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Chapter 2 

How the Brain Works: Perspectives on the Future of Human 
Neuroscience Research 

Ramesh Srinivasan 

Abstract 

Many books and review articles have been written about the structure and function of the brain. That is 
beyond the scope of this one chapter or, indeed, of this entire volume. Instead, this chapter will emphasize 
general principles and salient features of human brains and attempt to provide a useful theoretical frame-
work for considering how to design experiments and perform data analysis that yields a better understand-
ing of the vast amounts of information being obtained about the function of the human brain by 
neuroscientists using EEG, MEG, ECoG, fMRI, NIRS, etc. The details of these techniques can be found 
in other chapters in this volume, and I will not consider the strengths and weaknesses of these methods in 
detail. Rather, I will try to assess what kind of questions we can ask with non-invasive measures of brain 
function in humans. In my view, the field of cognitive neuroscience has to grow beyond the marriage of 
experimental psychology to brain mapping, and I consider some potential directions. 

Key words Theoretical neuroscience, Neurocognitive models, Complex systems 

1 A Brief Quantitative Anatomy of the Human Brain 

The three primary divisions of the human brain are the brainstem, 
cerebellum, and cerebrum. The brainstem (the brain’s stalk) is the 
structure through which nerve fibers relay signals (action potentials) 
in both directions between the spinal cord and higher brain centers. 
The thalamus, composed of two egg-shaped structures at the top 
and to the side of the brainstem, is a relay station and important 
integrating center for all sensory input to the cortex except smell. 
The cerebellum, which sits on top and to the back of the brainstem, 
has long been associated with the fine control of muscle move-
ments. More recently, the cerebellum has been shown to play 
additional roles in cognition, especially learning. 

The large part of the brain that remains when the brainstem 
and cerebellum are excluded is the cerebrum, which is divided 
almost equally into two halves. The outer portion of the cerebrum, 
the cerebral cortex (or neocortex in mammals), is a folded structure
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varying in thickness from about 2–5 mm, having a total surface area 
(in humans) of roughly 1600–4000 cm2 , and containing about 
1010 neurons (nerve cells) [1]. Cortical neurons are strongly 
interconnected. For example, the surface of a large cortical neuron 
may be covered with as many as 104 –105 synapses that transmit 
inputs from other neurons. The synaptic inputs to a neuron are of 
two types: those which produce excitatory postsynaptic potentials 
(EPSPs) across the membrane of the output neuron, thereby 
making it easier for the target neuron to fire an action potential, 
and the inhibitory postsynaptic potentials (IPSPs), which act in the 
opposite manner on the output neuron. EPSPs produce local 
membrane current sinks with corresponding distributed passive 
sources to preserve current conservation. IPSPs produce local 
membrane current sources with more distant distributed passive 
sinks. The cortex is also believed to be the structure that generates 
most of the electric potential measured on the scalp with EEG and 
the magnetic field recorded with MEG [2].
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Much of our conscious experience must involve, in some 
largely unknown manner, the interaction of cortical neurons. The 
cortex is composed of gray matter, so-called because it contains a 
predominance of cell bodies that turn gray when stained by anato-
mists; but gray matter is actually pink when alive. Just below the 
gray matter is a second major region, the white matter, composed of 
nerve fibers (axons). In humans, white matter volume is somewhat 
larger that of the neocortex. White matter interconnections 
between cortical regions (association fibers or cortico-cortical fibers) 
are quite numerous. A patch at the boundary of gray and white 
matter of area one cm2 may contain 107 input and output fibers, 
mostly cortico-cortical axons interconnecting different regions of 
the cortex. Early attempts to map these connections in humans 
were relatively rare studies in deceased brains [3, 4]. Recent 
advances in neuroimaging have allowed for in vivo estimates of 
some of the white matter connections of the brain using 
diffusion-weighted imaging. Figure 1 shows an example of a struc-
tural connectome estimated by a tractography analysis of the group 
average of diffusion imaging from 842 subjects from the HCP 
842 dataset [5]. We combined the resultant streamlines (estimated 
axon fiber bundles) with the Lausanne parcellation [6] to define 
114 cortical regions of interest (ROI) and identify the cortico-
cortical and callosal connectivity between these regions.

A much smaller fraction (perhaps less than 1%) of axons that 
enter or leave the underside of the human neocortical surface 
radiates from the thalamus (thalamocortical fibers)  [7]. This fraction 
is only a few percent in humans, but substantially larger in lower 
mammals [1]. This difference partly accounts for the strong 
emphasis on thalamocortical interactions (versus cortico-cortical 
interactions), in the animal electrophysiological literature. The 
extreme dominance of cortico-cortical over thalamocortical



connections may be the critical distinction of human brains. The 
implications of this admittedly oversimplified anatomical picture 
are that in humans, the connections between neocortical neurons 
are mostly with neurons in other regions of the neocortex. The 
brain is mostly operating on input signals emanating from other 
areas of the brain rather than sensory inputs and mostly sending 
outputs to other parts of the brain rather than the motor systems of 
the body! 
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Fig. 1 Structural connectome: We show the streamlines derived by probabilistic tractography analysis of 
diffusion-weighted imaging of 842 individuals [5] on the left and the structural connectome for the 114 areas 
of the Lausanne parcellation of the cortex [6] on the right. We have labeled a subset of areas each with one to 
three subdivisions (see [6] for all subdivisions of the Lausanne parcellation). We show the binarized structural 
connectome, with any non-zero edge being shown in yellow

2 Circuits, Networks, and Fields 

A common view of brain operation is that of a complex circuit or 
neural network. In this view, groups of cortical cells are imagined as 
analogous to electric circuit elements. Cortical columns, i.e., orga-
nization of cortical activity across the layers of the cortex, at several 
scales are candidates for such local cell groups (cf. Fig. 5 in 
Chapter 1). The smallest scale is a minicolumn which has been 
identified as (potentially) the smallest processing unit in the brain 
[8–10]. When a sensory signal enters the cortex via the thalamus, it 
activates a canonical circuit involving interactions between excit-
atory pyramidal cells and both excitatory and inhibitory

https://doi.org/10.1007/978-1-0716-3263-5_1


interneurons, producing a functional unit with both strong excita-
tion across layers and inhibition of surrounding tissues. The details 
of this fundamental structure have been elucidated over the past 
40 years by a number of prominent investigators. The most impor-
tant point is that columnar organization is a functional property of 
the activity of neurons rather than a fixed wiring diagram like a 
circuit. Columns form and dissipate dynamically in response to 
input to the cortex that excites pyramidal cells and interneurons. 
The interneurons in a minicolumn have axons that remain within 
the white matter and only synapse of neighboring cells. The pyra-
midal cells within a minicolumn have axons with diverse targets as 
discussed below. 
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Neocortical neurons within each cerebral hemisphere are 
connected by short intracortical fibers with axon lengths mostly 
less than 5 mm. The macrocolumn of typical radius of 3 mm reflects 
the extent of the intracortical axons of pyramidal cells and is 
another level of circuit definition. The macrocolumn typically con-
tains hundreds or thousands of minicolumns which often share 
functional properties. For example, in the visual cortex, the macro-
column (or hypercolumn, per [11]) contains all the cells that 
respond to different stimulus features in one location of space. 
The macrocolumn is potentially a much more useful functional 
unit than the minicolumn for the modeling of human brain data. 
Macrocolumns are comparable in size to a typical voxel (5 mm3 ) in  
MRI research. Macrocolumns are also a reasonable size of tissue for 
modeling the current sources of EEG/MEG as a dipole source [2]. 

In addition to the intracortical axons, each pyramidal cell pro-
jects an axon which enters the white matter and synapses at one 
(or more) distant locations in the brain. Thus, each of the pyramidal 
cells in the cortex receives excitatory input from (possibly many) 
cells at other locations. If this input is sufficient to depolarize the 
cell, the cell transmits action potentials to other locations in the 
brain. Thus, the neocortex is densely interconnected by about 1010 

cortico-cortical axons with axon lengths in roughly the 1–15 cm 
range. Cross-hemisphere interactions occur by means of about 108 

callosal axons through the corpus callosum and several smaller 
structures connecting the two brain halves. A comparably small 
number of fibers project to and from subcortical structures such 
as the thalamus and basal ganglia. The cortico-cortical, callosal, and 
subcortical axons might then be analogous to wires connecting the 
circuit elements. In this oversimplified (and probably mostly 
wrong) electric network picture, “circuit elements” are also under 
external control by means of electrical and chemical input from the 
brainstem neuromodulatory systems. More detailed computational 
models that retain the essential aspects of this picture but provide 
more intricate anatomical details are still gross approximations. For 
one thing, even a single neuron is far more complex and diverse



than the most complex model of neural networks likely to be 
created in the near future [12]. 
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Transmission times for action potentials along cortico-cortical 
axons may range from roughly 10–30 ms between the most remote 
cortical regions. Local delays due to capacitive-resistive properties 
of single neurons are typically in the 1–10 ms range, but may also be 
longer. As the brain’s awareness of an external event seems to 
require multiple feedback between remote regions [13], perceptual 
consciousness may take several hundred ms to develop as a conse-
quence of brain network activity. The multiple mechanisms by 
which neurons interact across and within brain areas in integrative 
brain functions are often labeled by the term cell assemblies 
[14]. The label “cell assembly” denotes a diffuse cell group capable 
of acting briefly as a single structure. We may reasonably postulate 
cooperative activity within cell assemblies without explicitly specify-
ing interaction mechanisms or relying on the specificity of a neural 
network. 

Brain processes may involve the formation of cell assemblies at 
several spatial scales [1, 15]. At smaller spatial scales, corresponding 
to recordings from individual cells, such groups of neurons may be 
described by neural network models that can incorporate details of 
physiologically realistic features such as feedforward and feedback 
connections [9, 16]. Such anatomical specificity may not have a 
direct bearing on recordings at a macroscopic scale of human neural 
data. That is, while these detailed anatomical models (largely 
derived from animal models) have a strong influence on the behav-
ior of individual cells, they may not be easily related to the coarse-
grained variables at macrocolumn or larger spatial scales accessible 
in non-invasive recordings in human subjects. Even the coarse-
grained measures of anatomy such as structural connectome 
shown in Fig. 1 and network dynamics measured in EEG, MEG, 
and fMRI signals have complex relationships which are an active 
field of research. 

Field descriptions of brain dynamics may be required to model 
dynamic behavior and make contact with macroscopic data 
measured in humans such as EEG, MEG, or fMRI. In this context, 
the word “field” refers to mathematical functions expressing, for 
example, the numbers of active synaptic or action potentials in 
macroscopic tissue volumes. Alternatively, probability of neural 
firing in a tissue mass may be treated as a field variable. In this 
view, cell assemblies are pictured as embedded within synaptic and 
action potential fields [1, 17]. Electric and magnetic fields (EEG 
and MEG) provide large-scale, short-time measures of the modula-
tions of synaptic and action potential fields around their back-
ground levels. Similarly, fMRI or fNIRS provides information 
about the modulation of blood flow or oxygen consumption from 
a background level. These fields are analogous to common physical 
fields, for example, sound waves, which are short-time modulations of



pressure or mass density about background levels. We distinguish 
these short-time modulations of synaptic activity from long-time 
scale (usually minutes but sometimes seconds) modulations of 
brain chemistry controlled by neuromodulators. 

34 Ramesh Srinivasan

3 Relationship Between Brain Structure and Measurements of Brain Function 

Figure 2 shows a conceptualization of the complexity of relating 
brain measurements in humans (fMRI and EEG) to each other and 
to behavior [2]. If we imagine there are cell assemblies distributed 
in different cortical regions that give rise to behavior, with an fMRI 
or EEG experiment, we can establish correlations between the 
behavior and the fMRI and/or EEG signals. Both fMRI and EEG 
are spatial and temporal filtered representations of the activity of the 
cell assemblies with the details of the filtering depending on the 
specific characteristics of the recording method. For instance, it is 
well known that the EEG has excellent temporal resolution but 
poor spatial resolution, providing a representation of space-
averaged synaptic activity [2] (see however the discussion in 
Chapter 7). This makes EEG especially sensitive to synchronous 
synaptic activity in populations of neurons and insensitive to asyn-
chronous activity. fMRI is sensitive to the metabolic demand and 
consequent blood flow also resulting from synaptic activity of the 
cell assemblies; however, some of the cell groups contributing to 
fMRI, e.g., inhibitory basket cells, produce no external electric 
field. Thus, in general, different cell groups can be expected to 
generate the EEG or fMRI signals. 

Fig. 2 Conceptual framework for brain signals in cognitive experiments. Double arrows indicate experimental 
correlative relationships between behavior/cognition and EEG, MEG, MRI, or PET. By definition, Cell Groups 
1 generate EEG or MEG, and Cell Groups 2 generate MRI or PET. While theoretical models of Cell Groups 1 are 
well developed (see [2]), Cell Groups 2 are not known, but are the subject of intensive study in animal models 
[18]. But in actuality, there exist unknown cell assemblies that underlie the behavior/cognition which are not 
directly accessible with either recording technique. Cell Groups 1 and 2 may be part of this cell assembly or 
may be influenced by this cell assembly producing the observation of correlations between EEG and fMRI 
signals and behavior/cognition

https://doi.org/10.1007/978-1-0716-3263-5_7
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Early efforts to combine separately measured EEG and fMRI 
signals focused on using source localization of EEG signals to 
obtain information about the dynamics of each fMRI activation. 
This is a spatial model that assumes that the cell groups generating 
EEG and fMRI signals are at identical positions. Methods ranging 
from the simple (equivalent dipoles) to sophisticated (distributed 
Bayesian solutions with fMRI informed priors) have been devel-
oped and applied to localize EEG signals to the activation sites 
detected with fMRI. Although the technical problems of EEG 
inverse solutions remain a formidable challenge, this approach 
suffers from far more significant conceptual problems. As indicated 
in Fig. 2, fMRI and EEG are recording from different cell groups, 
and there is no reason to expect a simple spatial correspondence 
between the cell groups that generate fMRI and EEG signals. Even 
with the same stimulus and task conditions, EEG and fMRI empha-
size different neural populations and may lack substantial spatial or 
temporal overlap. 

Structure-function relationships for macroscopic field variables 
have been the subject of intense study with the discovery of 
diffusion-weighted imaging, which provides estimates of the struc-
tural connectivity at a macroscopic scale (as shown in Fig. 1) which 
is more readily comparable to fMRI or EEG/MEG data. The 
integration of such structural and functional data is a crucial step 
in establishing the physiological basis of network models of brain 
function. 

4 What Does Localization of “Brain Activity” Really Mean? 

A considerable amount (perhaps the majority) of cognitive neuro-
science research is concerned with documenting the relationship 
between “brain activity” and cognitive functions usually by obtain-
ing experimental evidence that the signal recorded from some 
region of the brain has been modulated by a cognitive task. Clever 
task manipulations, gleaned from experimental psychology, are 
used to generate contrasts for statistical tests to associate brain 
activity with hypothesized cognitive processes. This “spatial” 
model of brain function takes an overly simplistic view of brain 
networks as a series of “activations” in brain areas – the strength 
of the fMRI is to tell us where to find these activations, and the job 
of EEG (or usually evoked responses, ERP) is to tell us when the 
activation occurred. 

However, a fundamental unknown (and in many cases 
unknowable) in any neurophysiological study is whether observed 
modulations of neural responses at one location in the brain by 
cognitive processes should be interpreted only as the action of a 
local network in the specific cortical region or due to the interac-
tions between this cortical region and the rest of the brain in global



networks. Non-local interactions between cortical regions are 
mainly mediated by connections of the cortico-cortical (also 
labeled association) fibers. The axons range in length from less 
than 1 cm (the U fibers connecting adjacent gyri) to the total length 
through the white matter between frontal and occipital lobes. The 
total number of cortico-cortical fibers is roughly equal to the 
number of pyramidal cells, about 1010 . Thus, the issue of global 
networks interacting in cognitive processes is salient to the inter-
pretation of physiological signals obtained from the brain with any 
technique – EEG, MEG, fMRI, LFPs, or even spiking activity of a 
single neuron. 
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The physiology and anatomy of the brain indicate that our 
model of the underlying cognitive processes should favor global 
networks over local networks unless there is strong evidence of 
functional localization. This is the great strength of human neurosci-
ence! Studies in animal models necessarily place electrodes in a 
limited number of hypothesized brain regions, while human neu-
roscience research views the function of the whole brain, allowing 
us to understand how brain networks give rise to intelligent brain 
function. This dense network connectivity suggests that it is far less 
common for brain function to be a purely local operation in one 
location of the brain. Examples of such local processing might 
include feature extraction in the processing of sensory systems. 
However, if we consider the entire processing stream involved in 
figure-ground segregation of (perceptual) objects such as a written 
or spoken word, we find that the processing involves feedforward 
and feedback processing along anatomical pathways linking neu-
rons distributed in different cortical areas into a functional network 
[13]. Thus, even “low-level” perceptual and motor processes 
involve distributed brain function in hierarchically organized neural 
systems whose complexity is beyond the simple measures of loca-
lized brain activity that predominate studies of brain function. The 
future of human brain research is in the study of whole brain 
systems. 

5 Neurocognitive Models 

The study of the human brain has been closely linked to advances in 
cognitive science, which provides the theoretical foundation for 
studies of human brain function. In recent years, cognitive science 
has married mathematical theories of behavior with experimental 
data via computational modeling. More recently, neurocognitive 
models have been developed that formally integrate neural signals 
into mathematical theories of cognitive function [19]. 

Computational models of behavior usually propose a mecha-
nistic or algorithmic description of the computations that may be 
happening in the brain to support behavior. These models usually



have parameters (e.g., drift rate or learning rate) that quantitatively 
modulate the computations made by the model. Model fitting 
techniques allow us to infer the parameters that are most likely to 
give rise to the observed behavior. Then, given a set of parameters 
for a model, it is also possible to obtain the latent variables that are 
part of the models’ computations and putatively are the underlying 
variables needed to account for the observed behavior. 
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Thus, cognitive modeling may provide two types of benefits to 
relate behavior and neural signals. First, fitting computational mod-
els to behavioral data allow researchers to extract model parameters 
that are related to mechanisms underlying behavior – rather than an 
implicit specification of a cognitive process being manipulated, an 
explicit model is made of how the behavioral data is generated. 
These parameters may or may not capture variability (between 
conditions or individuals) better than raw behavioral data, but are 
more scientifically meaningful as the generative mechanisms are 
specified. Second, model fitting also allows researchers to extract 
latent variables that putatively reflect the computations supporting 
behavior. These variables may then be better candidates to reflect 
the trial-by-trial neural signal. 

Perhaps the most active area of neurocognitive modeling are 
models of perceptual decision-making [20, 21]. The drift-diffusion 
model (DDM) is a specific model of perceptual decision-making 
that has been integrated with neural signals. The DDM is used to 
account simultaneously for accuracy and reaction time observations 
in binary perceptual decision tasks, such as the random dot motion 
task [22]. Specifically, the DDM formalizes decision as a noisy 
accumulation of evidence to one of two bounds; it assumes that 
once the decision variable reaches the bound, the corresponding 
choice is made. The DDM is usually parameterized with three 
parameters: non-decision time, drift rate, and decision threshold. 
The non-decision time reflects a fixed period of time during which 
no information is accumulated; mechanistically, it may include both 
initial perception latency and motor command latency after the 
decision is made. The drift rate reflects the rate at which informa-
tion is accumulated or the strength of each new piece of evidence. 
The threshold indicates the level the evidence should reach prior to 
a decision being taken. Other parameters are sometimes included in 
the DDM to better capture behavior; for example, a bias term may 
be needed to capture participants’ tendency to select one option 
more than another. 

Using the DDM of quick decision-making as an example, 
single-trial estimates of evidence accumulation rate during quick 
decision-making and non-decision time (time in milliseconds of a 
human reaction time not related to a decision) have been obtained 
using hierarchical Bayesian modeling with ERP amplitude esti-
mates on single trials, time-locked to the onset of visual stimuli 
[23, 24]. Hierarchical Bayesian modeling (HBM) of human



cognition is one of the most powerful methods to integrate EEG 
and behavior, since these datasets are linked with respect to the 
cognitive function specified by the model and shared relationships 
are estimated simultaneously. The hierarchical Bayesian modeling 
(HBM) framework is ideally suited for the joint analysis of multiple 
modes of data. In addition, the EEG data can also provide new and 
additional information about the cognitive process that cannot be 
discerned with just behavior alone. This flexible framework can 
inform building and testing theoretical models of the relationship 
of neural signals from the human cortex (EEG, fMRI, etc.), human 
cognition, and human behavior. 
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Figure 3 summarizes the results of our studies linking EEG 
signals to diffusion models of perceptual decision-making. ERP 
measures described trial-to-trial differences in visual encoding 
time (a component of non-decision time during reaction time) 
and trial-to-trial differences in evidence accumulation rate, as 
described by trial-level estimates of the drift parameter 
[23, 24]. EEG correlates of additional cognitive processes, such as 
visual attention, can also add inference about the overall human 
cognitive process when used in combination with behavioral mod-
eling. Nunez et al. (2015) [26] found evidence that differences in 
experimental participants’ attention (both visual noise suppression 
and visual signal enhancement) as measured by SSVEPs related to 
some specific differences in participants’ cognition during decision-
making. Lui et al. 2020 [25] showed that the duration of decision-
making is indexed by the readiness potential in the motor cortex.

Hierarchical Bayesian modeling also allows discovering com-
plex relationships between multiple data types within cognitive 
neuroscience [27] by allowing the simultaneous estimation of pos-
terior distributions of multiple parameters. Fitting procedures pro-
duce samples from probability distributions that display knowledge 
(i.e., “uncertainty”) about parameter estimates and thus certainty 
about the effects of cognition or neural data in specific theoretical 
models. 

6 Future Directions 

Human brains are typically viewed as the pre-eminent complex 
systems with cognition believed to emerge from dynamic interac-
tions within and between brain sub-systems [17, 28–33]. Here, we 
cite two salient anatomical and physiological features that contrib-
ute to brain complexity and, by implication, the conditions appar-
ently required for healthy cognition. These features give rise to 
multi-scale spatial-temporal patterns of brain activity, revealed 
with imaging techniques like EEG and fMRI, which are strongly 
correlated with mental states. One such salient feature is anatomical 
and physiological nested hierarchy: as we have seen, cortical
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Fig. 3 A theoretical representation of some modeling studies to discover cognitive mechanisms of decision-
making using neurocognitive modeling of EEG and human behavior during visual decision-making tasks. Bold 
text represents observed data (EEG measures or human behavioral data), while italic text represents derived 
cognitive parameters that can be estimated through joint modeling of time-domain EEG collected from the 
scalp (top left: cartoon with three scalp electrodes sitting above the brain, CSF, skull, and skin that result in 
time-domain waveforms), frequency-domain EEG collected from high-density arrays (bottom left: EEG 
amplitudes that were spline-interpolated between electrodes on a flat representation of the human scalp), 
and/or choice RTs (response time distributions shown for correct responses, top, and error responses, bottom 
flipped). Event-related potentials (ERPs) can be calculated from event-locked EEG averages and embedded in 
neural drift-diffusion models (NDDMs) to discover the cognitive time course of decision-making separating 
visual encoding time (VET), decision time (DT), and motor execution time (MET) that together add up to each 
trial’s response time (RT) [23, 24]. Correct and error responses are described after the evidence accumulation 
path passes one of two boundaries during decision time (this trial is represented as a black line with two other 
gray lines representing other simulations from the same process that describe response times and possibly 
EEG potentials). Particular ERPs of interest are N200, P300/CPP, and RP waveforms. N200 waveforms are 
thought to reflect VET and the onset of evidence accumulation [24]. The P300 or centro-parietal positivity 
(CPP) are thought to reflect DT and possibly the evidence accumulation process itself. The readiness potential 
(RP) is a motor-related preparatory signal thought to reflect DT and MET under certain experimental conditions 
[25]. Steady-state visual evoked potentials (SSVEPs) can be calculated from band-limited frequency-domain 
EEG data using frequency-tagging experiments. Amplitude measures of SSVEPs across electrodes can then be 
used to estimate visual attention and, in particular, signal enhancement and noise suppression that could 
affect the rate and variance of evidence accumulation [26]



anatomy and physiology consist of neurons within minicolumns 
within modules within macrocolumns [1, 9]. Emergence and com-
plexity generally occur in hierarchically nested physical and 
biological systems where each higher level of complexity displays 
novel emergent features based on the levels below it, their interac-
tions, and their interactions with higher levels. Such systems may 
follow general principles that underlie many complex systems, 
including anthropology, artificial intelligence, chemistry, econom-
ics, meteorology, molecular biology, neuroscience, physics, psy-
chology, and sociology [2, 12, 30, 32–34]. A second salient 
feature of many complex systems is non-local interactions in 
which dynamic activity at one location influences distant locations 
without affecting intermediate regions, as enabled in human brains 
by long (up to 15–20 cm) cortico-cortical fibers [1, 3, 4, 7, 35] and 
in human social systems by modern long distant communications 
facilitating small world behavior [36]. The label “small world” 
originates from the purported maximum six steps separating any 
two persons in the world; small worlds are widely studied in graph 
theory. The high density of short-range (mm-scale) intracortical 
connections coupled with an admixture of cortico-cortical axons 
favors small world behavior in the brain, which may be the essence 
of the dynamic sculpting of network architectures in brain function. 
For example, the path length between any pair of neocortical 
neurons is estimated to be no more than two or three synaptic 
connections [7]. Small worlds often promote high complexity; they 
also appear to be abundant in brain structural networks, across 
systems, scales, and species [32, 33]. 
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This complex system view is critical to future genuine under-
standing of brain networks. However, because of the complexity of 
these types of analysis, to date, most of the studies that have 
attempted to characterize such brain networks have focused on 
resting-state networks in fMRI and EEG data. Very few studies of 
human brain function have linked network properties to cognitive 
operations. This is an open field with great potential for the future 
of brain sciences. 
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