ

j`
(ū) = kūk2 � 1 = 0. (4.16)

The Jacobian matrix of the system (4.16) at ū is

A(u) :=

2

666664

@

ˆ

hj
1

@u

1

(ū) · · · @

ˆ

hj
1

@up
(ū)

...
...

...
@

ˆ

hj`
@u

1

(ū) · · · @

ˆ

hj`
@up

(ū)

2ū
1

· · · 2ū
p

3

777775

By Lemma 3.3.2, we have

Lemma 4.3.9. Suppose U is not closed at 1 and ` < p, then rank A(u) < `+ 1.

Let ĥ
m

1

+1

:= kũk2 � 1 and J(ū) = {j
1

, . . . , j

`

,m

1

+ 1}.
In Section 3.3, we review the definitions and properties of resultants and dis-

criminants for homogenous polynomials. Given inhomogeneous polynomial h(x) 2
R[x], let h̃ denote the homogenization of h, i.e., h̃ = h̃(x̃) = x

deg(h)

0

h(x/x
0

). For

inhomogeneous polynomials f
0

, f

1

, . . . , f

n

2 R[x], the resultant Res(f
0

, f

1

, . . . , f

n

)

is defined to be

Res(f̃
0

, f̃

1

, . . . , f̃

n

).

For inhomogeneous polynomials f

1

, . . . , f

m

2 R[x] with m  n, the discriminant

�(f
1

, . . . , f

m

) is defined as

�(f̃
1

, . . . , f̃

m

).

Then, we have

Proposition 4.3.10. Let f

0

, f

1

, . . . , f

n

2 R[x] be inhomogeneous polynomials.

Suppose the polynomial system

f

0

(x) = f

1

(x) = · · · = f

n

(x) = 0

has a solution in Cn, then

Res(f
0

, f

1

, . . . , f

n

) = 0.



81

Proof. If the polynomial system

f

0

(x) = f

1

(x) = · · · = f

n

(x) = 0

has a solution u 2 Cn, then the polynomial system

f̃

0

(x̃) = f̃

1

(x̃) = · · · = f̃

n

(x̃) = 0

has a nonzero solution (1, u) 2 Cn+1. The conclusion follows by the properties of

resultant for homogeneous polynomials .

Proposition 4.3.11. Let m  n. The polynomial system

f

1

(x) = · · · = f

m

(x) = 0

has a solution u 2 Cn such that the Jacobian matrix of f
1

, . . . , f

m

is rank deficient

at u if and only if the polynomial system

f̃

1

(x̃) = · · · = f̃

m

(x̃) = 0

has a solution (1, u) 2 Cn+1 such that the Jacobian matrix of f̃
1

, . . . , f̃

m

is rank

deficient at (1, u).

Proof. Let d
i

= deg
x

(f
i

), f
i,j

denote the homogenous part of degree j of polynomial

f

i

and f̃

i,j

= x

di�j

0

f

i,j

for i = 1, · · · ,m and j = 0, · · · , d
i

. Denote

r
x

:=

⇢
@

@x

1

, · · · , @

@x

n

�
and r

x̃

:=

⇢
@

@x

0

,

@

@x

1

, · · · , @

@x

n

�
.

The “if” direction is implied by

@f̃

i

@x

j

(1, u) =
@f

i

@x

j

(u), i = 1, · · · ,m, j = 1, · · · , n. (4.17)

Next we prove the “only if” direction. By assumption, there exists a set of n

scalars c
1

, . . . , c

n

, not all zero, such that

mX

i=1

c

i

(r
x

f

i

)(u) = 0

which means
mX

i=1

c

i

 
diX

j=1

@f

i,j

@x

k

(u)

!
= 0, k = 1, · · · , n.



82

Then by Euler’s Homogeneous Function Theorem, we have

0 =
nX

k=1

mX

i=1

c

i

 
diX

j=1

@f

i,j

@x

k

(u)u
k

!

=
mX

i=1

c

i

 
diX

j=1

nX

k=1

@f

i,j

@x

k

(u)u
k

!

=
mX

i=1

c

i

 
diX

j=1

jf

i,j

(u)

!

=
mX

i=1

c

i

 
diX

j=1

jf

i,j

(u) +
diX

j=0

(d
i

� j)f
i,j

(u)�
diX

j=0

(d
i

� j)f
i,j

(u)

!

=
mX

i=1

c

i

 
d

i

diX

j=0

f

i,j

(u)�
diX

j=0

@f̃

i,j

x

0

(1, u)

!

=
mX

i=1

c

i

 
d

i

f

i

(u)� @f̃

i

@x

0

(1, u)

!

= �
mX

i=1

c

i

@f̃

i

@x

0

(1, u).

By combining (4.17), we obtain

mX

i=1

c

i

(r
x̃

f̃

i

)(1, u) = 0

which concludes the proof.

By Proposition 4.3.11 and the properties of discriminant for homogeneous

polynomials, we have

Proposition 4.3.12. Let m  n and f

1

, . . . , f

m

2 R[x] be inhomogeneous polyno-

mials. Suppose that the polynomial system

f

1

(x) = · · · = f

m

(x) = 0

has a solution in Cn at which the Jacobian matrix of f
1

, . . . , f

m

is rank deficient,

then

�(f
1

, . . . , f

m

) = 0.



83

Remark 4.3.13. The reverses of Proposition 4.3.10 and Proposition 4.3.12 are

not necessarily true.

By Proposition 4.3.10 and Proposition 4.3.12, we have

Theorem 4.3.14. If U is not closed at 1, then

(a) If |J(ū)| > p, then for every subset {j
1

, · · · , j
p+1

} ✓ J(ū),

Res(ĥ
j

1

, · · · , ĥ
jp+1

) = 0.

(b) If |J(ū)|  p, then �(ĥ
j

1

, · · · , ĥ
j`
, ĥ

m

1

+1

) = 0.

The above theorem shows that if U is defined by some generic polynomials,

then it is closed at 1. Hence, the assumption that U is closed at 1 is a generic

condition. Therefore, SIPP problems (P ) and ( eP ) are equivalent in general.

4.3.4 Numerical Experiment

In this subsection, we present one example to show the e�ciency of homog-

enization method on SIPP with noncompact infinite index set U .

Example 4.3.15. Consider the following problem

8
<

:
min
x2X

f(x) = x

2

1

+ x

2

2

s.t. g(x, u) = x

1

u

1

+ u

2

+ x

2

� 0, 8 u 2 U,

(4.18)

where

X := {(x
1

, x

2

) 2 R2 | x2

1

+x

2

2

 4} and U := {(u
1

, u

2

) 2 R2 | u3

1

+u

3

2

�3u
1

u

2

� 0}.

The set U is shown shaded in Figure 4.4. Since u
1

+u

2

+1 = 0 is the asymptote of

the curve u3

1

+u

3

2

�3u
1

u

2

= 0, the inequality g(x, u) � 0 for all u 2 U requires x
1

= 1

and x

2

� 1. Therefore, the feasible set of (4.18) is {x 2 R2 | x
1

= 1, 1  x

2


p
3}

and the global minimizer is x⇤ = (1, 1). It is easy to see that for a given (x̄
1

, x̄

2

) 2
X, the global minimum of g(x̄, u) over U is either �1 or finite but not achievable.

Therefore, by the discussion at the beginning of this section, Algorithm 4.2.1 might



84

Figure 4.4: The feasible region U in Example 4.3.15.

fail to solve (4.18). For example, if we set U
0

= {(1,�1)}, then we get minimizer

X

⇤ = {(0.5000, 0.4999)}; if U
0

= {(1, 0)}, then X

⇤ = {(0.0262, 0.3086)⇥ 10�5}.
Now we use the homogenization technique to reformulate (4.18). First, we

show that U is closed at 1. Let

U

0

= {(u
0

, u

1

, u

2

) 2 R3|u3

1

+ u

3

2

� 3u
1

u

2

u

0

� 0, u

2

0

+ u

2

1

+ u

2

2

= 1, u

0

> 0},
e
U = {(u

0

, u

1

, u

2

) 2 R3|u3

1

+ u

3

2

� 3u
1

u

2

u

0

� 0, u

2

0

+ u

2

1

+ u

2

2

= 1, u

0

� 0}.

By definition, if U is not closed at 1, then there exists (0, ū
1

, ū

2

) 2 e
U\closure(U

0

)

which implies

ū

3

1

+ ū

3

2

= 0, ū

2

1

+ ū

2

2

= 1.

Therefore

(ū
1

, ū

2

) 2
( 

�
p
2

2
,

p
2

2

!
,

 p
2

2
,�

p
2

2

!)
.

Let

ũ

k

:=

 
p
2"

k

,�
r

1

2
� "

k

,

r
1

2
� "

k

!
, û

k

:=

 
p
2"

k

,

r
1

2
� "

k

,�
r

1

2
� "

k

!
.

Let "
k

! 0, then ũ

k

, û

k

2 U

0

for all k large enough and

lim
k!1

ũ

k

=

 
0,�

p
2

2
,

p
2

2

!
, lim

k!1
û

k

=

 
0,

p
2

2
,�

p
2

2

!
.



85

This shows U is closed at 1. Therefore, by homogenization, we reformulate (4.18)

as the following equivalent problem

8
<

:
min
x2X

x

2

1

+ x

2

2

s.t. g̃(x, ũ) = x

1

u

1

+ u

2

+ x

2

u

0

� 0, ũ 2 e
U.

By Algorithm 4.2.1, we find a global minimizer

x

⇤ ⇡ (0.9999, 0.9998) with Obj
2

= �9.8148⇥ 10�7

,

after several iterations. ⇤

Chapter 4, in full, is a reprint of the material as it appears in the arti-

cle “Semidefinite Relaxations for Semi-Infinite Polynomial Programming” by Li

Wang and Feng Guo, in Computational Optimization and Applications, Volume

58, No.1(2014). The dissertation author was the first author of this paper.



Chapter 5

Best Rank-1 Tensor

Approximations

5.1 Introduction

Let m and n

1

, . . . , n

m

be positive integers. A tensor of order m and dimen-

sion (n
1

, . . . , n

m

) is an array F that is indexed by integer tuples (i
1

, . . . , i

m

) with

1  i

j

 n

j

for j = 1, . . . ,m, i.e.,

F = (F
i

1

,...,im)1i

1

n

1

,...,1imnm .

The space of all such tensors with complex (resp., real) entries is denoted as

Cn

1

⇥···⇥nm (resp., Rn

1

⇥···⇥nm). Tensors of order m are often called m-tensors. When

m equals 1 or 2, they are regular vectors or matrices. When m = 3 (resp., 4), they

are called cubic (resp., quartic) tensors. A tensor F 2 Rn

1

⇥···⇥nm is symmetric if

n

1

= · · · = n

m

and

F
i

1

,...,im = F
j

1

,...,jm if (i
1

, . . . , i

m

) ⇠ (j
1

, . . . , j

m

),

where ⇠ means that (i
1

, . . . , i

m

) is a permutation of (j
1

, . . . , j

m

). We define the

norm of a tensor F as:

kFk =

 
n

1X

i

1

=1

· · ·
nmX

im=1

|F
i

1

,...,im |2
!

1/2

. (5.1)

86



87

If m = 1, kFk is vector 2-norm, and if m = 2, kFk is matrix Frobenius norm.

Every tensor can be expressed as a linear combination of outer products of

vectors. For given vectors u
1

2 Cn

1

, . . . , u

m

2 Cnm , their outer product u
1

⌦· · ·⌦u

m

is the tensor in Cn

1

⇥···⇥nm such that for all 1  i

j

 n

j

(j = 1, . . . ,m)

(u
1

⌦ · · ·⌦ u

m

)
i

1

,...,im = (u
1

)
i

1

· · · (u
m

)
im .

For every F of order m, there exist tuples (ui,1

, . . . , u

i,m) (i = 1, . . . , r), with each

u

i,j 2 Cnj
, j = 1, . . . ,m, such that

F =
rX

i=1

u

i,1 ⌦ · · ·⌦ u

i,m

. (5.2)

The smallest r in the above is called the rank of F and is denoted as rankF .

When rankF = r, (5.2) is called a rank decomposition of F , and we say that F is

a rank-r tensor.

Tensor problems have wide applications in chemometrics, signal processing

and high order statistics [8]. For the theory and applications of tensors, we refer

to Kolda and Bader’s survey [33] and Landsberg’s book [38]. When m � 3, de-

termining ranks of tensors and computing rank decompositions are NP-hard (cf.

Hillar and Lim [22]). We refer to Brachat et al. [25], Bernardi et al. [1], Oeding and

Ottaviani [57] for tensor decompositions. When r > 1, the problem of finding the

best rank-r approximation may be ill-posed, because a best rank-r approximation

might not exist, as discovered by De Silva and Lim [72]. However, a best rank-1

approximation always exists. It is also NP-hard to compute best rank-1 approxi-

mations. This chapter studies best real rank-1 approximation for real tensors. In

the following, we will review some existing work for symmetric and nonsymmetric

tensors separately.

5.1.1 Nonsymmetric Tensors

Given a tensor F 2 Rn

1

⇥···⇥nm , we say that a tensor B is the best rank-1

approximation of F if it is a minimizer of the least squares problem

min
X2Rn

1

⇥···⇥nm
,rank(X )=1

kF � Xk2. (5.3)



88

This is equivalent to a homogeneous polynomial optimization problem. For con-

venience of description, we define the homogeneous polynomial

F (x1

, . . . , x

m) =
X

1i

1

n

1

,...,1imnm

F
i

1

,...,im(x
1)

i

1

· · · (xm)
im , (5.4)

which is in x

1 2 Rn

1

, . . . , x

m 2 Rnm . Note that F (x1

, . . . , x

m) is a multi-linear form

(a form is a homogeneous polynomial), since it is linear in each x

j. De Lathauwer,

De Moor and Vandewalle [37] proved the following result.

Theorem 5.1.1. ([37, Theorem 3.1]) For a tensor F 2 Rn

1

⇥···⇥nm, the rank-1

approximation problem (5.3) is equivalent to the maximization problem
8
<

:
max

x

12Rn
1

,...,x

m2Rnm
|F (x1

, . . . , x

m)|

s.t. kx1k = · · · = kxmk = 1,
(5.5)

that is, a rank-1 tensor � · (u1 ⌦ · · · ⌦ u

m) with � 2 R and each kuik = 1, is a

best rank-1 approximation for F if and only if (u1

, · · · , um) is a global maximizer

of (5.5) and � = F (u1

, . . . , u

m). Moreover, it also holds that

kF � � · (u1 ⌦ · · ·⌦ u

m)k2 = kFk2 � �

2

.

By Theorem 5.1.1, to find a best rank-1 approximation, it is enough to

find a global maximizer of the multi-linear optimization problem (5.5). There

exist methods on finding rank-1 approximation, like the alternating least squares

(ALS), truncated high order singular value decomposition (T-HOSVD), higher-

order power method (HOPM), and Quasi-Newton methods. We refer to Zhang

and Golub [82], De Lathauwer, De Moor and Vandewalle [36, 37], Savas and Lim

[69] and the references therein. An advantage of these methods is that they can

be easily implemented. These kinds of methods typically generate a sequence that

converges to a locally optimal rank-1 approximation or even just a stationary point.

Even for the lucky cases that they get globally optimal rank-1 approximations, it

is usually very di�cult to verify the global optimality by these methods.

5.1.2 Symmetric Tensors

Let S

m(Rn) be the space of real symmetric tensors of order m and in di-

mension n. For a given F 2 S

m(Rn), we say that B is a best rank-1 approximation



89

of F if it is a minimizer of the optimization problem

min
X2Rn⇥···⇥n

, rankX=1

kF � Xk2. (5.6)

When F is symmetric, Zhang, Ling and Qi [80] showed that (5.6) has a global

minimizer that belongs to S

m(Rn), i.e., (5.6) has an optimizer that is a symmetric

tensor. It is possible that a best rank-1 approximation of a symmetric tensor might

not be symmetric. But there is always at least one global minimizer of (5.6) that is a

symmetric rank-1 tensor. Therefore, for convenience, by best rank-1 approximation

for symmetric tensors, we mean best symmetric rank-1 approximation.

A symmetric tensor in S

m(Rn) is rank-1 if and only if it equals �·(u⌦· · ·⌦u)

for some � 2 R and u 2 Rn. For convenience, denote u

⌦m := u ⌦ · · · ⌦ u (u is

repeated m times). In the spirit of Theorem 5.1.1 and the work [80], (5.6) is

equivalent to the optimization problem

max
x2Rn

|f(x)| s.t. kxk = 1, (5.7)

where f(x) := F (x, · · · , x). Therefore, if u is a global maximizer of (5.7) and

� = f(u), then � ·u⌦m is a best rank-1 approximation of F . Clearly, to solve (5.7),

we need to solve two maximization problems:

(I) max
x2Sn�1

f(x), (II) max
x2Sn�1

�f(x), (5.8)

where Sn�1 := {x 2 Rn : kxk = 1} is the n � 1 dimensional unit sphere. Suppose

u

+

, u

� are global maximizers of (I), (II) in (5.8) respectively. By Theorem 5.1.1,

if |f(u+)| � |f(u�)|, f(u+) · (u+)⌦m is the best rank-1 approximation; otherwise,

f(u�) · (u�)⌦m is the best.

For an introduction to symmetric tensors, we refer to Comon, Golub, Lim

and Mourrain [58]. Finding best rank-1 approximations for symmetric tensors is

also NP-hard when m � 3. There exist methods for computing rank-1 approxima-

tions for symmetric tensors. When HOPM is directly applied, it is often unreliable

for attaining a good symmetric rank-1 approximation, as pointed out in [37]. To

get good symmetric rank-1 approximations, Kofidis and Regalia [31] proposed a

symmetric higher-order power method (SHOPM), Zhang, Ling and Qi [80] pro-

posed a modified power method. These methods can be easily implemented. Like



90

for nonsymmetric tensors, they often generate a locally optimal rank-1 approxi-

mation or even just a stationary point. Even for the lucky cases that a globally

optimal rank-1 approximation is found, these methods typically have di�culty to

verify its global optimality. The problem (5.7) is related to extreme Z-eigenvalues

of symmetric tensors. Recently, Hu, Huang and Qi [24] proposed a method for

computing extreme Z-eigenvalues for symmetric tensors with even orders. It is to

solve a sequence of semidefinite relaxations based on sum of squares representa-

tions.

5.2 Semidefinite Relaxation Algorithms

To find best rank-1 tensor approximations is equivalent to solving some

homogeneous polynomial optimization problems with sphere constraints. In this

section, we show how to solve them by using semidefinite relaxations based on sum

of squares representations, and study their properties.

5.2.1 Symmetric Tensors of Even Orders

Let F 2 S

m(Rn) with m = 2d even. To get a best rank-1 approximation of

F , we need to solve (5.7), i.e., to maximize |f(x)| over the unit sphere. For this

purpose, we need to find the maximum and minimum of f(x) over Sn�1.

First, we consider the maximization problem:

f

max

:= max f(x) s.t. x

T

x = 1. (5.1)

The form f is in x := (x
1

, . . . , x

n

), determined by the tensor F as

f(x) =
X

1i

1

,...,imn

F
i

1

,...,imxi

1

· · · x
im . (5.2)

Let [xd] be the monomial vector:

[xd] :=
h
x

d

1

x

d�1

1

x

2

· · · x

d�1

1

x

n

· · · x

d

n

i
T

.



91

Its length is
�
n+d�1

d

�
. The outer product [xd][xd]T is a symmetric matrix with

entries being monomials of degree m. Let A
↵

be symmetric matrices such that

[xd][xd]T =
X

↵2Nn
m

A

↵

x

↵

.

For y 2 RNn
m , define the matrix-valued function M(y) as

M(y) :=
X

↵2Nn
m

A

↵

y

↵

.

Then M(y) is a linear pencil in y (i.e., M(y) is a linear matrix-valued function in

y). Let f
↵

, g

↵

be the coe�cients such that

f :=
X

↵2Nn
m

f

↵

x

↵

, g := (xT

x)d =
X

↵2Nn
m

g

↵

x

↵

.

For y 2 RNn
m , define

hf, yi :=
X

↵2Nn
m

f

↵

y

↵

, hg, yi :=
X

↵2Nn
m

g

↵

y

↵

.

A semidefinite relaxation of (5.1) is (cf. [50, 55])

f

sdp

max

:= max
y2RNnm

hf, yi s.t. M(y) ⌫ 0, hg, yi = 1. (5.3)

It can be shown that the the dual of the above is

min � s.t. �g � f 2 ⌃
n,m

. (5.4)

In the above, ⌃
n,m

denotes the cone of SOS forms of degree m and in variables

x

1

, . . . , x

n

. Clearly, f sdp

max

� f

max

. When f

sdp

max

= f

max

, we say that the semidefinite

relaxation (5.3) is tight.

The dual (5.4) is a linear optimization problem with SOS type constraints.

Recently, Hu, Huang and Qi [24] proposed an SOS relaxation method for com-

puting the largest or smallest Z-eigenvalues for symmetric tensors of even orders.

Since not every nonnegative form is SOS, they consider a sequence of nesting SOS

relaxations. The problem (5.4) is equivalent to the lowest order relaxation in [24,

Section 4]. In practice, the relaxation (5.4) is often tight, and it is frequently used



92

because of its simplicity. The SOS relaxation (5.4) was also proposed in [50, Sec-

tion 1] for optimizing forms over unit spheres. Its approximation quality was also

analyzed in [50].

The feasible set of (5.3) is compact, because

Trace(M(y))  hg, yi = 1.

So (5.3) always has a maximizer, say, y⇤. If rankM(y⇤) = 1, then (5.3) is a tight

relaxation. In such case, there exists v+ 2 Sn�1 such that y⇤ = [(v+)m], because of

the structure of M(y). Then, it holds that

f(v+) = hf, y⇤i = f

sdp

max

� f

max

.

This implies that v+ is a global maximizer of (5.1). The vector v+ can be chosen

numerically as follows. Let s 2 [n] be the index such that

y

⇤
2des

= max
1in

y

⇤
2dei

.

Then choose v

+ as the normalization:

û = (y⇤
(2d�1)es+e

1

, . . . , y

⇤
(2d�1)es+en

), v

+ = û/kûk. (5.5)

If rank(M(y⇤)) > 1 but M(y⇤) satisfies a further rank condition, then (5.3) is also

tight (cf. [55, Section 2.2]). In computations, no matter (5.3) is tight or not, the

vector v+ selected as in (5.5) can be used as an approximation for a maximizer of

(5.1).

Second, we consider the minimization problem:

f

min

:= min f(x) s.t. x

T

x = 1. (5.6)

Similarly, a semidefinite relaxation of (5.6) is

f

sdp

min

:= min
z2RNnm

hf, zi s.t. M(z) ⌫ 0, hg, zi = 1. (5.7)

Its dual optimization problem can be shown to be

max ⌘ s.t. f � ⌘g 2 ⌃
n,m

. (5.8)



93

Let z⇤ be a minimizer of (5.7). Similarly, if rank(M(z⇤)) = 1, then (5.7) is a tight

relaxation. In such case, a global minimizer v� can be found as follows: let t 2 [n]

be the index such that

z

⇤
2det

= max
1in

z

⇤
2dei

,

then choose v

� as the normalization:

ũ = (z⇤
(2d�1)et+e

1

, . . . , z

⇤
(2d�1)et+en

), v

� = ũ/kũk. (5.9)

When rankM(z⇤) > 1, (5.7) might not be a tight relaxation. In computations, the

vector v� can be used as an approximation for a minimizer of (5.6).

Combining the above and inspired by Theorem 5.1.1, we get the following

algorithm.

Algorithm 5.2.1. (Rank-1 Approximations for Even Symmetric Tensors)

Input: A symmetric tensor F 2 S

m(Rn) with an even order m = 2d.

Output: A rank-1 tensor � · u⌦m, with � 2 R and u 2 Sn�1.

Procedure:

Step 1 Solve the semidefinite relaxation (5.3) and get an optimizer y

⇤.

Step 2 Choose v

+ as in (5.5). If rankM(y⇤) = 1, let u+ = v

+; otherwise, apply a

nonlinear optimization method to get a better solution u

+ of (5.1), by using

v

+ as a starting point. Let �+ = f(u+).

Step 3 Solve the semidefinite relaxation (5.7) and get an optimizer z

⇤.

Step 4 Choose v

� as in (5.9). If rankM(z⇤) = 1, let u� = v

�; otherwise, apply a

nonlinear optimization method to get a better solution u

� of (5.6), by using

v

� as a starting point. Let �� = f(u�).

Step 5 If |�+| � |��|, output (�, u) := (�+, u+); otherwise, output (�, u) :=

(��, u�).

Remark: In Algorithm 5.2.1, if rankM(y⇤) = rankM(z⇤) = 1, then the output � ·
u

⌦m is a best rank-1 approximation of F . If this rank condition is not satisfied, then



94

� ·u⌦m might not be best. The approximation qualities of semidefinite relaxations

(5.3) and (5.7) are analyzed in [50, Section 2].

When m = 2 or (n,m) = (3, 4), the semidefinite relaxations (5.3) and (5.7)

are always tight. This is because every bivariate, or ternary quartic, nonnegative

form is always SOS (cf. [65]). For other cases of (n,m), this is not necessarily

true. However, this does not occur very often in applications. In our numerical

experiments, the semidefinite relaxations (5.3) and (5.7) are often tight.

We want to know when the ranks of M(y⇤) and M(z⇤) are equal to one.

Clearly, when they have rank one, the relaxations (5.3) and (5.7) must be tight.

Interestingly, the reverse is often true, although it might be false sometimes (for

very few cases). This fact was observed in the field of polynomial optimization.

However, we are not able to find suitable references for explaining this fact. Here,

we give a natural geometric interpretation for this phenomena, for lack of suitable

references. Let @⌃
n,m

be the boundary of the cone ⌃
n,m

.

Theorem 5.2.2. Let f
max

, f

sdp

max

, f

min

, f

sdp

min

, y

⇤
, z

⇤ be as above.

(i) Suppose f

max

= f

sdp

max

. If f

max

· g � f is a smooth point of @⌃
n,m

, then

rankM(y⇤) = 1.

(ii) Suppose f

min

= f

sdp

min

. If f � f

min

· g is a smooth point of @⌃
n,m

, then

rankM(z⇤) = 1.

Proof. (i) Let µ be the uniform probability measure on the unit sphere Sn�1, and

let y

µ :=
R
[xm]dµ 2 RNn

m . Then, we can show that M(yµ) � 0 and hg, yµi = 1.

This shows that yµ is an interior point of (5.3). So, the strong duality holds, that

is, the optimal values of (5.3) and (5.4) are equal, and (5.4) achieves the optimal

value f sdp

max

. The form � := f

max

·g�f belongs to ⌃
n,m

, because f
max

= f

sdp

max

. Let u

be a maximizer of f on Sn�1. Then, �(u) = 0. So, � lies on the boundary @⌃
n,m

.

Let ŷ = [um]. Denote by R[x]
m

the space of all forms in x and of degree m. Then

H
ŷ

:= {p 2 R[x]
m

: hp, ŷi = 0}

is a supporting hyperplane of ⌃
n,m

through �, because

hp, ŷi = p(u) � 0, 8 p 2 ⌃
n,m



95

and h�, ŷi = �(u) = 0. Because M(y⇤) ⌫ 0 and hp, y⇤i � 0 for all p 2 ⌃
n,m

, the

hyperplane

H
y

⇤ := {p 2 R[x]
m

: hp, y⇤i = 0}

also supports ⌃
n,m

through �. Since � is a smooth point of @⌃
n,m

, there is a

unique supporting hyperplane H through �. So, y⇤ = ŷ = [um]. This implies that

M(y⇤) = M([um]) = [ud][ud]T has rank one, where d = m/2.

(ii) The proof is the same as for (i).

By Theorem 5.2.2, when semidefinite relaxations (5.3) and (5.7) are tight,

we often have rankM(y⇤) = rankM(z⇤) = 1. This fact was observed in our

numerical experiments. The reason is that the set of nonsmooth points of the

boundary @⌃
n,m

has a strictly smaller dimension than @⌃
n,m

.

5.2.2 Symmetric Tensors of Odd Orders

Let F 2 S

m(Rn) with m = 2d� 1 odd. To get a best rank-1 approximation

of F , we need to solve the optimization problem (5.7). Since the form f , defined

as in (5.2), has the odd degree m, (5.7) is equivalent to (5.1). We can not directly

apply a semidefinite relaxation to solve (5.1). For this purpose, we use a trick that

is introduced in [50, Section 4.2].

Let f
max

, f

min

be as in (5.1), (5.6) respectively. Since f is an odd form,

f

max

= �f

min

� 0.

Let x
n+1

be a new variable, in addition to x = (x
1

, . . . , x

n

). Let

x̃ := (x
1

, . . . , x

n

, x

n+1

), f̃(x̃) := f(x)x
n+1

.

Then f̃(x̃) is a form of even degree 2d. Consider the optimization problem:

f̃

max

:= max
x̃2Rn+1

f̃(x̃) s.t. kx̃k = 1. (5.10)

As shown in [50, Section 4.2], it holds that

f

max

=
p
2d� 1

�
1� 1

2d

��d

f̃

max

.



96

Since f̃ is an even form, the semidefinite relaxation for (5.10) is

f̃

sdp

max

:= max
y2Nn+1

2d

hf̃ , yi s.t. M(y) ⌫ 0, hg, yi = 1. (5.11)

The vector y is indexed by (n+ 1)-dimensional integer vectors.

Let y

⇤ be a maximizer of (5.11), which always exists because the feasible

set of (5.11) is compact. If rankM(y⇤) = 1, then (5.11) is a tight relaxation, and a

global maximizer v+ of (5.10) can be chosen as in (5.5). (Note that the n in (5.5)

should be replaced by n+ 1.) Write v

+ as

v

+ = (v̂, t̂), kv̂k2 + t̂

2 = 1.

If v̂ = 0 or t̂ = 0, then f̃

max

= f

max

= 0 and the zero tensor is the best rank-1

approximation of F . So, we consider the general case 0 < |t̂| < 1. Note that

sign(t̂) · v̂ is a global maximizer of f on the sphere kv̂k2
2

= 1� t̂

2. Let

û = sign(t̂) · v̂/
p

1� t̂

2

. (5.12)

Then û is a global maximizer of f on Sn�1. When rankM(y⇤) > 1, the above û

might not be a global maximizer, but it can be used as an approximation for a

maximizer.

Combining the above, we get the following algorithm.

Algorithm 5.2.3. (Rank-1 Approximations for Odd Symmetric Tensors)

Input: A symmetric tensor F 2 S

m(Rn) with an odd order m = 2d� 1.

Output: A rank-1 symmetric tensor � · u⌦m with � 2 R and u 2 Sn�1.

Procedure:

Step 1 Solve the semidefinite relaxation (5.11) and get an optimizer y

⇤.

Step 2 Choose v

+ as in (5.5) and û as in (5.12). (The n in (5.5) should be

replaced by n+ 1.)

Step 3 If rankM(y⇤) = 1, let u = û; otherwise, apply a nonlinear optimization

method to get a better solution u of (5.1), by using û as a starting point. Let

� = f(u). Output (�, u).



97

Remark: In Algorithm 5.2.3, if rankM(y⇤) = 1, then the output � · u⌦m is a

best rank-1 approximation of the tensor F . If rankM(y⇤) > 1, then � · u⌦m is

not necessarily the best. The approximation quality of the semidefinite relaxation

(5.11) is analyzed in [50, Section 4]. In our numerical experiments, we often have

rankM(y⇤) = 1. A similar version of Theorem 5.2.2 is true for Algorithm 5.2.3.

5.2.3 Nonsymmetric Tensors

Let F 2 Rn

1

⇥···⇥nm be a nonsymmetric tensor of orderm. Let F (x1

, . . . , x

m)

be the multi-linear form defined as in (5.4). To get a best rank-1 approximation

of F is equivalent to solving the multilinear optimization problem (5.5). Here we

show how to solve it by using semidefinite relaxations.

Without loss of generality, assume n

m

= max
j

n

j

. Since F (x1

, . . . , x

m) is

linear in x

m, we can write it as

F (x1

, . . . , x

m) =
nmX

j=1

(xm)
j

F

j

(x1

, . . . , x

m�1),

where each F

j

(x1

, . . . , x

m�1) is also a multi-linear form. Let m0 = m� 1, and

F

sq :=
nmX

j=1

F

j

(x1

, . . . , x

m

0
)2.

By the Cauchy-Schwartz inequality, it holds that

|F (x1

, . . . , x

m)|  F

sq(x1

, . . . , x

m

0
)1/2kxmk.

The equality occurs in the above if and only if xm is proportional to

�
F

1

(x1

, . . . , x

m

0
), . . . , F

nm(x
1

, . . . , x

m

0
)
�
.

Therefore, (5.5) is equivalent to
8
<

:
F

max

: = max
x

1

,...,x

m0
F

sq(x1

, . . . , x

m

0
)

s.t. kx1k = · · · = kxm

0k = 1.
(5.13)

Now we present the semidefinite relaxations for solving (5.13). The outer

product

K(x) := x

1 ⌦ · · ·⌦ x

m

0



98

is a vector of length n

1

· · ·n
m

0 . Denote

⌦ := {(ı, |) : ı, | 2 [n
1

]⇥ · · ·⇥ [n
m

0 ]}.

Expand the outer product of K(x) as

K(x)K(x)T =
X

(ı,|)2⌦

B

ı,|

(x1)
ı

1

(x1)
|

1

· · · (xm

0
)
ım0 (x

m

0
)
|m0 ,

where each B

ı,|

is a constant symmetric matrix. For w 2 R⌦, define

K(w) :=
X

(ı,|)2⌦

B

ı,|

w

ı,|

.

Clearly, K(w) is a linear pencil in w 2 R⌦. Write

F

sq =
X

(ı,|)2⌦

G

ı,|

(x1)
ı

1

(x1)
|

1

· · · (xm

0
)
ım0 (x

m

0
)
|m0 ,

h := kx1k2 · · · kxm

0k2 =
X

(ı,|)2⌦

h

ı,|

(x1)
ı

1

(x1)
|

1

· · · (xm

0
)
ım0 (x

m

0
)
|m0 .

For w 2 R⌦, we denote

hF sq

, wi :=
X

(ı,|)2⌦

G

ı,|

w

ı,|

, hh, wi :=
X

(ı,|)2⌦

h

ı,|

w

ı,|

.

A semidefinite relaxation of (5.13) is

F

sdp

max

:= max hF sq

, wi s.t. K(w) ⌫ 0, hh, wi = 1. (5.14)

Define ⌃
n

1

,...,nm0 to be the cone as

⌃
n

1

,...,nm0 =

(
L

�����
L = L

2

1

+ · · ·+ L

2

k

where each L

i

is a multilinear form in (x1

, . . . , x

m

0
)

)
.

It can be shown that the dual problem of (5.14) is

min � s.t. �h� F

sq 2 ⌃
n

1

,...,nm0 . (5.15)

Clearly, we always have F sdp

max

� F

max

. When the equality occurs, we say that (5.14)

is a tight relaxation.



99

The feasible set of (5.14) is compact, because

Trace(K(w)) = hh, wi = 1.

Let w

⇤ be a maximizer of (5.14). Like for the case of symmetric tensors, if

rankK(w⇤) = 1, then (5.14) is tight, and there exist vectors v

1

, . . . , v

m

0
of unit

length such that w

⇤ = (v1(v1)T ) ⌦ · · · ⌦ (vm
0
(vm

0
)T ) and (v1, . . . , vm

0
) is a maxi-

mizer of (5.13). They can be constructed as follows. Let ` 2 [n
1

] ⇥ · · · ⇥ [n
m

0 ] be

the index such that

w

⇤
`,`

= max
(ı,ı)2⌦

w

⇤
ı,ı

.

Then choose v

j (j = 1, . . . ,m0) as:

v̂

j =
⇣
w

⇤
ˆ

`

1

,`

, w

⇤
ˆ

`

2

,`

, . . . , w

⇤
ˆ

`nj ,`

⌘
, v

j = v̂

j

/kv̂jk, (5.16)

where ˆ̀
k

= ` + (k � `

j

) · e
j

for each k 2 [n
j

]. When rankK(w⇤) > 1, the tuple

(v1, . . . , vm
0
) as in (5.16) might not be a global maximizer of (5.13). But it can be

used as an approximation for a maximizer of (5.13).

Combining the above, we get the following algorithm.

Algorithm 5.2.4. (Rank-1 Approximations for Nonsymmetric Tensors)

Input: A nonsymmetric tensor F 2 Rn

1

⇥...⇥nm.

Output: A rank-1 tensor � · (u1 ⌦ · · ·⌦ u

m) with � 2 R and each u

j 2 Snj�1.

Procedure:

Step 1 Solve the semidefinite relaxation (5.14) and get a maximizer w

⇤.

Step 2 Choose (v1, . . . , vm
0
) as in (5.16). Then let

v̂

m := (F
1

(v1, . . . , vm
0
), . . . , F

nm(v
1

, . . . , v

m

0
)),

and v

m := v̂

m

/kv̂mk.

Step 3 If rankK(w⇤) = 1, let ui = v

i for i = 1, . . . ,m; otherwise, apply a non-

linear optimization method to get a better solution (u1

, . . . , u

m) of (5.5), by

using (v1, . . . , vm) as a starting point.

Step 4 Let � = F (u1

, . . . , u

m), and output (�, u1

, . . . , u

m).



100

Remark: In Algorithm 5.2.4, if rankK(w⇤) = 1, then the output � · u1 ⌦ · · ·⌦ u

m

is a best rank-1 approximation of F . If rankK(w⇤) > 1, then � · u1 ⌦ · · ·⌦ u

m is

not necessarily the best. The approximation quality of the semidefinite relaxation

(5.14) is analyzed in [50, Section 3].

We want to know when rankK(w⇤) = 1. Clearly, for this to be true, the

relaxation (5.14) must be tight, i.e., F
max

= F

sdp

max

. Like for the symmetric case,

the reverse is also often true, as shown in the following theorem. Let @⌃
n

1

,...,nm0

be the boundary of the cone ⌃
n

1

,...,nm0 .

Theorem 5.2.5. Let F
max

, F

sdp

max

, w

⇤ be as above. Suppose F

max

= F

sdp

max

. If F
max

·
h� F

sq is a smooth point of @⌃
n

1

,...,nm0 , then rankK(w⇤) = 1.

Proof. This can be proved in the same way as for Theorem 5.2.2. Let (u1

, · · · , um

0
)

be a global maximizer of (5.13). Let ŵ 2 R⌦ be the vector such that

ŵ

ı,|

= (u1)
ı

1

(u1)
|

1

· · · (um)
ım(u

m)
|m 8 (ı, |) 2 ⌦.

The key point is the observation that hp, ŵi = 0 defines a unique supporting

hyperplane of ⌃
n

1

,...,nm0 through F

max

· h � F

sq, when it is a smooth point of the

boundary @⌃
n

1

,...,nm0 . The proof proceeds same as for Theorem 5.2.2.

5.3 Numerical Experiments

In this section, we present numerical experiments of using semidefinite re-

laxations to find best rank-1 tensor approximations. The computations are imple-

mented in Matlab 7.10 on a Dell Linux Desktop with 8GB memory and Intel(R)

CPU 2.8GHz. In applications, the resulting semidefinite programs are often large

scale. Interior point methods are not very suitable for solving such big semidefinite

programs. We use the software SDPNAL [83] by Zhao, Sun and Toh, which is based

on the Newton-CG Augmented Lagrangian method [81]. In our computations, the

default values of the parameters in SDPNAL are used. In Algorithms 5.2.1, 5.2.3

and 5.2.4, if the matrices M(y⇤),M(z⇤), K(w⇤) do not have rank one, we apply

the nonlinear program solver fmincon in Matlab Optimization Toolbox to improve

the rank-1 approximations obtained from semidefinite relaxations. Our numerical



101

experiments show that these algorithms are often able to get best rank-1 approxi-

mations and SDPNAL is e�cient in solving such large scale semidefinite relaxations.

We report the consumed computer time in the format hr:mn:sc with hr

(resp., mn, sc) standing for the consumed hours (resp., minutes, seconds). In our

presented tables, min (resp., med, max) stands for the minimum (resp., median,

maximum) of quantities like time, errors.

In our computations, the rank of a matrix A is numerically measured as

follows: if the singular values of A are �
1

� �

2

� · · · � �

t

> 0, then rank (A) is set

to be the smallest r such that �
r+1

/�

r

< 10�6. In the display of our computational

results, only four decimal digits are shown.

5.3.1 Symmetric Tensor Best Rank-1 Approximation

In this subsection, we report numerical experiments for symmetric tensors.

We apply Algorithm 5.2.1 for even symmetric tensors, and apply Algorithm 5.2.3

for odd symmetric tensors. In Algorithm 5.2.1, if

rankM(y⇤) = rankM(z⇤) = 1, (5.17)

then the output tensor � · u⌦m is a best rank-1 approximation. If rankM(y⇤) > 1

or rankM(z⇤) > 1, � · u⌦m is not guaranteed to be a best rank-1 approximation.

However, the quantity

f

ubd

:= max{|f sdp

max

|, |f sdp

min

|}

is always an upper bound of |f(x)| on Sn�1. No matter whether (5.17) holds or

not, the error

aprxerr :=
��|f(u)|� f

ubd

��
/max{1, f

ubd

} (5.18)

is a measure of the approximation quality of � · u⌦m. When Algorithm 5.2.3 is

applied for odd symmetric tensors, f
ubd

and aprxerr are defined similarly. As in

Qi [64], we define the best rank-1 approximation ratio of a tensor F 2 S

m(Rn) as

⇢(F) := max
X2Sm(Rn

),rankX=1

|hF ,X i|
kFkkXk . (5.19)

If � · u⌦m, with kuk = 1 and � = f(u), is a best rank-1 approximation of F , then

⇢(F) = |�|/kFk. Estimates for ⇢(F) are given in Qi [64].



102

Example 5.3.1. ([37, Example 2]) Consider the tensor F 2 S

3(R2) with entries:

F
111

= 1.5578, F
222

= 1.1226, F
112

= �2.4443, F
221

= �1.0982.

When Algorithm 5.2.3 is applied, we get the rank-1 tensor � · u⌦3 with

� = 3.1155, u = (0.9264,�0.3764).

It takes about 0.2 second. The computed matrix M(y⇤) has rank one. So, we

know � ·u⌦3 is a best rank-1 approximation. The error aprxerr = 7.3e-9, the ratio

⇢(F) = 0.6203, the residual kF � � · u⌦3k = 3.9399, and kFk = 5.0228.

Example 5.3.2. ([34, Example 3.6], [80, Example 4.2]) Consider the tensor F 2
S

3(R3) with entries:

F
111

= �0.1281,F
112

= 0.0516,F
113

= �0.0954,F
122

= �0.1958,F
123

= �0.1790,

F
133

= �0.2676,F
222

= 0.3251,F
223

= 0.2513,F
233

= 0.1773,F
333

= 0.0338.

When Algorithm 5.2.3 is applied, we get the rank-1 tensor � · u⌦3 with

� = 0.8730, u = (�0.3921, 0.7249, 0.5664).

It takes about 0.2 second. The computed matrix M(y⇤) has rank one, so � · u⌦3 is

a best rank-1 approximation. The error aprxerr=1.2e-7, the ratio ⇢(F) = 0.8890,

the residual kF � � · u⌦3k = 0.4498 and kFk = 0.9820.

Example 5.3.3. ([64, Example 2]) Consider the tensor F 2 S

3(R3) with entries:

F
111

= 0.0517,F
112

= 0.3579,F
113

= 0.5298,F
122

= 0.7544,F
123

= 0.2156,

F
133

= 0.3612,F
222

= 0.3943,F
223

= 0.0146,F
233

= 0.6718,F
333

= 0.9723.

When Algorithm 5.2.3 is applied, we get the rank-1 tensor � · u⌦3 with

� = 2.1110, u = (0.5204, 0.5113, 0.6839).

It takes about 0.2 second. Since the computed matrixM(y⇤) has rank one, �·u⌦3 is

a best rank-1 approximation. The error aprxerr=6.9e-8, the ratio ⇢(F) = 0.8574,

the residual kF � � · u⌦3k = 1.2672, and kFk = 2.4621.



103

Example 5.3.4. ([34, Example 3.5], [80, Example 4.1]) Consider the tensor F 2
S

4(R3) with entries:

F
1111

= 0.2883, F
1112

= �0.0031,F
1113

= 0.1973,F
1122

= �0.2485,F
1123

= �0.2939,

F
1133

= 0.3847, F
1222

= 0.2972,F
1223

= 0.1862,F
1233

= 0.0919,F
1333

= �0.3619,

F
2222

= 0.1241, F
2223

= �0.3420, F
2233

= 0.2127, F
2333

= 0.2727,F
3333

= �0.3054.

Applying Algorithm 5.2.1, we get �+ · (u+)⌦m and �� · (u�)⌦m with

�

+ = 0.8893, u

+ = (�0.6672,�0.2470, 0.7027),

�

� = �1.0954, u

� = (�0.5915, 0.7467, 0.3043).

It takes about 0.3 second. Since |�+| < |��|, the output rank-1 tensor is � · u⌦4

with � = �

�
, u = u

�. The computed matrices M(y⇤),M(z⇤) both have rank one,

so � · u⌦4 is a best rank-1 approximation. The error aprxerr=2.8e-7, the ratio

⇢(F) = 0.4863, the residual kF � � · u⌦4k = 1.9683, and kFk = 2.2525.

Example 5.3.5. Consider the tensor F 2 S

6(R3) with

F
111111

= 2,F
111122

= 1/3,F
111133

= 2/5,F
112222

= 1/3,F
112233

= 1/6,

F
113333

= 2/5,F
222222

= 2,F
222233

= 2/5,F
223333

= 2/5,F
333333

= 1,

and F
i

1

,...,i

6

= 0 if (i
1

, . . . , i

6

) is not a permutation of an index in the above. We

can verify that

f(x) = 2kxk6 �M(x),

where M(x) = x

4

1

x

2

2

+ x

2

1

x

4

2

+ x

6

3

� 3x2

1

x

2

2

x

2

3

is the Motzkin polynomial, which is

nonnegative everywhere but not SOS (cf. [65]). Since 0  M(x)  kxk6, we can

show that f
max

= 2, f
min

= 1. Applying Algorithm 5.2.1, we get

f

sdp

max

= 2.0046, v

+ = (0, 1, 0), f(v+) = 2,

f

sdp

min

= 1.0000, v

� = (0, 0, 1), f(v�) = 1.

The matrix M(z⇤) has rank one, so �� = f(v�) and u

� = v

�. The matrix M(y⇤)

has rank 7, which is bigger than one, so we apply fmincon to improve v

+ but get



104

the same point u

+ = v

+; let �+ = f(u+). Since |��| < |�+|, the output rank-1

tensor is � · u⌦6 with

� = 2.0000, u = (0, 1, 0).

Since f

max

= � = f(u), we know � · u⌦6 is a best rank-1 approximation, by

Theorem 5.1.1. The best rank-1 approximation ratio ⇢(F) = 0.4046.

Example 5.3.6. (Random Examples)

We explore the performance of Algorithms 5.2.1 and 5.2.3 on finding best

rank-1 approximations for randomly generated symmetric tensors. We generate

F 2 S

m(Rn) with each entry being a random variable obeying Gaussian distri-

bution (by randn in Matlab). For each generated F , the semidefinite relaxations

(5.3), (5.7) and (5.11) can be expressed in the standard dual form

(
max b

1

µ

1

+ · · ·+ b

M

µ

M

s.t. F

0

�
P

M

i=1

µ

i

F

i

⌫ 0,
(5.20)

where F
i

are constant symmetric matrices (cf. [76]). In (5.20), letN be the length of

matrices F
i

, and M be the number of variables. For pairs (n,m), if the semidefinite

relaxation matrix length N < 1000, we test 50 instances of F randomly; otherwise

if N > 1000, we test 10 instances of F randomly. For a range of values of (n,m),

the computational results are shown in Table 5.1.

From Table 5.1, we can observe that Algorithms 5.2.1 and 5.2.3 generally

produce accurate best rank-1 approximations in a short time. For some very big

problems, like 3-tensors of dimension 40, or 4-tensors of dimension 35, we are able

to get accurate best rank-1 approximations within a reasonable time. For most

instances, we are able to get best rank-1 approximations, because the computed

matrices M(y⇤),M(z⇤) have rank one. For a few instances, their ranks are bigger

than one, and the errors aprxerr are a bit relatively large, like in the order of 10�3

or 10�2. This is probably because the semidefinite relaxations are not very tight.

5.3.2 Nonsymmetric Tensor Best Rank-1 Approximation

In this subsection, we present numerical results for nonsymmetric tensors.

In Algorithm 5.2.4, if rankK(w⇤) = 1, the output � ·u1⌦ · · ·⌦u

m is a best rank-1



105

Table 5.1: Computational results in Example 5.3.6.

(n,m) (N,M) time (min,med,max) aprxerr (min,med,max)
(10,3) (66,1000) 0:00:01 0:00:01 0:00:03 (7.9e-9, 4.5e-8, 2.9e-6)
(20,3) (231,10625) 0:00:03 0:00:08 0:00:13 (2.4e-9, 3.6e-7, 4.3e-6)
(30,3) (496,46375) 0:01:14 0:01:29 0:02:01 (9.1e-9, 7.4e-7, 1.4e-5)
(40,3) (861,135750) 0:06:32 0:10:04 0:13:09 (1.3e-9, 4.6e-6, 2.3e-3)
(50,3) (1326,316250) 0:12:39 0:13:34 0:14:01 (3.2e-9, 1.3e-6, 2.0e-3)
(15,4) (120,3060) 0:00:01 0:00:03 0:00:04 (4.0e-9, 1.1e-7, 1.3e-6)
(20,4) (210,8854) 0:00:52 0:01:09 0:01:25 (1.2e-8, 1.8e-7, 6.3e-3)
(25,4) (325,20475) 0:00:30 0:00:35 0:00:56 (4.7e-9, 1.3e-7, 1.0e-5)
(30,4) (465,40919) 0:06:03 0:07:36 0:09:31 (1.2e-8, 1.1e-6, 9.6e-4)
(35,4) (630,73815) 0:02:46 0:04:57 0:06:54 (4.1e-8, 1.6e-7, 7.4e-3)
(10,5) (286,8007) 0:00:08 0:00:14 0:00:17 (4.3e-8, 4.1e-7, 4.1e-6)
(15,5) (816,54263) 0:03:46 0:03:58 0:07:24 (4.4e-8, 2.5e-6, 1.1e-3)
(20,5) (1771,230229) 0:28:14 0:30:30 0:43:27 (4.7e-7, 3.7e-6, 5.7e-6)
(10,6) (220,5004) 0:00:11 0:00:14 0:00:20 (1.3e-7, 6.4e-7, 3.5e-2)
(15,6) (680,38759) 0:03:14 0:04:19 0:04:53 (4.8e-8, 2.5e-3, 4.9e-2)
(20,6) (1540,177099) 0:39:28 0:45:39 0:54:59 (2.8e-8, 6.6e-5, 1.0e-2)

approximation of F . If rankK(w⇤) > 1, � · u1 ⌦ · · · ⌦ u

m might not be the best.

However, the quantity

F

ubd

:=
q��

F

sdp

max

��

is always an upper bound of |F (x1

, . . . , x

m)| on Sn

1

�1⇥ · · ·⇥Snm�1. Like in (5.18),

we can measure the quality of � · u1 ⌦ · · ·⌦ u

m by the error

aprxerr :=
��|F (u1

, · · · , um)|� F

ubd

��
/max{1, F

ubd

}. (5.21)

Like the symmetric case, we define the best rank-1 approximation ratio of a tensor

F 2 Rn

1

⇥···⇥nm as (cf. Qi [64])

⇢(F) := max
X2Rn

1

⇥···⇥nm
,rankX=1

|hF ,X i|
kFkkXk . (5.22)

Clearly, if � · u1 ⌦ · · · ⌦ u

m, with each kuik = 1 and � = F (u1

, . . . , u

m), is a best

rank-1 approximation of F , then ⇢(F) = |�|/kFk.

Example 5.3.7. ([37, Example 3]) Consider the tensor F 2 R2⇥2⇥2⇥2 with

F
1111

= 25.1, F
1212

= 25.6, F
2121

= 24.8, F
2222

= 23,



106

and the resting entries are zeros. Applying Algorithm 5.2.4, we get the rank-1

tensor � · u1 ⌦ u

2 ⌦ u

3 ⌦ u

4 with

� = 25.6000, u

1 = (1, 0), u

2 = (0, 1), u

3 = (1, 0), u

4 = (0, 1).

It takes about 0.3 second. The matrixK(w⇤) has rank one, so �·u1⌦u

2⌦u

3⌦u

4 is a

best rank-1 approximation. The error aprxerr =8.9e-10, the ratio ⇢(F) = 0.5194,

the residual kF � � · u1 ⌦ u

2 ⌦ u

3 ⌦ u

4k = 42.1195, and kFk = 49.2890.

Example 5.3.8. ([64, Example 1]) Consider the tensor F 2 R3⇥3⇥3 with

F
111

= 0.4333,F
121

= 0.4278,F
131

= 0.4140,F
211

= 0.8154,F
221

= 0.0199,

F
231

= 0.5598,F
311

= 0.0643,F
321

= 0.3815,F
331

= 0.8834,F
112

= 0.4866,

F
122

= 0.8087,F
132

= 0.2073,F
212

= 0.7641,F
222

= 0.9924,F
232

= 0.8752,

F
312

= 0.6708,F
322

= 0.8296,F
332

= 0.1325,F
113

= 0.3871,F
123

= 0.0769,

F
133

= 0.3151,F
213

= 0.1355,F
223

= 0.7727,F
233

= 0.4089,F
313

= 0.9715,

F
323

= 0.7726,F
333

= 0.5526.

Applying Algorithm 5.2.4, we get the rank-1 tensor � · u1 ⌦ u

2 ⌦ u

3 with

� = 2.8167, u

1 = (0.4281, 0.6557, 0.6220),

u

2 = (0.5706, 0.6467, 0.5062), u

3 = (0.4500, 0.7094, 0.5424).

It takes less than one second. The matrixK(w⇤) has rank one, so �·u1⌦u

2⌦u

3 is a

best rank-1 approximation. The error aprxerr = 3.9e-8, the ratio ⇢(F) = 0.9017,

the residual kF � � · u1 ⌦ u

2 ⌦ u

3k = 1.3510, and kFk = 3.1239.

Example 5.3.9. ([46, Section 4.1]) Consider the tensor F 2 R3⇥3⇥3 with

F
111

= 0.0072,F
121

= �0.4413,F
131

= 0.1941,F
211

= �0.4413,F
221

= 0.0940,

F
231

= 0.5901,F
311

= 0.1941,F
321

= �0.4099,F
331

= �0.1012,F
112

= �0.4413,

F
122

= 0.0940,F
132

= �0.4099,F
212

= 0.0940,F
222

= 0.2183,F
232

= 0.2950,

F
312

= 0.5901,F
322

= 0.2950,F
332

= 0.2229,F
113

= 0.1941,F
123

= 0.5901,

F
133

= �0.1012,F
213

= �0.4099,F
223

= 0.2950,F
233

= 0.2229,F
313

= �0.1012,

F
323

= 0.2229,F
333

= �0.4891.



107

We apply Algorithm 5.2.4, and get an upper bound F

ubd

= 1.0000. The computed

matrix K(w⇤) has rank three, so we use fmincon to improve the solution and get

the rank-1 tensor � · u1 ⌦ u

2 ⌦ u

3 with

� = 1.0000, u

1 = (0.7955, 0.2491, 0.5524),

u

2 = (�0.0050, 0.9142,�0.4051), u

3 = (�0.6060, 0.3195, 0.7285).

It takes less than one second. Since � = F (u1

, u

2

, u

3) = F

ubd

, we know �·u1⌦u

2⌦u

3

is a best rank-1 approximation, by Theorem 5.1.1. The error aprxerr = 6.0e-9, the

ratio ⇢(F) = 0.5773, the residual kF��·u1⌦u

2⌦u

3k = 1.4143, and kFk = 1.7321.

Example 5.3.10. Let B be the symmetric matrix
2

66666666666666666664

1 0 0 0 �1/2 0 0 0 �1/2

0 2 0 �1/2 0 0 0 0 0

0 0 0 0 0 0 �1/2 0 0

0 �1/2 0 0 0 0 0 0 0

�1/2 0 0 0 1 0 0 0 �1/2

0 0 0 0 0 2 0 �1/2 0

0 0 �1/2 0 0 0 2 0 0

0 0 0 0 0 �1/2 0 0 0

�1/2 0 0 0 �1/2 0 0 0 1

3

77777777777777777775

The eigenvalues of B are

2�
p
5

2
, 0,

3

2
,

2 +
p
5

2
,

which are all less than 3. Consider the tensor F 2 R3⇥3⇥9 such that

F

sq(x1

, x

2) = (x1 ⌦ x

2)T (3I
9

� B)(x1 ⌦ x

2).

The bi-quadratic form 3kx1k2
2

kx2k2
2

�F

sq(x1

, x

2) is nonnegative but not SOS (cf. [7]).

The minimum of (x1 ⌦ x

2)TB(x1 ⌦ x

2) over S2 ⇥ S2 is zero ([43, Example 5.1]), so

F

max

= 3. We apply Algorithm 5.2.4. The computed matrix K(w⇤) has rank 4,

which is bigger than one. The upper bound F

sdp

max

= 3.0972. Applying fmincon, we

get the improved tuple (u1

, u

2

, u

3) and � as

u

1 = (0, 1, 0), u

2 = (1, 0, 0), u

3 = (0, 0.1246, 0, 0, 0, 0,�0.9922, 0, 0),



108

Table 5.2: Computational results for Example 5.3.11 with m = 3.

(n
1

, n

2

, n

3

) time (min,med,max) aprxerr (min,med,max)
(10⇥ 10⇥ 10) 0:00:02 0:00:02 0:00:03 (1.6e-9,2.2e-8,2.7e-7)
(15⇥ 15⇥ 15) 0:00:10 0:00:12 0:00:18 (5.9e-9,5.8e-7,2.1e-3)
(20⇥ 20⇥ 20) 0:00:05 0:00:48 0:01:24 (1.9e-9,5.7e-7,5.2e-3)
(25⇥ 25⇥ 25) 0:00:40 0:02:26 0:04:57 (3.2e-9,4.6e-7,5.1e-2)
(30⇥ 30⇥ 30) 0:05:48 0:07:57 0:11:31 (3.6e-8,1.6e-3,3.5e-2)
(35⇥ 35⇥ 35) 0:21:43 0:27:04 1:00:05 (1.1e-5,7.7e-3,5.7e-2)
(40⇥ 40⇥ 40) 1:10:05 1:30:24 1:36:24 (4.8e-4,9.4e-4,1.4e-2)

� = F (u1

, u

2

, u

3) = 1.7321 =
p

F

max

.

So, � · u1 ⌦ u

2 ⌦ u

3 is a best rank-1 approximation, by Theorem 5.1.1. The ratio

⇢(F) = 0.4083, the residual kF � � · u1 ⌦ u

2 ⌦ u

3k = 3.8730 and kFk = 4.2426.

Example 5.3.11. (Random Examples)

We explore the performance of Algorithm 5.2.4 on randomly generated non-

symmetric tensors F 2 Rn

1

⇥···⇥nm . The entries of F are generated obeying Gaus-

sian distributions (by randn in Matlab). As in (5.20), let N be the length of

matrices and M be the number of variables in the semidefinite relaxations. If

N < 1000, we generate 50 instances of F randomly; if N > 1000, we generate

10 instances of F randomly. We apply Algorithm 5.2.4 to get rank-1 approxi-

mations. The computational results for orders m = 3, 4, 5 are shown in Tables

5.2, 5.3, and 5.4 respectively. When n

1

= · · · = n

m

, the sizes of the semidefinite

relaxations are typically much larger than the sizes for symmetric tensors. For in-

stance, for (n,m) = (40, 3), (N,M) = (861, 135750) for the symmetric case, while

(N,M) = (1600, 672399) for the nonsymmetric case. Typically, Algorithm 5.2.4

takes more time than Algorithms 5.2.1 and 5.2.3, when the input tensors have

same dimensions and orders.

We can observe from Tables 5.2, 5.3, and 5.4 that for most instances, Al-

gorithm 5.2.4 is able to get best rank-1 approximations very accurately, within a

reasonable short time. For a few cases, the errors are a bit relatively large, around

10�2, which is probably because the semidefinite relaxations are not very tight.

⇤



109

Table 5.3: Computational results for Example 5.3.11 with m = 4.

(n
1

, n

2

, n

3

, n

4

) time (min,med,max) aprxerr(min,med,max)
( 5⇥ 5⇥ 5⇥ 5) 0:00:02 0:00:03 0:00:05 (1.0e-10,1.7e-8,3.1e-7)
( 8⇥ 8⇥ 8⇥ 8) 0:00:09 0:00:17 0:00:28 (2.3e-7,1.5e-6,1.1e-5)
(10⇥ 10⇥ 10⇥ 10) 0:00:57 0:01:52 0:10:24 (9.4e-8,2.0e-6,6.6e-3)
(15⇥ 15⇥ 5⇥ 15) 0:02:18 0:07:53 0:13:54 (1.8e-7,3.7e-7,3.7e-3)
(12⇥ 12⇥ 12⇥ 12) 0:07:24 0:10:47 0:39:07 (1.7e-7,3.3e-6,2.7e-2)
(20⇥ 20⇥ 5⇥ 20) 1:13:46 1:25:02 1:39:53 (2.4e-2,3.4e-2,4.9e-2)

Table 5.4: Computational results for Example 5.3.11 with m = 5.

(n
1

, n

2

, n

3

, n

4

, n

5

) time (min,med,max) aprxerr (min,med,max)
(5⇥ 5⇥ 5⇥ 5⇥ 5) 0:00:14 0:00:24 0:00:35 (7.2e-8,3.7e-7,3.6e-6)
(10⇥ 5⇥ 5⇥ 4⇥ 10) 0:00:57 0:01:20 0:03:27 (9.7e-8,4.7e-7,1.5e-5)
(10⇥ 5⇥ 8⇥ 5⇥ 10) 0:31:46 0:50:01 1:12:14 (2.1e-8,2.0e-6,5.3e-2)
(8⇥ 8⇥ 8⇥ 4⇥ 10) 0:18:30 0:51:45 0:53:50 (2.0e-7,6.5e-7,1.8e-2)

Chapter 5, in full, is a reprint of the material that has been submitted for

publication as it may appear in the article “Semidefinite Relaxations on Tensor

Best Rank-1 Approximation” by Jiawang Nie and Li Wang, in SIAM Journal on

Matrix Analysis and Applications, 2014. The dissertation author was one of the

authors of this paper.



Chapter 6

Conclusions

In this chapter, we first give a discussion of the numerical issues related to

polynomial optimization.

In Section 2.3, we present extensive numerical examples for testing the e�-

ciency of regularization method for large scale polynomial optimization. In Chap-

ter 5, we provide one main application of large scale polynomial optimization, i.e.,

finding the best rank-1 approximation of tensors. Numerical results show that

regularization method performs well on solving large scale polynomial optimiza-

tion problems. However, SDP relaxations arising from polynomial optimization

are harder to solve than general SDP problems. A reason for this is that the poly-

nomials are not scaled very well sometimes. For instance, if the optimal Z⇤ has

rank one, then Z

⇤ = [x⇤]
d

[x⇤]T
d

(x⇤ is a minimizer) has entries of the form

1, x⇤
1

, . . . , (x⇤
1

)2, . . . , (x⇤
1

)2d, . . . , (x⇤
n

)2d.

Clearly, if some coordinate x

⇤
i

is either small or big, then Z

⇤ is badly scaled and

its entries Z⇤
ij

easily su↵er from underflow/overflow during the computation. This

might cause severe ill-conditioning in computations and make the computed solu-

tions less accurate. Scaling is a useful approach to overcome this issue. In [20, 62],

it was also pointed out that scaling is important in solving polynomial optimiza-

tion e�ciently. Generally, there is no simple rule to select the best scaling factor.

In [55, Section 5.1], we propose a practical scaling procedure, for cleanness, we will

not repeat it here.

110



111

Another main issue that may cause bad performance of regularization method

is the degeneracy. In [81], it was shown that if the SDP problem is nondegenerate,

then regularization method has good convergence; otherwise, it might converge

very slowly or even does not converge. Generally, it is di�cult to check in advance

whether an SDP relaxation is degenerate or not. For SDP relaxation (2.2)-(2.3), a

typical case for it to be degenerate is that the polynomial optimization has several

distinct global minimizers. To see this for the unconstrained polynomial optimiza-

tion, suppose it has two distinct global minimizers u⇤
, v

⇤ and the SDP relaxation

(2.2) is exact. Then, the optimal values of (2.2) and (2.3) are equal, and (2.3) has

two distinct optimal Z⇤ (being [u⇤]
d

[u⇤]T
d

and [v⇤]
d

[v⇤]T
d

). This implies the primal

SDP relaxation (2.2) is degenerate. The situation is similar for constrained poly-

nomial optimization. From this observation, regularization methods might not be

very e�cient if the SDP relaxation is exact and there are more than one distinct

optimizers. It is an interesting topic for future study to solve degenerate large scale

semidefinite programming problems e�ciently.

Throughout this thesis, we mainly use software SDPNAL [83] to solve large

scale SDPs, i.e., regularization method to solve large scale polynomial optimization

problems. Another method that might be useful in applications is the low rank

SDP approach by Burer and Monteiro [6] (implemented in software SDPLR [5]). In

some cases, the dual optimal Z⇤ of SDP relaxations might have low rank. Thus, in

such situations, SDPLR would be applied to solve the dual SDP relaxation like (2.3)

or (2.12) (not the primal SDP relaxation (2.2) or (2.11), since X

⇤ typically has

high rank). Even if the performance of SDPLR is similar to SDPNAL, SDPLR is less

attractive theoretically and suitable only when Z

⇤ has low rank. This is because

the basic idea of SDPLR is to change SDP into a nonlinear programming problem

via matrix factorization, and typically one would only get a local optimal solution.

But SDPLR can not guarantee that the computed solution is a minimizer of the

original SDP relaxation. Even if an optimal solution of SDP relaxations is found,

its optimality can not be verified. A reason for this is that SDPLR is not a primal-

dual type method, and typically a primal-dual pair is required to check optimality.

On the other hand, the computational performance of SDPLR is promising. It is an



112

interesting future work to investigate properties of the low rank method in solving

polynomial optimization.

In Chapter 5, to find best rank-1 approximations, we only present the lowest

order semidefinite relaxations, and we use local method to improve the solution if

the semidefinite relaxation is not tight. Actually, higher order semidefinite relax-

ation can be applied, as Lasserre’s SDP relaxation presented in Section 2.1, and we

can get a convergent hierarchy of semidefinite relaxations, as proved by Lasserre

[39]. Indeed, this hierarchy almost always converges within finitely many steps, as

shown in [52]. The size of semidefinite problems increases quickly with relaxation

order increasing. And semidefinite relaxations in rank-1 tensor approximations

are often large scale. Theoretically, we can increase the relaxation order, however,

computationally, it might generate an SDP problem that is really large scale and

it can not be solved by current software SDPNAL.

In subsection 2.2.2, we prove that the exactness of Jacobian SDP relaxation

method [51] can be weakened as having finite singularities. We guess that the ex-

actness of Jacobian SDP relaxation can be further weakened as having finite real

singularities, and we are also interested in finding an example that illustrate this

fact. The advantage of Jacobian SDP relaxation is that it has finite convergence

under some generic conditions. However, in subsection 2.2.3, it is easy to see that

defining the redundant polynomials for Jacobian SDP relaxations is complicated,

so Jacobian SDP relaxation method is more interesting theoretically. In [51, Sec-

tion 4], Nie proposed some variations of Jacobian SDP relaxation, which greatly

simplified the procedure for defining the redundant polynomials.



Bibliography

[1] P. Comon A. Bernardi, J. Brachat and B. Mourrain. General tensor decom-
position, moment matrices and applications. J. Symbolic Comput., 52:51–71,
2013.

[2] Farid Alizadeh, Jean Pierre A. Haeberly, and Michael L. Overton. Primal-
dual interior-point methods for semidefinite programming: Convergence rates,
stability and numerical results. SIAM Journal On Optimization, 8(3):746–768,
1998.

[3] Binita Bhattacharjee, William H. Green, and Paul I. Barton. Interval methods
for semi-infinite programs. Computational Optimization and Applications,
30(1):63–93, 2005.

[4] P. Biswas and Y. Ye. Semidefinite programming for ad hoc wireless sensor
network localization. In Proc. 3rd IPSN, pages 46–54, 2004.

[5] S. Burer. SDPLR: a C package for solving large-scale semidefinite program-
ming problems. http://dollar.biz.uiowa.edu/ sburer.

[6] S. Burer and R. Monteiro. A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization. Mathematical Programming,
Ser. B, 95:329–357, 2003.

[7] M. D. Choi. Positive semidefinite biquadratic forms. Linear Algebra and
Applications, 12:95–100, 1975.

[8] P. Comon. Tensor decompositions - state of the art and applications. In IMA
Conf. in signal processing, Warwick, UK, 2000.

[9] Raúl E. Curto and Lawrence A. Fialkow. Truncated K-moment problems in
several variables. Journal of Operator Theory, 54(1):189–226, 2005.

[10] D.A.Cox, J.B. Little, and D.O’Shea. Ideals, Varieties, and Algorithms: an
Introduction to Computational Algebraic Geometry and Commutative Algebra,
Second Edition. Undergraduate Texts in Mathematics. Springer-Verlag, New
York, 1997.

113



114

[11] D.Hilbert. über die Darstellung definiter Formen als Summe von Formen-
quadraten, volume 32. Mathematische Annalen, 1888.

[12] Jack Elzinga and Thomas G. Moore. A central cutting plane algorithm for the
convex programming problem. Mathematical Programming, 8:134–145, 1975.

[13] Israel M. Gelfand, Mikhail Kapranov, and Andrei Zelevinsky. Discriminants,
Resultants, and Multidimensional Determinants. Mathematics: Theory &
Applications. Birkhäuser, 1994.

[14] Keat-Choon Goh, Michael G. Safonov, and George P. Papavassilopoulos.
Global optimization for the bia�ne matrix inequality problem. Journal of
Global Optimization, 7(4):365–380, 1995.

[15] Aurelien Greuet, Feng Guo, Mohab Safey El Din, and Lihong Zhi. Global op-
timization of polynomials restricted to a smooth variety using sums of squares.
Journal of Symbolic Computation, 47(5):503–518, 2012.

[16] Feng Guo, Li Wang, and Guangming Zhou. Minimizing rational polynomial
by exact Jacobian SDP relaxation applicable to finite singularities. Journal
of Global Optimization, 58(2):261–284, 2014.

[17] R. Saigal H. Wolkowicz and L. Vandenberghe. Handbook of semidefinite pro-
gramming. Kluwer, 2000.

[18] Didier Henrion and Jean B. Lasserre. Detecting global optimality and extract-
ing solutions in GloptiPoly, volume 312. Springer, Berlin, 2005.

[19] Didier Henrion and Jean B. Lasserre. Convergent relaxations of polynomial
matrix inequalities and static output feedback. IEEE Transactions on Auto-
matic Control, 51(2):192–202, 2006.

[20] Didier Henrion, Jean B. Lasserre, and Johan Löfberg. GloptiPoly 3: mo-
ments, optimization and semidefinite programming. Optimization Methods
and Software, 24(4-5):761–779, 2009.

[21] R. Hettich and K. O. Kortanek. Semi-infinite programming: theory, methods,
and applications. SIAM Review, 35(3):380–429, 1993.

[22] C. Hillar and L.-H. Lim. Most tensor problems are NP-hard. Journal of the
ACM, To appear, 2013.

[23] Camile W. J. Hol and Carsten W. Scherer. Sum of squares relaxations for
polynomial semi-definite programming. In International Symposium on Math-
ematical Theory of Networks and Systems, Leuven, Belgium, July 2004.



115

[24] S. Hu, Z. H. Huang, and L. Qi. Finding the extreme Z-eigenvalues of tensors
via a sequential semidefinite programming method. Numerical Linear Algebra
with Applications, 20:972–984, 2013.

[25] B. Mourrain J. Brachat, P. Comon and E. Tsigaridas. Symmetric tensor
decomposition. Linear Algebra Appl., 433:1851–1872, 2010.

[26] F. Rendl J. Malick, J. Povh and A. Wiegele. Regularization methods for
semidefinite programming. SIAM Journal on Optimization, 20(1):336–356,
2009.

[27] F. Rendl J. Povh and A. Wiegele. A boundary point method to solve semidef-
inite programs. Computing, 78:277–286, 2006.

[28] Michel Coste Jacek Bochnak and Marie-Francoise Roy. Real Algebraic Geom-
etry. Springer, 1998.

[29] D. Jibetean and E. de Klerk. Global optimization of rational functions: a
semidefinite programming approach. Mathematical Programming, 106:93–109,
2006.

[30] N.K. Karmarkar and Y.N. Lakshman. On approximate GCDs of univariate
polynomials. Journal of Symbolic Computation, 26(6):653–666, 1998.

[31] E. Kofidis and P. Regalia. On the best rank-1 approximation of higher-order
supersymmetric tensors. SIAM Journal on Matrix Analysis and Applications,
23:863–884, 2002.

[32] Masakazu Kojima. Sums of squares relaxations of polynomial semidefinite
programs. Technical Report B-397, Department of Mathematical and Com-
puting Sciences Tokyo Institute of Technology, Tokyo, Japan, 2003.

[33] T. Kolda and B. Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, 2009.

[34] T. Kolda and J. Mayo. Shifted power method for computing tensor eigenpairs.
SIAM Journal on Matrix Analysis and Applications, 32(4):1095–1124, 2011.

[35] S.G. Krantz and H.R.Parks. The Implicit Function Theorem: History, Theory
and Applications. Birkhäuser,Boston, 2002.

[36] B. De Moor L. De Lathauwer and J. Vandewalle. A multilinear singular
value decomposition. SIAM Journal on Matrix Analysis and Applications,
21(4):1253–1278, 2000.

[37] B. De Moor L. De Lathauwer and J. Vandewalle. On the best rank-1 and
rank-(R1, R2, ..., RN) approximation of higher-order tensors. SIAM Journal
on Matrix Analysis and Applications, 21(4):1324–1342, 2000.



116

[38] J.M. Landsberg. Tensors: geometry and applications. Graduate Studies in
Mathematics, American Mathematical Society, Providence, RI, 128, 2012.

[39] Jean B. Lasserre. Global optimization with polynomials and the problem of
moments. SIAM Journal on Optimization, 11(3):796–817, 2001.

[40] Jean B. Lasserre. Moments, Positive Polynomials and Their Applications.
Imperial College Press, London, UK, 2009.

[41] Jean B. Lasserre. An algorithm for semi-infinite polynomial optimization.
TOP, 20(1):119–129, 2012.

[42] Monique Laurent. Sums of squares, moment matrices and optimization
over polynomials. In Emerging Applications of Algebraic Geometry of IMA
Volumes in Mathematics and its Applications, volume 149, pages 157–270.
Springer, 2009.

[43] C. Ling, J. Nie, L. Qi, and Y. Ye. Biquadratic optimization over unit spheres
and semidefinite programming relaxations. SIAM Journal On Optimization,
20(3):1286–1310, 2009.

[44] Marco López and Georg Still. Semi-infinite programming. European Journal
of Operational Research, 180(2):491–518, 2007.

[45] L.Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,
38:49–95, 1996.

[46] P.-A. Absil M. Ishteva and P. Van Dooren. Jacobi algorithm for the best
low multilinear rank approximation of symmetric tensors. SIAM Journal on
Matrix Analysis and Applications, 34(2):651–672, 2013.

[47] Jiawang Nie. Sum of squares method for sensor network localization. Com-
putational Optimization and Applications, 43(2):151–179, 2009.

[48] Jiawang Nie. Polynomial matrix inequality and semidefinite representation.
Mathematics of operations research, 36(3):398–415, 2011.

[49] Jiawang Nie. Discriminants and nonnegative polynomials. Journal of Symbolic
Computation, 47(2):167–191, 2012.

[50] Jiawang Nie. Sum of squares methods for minimizing polynomial forms over
spheres and hypersurfaces. Frontiers of Mathematics in China, 7:321–346,
2012.

[51] Jiawang Nie. An exact Jacobian SDP relaxation for polynomial optimization.
Mathematical Programming, Ser. A, 137:225–255, 2013.



117

[52] Jiawang Nie. Optimality conditions and finite convergence of Lasserre’s hier-
archy. Mathematical Programming, Ser. A, page To appear, 2014.

[53] Jiawang Nie. Certifying convergence of Lasserre’s hierarchy via flat truncation.
Mathematical Programming, Ser. A, to appear.

[54] Jiawang Nie, James Demmel, and Ming Gu. Global minimization of rational
functions and the nearest GCDs. Journal of Global Optimization, 40(4):697–
718, 2008.

[55] Jiawang Nie and Li Wang. Regularization methods for sdp relaxations in large
scale polynomial optimization. SIAM Journal On Optimization, 22:408–428,
2012.

[56] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer, 1999.

[57] L. Oeding and G. Ottaviani. Eigenvectors of tensors and algorithms for waring
decomposition. J. Symbolic Comput., 54:9–35, 2013.

[58] L.-H. Lim P. Comon, G. Golub and B. Mourrain. Symmetric tensors and
symmetric tensor rank. SIAM Journal on Matrix Analysis and Applications,
30(3):1254–1279, 2008.

[59] Panos M. Pardalos and Stephen A. Vavasis. Quadratic programming with one
negative eigenvalue is NP-hard. Journal of Global Optimization, 1(1):15–22,
1991.

[60] Panos Parpas and Berç Rustem. An algorithm for the global optimization of
a class of continuous minimax problems. Journal of Optimization Theory and
Applications, 141(2):461–473, 2009.

[61] P. Parrilo. Semidefinite programming relaxations for semialgebraic problems.
Mathematical Programming, 96(2):293–320, 2003.

[62] P. Parrilo and B. Sturmfels. Minimizing polynomial functions. In Proceedings
of the DIMACS Workshop on Algorithmic and Quantitative Aspects of Real
Algebraic Geometry in Mathe- matics and Computer Science (March 2001)
(eds. S. Basu and L. Gonzalez-Vega), pages 83–100. American Mathematical
Society, 2003.

[63] Mihai Putinar. Positive polynomials on compact semi-algebraic sets. Indiana
University Mathematics Journal, 42:969–984, 1993.

[64] L. Qi. The best rank-one approximation ratio of a tensor space. SIAM Journal
on Matrix Analysis and Applications, 32(2):430–442, 2011.

[65] B. Reznick. Some concrete aspects of Hilberts 17th problem. Contemporary
Mathematics, 2000.



118

[66] R.T. Rockafellar. Augmented Lagrangians and applications of the proximal
point algorithm in convex programming. Math. Oper. Res., 1(2):97–116, 1976.

[67] R.T. Rockafellar. Monotone operators and the proximal point algorithm.
SIAM J. Control and Optim., 14(5):877–898, 1976.

[68] M. Kojima S. Kim and H. Waki. Exploiting sparsity in SDP relaxation for
sensor network localization. SIAM Journal on Optimization, 20(1):192–215,
2009.

[69] B. Savas and L.-H. Lim. Quasi-newton methods on grassmannians and mul-
tilinear approximations of tensors. SIAM Journal on Scientific Computing,
32(6):3352–3393, 2010.

[70] Konrad Schmüdgen. The K-moment problem for compact semi-algebraic sets.
Mathematische Annalen, 289(1):203–206, 1991.

[71] Markus Schweighofer. Global optimization of polynomials using gradient ten-
tacles and sums of squares. SIAM Journal on Optimization, 17(3):920–942,
2006.

[72] V. De Silva and L.-H. Lim. Tensor rank and the ill-posedness of the best
low-rank approximation problem. SIAM Journal on Matrix Analysis and Ap-
plications, 30(3):1084–1127, 2008.

[73] Georg Still. Generalized semi-infinite programming: numerical aspects. Op-
timization, 49(3):223–242, 2001.

[74] Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optimization Methods and Software, 11/12:625–653, 1999.

[75] Yoshihiro Tanaka, Masao Fukushima, and Toshihide Ibaraki. A globally con-
vergent SQP method for semi-infinite nonlinear optimization. Journal of Com-
putational and Applied Mathematics, 23:141–153, 1988.

[76] M. Todd. Semidefinite optimization. Acta Numerica, 10:515–560, 2001.

[77] K. C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3 - a MATLAB software
package for semidefinite programming. Optimization Methods and Software,
11:545–581, 1998.

[78] Ha Huy Vui and Pham Tien Son. Global optimization of polynomials us-
ing the truncated tangency variety and sums of squares. SIAM Journal on
Optimization, 19(2):941–951, 2008.

[79] Ha Huy Vui and Pham Tien Son. Solving polynomial optimization problems
via the truncated tangency variety and sums of squares. Journal of Pure and
Applied Algebra, 213(11):2167–2176, 2009.



119

[80] C. Ling X. Zhang and L. Qi. The best rank-1 approximation of a symmetric
tensor and related spherical optimization problems. SIAM Journal on Matrix
Analysis and Applications, 33(3):806–821, 2012.

[81] Xin yuan Zhao, Defeng Sun, and Kim chuan Toh. A newton-CG augmented
lagrangian method for semidefinite programming. SIAM Journal on Opti-
mization, 20(4):1737–1765, 2010.

[82] T. Zhang and G. H. Golub. Rank-one approximation to high order tensors.
SIAM Journal on Matrix Analysis and Applications, 23:534–550, 2001.

[83] Xinyuan Zhao, Defeng Sun, and Kim chuan Toh. SDPNAL ver-
sion 0.1 – a MATLAB software for semidefinite programming based
on a semi-smooth Newton-CG augmented Lagrangian method.
http://www.math.nus.edu.sg/ mattohkc/SDPNAL.html.


	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction to Polynomial Optimization
	Notation
	Definitions and Preliminaries
	Definitions
	Preliminaries on Polynomials

	Semidefinite Programming
	Theory
	Algorithms

	Outline of The Thesis

	Semidefinite Relaxations For Polynomial Optimization
	Lasserre's SDP Relaxation
	Algorithm Description
	Finite Convergence Certification
	Example

	Jacobian SDP Relaxation
	Algorithm Description
	Weakened Convergence Condition
	Examples

	Large Scale Polynomial Optimization
	Interior Point Method vs. Regularization Method 
	Numerical Experiments


	Minimizing Rational Functions 
	Introduction
	Equivalent Reformulation by Homogenization
	On the Generality of Closedness at 
	Using the Jacobian SDP Relaxation
	Numerical Experiments
	Unconstrained Rational Optimization
	Constrained Rational Optimization


	Semi-Infinite Polynomial Programming
	Introduction
	SIPP with Compact Index Set
	A Semidefinite Relaxation Algorithm
	Global Convergence Properties
	Numerical Experiments
	Application of SIPP to PMI problems

	SIPP with Noncompact Index Set
	Motivation
	Equivalent Reformulation by Homogenization
	On the Generality of Closedness at 
	Numerical Experiment


	Best Rank-1 Tensor Approximations
	Introduction
	Nonsymmetric Tensors
	Symmetric Tensors

	Semidefinite Relaxation Algorithms
	Symmetric Tensors of Even Orders
	Symmetric Tensors of Odd Orders
	Nonsymmetric Tensors

	Numerical Experiments
	Symmetric Tensor Best Rank-1 Approximation
	Nonsymmetric Tensor Best Rank-1 Approximation


	Conclusions
	Bibliography



