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On high-dimensional Poisson models with measurement error: 
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Abstract

We study estimation and testing in the Poisson regression model with noisy high dimensional 

covariates, which has wide applications in analyzing noisy big data. Correcting for the estimation 

bias due to the covariate noise leads to a non-convex target function to minimize. Treating the high 

dimensional issue further leads us to augment an amenable penalty term to the target function. 

We propose to estimate the regression parameter through minimizing the penalized target function. 

We derive the L1 and L2 convergence rates of the estimator and prove the variable selection 

consistency. We further establish the asymptotic normality of any subset of the parameters, where 

the subset can have infinitely many components as long as its cardinality grows sufficiently 

slow. We develop Wald and score tests based on the asymptotic normality of the estimator, 

which permits testing of linear functions of the members if the subset. We examine the finite 

sample performance of the proposed tests by extensive simulation. Finally, the proposed method 

is successfully applied to the Alzheimer’s Disease Neuroimaging Initiative study, which motivated 

this work initially.
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1. Introduction.

Count data are routinely encountered in practice. For example, cognitive scores in a 

neuroscience study, the number of deaths in an infectious disease study, and the number 

of clicks on a particular product on an e-commerce platform, are all count data. Because 
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most of the count data are concentrated on a few small discrete values rather than expanded 

on the entire real line and because the distribution of count variables is often skewed, 

the familiar linear model becomes less ideal to capture these features. In the literature, 

Poisson regression (McCullagh & Nelder 2019) is arguably the most popular model to 

describe count outcomes, because it naturally models the skewed distribution for positive 

outcomes. On the other hand, together with the count data, a large number of covariates are 

often collected thanks to the ever advancing capability of modern technologies. However, 

these covariates are often contaminated with errors due to imperfect data acquisition and 

processing procedures. Ignoring these errors can produce biased results, which can finally 

lead to misleading statistical inference on the model parameters (Carroll et al. 2006) that 

explain the association between covariates and outcomes. Our goal is to develop rigorous 

statistical inference procedures to test linear hypotheses in the high dimensional Poisson 

model with noisy covariates. Such inference tools will enable explaining the association 

between the count outcome and the individual covariate or combination of covariate, 

quantifying the uncertainties of the estimated association, and controlling the false discovery 

rate when testing scientifically important hypotheses.

Let Y be the count outcome and X be its associated covariate vector. In the Poisson model, 

Y is related to X as

pr(Y ∣ X) = e−exp βTX exp βTX Y /Y ! . (1)

We study the testing problem in (1) under the situation that the covariate vector X is both 

high dimensional and contaminated with noise. When X is accurately observed, the testing 

problem has been extensively discussed in the literature (Ning & Liu 2017, Zhang & Cheng 

2017, Van de Geer et al. 2014, Shi et al. 2019). However, when X is not accurately observed, 

it is unclear that any of the existing proposed tests are applicable, and testing in the high 

dimensional noisy Poisson regression model has not been explored. The major obstacles in 

constructing valid hypothesis testing procedures are as follows. 1) The existing lasso-type 

penalized Poisson estimator (Jiang & Ma 2021) does not enjoy the variable selection 

consistency when the number of parameters is much larger than the sample size. 2) The 

asymptotic normality of the estimator has not been established. We develop Wald and score 

tests targeting at linear hypothesis on the parameters of interest in (1). To overcome obstacle 

1), we improve the penalized Poisson estimator proposed in Jiang & Ma (2021) by using 

a class of “amenable” penalty functions first defined in Loh & Wainwright (2015, 2017) in 

combination with a modified log-likelihood function to construct estimators. We establish 

the estimation consistency and variable selection consistency of the resulting estimators. To 

bypass obstacle 2), we derive the asymptotic linear form of the estimators, and establish the 

asymptotic normality. The asymptotic normal estimator has a wider range of applications 

than the lasso type estimator does, because it facilitates subsequent inference procedures 

such as constructing hypothesis testing procedures.

Even after establishing the asymptotic normal properties, it is still challenging to generalize 

Wald and score tests to the high dimensional setting for Poisson regression with noisy 

data. This is because under the amenable penalties (Loh & Wainwright 2015, 2017), the 
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asymptotic normality of the estimators is built on a minimal signal condition, which requires 

the nonzero elements in β to be at least of order λ. Here λ is the penalty parameter which 

goes to zero when sample size increases. Now consider testing the null hypothesis β1 = 

0 versus the alternative β1 = hn, where β1 is the first element of β. The minimal signal 

condition implies that the test will have no power in testing the local alternative when |hn|2 

≪ λ. To resolve this issue, we remove the penalties on the subvector of the parameters 

involved in the test. However, it is still unclear how fast the dimension of the subvector 

can grow while still ensuring sufficient power. To this end, we derive the convergence 

property of the estimators, which provides the explicit rate at which the dimension of 

the subvector is allowed to grow with the sample size in order to achieve consistency, 

asymptotic normality, and sufficient power in testing. Furthermore, to implement the score 

test, we need to estimate the regression parameters under the null hypothesis, which involves 

optimization under linear equality constraints. This type of constrained parameter estimation 

for noisy Poisson model has not yet been developed. To fill this gap, we develop a 

general procedure for parameter estimation under linear constraints. The constraints include 

inequality constraints for the parameter estimation under general Poisson model and an 

additional equality constraint imposed by the null hypothesis, which leads to great challenge 

in establishing the convexity. Incorporating inequality constraints is practically important 

because it allows to incorporate additional parameter information, which will reduce the 

estimation variation and in turn the sample size needed to achieve satisfactory estimation 

accuracy.

We briefly summarize our contributions as follows. First, we develop a new estimation 

procedure of the Poisson model with amenable regularization for noisy data. Second, we 

show the variable selection consistency and the consistency of the resulting estimator. 

We provide explicit convergence rate of the estimator. Third, we derive the asymptotic 

normality of the estimator for the nonzero parameters and the parameters to test. Fourth, 

we propose the Wald and score test procedures by constructing the corresponding test 

statistics. Fifth, we derive the asymptotic distributions of the Wald and score test statistics. 

These five essential elements combined together finally allow us to perform hypothesis 

testing for Poisson model with high dimensional noisy covariates, which allows us to 

answer important questions such as “if the left inferior temporal gyrus has a significant 

impact on the development of Alzheimer’s disease”. These estimation and inference 

tasks are not straightforward to achieve, they require building up a series of theoretical 

properties first, which involves techniques related to analyzing conditional sub-Gaussian 

distribution tails, utilizing and modifying various concentration inequalities, constructing 

the prime-dual equivalence, carefully bounding various quantities, linking different vector 

and matrix norms, and establishing a Lyapunov-type bound (Bentkus 2005) on the 

probability distribution to derive the asymptotic distribution of proposed test statistics. All 

these analyses are performed under the unusual constraints involving both linear equality 

constraints and parameter restrictions. We also modify the alternating direction method of 

multipliers (ADMM) algorithm to solve a regularized optimization problem under linear 

constraint in constrained parameter space. Although each individual technique in its basic 

form has been used in the literatures of mathematical analysis, statistics, combinatorics, 
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operations research and computer science, a seamless combination of all these into a general 

tool to solve the problem under study is very challenging and difficult.

Count data occur frequently in practice, and it is a rule rather than exception that the 

covariates can be contaminated. In modern data collection mechanism, covariates are 

almost always high dimensional. Hence, estimation and inference in Poisson regression 

with high dimensional noisy covariates is a general problem with wide applications. A 

direct motivation of this work is the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

study, which is a multi-site longitudinal study investigating early detection of Alzheimer’s 

disease (AD) and tracking disease progression biomarkers (Weiner et al. 2017). Recently, 

the advent of tau-targeted positron emission tomography (PET) tracers such as flortaucipir 

(18F-AV-1451) has made it possible to investigate the relative (to patient’s body weight) 

tissue radioactivity concentration of the tracers, quantified as standardized uptake value ratio 

(SUVR), in relationship to the cognitive function. Therefore, we aim to study the association 

between cognitive scores and SUVRs from PEG image data. We extract Montreal Cognitive 

Assessment (MoCa) scores (Y) and SUVRs (X) from the PET image in the ADNI study 

taken within 14 days of the cognitive tests from 196 subjects in the ADNI phase 3 study. 

We first perform a linear lasso regression between the logarithm of MoCa score and the 218 

covariates including age, gender, SUVRs, and volumes of whole brain ROIs. Figure 1 shows 

the density of the residuals from the lasso regression, which suggests that the residuals are 

skewed and hence the linear lasso regression does not provide a satisfactory fit for the data. 

This motivates us to consider Poisson regression. We utilize the Poisson high dimensional 

hypothesis testing procedure developed in Shi et al. (2019) to examine which SUVRs are 

significantly associated with the MoCa scores. For each covariate of interest, we test the 

hypothesis that the corresponding coefficient is greater than zero. We plot the logarithm of 

the p-values from the score and Wald tests proposed in Shi et al. (2019) for the coefficients 

of the SUVRs at cortical ROIs. Figure 1 shows that if using 0.05/218 as a cut off for the 

p-value, both the Wald and score test identify the SUVRs at all cortical ROIs as significant 

predictors, which contradicts the fact that the cognitive functions are controlled by a subset 

of brain ROIs (Leisman et al. 2016). This unsatisfactory result likely attributes to the fact the 

Shi et al. (2019)’s method relies on the assumption that the expectation of the exponential of 

the distance between outcome and regression function is bounded (Condition (A3) in (Shi et 

al. 2019)) while neuroimage data are often subject to data acquisition and processing errors, 

which likely leads to violation of this assumption. This motivating example demonstrates the 

necessity of developing novel statistical inference procedure to test linear hypothesis in the 

high dimensional Poisson model with noisy data.

The rest of the paper is organized as follows. Section 2 discusses related work. In Section 

3, we describe our model assumptions and the overall estimation strategy. We further detail 

the estimation with and without the null constraint, and the construction of the test statistics. 

The fundamental theoretical developments are provided in Section 4, where we establish 

convergence rates, the asymptotic normal results, and the properties of the test procedures. 

We study the practical implementation and the numerical performances in Section 5, where 

a detailed algorithm is provided, extensive simulations are carried out, and a ADNI data set 
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is analyzed. We conclude the paper in Section 6. The main mathematical proofs are provided 

in an Appendix given in a Supplementary Document.

2. Related Works and Notations.

Nonlinear models with high dimensional noisy data are in general hard problems to work 

with, partly because existing treatments usually lead to non-convex optimization, which 

violates standard requirements in the high dimensional data analysis literature. Thus, only 

linear models, which are the simplest in all noisy data problems, have received relatively 

thorough investigation (Loh & Wainwright 2012, Belloni & Rosenbaum 2016, Datta & Zou 

2017, Belloni, Rosenbaum & Tsybakov 2017, Belloni, Chernozhukov & Kaul 2017, Li et 

al. 2021). Expanding the research framework to the Poisson regression context is difficult 

because the link function in the Poisson model is nonlinear. Subsequently, it is not easy 

to construct noise adjusted quantities such as a noise adjusted Hessian matrix like in the 

linear case. In addition, the Hessian matrix involves heavy tailed random variables due to 

the exponential link, even if all the covariates are sub-Gaussian in their original scale. These 

difficulties require additional restrictions on the moments of the covariate distribution as 

well as on the parameter searching space, which complicates all the subsequent computation 

and analysis. Indeed, the only works we are aware of in the high dimensional Poisson 

model with noisy data are Jiang & Ma (2021), Sørensen et al. (2015, 2018), Brown et al. 

(2019), while only the estimator in Jiang & Ma (2021) has been shown to be consistent. 

However, because all these methods use lasso-type L1 penalty in the estimation, the resulting 

estimators do not enjoy variable selection consistency and their asymptotic distribution 

results are not established.

There is extensive literature on the linear hypothesis testing under high dimensional noise 

free setting. (Ning & Liu 2017) introduced a decorrelated score function to construct 

confidence regions for low dimensional components in high dimensional models. Zhang 

& Cheng (2017) used the desparsifying lasso estimator (Van de Geer et al. 2014) to propose 

a maximal-type statistic allowing the number of parameters that are involved in the test 

to grow with the sample size. Moreover, Shi et al. (2019) proposed a partial penalized 

likelihood ratio test, a score test, and a Wald test for testing the linear hypothesis of the 

parameters in high dimensional generalized linear models.

Notations.

We introduce some general notation that will be used throughout the text. For a matrix M, 

let ∥M∥max be the matrix maximum norm, ∥M∥∞ be the L∞ norm and ∥M∥p be the Lp norm. 

Let ℱ(β) be the σ-field generated by Xi,βTWi, i = 1, …, n. Further, let ℱx be the sigma-field 

generated by Xi, i = 1, …, n. For a general vector a, let ∥a∥∞ be the vector sup-norm, ∥a∥p 

be the vector lp-norm. Let ej be the unit vector with 1 on its jth entry. For a vector v = (v1, 

…, vp)T, let sup(v) be the set of indices with vi ≠ 0 and ∥v∥0 = |supp(v)|, where | | stands for 

the cardinality of the set . For a vector v ∈ ℝp and a subset S ⊆ (1, …, p), we use vS ∈ ℝS

to denote the vector obtained by restricting v on the set S.
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Following Fletcher & Watson (1980), for an arbitrary norm ∥ · ∥A and its dual normal ∥ · ∥D, 

we define ∂∥x∥A as the set (v : ∥x∥A = vTx, ∥v∥D ⩽ 1). Thus, for an arbitrary vector x = (x1, 

…, xp)T, ∂∥x∥1 = {v = (v1, …, vp)T : vj = sign(xj) if xj ≠ 0, and |vj| ⩽ 1 if xj = 0}, and ∂∥x∥2 = 

{v = (v1, …, vp)T : vj = xj/∥x∥2}.

3. Model, Estimation and Test Statistics.

3.1 Problem Formulation: High dimensional Poisson model with noisy data.

Let Xi be a p-dimensional covariate, for example the image features, and let Yi be 

a count random response variable, for example the MoCa score from the ADNI data. 

We model the relationship between Yi and Xi (i = 1, …, n) through a Poisson model 

pr Y i = y ∣ Xi = x = e−exp βt
Tx exp βt

Tx y/y!. Here, βt is a p-dimensional sparse parameter 

vector. We allow the number of nonzero entries in βt to grow with the sample size. We 

consider Poisson model here because our response is a count, and Poisson model is arguably 

the most standard model for count data. Indeed, Poisson model has been widely used to 

model the distribution of cognitive scores (Katz et al. 2021, Fallah et al. 2011, Mitnitski et 

al. 2014). We use eβt
Tx to model the conditional mean of the Poisson model to ensure the 

positiveness of the mean, and to allow possible skewness in the distribution (McCullagh & 

Nelder 2019). We assume βt to be sparse because it often happens that only a few covariates 

have effect on the outcome. For example, in the ADNI data, because the cognitive functions 

are controlled by a subset of brain ROIs (Leisman et al. 2016), only a subset of brain 

features contributes to the cognitive function.

Furthermore, we assume the covariate Xi is not precisely observed and instead, a 

contaminated version of Xi, denoted Wi, is observed, where Wi = Xi + Ui, and Ui is the 

noise that is independent of both Xi and Yi. For example, in the ADNI data, Xi can be 

the true image features, while Wi represent the observed image features which can deviate 

from the truth due to imperfect data collection and processing procedure. Without loss of 

generality, assume that E(Xi) = 0, which can always be achieved by centering the observed 

covariates in practice. Furthermore, we assume Ui is a normally distributed random noise 

vector with mean zero and known covariance matrix Ω. The normal assumption for Ui is 

the common assumption at the state of the art in the Poisson measurement error literature 

and allows to derive analytic form of the loss function, which is the only setting that we 

can directly examine the convexity of the loss function. The known Ω assumption is only 

for convenience of presentation. In practice, it is often replaced by an estimated version 

based on multiple observations, validation data or other standard instruments under both 

low and high dimensional settings (Carroll et al. 2006, Loh & Wainwright 2012), and 

the corresponding analysis is routine. Let (Xi, Wi, Yi, Ui) be independent and identically 

distributed (iid) and assume (Wi, Yi), i = 1, …, n are the iid observations. In this work, we 

devise estimation procedures for β and establishing theoretical properties of the estimator, 

we further aim at performing inference, such as conduct hypothesis testing. Throughout, we 

allow the covariate dimension to be much higher than the number of observations, i.e. p ≫ n. 

We assume βt is in the feasible set: {β : ∥β∥0 ⩽ k, ∥β∥2 ⩽ b0}, which is practically sensible. 

A vector β in the feasible set automatically satisfies β 1 ⩽ b0 k.
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3.2. General Estimation Strategy.

If the true covariates Xi can be observed and the dimension p is fixed, this is a standard 

regression model and we routinely estimate β by minimizing the negative loglikelihood, 

which is proportional to

−n−1 ∑
i = 1

n
Y iXi

Tβ − exp βTXi .

Here we use exp(βTXi) to model the mean of Yi because it preserves the positiveness of the 

mean estimate, and it is a standard choice in the generalized linear model (McCullagh & 

Nelder 2019). It is useful to note that for normal noise Ui, we have the relation

E exp βt
TWi − βt

TΩβt/2 ∣ Xi = exp βt
TXi , (2)

E exp βt
TWi − βt

TΩβt/2 Wi − Ωβt ∣ Xi = exp βt
TXi Xi, (3)

E exp βt
TWi − βt

TΩβt/2 Wi − Ωβt
⊗ 2 − Ω ∣ Xi = exp βt

TXi Xi
⊗ 2 . (4)

Due to the conditional independence of Wi and Yi given Xi, (2) leads to

E Y iWi
Tβt − exp βt

TWi − βt
TΩβt/2 ∣ Xi, Y i = Y iXi

Tβt − exp βt
TXi .

Consequently, it is a reasonable practice to estimate β by minimizing the loss function

ℒ(β) = − n−1 ∑
i = 1

n
Y iWi

Tβ − exp βTWi − βTΩβ/2 , (5)

which has the same mean as the negative log-likelihood function when Xi is accurately 

observed. When n > p, the estimator for β can be obtained by minimizing ℒ(β) using the 

standard gradient descent method. However, when n < p, without addition regularization, 

optimizing (5) is an ill-posed mathematical problem because it does not have a unique 

solution. To take into account the ultra-high dimension nature of the model, using the 

fact that β is sparse, we propose to estimate β through solving the following constrained 

minimization problem

min
β 1 ⩽ R1, β 2 ⩽ R2

ℒ(β) + ρλ(β) (6)

at suitable R1, R2, where ρλ(β) is a suitable penalty function. For convenience, define the set 

{β : ∥β∥1 ⩽ R1, ∥β∥2 ⩽ R2} as the feasible set (Fletcher & Watson 1980). Here R1, R2 can be 

any constants that are greater than the true ∥β∥1 and ∥β∥2, respectively. The condition ∥β∥1 

⩽ R1 is imposed to guarantee that the objective function satisfies the restricted eigenvalue 

condition discussed in Loh & Wainwright (2012) and therefore the objective function is 

convex in the feasible set, while the condition ∥β∥2 ⩽ R2 is imposed to avoid the explosion 
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of the mean function exp(βTWi − βTΩβ/2). In practice, we often set R1, R2 to be a constant 

times the L1, L2 norms of the initial estimators of β. Here, with a slight abuse of notation, 

we use the same symbol ρλ to denote both multivariate and univariate penalty functions and 

let ρλ(β) = ∑j = 1
β 0 ρλ βj , where βj is the jth element of β and ∥β∥0 is the number of nonzero 

elements in β.

3.3. Estimation under Hypotheses.

Consider testing the hypothesis that Cβtℳ = t + hn for some hn ∈ ℝr, where C is a r × 

m matrix with r ⩽ m, βtℳ is a m-dimensional subvector of β with index set ℳ. The null 

hypothesis holds when hn = 0, while the alternative hypothesis holds when hn ≠ 0. For 

example if t = 0, hn = 1, C = (1, 0), ℳ contains the index of the first element in βt, then 

testing Cβtℳ = t + hn is testing the null hypothesis that βt1 = 0 versus the alterative that βt1 

= 1. Similarly, we can test βt1 − βt2 = 0 versus βt1 − βt2 ≠ 0 by choosing C = (1, −1), t = 0, 

hn = 0 or nonzero, and ℳ = {1, 2}. In summary, by varying C, t, hn, and ℳ, we can generate 

different linear hypotheses to test. Without loss of generality, we assume βℳ contains the 

first m elements of β. Further, let βℳ
c  be the vector containing elements that are not in ℳ, i.e. 

the last p − m components of β. Let S ⊆ ℳc be the index set of the nonzero elements of βtℳc. 

We assume βtℳc to be k sparse, i.e. |S| = k. Note that k is allowed to diverge with n. Without 

loss of generality, we assume the first k elements in βtℳc are none zero.

Suppose we are interested in testing whether Cβtℳ = t or not. Under the null hypothesis that 

H0 : Cβtℳ = t, we modify the general estimation strategy slightly and consider the estimator 

resulting from the equality and inequality constrained minimization:

β = argmin β 1 ⩽ R1, β 2 ⩽ R2 ℒ(β) + ρλ βℳc , s.t. Cβℳ = t (7)

for suitable R1, R2. Without assuming the null hypothesis, we consider a similar estimator 

resulting from the inequality constrained minimization:

β a = argmin β 1 ⩽ R1, β 2 ⩽ R2 ℒ(β) + ρλ βℳc . (8)

Note that here, both (7) and (8) are slightly different from the general strategy in (6), in that 

we do not place the penalty ρλ on the parameters in ℳ, which are to be tested for the linear 

relation Cβtℳ = t. This special treatment is to avoid the situation that the penalty forces 

some components in βℳ to be zero, and therefore the null hypothesis Cβtℳ = t is affected not 

only by the data but also by our penalization.

3.4. Test statistics.

We define

Q(β) ≡ E exp βTX XXT , (9)

define the covariance of the residuals
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Σ(β) ≡ E Y iWi − exp βTWi − βTΩβ/2 Wi − Ωβ ⊗ 2 ,

and define

Ψ(Σ, Q, β) ≡ C Im × m, 0m × k Qℳ ∪ S, ℳ ∪ S
−1 (β)Σℳ ∪ S, ℳ ∪ S(β)Qℳ ∪ S, ℳ ∪ S

−1 (β) Im × m, 0m × k
TCT .

Furthermore, let Σ(β) and Q(β) be a sample estimator of Σ(β) and Q(β), respectively. To test 

Cβℳ = t, we introduce two statistics, the Wald statistic

TW = n Cβ aℳ − t TΨ Σ, Q, β a
−1 Cβ aℳ − t , (10)

and the score statistic

TS = n ∂ℒ(β )
∂βT

ℳ ∪ S

C Im × m, 0m × k Qℳ ∪ S, ℳ ∪ S
−1 (β ) T

× Ψ−1(Σ, Q, β )C Im × m, 0m × k Qℳ ∪ S, ℳ ∪ S
−1

(β ) ∂ℒ(β )
∂β

ℳ ∪ S

. (11)

As we will show later in Section 4.4 that TW and TS are both asymptotically chi-square 

distributed with r degrees of freedom under the null hypothesis. Therefore, to control the 

false discovery rate at level α, we reject the null hypothesis if TW > χ1 − α
2 (r) when we perform 

Wald test, or if TS > χ1 − α
2 (r) when we perform score test. Here χ1 − α

2 (r) is the 1 − α quantile of 

the chi-square distribution.

4. Theoretical Properties.

Define

βℳ ≡ βtℳ − CT CCT −1hn,

and let β = βtℳ
T , βtℳcT T

. Thus, the last p – m components of β, i.e. βℳc, and the last p – 

m components of β0, i.e. β0ℳc, are identical. However, the first m components of β and 

β are different, in that Cβℳ = t under both null and alternative, while Cβtℳ = t under 

the null alone. Under some conditions, we first show that the inequality and equality 

constrained estimator β  is a consistent estimator of β regardless the null or the alternative 

holds, and when ∥hn∥2 vanishes, β is also consistent as an estimator of the true parameter 

βt. Furthermore, we show that β a is a consistent estimator of βt regardless the null or 

the alternative holds. We then establish the asymptotic linear form of the estimators of a 

subvector β  and a subvector of β a, which are formed by components of βt that are either to 
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be tested or nonzero. Finally, using the asymptotic linear forms, we construct test statistics 

and prove the convergence properties of these test statistics under both null and alternative.

4.1. Conditions.

Before we proceed with the specific results, we first list a set of assumptions on the 

univariate penalty function ρλ which are similar to those in Loh & Wainwright (2015) and 

Loh & Wainwright (2017).

(A1) The function ρλ(t) satisfies ρλ(0) = 0 and is symmetric around zero.

(A2) (A2) On the nonnegative real line t ⩾ 0, the function ρλ(t) is nondecreasing. 

Furthermore, ρλ(t) is subadditive, i.e. ρλ(t1 + t2) ⩽ ρλ(t1) + ρλ(t2) for all t1, t2 ⩾ 
0.

(A3) For t > 0, the function ρλ(t)/t is non-increasing in t.

(A4) The function ρλ(t) is differentiable at all t ≠ 0 and sub-differentiable at t = 0, 

with limt 0 + ρλ
′ (t) = λ, where ρ′(t) denotes the derivative of ρ(t). Together with 

the symmetric Condition in (A1), this leads to limt 0 − ρλ
′ (t) = − λ.

(A5) There exists μ > 0 so that ρλ(t) + μt2/2 is convex.

(A6) There exists a γ ∈ (0, + ∞) such that ρλ
′ (t) = 0 for all t ⩾ γλ.

Conditions (A1)–(A3) are some general requirements as discussed in Zhang et al. (2012). 

Condition (A4) restricts the class of penalties by excluding regularizers that are not 

differentiable at 0, for example, the lasso penalty is excluded. Condition (A5) is known 

as weak convexity (Vial 1982, Chen & Gu 2014) and is a type of curvature constraint that 

controls the level of nonconvexity of ρλ. Condition (A6) is imposed to allow penalty to 

be zero if the estimator is γλ away from zero, which removes the estimation bias for the 

nonzero parameters. We say ρλ is μ-amenable if Conditions (A1)–(A5) hold, and we name 

ρλ (μ, γ)-amenable if Conditions (A1)–(A6) hold. The (μ, γ)-amenable penalty includes 

the smoothly clipped absolute deviation (SCAD) and the minimax concave penalty (Loh & 

Wainwright 2017).

We need some additional regularity conditions to support the theoretical development. These 

conditions impose upper and lower bounds on various quantities to ensure that the upper 

bounds are finite and the lower bounds are positive. They also restrict the relation between 

the sample size and parameter number so that log(p)/n → 0 in a slow rate of 1/{log(n)}2. To 

save space, we only provide a discussion of these conditions here, while provide the details 

in the supplementary material. Specifically, Condition (C1) (a) is a standard assumption 

used in noisy data problem such as that used in Sentürk & Müller (2005) and is usually 

satisfied in practice. Condition (C1) (b) guarantees the boundedness and the invertibility 

of the Hessian matrix (4), i.e. the second derivative of the noise free log likelihood. 

Conditions (C2) and (C3) bound the total variability of both the response Y and the noise 

U marginally and conditionally on the covariates X. Similar requirement is also assumed in 

Loh & Wainwright (2012). Condition (C4) shows that the dimension of the covariate can 

grow exponentially faster than the sample size. Finally, Jiang & Ma (2021) have discussed 
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the Conditions (C5)–(C7) and provided examples showing that the conditions are usually 

satisfied in practice.

4.2. Consistency.

We first show that the equality and inequality constrained estimator β  is a consistent 

estimator of β in Theorems 1 and 2, which is the same as the true parameter βt, except 

that the first m components are adjusted to ensure that H0 holds for β.

Theorem 1. Define

α1 ≡ min
β 1 ⩽ R1, β 2 ⩽ R2

αmin E exp βTXi XiXi
T /2.

Assume Cr
−1Cm − r 2 = O(1), ρλ satisfies Conditions (A1) – (A6) and Conditions (C1) – (C6) 

in the supplementary material hold. Assume α1 > 3/4μ, and β is in the feasible set. Let λ 
satisfy

4 max ∂ℒ(β)/ ∂β ∞, α1(log(p)/n)1/4 ⩽ λ ⩽ α1
6R1

and n ⩾ log(p) max 16R1
4τ1

4/α1
4, 64R1

4τ1
2/α1

2 . Write t1 ≡ r Cr
−1Cm − r 2 + m − r and 

t ≡ 6λ k + 2λt1 4α1 − 3μ −1. Then the local minimum of (7) satisfies the error bounds

β − β 2 ⩽ t .

and

β − β 1 ⩽ 4 k + t1 t .

Following the similar argument, we also show that the inequality constrained estimator β a is 

a consistent estimator of the true parameter β.

Theorem 2. Let

α1 = min
β 1 ⩽ R1, β 2 ⩽ R2

αmin E exp βTXi XiXi
T /2

and let ρλ satisfy Conditions (A1) – (A6) and Conditions (C1) – (C6) in the supplementary 

material hold. Assume α1 > 3/4μ, and β is in the feasible set. Let λ satisfy

4 max ∂ℒ βt / ∂β ∞, α1(log(p)/n)1/4 ⩽ λ ⩽ α1
6R1
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and n ⩾ log(p) max 16R1
4τ1

4/α1
4, 64R1

4τ1
2/α1

2 . Then the local minimum of (8) satisfies the error 

bounds

βa − βt 2 ⩽ 6λ k + 2λ m
4α1 − 3μ .

and

βa − βt 1 ⩽ (4 k + m)6λ k + 2λ m
4α1 − 3μ . 

Theorems 1 and 2 suggest that when log(p)/n → 0, and when λ is suitably chosen, for 

example, λ is at least no smaller than O[{log(p)/n}1/4], both β  and β a converge to their 

corresponding true values in terms of both l1 and l2 norms, as long as k and m grow slower 

than {n/log(p)}1/2. These theoretical results suggest that the dimension of βtℳ, i.e., the 

number of parameters involved in the tests, and the number of nonzero entries in βt can grow 

at a slower rate of {n/log(p)}1/2 under noisy Poisson model. These results also assist us to 

find reasonable ranges for λ in practice to obtain consistent estimators.

4.3. Asymptotic linear forms.

We denote β as a stationary point of (7), which satisfies the first order condition that

∂ℒ(β)/ ∂βT + ∂ρλ βℳc / ∂βℳc
T A (β − β) ⩾ 0, (12)

for all β ∈ ℝp in the feasible set and satisfies Cβℳ = t. Here A = (0p−m,m, Ip−m,p−m) is a 

matrix that satisfies ∥A∥∞ = ∥A∥1 = 1. Likewise, we denote βa as a stationary point of (8), 

which satisfies the first order condition that

∂ℒ βa / ∂βT + ∂ρλ βaℳc / ∂βaℳc
T A βa − βa ⩾ 0, (13)

for all βa ∈ ℝp in the feasible set.

To show the asymptotic normality of β  and β a, our first step is to establish that the local 

minimizers β and βa achieve variable selection consistency. To do this, we follow the 

prime-dual construction introduced in Wainwright (2009). We first show that both

min
β 1 ⩽ R1, β 2 ⩽ R2, β ∈ ℝℳ ∪ S

ℒ(β) + ρλ βℳc , such that Cβℳ = t
(14)

and

min
β 1 ⩽ R1, β 2 ⩽ R2, β ∈ ℝℳ ∪ S

ℒ(β) + ρλ βℳc
(15)

have unique local minimizer in the interior of the feasible set. Then we show that all 

stationary points of (7) and (8) must have support in ℳ ∪ S. Since the local minimizers 
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of (7) and (8) are automatically stationary points of (7) and (8) respectively, the local 

minimizers of (7) and (8) must also have support in ℳ ∪ S. Therefore, the local minimizers 

of (7) and (8) are actually the local minimizers of (14) and (15) respectively, so are also 

unique. In other words, β  and β a are respectively the unique solution of (14) and (15) hence 

achieve the variable selection consistency. The details of the above analysis are presented in 

Theorem A.1 and Theorem A.2 in the Appendix A in the supplementary material.

In our second step to establish the asymptotic distribution properties of β  and β a, we define

Q(β) = ∂2ℒ(β)
∂β ∂βT ,

and define

A2 = Im × m, 0m × k
TCT C Im × m, 0m × k Qℳ ∪ S, ℳ ∪ S β* −1 × Im × m, 0m × k

TCT −1C Im × m, 0m × k ,

where β* is the point in between β  and βt and

A2
* = Im × m, 0m × k

TCT C Im × m, 0m × k Qℳ ∪ S, ℳ ∪ S(β) −1 × Im × m, 0m × k
TCT −1C Im × m, 0m × k ,

where Q(β) = E{exp(βTX)XXT} is defined in (9). Based on the variable selection 

consistency established in the first step, we derive the asymptotic linear form of βℳ ∪ S and 

β aℳ ∪ S under null and alternative hypothesis in Theorems 3 and 4, respectively.

Theorem 3. Assume ρλ satisfies Conditions (A1) – (A6) and Conditions 

(C1) – (C7) in the supplementary material hold, λ = Op[{log(p)/n}1/4], 

Cr
−1Cm − r 2 = O(1), and λ ⩽ α1/(8R1). Further we assume the boundedness 

Q(ℳ ∪ S), ℳ ∪ S
−1 βt ∞ ⩽ c∞, and Q(ℳ ∪ S), ℳ ∪ S βt

−1A2Q(ℳ ∪ S), ℳ ∪ S
−1 βt ∞ ⩽ c∞. In addition assume 

hn 2 = O max(m + k − r, r)/n , min βj ⩾ λ γ + 5c∞  for j ∈ S and n ⩾ c∞(m + k)4log(p). 

Then we have

βℳ ∪ S − βtℳ ∪ S = − Qℳ ∪ S, < ℳ ∪ S βt
−1 − Qℳ ∪ S, ℳ ∪ S βt

−1A2
* × Qℳ ∪ S, ℳ ∪ S βt

−1 ∂ℒ βt
∂β ℳ ∪ S

1 + op(1) + Qℳ ∪ S, ℳ ∪ S βt
−1A2

* CCT −1C, 0r × k
T

hn 1 + op(1)

and β (ℳ ∪ S)c = 0.

Theorem 4. Assume ρλ satisfies Conditions (A1) – (A6) and Conditions (C1) – (C7) in the 

supplementary material hold, λ = Op[{log(p)/n}1/4], and λ ⩽ α1/(8R1). Further we assume 

∥{Q(ℳ∪S),ℳ∪S(βt)}−1∥∞, ⩽ c∞, min(|βj|) ⩾ λ(γ + 5c∞) for j ∈ S and n ⩾ c∞(m +k)4log(p). 

Then we have
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βaℳ ∪ S − βtℳ ∪ S = − Qℳ ∪ S, ℳ ∪ S βt
−1 ∂ℒ βt

∂β ℳ ∪ S
1 + op(1)

and β (ℳ ∪ S)c = 0.

Theorems 3 and 4 suggest that the asymptotic linear forms of βℳ ∪ S and β aℳ ∪ S are the usual 

product of the inverse of Hessian matrix and the score function. Furthermore, only the first 

(m + k) × (m + k) block in the Hessian matrix and the first m + k elements in the score 

function contribute to the asymptotic distribution. Therefore, when m + k grows slower than 

{n/log(p)}1/4 and ∥hn∥ → 0, it is easy to see that the asymptotic linear forms converge 

in distribution to Gaussian random vectors. It is worth mentioning that the minimal signal 

condition min(|βj|) ⩾ λ(γ + 5c∞) for j ∈ S is a standard requirement for the optimization 

using nonconvex penalty such as SCAD (Fan & Li 2001). This condition is also very weak 

because λ → 0, which allows the minimal signal vanishing to zero.

4.4. Asymptotic distribution of the test statistics.

To study the asymptotic behavior of TS and TW, we first investigate the distribution of their 

asymptotic form T0 defined by

T0 ≡ ωn + nhn
TΨ−1 Σ, Q, βt ωn + nhn ,

where

ωn = − nC Im × m, 0m × k Qℳ ∪ S, ℳ ∪ S
−1 βt

∂ℒ βt
∂β ℳ ∪ S

.

As shown in Lemma 1, T0 is asymptotically noncentral chi-square distributed with the 

noncentral parameter approaches nhn
TΨ−1 Σ, Q, βt hn.

Lemma 1. Assume ρλ satisfies Conditions (A1) – (A6) and Conditions (C1) and (D1) in the 

supplementary material hold and n ⩾ c∞(m + k)4log(p), then

lim
n ∞

sup
C

Pr T0 ⩽ x − Pr χ2 r, nhn
TΨ−1 Σ, Q, βt hn ⩽ x = 0,

where χ2(r, γ) is a non-central chi-square random variable, with non-centrality parameter γ.

Here Condition (D1) provides upper bound of the third moment of each summand in ω 
(note that ∂ℒ(βt)/∂β is the summation of the derivatives of the negative log-likelihood from 

n samples), which is a necessary condition to establish convergence in distribution. See 

Theorem 3.1 in Shi et al. (2019) for example. To establish the asymptotic distribution of TW 

and TS, in Theorems 5 and 6 respectively, we show that TW and TS are close to T0, hence 

has the same testing property asymptotically when r is finite.
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Theorem 5. Assume the conditions in Theorem 4 and Conditions (D1) and (D2) in the 

Section B.4.2 in the supplementary material hold, we have TW − T0 = op(r). Therefore,

lim
n ∞

sup
C

Pr TW ⩽ x − Pr χ2 r, nhn
TΨ−1 Σ, Q, βt hn ⩽ x = 0,

where χ2(r, γ) is a non-central chi-square random variable, with non-centrality parameter γ.

Theorem 6. Assume the conditions in Theorem 3, Conditions (D1) and (D2) in the Section 

B.4.2 in the supplementary material hold, we have TS − T0 = op(r). Therefore,

lim
n ∞

sup
C

Pr TS ⩽ x − Pr χ2 r, nhn
TΨ−1 Σ, Q, βt hn ⩽ x = 0,

where χ2(r, γ) is a non-central chi-square random variable, with non-centrality parameter γ.

Here Condition (D2) in the Section B.4.2 is a regularity condition ensures Ψ(Σ, Q, βt) to 

be positive definite. Theorems 5 and 6 show that the two test statistics TW and TS indeed 

have the same χ2(r, γ) distribution as T0 in large samples, hence can be used to perform 

the standard chi-square test. A curious question is whether or not a likelihood ratio type of 

test can also be constructed. We feel it is hard in this context because it is almost impossible 

to obtain a likelihood function in the functional measurement error context. Much work is 

needed to overcome this obstacles.

5. Numerical Implementation.

5.1. Computational algorithms.

We compute the estimators β  and β a using the popular ADMM. In what follows, we only 

detail the algorithm to estimate β . The estimator β a can be computed in a similar way. For a 

given λ, we consider

β = argmin β 1 ⩽ R1, β 2 ⩽ R2 ℒ(β) + ρλ βℳc , s.t. Cβℳ = t

for constants R1, R2. Similar to Shi et al. (2019), this optimization problem is equivalent to

(β , θ) = argmin β 1 ⩽ R1, β 2 ⩽ R2 ℒ(β) + ρλ βℳc ,  s.t. Cβℳ = t, βℳc = θ .

By the augmented Lagrangian method, the estimators can be obtained by minimizing

L(β, θ, v) = ℒ(β) + ρλ βℳc + vT Cβℳ − t
βℳc − θ + ρ

2
Cβℳ − t
βℳc − θ 2

2

,

with ∥β∥1 ⩽ R1, ∥β∥2 ⩽ R2, where the dual variables v are Lagrange multipliers and ρ > 0 

is a given penalty parameter. We compute the estimators of (β, θ, v) through iterations. Let 
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the sup-script (t) indicate the t-th iteration, we describe the main steps of ADMM methods in 

Algorithm 1.

In the implementation, the initial value β(0) can be computed by a penalized Poisson 

regression following Jiang & Ma (2021). For the radii R1 and R2, we consider R1 = 2R2

and R2 = 1.5 β 2
(0). In the implementation, if the algorithm converges to the boundary, we 

can increase the corresponding norm R1 or R2 slightly. In contrast, if multiple minimum 

problems are encountered, we can decrease R1 and when the estimation procedure leads to a 

very large exp(βTX), we can decrease R2, gradually. The tuning parameter λ is selected by 

minimizing

BIC(λ) = nℒ(β ) + cn β 0 (16)

with respect to λ, where cn is a positive number that may depend on n. In our analysis, we 

follow Shi et al. (2019) to adopt cn = max{logn, log(log(n))logp}. For simplicity, we set ρ = 

1.

5.2. Simulation Experiments.

We generate the outcome Yi from the Poisson model

Pr Y i = y ∣ Xi = exp − exp βTXi exp yβTXi /y!,

where the covariates Xi = (Xi,1, …, Xi,p)T are generated from two distributions: (I) the 

multivariate normal distribution with mean zero and covariance matrix Σ. (II) the uniform 

distribution in the interval ( − 6/2, 6/2). To generate correlated uniform distribution, 

we first draw covariates independently from U( − 6/2, 6/2), and then transform these 

covariates by multiplying the Choleski factorization of covariance Σ. We consider two forms 

of the covariance matrix: uncorrelated structure Σ = 0.5Ip and correlated with autoregressive 

AR(1) structure Σ = (0.5|i–j|+1)p×p for i, j = 1, …, p. Furthermore, the noise Ui is drawn from 

the multivariate normal distribution with mean zero and covariance matrix Ω = 0.1Σ. The 

true coefficient β = (β1, …, βp)T = (0.75, −0.75 + h2, h3, 0, …, 0, hp)T. Here hj, j = 2, 3, p 
are assigned various values to check the empirical powers of the tests. We set hj = 0 when j 
≠ 2, 3 or p. For simplicity, the initial β(0) is set to be a p-dimensional zero vector. We select 
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parameter λ as described in Section 5.1. The candidate list for λ is {e−2.5, e−2.245, …, e0.5} 

of length 41. We consider sample size n = 300, 500 and covariate dimension p = 50, 350, 

600. The tolerance of error δtol = 10−4. We repeat each setting 500 times, and report the size 

and power of the proposed tests under different hypotheses. We perform the tests at type I 

error α = 0.05 in the following scenarios.

5.2.1. Univariate parameter testing.—We first consider the following three 

hypotheses on a single element in β.

H0, 1:β2 = − 0.75,  v.s. Ha, 1:β2 ≠ − 0.75.

H0, 2:β3 = 0,  v.s. Ha, 2:β3 ≠ 0.

H0, 3:βp = 0,  v.s. Ha, 3:βp ≠ 0.

To test a hypothesis set regarding βj, we simulate data with hj = 0, 0.1, 0.2, 0.4, while set 

hk = 0 for k ≠ j. For example, to test H0,1 and Ha,1, we simulate data with h3 = 0, hp = 0, 

and h2 = 0, 0.1, 0.2, 0.4. When h2 = 0, the null hypothesis H0,1 holds, we study the type I 

error of the test. On the other hand, when h2 = 0.1 to 0.4, the alternative hypothesis is true, 

which allows us to examine the power of the test. Tables 1 and 2 summarize the empirical 

type I error and powers of the Wald and score tests. It is clear that the empirical type I errors 

are controlled at the nominal level 0.05 in all scenarios, indicating that the proposed tests are 

consistent. The powers of the Wald and score tests increase gradually when the magnitude 

of |hj|’s increases, and have satisfactory powers in general. The Wald and score tests yield 

similar performances in all scenarios. This finding is in accordance with theoretical analysis.

5.2.2. Linear hypothesis testing.—We also consider the hypotheses that contain the 

linear combinations of two coefficient parameters:

H0, 4:β1 + β2 = 0,  v.s. Ha, 4:β1 + β2 ≠ 0.

H0, 5:β3 + β4 = 0,  v.s. Ha, 5:β3 + β4 ≠ 0.

H0, 6:β1 + βp = 0.75, v.s. Ha, 6:β1 + βp ≠ 0.75.

H0, 7:β2 + β3 = − 0.75,  v.s. Ha, 7:β2 + β3 ≠ − 0.75.

For the first three sets of hypotheses, we still set hj = 0, 0.1, 0.2, 0.4 if the hypothesis 

involves βj for j = 2, 3, p, and set hk = 0 if the corresponding βk is not involved in the 
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hypotheses. For the last hypothesis H0,7, we set h2 = 0, hp = 0 and vary h3 from 0 to 0.4. 

Tables 3 and 4 show that the Wald and score tests control the type I error at nominal level, 

and their powers improve when hj increases.

5.2.3. Performance regarding m.—We further investigate how the testing 

performance changes as m changes. We consider three sets of hypotheses:

H0, 8: ∑
j = 1

4
βj = 0,  v.s. Ha, 8: ∑

j = 1

4
βj ≠ 0 .

H0, 9: ∑
j = 1

8
βj = 0,  v.s. Ha, 9: ∑

j = 1

8
βj ≠ 0 .

H0, 10: ∑
j = 1

12
βj = 0,  v.s. Ha, 10: ∑

j = 1

12
βj ≠ 0,

corresponding to m = 4, 8 and 12. We set h2 = 0, hp = 0, and h3 = 0, 0.2, 0.4, 0.8. 

The empirical sizes and powers are displayed in Table 5. These results suggest that under 

different m, the empirical sizes remain close to the nominal significance level for both the 

Wald and score tests. On the other hand, the empirical power decreases in general when 

m increases. For instance, as shown in Table 5, when X follows the multivariate normal 

distribution with mean zero and covariance Σ = 0.5Ip, p = 350 and h3 = 0.8, the powers of 

the Wald test are 1.000, 0.950 and 0.854 for m = 4, 8 and 12, respectively. This is intuitively 

sensible, and suggests that larger sample size is needed to reach a desired power when the 

hypothesis concerns more parameters.

5.2.4. Comparison with naive test.—We further compare the performances of our 

proposed tests with the naive Wald and score tests developed under the noise free 

framework. We consider the covariates Xi = (Xi,1, …, Xi,p)T generated from the multivariate 

normal distribution with mean zero and covariance matrix 0.7Ip. The noise Ui follows the 

multivariate normal distribution with mean zero and covariance matrix 0.3Ip. Other settings 

remain unchanged. We consider the hypotheses on a single element in β: H0,2, and the 

linear combinations of two coefficient parameters: H0,5 and H0,7 as described previously. We 

report the empirical sizes and powers of the Wald and score tests with/without noises for p 
= 50 in Table 6. It is clear that while the proposed tests achieve Type I errors reasonably 

close to the nominal level under different null hypotheses, the naive tests lead to precarious 

performance. For instance, the Type I errors of Wald and Score tests for H0,5 are as large 

as 0.474 and 0.554, respectively. These Type I errors are far beyond the significance level. 

Because they cannot control the significance level, we do not recommend consider using 

them in practice.
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5.3. Neuroimage application.

We apply our proposed testing procedures to study how the SUVRs from PET image data 

affect the MoCa score. We download the preprocessed 18F-AV-1451 PET image features, 

and demographic and cognitive assessments from the ADNI database. The image features 

include 18F-AV-1451 SUVRs and volumes of the cortical, sub-cortical regions, brainstem, 

ventricles and sub-divisions of corpus callosum. Furthermore, the demographic variables 

include gender and standardized age (divided by the standard deviation) at the image 

examining time. For each subject, we obtain his/her MoCa score within 14 days of his/her 

image examining time as the outcome, which ranges from 9 to 30. Furthermore, we remove 

the covariates with more than 100 missing values. We standardize the volumes of ROIs 

by subtracting the means and dividing by the standard deviations. We use the SUVR 

from inferior cerebellum as a reference and divide the rest of SUVRs by this reference 

as suggested in (Landau et al. 2016). Finally, we have n = 196 complete samples with p = 

218 covariates in the analysis.

Since the neuroimage data are longitudinally collected, we estimate the covariance matrix 

of U using repeatedly measured image features, while assuming that age and gender are 

recorded precisely. More specifically, let Wij denote the observed image features at the jth 

examining time. We first perform the regression between Wij and age of the ith patient at 

the jth examining time, and obtain Uij as the residual of the regression. Then we obtain the 

estimator for the covariance matrix

Ω =
∑i = 1

n ∑j = 1
ni Uij − Ui Uij − Ui

T

∑i = 1
n ni − 1

,

where ni is the number of repeated measurements of Wij, and Ui = ∑j = 1
ni Uij/ni. Finally, 

because the first two covariates, age and gender, are measured precisely, the first two 

columns and rows of the estimated Ω, denoted by Ω, are zeros. We set the rest (p – 2) × (p – 

2) sub-matrix of Ω to be Ω.

We test p hypotheses, each of the form

H0:βj = 0  v.s.  Ha:βj ≠ 0, (19)

for j = 1, …, p at 0.05 nominal level. To implement the hypothesis testing procedure, in 

each test, we first fit a standard penalized Poisson regression model to obtain the initial 

values of the coefficient estimators. Then we construct the score test and Wald test statistics 

based on (11) and (10), respectively. The tuning parameter λ is selected by minimizing (16). 

We obtain the p-value as the probability of a χ2(1) random variable that is greater than 

the resulting score and Wald test statistics. There are 33 and 69 covariate coefficients with 

significant p-values at 0.05 nominal level based on the score and Wald tests, respectively. 

Furthermore, we plot the boxplot of the resulting p-values in Figure 2. It is clear that the 

distribution of the p-values are similar for the score and the Wald test. For each covariate 

j, we obtain the estimated jth coefficient based on (8) under the corresponding alternative 

hypothesis, and plot the estimated coefficients of the SUVRs at the cortical regions on a 

Jiang et al. Page 19

Ann Stat. Author manuscript; available in PMC 2023 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



template brain in Figure 3. The results show that the SUVRs have negative effects on the 

cognitive score, suggesting that the higher the SUVR values, the lower the MoCa score and 

in turn the worse the cognitive function, which is consistent with the scientific evidences 

(Braak & Braak 1991, Schöll et al. 2016, Baker et al. 2017). Furthermore, the score test is 

more stringent and gives less number of significant SUVRs. Among 33 significant predictors 

from the score test, 27 of them are also significant in the Wald test. Based on this high 

agreement between the score and Wald tests, we believe the difference between the two tests 

is a small sample phenomenon.

To adjust for the multiple testing, we further performed an analysis to control false 

discovery rate (FDR) (Benjamini & Hochberg 1995) within 0.05 by treating the p-values 

as independent. Since the score test is too stringent, no significant covariate has been 

identified at 0.05 FDR by using the score test. Therefore, we only present the results from 

the Wald test. We plot the p-values versus 0.05j/218 in Figure 4 in an increasing order, 

which suggests 36 covariates are selected as the important predictors. There are 13 cortical 

SUVRs among the 36 important predictors that are significant. We present their estimated 

coefficient, p-values from the Wald test in Table 7. The results show that the majority of 

the significant cortical SUVRs are in the temporal lobe, which consists of structures that are 

vital for declarative or long-term memory (Smith & Kosslyn 2008).

In addition, we perform a 5-fold cross validation and compare the prediction errors among 

the four methods: (a) We select the important predictors as those with p-value less than 0.05 

in the test (19) based on the score statistics and then use formula exp βS
TWSi − βS

TΩSβS  to 

predict the outcome in the test sample, where WSi is the selected covariates, βS is estimator 

from (6) using selected covariates, ΩS is the subset of Ω corresponding to the selected 

covariates. (b) We select the important predictors as those with p-value less than 0.05 in the 

test (19) based on the Wald statistics and then use formula exp βW
T WW i − βW

T ΩW βW  to predict 

the outcome in the test sample, where WWi is the selected covariates, βW  is estimator from 

(6) using selected covariates, ΩW  is the subset of Ω corresponding to the selected covariates. 

(c) We select the important predictors using the standard lasso regression between the 

logarithm of the MoCa score and all covariates and then use formula exp β TWi  to predict 

the outcome, where β  is the estimator from the lasso regression. (d) We select the important 

predictors using the penalized Poisson regression between the logarithm of the MoCap score 

and all covariates and then use formula exp β TWi  to predict the outcome, where β  is the 

estimator from the penalized Poisson regression. The penalty parameters in the lasso and 

penalized Poisson regression are selected using a sub-routine of 10-folder cross-validation. 

Method (d) breaks down because the algorithm does not converge for any selections of 

the penalty parameters. Therefore, in Figure 5, we show the distributions of the prediction 

errors, defined as ∑i = 1
n Y i − Y i / Y i , only for the methods (a), (b) and (c) after 100 runs of the 

5-fold cross-validation. The results shows that Method (a) and (b) have similar performance 

and both outperform Method (c) with much smaller prediction errors on average.
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Finally, we perform the score and the Wald tests to test whether any SUVRs from any 

composite regions may have significant association with the MoCa score, where the 

composite regions, namely BRAAK12, BRAAK34, BRAAK56, are defined in (Braak & 

Braak 1991) and used in Landau et al. (2016) and Schöll et al. (2016). We provide the list of 

ROIs in each composite regions in Appendix B.5. Let βSk be the coefficients of the SUVRs 

from the ROIs that belong to the composite region k. We test the null hypothesis that βSk = 0. 

The results in Table 8 show that all the tests are significant, suggesting that at least one 

ROI in each of the composite region has significant association with the cognitive function. 

This result partially agrees with results in (Schöll et al. 2016) that the SUVRs from the 

composite regions are significantly different in healthy subjects and patients with a diagnosis 

of probable Alzheimer’s disease.

6. Conclusion and discussion.

We have proposed an amenably penalized noise corrected Poisson model to study the 

relationship between the cognitive score and high dimensional noisy neuroimage data. 

Under the sparsity assumption, we established the parameter convergence rates in both l1 

and l2 norms, the variable selection consistency property and the asymptotic normality of 

a subvector with possibly infinitely many components. Inference tools are subsequently 

developed. The neuroimage application shows that the inference tools generate scientifically 

meaningful results, which have potential to be used to study the cognitive function and 

cognitive changes for neurodegenerative diseases. Further research along this line is ongoing 

in our group. The neuroimage dataset and computational code are available at Jiang et al. 

(2021).

Thanks to an anonymous referee, we would like to point out one important extension. 

Instead of a constant matrix Ω, we can further allow Ω to depend on both the covariate 

X and the response Y, hence Ω(Y, X), and assume E(U|Y, X) = 0. This would include 

heteroscedastic measurement error and to allow dependent relation between W and Y given 

X. All the estimation and inference results will still hold and the regularity conditions 

and proofs in the Suppement also do not need to be further modified to accomodate this 

extension.

Establishing similar results in generalized linear models beyond Poisson or general 

regression models with non-Gaussian noise turns out to be surprisingly difficult due to 

various technical obstacles. The main difficult lies in being unable to construct a loss 

function that is positive-definite at the true parameter value. In the case when an estimating 

equation is available, although one may be tempted to treat the l2 norm square of the 

estimating equation as a loss function, we find other technical issues arise partially because 

the Hessian of the loss function may involve the response, hence some of the techniques 

used here cannot be directly applied. Likewise, extending the Poisson model to allow 

overdispersion also turns out challenging, regardless if we use a negative binomial model, or 

incorporate random effects, or use extra observed covariates. All these will lead to models 

different from Poisson. The biggest hurdle of considering general regression model and/or 

non-Gaussian noise is to rigorously establish that the loss function is locally convex. More 

investigation and dedicated effort are needed in this aspect.
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The assumption that the covariance of the measurement is known is widely adopted in 

the low and dimensional noisy data literature (Stefanski 1989, Cook & Stefanski 1995, 

Loh & Wainwright 2012, Sørensen et al. 2015), because the parameter estimation in the 

noisy model with unknown noise covariance is a challenging, especially in high dimensional 

setting where the covariance is a high dimensional unknown parameter to be estimated. 

Thresholding techniques as those proposed in Bickel & Levina (2008), Cai & Liu (2011), 

Fan et al. (2011) can be used for the covariance estimation, but the theoretical properties 

of the resulting estimators are involved, requiring careful treatment of the additional error 

from the covariance estimator. In a relatively simple situation when the error variance can be 

estimated through estimating a parameter γ via solving fγ(γ) = 0, then writing ℒ(β) as ℒ(β, 

γ), we can accomodate the additional parameter by concatenating β with γ and carrying out 

the subsequent analysis. For example, in this case the result in Theorem 4 will be updated to

βaℳ ∪ S − βtℳ ∪ S

γ − γ
= −

Qℳ ∪ S, ℳ ∪ S βt, γ ∂2ℒ(β, γ)/ ∂βℳ ∪ S ∂γT

∂fγ(γ)/ ∂βℳ ∪ S
T ∂fγ(γ)/ ∂γT

−1
× ∂ℒ βt, γ

∂β ℳ ∪ S
fγ(γ)

1 + op(1) .

Letting M ≡ Qℳ ∪ S, ℳ ∪ S βt − ∂2ℒ βt, γ / ∂βℳ ∪ S ∂γT ∂fγ(γ)/ ∂γT −1 ∂fγ(γ)/ ∂βℳ ∪ S
T , then this 

leads to

βaℳ ∪ S − βtℳ ∪ S = − M−1 ∂ℒ βt, γ
∂β ℳ ∪ S

+ ∂2ℒ βt, γ / ∂βℳ ∪ S ∂γT ∂fγ(γ)/ ∂γT −1 × fγ(γ) 1 + op(1) .

We further conduct simulations to evaluate the proposed adjustment in Section B.6 of the 

supplementary document. The results suggest that the proposed adjustment controls type 

I error rate when Ω contain small number of unknown parameters. Estimation and testing 

when Ω has a large number of unknown parameters are challenging problems and deserve 

much more extensive investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Left: The density of the residuals from lasso regression. The lasso regression does not 

provide a satisfactory fit for the data. Middle and Right: The logarithm of the p values from 

the Wald and score tests proposed by Shi et al. (2019) for testing whether the SUVR from 

each cortical regions is significant predictor for the cognitive score. The Wald and score 

tests suggest that the SUVRs at all the cortical regions have significant association with the 

cognitive score.
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Fig 2. 
The boxplot of the p-values based on the score and Wald tests. The distributions of the 

p-values are similar from both methods.
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Fig 3. 
The effects of SUVRs at the cortical regions. The colors represent the values (indicated by 

the color bars) of the estimated coefficients of the SUVRs. We only plot the coefficient 

values corresponding to the significant brain regions with p-value less than 0.05 from score 

test (left) and Wald test (right). The white areas are the non-significant brain regions. The L 

and R letters in the plot represent the left and right hemispheres.
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Fig 4. 
Sorted p-value versus R = 0.05j/218, j = 1, …, 218. There are 36 important predictors 

corresponding to the p-values (in red) that below the line.
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Fig 5. 
The distribution of the prediction errors from 100 runs of the 5-fold cross-validation based 

on Methods (a), (b) and (c). Method (d) breaks down because the algorithm does not 

converge.
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Table 1

The empirical sizes and powers of Wald and score tests for univariate parameter testing with n = 300.

X ~ Normal X ~ Uniform

∑ = 0.5Ip ∑ = 0.5|i – j|+1 ∑ = 0.5Ip ∑ = 0.5|i – j|+1

T W T S T W T S T W T S T W T S 

p = 50

β2 H0,1 : β2 = −0.75, v.s. Ha,1 : β2 ≠ −0.75

−0.75 0.068 0.054 0.056 0.050 0.054 0.044 0.066 0.062

−0.65 0.352 0.288 0.222 0.176 0.292 0.276 0.232 0.208

−0.55 0.826 0.778 0.680 0.592 0.736 0.726 0.632 0.598

−0.35 1.000 0.996 0.996 0.976 1.000 1.000 0.990 0.972

β3 H0,2 : β3 = 0, v.s. Ha,2 : β3 ≠ 0

0.0 0.056 0.046 0.058 0.038 0.056 0.046 0.068 0.060

0.1 0.302 0.272 0.204 0.172 0.250 0.240 0.214 0.182

0.2 0.752 0.724 0.554 0.524 0.692 0.682 0.530 0.508

0.4 0.996 0.996 0.984 0.960 1.000 1.000 0.976 0.942

β p H0,3 : βp = 0, v.s. Ha,3 : βp ≠ 0

0.0 0.060 0.044 0.056 0.042 0.062 0.054 0.052 0.050

0.1 0.246 0.222 0.234 0.210 0.276 0.258 0.240 0.226

0.2 0.708 0.672 0.666 0.634 0.714 0.698 0.708 0.682

0.4 0.998 0.998 0.998 0.996 0.998 0.998 0.998 0.994

p = 350

β2 H0,1 : β2 = −0.75, v.s. Ha,1 : β2 ≠ −0.75

−0.75 0.050 0.036 0.054 0.034 0.064 0.068 0.066 0.056

−0.65 0.312 0.322 0.260 0.242 0.268 0.266 0.230 0.202

−0.55 0.750 0.766 0.650 0.644 0.752 0.750 0.612 0.598

−0.35 0.998 0.998 0.980 0.878 0.998 0.998 0.978 0.892

β3 H0,3 : β3 = 0, v.s. Ha,2 : β3 ≠ 0

0.0 0.064 0.048 0.066 0.066 0.066 0.058 0.068 0.054

0.1 0.328 0.330 0.224 0.200 0.270 0.262 0.198 0.164

0.2 0.770 0.770 0.590 0.546 0.708 0.706 0.568 0.504

0.4 1.000 1.000 0.950 0.846 1.000 1.000 0.942 0.830

β p H0,3 : βp = 0, v.s. Ha,3 : βp ≠ 0

0.0 0.072 0.066 0.050 0.046 0.058 0.050 0.066 0.056

0.1 0.346 0.342 0.208 0.198 0.250 0.250 0.220 0.206

0.2 0.736 0.742 0.662 0.646 0.782 0.768 0.654 0.638

0.4 1.000 1.000 0.996 0.994 1.000 1.000 0.994 0.992
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Table 2

The empirical sizes and powers of Wald and score tests for univariate parameter testing with n = 500.

X ~ Normal X ~ Uniform

∑ = 0.5Ip ∑ = 0.5|i – j|+1 ∑ = 0.5Ip ∑ = 0.5|i – j|+1

T W T S T W T S T W T S T W T S 

p = 50

β2 H0,1 : β2 = −0.75, v.s. Ha,1 : β2 ≠ −0.75

−0.75 0.066 0.054 0.044 0.040 0.064 0.060 0.060 0.056

−0.65 0.488 0.450 0.346 0.316 0.442 0.422 0.324 0.304

−0.55 0.954 0.950 0.864 0.838 0.910 0.906 0.800 0.792

−0.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

β3 H0,2 : β3 = 0, v.s. Ha,2 : β3 ≠ 0

0.0 0.048 0.046 0.066 0.058 0.052 0.050 0.056 0.056

0.1 0.402 0.382 0.324 0.300 0.390 0.386 0.302 0.296

0.2 0.890 0.888 0.780 0.770 0.892 0.884 0.778 0.766

0.4 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000

β p H0,3 : βp = 0, v.s. Ha,3 : βp ≠ 0

0.0 0.066 0.060 0.064 0.058 0.050 0.048 0.050 0.048

0.1 0.400 0.368 0.350 0.338 0.390 0.380 0.336 0.320

0.2 0.922 0.914 0.896 0.878 0.892 0.890 0.884 0.878

0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

p = 600

β2 H0,1 : β2 = −0.75, v.s. Ha,1 : β2 ≠ −0.75

−0.75 0.052 0.056 0.046 0.046 0.062 0.056 0.040 0.038

−0.65 0.458 0.478 0.328 0.330 0.390 0.392 0.396 0.402

−0.55 0.920 0.930 0.864 0.868 0.926 0.928 0.902 0.902

−0.35 0.842 0.918 0.988 0.990 1.000 1.000 1.000 1.000

β3 H0,2 : β3 = 0, v.s. Ha,2 : β3 ≠ 0

0.0 0.076 0.066 0.062 0.058 0.070 0.066 0.066 0.056

0.1 0.454 0.452 0.344 0.342 0.392 0.392 0.454 0.454

0.2 0.904 0.904 0.832 0.822 0.902 0.894 0.870 0.862

0.4 0.974 0.974 0.998 0.980 1.000 1.000 0.998 0.894

β p H0,3 : βp = 0, v.s. Ha,3 : βp ≠ 0

0.0 0.048 0.046 0.050 0.046 0.060 0.058 0.058 0.054

0.1 0.444 0.444 0.404 0.390 0.414 0.416 0.450 0.448

0.2 0.930 0.928 0.870 0.860 0.912 0.912 0.876 0.874

0.4 0.980 0.980 1.000 1.000 1.000 1.000 1.000 1.000
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Table 3

The empirical size and power of Wald and score tests for linear hypothesis testing with n = 300.

X ~ Normal X ~ Uniform

∑ = 0.5Ip ∑ = 0.5|i – j|+1 ∑ = 0.5Ip ∑ = 0.5|i – j|+1

T W T S T W T S T W T S T W T S 

p = 50

β1 + β2 H0,4 : β1 + β2 = 0, v.s. Ha,4 : β1 + β2 ≠ 0

0.0 0.056 0.048 0.040 0.042 0.056 0.050 0.052 0.042

0.1 0.154 0.132 0.174 0.162 0.138 0.136 0.208 0.184

0.2 0.420 0.386 0.574 0.532 0.374 0.354 0.574 0.530

0.4 0.930 0.906 0.990 0.984 0.908 0.902 0.994 0.990

β3 + β4 H0,5 : β3 + β4 = 0, v.s. Ha,5 : β3 + β4 ≠ 0.

0.0 0.058 0.050 0.066 0.056 0.056 0.050 0.068 0.066

0.1 0.130 0.116 0.154 0.138 0.152 0.136 0.190 0.174

0.2 0.450 0.428 0.470 0.450 0.412 0.388 0.450 0.424

0.4 0.930 0.920 0.946 0.930 0.932 0.920 0.958 0.932

β1 + βp H0,6 : β1 + βp = 0.75, v.s. Ha,6 : β1 + βp ≠ 0.75

0.75 0.050 0.044 0.060 0.046 0.058 0.048 0.044 0.036

0.85 0.172 0.146 0.138 0.116 0.162 0.154 0.154 0.130

0.95 0.490 0.444 0.408 0.354 0.462 0.436 0.418 0.376

1.15 0.970 0.950 0.936 0.916 0.970 0.958 0.942 0.914

β2 + β3 H0,7 : β2 + β3 = −0.75, v.s. Ha,7 : β2 + β3 ≠ −0.75

−0.75 0.056 0.050 0.054 0.044 0.060 0.044 0.062 0.062

−0.65 0.200 0.176 0.182 0.172 0.148 0.138 0.180 0.174

−0.55 0.484 0.444 0.516 0.486 0.422 0.408 0.468 0.466

−0.35 0.922 0.910 0.966 0.962 0.920 0.910 0.960 0.962

p = 350

β1 + β2 H0,4 : β1 + β2 = 0, v.s. Ha,4 : β1 + β2 ≠ 0

0.0 0.062 0.056 0.062 0.056 0.050 0.046 0.048 0.046

0.1 0.164 0.160 0.216 0.202 0.106 0.096 0.206 0.184

0.2 0.472 0.438 0.612 0.572 0.402 0.378 0.536 0.510

0.4 0.940 0.934 0.988 0.988 0.910 0.900 0.982 0.980

β3 + β4 H0,5 : β3 + β4 = 0, v.s. Ha,5 : β3 + β4 ≠ 0.

0.0 0.058 0.046 0.070 0.040 0.038 0.040 0.068 0.048

0.1 0.192 0.188 0.174 0.138 0.126 0.124 0.172 0.136

0.2 0.454 0.442 0.462 0.410 0.392 0.378 0.404 0.356

0.4 0.952 0.952 0.912 0.814 0.944 0.942 0.916 0.828

β1 + βp H0,6 : β1 + βp = 0.75, v.s. Ha,6 : β1 + βp ≠ 0.75

0.75 0.046 0.044 0.058 0.038 0.056 0.042 0.060 0.054

0.85 0.148 0.142 0.280 0.292 0.110 0.110 0.240 0.242

0.95 0.466 0.472 0.562 0.566 0.394 0.390 0.496 0.512

1.15 0.942 0.944 0.960 0.940 0.938 0.940 0.954 0.932
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X ~ Normal X ~ Uniform

∑ = 0.5Ip ∑ = 0.5|i – j|+1 ∑ = 0.5Ip ∑ = 0.5|i – j|+1

T W T S T W T S T W T S T W T S 

β2 + β3 H0,7 : β2 + β3 = −0.75, v.s. Ha,7 : β2 + β3 ≠ 0.75

−0.75 0.052 0.038 0.052 0.046 0.052 0.038 0.062 0.038

−0.65 0.154 0.138 0.174 0.138 0.134 0.120 0.142 0.130

−0.55 0.450 0.420 0.478 0.442 0.400 0.374 0.488 0.456

−0.35 0.932 0.916 0.968 0.966 0.914 0.912 0.960 0.960
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Table 4

The empirical size and power of Wald and score tests for linear hypothesis testing with n = 500.

X ~ Normal X ~ Uniform

∑ = 0.5Ip ∑ = 0.5|i – j|+1 ∑ = 0.5Ip ∑ = 0.5|i – j|+1

T W T S T W T S T W T S T W T S 

p = 50

β1 + β2 H0,4 : β1 + β2 = 0, v.s. Ha,4 : β1 + β2 ≠ 0

0.0 0.058 0.052 0.048 0.046 0.062 0.056 0.046 0.044

0.1 0.240 0.220 0.286 0.280 0.202 0.196 0.296 0.274

0.2 0.670 0.656 0.810 0.794 0.586 0.580 0.758 0.754

0.4 0.996 0.996 1.000 1.000 0.988 0.988 0.998 0.998

β3 + β4 H0,5 : β3 + β4 = 0, v.s. Ha,5 : β3 + β4 ≠ 0.

0.0 0.046 0.040 0.064 0.058 0.060 0.048 0.060 0.062

0.1 0.244 0.216 0.254 0.244 0.242 0.238 0.260 0.244

0.2 0.646 0.616 0.696 0.692 0.666 0.648 0.686 0.678

0.4 0.996 0.996 0.998 0.996 0.996 0.998 0.998 0.998

β1 + βp H0,6 : β1 + βp = 0.75, v.s. Ha,6 : β1 + βp ≠ 0.75

0.75 0.068 0.062 0.058 0.056 0.050 0.046 0.054 0.048

0.85 0.242 0.222 0.190 0.162 0.226 0.212 0.176 0.160

0.95 0.676 0.640 0.620 0.580 0.646 0.626 0.646 0.614

1.15 0.996 0.994 0.986 0.980 0.996 0.994 0.998 0.990

β2 + β3 H0,7 : β2 + β3 = −0.75, v.s. Ha,7 : β2 + β3 ≠ −0.75

−0.75 0.060 0.058 0.056 0.044 0.056 0.052 0.050 0.048

−0.65 0.238 0.234 0.302 0.302 0.214 0.206 0.226 0.218

−0.55 0.640 0.622 0.730 0.720 0.608 0.598 0.664 0.660

−0.35 0.992 0.992 1.000 1.000 0.994 0.992 0.998 0.998

p = 600

β1 + β2 H0,4 : β1 + β2 = 0, v.s. Ha,4 : β1 + β2 ≠ 0

0.0 0.054 0.044 0.056 0.050 0.046 0.042 0.046 0.042

0.1 0.192 0.180 0.286 0.268 0.190 0.182 0.292 0.288

0.2 0.602 0.594 0.790 0.786 0.578 0.558 0.824 0.816

0.4 0.688 0.700 0.998 1.000 0.986 0.984 1.000 1.000

β3 + β4 H0,5 : β3 + β4 = 0, v.s. Ha,5 : β3 + β4 ≠ 0.

0.0 0.072 0.064 0.066 0.060 0.044 0.046 0.060 0.056

0.1 0.222 0.218 0.244 0.238 0.206 0.194 0.264 0.264

0.2 0.654 0.650 0.678 0.670 0.614 0.608 0.712 0.714

0.4 0.974 0.974 0.994 0.980 0.992 0.990 0.994 0.978

β1 + βp H0,6 : β1 + βp = 0.75, v.s. Ha,6 : β1 + βp ≠ 0.75

0.75 0.044 0.040 0.056 0.048 0.058 0.056 0.052 0.050

0.85 0.238 0.242 0.316 0.316 0.196 0.200 0.386 0.390

0.95 0.670 0.672 0.716 0.722 0.604 0.616 0.790 0.788

1.15 0.986 0.994 1.000 1.000 0.994 0.994 0.9996 0.994
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X ~ Normal X ~ Uniform

∑ = 0.5Ip ∑ = 0.5|i – j|+1 ∑ = 0.5Ip ∑ = 0.5|i – j|+1

T W T S T W T S T W T S T W T S 

β2 + β3 H0,7 : β2 + β3 = −0.75, v.s. Ha,7 : β2 + β3 ≠ −0.75

−0.75 0.058 0.052 0.052 0.044 0.056 0.052 0.044 0.046

−0.65 0.222 0.200 0.230 0.208 0.162 0.146 0.264 0.246

−0.55 0.630 0.608 0.692 0.680 0.544 0.516 0.686 0.678

−0.35 0.974 0.990 1.000 1.000 0.994 0.992 1.000 1.000
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Table 5

The empirical size and power of Wald and score tests under different m.

X ~ Normal X ~ Uniform

∑ = 0.5Ip ∑ = 0.5|i – j|+1 ∑ = 0.5Ip ∑ = 0.5|i – j|+1

T W T S T W T S T W T S T W T S 

p = 50

∑j = 1
4 βj H0, 8: ∑j = 1

4 βj = 0, v.s. Ha, 8: ∑j = 1
4 βj ≠ 0

0.0 0.062 0.052 0.046 0.038 0.062 0.060 0.060 0.052

0.2 0.238 0.220 0.434 0.406 0.244 0.228 0.404 0.386

0.4 0.754 0.724 0.914 0.904 0.660 0.646 0.914 0.900

0.8 1.000 1.000 1.000 1.000 0.998 0.998 1.000 1.000

∑j = 1
8 βj H0, 9: ∑j = 1

8 βj = 0,  v.s. Ha, 9: ∑j = 1
8 βj ≠ 0

0.0 0.054 0.052 0.062 0.058 0.052 0.054 0.062 0.052

0.2 0.162 0.142 0.316 0.308 0.178 0.172 0.296 0.282

0.4 0.410 0.388 0.764 0.732 0.424 0.406 0.764 0.742

0.8 0.966 0.952 1.000 1.000 0.920 0.906 1.000 1.000

∑j = 1
12 βj H0, 10: ∑j = 1

12 βj = 0,  v.s. Ha, 10: ∑j = 1
12 βj

0.0 0.046 0.044 0.062 0.062 0.046 0.052 0.052 0.050

0.2 0.116 0.124 0.250 0.240 0.084 0.096 0.210 0.210

0.4 0.288 0.298 0.610 0.604 0.318 0.330 0.642 0.642

0.8 0.854 0.796 0.996 0.994 0.802 0.756 0.994 0.992

p = 350

∑j = 1
4 βj H0, 8: ∑j = 1

4 βj = 0 v.s. Ha, 8: ∑j = 1
4 βj ≠ 0

0.0 0.062 0.052 0.062 0.052 0.060 0.054 0.036 0.036

0.2 0.260 0.244 0.420 0.400 0.230 0.222 0.402 0.382

0.4 0.718 0.684 0.918 0.916 0.710 0.672 0.924 0.912

0.8 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000

∑j = 1
8 βj H0, 9: ∑j = 1

8 βj = 0,  v.s. Ha, 9: ∑j = 1
8 βj ≠ 0

0.0 0.062 0.060 0.068 0.060 0.066 0.058 0.042 0.040

0.2 0.132 0.130 0.266 0.258 0.180 0.166 0.262 0.238

0.4 0.452 0.420 0.770 0.746 0.380 0.360 0.764 0.752

0.8 0.950 0.936 1.000 1.000 0.936 0.926 1.000 1.000

∑j = 1
12 βj H0, 10: ∑j = 1

12 βj = 0,  v.s. Ha, 10: ∑j = 1
12 βj

0.0 0.056 0.056 0.054 0.054 0.052 0.050 0.038 0.038

0.2 0.098 0.106 0.170 0.174 0.100 0.100 0.178 0.172

0.4 0.296 0.296 0.616 0.604 0.276 0.274 0.584 0.574

0.8 0.854 0.792 0.998 0.996 0.838 0.818 0.992 0.990
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Table 6

The empirical size and power of Wald and score tests with/without noise considered.

With noise Without noise With noise Without noise With noise Without noise

T W T S T W T S T W T S T W T S T W T S T W T S 

β3 H0,2 : β3 = 0 H0,5 : β3 + β4 = 0 H0,7 : β2 + β3 = −0.75

0.0 0.084 0.078 0.774 0.824 0.064 0.066 0.474 0.554 0.056 0.054 0.538 0.604

0.1 0.340 0.316 0.332 0.410 0.106 0.094 0.784 0.838 0.166 0.188 0.234 0.288

0.2 0.692 0.646 0.104 0.092 0.270 0.194 0.930 0.956 0.388 0.378 0.096 0.090

0.4 0.914 0.954 0.690 0.362 0.700 0.540 0.996 1.000 0.882 0.880 0.406 0.196
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Table 7

The estimated coefficients, p-values from score and Wald tests for the significant SUVRs at 27 cortical 

regions. We also include the specific brain lobe that contains each cortical region. BANKSSTS stands for 

banks of the superior temporal sulcus.

Cortical regions Brain lobes Estimated coefficient Wald test p-value

left middle temporal gyrus Temporal lobe −0.214 0.0002

left inferior parietal cortex Parietal lobe −0.214 0.0003

left inferior temporal gyrus Temporal lobe −0.223 0.0007

right inferior parietal cortex Temporal lobe −0.211 0.0007

left BANKSSTS Temporal lobe −0.174 0.0015

left fusiform gyrus Temporal lobe −0.262 0.0016

right middle temporal gyrus Temporal lobe −0.229 0.0024

left caudal middle frontal gyrus Frontal lobe −0.236 0.0030

left precuneus cortex Parietal lobe −0.215 0.0034

left entorhinal cortex Temporal lobe −0.217 0.0036

right inferior temporal Temporal lobe −0.225 0.0059

right left entorhinal cortex Temporal lobe −0.221 0.0065

right BANKSSTS Temporal lobe −0.168 0.0076
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Table 8

The score and Wald test results of hypothesis that βSk = 0. TS and TW are the score and Wald test statistics, DF 

is the degree of freedom in the asymptotic distribution of the score and Wald statistics, which equals the 

number of the ROIs in the composite regions.

Composite regions TS score test p-value TW Wald test p-value DF

BRAAK12 10.10 0.039 15.41 0.0039 4

BRAAK34 42.51 0.0113 89.45 1.774e-09 24

BRAAK56 66.29 0.0165 71.44 0.0055 44
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