UC Davis UC Davis Electronic Theses and Dissertations

Title

Repeated lithospheric-scale reactivation of an inherited plate boundary in the eastern Alaska Range, Alaska, USA

Permalink https://escholarship.org/uc/item/2926d9qr

Author Waldien, Trevor

Publication Date 2021

Peer reviewed|Thesis/dissertation

Repeated lithospheric-scale reactivation of an inherited plate boundary in the eastern Alaska Range, Alaska, USA

By

TREVOR SCOTT WALDIEN DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTORATE OF PHILOSOPHY

in

Geology

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Sarah M. Roeske, Chair

Eric S. Cowgill

Richard O. Lease

Committee in Charge

2021

ABSTRACT

Accretionary orogens, such as the North American Cordillera, form by repeated collisions of allochthonous oceanic and continental fragments (terranes). Due to the closure of ocean basins that is required for far-traveled terranes to become part of the orogen, fault systems at the boundaries of allochthonous terranes commonly form as plate boundaries and experience multiple phases of reactivation after collision. The repeated phases of reactivation along the terraneboundary fault systems often mask the earlier deformation events and lead to uncertainty regarding the location of the main lithospheric-scale geologic boundary between terranes. In this dissertation, I present the geologic evolution of the master reactivated plate boundary structure in the Alaska Range suture zone of southern Alaska.

In the first chapter, I use detailed geologic mapping, structural analysis, U-Pb and ⁴⁰Ar/³⁹Ar geochronology, geochemistry of spinel-group minerals, and receiver function seismology to parse metamorphic rocks in the suture zone. With these methods, I show that the main suturing structure is located along the boundary between amphibolite grade schists and gneisses associated with North America in the north and greenschist grade metagreywacke and slate associated with allochthonous oceanic terranes in the south. The main suturing structure was reactivated after ca. 32 Ma and nucleated an imbricate thrust system that progressed southward. I argue that reactivation along the boundary between the metasedimentary belts is the third phase of activity on this structure, owing to the penetration of that boundary through the lithosphere.

In the second chapter, I use regional geologic mapping, U-Pb and ⁴⁰Ar/³⁹Ar geochronology, Hf isotope analysis, and statistical tests to confirm the correlation between Alaska Range suture zone metamorphic rocks in the Alaska Range and hypothesized correlative metasedimentary and plutonic belts in southwestern Yukon Territory. After confirming the correlation, I use the

ii

correlative rock packages to create a sequential restoration of slip on the Denali fault system. The outcome of this work shows that terrane accretion that metamorphosed the Alaska Range suture zone rocks took place at ca. 90 Ma along east-dipping shear zones, and subsequently those suture zone rocks have been dissected by ~480 km of dextral slip on the Denali fault since ca. 50 Ma.

In the third chapter, I use modern river detrital apatite fission-track thermochronology and ⁴⁰Ar/³⁹Ar geochronology to highlight southern Alaska as a type-example of long-lived oblique flat slab subduction. With the datasets, I show that the most recent and rapid bedrock exhumation in southern Alaska is spatially associated with strike-slip fault systems that were active at the time of slab flattening. Moreover, I argue that transpressional deformation and flat slab-associated magmatism were localized on the strike-slip structures due to their role as active lithospheric-scale shear zones. This analysis challenges models of diffuse upper-plate deformation in flat slab subduction environments and instead argues that strike-slip fault systems that penetrate the upper plate are essential for localizing deformation associated with obliquely convergent plate motion.

In my view, the overall impact of this dissertation is to show that by coupling detailed field and analytical work, each phase of reactivation for major orogenic structures can be resolved and coupled to regional tectonic/geodynamic scenarios at the time of formation and reactivation. Similarly, an overarching theme of the conclusions drawn herein is that the active strain distribution in strike-slip dominated orogens is strongly influenced by the locations of inherited structures that penetrate the lithosphere.

ACKNOWEDGEMENTS

I am indebted to several people and organizations who contributed to the completion of this dissertation.

On a logistical note, I am thankful for funding from the American Associated of Petroleum Geologists, Alaska Geological Society, EarthScope, Geological Society of America, UC Davis Durrell fund, USGS EdMap award #G16AC00206, and NSF Tectonics award #EAR-1828737. I am grateful to Wing Air, Alaska Land Exploration, 40-Mile Air, and Aurora Aviation for safe transportation to and from the field areas. I appreciate assistance and fun times in the field from Daniel Baldassare, Cait Livsey, Tyler Schlieder, Jordan Carey, Jack Foran, Michael Chen, and Sonny Hutchinson, and in the lab from Cait Livsey and staff at the Arizona Laserchron center. Greg Baxter cannot be thanked enough for the dozens of incredible thin sections and grain mounts, without which I could not do any of my analytical work.

On a more personal note, I am grateful for the support that I received from my family, friends, and mentors during my tenure as a graduate student at UC Davis. To my friends and family: particularly my parents, Cait Livsey, and Tyler Schlieder, I want to say thank you for the fun times and steadfast support; it made a huge impact even if that wasn't always clear at the time. I appreciate my committee members: Eric Cowgill, Mike Oskin, Richard Lease, and Magali Billen for the knowledge and wisdom that they've shared with me over the years. Lastly, to all of my mentors throughout my education: Frank Hladky, Andrew Meigs, and Sarah Roeske, I'd like to say that I appreciate your (gentle) prodding, hard work, and collaboration, which have allowed me to grow freely into the scientist and person that I am today. I feel that your mentorship has given me the tools to become an excellent mentor myself, and I look forward to our future endeavors.

Ch. 1: Oligocene-Neogene lithospheric-scale reactivation of Mesozoic terrane accretionary structures in the Alaska Range suture zone, southern Alaska, USA

Trevor S. Waldien¹, Sarah M. Roeske¹, Jeffrey A. Benowitz², Evan Twelker³, Meghan S. Miller⁴

¹Department of Earth and Planetary Sciences, University of California, Davis, 1 Shields Ave. Davis, California 95616, USA ²Geophysical Institute, University of Alaska, Fairbanks, 900 Yukon Drive Fairbanks, Alaska 99775, USA ³Alaska Division of Geological & Geophysical Surveys, 3354 College Road, Fairbanks, Alaska 99709, USA

⁴Research School of Earth Sciences, Australian National University, Building 142, Mills Road, Canberra, ACT 2601 Australia

ABSTRACT

Terrane accretion forms lithospheric-scale fault systems that commonly experience long and complex slip histories. Unraveling the evolution of these suture zone fault systems yields valuable information regarding the relative importance of various upper crustal structures and their linkage through the lithosphere. We present new bedrock geologic mapping and geochronology documenting the geologic evolution of reactivated shortening structures and adjacent metamorphic rocks in the Alaska Range suture zone at the inboard margin of the Wrangellia composite terrane in the eastern Alaska Range, Alaska, USA. Detrital zircon Uranium-Lead (U-Pb) age spectra from metamorphic rocks in our study area reveal two distinct metasedimentary belts. The Maclaren schist occupies the inboard (northern) belt, which was derived from terranes along the western margin of North America during the mid-to-late Cretaceous. In contrast, the Clearwater metasediments occupy the outboard (southern) belt, which was derived from arcs built on the Wrangellia composite terrane during the late Jurassic-to-early Cretaceous. A newly discovered locality of Alaska-type zoned ultramafic bodies within the Clearwater metasediments provides an additional link to the Wrangellia composite terrane. The Maclaren and Clearwater metasedimentary belts are presently juxtaposed by the newly identified Valdez Creek fault, which is an upper crustal reactivation of the Valdez Creek shear zone, the late Cretaceous plate boundary fault zone that initially brought them together. ⁴⁰Ar/³⁹Ar mica ages reveal independent postcollisional thermal histories of hanging wall and footwall rocks until reactivation localized on the Valdez Creek fault after ca. 32 Ma. Slip on the Valdez Creek fault expanded into a thrust system that progressed southward to the Broxson Gulch fault at the southern margin of the suture zone, and eventually into the Wrangellia terrane. Detrital zircon U-Pb age spectra and clast assemblages from fault-bounded Cenozoic gravel deposits indicate that the thrust system was active during the Oligocene and into the Pliocene, likely as a far-field result of ongoing flat-slab subduction and accretion of the Yakutat microplate. The Valdez Creek fault was the primary reactivated structure in the suture zone, likely due to its linkage with the reactivated boundary zone between the Wrangellia composite terrane and North America in the lithospheric mantle.

INTRODUCTION

It has long been known that ancient intracontinental sutures are prone to structural reactivation (Dewey and Burke, 1973; Dewey, 1977). Within the crust, the orientation of inherited faults, presence of pre-existing rock fabrics, and mineral rheology are generally considered to be important factors controlling reactivation (e.g., Sibson, 1985; Ranalli, 2000; Beacom et al., 2001). However, a growing body of literature emphasizes the importance of mechanical properties of the lithospheric mantle as key factors controlling the structural evolution of polyphase accretionary orogens (Tikoff et al., 2001; Tommasi et al., 2009; Heron et al., 2016; Kelly et al., 2019; Goussin et al., 2020). If the mechanical properties of the lithospheric mantle do indeed control crustal fault reactivation, then post-collisional deformation would be more likely to focus onto pre-existing crustal structures that root into inherited mantle shear zones.

Southern Alaska contains a suite of reactivated suture zone structures that likely record such linkage to an inherited lithospheric scale boundary. Rocks within the Alaska Range suture zone represent a series of marine basins that closed during the Mesozoic collision of the Wrangellia composite island arc terrane with previously accreted terranes in western North America (Ridgway et al., 2002). Decades of regional mapping, geochronology, and geophysics have identified crustal scale faults at the northern and southern boundaries of the suture zone and inferred them to be the primary collisional structures (Coney et al., 1980; Csejtey et al., 1982; Brennan et al., 2011). Recent detailed petrography and Uranium-Lead (U-Pb) detrital zircon analyses have shown that the marine strata and metamorphic equivalents within the suture zone may be split into a northern continental-derived succession and a southern Wrangellia composite terrane-derived succession (Hults et al., 2013; Yokelson et al., 2015; Box et al., 2019). A potentially deeply rooted accretionary structure has been inferred to juxtapose the two sedimentary successions and their basement in the western Alaska Range (Wallace et al., 1989; Decker et al., 1994), yet the structure has remained cryptic due to the similar rock types, prevalence of cover strata, and distributed deformation throughout the region. (e.g., Box et al., 2019). Although faults at the boundaries of the suture zone appear to have no significant displacement since the Cretaceous (Wahrhaftig, 1975; O'Neill et al., 2001), regional seismicity (Ruppert, 2008) indicates that the interior of the suture zone is actively deforming. Thus, post-suturing deformation may have focused onto a cryptic boundary juxtaposing the distinct sedimentary successions within the suture zone. Whereas the location of these intra-suture zone structures has remained enigmatic since the early studies in the western Alaska Range (e.g., Wallace et al., 1989; Box et al., 2019), the eastern Alaska Range contains correlative rock packages that have been highly shortened during and after the collision and thus offers an opportunity to evaluate the reactivation of suture zone structures in a wellexposed focus area.

In this paper we present new bedrock geologic mapping, U-Pb geochronology, and ⁴⁰Ar/³⁹Ar thermochronology from the eastern Alaska Range. We use our data to determine the burial and exhumation history of Alaska Range suture zone metamorphic rocks in the study area and then resolve the polyphase slip history of faults responsible for the burial and exhumation. Our data bear on the relative importance of Alaska Range suture zone boundary structures and intra-suture zone structures during Cenozoic reactivation.

GEOLOGIC BACKGROUND

Geology of the Alaska Range suture zone

The geology of the northern North American Cordillera is largely composed of allochthonous terranes that collided with the North American continent during the Mesozoic (Jones et al., 1977; Ridgway et al., 2002; Colpron et al., 2007) (Figure 1). Major allochthonous terranes in southern Alaska and adjacent Canada include the Wrangellia, Alexander, and Peninsular terranes, which were amalgamated prior to collision with the North American Cordillera (Gardner et al., 1988; Beranek et al., 2014; Israel et al., 2014) and have thus been termed the 'Wrangellia composite terrane' (Plafker and Berg, 1994), 'Insular Belt' (Monger et al., 1982), 'Insular Superterrane' (Rusmore, 1987) or Talkeetna Superterrane (Cjestey et al., 1982). We herein refer to the amalgamated terranes as the 'Wrangellia composite terrane' and distinguish the individual terranes only when necessary. A suite of Late Jurassic and Cretaceous marine basinal assemblages (Kahiltna-Nutzotin-Dezadeash-Gravina-Methow-Tyaughton basins) is discontinuously exposed along ~3000 km of the inboard (north and east) margin of the Wrangellia composite terrane throughout the northern Cordillera. These basin strata and their metamorphic equivalents are interpreted to represent south-to-north closure of a series of fringing ocean basins between previously accreted terranes and the Wrangellia composite terrane (Rubin and Saleeby, 1991; McClelland et al., 1992; Kapp and Gehrels, 1998; Hampton et al., 2007; Manuszak et al., 2007; Surpless et al., 2014; Yokelson et al., 2015; Lowey, 2018; Trop et al., 2020). Strata in these basins were structurally imbricated, buried by thrust sheets, variably metamorphosed, and intruded by plutons during accretion of the Wrangellia composite terrane (Csejtey et al., 1982; Nokleberg et al., 1985; Rubin et al., 1990; Haeussler, 1992; Davidson and McPhillips, 2007; Trop et al., 2020). Syn- and post- collisional dextral strike-slip faulting has dismembered the basinal

assemblages and contributed to northward transport of the outboard terranes (Nokleberg et al., 1985; Ridgway et al., 2002; Wyld et al., 2006).

The region between the Wrangellia composite terrane and previously accreted inboard terranes in southern Alaska presently exposes a large region of imbricated Kahiltna assemblage underlain by fragments of oceanic crust and disparate terranes (Amato et al., 2007a; Hampton et al., 2007; Nokleberg and Richter, 2007; Gilman et al., 2009). The geology in this region is interpreted to record closure of the Kahiltna basin, possibly involving a component of subduction, and has thus been named the Alaska Range suture zone (Ridgway et al., 2002).

Jurassic-Cretaceous Kahiltna strata and metamorphic equivalents within the suture zone have been split into northern and southern successions. The northern succession comprises compositionally mature sedimentary rocks with detrital zircon U-Pb age signatures that record sediment source areas in parauthochonous North America, the Yukon Tanana terrane, and Mesozoic igneous belts built on those terranes (Kalbas et al., 2007; Hampton et al., 2010; Huff, 2012; Hults et al., 2013; Box et al., 2019; Romero et al., 2020). The southern succession consists of compositionally immature sedimentary/volcano-sedimentary strata with detrital zircon U-Pb age signatures that match to Mesozoic arcs built on the Wrangellia composite terrane (Mooney, 2010; Hults et al., 2013; Box et al., 2019). In a regional mapping study of the western Alaska Range, Wallace et al. (1989) first separated the northern continental-derived strata of the Kahiltna assemblage from the southern ocean arc-derived Kahiltna assemblage, which they called the Koksetna River sequence, and depicted the two successions as juxtaposed by the NE-SW striking Mulchatna fault (Mulchatna Lineament-Figure 1). Although the Mulchatna fault is poorly exposed, the inferred surface trace aligns with a regional aeromagnetic lineament, which may record contrasting characteristics in basement rocks across the structure (Saltus et al., 2007). From the western Alaska Range the northern and southern Kahiltna assemblages continue northeast where correlative structures may be covered by younger strata in the northern Talkeetna Mountains (Trop and Ridgway, 2007; Hampton et al., 2010) and are truncated by the Denali fault in the eastern Alaska Range (e.g., Hults et al., 2013) (Figure 1).

In the eastern Alaska Range the Maclaren metamorphic belt is a highly metamorphosed portion of the Kahiltna assemblage, which has undergone major syn-collisional shortening along the Valdez Creek shear zone. The Clearwater Mountains (Figure 1) contain the type locality of the Maclaren metamorphic belt, where it has been defined as a Barrovian inverted metamorphic belt that grades from lower greenschist facies metasedimentary strata in the south to amphibolite facies pelitic and quartzofeldspathic schist and gneiss in the north (Smith, 1981). The Valdez Creek shear zone, a ca. 75 Ma amphibolite facies S-vergent mylonitic thrust zone (Davidson et al., 1992; Ridgway et al., 2002), intersects the Maclaren metamorphic belt and marks an abrupt change in metamorphic grade between hanging wall and footwall rocks. The inverted metamorphic field gradient is restricted to the footwall of the Valdez Creek shear zone and is thus inferred to have developed during S-vergent motion on the shear zone (Smith, 1981; Davidson et al., 1992; Hollister, 1993; Beam and Fisher, 1999) (Figure 1 cross section). Hanging wall rocks, in contrast, experienced kyanite grade metamorphism prior to development of the shear zone (Davidson et al., 1992). Recent U-Pb detrital zircon studies in the Clearwater Mountains have shown that the hanging wall rocks (Maclaren schist and gneiss) are metamorphic equivalents of the northern succession of the Kahiltna assemblage and the footwall rocks (Clearwater metasediments) are equivalent to the southern succession (Mooney, 2010; Link, 2017).

Cenozoic deformation in the Alaska Range suture zone

The Alaska Range suture zone is cut by a number of major faults, several of which likely formed during Mesozoic terrane accretion and have been reactivated in the Cenozoic. The most prominent active fault in the region is the Denali fault, which transects the suture zone west of 145.7°W and juxtaposes the Wrangellia composite terrane against inboard peri-Laurentian terranes east of 145.7°W (Figure 1). Dextral slip in the Denali fault system has been ongoing since at least 57 Ma (Nokleberg et al., 1985; Murphy, 2018; Regan et al., 2020) and continues through the Holocene (St. Amand, 1957; Richter and Matson, 1971; Stout et al., 1973; Matmon et al., 2006; Meriaux et al., 2009; Haeussler et al., 2017a). Surface rupture during the 2002 M_w 7.9 Denali earthquake illustrates that the fault is active today (Eberhart-Phillips et al., 2003).

The Hines Creek and Talkeetna-Broxson Gulch faults are generally considered to coincide with the northern and southern boundaries of the suture zone, respectively (Figure 1). Although geophysical observations suggest that the Hines Creek and Talkeetna faults are major crustal structures (Veenstra et al., 2006; Brennan et al., 2011; Allam et al., 2017), post-collisional deformation along these structures appears to be highly localized (cf., Wahrhaftig et al., 1975; Csejtey et al., 1982; O'Neill et al., 2001; Mooney, 2010; Bemis et al., 2012; Nokleberg et al., 2013; Koehler, 2013). The Broxson Gulch fault, in contrast, displays clear evidence for post-collisional reactivation where it marks the southern margin of the suture zone in the eastern Alaska Range (Stout and Chase, 1980; Nokleberg et al., 1985; this study).

Despite evidence for only local Cenozoic reactivation of faults at the margins of the Alaska Range suture zone, several lines of evidence indicate that post-collisional deformation has been focused within the suture zone: 1) Low-temperature thermochronology studies show widespread fault slip-related exhumation and topographic development throughout the suture zone (Fitzgerald et al., 1993, 1995; Haeussler et al., 2008; Benowitz et al., 2011, 2012, 2014; Riccio et al., 2014; Lease et al., 2016; Lease, 2018), which has expanded Alaska Range topography (Bemis and Wallace, 2007; Ridgway et al., 2007; Bemis et al., 2015; Waldien et al., 2018; Bill et al., 2019); 2) Structural, stratigraphic, and geophysical studies show Neogene and Quaternary activity on faults at the margins on the *Denali* massif in the central Alaska Range (Burkett et al., 2016; Saltus et al., 2016; Haeussler et al., 2017b; Trop et al., 2019); 3) Geodetic data from southern Alaska support a model wherein upper plate deformation related to Alaska-Aleutian subduction zone convergence is concentrated in the suture zone (Freymueller et al., 2008; Kreemer et al., 2014); and 4) Multiple receiver-function studies show that the suture zone crust is ~5-to-15 km thicker than crust in adjacent terranes and suggest that a portion of this thickening developed during the Cenozoic (Veenstra et al., 2006; Brennan et al., 2011; Miller et al., 2018).

Motivation for re-analysis of Broxson Gulch and Ann Creek

Our map areas (Figure 2–Broxson Gulch and Ann Creek) are the locations of the first detailed studies of the Alaska Range suture zone rocks and structures in the eastern Alaska Range (e.g., Rose 1965, 1966; Stout, 1965). As a result, these areas contain the type locales of the Broxson Gulch fault and associated structures. Interpretations of the local geology in Broxson Gulch and the Ann Creek area fueled early analyses of strain partitioning in the Denali fault system (Stout and Chase, 1980), total slip on the Denali fault (Forbes et al., 1974), accretion of the Wrangellia composite terrane (Nokleberg et al., 1985), and ore deposit genesis associated with the Maclaren metamorphic belt (Rose, 1965, 1966; Smith, 1981). The inference of Quaternary slip on the Broxson Gulch fault (Nokleberg et al., 1985) and relocation of historic seismicity (Doser, 2004) suggest that the fault may be active.

The early geologic maps of Broxson Gulch and the Ann Creek area were foundational contributions and should continue to be viewed as useful maps. Yet, an updated examination of the map areas through the lens of modern structural analysis, geochronology, and regional tectonics is warranted. For example, Rose (1965) and Stout (1965) both recognized that metasedimentary rocks north of the Broxson Gulch fault displayed a variety of textures and mineral assemblages, and thus were likely metamorphosed from multiple protolith compositions. However, the protolith age was inferred to be Devonian or older on the basis of nearby strata containing Carboniferous fossils (Stout, 1965; Rose, 1966). Despite recognition that the metamorphic rocks had been metamorphosed from various protolith compositions, the original map units appear to have been defined on the basis of textural features. Such unit definitions led to inconsistent inclusion of foliated greenschist grade metaigneous rocks in the hanging wall of the Broxson Gulch fault, which in turn changed the location and shape of the fault on the various maps (cf., Rose, 1966; Stout, 1976; Nokleberg et al., 1992a). A common feature of all the existing maps is the apparent offset of the Broxson Gulch fault by a buried NW-striking sinistral tear fault in the center of Broxson Gulch.

Here, we aim to resolve some of the inconsistencies in the original maps by 1) developing regionally consistent unit definitions on the basis of protolith age and composition; 2) refining the location of major structures using the new unit definitions; and 3) reinterpreting the structural evolution and resulting fault geometries of major structures using modern structural analysis and geochronology. Our analysis reveals the existence of an additional structure, which we call the Valdez Creek fault and appears to be the key Cenozoic fault in the area.

METHODS

Mapping and structural analysis

We conducted 1:10,000-scale bedrock and surficial mapping during the summers of 2015, 2016, and 2018 over an area of 170 km². Our detailed mapping campaign worked in collaboration with a regional (1:100,000 scale) mapping and compilation project by the Alaska Division of Geological and Geophysical surveys (DGGS) (Twelker et al., in revision). Due to lack of road access, we accessed the field areas by helicopter and fixed-wing aircraft. Once in the field, we mapped the areas by foot using hillshade and contour paper basemaps constructed from the 5-meter-resolution Interferometric Satellite Aperture Radar (IfSAR) Alaska Digital Terrain Model (DTM). While mapping, we recorded sample locations using a handheld global positioning system.

Between the summer field mapping campaigns, we scanned our paper field maps and digitized them using ESRI ArcMap. To aid our map compilation we used high-resolution (25-meter pixel size) potential-field geophysical data published by the DGGS (Burns et al., 2003) and \geq 1-meter resolution satellite imagery (available in ArcMap) to refine our bedrock mapping in areas of poor exposure or interpolate through areas of Quaternary cover. Here we present our bedrock mapping compiled at 1:55,000–Broxson Gulch (Figure 2A) and 1:50,000–Ann Creek (Figure 2B).

Zircon U-Pb geochronology

Sample preparation and data collection

We performed single-grain zircon U-Pb geochronology by Laser Ablation Inductively Couple Mass Spectrometry (LA-ICP-MS) with three primary goals: 1) fingerprint metasedimentary rocks by determining the sediment source areas of the protolith; 2) estimate the maximum depositional age of the protolith; and 3) date igneous intrusions in the map areas. At UC Davis, the lead author used standard crushing techniques, a miner's gold pan, Frantz isodynamic separator, and Lithium Polytungstate heavy liquid to concentrate zircon grains. Our mineral separation protocol for detrital zircon analysis involves concentrating zircon grains sufficiently to mount all of the grains by pouring, whereas for analysis of igneous grains we pick relatively large, inclusion-sparse grains. Prior to U-Pb analysis, all zircon grains and reference materials are mounted into 1" epoxy rounds, polished to expose the grain interiors, and imaged using the Cameca SX-100 Electron Microprobe housed in the Earth and Planetary Sciences department at UC Davis. The resulting high-contrast back-scattered electron images allow us to identify zoning and/or inherited cores in individual zircon grains, which inform our laser spot placement on each grain. We collected U-Pb data in two LA-ICP-MS laboratories: the Arizona Laserchron Center (ALC) in 2016 and 2017, and UC Davis in 2018. Supplemental file S1 contains detailed mineral extraction, analytical, data reduction, and data filtering methods used in the LA-ICP-MS analysis.

Data representation

Our fingerprinting of metasedimentary protoliths is based on analyzing distinctive populations of detrital zircon single grain U-Pb dates. To ensure that our comparisons between samples are statistically robust, each detrital zircon age dataset contains analyses on at least 117 grains (Vermeesch, 2004). We represent the data as Kernel Density Estimates (KDEs) using the Density Plotter program (Vermeesch, 2012). Because many of the rocks analyzed in our study experienced amphibolite and upper greenschist metamorphic temperatures and thus may have experienced metamorphic recrystallization and/or lead loss (e.g., Hoskin and Schaltegger, 2003), we take a conservative approach to calculating maximum depositional ages by calculating the weighted mean of the youngest statistical population of detrital grains (Herriott et al., 2019). The ages of igneous zircon populations are determined by a weighted mean of single grain dates with propagated 2 sigma errors. Weighted mean ages are calculated and plotted using Isoplot (Ludwig, 2008). Reported uncertainties of weighted mean ages represent 95% confidence interval internal uncertainties and the quadratic addition of external uncertainties (e.g., Horstwood et al., 2016) (Supplemental files S1 and S2).

⁴⁰Ar/³⁹Ar Thermochronology:

⁴⁰Ar/³⁹Ar analysis was performed at the Geochronology laboratory at the University of Alaska, Fairbanks where samples were crushed, sieved, washed and hand-picked for a pure mineral phase of biotite, muscovite, or amphibole. The analyzed size fractions are given in Table 1. The mineral fractions and monitor mineral MMhb-1 (Samson and Alexander, 1987), which has an age of 523.5 Ma (Renne et al., 1994), were irradiated at McMaster University in Hamilton, Ontario, Canada. Upon their return from the reactor, the samples and monitors were loaded into 2 mm diameter holes in a copper tray and then loaded in an ultra-high vacuum extraction line. The monitors were fused, and samples heated, using a 6-watt argon-ion laser following the technique described in York et al. (1981), Layer et al. (1987), and Benowitz et al. (2014). Ar isotope measurements in this system were made using a VG-3600 mass spectrometer.

Supplemental file S3 contains detailed 40 Ar/ 39 Ar analytical methods and summarizes the 40 Ar/ 39 Ar results, wherein all ages are quoted at the 1 sigma level and calculated using the constants of Renne et al. (2010). The integrated age is the age given by the total gas measured and is equivalent to a potassium-argon (K-Ar) age. The spectrum provides a plateau age if three or more consecutive gas fractions represent at least 50% of the total gas release and are within two standard deviations of each other (mean square weighted deviation < 2.5).

Spinel Geochemistry

Spinel geochemistry was determined using the Cameca SX-100 electron microprobe at UC Davis. The analysis used a beam intensity of 20 nA and voltage of 15 kV focused into a 1 um spot size. Analyses were calibrated to natural spinel reference materials. Fe₂O₃ and FeO were calculated from Fe_{Total} using a Microsoft Excel-based calculation tool available from www.serc.carleton.edu/research education/equilibria/mineralformulaerecalculation.

RESULTS

Map unit definitions, protolith ages, and primary structural features

We present new bedrock mapping from two locations along the southern margin of the Alaska Range suture zone in the eastern Alaska Range: Broxson Gulch (Figure 2A) and Ann Creek (Figure 2B). Our mapping and definition of rock units differs from previous workers in the area because we defined map units on the basis of protolith composition and age. This distinction is particularly important for metasedimentary rocks in the northern portion of the map areas. There are three primary bedrock lithologic packages in the map areas: Maclaren schist and associated felsic plutons, Clearwater metasedimentary rocks and associated intermediate-ultramafic intrusions, and Wrangellia meta-igneous rocks. A suite of N-dipping brittle faults juxtaposes these rock packages in both map areas. Here we describe the rock units and major structures from north to south.

Geology between the Wrangellia terrane and Denali fault

The Maclaren schist (map unit Ks) is a dark grey, quartzofeldspathic schist that occupies the highest structural level in our map areas (Figure 3A). Albite and, less commonly, garnet porphyroclasts contain curved or spiral inclusion trails (S₁), which comprise rutile and graphite (Figure 4A). The inclusion trails cause the albite to appear nearly black in hand sample. Phyllosilicate minerals and graphite define a strong foliation (S₂), which is deflected by the porphyroclasts (Figure 4A). Quartz-rich pressure shadows around the porphyroclasts create a linear fabric element contained within S₂ that generally plunges down-dip to the north. Biotite parallel to the S₂ foliation is typically partly replaced by chlorite, except at the highest structural level (e.g., sample 16ATW-73–Figure 2A) where biotite overgrows the S₂ foliation (Figure 4B). Meso-scale asymmetric quartz vein boudinage parallels S₂ and shows top-to-the-south thrust kinematics (Figure 3B). Discontinuous cm-to-m-thick carbonate-rich lozenges also parallel S₂. Rare pelitic intervals contain relict kyanite, staurolite, and garnet, which are partially replaced by retrograde metamorphic assemblages. We use the peak assemblage to infer that the entire package of Maclaren schist reached amphibolite facies conditions (see also Davidson et al., 1992; Davidson and McPhillips, 2007).

A quartz monzonite body (Map unit Pgqm) intruded across the foliation in the Maclaren schist north of the Valdez Creek fault (Figures 2B and 3C). The quartz monzonite is not foliated and contains xenoliths of Maclaren schist (Stout, 1965; our observations). Zircon separated from one sample of the quartz monzonite (15ATW-47) yielded a U-Pb date of 51.9 ± 0.6 Ma (Figures 2B and 5) (Table 2). Farther west, a suite of ca. 75-70 Ma tonalitic rocks intrudes the Maclaren schist and along the Valdez Creek shear zone (Aleinikoff et al., 1981; Ridgway et al., 2002).

The Clearwater metasedimentary package (map units Jms, Jmg, Js) is a lithologically heterogeneous unit structurally below the Maclaren schist (Figure 3A). Rock types in the Clearwater metasediments include metagreywacke, graphite-muscovite-chlorite phyllitic schist, porphyroblastic pyrite-graphite phyllite, argillaceous slate, and albite-actinolite-epidote-chlorite schist. We distinguish map units based on the prevalence of rock types (Jms-mafic schist, Jmgmetagreywacke, Js-slate). Our naming convention is based on that of Mooney (2010), who documented a nearly identical belt of low grade metasedimentary strata and inter-bedded lava flows in the Clearwater mountains ~60 km to the west of our study area. The Clearwater metasediments in our map areas generally display an increase in flattening strain, mica content, and feldspar recrystallization from south (lowest structural level) to north (highest structural level) (Figures 4C-E). The nearly ubiquitous presence of chlorite, epidote, and actinolite suggests that the belt experienced greenschist facies peak metamorphic conditions. The package displays a strong transposition fabric, wherein the S₁ foliation is isoclinally folded thereby creating S₂ axial surfaces parallel to S₁. Folding of the S₁ foliation manifests as tight crenulation folds (Figures 3D and 4C) and as folded quartz veins (Figure 3E). Crenulation axes in the metasediments generally plunge modestly to the west-southwest and are interrupted by sub-vertical opening fractures (Figures 3D and 6A).

The Clearwater metasediments are locally interfoliated with metamorphosed ultramafic rocks. Ultramafic rock types include serpentinite, amphibolite, and lesser talc-chlorite schist. The ultramafic rocks generally display a strong foliation defined by serpentine, Cr-chlorite, actinolite, and lesser fuchsite and talc (Figure 4F). Relict chromite in the serpentinite shows reaction textures involving brucite, Cr-chlorite, Cr-magnetite, and millerite (Supplemental file S4). Broxson Gulch also contains an outcrop (~24,000 m² map area) of unfoliated amphibolite (locale 16ATW-43), which contains amphibole up to 3 cm in diameter (Figure 3F). The coarse amphibole displays zoning consisting of hornblende cores that have reacted to patchy actinolite zones and rims (Supplemental file S4). Matrix minerals in the coarse amphibolite include titanite, epidote, chloritized biotite, and apatite (Supplemental file S4). The serpentinite and talc-chlorite schists are

interfoliated and folded with the Clearwater phyllitic schist (Figure 6A), whereas amphibolite pods are generally associated with Clearwater mafic schist (map unit Jmg).

A suite of small volume igneous bodies intruded the Clearwater metasedimentary rocks. In Broxson Gulch, these intrusive bodies are typically amphibole-bearing intermediate dikes up to one meter thick. The dikes intrude along, and locally display stretching parallel to, the S₁ foliation. Chlorite and/or actinolite form pseudomorphs of primary amphibole in the dikes. One dike sample from Broxson Gulch (15ATW-05) yielded an 40 Ar/ 39 Ar whole rock plateau age of 100.7 ± 1.6 Ma (Table 1; Supplemental file S5). Phyllite in the contact aureole of another amphibole dike yielded a population of high U/Th (up to ~6300) zircon grains that gave a weighted mean U-Pb age of 103.4 ± 1.6 Ma (Supplemental file S5). In the Ann Creek map area (Figure 2B) a tabular-shaped granodiorite body intruded the metagreywacke subunit of the Clearwater metasediments (Jmg) immediately north of the Broxson Gulch fault. The granodiorite contains a weak foliation defined by the alignment of amphibole and plagioclase along a plane sub-parallel to the margins of the body. The northern contact of the granodiorite displays co-magmatic textures with a pegmatitic hornblende-biotite pyroxenite (Stout, 1965; our observations). Amphibole from the pyroxenite body yielded K-Ar dates of 91.9 ± 2.8 Ma and 97.7 ± 2.9 Ma (Nokleberg et al., 1992b). One sample of the granodiorite (15ATW-51) yielded a U-Pb date of 102.4 ± 1.1 Ma (Figures 2B, 5; Table 2).

Faulting between the Wrangellia terrane and Denali fault

Two major north-dipping brittle faults, the Valdez Creek and Broxson Gulch faults, intersect metasedimentary rock units in the map areas (Figure 3A). Previous maps of the region emphasize the importance of the Broxson Gulch fault due to the juxtaposition of distinct rock types across it. Our mapping highlights the importance of the Valdez Creek fault as an important reactivated structure juxtaposing distinct metasedimentary rock packages north of the Broxson Gulch fault.

The herein-named Valdez Creek fault places the Maclaren schist over the Clearwater metasediments and associated ultramafic rocks. In outcrop, the Valdez Creek fault is an ~10-15-meter-wide zone of clay-rich damaged rock. Hanging wall Maclaren schist adjacent to the Valdez Creek fault is intensely retrograded to lower greenschist facies assemblages and locally contains meso-scale asymmetric folds that indicate top-to-the south shear (Figure 3G). Antithetic brittle faults and quartz veins in opening fractures near the fault zone cross the metamorphic folia in adjacent rocks at a high angle (Figures 3H and 6B-D). Dispersed brittle faults over a ~1 km wide zone parallel the metamorphic foliation in the structurally lowest portion of the Maclaren schist and presumably record distributed hanging wall deformation related to slip on the Valdez Creek fault. Slickenlines on the foliation-parallel brittle slip surfaces within the Maclaren schist indicate reverse motion with a minor dextral component (Figure 6E).

The Broxson Gulch fault places the Clearwater metasediments and associated intrusions over Wrangellia rocks and is typically marked by a 30-to-50-meter-thick zone of brittle deformation. The core of the Broxson Gulch fault damage zone is not well exposed in the map areas. However, one exposed cross section of the fault in northeastern Broxson Gulch contains a ~1-meter-thick clay-rich principle shear plane oriented at approximately 265/50°N in the core of a distributed brittle deformation zone. Brittle fault striae from the clay-rich zone at this locale plunge down dip and record reverse motion (Figure 6F). Damage associated with slip on the Broxson Gulch fault is distributed into the hanging wall where it is localized along foliation planes within the Clearwater metasediments.

Geology of the Wrangellia terrane

Wrangellia metavolcanic strata and associated intrusions occupy the footwall of the Broxson Gulch fault (Figures 2 and 3A). Wrangellia stratigraphy in this region of the Alaska Range consists of Carboniferous volcanic and volcaniclastic strata overlain by lesser Permian carbonate strata and regionally extensive Triassic flood basalts. Both the Carboniferous and Triassic volcanic strata have intrusive igneous rocks associated with them.

Carboniferous volcanic rocks (map unit CPvs) in southern Alaska have been called the Tetelna volcanics (Mendenhall, 1905; Bond, 1973, 1976; Stout et al., 1976), Skolai group (Smith and MacKevett, 1970), and Slana Spur-Eagle Creek formation (Nokleberg et al., 1985; 1992a). Nomenclature aside, the strata provide a record of a Carboniferous island arc, which has been named the Skolai arc (Bond, 1973; Beard and Barker, 1989), thus we herein refer to them as the Skolai arc strata. The stratigraphy of the Skolai arc in Broxson Gulch and Ann Creek is similar to that documented by Bond (1973) for a region approximately 20 km to the east: massive mafic volcanic rocks lower in the section, intermediate volcanic rocks and pyroclastic flow deposits in the middle of the section, and volcaniclastic and carbonate strata near the top of the >3000-meterthick section. Some of the carbonate strata contain early Permian fossils (Bond, 1973; Nokleberg et al., 1992b, Richter and Dutro, 1975). We combined these strata with the Carboniferous strata for the purpose of our mapping. Igneous bodies of diorite-to-tonalite composition intruded the lower and middle portion of the Skolai arc strata (map unit Ci). Primary biotite and hornblende in the intrusions show reaction textures involving chlorite and actinolite. Skolai strata in the contact aureoles of the intrusions display a strong foliation defined primarily by chlorite, which parallels the margins of the intrusion (Figure 2A). Primary volcanic features are preserved farther from the intrusive rocks (Figure 3I). Three samples of representative intrusive igneous rock types from

Broxson Gulch yielded zircon suitable for analysis by LA-ICP-MS: 16ATW-49–diorite–314.3 \pm 3.4 Ma; 16ATW-82–tonalite–310.9 \pm 3.4 Ma; 16ATW-83–tonalite–306.9 \pm 2.6 Ma (Figures 2A and 5) (Table 2). Zircon from one quartz diorite body exposed at the mouth of Ann Creek (18ATW-22) yielded a U-Pb date of 301.8 \pm 5.5 Ma (Figures 2B and 5) (Table 2).

Massive aphanitic basalt flows and lesser interbedded carbonate unconformably overlie the Skolai arc rocks. The basalt flows belong to the Upper Triassic Nikolai flood basalt province (map unit Trn), which has been described in detail to the southwest and southeast of our study area (e.g., Greene et al., 2008, 2010). Large (>1 km across) bodies of gabbro and dunite (map unit Trum) related to the flood basalts are present within the Skolai and Nikolai strata. Twelker et al. (in revision) documented at least one location where Nikolai lava flows were deposited unconformably onto the gabbro-dunite complex. Secondary chlorite, actinolite, and serpentine indicate that both intrusive and extrusive Nikolai rocks experienced greenschist facies metamorphic conditions. Biostratigraphic and radiometric (U-Pb and ⁴⁰Ar/³⁹Ar) age determinations yield dates of ca. 225-230 Ma for Nikolai strata (see Greene et al., 2010). Gabbro bodies in the region yielded ⁴⁰Ar/³⁹Ar biotite and hornblende dates of ca. 225-228 Ma (Bittenbender et al., 2007; Benowitz et al., 2017). We discovered an outcrop of pegmatitic hornblende-biotite-gabbro within the Nikolai gabbro-dunite complex in the Ann Creek map area (18ATW-13; Figure 2B). Zircon from this sample yielded a U-Pb date of 229.2 ± 2.0 Ma (Figure 5) (Table 2).

Cenozoic cover strata

Isolated exposures of fluvial and alluvial gravels (map unit Czg) unconformably overlie Skolai and Nikolai rocks in the central and southern portions of the map areas. Most exposures are clast supported, poorly bedded, and poorly-to-moderately sorted (Supplemental file S6). Exposures in the Ann Creek map area (Figure 2B) generally contain subangular to subrounded clasts, whereas exposures in Broxson Gulch (Figure 2A) contain subrounded to rounded clasts. The clasts are composed of various proportions of volcanic, intrusive igneous, carbonate, and low-grade metamorphic rocks (Figure 7). Clasts of volcanic and metavolcanic rock are common among all exposures. Dunite and gabbro clasts are abundant in gravel exposures in the Ann Creek map area. Gravel exposures in the Broxson Gulch map area lack ultramafic clasts and instead contain a significant proportion of felsic intrusive igneous rocks. Low-grade metasedimentary rocks, carbonate, and quartz constitute subordinate clast populations in all of the exposures. Although the clast rounding, clast composition, detrital zircon age spectra, and structural position differ for each gravel exposure, we classify all of the gravel deposits into a single map unit for the purpose of this study.

Faulting within the Wrangellia terrane

Three major structures offset the Wrangellia bedrock and cover strata. From north to south, these structures are the Muddy Creek, Airstrip, and Rainy Creek faults.

The herein named Muddy Creek fault cuts through Wrangellia strata and associated intrusive rocks. Good exposures of the fault are found in the cliffs above Muddy Creek (Ann Creek map area: Figure 2B) and on a ridge in the central part of Broxson Gulch (Figure 2A). The fault can be accessed easily in Broxson Gulch, where it is a narrow (<10 meter) zone of serpentinized and cataclasized Nikolai flood basalt that dips to the northeast. A hanging wall imbricate carrying the gabbro-dunite complex steps up from the Muddy Creek fault ~500 m north of this locale, suggestive of duplexing within the Nikolai ultramafic rocks. The Alaska DGGS mapped a structure

in the Amphitheater Mountains ~10 km to the south of our map areas that we interpret to be an equivalent structure because it juxtaposes the same suites of rocks and also displays evidence of duplexing. They call this the fault the Fish Lake fault (Twelker et al., in revision). Evidence for duplexing and stratigraphic duplication associated with the Fish Lake-Muddy Creek fault suggest top-to-the southwest thrust kinematics (Twelker et al., in revision). The Broxson Gulch and Airstrip faults both appear to cut at a low angle or merge with the Muddy Creek fault (Figure 2). We favor a cross-cutting relationship because the Muddy Creek fault strikes more northwesterly than other faults in the map areas and has no demonstrable Cenozoic slip.

The Airstrip fault, first named by Rose (1965), places Skolai rocks and intrusive Nikolai rocks over Nikolai flood basalts and overlying Cenozoic gavel deposits in the center of the map areas. Our mapping of the Airstrip fault in Broxson Gulch is similar to that of Rose (1965), yet we were able to track the fault to both the east and west. Parallel to the strike of the fault, we mapped a synform in the footwall of the Airstrip fault, which contains Wrangellia meta-igneous rocks, Clearwater slate, and possibly the Muddy Creek fault (Figure 2). Despite an ~50-meter-thick zone of damaged rock associated with the fault trace, the core of the Airstrip fault damage zone is not well enough exposed to yield reliable kinematic indicators. However, we infer top-to-the-south reverse kinematics based on the associated synform and preservation of Cenozoic gravels in the footwall of the fault (Figure 2).

The Rainy Creek fault, first named by Nokleberg et al. (1985) is the range-bounding fault in the region. It is not exposed in Broxson Gulch and is poorly exposed in Ann Creek, but it shows up in both regions as a significant aeromagnetic and resistivity boundary because it places Triassic ultramafic rocks over Cenozoic gravels (Nokleberg et al., 1992a) (Figure 2; Supplemental file 7). Our mapping of the Rainy Creek fault is most similar to that of Nokleberg et al. (2015). We do not have kinematic information for the Rainy Creek fault due to the lack of exposure. However, we infer primarily top-to-the-south thrust slip due to the location of the fault at the topographic range front, the shallow dip of the fault, and the juxtaposition of Wrangellia rocks in the hanging wall against Cenozoic gravels in the footwall.

Detrital zircon U-Pb geochronology

Age spectra from metasedimentary rocks

Detrital zircon U-Pb age spectra from two samples of Maclaren schist primarily display grains of Jurassic and Cretaceous age (Figure 8; Supplemental file S2). Grains with dates of ca. 85-95 Ma constitute the largest age population in each sample (45-85%). Other Phanerozoic age populations include ca. 160, 185, and 330-350 Ma. A distribution of Precambrian grains ranging from ca. 620-2800 Ma accounts for less than 10% of either Maclaren schist sample (Figure 9).

Detrital zircon U-Pb age spectra from all four samples of the Clearwater metasediments display nearly identical bimodal detrital age populations centered at ca. 155-160 Ma and 185-190 Ma (Figure 8; Supplemental file S2). The late Jurassic age population comprises the majority (55-75%) of the grains in all samples. Pre-Mesozoic grains are uncommon in the Clearwater metasediments, yet each sample yielded five or fewer grains at ca. 425 Ma and ca. 1100-1700 Ma (Figure 9). Sample 15ATW-52 yielded one grain with an age of 2785 Ma. Zircon grains extracted from Clearwater phyllite in the contact aureoles of the ca. 100 Ma amphibole-bearing dikes (samples 15ATW-07 and 16ATW-44b) display a sieve texture around the rims of the crystals and typical sector zoning patterns in the interiors of the crystals (Supplemental file S5). Laser spots placed on the concentric- or sector-zoned interiors of the zircon crystals yielded Jurassic dates commensurate with the other Clearwater samples. Laser spots placed near regions of sieve texture

generally yielded dates of ca. 80-120 Ma, but cluster at ca. 100 Ma. These dates are associated with elevated and variable U/Th ratios (Supplemental files S2 and S5). The population of Cretaceous high U/Th grains yielded a weighted mean U-Pb date of 103.4 ± 1.6 Ma (Figure 8; Supplement S5).

Age spectra from Cenozoic gravel deposits

Cenozoic and Mesozoic grains dominate the detrital zircon U-Pb age spectra from three samples of Cenozoic gravel deposits in Broxson Gulch (Figure 10; Supplemental file S2). The structurally highest sample (16ATW-77) displays a nearly bimodal distribution of grain dates split between ca. 60 Ma (63%) and ca. 100 Ma (20%) populations. Jurassic-aged grains compose a minor age population at ca. 160 Ma (4%). In the intermediate structural position, sample 15ATW-06 displays a nearly unimodal age distribution wherein 83% of the analyzed grains constitute a single age population at ca. 30 Ma. Grains with ages of ca. 145 Ma (5%), 230 Ma (7%), and 305 Ma (3%) constitute subordinate age populations in this sample. Sample 16ATW-86 occupies the lowest structural position and displays the most heterogeneity in detrital ages from the dated Cenozoic gravel deposits. A bimodal distribution of Jurassic grains comprises the majority (79%) of the analyzed grains. The Jurassic population is contains modes at ca. 155 Ma and 185 Ma. The remaining grains compose smaller populations at ca. 310 Ma (13%), 60 Ma (2%), and 6 Ma (3%; n = 7). Grains with dates older than 400 Ma constitute less than 3% of analyzed zircon grains from all samples. Recurring >400 Ma age populations include: 430-470 Ma, 1500-1800 Ma, and 2300-2700 Ma.

⁴⁰Ar/³⁹Ar thermochronometry

We dated K-bearing mineral phases from samples in the hanging wall of the Broxson Gulch fault using the ⁴⁰Ar/³⁹Ar method, which resulted in one amphibole, three white mica, and three biotite dates (Table 1; Supplemental file S3).

Broxson Gulch map area

Biotite and muscovite from the Maclaren schist in Broxson Gulch yield late Eocene-Oligocene dates (Figure 11). The S₂ foliation in the structurally highest sample (16ATW-73) is defined by intergrown muscovite, chlorite, and graphite. Biotite in this sample overgrows the S₂ foliation with a porphyroblastic texture (Figure 4B) and yielded a plateau age of 32.8 ± 0.3 Ma. Sample 15ATW-08 is located at a low structural level in the Maclaren schist near the Valdez Creek fault (Figure 2A). Biotite in this sample is oriented sub-parallel to the S₂ foliation, shows reaction textures involving chlorite, and yielded a weighted mean age of 45.9 ± 0.3 Ma.

Amphibole and mica from Clearwater metasediments and ultramafic rocks in Broxson Gulch yield mid-Cretaceous-earliest Paleogene dates (Figure 12). The zoned amphibole from the coarse amphibolite block (Supplement S4) in Broxson Gulch (16ATW-43c) yielded an 40 Ar/³⁹Ar release spectrum that displays a loss pattern, which is matched by the K/Ca spectrum over the same range of gas release steps (Figure 12). Our preferred date for the amphibole is the 93.8 ± 0.7 Ma weighted mean date because the duration of consistent gas release defining the date corresponds to a constant K/Ca ratio, which we infer to record Ar release from the K-bearing hornblende cores of the amphibole crystals. Sample 15ATW-35 is a serpentine-chlorite-brucite schist with minor kinked fuchsite sub-parallel to the foliation (Figure 4F). The fuchsite yielded a plateau age of 65.1 \pm 0.4 Ma. One sample of muscovite graphite schist (16ATW-36) interfoliated with Clearwater

mafic schist yielded a similar plateau age of 64.3 ± 0.7 Ma. Muscovite in this sample is folded with the foliation and only locally is partially recrystallized into tabular grains near the crenulation axes (Figure 4D).

Ann Creek map area

In the Ann Creek map area, the ca. 52 Ma quartz monzonite pluton carried in the hanging wall of the Valdez Creek fault contains a network of late cross-cutting pegmatite dikes. One sample of pegmatite (15ATW-45) yielded biotite and muscovite suitable for 40 Ar/ 39 Ar analysis. Biotite from this sample yielded a plateau age of 37.7 ± 0.6 Ma, whereas the muscovite gave a plateau age of 50.2 ± 0.5 Ma (Figure 11).

Spinel Geochemistry

Ultramafic rocks hosted within the Clearwater metasediments contain minor ($\leq 10\%$) proportions of opaque minerals including spinel group minerals, ilmenite, millerite, and chalcopyrite. The spinel group minerals display a variety of compositions ranging from chromite to magnetite with minor to moderate substitution of Ti, Mn, Mg, and Zn. Chromite-rich grains display reaction textures involving millerite, magnetite, and brucite (Supplement S4). Chromite cores and rims display Cr# (Cr/[Cr + Ti + Al + Fe³⁺]) values ranging from 0.5-0.8 and Fe²⁺# (Fe²⁺/[Mg + Mn + Fe²⁺]) ranging from 0.4-0.95 (Figure 13). Magnetite-rich grains display Cr# less than 0.3 and Fe²⁺# values near 1 (Figure 13). Supplemental file S8 contains electron microprobe data of the spinel group phases.

DISCUSSION

Interpretation of geochronology and thermochronology

Sediment source areas, unit ages, and terrane associations

Mesozoic metamorphic rocks

Although the detrital zircon U-Pb age spectra for both the Maclaren schist and Clearwater metasedimentary rocks are dominated by Mesozoic ages, each unit records sediment input from distinct source areas inboard and outboard of the Denali fault. It is important to recognize that the eastern Denali fault has experienced more than 400 km of Cenozoic dextral displacement (Nokleberg et al., 1985). Moreover, stratigraphic studies of the Kahiltna assemblage demonstrate the predominance of margin parallel sediment transport as the strata were deposited (Ridgway et al., 2002; Kalbas et al., 2007). Therefore sediment provenance areas for metasedimentary rocks in our study area may be located several hundred kilometers along strike to the southeast.

Key detrital zircon U-Pb age populations in the Maclaren schist include: 85-100 Ma, 140-210 Ma, and 330-370 Ma (Figure 9). The distribution of Paleoproterozoic zircon grains and quartzofeldspathic-to-pelitic composition together suggest that the Maclaren schist protolith received detritus from a continental source area inboard of the Denali fault. Cretaceous and Jurassic igneous belts are abundant throughout British Columbia and Yukon (Gehrels et al., 2009; Allan et al., 2013) and represent a likely source area for Mesozoic age populations in the Maclaren schist. Devonian-to-early Mississippian igneous rocks are widespread in the Yukon-Tanana terrane in east-central Alaska and Yukon (Dusel-Bacon and Williams, 2009) and are a likely source for the mid-Paleozoic zircon population in the Maclaren schist. A Yukon-Tanana terrane source for the mid-Paleozoic grains is also supported by the presence of ca. 1.7-2.8 Ga detrital grains because the Yukon-Tanana terrane igneous rocks intruded into Paleozoic and Neoproterozoic Laurentian continental margin rocks, which contain abundant Paleoproterozoic detrital zircon grains (Dusel-Bacon and Williams, 2009; Piercey and Colpron, 2009; Gehrels and Pecha, 2014; Pecha et al., 2016; Dusel-Bacon et al., 2017). In sum, detrital zircon age data suggest that the protolith of the Maclaren schist was principally sourced from Jurassic and Cretaceous igneous belts that were built on the western margin of North America. Considering the maximum depositional ages of ca. 94 and 86 Ma (Figure 8) places the Maclaren schist protolith in a basin system along the western margin of North America after 94 Ma. By ca. 75 Ma, the Maclaren schist was undergoing regional amphibolite facies metamorphism (Davidson et al., 1992; Ridgway et al., 2002).

The Clearwater metasedimentary rocks contain two major detrital zircon U-Pb age populations: 150-160 Ma and 175-200 Ma (Figure 9). Although sediment source areas of this age range are present inboard of the Denali fault (e.g., Gehrels et al., 2009; Allan et al., 2013), the dearth of Paleozoic and Precambrian zircon grains and generally mafic composition of the Clearwater metagreywacke suggest a sediment source within oceanic arc terranes outboard of the Denali fault. Jurassic source areas outboard of the Denali fault include Chitina arc rocks (ca. 160-140 Ma- Roeske et al., 2003; Day et al., 2016; Beranek et al., 2017) and Talkeetna arc rocks (ca. 205-150 Ma- Roeske et al., 1989; Amato et al., 2007b; Rioux et al., 2007). The scant Paleozoic (ca. 415 Ma) and Precambrian (ca. 1100, 1500, 2800 Ma) grains can be traced to Paleozoic sedimentary and igneous rocks within the Alexander terrane (e.g., Gehrels et al., 1996; Kapp and Gehrels, 1998; Beranek et al., 2007a). On the basis of these data, we infer that the protolith of the Clearwater metasedimentary rocks was sourced primarily from Chitina and Talkeetna arc rocks and thus was likely deposited along the paleo-eastern margin of the Wrangellia composite terrane.

The protolith age is bracketed to 151-142 Ma by the maximum depositional ages of individual samples of the Clearwater metasediments (151-to-156 Ma-Figure 8) and intrusion of a ca.142 Ma alkali gabbro in the Clearwater Mountains (Mooney, 2010).

Association between the Clearwater metasediments and the Wrangellia composite terrane is also supported by the presence of ca. 100 Ma ultramafic to intermediate magmatism within the metasediments. Our data indicate that the Clearwater metasediments host a suite of ca. 100 Ma intermediate igneous intrusions and ultramafic cumulates (aforementioned hornblende-biotitepyroxenite). Similar, albeit somewhat older (ca. 120 Ma), ultramafic and intermediate intrusive rocks have been mapped as intruding into Wrangellia rocks and Nutzotin basin strata ~30-50 km to the southeast of the Ann Creek map area (Bittenbender et al., 2007; Synder and Hart, 2007; Wilson et al., 2015). Farther to the southeast, ca. 100-115 Ma ultramafic and intermediate rocks have been described in southeast Alaska (Duke Island suite) and in the Yukon Territory (Pyroxenite Creek and Shorty Creek suites), where they form a series of compositionally zoned intrusions within the western Gravina belt, Alexander terrane, and Dezadeash formation (Eisbacher, 1976; Saleeby, 1992; Himmelberg and Loney, 1995). The zoned ultramafic intrusions in southeast Alaska and adjacent Yukon are geochemically distinct among ultramafic magmatic suites globally and have thus earned their own classification as "Alaska-type" ultramafic suites (Barnes and Roeder, 2001). Although the ca. 100 magmatic suite in the Clearwater metasediments does not clearly display the zoned structure common of other Alaska-type ultramafic localities, the spinel compositions from ultramafic rocks in our study areas plot among the Cr# and Fe²⁺# values from other Alaska-type zoned ultramafic complexes (e.g., Barnes and Roeder, 2001) (Figure 13). The age, spinel geochemistry, petrography, and distribution of rock types together make a strong case that ultramafic cumulates and associated intermediate composition intrusive rocks within the

Clearwater metasediments represent a faulted and metamorphosed portion of an Alaska-type ultramafic intrusion rather than a structurally entrained fragment of lithospheric mantle or Nikolai intrusive rocks. Due to the clear connection between the Dezadeash formation and western Gravina belt with the Wrangellia composite terrane (e.g., Lowey, 1998, 2011, 2018; Yokelson et al., 2015) and the presence of early Cretaceous ultramafic bodies within Wrangellia in the Alaska Range (Bittenbender et al., 2007), it appears that the Alaska-type zoned magmatic suite formed across the paleo-eastern margin of the Wrangellia composite terrane.

The similarity in detrital zircon U-Pb age spectra between the Clearwater metasediments, Dezadeash formation, and western Gravina belt (cf., Mooney, 2010; Yokelson et al., 2015; Link, 2017; Lowey, 2018; this study) suggests that the Clearwater metasediments are part of the dismembered late Jurassic-early Cretaceous basin system at the inboard margin of the Wrangellia composite terrane. The proximity of the hornblende-biotite-pyroxenite in the Ann Creek map area to the Denali fault suggests that it may be an offset portion of the Pyroxenite Creek ultramafic body, which intrudes the Dezadeash formation and is cut by the Denali fault in southwestern Yukon Territory (Eisbacher, 1976). Such correlation is consistent with other estimates of >400 km of Cenozoic dextral separation on the Denali fault (Nokleberg et al., 1985).

Cenozoic gravel deposits

Exposures of Cenozoic gravels at the southern flank of the Alaska Range display a variety of clast compositions and detrital zircon U-Pb age spectra that suggest a range of proximal and distal source areas. Clast populations from exposures in the Ann Creek map area indicate that Paleozoic and Triassic rocks within Wrangellia were the primary sediment source areas (Figure 7). Alternatively, clast assemblages from exposures in Broxson Gulch suggest more heterogeneous source areas that include felsic intrusive rocks and low-grade metasedimentary rocks. We infer that the heterogeneity in the characteristics of the Cenozoic gravel deposits in the map areas reflects variability in depositional setting for each of these deposits. For example, 18ATW-14 (Figure 2B) contains angular clasts of underlying Wrangellia rock (Figure 7) and therefore may represent a preserved portion of a local alluvial deposit. In contrast, 16ATW-77 (Figure 2A) contains rounded clasts of rock types that are not found near the sample location and thus were likely carried to their present location by a larger fluvial system. Aside from evidence for both local and distal sediment sources, the lack of Maclaren schist detritus in the gravel deposits suggests that the sediment source areas feeding the basins did not intersect the Maclaren schist.

The detrital zircon U-Pb age spectrum for 16ATW-77 displays a predominance of ca. 60 Ma and 100 Ma grains. Given the abundance of felsic igneous clasts in the deposit (Figure 7), we infer that these age populations record input from a source area rich in Paleogene and Cretaceous plutonic rocks. The population of ca. 100 Ma plutonic rocks may be locally sourced from the granodiorite body exposed in the Ann Creek map area (sample $15ATW-51-102.4 \pm 1.1$ Ma). The nearest potential source area for the Paleogene plutonic clasts is west of our study area in the northern Talkeenta Mountains (Csejtey et al., 1986; Davidson and McPhillips, 2007). In the northern Talkeetna Mountains, Paleogene plutons intruded into metasedimentary strata that contain Jurassic detrital zircon grains (cf., Davidson and McPhillips, 2007; Hults et al., 2013; Link, 2017; Hampton et al., 2010). These late Jurassic metasedimentary rocks provide a probable source for the low-grade metamorphic clasts and late Jurassic detrital zircon grains in sample 16ATW-77. Given that the youngest age population of detrital zircons (ca. 60 Ma) in sample 16ATW-77 is likely derived from plutonic rocks, it is tenable that the true depositional age is significantly
younger than the maximum depositional age determined from the detrital zircon U-Pb age distribution (ca. 54 Ma–Figure 10).

Sample 15ATW-06 also contains a suite of detrital zircon U-Pb dates that suggest derivation from a distal source area. The primary ca. 30 Ma age population in this sample cannot be traced to any local source in the Alaska Range or Talkeetna mountains, but does coincide with the onset of volcanism in the Wrangell Arc to the southeast of our study area and may reflect deposition of airfall ash deposits, although none were identified in the field (Berkelhammer et al., 2019; Brueseke et al., 2019). The minor ca. 145 Ma age population may be sourced from Chitina arc igneous rocks or early Cretaceous strata exposed in the Nutzotin Mountains (e.g., Manuszak et al., 2007; Trop et al., 2020). Both low-grade metasedimentary and plutonic clasts are present in 15ATW-06 (Figure 7), thus allowing for either source area. Triassic (ca. 230 Ma) and Carboniferous (ca. 300-310 Ma) zircon grains constitute the remaining minor age populations in the sample. These ages correlate well with the known ages of Nikolai and Skolai igneous provinces, which are widespread throughout the Wrangellia terrane (e.g., Beard and Barker, 1989; Greene et al., 2010; this study). As such, either proximal or distal source areas for Triassic and Carboniferous zircon grains are permissible. The maximum depositional age determined from the youngest population of zircon ages (ca. 30 Ma) is in agreement with Oligocene and Late Oligocene biostratigraphic ages (Metasequoia fossils) from an outcrop ~1 km to the south of 15ATW-06 (Stout et al., 1976; Locality #12 of Nokleberg et al., 1992b). We thus assign an Oligocene age to the deposit.

The southernmost sample (16ATW-86) represents the most heterogeneous zircon age distribution of the Cenozoic gravel deposits. However, the age populations can generally be traced to local source areas. Unlike the 16ATW-77 and 15ATW-06, the youngest age population (ca. 6

32

Ma) in sample 16ATW-86 is not the largest. Instead, the largest population comprises a ca. 155 Ma and 185 Ma bimodal distribution of Jurassic grains, which are identical to the ages and relative proportions of detrital zircon grains in the Clearwater metasediments (cf., Figures 9 and 10). The presence of low-grade metamorphic clasts in 16ATW-86 further supports the inference that the Jurassic grains were derived from the Clearwater metasedimentary rocks. A moderate-sized population of ca. 310 Ma zircon grains suggests that intrusive igneous clasts in the deposit were sourced from Skolai arc plutons. Intrusive igneous clasts may also have been recycled into the deposit from 16ATW-77, which would account for the small population of Paleogene zircon grains. An isolated cluster of seven grains give late Miocene ages and constitute the youngest age population at ca. 6 Ma. The late Miocene marks a time of major expansion of the Wrangell Arc (Preece and Hart, 2004) and several late Miocene-Pliocene tephras have been found throughout the eastern Alaska Range (Kunk, 1995; Allen, 2016). Because no tephra is exposed near the sample, we infer that the late Miocene zircon grains in sample 16ATW-86 were recycled into the deposit from a tephra sourced from the Wrangell Arc and thus brackets the age of the deposit to be late Miocene or younger.

The clast assemblages and detrital zircon U-Pb age spectra for the Cenozoic gravel deposits contain a record of sediment recycling and landscape evolution in response to Cenozoic faulting along the south flank of the eastern Alaska Range. We discuss the implications of these data below in the context of the reactivation and evolution of major structures in the map areas.

⁴⁰Ar/³⁹Ar ages

Mica and amphibole ⁴⁰Ar/³⁹Ar ages from metamorphic rocks in the hanging wall of the Broxson Gulch fault record over 60 Myr of metamorphism and cooling. The ⁴⁰Ar/³⁹Ar ages reveal that each thrust panel of metamorphic rocks in the study area experienced unique thermal histories that may be used to reconstruct the structural evolution of faults bounding the thrust sheets.

Mica ages from the Maclaren schist record two phases of cooling. The older phase of cooling is recorded by sample 15ATW-08 in Broxson Gulch (45.9 ± 0.3 Ma biotite). Early-mid Eocene mica K-Ar and ⁴⁰Ar/³⁹Ar ages are widespread in the Maclaren schist to the west of Broxson Gulch (Turner and Smith, 1977; Riccio et al., 2014) and likely record cooling from early Eocene magmatism within the Maclaren schist. Because the quartz monzonite pluton in the Ann Creek map area appears to also be a part of the early Eocene magmatic suite, we infer that the Maclaren schist in our study area experienced the thermal effects of early Eocene magmatism and that the ca. 46 Ma ⁴⁰Ar/³⁹Ar biotite age on sample 15ATW-08 records cooling from that thermal event. A younger phase of cooling is recorded by sample 16ATW-73 in Broxson Gulch (32.8 ± 0.3 Ma biotite plateau age). Circa 32 Ma K-Ar and ⁴⁰Ar/³⁹Ar ages are widespread near the Denali fault in the eastern and northern regions of the Maclaren schist and are interpreted to record thermal resetting and subsequent cooling from intrusion of a suite of ca. 32-40 Ma plutons throughout the eastern and central Alaska Range (Benowitz et al., 2011, 2019; Trop et al., 2019). We infer that the biotite porphyroblasts in 16ATW-73 formed during heating associated with the 32-40 Ma magmatism. Sample 15ATW-45 in Ann Creek (37.7 ± 0.6 Ma biotite, 50.2 ± 0.5 Ma muscovite) contains evidence for both thermal resetting/cooling events. The similarity between the muscovite age and the U-Pb zircon age of the quartz monzonite pluton (51.9 \pm 0.6 Ma) suggests that the muscovite records rapid post-emplacement cooling. The biotite age from 15ATW-45 may either record that the post-emplacement cooling rate slowed during the late Eocene or that the sample had cooled below argon closure in biotite prior to 40 Ma and the thermal effects of the 32-40 Ma magmatic event were significant enough to reset the biotite age. A third intermediate scenario

wherein the thermal effect of the late Eocene magmatism provided enough heat to slow the cooling rate of sample 15ATW-45 is also viable. The mica cooling ages collectively indicate that the Maclaren schist maintained temperatures in excess of ~350 °C (Ar closure for coarse biotite during typical orogenic cooling rates–Harrison et al., 1985; Hodges, 2014) until the early Oligocene.

There is presently no evidence that any of the rocks south of the Valdez Creek fault experienced the thermal pulses of Eocene magmatism recorded by mica ages in the Maclaren schist. Instead, white mica ages from metamorphosed ultramafic rocks and the Clearwater muscovite-graphite schist record a single phase of prograde regional metamorphism and development of the inverted metamorphic gradient. The inference that white mica ages in the ultramafic rocks and Clearwater schist record the timing of peak metamorphism is supported by our observations of feldspar deformation textures, amphibole compositions, and mineral assemblages suggesting that peak regional metamorphic conditions in the inverted metamorphic belt did not exceed middle-to-upper greenschist facies conditions. White mica in the structurally highest position of the inverted metamorphic belt (i.e., the dated samples) is kinked parallel to the dominant foliation and displays undulose extinction due to the deformation (Figure 4D and F). The size fraction of the dated white mica grains (200-500 um) corresponds to an Ar closure temperature in excess of 425°C for typical orogenic cooling rates (e.g., Harrison et al., 2009; Hodges, 2014). By considering the above petrographic observations and inferred Ar closure temperature together, we argue that the dated white mica samples have retained Ar since final recrystallization and deformation at middle-to-upper greenschist facies conditions. Thus, the mica ages from both 16ATW-36 (64.3 \pm 0.7 Ma muscovite) and 15ATW-35 (65.1 \pm 0.4 Ma fuchsite) record the peak of regional metamorphism and associated deformation in the earliest Paleogene. This timing compares well with age data from the Valdez Creek shear zone, where post-75 Ma ductile thrusting

of the Maclaren schist over the Clearwater metasedimentary rocks is inferred to have developed an inverted metamorphic gradient in the footwall rocks (Davidson et al., 1992; Hollister, 1993; Ridgway et al., 2002). Biotite ⁴⁰Ar/³⁹Ar cooling ages record uniform cooling across the Valdez Creek shear zone by ca. 64-61 Ma (Ridgway et al., 2002).

Amphibole from the amphibolite body (16ATW-43c) in Broxson Gulch provides a record of both mid-Cretaceous magmatism and late Cretaceous metamorphism within the Clearwater metasediments. The size of the amphibole in the sample (Figure 3F), lack of feldspar, and association with serpentinite suggest that the protolith of the amphibolite was a coarsely crystalline ultramafic rock. The amphibole 40 Ar/ 39 Ar weighted mean age of 93.8 ± 0.7 Ma on sample 16ATW-43c is similar to a ca. 92 Ma K-Ar amphibole age from the pegmatitic hornblende-biotitepyroxenite (Alaska-type ultramafic cumulate) in the Ann Creek map area (Nokleberg et al., 1992b). Considering that the petrographic observations suggest a coarsely crystalline protolith and the similarity in amphibole age between 16ATW-43c and the pyroxenite body in the Ann Creek area, we infer that the amphibolite in Broxson Gulch was metamorphosed from a protolith composed of coarse ultramafic cumulate. The actinolite zones within the coarse amphibole and greenschist facies matrix minerals indicate that the rock experienced greenschist facies metamorphism following emplacement. This inference is consistent with the age and grade of metamorphism of the Clearwater metasediments recorded by the muscovite and fuchsite ages.

Synthesis of mapping, cooling ages, and structural evolution

The ability to definitively distinguish between the metasedimentary rocks in the study area and thus identify the major fault, the Valdez Creek fault, juxtaposing them is our most fundamental revision of the regional geologic framework. Similar to the early work by Rose (1965, 1966) and Stout (1965), our mapping and petrography indicate that the Maclaren schist and Clearwater metasediments are distinguishable on the basis of protolith composition and rock fabrics. Moreover, detrital zircon age spectra (Figures 8 and 9) and ages of intrusive igneous rocks within the metasedimentary rocks (Figures 2 and 5) reveal that the protoliths of the Clearwater metasediments and Maclaren schist cannot be the same. Although the Clearwater metasediments display internal variation in protolith composition, the detrital zircon age spectra from zircon-bearing rock types throughout the package suggest that the various sedimentary protoliths were derived from the same sediment source area. Accordingly, the ages of the protoliths are likely similar across the various rock types in the Clearwater metasediments.

Our recognition of the Valdez Creek fault and the separate thermal histories of the rocks on either side further require that the Maclaren schist and Clearwater metasediments be split into distinct metasedimentary packages that evolved independently until structural juxtaposition. Our naming of the Valdez Creek fault is based on the Valdez Creek shear zone in the Clearwater mountains ~60 km to the southwest of our study area. ⁴⁰Ar/³⁹Ar biotite cooling ages across the Valdez Creek shear zone suggest there has been little or no slip across it since ca. 60 Ma (Ridgway et al., 2002). The same structural relationship is observed in the Ann Creek map area, Broxson Gulch map area, and the Clearwater mountains: the Maclaren schist is thrust southward over the Clearwater metasediments. However, the Maclaren schist in the Ann Creek and Broxson Gulch areas lacks the mylonitic fabric of the Valdez Creek shear zone and instead has a significant retrograde metamorphic fabric defined by a strong chlorite-muscovite penetrative foliation (e.g., Figure 3G), which intensifies down-section to the Valdez Creek fault. Thus, we interpret that the Cenozoic Valdez Creek fault developed within the hanging wall of the Late Cretaceous-Early Cenozoic Valdez Creek shear zone as a lower-dip, lower-grade shear zone, which evolved into a brittle fault with continued slip and exhumation. In our naming of the Valdez Creek fault, we keep the location name 'Valdez Creek' because the structural relations are the same as those observed in the type locality. Our use of the word *fault* rather than *shear zone* is intended to convey that the boundary between the two units is a discrete zone of cataclastic deformation.

The timing of reactivation of the Valdez Creek shear zone as the Valdez Creek fault is recorded by the disparate thermal histories of rocks juxtaposed by the fault. Biotite and muscovite cooling ages from the hanging wall record multiple thermal pulses that held the Maclaren schist above ~350 °C until ca. 32 Ma. Contrarily, rocks in the structurally highest section of the footwall cooled from peak metamorphic temperatures of ~350-450 °C after ca. 65 Ma and had passed though the 350 °C isotherm by 60 Ma (Ridgway et al., 2002). Map-based evidence highlighting the independent thermal histories comes from the Ann Creek map area where both the ca. 52 Ma quartz monzonite intrusion and sillimanite-bearing Maclaren gneiss in the contact aureole are cut by the Valdez Creek fault (Stout, 1965) (Figure 2B). Footwall rocks in this area display no textural evidence of static recrystallization and therefore apparently did not experience any significant heating by the quartz monzonite intrusion. The field, textural, and thermochronological evidence together indicate that the Maclaren schist and Clearwater metasediments experienced independent thermal paths until juxtaposition by the Valdez Creek fault after ca. 32 Ma.

The thermal evolution of the Clearwater metasediments is also distinct from Wrangellia rocks, which leads to refinement of the location of the Broxson Gulch fault. We define the Broxson Gulch fault as the boundary between low-grade metasedimentary rocks containing ca. 100 Ma ultramafic-intermediate intrusions (Clearwater) and pre-Jurassic metavolcanic rocks with associated intrusions (Skolai and Nikolai). Previous mappers had included intermediate intrusions and foliated Skolai rocks in the hanging wall of the Broxson Gulch fault due to similarities in

metamorphic grade and rock fabrics. However, the Carboniferous age of the intrusions (Figures 2 and 5; Table 2) and location of the fabric only in the contact aureole of the intrusions (Figure 2A) indicate that these rocks experienced a different metamorphic history than the Clearwater metasediments. Our reinterpretation of the map units near the Broxson Gulch fault is supported by the observation that the boundary between the Clearwater metasediments and Skolai rocks is always marked by a ~30-meter-thick zone of sheared rock, which we infer to mean that the rocks are juxtaposed by a large structure (i.e., the Broxson Gulch fault). Our re-mapping of the fault generally places it farther north in the northern portions of both map areas and refines the location of it near the range front in Broxson Gulch (cf., Figure 2 and Stout, 1976).

The structural evolution of Cenozoic faulting within Wrangellia yields additional insight to the geometry the Broxson Gulch fault. Because the Muddy Creek fault does not appear to have Cenozoic displacement, the Airstrip fault is the structurally highest fault within Wrangellia with clear evidence for Cenozoic slip. In both the Broxson Gulch and Ann Creek map areas, we map a shallowly west-plunging footwall synform associated with the Airstrip fault (Figures 2 and 14). The core of the synform in Broxson Gulch contains Clearwater slate and because the slate is always underlain by the Broxson Gulch fault in this area, the fold must also involve that fault (Figure 2A). Although previous mappers had recognized the Clearwater slate in southeastern Broxson Gulch, they attributed the apparent offset of the Broxson Gulch fault to a NW-striking sinistral tear fault that was inferred to exist beneath Quaternary surficial deposits (Rose, 1965; Stout, 1976; Nokleberg et al., 1992a). We contend that the presence of the synform in the footwall of the Airstrip fault implies the presence of a companion hanging wall antiform (e.g., Mitra, 1990), however the section of the Broxson Gulch fault that would display the inferred antiform is buried beneath glacial deposits (Figure 2A). We argue that because the synform is known from our mapping, the sinuous map pattern of the Broxson Gulch fault is better explained by erosion of an antiform-synform pair rather than offset of the Broxson Gulch fault by a younger NW-SE-striking fault. Our new interpretation of the map pattern implies that the Airstrip fault became active before the overlying thrust sheets carried by the Broxson Gulch fault were completely eroded. As a result, accumulated slip on the Airstrip fault folded and eventually cut through the overlying Broxson Gulch fault (Figure 14).

The Rainy Creek fault is the southernmost and structurally lowest fault in the study area. Its position near the topographic range front and projected trace between Oligocene and late Miocene fluvial gravel deposits strongly suggest that the Rainy Creek fault is the most recently active fault in the map areas. Such an inference is supported by geophysical evidence in the Ann Creek area where the Rainy Creek fault appears to cross-cut the Airstrip fault (Figure 2B; Supplemental file S7).

The geologic evolution of both map areas suggests that structural reactivation initiated on the Valdez Creek fault and progressed into the Wrangellia terrane. ⁴⁰Ar/³⁹Ar cooling ages reveal that the Valdez Creek fault formed after ca. 32 Ma. The lack of Maclaren schist detritus in the Cenozoic gravel deposits further suggests that either the reactivation did not happen until after ca. 30 Ma and/or the Valdez Creek thrust sheet was topographically separated from the watersheds that fed the ca. 30 Ma and 6 Ma gravel deposits. Evidence for southward progression of thrusting is present in Broxson Gulch where slip on a subsidiary footwall structure within the Clearwater metasediments folded and cut an overlying klippe of Maclaren schist (Figures 2A, south of 15ATW-35, and 14). Slip on the Broxson Gulch fault is inferred to post-date the Valdez Creek fault because only cataclastic deformation is associated with slip on the Broxson Gulch fault and because all rocks in the hanging wall of the Broxson Gulch fault appear to share a Miocene cooling history below ~200 °C (Waldien et al., 2017). Folding of the Broxson Gulch fault over the Airstrip fault requires that slip on the Airstrip fault post dates slip on the Broxson Gulch fault and the burial of the northernmost Cenozoic gravel deposit (16ATW-77). Erosion related to slip on the Airstrip fault likely exhumed a portion of the <54 Ma gravel deposit (16ATW-77), which may have been recycled into the ca. 6 Ma gravel deposit (sample 16ATW-86) presently exposed at the range front (e.g., Figures 7 and 10). Such an inference requires that the Airstrip fault was active during the Miocene. The Rainy Creek fault cuts the gravel deposit at the range front (Figure 2B; Supplemental file S6), which suggests that the Rainy Creek fault has been active since ca. 6 Ma.

In summary, our mapping, petrography, geochronology, and thermochronology demonstrate that the Valdez Creek and Broxson Gulch faults are key structures that bound distinct packages of rocks with independent structural, metamorphic, and magmatic histories prior to juxtaposition. As such, each fault likely represents the Cenozoic reactivation of structures that formed individually during Mesozoic terrane accretion. Structural reactivation initiated on the Valdez Creek fault after ca. 32 Ma and has since shifted to the Broxson Gulch fault and then into Wrangellia (Figure 14). It is possible that the Broxson Gulch fault and imbricate Cenozoic structures within Wrangellia are restricted to the upper crust and root into the Valdez Creek fault at depth via some décollement system. Offset of the youngest fluvial gravel deposit by the Rainy Creek fault indicates that shortening in the system lasted until at least 6 Ma.

Regional Significance

A major shift in the tectonic configuration of southern Alaska took place between 30-20 Ma. The shift is recorded throughout southern Alaska by regional exhumation within the Alaska Range suture zone (Finzel et al., 2011; Lease et al., 2016; Terhune et al., 2019), onset of focused exhumation along the Denali fault (Benowitz et al., 2011; 2014), cessation of magmatism along the Denali fault (Trop et al., 2019), topographic development and associated drainage reorganization (Ridgway et al., 2007; Finzel et al., 2015, 2016; Brennan and Ridgway, 2015; Benowitz et al., 2019), initiation of Wrangell Arc volcanism (Richter et al., 1990; Berkelhammer et al., 2019; Brueseke et al., 2019), and development of the St. Elias fold and thrust belt (Bruhn et al., 2004; Pavlis et al., 2012). These events are generally considered to be upper plate responses to increased plate coupling and eventual collision of the Yakutat block with the southern Alaska subduction zone (e.g., Enkelmann et al., 2008, 2010; Jadamec et al., 2013; Haynie and Jadamec, 2017). The post-32 Ma onset of slip on the Valdez Creek fault is contemporaneous with the above events and suggests that it too is related to Yakutat convergence. It is again important to convey that the rocks and structures in our study area were likely ~200-300 km along strike to the southeast at the time of reactivation and have since been moved into the curved section of the Denali fault. Therefore reactivation could not have initiated due to interaction with the curved section of the Denali fault and is inconsistent with models of thrust (re)activation in the core of the Alaska orocline (e.g., Glen, 2004). Instead, reactivation of the Valdez Creek fault and associated structures is better explained by translation along the Denali Fault system into increased alignment with the Queen Charlotte-Fairweather transform fault system (e.g. Riccio et al., 2014) in concert with strain transfer from the Yakutat collision zone to the mechanical contrast at the inboard margin of the Wrangellia terrane (e.g., Saltus and Hudson, 2007).

Deep-seated structural reactivation of a cryptic suture

Our data indicate that the Valdez Creek shear zone formed as a primary Mesozoic collisional structure between the North American continent and the allochthonous Wrangellia

composite terrane. The characteristics of rocks in the hanging wall of the Valdez Creek shear zone (Maclaren schist) place them along the western margin of North America at ca. 90 Ma. Contrarily, footwall rocks (Clearwater metasediments) accumulated along the paleo-eastern margin of the Wrangellia composite terrane at ca. 150 Ma. These distinctive assemblages were presumably brought together by a plate boundary fault system, possibly a subduction zone, that existed between them (Figure 15A). After tectonic burial of the Maclaren schist beneath the North American continental margin, the Valdez Creek shear zone formed along the former plate boundary and brought the Maclaren schist and Clearwater metasediments into contact by ca. 75 Ma, at which time they were deformed together during the peak of the collision (Figure 15B). Regional late Cretaceous exhumation of rocks northeast of the Denali fault in eastern Alaska and central Yukon (Dusel-Bacon et al., 2002, 2016) and Paleogene extension-related magmatism (Bacon et al., 1990; Moll-Stalcup et al., 1994) may be upper plate responses to underplating of the Maclaren schist and inferred slab detachment following collision.

The collision of the Wrangellia composite terrane marked a massive addition of juvenile lithosphere to the western margin of North America (Samson et al., 1990; Trop and Ridgway, 2007). The differences in crustal composition, age, thickness, and structure between the Wrangellia composite terrane and North American margin terranes correlate with unique geophysical characteristics in the crust and lithospheric mantle underlying each region (e.g., Glen et al., 2007; Saltus et al., 2007; O'Driscoll and Miller, 2015; Allam et al., 2017; Miller et al., 2018; Miller and Moresi, 2018; Feng and Ritzwoller, 2019; Berg et al., 2020). The P receiver function profile in figure 15C illustrates the correlation between terrane boundaries and distinct changes in crust and lithosphere thickness. The transition in lithospheric architecture across the eastern Alaska Range also coincides with a well-defined zone of fault parallel seismic anisotropy in the lower crust and upper mantle that is inferred to record rock fabrics in the roots of the Denali fault system (Rasendra et al., 2014; Audet et al., 2016). These geophysical data sets together suggest that the eastern Denali fault formed along a lithospheric boundary between the Wrangellia composite terrane and previously accreted terranes to the north. Because structures south of the Denali fault along the profile in figure 15C have experienced limited activity since 32 Ma, we infer that the lithospheric structure of that region revealed by the P receiver functions approximates the geometry of the Denali fault, Valdez Creek shear zone, and Talkeetna fault prior to reactivation.

One key outcome of this study is that the Valdez Creek shear zone, rather than the Talkeetna fault, was the main reactivated structure. Both structures intersect the Moho (Figure 15C). Yet the Talkeetna fault in most places marks one of the most profound geophysical boundaries in southern Alaska due to differences in crustal thickness (Veenstra et al., 2006; Brennan et al., 2011; Miller et al., 2018) and strongly contrasting crustal gravity/magnetic properties across the fault (Glen et al., 2007; Saltus et al., 2007). These features of the Talkeetna fault may record differences in crustal strength across the fault (e.g., Saltus and Hudson, 2007), which would imply that it would localize reactivation. However, the data synthesized herein indicate that reactivation nucleated on the Valdez Creek shear zone. Our preferred reconciliation of these data sets is that the history of the Valdez Creek shear zone as a former convergent plate boundary implies that it penetrates the crust and links to the Denali fault in the upper mantle (Figure 15C). Such connectivity of major structures highlights the Valdez Creek shear zone as a lithospheric-scale zone of weakness that focused shortening when the Denali fault system transitioned from transcurrent to transpressional deformation. Post-32 Ma shortening on the Valdez Creek fault and imbricate structures resulted in underthrusting of the Wrangellia terrane, possibly as far north as the Denali fault (Allam et al., 2017) (Figure 15D).

Reactivation of suture zone structures is observed at all crustal levels in polyphase orogens worldwide (Sykes 1978; Bailey et al., 2000; Tikoff et al., 2001; Taylor et al., 2003, Jones et al., 2013; Cavazza et al., 2017, numerous others). Although the boundary between allochthonous terranes may manifest in the upper crust as a wide zone of distributed deformation between the disparate terranes, we have shown herein that rocks within a suture zone *sensu lato* may be parsed and assigned to terranes on either side of the collision zone. As a result, the main deformation zone marking the juxtaposition of rocks with independent histories may be relatively discrete. We further argue that the independent lithospheric evolution of each terrane prior to collision will result in a lithospheric scale boundary along the length of the collision zone. Post-collisional deformation is likely to focus onto the inherited lithospheric boundary in response to evolving plate boundary conditions. The reactivated fault system will grow initially by reactivation of major crustal structures that link through the lithosphere and eventually by incorporation of subordinate regional structures.

CONCLUSIONS

We documented the polyphase structural and thermal evolution of metamorphic rocks within the Alaska Range suture zone in the eastern Alaska Range. Our analysis illuminates the Valdez Creek fault as the primary reactivated structure in the area, which formed by reactivation of the Valdez Creek shear zone after ca. 32 Ma. Subordinate Cenozoic faults include the Broxson Gulch fault at the northern boundary of the Wrangellia terrane, and the Airstrip and Rainy Creek faults within Wrangellia. The Maclaren schist in the hanging wall of the Valdez Creek fault likely formed along the western margin of North America during at ca. 90 Ma, whereas the protolith of the Clearwater metasediments in the footwall was deposited on the paleo-eastern margin of the Wrangellia composite terrane at ca. 150 Ma. The Valdez Creek fault thus appears to have reactivated along the collisional boundary between North American lithosphere and allochthonous Wrangellia composite terrane lithosphere. Shortening subsequently progressed southward from the Valdez Creek fault to the Broxson Gulch fault and then into the Wrangellia terrane. The timing and style of deformation documented herein suggest that reactivation of structures in the Alaska Range suture zone is a far-field result of Yakutat flat slab subduction and accretion along the southern Alaska convergent margin in concert with the Denali fault tectonic conveyor belt system.

FIGURES

Figure 1 (Previous page): A) Hillshade and terrane map of southern Alaska showing the study area (Figure 1B) relative to major structures and terranes. The section of the Denali fault that had surface rupture during the 2002 M_w 7.9 Denali earthquake is traced in bold. The star marks the epicenter of the main shock. ARSZ- Alaska Range suture zone; SGTF-Susitna Glacier thrust fault; VCSZ–Valdez Creek shear zone. Cross section A-A' shows the structural relationships across the Valdez Creek shear zone (Modified from Davidson et al., 1992). Inset- Terrane map of the northern North American Cordillera modified from Colpron and Nelson (2011) showing the area of figure 1A relative to other Cordilleran terranes. C-continental crystalline rocks and platform strata (not necessarily Laurentia); YT-Yukon-Tanana terrane; oc-ophiolites and fragments of oceanic crust; Mzv-accreted Mesozoic volcanic arcs (Stikinia, Cache Creek, Quesnellia); Mzvs-Mesozoic basinal assemblages (Kahiltna, Dezadeash, Nutzotin, Gravina, Kuskokwim) and underlying arc and sedimentary rocks; WCT- Wrangellia composite terrane (Wrangellia, Alexander, Peninsular); Cac-Chugach accretionary complex; Y-Yakutat terrane; AK–Alaska; CA–Canada. B) Shaded relief map showing the locations of the map areas (black boxes) relative to the Delta River. The confluence of the four glacial valleys in the area of figure 2A is referred to as Broxson Gulch. Ann Creek drains the center of the area of figure 2B from west to east.

Figure 2 (Previous pages): Hillshade and bedrock geologic maps of the Broxson Gulch (A) and Ann Creek (B) map areas. The mapping presented herein is mostly original with the exception of some areas of the Ann Creek map that are based on mapping by Stout (1965) and Twelker et al. (in revision). Pastel regions (lighter than the legend) represent bedrock that is interpolated beneath Quaternary surficial deposits. Geochronology and clast assemblage sample locations are given. MDA– Maximum depositional age determined from detrital zircon U-Pb age spectra; bt– biotite; wm– white mica; hbl–hornblende; wr– whole rock. The legend applies to both maps.

Figure 3 (Previous page): Field photos of key relationships on the geologic maps. Hammer for scale is 38 cm long, pencil is 12 cm long, and hat is 30 cm long. All map unit labels are the same as figure 2. (A) The Valdez Creek fault (VCF) and Broxson Gulch fault (BGF) create an imbricate set of N-dipping faults that juxtapose the Maclaren schist (Ks) over the Clearwater metasedimentary rocks (Jmg and Jms) and Wrangellia terrane rocks (CPvs) in the map areas. View to the NNE from western Broxson Gulch. The highest point on the ridge is ~450 meters higher elevation than the moraine crest in the valley below. (B) Asymmetric boundinage of quartz veins records top-to-the-south (thrust) shear parallel to S₂ in the Maclaren schist (Ks). View to the east near location 15ATW-08 (Figure 2A). (C) The ca. 52 Ma quartz monzonite (Pggm) exposed in the Ann Creek area intruded across the foliation in the Maclaren gneiss (Ks). Photo is from a location south of 15ATW-47 (Figure 2B). (D) Crenulation axes (L1) are locally well expressed in fine-grained portions of the Clearwater metasedimentary rocks. Opening fractures orthogonal to L₁ are commonly associated with the crenulation fabric in the Clearwater slate (Js). The opening fractures are sometimes filled with quartz veins. Photo is from an outcrop near 16ATW-10 (Figure 2A). (E) Quartz veins in the Clearwater metasediments are stretched (boudinage) parallel to the S₁ foliation and isoclinally folded. Photo is from a finegrained Clearwater metagreywacke (Jmg) outcrop on the ridge depicted in Figure 3A. (F) Amphibolite (Kum) in Broxson Gulch contains coarse amphibole surrounded by a granular aggregate of greenschist facies minerals. Amphibole from this sample (16ATW-43c-Figure 2A) yielded an 40 Ar/ 39 Ar weighted mean age of 93.8 ± 0.7 Ma (Table 1). (G) Maclaren schist (Ks) in the immediate hanging wall of the Valdez Creek fault is retrograded at lower greenschist facies conditions and contains abundant quartz veins. Both the quartz veins and retrograde fabric are folded and cut by faults. Inset- Traced photograph emphasizing the structures in the outcrop. View to west, ~30 meters south of location 15ATW-41 (Figure 2B). (H) Late quartz veins spatially associated with the Valdez Creek fault cross cut the S₂ foliation in the Maclaren schist (Ks). The quartz vein is cut by a S-dipping reverse fault. Inset-The reverse fault that cut the quartz vein is appropriately oriented to be an R' structure splaying from the master Valdez Creek fault. View to east from central Broxson Gulch (Figure 2A). (I) Primary features, such as coarse volcanic breccia, are commonly preserved in Wrangellia metavolcanic rocks (CPvs). Photo is from central Broxson Gulch (Figure 2A).

Figure 4 (Previous Page): Photomicrographs of key mineralogical and textural features of metamorphic rocks in the hanging wall of the Broxson Gulch fault. Sample names and map units are given in the upper right of each photo. Abbreviations for mineral names follow the convention defined by Whitney and Evans (2010): ab-albite, act-actinolite, bt-biotite, chlchlorite, chr-chromite, ep-epidote, fu-fuchsite, gr-graphite, mu-muscovite, ph-phengite, qzquartz, rt-rutile, srp-serpentine, tur-tourmaline. (A) The quartzofeldspathic portion of the Maclaren schist contains diagnostic albite porphyroclasts up to ~ 5 mm in diameter. The porphyroclasts contain a curved internal foliation (S_1) defined by graphite and rutile, which is discordant with the exterior foliation (S₂). Phyllosilicate minerals defining the S₂ foliation wrap around the porphyroclasts. (B) The structurally higher portion of the Maclaren schist contains pophyroblastic biotite, which overgrew the S₂ foliation. Mineral cleavage in the biotite porphyroblasts is discordant with the S₂ foliation. Biotite from this sample vielded an ⁴⁰Ar/³⁹Ar plateau age of 32.8 ± 0.3 Ma (Table 1). (C) The Clearwater metasedimentary rocks display a strong transposition fabric wherein the S_1 foliation is isoclinally folded into parallelism with the S_2 foliation. (D) Graphite-muscovite schists interfoliated with mafic schists in the structurally highest section of the Clearwater metasediments display tight folding of mica in the foliation. Muscovite from this sample yielded an ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ plateau age of 64.3 ± 0.7 Ma (Table 1). (E) Mafic schists in the Clearwater metasediments display a strong foliation defined by greenschist facies assemblages. In this sample, chlorite defining the S_1 foliation is kinked by the S_2 foliation. (F) Serpentinite interfoliated with the Clearwater metasediments contains fuchsite associated with relict chromite, serpentine, and Cr-rich chlorite. The fuchsite is kinked in the foliation and yielded an ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ plateau age of 65.1 ± 0.4 Ma (Table 1).

Waldien et al. Fig 5

Figure 5: Weighted mean plots of U-Pb zircon dates from plutonic rocks in the map areas. Each vertical bar represents a single grain analysis, which is centered on the date and the length of the bar corresponds to the random 2s uncertainty associated with the date. Black bars are used in the age calculation, whereas gray bars passed our filtering criteria but were rejected from the age calculation by Isoplot. The weighted mean calculation uses only concordant analyses with <10% analytical uncertainty. Uncertainties quoted with the weighted mean ages of each sample include internal and external uncertainties at the 2 sigma level. POF- Probability of fit; MSWD- Mean Square of Weighted Deviation. See also table 2.

Figure 6: Lower hemisphere equal-area plots showing: (A) Crenulation axes from metamorphosed Alaska-type ultramafic rocks (filled circles) and the Clearwater metasedimentary rocks (open circles); (B) Poles to all foliation measurements in the Clearwater metasedimentary rocks and Alaska-type ultramafic rocks; (C) Poles to all foliation measurements in the Maclaren schist; (D) Poles to late quartz veins that cross-cut the S₂ foliation in the Maclaren schist (Figure 3H); (E) Brittle fault striae (open circles) from hanging wall imbricates of the Valdez Creek fault (VCF), which occupy foliation planes (great circles) in the Maclaren schist; and (F) Brittle fault striae (open circles) from fault surfaces (great circles) in a small exposure of the Broxson Gulch fault damage zone in northeastern Broxson Gulch. n– number of measurements shown in each plot. The plots were made using Rick Allmendinger's Stereonet program (version 9.2.1).

Figure 7: Normalized clast population histograms with number (n) of clasts from Cenozoic

gravel deposits in the map areas. The samples are grouped by map area.

Figure 8: Kernel density estimate (KDE) and 5 Myr histogram plots of <400 Ma detrital zircon U-Pb dates from the Clearwater metasedimentary rocks and Maclaren schist. Sample numbers, map unit, map area, and the number of analyses constituting the plot out of total acceptable analyses (n) are indicated with each plot. The youngest statistical population of detrital dates, which is taken as the maximum depositional age, is labeled for each plot. Where applicable, the cutoff between detrital and post-depositional metamorphic grains is marked by a vertical broken line. Each vertical axis corresponds to the histogram in each plot. The plots were created using the DensityPlotter program (Vermeesch, 2012).

Figure 9: Combined kernel density estimate (KDE) plots of all acceptable detrital zircon U-Pb dates for the Clearwater metasedimentary rocks and Maclaren schist. Note the change in horizontal scale at 380 Ma. The area under the curve from 380-3000 Ma is increased by 50x. The KDE plots were created using the DensityPlotter program (Vermeesch, 2012). Sediment source areas: CMA–Coast Mountains Arc; CA–Chitina Arc; SA–Stikine Arc; TA–Talkeetna Arc; YTT–Yukon-Tanana Terrane; AX(b)–Alexander terrane (basement); NAm–North American strata and basement.

Figure 10: Kernel density estimate (KDE) and 5 Myr histogram plots of <400 Ma detrital zircon U-Pb dates from the Cenozoic gravel deposits in Broxson Gulch. Sample numbers and the number of analyses constituting the plot out of total acceptable analyses (n) are indicated with each plot. The youngest statistical population, which is taken as the maximum depositional age, is labeled for each plot. Each vertical axis corresponds to the histogram in each plot. The KDE plots were created using the DensityPlotter program (Vermeesch, 2012). Sediment source areas: WA–Wrangell Arc; TM-Talkeetna Mountains plutonic rocks; LP-local Mesozoic plutonic rocks; CA-Chitina Arc; CW–Clearwater Metasedimentary rocks; N-Nutzotin formation; NK-Nikolai igneous rocks; SP–Skolai arc plutonic rocks.

Figure 11: Mica ⁴⁰Ar/³⁹Ar age spectra for samples north of the Valdez Creek fault. The sample number, mineral phase dated, map unit, and plateau or weighted mean age determinations are given for each sample. Only filled Ar release steps are used to calculate plateau or weighted mean ages. See also table 1.

Figure 12: Mica and amphibole ⁴⁰Ar/³⁹Ar age spectra for samples south of the Valdez Creek fault. The sample number, mineral phase dated, map unit, and plateau or weighted mean age determinations are given for each sample. Only filled Ar release steps are used to calculate plateau or weighted mean ages. The K/Ca spectrum for sample 16ATW-43c is also given. See also table

1.

Figure 13: Plot of Cr# (Cr/[Cr + Ti + Al + Fe³⁺]) versus Fe²⁺# (Fe²⁺/[Mg + Mn + Fe²⁺]) for spinel group minerals (chromite unless otherwise noted) from ultramafic rocks within the Clearwater metasediments. Each sample is represented as a different symbol. The analytical uncertainty is smaller than the symbol. The shaded region represents the compositions of spinel group minerals from Alaska-type ultramafic complexes compiled by Barnes and Roeder (2001).

Figure 14: Schematic cross section showing key features compiled from both map areas. Broken lines represent faults projected above the surface. Each thrust panel is annotated with ⁴⁰Ar/³⁹Ar ages to show the diverse thermal histories of the individual thrust sheets. Kum–Alaska-type ultramafic rocks; Jcw–Clearwater metasedimentary rocks; Czg–Cenozoic gravel deposit; DZ MDA–Detrital zircon maximum depositional age; BAr–biotite ⁴⁰Ar/³⁹Ar age; MAr–muscovite ⁴⁰Ar/³⁹Ar age. HAr–hornblende ⁴⁰Ar/³⁹Ar age.

(A) Ca. 90 Ma-

Deposition and imbrication of Maclaren schist protolith Wrangellia
North America

Plate boundary

mafic crust

oceanic Vithosphere

North America mantle lithosphere

(B) Ca. 75 Ma-

Development of Valdez Creek shear zone along former plate boundary

(C) 0 Ma-West of reactivated zone

 P receiver functions suggest Denali fault and Valdez Creek shear zone root into upper mantle shear zone

-Proxy for ca. 32 Ma crustal structure south of the Denali fault

(D) 0 Ma- In reactivated zone

Imbricate Cenozoic structures shorten suture zone and northern Wrangellia

Figure 15 (Previous page): Proposed evolutionary model for the formation of the Valdez Creek shear zone and subsequent reactivation as the Valdez Creek fault. The vertical scale for all profiles is based on profile C. The horizontal distances in profiles A and B are schematic and not related to the vertical scale. Topography and subsurface geology in profiles C and D have been vertically exaggerated (VE); reference angles for each profile are given to help visualize the true dip of the structures. The locations of profiles C and D are shown as yellow lines on the accompanying map. (A) The Maclaren schist was deposited into a contractional basin on the western margin of North America at ca. 90 Ma. Shortening structures in the basin likely rooted into an E-dipping plate boundary fault zone, possibly a subduction zone, that consumed the marine basin between the Wrangellia composite terrane and North America. The Clearwater metasediments were previously deposited on the paleo-eastern margin of the Wrangellia composite terrane and were brought to North America with the terrane. (B) The Valdez Creek shear zone (VCSZ) developed along the pre-existing plate boundary after the Maclaren schist was buried and metamorphosed beneath the North American margin. Note that it remains unclear whether or not oceanic lithosphere was attached to the inboard margin of the Wrangellia composite terrane during the Cretaceous. If oceanic lithosphere were present, it would have likely detached in the latest Cretaceous. (C) Cross section showing depth-converted P receiver functions from seismic stations across interior Alaska, the Alaska Range suture zone, and the Wrangellia terrane annotated with crustal faults, interpreted Moho conversions (strong positive amplitude; red colors), interpreted asthenosphere-lithosphere conversions (negative amplitude; blue colors), and inferred anisotropic fabrics from shear wave splitting (Rasendra et al., 2014) along the Denali fault at depth. The receiver function data were processed using the methods of Miller et al. (2018) and updated for this study. The steep northward dip of the Denali fault is inferred from thermochronological data (Benowitz et al., 2011). (D) Schematic cross section along a profile from interior Alaska through our study area and into the Wrangellia terrane. The Denali fault juxtaposes crust and lithosphere of different thicknesses and geophysical properties belonging to the Wrangellia terrane and pericontinental terranes to the north. Alaska Range suture zone metamorphic rocks discussed herein occupy a highly shortened domain adjacent to the south side of the Denali fault. The location of the figure 14 cross section is given for reference.
					Tering regis			
Sample name	Latitude (°N)	Longitude (°W)	Rock type	Phase analyzed	Grain size analyzed (um)	Integrated age (Ma)*	Plateau age (Ma)*	Plateau information
16ATW-73	63.3427	146.1547	Quartz-mica schist	Biotite	500- 1000	32.7 ± 0.2	32.8 ± 0.3	7 of 8 frac. 98.5 % 39 Ar rel. MSWD = 2.01
15ATW-08	63.3605	146.0647	Quartz-mica schist	Biotite	212-500	45.8 ± 0.2	45.9 ± 0.3**	2 of 8 frac. 40.7 $\%^{39}$ Ar rel. MSWD = 0.66
16ATW-36	63.3382	146.1754	Quartz-mica schist	Muscovite	212-590	63.8 ± 0.4	64.3 ± 0.7	5 of 8 frac. 94.6 % ³⁹ Ar re. MSWD = 3.52
16ATW-35	63.3380	146.1759	Serpentinite	Fuchsite	125-212	64.5 ± 0.4	65.1 ± 0.4	6 of 8 frac. 97.0 % ³⁹ Ar rel. MSWD =1.13
16ATW- 43c	63.3389	146.1718	Amphibolite	Amphibole	63-180	88.5 ± 0.7	93.8± 0.7**	2 of 8 frac. 65.2 % ³⁹ Ar rel. MSWD = 0.38
15ATW-05	63.3172	146.1056	Amphibole- porphyry dike	Whole rock	$\begin{array}{c} 500-\\ 1000 \end{array} 94.7 \pm 0.9 \end{array}$		100.7 ± 1.6	5 out of 8 frac. 54.5% ³⁹ Ar rel. MSWD = 1.37
15 A TW 45	62 2605	145 0110	Quartz-	Biotite	500- 1000	37.5 ± 0.6	37.7 ± 0.6	7 of 8 frac. 96.9 % ³⁹ Ar rel. MSWD = 0.5
15ATW-45	05.3083	145.8110	pegmatite	Muscovite	500- 1000	50.1 ± 0.4	50.2 ± 0.5	5 of 8 frac. 97.4 % ³⁹ Ar rel. MSWD = 1.65

 TABLE 1: ⁴⁰Ar/³⁹Ar ANALYTICAL RESULTS

* Uncertainties are 1s.

**Did not meet all the criteria of a plateau age, hence a weighted average age is presented.

MSWD- Mean Square Weighted Deviation

Map unit	Sample name	Latitude (°N)	Longitude (°W)	Rock type	Weighted mean ²⁰⁶ Pb/ ²³⁸ U Age (Ma)*	MSWD	Number of acceptable grains in age calculation ^c	Total number of zircons analyzed ^d
Kgd	15ATW-51ª	63.3513	145.8205	Grano- diorite	102.4 ± 1.1	0.67	38	40
Pgqm	15ATW-47ª	63.3678	145.8160	Quartz Monzonite	51.9 ± 0.6	1.1	22	32
Trum	18ATW-13 ^b	63.3093	145.9100	Gabbro pegmatite	$\textbf{229.2} \pm \textbf{2.0}$	1.6	35	40
Ci	18ATW-22 ^b	63.3363	145.7662	Quartz diorite	301.8 ± 5.5	1.6	16	26
Ci	16ATW-49 ^a	63.3397	146.1683	Diorite	314.3 ± 3.4	2.7	21	25
Ci	16ATW-82 ^a	63.3437	146.1502	Tonalite	310.9 ± 3.4	2.8	20	30
Ci	16ATW-83ª	63.3439	146.1497	Tonalite	306.9 ± 2.6	1.4	27	33

TABLE 2: ZIRCON U-Pb ANALYTICAL RESULTS

*Weighted mean uncertainties represent quadratic addition of internal and external uncertainties at 2s.

MSWD: Mean Square Weighted Deviation

a- Analyses performed at Arizona Laserchron Center

b- Analysis performed at UC Davis c- The number of analyses that passed the filtering criteria d- The total number of analyzed grains

REFERENCES CITED

- Aleinikoff, J. N., Nokleberg, W. J., and Herzon, P. L., 1981, Age of intrusion and metamorphism of the East Susitna batholith. Mount Hayes B-6 quadrangle, eastern Alaska Range, Alaska: U.S. Geological Survey Circular 844, p. 100-102.
- Allam, A.A., Schulte-Pelkum, V., Ben-Zion, Y., Tape, C., Ruppert, N. and Ross, Z.E., 2017, Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography, receiver functions, and fault zone head waves: Tectonophysics, v. 721, p. 56-69.
- Allan, M.M., Mortensen, J.K., Hart, C.J.R., Bailey, L.A., Sánchez, M.G., Ciolkiewicz, W., McKenzie, G.G., and Creaser, R.A., 2013, Magmatic and metallogenic framework of west-central Yukon and eastern Alaska, *in* Colpron, M., Bissig, T., Rusk, B.G., and Thompson, J.F.H., eds., Tectonics, Metallogeny, and Discovery: The North American Cordillera and Similar Accretionary Settings: Society of Economic Geologists Special Publication 17, p. 111–168.
- Allen, W.K., 2016, Miocene-Pliocene strike-slip basin development along the Denali fault system in the eastern Alaska Range: Chronostratigraphy and provenance of the McCallum formation and implications for displacement [M.S. Thesis]: Purdue University, 160 p.
- Amato, J.M., Bogar, M.J., Gehrels, G.E., Farmer, G.L., McIntosh, W.C., 2007a, The Tlikakila complex in southern Alaska: A suprasubduction-zone ophiolite between the Wrangellia Composite terrane and North America, *in* Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, M.O., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Papers 431, p. 227–252, doi: 10.1130/2007.2431(20)
- Amato, J.M., Rioux, M.E., Keleman, P.B., Gehrels, G.E., Clift, P.D., Pavlis, T.L., Draut, A.E., 2007b, U-Pb geochronology of volcanic rocks from the Jurassic Talkeetna Formation and detrital zircons from prearc and postarc sequences: Implications for the age of magmatism and inheritance in the Talkeetna Arc, *in* Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, M.O., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Papers 431, p. 253–271, doi: 10.1130/2007.2431(20)
- Audet, P., Sole, C. and Schaeffer, A.J., 2016, Control of lithospheric inheritance on neotectonic activity in northwestern Canada?: Geology, v. 44(10), p. 807-810.
- Bacon, C.R., Foster, H.L. and Smith, J.G., 1990, Rhyolitic calderas of the Yukon-Tanana Terrane, east central Alaska: Volcanic remnants of a Mid-Cretaceous magmatic arc: Journal of Geophysical Research: Solid Earth, v. 95(B13), p. 21451-21461.
- Bailey, W. R., Holdsworth, R. E., & Swarbrick, R. E., 2000, Kinematic history of a reactivated oceanic suture: the Mamonia Complex Suture Zone, SW Cyprus: Journal of the Geological Society, v. 157(6), p. 1107-1126.
- Barnes, S.J. and Roeder, P.L., 2001, The range of spinel compositions in terrestrial mafic and ultramafic rocks: Journal of petrology, v. *42*(12), p. 2279-2302.
- Beacom, L.E., Holdsworth, R.E., McCaffrey, K.J.W. and Anderson, T.B., 2001, A quantitative study of the influence of pre-existing compositional and fabric heterogeneities upon fracture-zone development during basement reactivation: Geological Society, London, Special Publications, v. 186(1), p. 195-211.

- Beam, E.C. and Fisher, D.M., 1999, An estimate of kinematic vorticity from rotated elongate porphyroblasts: Journal of Structural Geology, v. 21(11), p. 1553-1559.
- Beard, J.S., and Barker, F., 1989, Petrology and tectonic significance of gabbros, tonalites, shoshonites, and anorthosites in a late Paleozoic arc-root complex in the Wrangellia terrane, southern Alaska: The Journal of Geology, v. 97, p. 667–683, doi:10.1086/629351.
- Bemis, S.P., and Wallace, W.K., 2007, Neotectonic framework of the north-central Alaska Range foothills, *in* Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, M.O., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Paper 431, p. 549–572.
- Bemis, S.P., Carver, G.A., and Koehler, R.D., 2012, The Quaternary thrust system of the northern Alaska Range: Geosphere, v. 8(1): p. 196-205.
- Bemis, S.P., Weldon, R.J. and Carver, G.A., 2015, Slip partitioning along a continuously curved fault: Quaternary geologic controls on Denali fault system slip partitioning, growth of the Alaska Range, and the tectonics of south-central Alaska: Lithosphere, v. 7(3), p. 235-246.
- Benowitz, J.A., Davis, K. and Roeske, S., 2019, A river runs through it both ways across time: ⁴⁰Ar/³⁹Ar detrital and bedrock muscovite geochronology constraints on the Neogene paleodrainage history of the Nenana River system, Alaska Range: Geosphere, v. 15(3), p. 682-701.
- Benowitz, J.A., Haeussler, P.J., Layer, P.W., O'Sullivan, P.B., Wallace, W.K., and Gillis, R.J., 2012, Cenozoic tectono-thermal history of the Tordrillo Mountains, Alaska: Paleocene-Eocene ridge subduction, decreasing relief, and late Neogene faulting: Geochemistry, Geophysics, Geosystems, v. 13, p. 1–22, doi: 10.1029/2011GC003951.
- Benowitz, J.A., Layer, P.W., and Vanlaningham S., 2014, Persistent long-term (c. 24Ma) exhumation In the Eastern Alaska Range constrained by stacked thermochronology: Geological Society, London, Special Publications, v. 378, p. 225-243. doi: 10.1144/SP378.12.
- Benowitz, J.A., Layer, P.W., Armstrong, P., Perry, S.E., Haeussler, P.J., Fitzgerald, P.G., and Vanlaningham, S., 2011, Spatial variations in focused exhumation along a continentalscale strike-slip fault: The Denali fault of the eastern Alaska range: Geosphere, v. 7(2), p. 1-13. doi: 10.1130/GES00589.1.
- Benowitz, J.A., Layer, P.W., Wypych, A., and Twelker, E., 2017, ⁴⁰Ar/³⁹Ar data from rocks collected in the 2015 Wrangellia mineral assessment project area, Mount Hayes A-5, Mount Hayes B-6, and Talkeetna Mountains D-2 quadrangles, Alaska: Alaska Division of Geological & Geophysical Surveys raw Data File 2017-1, p. 9, https:// doi .org /10 .14509 /29699.
- Beranek, L.P., McClelland, W.C., van Staal, C.R., Israel, S. and Gordee, S.M., 2017, Late Jurassic flare-up of the Coast Mountains arc system, NW Canada, and dynamic linkages across the northern Cordilleran orogen: Tectonics, v. 36(5), p. 877-901.
- Beranek, L.P., van Staal, C.R., McClelland, W.C., Israel, S. and Mihalynuk, M.G., 2013, Detrital zircon Hf isotopic compositions indicate a northern Caledonian connection for the Alexander terrane: Lithosphere, v. 5(2), p. 163-168.
- Beranek, L.P., van Staal, C.R., McClelland, W.C., Joyce, N., and Israel, S., 2014, Late Paleozoic assembly of the AlexanderWrangellia-Peninsular composite terrane, Canadian and Alaskan Cordillera: Geological Society of America Bulletin, v. 126(11-12), p.1531-1550. doi:10.1130/B31066.1.

- Berg, E.M., Lin, F.C., Allam, A., Schulte-Pelkum, V., Ward, K.M. and Shen, W., 2020, Shear Velocity Model of Alaska Via Joint Inversion of Rayleigh Wave Ellipticity, Phase Velocities, and Receiver Functions Across the Alaska Transportable Array: Journal of Geophysical Research: Solid Earth, v. 125(2), p.e2019JB018582.
- Berkelhammer, S.E., Brueseke, M.E., Benowitz, J.A., Trop, J.M., Davis, K., Layer, P.W. and Weber, M., 2019, Geochemical and geochronological records of tectonic changes along a flat-slab arc-transform junction: Circa 30 Ma to ca. 19 Ma Sonya Creek volcanic field, Wrangell Arc, Alaska: Geosphere, v. 15(5), p. 1508-1538.
- Bill, N.S., Mix, H.T., Clark, P.U., Reilly, S.P., Jensen, B.J., and Benowitz, J.A., 2018, A stable isotope record of late Cenozoic surface uplift of southern Alaska: Earth and Planetary Science Letters, v. 482, p. 300–311, https://doi.org/10.1016/j.epsl.2017.11.029.
- Bittenbender, P.E., Bean, K.W., Kurtak, J.M., and Deininger, J., 2007, Mineral assessment of the Delta River mining district area, east-central Alaska: U.S. Bureau of Land Management Alaska Technical Report 57, 697 p
- Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S. and Foudoulis, C., 2004, Improved ²⁰⁶Pb/²³⁸U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards: Chemical Geology, v. 205(1-2), p. 115-140.
- Bond, G.C., 1973, A late Paleozoic volcanic arc in the eastern Alaska Range, Alaska: Journal of Geology, v. 81, p. 557-576.
- Bond, G.C., 1976, Geology of the Rainbow Mountain-Gulkana Glacier Area, Eastern Alaska Range, with Emphasis on Upper Paleozoic Strata: State of Alaska Geologic Division of Geological & Geophysical Surveys Geologic Report 45, 47 p., scale 1:40:000, 3 sheets.
- Box, S.E., Karl, S.M., Jones, J.V., Bradley, D.C., Haeussler, P.J. and O'Sullivan, P.B., 2019, Detrital zircon geochronology along a structural transect across the Kahiltna assemblage in the western Alaska Range: Implications for emplacement of the Alexander-Wrangellia-Peninsular terrane against North America: Geosphere, v. 15(6), p.1774-1808.
- Brennan, P. R. K., Gilbert, H., and Ridgway, K. D. 2011, Crustal structure across the central Alaska Range: Anatomy of a Mesozoic collisional zone: Geochemistry, Geophysics, Geosystems, v. 12(4), Q04010, doi:10.1029/2011GC003519.
- Brennan, P.R.K., and Ridgway, K.D., 2015, Detrital zircon record of Neogene exhumation of the central Alaska Range: A far-field upper plate response to flat-slab subduction: Geological Society of America Bulletin, v. 127(7-8), p. 1–17, doi: 10.1130/B31164.1.
- Brueseke, M.E., Benowitz, J.A., Trop, J.M., Davis, K.N., Berkelhammer, S.E., Layer, P.W. and Morter, B.K., 2019, The Alaska Wrangell Arc:~ 30 Ma of subduction-related magmatism along a still active arc-transform junction. Terra Nova, v. 31(1), p. 59-66.
- Bruhn, R.L., Pavlis, T.L., Plafker, G. and Serpa, L., 2004, Deformation during terrane accretion in the Saint Elias orogen, Alaska: Geological Society of America Bulletin, v. 116(7-8), p. 771-787.
- Burkett, C.A., Bemis, S.P., and Benowitz, J.A., 2016, Along-fault migration of the Mount McKinley restraining bend of the Denali fault defined by late Quaternary fault patterns and seismicity, Denali National Park & Preserve, Alaska: Tectonophysics, v. 693, p. 489– 506, doi: 10.1016/j.tecto.2016.05.009.
- Burns, L.E., U.S. Bureau of Land Management, Fugro Airborne Surveys, and Stevens Exploration Management Corp., 2003, Total magnetic field and detailed electromagnetic

anomalies of the southern Delta River area, east-central Alaska, parts of Mt. Hayes A-3, A-4, B-3, and B-4 quadrangles, in Burns, L.E., U.S. Bureau of Land Management, Fugro Airborne Surveys, and Stevens Exploration Management Corp., Plot files of the airborne geophysical survey data of the southern Delta River area, east-central Alaska: Alaska Division of Geological & Geophysical Surveys Geophysical Report 2003-5-2C, 1 sheet, scale 1:31,680. <u>http://doi.org/10.14509/3219</u>

- Cavazza, W., Albino, I., Zattin, M., Galoyan, G., Imamverdiyev, N. and Melkonyan, R., 2017, Thermochronometric evidence for Miocene tectonic reactivation of the Sevan–Akera suture zone (Lesser Caucasus): a far-field tectonic effect of the Arabia–Eurasia collision?: Geological Society, London, Special Publications, v. 428(1), p. 187-198.
- Colpron, M. and Nelson, J.L., 2011, A Digital Atlas of Terranes for the Northern Cordillera: British Columbia Ministry of Energy and Mines, BCGS GeoFile 2011-11.
- Colpron, M., Nelson, J.L., and Murphy, D.C., 2007, Northern Cordilleran terranes and their interactions through time: GSA Today, v. 17(4/5), p. 4, doi:10.1130/GSAT01704 -5A.1.
- Coney, P.J., Jones, D.L. and Monger, J.W., 1980, Cordilleran suspect terranes: Nature, v. 288(5789), p. 329.
- Csejtey, B., Cox, D. P., Evarts, R. C., Stricker, G. D., & Foster, H. L., 1982, The Cenozoic Denali fault system and the Cretaceous accretionary development of southern Alaska: Journal of Geophysical Research: Solid Earth, v. 87(B5), p. 3741-3754.
- Csejtey, B., Mullen, M.W., Cox, D.P., Gilbert, W.G., Yeend, W.E., Smith, T.E., Wahrhaftig, Clyde, Craddock, Campbell, Brewer, W.M., Sherwood, K.W., Hickman, R.G., Stricker, G.D., St. Aubin, D.R., and Goerz, D.J., III, 1986, Geology and geochronology of the Healy Quadrangle, Alaska: U.S. Geological Survey Open-File Report 86-396, 92 p., 4 sheets, scale 1:250,000.
- Danišík, M., McInnes, B.I., Kirkland, C.L., McDonald, B.J., Evans, N.J. and Becker, T., 2017, Seeing is believing: Visualization of He distribution in zircon and implications for thermal history reconstruction on single crystals: Science advances, v. 3(2), p. e1601121.
- Davidson, C., & McPhillips, D., 2007, Along strike variations in metamorphism and deformation of the strata of the Kahiltna basin, south-central Alaska, *in* Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, M.O., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Papers 431, p. 439-453.
- Davidson, C., Hollister, L. S., and Schmid, S. M., 1992, Role of Melt in the Formation of a Deep-crustal Compressive Shear zone: The Maclaren Glacier Metamorphic Belt, south central Alaska: Tectonics, v. 11(2), p. 348-359.
- Day, E.M., Pavlis, T.L. and Amato, J.M., 2016, Detrital zircon ages indicate an Early Cretaceous episode of blueschist-facies metamorphism in southern Alaska: Implications for the Mesozoic paleogeography of the northern Cordillera: Lithosphere, v. 8(5), p.451-462.
- Decker, J., Bergman, S.C., Blodgett, R.B., Box, S.E., Bundtzen, T.K., Clough, J.G., Coonrad,
 W.L., Gilbert, W.G., Miller, M.L., Murphy, J.M., Robinson, M.S., and Wallace, W.K.,
 1994, Geology of southwestern Alaska, *in* Plafker, G., and Berg, H.C., eds., The Geology of Alaska: Boulder, Colorado, Geological Society of America, Geology of North America, v. G-1, p. 285–310.
- Dewey, J. F., 1977, Suture zone complexities: a review: Tectonophysics, v. 40(1), p. 53-67.
- Dewey, J.F. and Burke, K.C., 1973, Tibetan, Variscan, and Precambrian basement reactivation: products of continental collision: The Journal of Geology, v. 81(6), p. 683-692.

- Doser, D.I., 2004, Seismicity of the denali-totschunda fault zone in central Alaska (1912-1988) and its relation to the 2002 Denali fault earthquake sequence: Bulletin of the Seismological Society of America, v. 94, p. 132–144, doi: 10.1785/0120040611.
- Dusel-Bacon, C. and Williams, I.S., 2009, Evidence for prolonged mid-Paleozoic plutonism and ages of crustal sources in east-central Alaska from SHRIMP U–Pb dating of synmagmatic, inherited, and detrital zircon: Canadian Journal of Earth Sciences, v. 46(1), p. 21-39.
- Dusel-Bacon, C., Bacon, C.R., O'Sullivan, P.B. and Day, W.C., 2016, Apatite fission-track evidence for regional exhumation in the subtropical Eocene, block faulting, and localized fluid flow in east-central Alaska: Canadian Journal of Earth Sciences, v. *53*(3), p. 260-280.
- Dusel-Bacon, C., Holm-Denoma, C.S., Jones, J.V., Aleinikoff, J.N. and Mortensen, J.K., 2017, Detrital zircon geochronology of quartzose metasedimentary rocks from parautochthonous North America, east-central Alaska: Lithosphere, v. 9(6), p. 927-952.
- Dusel-Bacon, C., Lanphere, M.A., Sharp, W.D., Layer, P.W. and Hansen, V.L., 2002, Mesozoic thermal history and timing of structural events for the Yukon-Tanana Upland, east-central Alaska: ⁴⁰Ar/³⁹Ar data from metamorphic and plutonic rocks: Canadian Journal of Earth Sciences, v. 39(6), p.1013-1051.
- Eberhart-Phillips, D., Haeussler, P.J., Freymueller, J.T., Frankel, A.D., Rubin, C.M., Craw, P., Ratchkovski, N. A, Anderson, G., Carver, G.A, Crone, A.J., Dawson, T.E., Fletcher, H., Hansen, R., Harp, E.L., et al., 2003, The 2002 Denali fault earthquake, Alaska: a large magnitude, slip-partitioned event: Science, v. 300, p. 1113–1118, doi: 10.1126/science.1082703.
- Eisbacher, G.H., 1976, Sedimentology of the Dezadeash flysch and its implications for strikeslip faulting along the Denali fault, Yukon Territory and Alaska: Canadian Journal of Earth Sciences, v. 13(11), p. 1495-1513.
- Enkelmann, E., Garver, J.I., and Pavlis, T.L., 2008, Rapid exhumation of ice-covered rocks of the Chugach St. Elias orogen, Southeast Alaska: Geology, v. 36, p. 915–918, doi: 10.1130/G2252A.1.
- Enkelmann, E., Zeitler, P. K., Garver, J. I., Pavlis, T. L., & Hooks, B. P., 2010, The thermochronological record of tectonic and surface process interaction at the Yakutat– North American collision zone in southeast Alaska: American Journal of Science, v. 310(4), p. 231-260.
- Feng, L. and Ritzwoller, M.H., 2019, A 3-D shear velocity model of the crust and uppermost mantle beneath Alaska including apparent radial anisotropy: Journal of Geophysical Research: Solid Earth, v. 124(10), p.10468-10497.
- Finzel, E.S., Enkelmann, E., Falkowski, S. and Hedeen, T., 2016, Long-term fore-arc basin evolution in response to changing subduction styles in southern Alaska: Tectonics, v. 35(7), p. 1735-1759.
- Finzel, E.S., Ridgway, K.D., and Trop, J.M., 2015, Provenance signature of changing plate boundary conditions along a convergent margin: Detrital record of spreading-ridge and flat-slab subduction processes, Cenozoic forearc basins, Alaska: Geosphere, v. 11(3), p. 823-849.
- Finzel, E.S., Trop, J.M., Ridgway, K.D., and Enkelmann, E., 2011, Upper plate proxies for flatslab subduction processes in southern Alaska: Earth and Planetary Science Letters, v. 303, p. 348–360, doi: 10.1016/j.epsl.2011.01.014.

- Fitzgerald, P.F., Sorkhabi, R.B., Redfield, T.F., & Stump, E., 1995, Uplift and denudation of the central Alaska Range: a case study in the use of apatite fission track thermochronology to determine absolute uplift parameters: Journal of Geophysical Research, v. (100), p. 20175-20191.
- Fitzgerald, P.G., Roeske, S.M., Benowitz, J. A., Riccio, S.J., Perry, S.E., and Armstrong, P.A., 2014, Alternating asymmetric topography of the Alaska range along the strike-slip Denali fault: Strain partitioning and lithospheric control across a terrane suture zone: Tectonics, v. 33, doi: 10.1002/2013TC003432.
- Fitzgerald, P.G., Stump, E., & Redfield, T.E., 1993, Late Cenozoic uplift of Denali and its relation to relative plate motion and fault morphology: Science, v. 259, p. 497-499.
- Forbes, R. B., Smith, T. E., and Turner, D. L., 1974, Comparative petrology and structure of the Maclaren, Ruby Range, and Coast Range belts: Implications for offset along the Denali fault system: Geological Society of America Abstracts with Programs, v. 6, p. 177.
- Freymueller, J.T., Cohen, S.C., Cross, R., Elliott, J., Fletcher, H., Larsen C., Hreinsdóttir, S., and Zweck, C., 2008, Active deformation processes in Alaska, based on 15 years of GPS measurements, in Freymueller, J.T., Haeussler, P.J., Wesson, R.L., & Ekström,G., ed., Active Tectonics and Seismic Potential of Alaska Washington, D. C., AGU, p. 1–42.
- Gardner, M.C., Bergman, S.C., Cushing, G.W., MacKevett Jr, E.M., Plafker, G., Campbell, R.B., Dodds, C.J., McClelland, W.C. and Mueller, P.A., 1988, Pennsylvanian pluton stitching of Wrangellia and the Alexander terrane, Wrangell Mountains, Alaska: Geology, v. 16(11), p. 967-971.
- Gardner, M.C., Bergman, S.C., Cushing, G.W., MacKevett Jr, E.M., Plafker, G., Campbell, R.B., Dodds, C.J., McClelland, W.C., and Mueller, P.A., 1988, Pennsylvanian pluton stitching of Wrangellia and the Alexander Terrane, Wrangell Mountains, Alaska: Geology, v. 16, no. 11, p. 967–971, doi: 10.1130/0091-7613(1988)016<0967:PPSOWA>2.3.CO;2.
- Gehrels, G. and Pecha, M., 2014, Detrital zircon U-Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America: Geosphere, v. 10 (1), p. 49-65.
- Gehrels, G., Rusmore, M., Woodsworth, G., Crawford, M., Andronicos, C., Hollister, L., Patchett, J., Ducea, M., Butler, R., Klepeis, K. and Davidson, C., 2009, U-Th-Pb geochronology of the Coast Mountains batholith in north-coastal British Columbia: Constraints on age and tectonic evolution: Geological Society of America Bulletin, v. 121(9-10), p.1341-1361.
- Gehrels, G., Valencia, V. and Pullen, A., 2006, Detrital zircon geochronology by laser-ablation multicollector ICPMS at the Arizona LaserChron Center: The Paleontological Society Papers, v. 12, p. 67-76.
- Gehrels, G.E., Butler, R.F. and Bazard, D.R., 1996, Detrital zircon geochronology of the Alexander terrane, southeastern Alaska: Geological Society of America Bulletin, v. 108(6), p. 722-734.
- Gehrels, G.E., Valencia, V., Ruiz, J., 2008, Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry: Geochemistry, Geophysics, Geosystems, v. 9, Q03017, doi:10.1029/2007GC001805.
- Gilman, T., Feineman, M. and Fisher, D., 2009, The Chulitna terrane of south-central Alaska: A rifted volcanic arc caught between the Wrangellia composite terrane and the Mesozoic

margin of North America: Geological Society of America Bulletin, v. 121(7-8), p.979-991.

- Glen, J.M.G., 2004, A kinematic model for the southern Alaska orocline based on regional fault patterns, *in* Sussman, A. and Weil, A.B., eds., Orogenic Curvature: Geological Society of America. Special Paper 383, p. 161-172.
- Glen, J.M.G., Schmidt, J., Pellerin, L., McPhee, D.K., and O'Neill, J.M., 2007, Crustal structure of Wrangellia and adjacent terranes inferred from geophysical studies along the a transect through the northern Talkeetna Mountains, *in* Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, M.O., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Papers 431, p. 21–41, doi: 10.1130/2007.2431(20)
- Goussin, F., Riel, N., Cordier, C., Guillot, S., Boulvais, P., Roperch, P., Replumaz, A., Schulmann, K., Dupont-Nivet, G., Rosas, F. and Guo, Z., 2020, Carbonated inheritance in the Eastern Tibetan lithospheric mantle: petrological evidences and geodynamic implications: Geochemistry, Geophysics, Geosystems, v. 21, e2019GC008495.
- Greene, A.R., Scoates, J. S., & Weiss, D., 2008, Wrangellia flood basalts in Alaska: A record of plume-lithosphere interaction in a Late Triassic accreted oceanic plateau: Geochemistry, Geophysics, Geosystems, v. 9(12), 34 p.
- Greene, A.R., Scoates, J.S., Weis, D., Katvala, E.C., Israel, S. and Nixon, G.T., 2010, The architecture of oceanic plateaus revealed by the volcanic stratigraphy of the accreted Wrangellia oceanic plateau: Geosphere, v. 6(1), p. 47-73.
- Haeussler, P.J., 1992, Structural evolution of an arc-basin: The Gravina Belt in central southeastern Alaska: Tectonics, v. 11(6), p. 1245-1265.
- Haeussler, P.J., Matmon, A., Schwartz, D.P., and Seitz, G.G., 2017b, Neotectonics of interior Alaska and the late Quaternary slip rate along the Denali fault system: Geosphere, v. 13, p. 1445–1463, doi: 10.1130/GES01447.1.
- Haeussler, P.J., O'Sullivan, P., Berger, A.L., and Spotila, J.A, 2008, Neogene exhumation of the Tordrillo Mountains, Alaska, and correlations with Denali (Mount McKinley): in Freymueller, J. T, Haeussler, P. J., Wesson, R. L., and Ekström, G., ed., Active Tectonics and Seismic Potential of Alaska, AGU Monograph 179, p. 269–285, doi: http://dx.doi.org/10.1029/179GM15.
- Haeussler, P.J., Saltus, R.W., Stanley, R.G., Ruppert, N., Lewis, K., Karl, S.M., and Bender, A., 2017a, The Peters Hills basin, a Neogene wedge-top basin on the Broad Pass thrust fault, south-central Alaska: Geosphere, v. 13, p. 1464–1488, doi: 10.1130/GES01487.1.
- Hampton, B.A., Ridgway, K.D., & Gehrels, G.E., 2010, A detrital record of Mesozoic island arc accretion and exhumation in the North American Cordillera: U-Pb geochronology of the Kahiltna basin, southern Alaska: Tectonics, v. 29(TC4015), 21 p.
- Hampton, B.A., Ridgway, K.D., O'Neill, J.M., Gehrels, G.E., Schmidt, J., & Blodgett, R.B., 2007, Pre-, syn-, and postcollisional stratigraphic framework and provenance of Upper Triassic–Upper Cretaceous strata in the northwestern Talkeetna Mountains, Alaska, *in* Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, M.O., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Papers 431, p. 401–438, doi: 10.1130/2007.2431(20)
- Harrison, T. M., Duncan, I., & McDougall, I., 1985, Diffusion of ⁴⁰Ar in biotite: temperature, pressure and compositional effects: Geochimica et Cosmochimica Acta, v. 49(11), p. 2461-2468.

- Harrison, T.M., Célérier, J., Aikman, A.B., Hermann, J., and Heizler, M.T., 2009, Diffusion of ⁴⁰Ar in muscovite: Geochimica et Cosmochimica Acta, v. 73, p. 1039–1051, doi: 10.1016/j.gca.2008.09.038.
- Haynie, K.L. and Jadamec, M.A., 2017, Tectonic drivers of the Wrangell block: Insights on forearc sliver processes from 3-D geodynamic models of Alaska: Tectonics, v. 36(7), p. 1180-1206.
- Heron, P.J., Pysklywec, R.N. and Stephenson, R., 2016, Lasting mantle scars lead to perennial plate tectonics: Nature communications, v. 7(1), p. 1-7.
- Herriott, T.M., Crowley, J.L., Schmitz, M.D., Wartes, M.A. and Gillis, R.J., 2019, Exploring the law of detrital zircon: LA-ICP-MS and CA-TIMS geochronology of Jurassic forearc strata, Cook Inlet, Alaska, USA: Geology, v. 47(11), p. 1044-1048.
- Himmelberg, G.R. and Loney, R.A., 1995, Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, southeastern Alaska: U.S. Geological Survey Professional Paper 1564.
- Hodges, K.V., 2014, Thermochronology in orogenic systems: Treatise on Geochemistry 2nd edition, p. 281-308.
- Hollister, L.S., 1993, The role of melt in the uplift and exhumation of orogenic belts: Chemical Geology, v. 108(1-4), p. 31-48.
- Horstwood, M.S., Košler, J., Gehrels, G., Jackson, S.E., McLean, N.M., Paton, C., Pearson, N.J., Sircombe, K., Sylvester, P., Vermeesch, P. and Bowring, J.F., 2016, Community-derived standards for LA-ICP-MS U-(Th-) Pb geochronology–Uncertainty propagation, age interpretation and data reporting: Geostandards and Geoanalytical Research, v. 40(3), p.311-332.
- Hoskin, P.W. and Schaltegger, U., 2003, The composition of zircon and igneous and metamorphic petrogenesis: Reviews in mineralogy and geochemistry: Zircon: v. 53(1), p. 27-62.
- Huff, C.J., 2012, Paleozoic to Neogene stratigraphic and structural history of the Alaska Range suture zone, north of the Denali fault, east central Alaska Range [M.S. Thesis]: Davis, University of California, 149 p.
- Hults, C.P., Wilson, F.H., Donelick, R.A., and O'Sullivan, P.B., 2013, Two flysch belts having distinctly different provenance suggest no stratigraphic link between the Wrangellia composite terrane and the paleo-Alaskan margin: Lithosphere, v. 5(6), p. 575-594.
- Israel, S., Beranek, L., Friedman, R.M., and Crowley, J.L., 2014, New ties between the Alexander terrane and Wrangellia and implication for North America Cordilleran evolution: Lithosphere v. 6(4), p. 270-276. doi:10.1130/L364.1
- Jadamec, M.A., Billen, M.I., and Roeske, S.M., 2013, Three-dimensional numerical models of flat slab subduction and the Denali fault driving deformation in south-central Alaska: Earth and Planetary Science Letters, v. 376, p. 29–42, doi: 10.1016/j.epsl.2013.06.009.
- Jones, D.L., Silberling, N.J., & Hillhouse, J., 1977, Wrangellia- a displaced terrane in northwestern North America: Canadian Journal of Earth Sciences, v. 14(11), p. 2565-2577.
- Jones, D.S., Barnes, C.G., Premo, W.R. and Snoke, A.W., 2013, Reactivation of the Archean-Proterozoic suture along the southern margin of Laurentia during the Mazatzal orogeny: Petrogenesis and tectonic implications of ca. 1.63 Ga granite in southeastern Wyoming: Geological Society of America Bulletin, v. 125(1-2), p. 164-183.
- Kalbas, J. L., K. D. Ridgway, and G. E. Gehrels, 2007, Stratigraphy, depositional systems, and

provenance of the Lower Cretaceous Kahiltna assemblage, western Alaska Range: Basin development in response to oblique collision, *in* Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, M.O., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Papers 431, 307–343, doi:10.1130/2007.2431(13).

- Kapp, P.A. and Gehrels, G.E., 1998, Detrital zircon constraints on the tectonic evolution of the Gravina belt, southeastern Alaska: Canadian Journal of Earth Sciences, v. 35(3), p. 253-268.
- Kelly, S., Beaumont, C. and Butler, J.P., 2019, Inherited terrane properties explain enigmatic post-collisional Himalayan-Tibetan evolution: Geology, v. 48(1), p.8-14
- Koehler, R.D., 2013, Quaternary Faults and Folds (QFF), Alaska Division of Geological and Geophysical Surveys Digital Data Series 3. from http://maps.dggs.alaska.gov/qff/.
- Kreemer, C., Blewitt, G. and Klein, E.C., 2014, A geodetic plate motion and Global Strain Rate Model: Geochemistry, Geophysics, Geosystems, v. 15(10), p. 3849-3889.
- Kunk, M.J., 1995, ⁴⁰Ar/³⁹Ar Age-spectrum Data for Hornblende, Plagioclase and Biotite from Tephras Collected at Dan Creek and McCallum Creek, Alaska and in the Klondike Placer District Near Dawson, Yukon Territory, U.S. Geological Survey Open-File Report 95-217h, 52 p.
- Layer, P.W., Hall, C.M., and York, D., 1987, The derivation of ⁴⁰Ar/³⁹Ar age spectra of single grains of hornblende and biotite by laser step heating: Geophysical Research Letters, v. 14, p. 757–760, https:// doi .org /10 .1029 /GL014i007p00757.
- Lease, R.O., 2018, Pliocene erosional pulse and glacier-landscape feedbacks in the western Alaska Range, Earth and Planetary Science Letters, v. 497, p. 62-68, https://doi.org/10.1016/j.epsl.2018.06.009
- Lease, R.O., Haeussler, P.J., & O'Sullivan, P.B., 2016, Changing exhumation patterns during Cenozoic growth and glaciation of the Alaska Range: Insights from detrital thermochronology and geochronology: Tectonics, v. 35, 22 p.
- Link, B.J., 2017, From Deposition to Deformation Within an Accretionary Suture Zone: An Example from the Clearwater and Talkeetna Mountains, Alaska Range Suture Zone [M.S. Thesis]: West Lafayette, Indiana, Purdue University.
- Lowey, G.W., 1998, A new estimate of the amount of displacement on the Denali fault system based on the occurrence of carbonate megaboulders in the Dezadeash Formation (Jura-Cretaceous), Yukon, and the Nutzotin Mountains sequence (Jura-Cretaceous), Alaska: Bulletin of Canadian Petroleum Geology, v. 46(3), p. 379-386.
- Lowey, G.W., 2011, Volcaniclastic gravity flow deposits in the Dezadeash Formation (Jura-Cretaceous), Yukon, Canada: Implications regarding the tectonomagmatic evolution of the Chitina arc in the northern Cordillera of North America: Lithos, v. 125(1-2), p. 86-100.
- Lowey, G.W., 2018, Provenance analysis of the Dezadeash Formation (Jurassic–Cretaceous), Yukon, Canada: implications regarding a linkage between the Wrangellia composite terrane and the western margin of Laurasia: Canadian Journal of Earth Sciences, v. 56(1), p. 77-100.
- Ludwig, K., 2008, Isoplot 3.6: Berkeley Geochronology Center Special Publication 4, 77 p.
- Manuszak, J.D., Ridgway, K.D., Trop, J.M. and Gehrels, G.E., 2007, Sedimentary record of the tectonic growth of a collisional continental margin: Upper Jurassic-Lower Cretaceous Nutzotin Mountains sequence, eastern Alaska Range, Alaska, *in* Ridgway, K.D., Trop,

J.M., Glen, J.M.G., O'Neill, M.O., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Papers 431, p. 345-377.

- Matmon, A., Schwartz, D.P., Haeussler, P.J., Finkel, R., Lienkaemper, J.J., Stenner, H.D., and Dawson, T.E., 2006, Denali fault slip rates and Holocene-late Pleistocene kinematics of central Alaska: Geology, v. 34, p. 645–648, doi: 10.1130/G22361.1.
- Matthews, W.A. and Guest, B., 2017, A practical approach for collecting large-n detrital zircon U-Pb data sets by quadrupole LA-ICP-MS: Geostandards and Geoanalytical Research, v. 41(2), p. 161-180.
- Mattinson, J.M., Graubard, C.M., Parkinson, D.L. and McClelland, W.C., 1996, U-Pb reverse discordance in zircons: the role of fine-scale oscillatory zoning and sub-micron transport of Pb: Geophysical Monograph-American Geophysical Union, v. 95, p. 355-370.
- McClelland, W.C., Gehrels, G.E., Samson, S.D. and Patchett, P.J., 1992, Protolith relations of the Gravina belt and Yukon-Tanana terrane in central southeastern Alaska: The Journal of Geology, v. 100(1), p. 107-123.
- Mendenhall, W.C., 1905, Geology of the central Copper River region, Alaska (No. 41). U.S. Geological Survey professional paper 41, 133 p.
- Mériaux, A.-S., Sieh, K., Finkel, R.C., Rubin, C.M., Taylor, M.H., Meltzner, A.J., and Ryerson, F.J., 2009, Kinematic behavior of southern Alaska constrained by westward decreasing postglacial slip rates on the Denali Fault, Alaska: Journal of Geophysical Research, v. 114, p. 1–19, doi: 10.1029/2007JB005053.
- Miller, M.S. and Moresi, L., 2018, Mapping the Alaskan Moho: Seismological Research Letters, v. 89(6), p. 2430-2436.
- Miller, M.S., O'Driscoll, L.J., Porritt, R.W. and Roeske, S.M., 2018, Multiscale crustal architecture of Alaska inferred from P receiver functions: Lithosphere, v. 10(2), p. 267-278.
- Mitra, S., 1990, Fault-propagation folds: Geometry, kinematic evolution, and hydrocarbon traps: American Association of Petroleum Geologists Bulletin, v. 74, p. 921-945.
- Moll-Stalcup, E.J., Brew, D.A., and Vallier, T.L., 1994, Latest Cretaceous and Cenozoic magmatic rocks of Alaska, *in* Plafker, G., and Berg, H.C., eds., The Geology of Alaska: Boulder, Colorado, Geological Society of America, Geology of North America, v. G-1, 2 sheets, scale 1:2,500,000.
- Monger, J.W.H., Price, R.A. and Tempelman-Kluit, D.J., 1982, Tectonic accretion and the origin of the two major metamorphic and plutonic welts in the Canadian Cordillera: Geology, v. 10(2), p. 70-75.
- Mooney P.R., 2010, Geology of the Clearwater Mountains and Southern Boundary of the Alaska Range Suture Zone [M.S. Thesis]: Davis, University of California, 93 p.
- Murphy, D.C., 2018, Latest Cretaceous–early Eocene Pacifi c-Arctic?-Atlantic connection: Coevolution of strike-slip fault systems, oroclines, and transverse foldand-thrust belts in the northwestern North American Cordillera, in Piepjohn, K., Strauss, J.V., Reinhardt, L., and McClelland, W.C., eds., Circum-Arctic Structural Events: Tectonic Evolution of the Arctic Margins and Trans-Arctic Links with Adjacent Orogens: Geological Society of America Special Paper 541.
- Nokleberg, W.J. Aleinikoff, J.N., Dutro, J.T., Jr. Lanphere, M.A. Silberling, N.J., Silva, S.R., Smith, T.E., and Turner, D.L., 1992b, Map, tables, and summary of fossil and isotopic age data, Mount Hayes quadrangle, eastern Alaska Range, Alaska: U.S. Geological

Survey Miscellaneous Field Studies map 1996-D, 43 p., 1 sheet, scale 1:250,000.

- Nokleberg, W.J. and Richter, D.H., 2007, Origin of narrow terranes and adjacent major terranes occurring along the Denali fault in the Eastern and Central Alaska Range, Alaska: *in* Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, M.O., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Papers 431, p.129-154.
- Nokleberg, W.J., Aleinikoff, J.N., Bond, G.C., Ferrians, O.J., Jr., Herzon, P.L., Lange, I.M., Miyaoka, R.T., Richter, D.H., Schwab, C.E., Silva, S.R., Smith, T.E., and Zehner, R.E., 2015, Geologic maps of the eastern Alaska Range, Alaska (44 quadrangles, 1:63,360 scale), with descriptions and interpretations of map units: Alaska Division of Geological & Geophysical Surveys Report of Investigation 2015-6, 64 p., 45 sheets, scale 1:63,360. doi:10.14509/29444
- Nokleberg, W.J., Aleinikoff, J.N., Bundtzen, T.K., and Hanshaw, M.N., 2013, Geologic strip map along the Hines Creek Fault showing evidence for Cenozoic displacement in the western Mount Hayes and northeastern Healy quadrangles, eastern Alaska Range, Alaska: U.S. Geological Survey Scientific Investigations Map 3238, pamphlet 29 p., scale 1:63,360 [http://pubs.usgs.gov/sim/3238/].
- Nokleberg, W.J., Aleinikoff, J.N., Lange, I.M., Silva, S.R., Miyaoka, R.T., Schwab, C.E., and Zehner, R.E., 1992a, Preliminary geologic map of the Mount Hayes quadrangle, eastern Alaska Range, Alaska. U.S. Geological Survey Open File Report 92-594, 39p., 1 sheet, scale 1:250,000.
- Nokleberg, W.J., Jones, D.L., and Silberling, N.J., 1985, Origin and tectonic evolution of the Maclaren and Wrangellia terranes, eastern Alaska Range, Alaska: Geological Society of America Bulletin, v. 96(10), p. 1251-1270.
- O'Driscoll, L.J. and Miller, M.S., 2015, Lithospheric discontinuity structure in Alaska, thickness variations determined by Sp receiver functions: Tectonics, v. 34(4), p. 694-714.
- O'Neill, M., Ridgway, K.D., & Eastham, K.R., 2001, Mesozoic Sedimentation and Deformation Along the Talkeetna Thrust Fault, South-Central Alaska—New Insights and Their Regional Tectonic Significance: Studies by the U.S. Geological Survey in Alaska, U.S. Geological Survey Professional Paper 1678.
- Paces, J.B. and Miller Jr, J.D., 1993, Precise U-Pb ages of Duluth complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system: Journal of Geophysical Research: Solid Earth, v. 98(B8), p. 13997-14013.
- Paton, C., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A. and Maas, R., 2010, Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction: Geochemistry, Geophysics, Geosystems, v. 11(3).
- Pavlis, T. L., Chapman, J. B., Bruhn, R. L., Ridgway, K., Worthington, L. L., Gulick, S. P., & Spotila, J., 2012, Structure of the actively deforming fold-thrust belt of the St. Elias orogen with implications for glacial exhumation and three-dimensional tectonic processes. Geosphere, v. 8(5), p. 991-1019.
- Pecha, M.E., Gehrels, G.E., McClelland, W.C., Giesler, D., White, C. and Yokelson, I., 2016, Detrital zircon U-Pb geochronology and Hf isotope geochemistry of the Yukon-Tanana terrane, Coast Mountains, southeast Alaska: Geosphere, v. 12(5), p. 1556-1574.

- Petrus, J.A. and Kamber, B.S., 2012, VizualAge: A novel approach to laser ablation ICP-MS U-Pb geochronology data reduction: Geostandards and Geoanalytical Research, v. 36(3), p. 247-270.
- Piercey, S.J. and Colpron, M., 2009, Composition and provenance of the Snowcap assemblage, basement to the Yukon-Tanana terrane, northern Cordillera: Implications for Cordilleran crustal growth: Geosphere, v *5*(5), p. 439-464.
- Plafker, G. and Berg, H.C., 1994. Overview of the geology and tectonic evolution of Alaska: Geological Society of America, Decade of North American Geology.
- Preece, S.J. and Hart, W.K., 2004, Geochemical variations in the <5 Ma Wrangell Volcanic Field, Alaska: implications for the magmatic and tectonic development of a complex continental arc system: Tectonophysics, v. 392(1-4), p. 165-191.
- Pullen, A., Ibanez-Mejia, M., Gehrels, G., Giesler, D., and Pecha, M., 2018, Optimization of a Laser Ablation-Single Collector-Inductively Coupled Plasma-Mass Spectrometer (Thermo Element 2) for Accurate, Precise, and Efficient Zircon U-Th-Pb Geochronology: Geochemistry, Geophysics, Geosystems, v. 19. https://doi.org/10.1029/2018GC007889
- Ranalli, G., 2000, Rheology of the crust and its role in tectonic reactivation: Journal of geodynamics, v. 30(1), p. 3-15.
- Rasendra, N., Bonnin, M., Mazzotti, S. and Tiberi, C., 2014, Crustal and upper-mantle anisotropy related to fossilized transpression fabric along the Denali Fault, northern Canadian Cordillera: Bulletin of the Seismological Society of America, v. 104(4), p. 1964-1975.
- Regan, S.P., Benowitz, J.A. and Holland, M.E., 2020, A plutonic brother from another magma mother: disproving the Eocene Foraker-McGonagall pluton piercing point and implications for long-term slip on the Denali Fault: Terra Nova, v. 32, p. 66-74.
- Renne, P.R., Deino, A.L., Walter, R.C., Turrin, B.D., Swisher, C.C., Becker, T.A., Curtis, G.H., Sharp, W.D., and Jaouni, A.R., 1994, Intercalibration of astronomical and radioisotopic time: Geology, v. 22, p. 783–786, https:// doi .org /10 .1130 /0091 -7613 (1994)022 <0783: IOAART>2 .3 .CO;2.
- Renne, P.R., Mundil, R., Balco, G., Min, K., and Ludwig, K.R., 2010, Joint determination of ⁴⁰K decay constants and ⁴⁰Ar*/⁴⁰K for the Fish Canyon sanidine standard, and improved accuracy for ⁴⁰Ar/³⁹Ar geochronology: Geochimica et Cosmochimica Acta, v. 74, p. 5349, https:// doi .org /10 .1016 /j .gca .2010 .06 .017.
- Riccio, S.J., Fitzgerald, P.G., Benowitz, J.A., and Roeske, S.M., 2014, The role of thrust faulting in the formation of the eastern Alaska Range: Thermochronological constraints from the Susitna Glacier Thrust Fault region of the intracontinental strike-slip Denali Fault system: Tectonics, v. 33, p. 2195–2217, doi: 10.1002/2014TC003646.
- Richter, D. H., Smith, J. G., Lanphere, M. A., Dalrymple, G. B., Reed, B. L., & Shew, N., 1990, Age and progression of volcanism, Wrangell volcanic field, Alaska: Bulletin of Volcanology, v. 53(1), p. 29-44.
- Richter, D.H., and Dutro, J.T., Jr., 1975, Revision of the type Mankommen Formation (Pennsylvanian and Permian), Eagle Creek area, eastern Alaska Range, Alaska: U.S. Geological Survey Bulletin 1395–B, p. B1–B25.
- Richter, D.H., and Matson, J.A., 1971, Quaternary faulting in the eastern Alaska Range: Bulletin of the Geological Society of America, v. 82, p. 1529–1540, doi: 10.1130/0016-7606(1971)82[1529:QFITEA]2.0.CO;2.
- Ridgway, K.D., Thoms, E.E., Layer, P.W., Lesh, M.E., White, J.M., and Smith, S.V, 2007,

Neogene transpressionalforeland basin development on the north side of the central Alaska Range, Usibelli Group and Nenana Gravel, Tanana basin, *in* Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, M.O., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Papers 431, p. 507–547, doi: 10.1130/2007.2431(20)

- Ridgway, K.D., Trop, J.M., Nokleberg, W.J., Davidson, C.M., and Eastham, K.R., 2002, Mesozoic and Cenozoic tectonics of the eastern and central Alaska Range: Progressive basin development and deformation in a suture zone: Bulletin of the Geological Society of America, v. 114, p. 1480–1504, doi: 10.1130/0016-7606(2002)114<1480:MACTOT>2.0.CO;2.
- Rioux, M., Hacker, B., Mattinson, J., Kelemen, P., Blusztajn, J. and Gehrels, G., 2007, Magmatic development of an intra-oceanic arc: High-precision U-Pb zircon and whole-rock isotopic analyses from the accreted Talkeetna arc, south-central Alaska: Geological Society of America Bulletin, v. 119(9-10), p. 1168-1184.
- Roeske, S.M., Mattinson, J.M. and Armstrong, R.L., 1989, Isotopic ages of glaucophane schists on the Kodiak Islands, southern Alaska, and their implications for the Mesozoic tectonic history of the Border Ranges fault system: Geological Society of America Bulletin, v. 101(8), p. 1021-1037.
- Roeske, S.M., Snee, L.W., Pavlis, T.L., 2003, Dextral strike-slip reactivation of an arc-forearc boundary during Late Cretaceous-Early Eocene oblique convergence in the northern Cordillera, *in* Sisson, V.B., Roeske, S.M., Pavlis, T.L., eds., Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacific Margin: Geological Society of America Special Paper 371, P. 141-170.
- Romero, M.C., Ridgway, K.D. and Gehrels, G.E., 2020, Geology, U-Pb Geochronology, and Hf Isotope Geochemistry Across the Mesozoic Alaska Range Suture Zone (south-central Alaska): Implications for Cordilleran Collisional Processes and Tectonic Growth of North America: Tectonics, v. 39, e2019TC005946
- Rose, A.W., 1965, Geology and mineral deposits of the Rainy Creek areas, Mt. Hayes Quadrangle, Alaska: Alaska Division of Mines and Minerals Geologic Report 14, 57 p., 1 sheet, scale 1:36,000. doi: 10.14509/343
- Rose, A.W., 1966, Geological and geochemical investigations in the Eureka Creek and Rainy Creek areas, Mt. Hayes Quadrangle, Alaska: Alaska Division of Mines and Minerals Geologic Report 20, 41 p., 3 sheets, scale 1:40,000. doi: 10.14509/349.
- Rubin, C.M., and Saleeby, J.B., 1991, The Gravina sequence: Remnants of a mid Mesozoic oceanic arc in southern southeast Alaska: Journal of Geophysical Research, v. 96, p. 14,551–14,568, https:// doi .org /10 .1029 /91JB00591.
- Rubin, C.M., Saleeby, J.B., Cowan, D.S., Brandon, M.T. and McGroder, M.F., 1990, Regionally extensive mid-Cretaceous west-vergent thrust system in the northwestern Cordillera: Implications for continent-margin tectonism: Geology, v. 18(3), p. 276-280.
- Ruppert, N.A., 2008, Stress map for Alaska from earthquake focal mechanisms, *in* Freymueller, J.T., Haeussler, P.J., Wesson, R., and Ekström, G., eds., Active Tectonics and Seismic Potential of Alaska: Washington, D.C., American Geophysical Union Geophysical Monograph Series 179, p. 351–367.
- Rusmore, M.E., 1987, Geology of the Cadwallader Group and the Intermontane–Insular superterrane boundary, southwestern British Columbia: Canadian Journal of Earth Sciences, v. 24(11), p. 2279-2291.

- Saleeby, J.B., 1992, Age and tectonic setting of the Duke Island ultramafic intrusion, southeast Alaska: Canadian Journal of Earth Sciences, v. 29(3), p. 506-522.
- Saltus, R.W. and Hudson, T.L., 2007, Regional magnetic anomalies, crustal strength, and the location of the northern Cordilleran fold-and-thrust belt: Geology, v. 35(6), p. 567-570.
- Saltus, R.W., Hudson, T.L., & Wilson, F.H., 2007, The geophysical character of southern Alaska—Implications for crustal evolution, *in* Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, M.O., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Papers 431, p. 1-20.
- Saltus, R.W., Stanley, R.G., Haeussler, P.J., Jones III, J.V., Potter, C.J. and Lewis, K.A., 2016, Late Oligocene to present contractional structure in and around the Susitna basin, Alaska—Geophysical evidence and geological implications: Geosphere, v. 12(5), p. 1378-1390.
- Samson, S.D., and Alexander, E.C., 1987, Calibration of the interlaboratory ⁴⁰Ar/³⁹Ar dating standard, MMhb1: Chemical Geology, v. 66, p. 27–34.
- Samson, S.D., Patchett, P.J., Gehrels, G.E., and Anderson, R.G., 1990, Nd and Sr isotopic characterization of the Wrangellia terrane and implications for crustal growth of the Canadian Cordillera: The Journal of Geology, v. 98(5), p. 749-762.
- Schmitz, M.D., Bowring, S.A. and Ireland, T.R., 2003, Evaluation of Duluth Complex anorthositic series (AS3) zircon as a U-Pb geochronological standard: New highprecision isotope dilution thermal ionization mass spectrometry results: Geochimica et Cosmochimica Acta, v. 67(19), p. 3665-3672.
- Sibson, R.H., 1985, A note on fault reactivation: Journal of Structural Geology, v. 7(6), p. 751-754.
- Smith, J.G., and MacKevett, E.M., Jr., 1970, The Skolai Group in the McCarthy B-4, C-4, C-5 Quadrangles, Wrangell Mountains, Alaska: U.S. Geological Survey Bulletin 1274-Q, p. Q1–Q26.
- Smith, T.E., 1981, Geology of the Clearwater Mountains, south-central Alaska: Alaska Division of Geological & Geophysical Surveys Geologic Report 60, 72 p., 3 sheets, scale 1:63,360. doi:10.14509/406
- Snyder, D.C. and Hart, W.K., 2007, The White Mountains Granitoid Suite: Isotopic constraints on source reservoirs for Cretaceous magmatsim within the Wrangellia terrane: *in* Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, M.O., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Papers 431, p. 379–399, doi: 10.1130/2007.2431(20)
- St. Amand, P., 1957, Geological and geophysical synthesis of the tectonics of portions of British Columbia, the Yukon Territory, and Alaska: Geological Society of America Bulletin, v. 68(10), p. 1343-1370.
- Stacey, J.S., and Kramers, J.D., 1975, Approximation of terrestrial lead isotope evolution by a two stage model: Earth and Planetary Science Letters, v. 26, p. 207-221.
- Stout, J.H. and Chase, C.G., 1980, Plate kinematics of the Denali fault system: Canadian Journal of Earth Sciences, v. 17(11), p. 1527–1537, doi: 10.1139/e80-160.
- Stout, J.H., 1965, Bedrock Geology between Rainy Creek and the Denali fault, Eastern Alaska Range, Alaska [M.S. Thesis]: Fairbanks, University of Alaska, 75 p.
- Stout, J.H., 1976, Geology of the Eureka Creek area, east-central Alaska Range, State of Alaska, Department of Natural Resources, Division of Geological & Geophysical Surveys

Geologic Report 46, 32 p., 1 sheet, scale 1:63,360.

- Stout, J.H., Brady, J.B., Weber, F. and Page, R.A., 1973, Evidence for Quaternary movement on the McKinley strand of the Denali fault in the Delta River area, Alaska: Geological Society of America Bulletin, v. 84(3), p. 939-948.
- Surpless, K.D., Sickmann, Z.T. and Koplitz, T.A., 2014, East-derived strata in the Methow basin record rapid mid-Cretaceous uplift of the southern Coast Mountains batholith: Canadian Journal of Earth Sciences, v. 51(4), p. 339-357.
- Sykes, L.R., 1978, Intraplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonism postdating continental fragmentation: Reviews of Geophysics, v. 16(4), p. 621-688.
- Taylor, M., Yin, A., Ryerson, F. J., Kapp, P., and Ding, L., 2003, Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau: Tectonics, v. 22(4), 25 p.
- Terhune, P.J., Benowitz, J.A., Trop, J.M., O'Sullivan, P.B., Gillis, R.J. and Freymueller, J.T., 2019, Cenozoic tectono-thermal history of the southern Talkeetna Mountains, Alaska: Insights into a potentially alternating convergent and transform plate margin: Geosphere, v. 15(5), p. 1539-1576.
- Tikoff, B., Kelso, P., Manduca, C., Markley, M.J., and Gillaspy, J., 2001, Lithospheric and crustal reactivation of an ancient plate boundary: The assembly and disassembly of the Salmon River suture zone, Idaho, USA: Geological Society, London, Special Publications, v. 186(1), p. 213-231.
- Tommasi, A., Knoll, M., Vauchez, A., Signorelli, J.W., Thoraval, C. and Logé, R., 2009, Structural reactivation in plate tectonics controlled by olivine crystal anisotropy: Nature Geoscience, v. 2(6), p. 423.
- Trop, J.M. and Ridgway, K.D., 2007, Mesozoic and Cenozoic tectonic growth of southern Alaska: A sedimentary basin perspective: *in* Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, M.O., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Papers 431, p. 55-94.
- Trop, J.M., Benowitz, J., Cole, R.B. and O'Sullivan, P., 2019, Cretaceous to Miocene magmatism, sedimentation, and exhumation within the Alaska Range suture zone: A polyphase reactivated terrane boundary: Geosphere, v. 15(4), p. 1066-1101.
- Trop, J.M., Benowitz, J.A., Koepp, D.Q., Sunderlin, D., Brueseke, M.E., Layer, P.W. and Fitzgerald, P.G., 2020, Stitch in the ditch: Nutzotin Mountains (Alaska) fluvial strata and a dike record ca. 117–114 Ma accretion of Wrangellia with western North America and initiation of the Totschunda fault: Geosphere, v. 16(1), p.82-110.
- Turner, D.L. and Smith, T.E., 1974, Geochronology and Generalized Geology of the Central Alaska Range, Clearwater Mountains, and Northern Talkeetna Mountains. Alaska, Alaska Division of Geological & Geophysical Surveys Open File Report 72, 13 p., 1 Sheet, Scale 1:250,000.
- Twelker, E., Newberr, R.J., Freeman, L.K., Sicard, K.R., Waldien, T.S., Lande, L.L., Wypych, A., Reioux, D.A., Bachman, E.N., in revision, Bedrock geologic map of the eastern Denali highway area, Mount Hayes, Healy, and Talkeetna Mountains quadrangles, Alaska: Alaska Division of Geological and Geophysical Surveys, scale: 1:100,000, 1 sheet.
- Veenstra, E., Christensen, D. H., Abers, G. A., & Ferris, A., 2006, Crustal thickness variation in

south-central Alaska: Geology, v. 34(9), p. 781-784.

- Vermeesch, P., 2004, How many grains are needed for a provenance study?: Earth and Planetary Science Letters, v. 224(3-4), p.441-451.
- Vermeesch, P., 2012, On the visualization of detrital age distributions: Chemical Geology, v. 312–313, p. 190–194, https://doi.org/10.1016/j.chemgeo.2012.04.021.
- Wahrhaftig, C., Turner, D.L., Weber, F.R. and Smith, T.E., 1975, Nature and timing of movement on Hines Creek strand of Denali fault system, Alaska: Geology, v. 3(8), p. 463-466.
- Waldien, T.S., Roeske, S.M., Benowitz, J.A., Allen, W.K., Ridgway, K.D. and O'Sullivan, P.B., 2018, Late Miocene to Quaternary evolution of the McCallum Creek thrust system, Alaska: Insights for range-boundary thrusts in transpressional orogens: Geosphere, v. 14(6), p. 2379-2406.
- Waldien, T.S., Roeske, S.M., Benowitz., J.A., and Stockli, D.F., 2017, Cenozoivc reactivation of Cretaceous terrane accretionary structures in the eastern Alaska Range, Alaska. Geological Society of America Abstracts with Programs, v. 49, no. 6. doi: 10.1130/abs/2017AM-307791
- Wallace, W.K., Hanks, C.L., and Rogers, J.F., 1989, The southern Kahiltna terrane: Implications for the tectonic evolution of southwestern Alaska: Geological Society of America Bulletin, v. 101, p. 1389–1407, https:// doi .org /10 .1130 /0016 -7606 (1989)101 <1389: TSKTIF>2 .3 .CO;2.
- White, C., Gehrels, G.E., Pecha, M., Giesler, D., Yokelson, I., McClelland, W.C. and Butler,
 R.F., 2016, U-Pb and Hf isotope analysis of detrital zircons from Paleozoic strata of the southern Alexander terrane (southeast Alaska): Lithosphere, v. 8(1), p. 83-96.
- Whitney, D.L. and Evans, B.W., 2010, Abbreviations for names of rock-forming minerals: American mineralogist, v. 95(1), p. 185-187.
- Wilson, F.H., Hults, C.P., Mull, C.G., and Karl, S.M., comps., 2015, Geologic map of Alaska: U.S. Geological Survey Scientific Investigations Map 3340, pamphlet 196 p., 2 sheets, scale 1:1,584,000, http://dx.doi.org/10.3133/sim3340.
- Wyld, S. J., P. J. Umhoefer, and J. E. Wright , 2006, Reconstructing northern Cordilleran terranes along known Cretaceous and Cenozoic strike-slip faults: Implications for the Baja British Columbia hypothesis and other models, *in* Haggert, J.W., Enkin, R.J., and Monger J.W.H., eds., Paleogeography of the North American Cordillera: Evidence For and Against Large-Scale displacements: Geological Association of Canada, Special Paper 46, p. 277–298.
- Yokelson, I., Gehrels, G.E., Pecha, M., Giesler, D., White, C., and McClelland, W.C., 2015, U-Pb and Hf isotope analysis of detrital zircons from Mesozoic strata of the Gravina belt, southeast Alaska: Tectonics, v. 34, p. 2052–2066.

SUPPLEMENTS:

Supplemental file S1:

Sample preparation and zircon extraction at UC Davis:

Sample preparation for zircon extraction at UC Davis involves: 1) washing the sample with soap and warm water, 2) crushing the rock with a combination of a hydraulic press (if needed), mortar/pestle, and Bico Pulverizer, 3) sieving to the preferred size fraction (generally <250 um for detrital zircon samples, 63-125 um for igneous zircon samples), 4) heavy mineral concentration by decanting and panning, 5) magnetic separation using a Frantz isodynamic separater, 6) density separation with Lithium Polytungstate. These steps usually result in a sufficiently pure zircon separate. However, additional steps are sometimes required to further concentrate zircon. These steps include: 7) additional panning, 8) density separation with Methylene Iodide, 9) acid wash to dissolve pyrite. Once the mineral separate is sufficiently pure, zircon grains are mounted by pouring the detrital the zircon concentrate onto sticky tape or by picking for igneous zircon analysis.

Mounting:

Once the desired zircon separate is obtained, we mount the zircons in epoxy. This involves pressing double-sided sticky tape on a flat glass plate and placing (or pouring) the zircon grains and reference materials on the tape. Once grains are mounted, we submerge them en epoxy, which is contained by a 1" diameter plastic cylinder. After curing, the epoxy cylinder is removed from the sticky tape and ground/polished until the zircon interiors are exposed.

Imaging:

We image all zircon grains and standards prior to analysis by LA-ICP-MS. Our imaging protocol makes use of the Cameca SX-100 electron microprobe housed in the Earth and

Planetary Sciences department at UC Davis. We image the zircon grains using the 'high-gain' electron beam setting on the Cameca SX-100. By adjusting the brightness and contrast of the backscattered electron (BSE) image, the high gain beam reveals internal zoning structure of the zircon grains. Increasing the scan rate on these BSE images yields a high-resolution greyscale image of the zircon crystal and its internal zoning structure. For igneous or metamorphic zircon analyses, we image each individual crystal and use the high-resolution BSE images to choose our laser spots prior to analysis. We also use the Cameca SX-100 to measure the width of metamorphic growth rims, which helps us determine whether or not it will yield a reliable U-Pb date. For detrital analyses, we use the high-gain beam with a moderate scan rate. This approach still displays zoning features of the zircon grain interior, but at a decreased resolution, which allows imaging of an entire detrital mount in a reasonable timeframe (generally less than 1.5 hr). We image the detrital grain mounts using the 'Video map' feature of the Cameca SX-100. This feature images user-designated domains of the mount in series and then stiches the images together into a rasterized image of the entire grain mount. The end result is a moderate resolution, high contrast image of all grains on the 1" epoxy round. We print all zircon images for igneous, metamorphic, and detrital analyses prior to LA-ICP-MS analysis and mark the printed images during the laser session.

U-Pb zircon data collection with the Element2 HR ICPMS at the ALC:

U-Pb geochronology of zircons is conducted by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) at the Arizona LaserChron Center (ALC) (Gehrels et al., 2006, 2008; Gehrels and Pecha, 2014). The analyses involve ablation of zircon with a Photon Machines Analyte G2 excimer laser equipped with HelEx ablation cell using a spot diameter of 20 microns. The ablated material is carried in helium into the plasma source of an Element2 HR ICPMS,

which sequences rapidly through masses corresponding to U, Th, and Pb isotopes. Signal intensities are measured with an SEM that operates in pulse counting mode for signals less than 50K cps, in both pulse-counting and analog mode for signals between 50K and 5M cps, and in analog mode above 5M cps. The calibration between pulse-counting and analog signals is determined line-by-line for signals between 50K and 5M cps, and is applied to >5M cps signals. Four intensities are determined and averaged for each isotope, with dwell times that are listed in Table S1.1.

With the laser set at an energy density of ~ 5 J/cm2, a repetition rate of 8 hz, and an ablation time of 10 seconds, ablation pits are ~ 12 microns in depth. Sensitivity with these settings is approximately $\sim 5,000$ cps/ppm. Each analysis consists of 5 sec on peaks with the laser off (for backgrounds), 10 sec with the laser firing (for peak intensities), and a 20 second delay to purge the previous sample and save files.

Table S1.1: Instrument	settings and	data processing	at Arizona	LaserChron	Center
------------------------	--------------	-----------------	------------	------------	--------

Г

Analytical Settings for U-Pb Geochronology at the Arizona LaserChron Center (Element 2 Single Collector)											
Laboratory and Sample											
Preparation											
Laboratory name	Arizona LaserChron Center										
Sample type/mineral	Zircon										
Sample preparation	Conventional mineral separation, 1 inch epoxy mount, polished to 1-micron finish										
Imaging	Hitachi 3400N SEM with BSE and/or Cathodoluminesence										
Laser ablation system											
	Photon Machines Analyte G2 Excimer										
Make, Model, and type	laser										
Ablation cell and volume	HelEx ablation cell										
Laser wavelength	193 nm										

Pulse width	~8 ns
Energy density	~7 J/cm2
Repetition rate	8 Hz
Alation duration	10 s
Ablation pit depth/ablation rate	~12 microns & 0.8 microns/sec
Spot diameter nominal/actual	20 microns
Sampling mode/pattern	Spot
Carrier gas	Helium
	0.11 L/min He in inner cup, 0.29 L/min
Cell carrier gas flow	He in cell
ICP-MS instrument	
Make, Model, and type	Thermo Element2 HR ICPMS
Sample introduction	Ablation aerosol
RF power	1200 W
Make-up gas flow	0.8 L/min Ar
	Dual mode Secondary Electron
Detection system	Multiplier
	202Hg, 204(Hg+Pb), 206Pb, 207Pb,
Masses measured	208Pb, 232Th, 235U, 238U
	202=5.2, 204=7.8, 206=20.2, 207=28.4,
Dwell times (ms)	208=2.6, 232=2.6, 235=15.4, 238=10.4
Total integration time per output	202=1.5, 204=2.3, 206=5.9, 207=8.3,
data point (sec)	208=7.6, 232=7.6, 235=4.5, 238=3.0
Sensitivity as useful yield	~5000 cps/ppm
IC dead time	22 ns
Dete and ending	
Data processing	0
Gas blank	8 sec on-peak zero subtracted
Calibration strategy	Calculated as primary standard
Reference material information	Genreis et al. (2008)
Data processing package	Element
Used/Correction for LIEF	E2agecaic
Mass discrimination	Normalized to primary standard
	Common Pb correction based on
Common Dhaonnaction commonition	measured 206Pb/204 Pb and the
common PD correction, composition	assumed composition of common Pb based on Stacey and Kramers (1975)
	United the states and Kranners (1973)
	Uncertainties for individual analyses
Uncertainty level and propagation	propagated at 1-signia. Uncertainty of
Uncertainty level and propagation	pooled analyses propagated at 2-sigma.

Quality control/validation	FC-1 and R33 analyzed as secondary standards.
Other information	Primary and secondary standards mounted together with unknowns.
	Analytical methods described by Gehrels et al. (2008), Gehrels and Pecha (2014), and Pullen et al. (2018)

U-Pb data reduction methods at the ALC:

Following analysis, data reduction is performed with an in-house Python decoding routine and an Excel spreadsheet (E2agecalc) that:

1. Decodes .dat files from the Thermo software such individual intensities for measurement are available (routine written by John Hartman, University of Arizona)

2. Imports intensities and a sample name for each analysis

3. Calculates average intensities for each isotope (based on the sum of all counts while the laser

is firing)

4. Subtracts ²⁰⁴Hg from the 204 signal to yield ²⁰⁴Pb intensity (using natural ²⁰²Hg/²⁰⁴Hg of 4.3).

This Hg correction is not significant for most analyses because our Hg backgrounds are low

(generally ~150 cps at mass 204).

5. Performs a common Pb correction based on the measured ²⁰⁶Pb/²⁰⁴Pb and the assumed composition of common Pb based on Stacey and Kramers (1975)

6. Calculates measured 206/238, 206/207, and 208/232 ratios

7. Compares measured and known ratios for the three standards to determine fractionation factors for 206/238, 206/207, and 208/232. These correction factors are generally <5% for 206/238, <2% for 206/207, and <20% for 208/232.

8. Determines an overdispersion factor if the standard analyses show greater dispersion than expected from measurement uncertainties

9. Uses a sliding-window average to apply fractionation factors to unknowns (generally averaging 8 standard analyses)

10. Calculates fractionation-corrected 206/238, 206/207, and 208/232 ratios and ages for unknowns

11. Propagates measurement uncertainties for 206/238 and 208/232 that are based on the scatter about a regression of measured values. Uncertainties for 206/207 and 206/204 are based on the standard deviation of measured values since these ratios generally do not change during an analysis. The sum of this uncertainty and any overdispersion factor is reported as the internal (or measurement) uncertainty for each analysis. These uncertainties are reported at the 1-sigma level.

12. Calculates the down-hole slope of 206/238 to highlight analyses in which 206/238 is compromised due to heterogeneity in age (e.g., crossing an age boundary) or intersection of a fracture or inclusion.

13. Calculates concentrations of U and Th for unknowns based on the measured intensity and known concentrations of FC-1.

14. Calculates the external (systematic) uncertainties for 206/238, 206/207, and 208/232, which include contributions from (a) the scatter of standard analyses, (b) uncertainties in the ages of the standards, (c) uncertainties in the composition of common Pb, and (4) uncertainties in the decay constants for ²³⁵U and ²³⁸U.

15. Determines a "Best Age" for each analysis, which is generally the 206/238 age for <900 Ma ages and the 206/207 age for >900 Ma ages.

16. Provides preliminary filters that highlight analyses with $\geq 20\%$ discordance, $\geq 5\%$ reverse discordance, or $\geq 10\%$ internal (measurement) uncertainty.

17. Corrects 206/238U ages for U-Th disequilibrium. This has a significant impact only on very young (~<2 Ma) ages.

18. Calculates the radiation dosage that the analyzed portion of each zircon has experienced, assuming a value of 2.3 for the Th/U of the magma. This is plotted against 206/238 age to help identify Pb loss.

18. Creates a publication-ready datatable with concentrations, isotope ratios, and ages for unknowns.

U-Pb zircon data collection with the LA-Q-ICP-MS at UC Davis:

U-Pb geochronology of zircon is conducted by laser ablation quadrupole inductively coupled plasma mass spectrometry (LA-Q-ICP-MS) at UC Davis. The analyses involve ablation of zircon with a Photon Machines Analyte G2 excimer laser equipped with HelEx ablation cell using a spot diameter of 25 microns. The ablated material is carried in helium into the plasma source of an Agilent 7700 Series Q-ICP-MS, which sequences rapidly through masses corresponding to U, Th, Pb, and Hg isotopes. Dwell times for each of these masses are listed in Table S1.2.

Instrument settings on the LA-Q-ICP-MS system at UC Davis are based on a published calibration using nearly identical equipment (Matthews and Guest, 2017). Matthews and Guest (2017) used optical profilometry to measure a pit depth of ~12 um using the laser settings listed in Table S1.2. Since we used the instrument settings published by Matthews and Guest (2017), we infer that the analyses performed at UC Davis result in a laser pit depth of ~12 um. Uranium sensitivity with these settings is approximately ~230 cps/ppm, which we approximate using the

NIST 610 glass. Each analysis consists of 15 sec on peaks with the laser off (for backgrounds)

and 15 sec with the laser firing (for peak intensities),

T - h 0	
Laboratory &	
Sample Propagation	
Laboratory name	Dept. of Earth and Planetary Sciences, UC Davis
Sample type/mineral	Zircon U-Ph detrital and igneous
Sample preparation	Conventional mineral separation 1 inch resin mount 1 um polish
Sumple preparation	to finish
Imaging	BSE images Cameca SX-100 electron microprobe
Laser ablation	
system	
Make, Model & type	Photon Machines Analyte G2 Excimer Laser
Ablation cell &	HelEx ablation cell
volume	
Laser wavelength	193 nm
(nm)	
Pulse width (ns)	~8 ns
Fluence (J.cm ⁻²)	1.88 J.cm ⁻²
Repetition rate (Hz)	10 Hz
Ablation duration	15 s
(secs)	
Ablation pit depth /	\sim 12µm pit depth, inferred from Mathews and Guest (2017).
ablation rate	
Spot diameter (µm)	25 μ m / ~30 μ m, square aperture
nominal/actual	
Sampling mode /	Static spot ablation
pattern	
Carrier gas	Helium
Cell carrier gas flow	0.75
(l/min)	
ICP-MS	
Instrument	
Make, Model & type	Agilent //00 series Q-ICP-MS
Sample introduction	Ablation aerosol
RF power (W)	1350W
Make-up gas flow	1.1
(I/min)	Electron Multiplien
Detection system	Electron Multiplier
Masses measured	91, 201, 202, 204, 206 207, 235, 238

Table S1.2: Instrument settings and data processing at UC Davis

Integration time per	0.01, 0.01, 0.01, 0.03, 0.04, 0.07,
peak/dwell times (s);	0.015, 0.015, 0.02 s. In order of masses listed above.
quadrupole settling	
time between mass	
jumps	
Total integration	0.239 s
'Sensitivity' as	~230 cps/ppm U
useful yield	Estimated on NIST 610 glass
IC Dead time (ns)	
Data Processing	
Gas blank	15 second on-peak zero subtracted
Calibration strategy	FC-1 used as primary reference material, R-33 used as
	secondary/validation
Reference Material	FC-1 (Paces and Miller, 1993; Schmitz et al., 2003)
info	R-33 (Black et al. 2004)
Data processing	Iolite-Igor data reduction scheme based on methods of Patton et al,
package used /	(2010) and Petrus and Kamber (2012). Laser-Induced Elemental
Correction for LIEF	Fractionation correction assumes reference material and samples
	behave identically.
Mass discrimination	²⁰⁶ Pb/ ²³⁸ U additionally normalized to reference material
Common-Pb	No common-Pb correction applied to the data.
correction,	
composition and	
uncertainty	
Uncertainty level &	Ages are quoted at 2s absolute, propagation is by quadratic
propagation	addition. Reproducibility and age uncertainty of reference material
	are propagated where appropriate.
Quality control /	FC-1 and R-33 natural zircon reference materials
Validation	
Other information	

U-Pb data reduction methods at UC Davis:

Data from the Q-ICP-MS are imported into Igor Pro-Iolite and displayed as a time series. Integration periods for gas blanks (backgrounds), standards, and unknowns are selected manually. FC-1 (Paces and Miller, 1993; Schmitz et al., 2003) is used as the primary reference material and R-33 (Black et al., 2004) is used as a secondary reference. Estimates of elemental concentrations, and thus U/Th, are also determined using FC-1. Isotope ratios, dates, and associated uncertainties are calculated from the integrations using the $U_Pb_geochronology3$ data reduction scheme (Paton et al., 2010). After initial dates are calculated, we use the *Live Concordia* feature of the *VizualAge* data reduction scheme (Petrus and Kamber, 2012) to screen each integration period for discordance related to inclusions and/or mixed age domains (e.g., a spurious date resulting from ablating through a younger rim into an older core). If an analysis is found to be discordant apparently related to the aforementioned causes, we conservatively adjust the integration interval to obtain the most reliable date at reasonable uncertainty. Once screened, we export the data, 2s internal and external uncertainties, and elemental concentrations. We report our data using the datatable template suggested by Horstwood et al. (2016), which may be found at www.Plasmage.org.

It is important to convey that the Agilent 7700 Q-ICP-MS at UC Davis is not currently equipped with a Hg trap in the carrier gas line. This results in generally high background ²⁰⁴Hg. Although we monitor mass 204 (Hg + Pb) during analysis sessions, the elevated background 204 signal precludes determination of meaningful ²⁰⁴Pb/²⁰⁶Pb ratios. Thus, we do not apply any common Pb correction to the data. However, we do consider the 204 signal during integration periods. If the 204 signal is elevated above background levels during ablation of a zircon, it is likely indicating the presence of ²⁰⁴Pb. Due to the assumptions and high level of uncertainty that would be introduced by attempting to do a common Pb correction on such analyses, we reject analyses on grains that display elevated 204 relative to the background gas blank. Such rejections are uncommon.

Figure S1.1: Calibration of zircon reference materials ranging from 28.2 to 3465 Ma using the LA-Q-ICP-MS at UC Davis. All analyses were performed using the ablation settings described above. Each diamond represents multiple analyses on multiple grains (n=number of analyses) during a single session.

Data filtering methods:

We parsed the single grain dates from both labs using Tera-Wasserburg concordia diagrams, U/Th ratios, and zoning patterns.

Reverse discordance- Single grain analyses from some of our samples suffered from reverse discordance. Because the causes of reverse discordance are not well understood, but may result either from heterogeneous distribution of U- and Pb-rich zones in a crystal (Danisik et al., 2017), or the partial dissolution of U-rich zones by fluids (Mattinson et al., 1996), we filtered our U-Pb dates to exclude those which are reverse discordant and do not overlap within uncertainty of the concordia curve. The ²⁰⁶Pb/²³⁸U dates from the reverse discordant grains generally overlap with

²⁰⁶Pb/²³⁸U dates of concordant or normally discordant analyses. Yet, the ²⁰⁷Pb/²⁰⁶Pb ages are either very young, or in some cases, negative (i.e., future ages). Because the reverse discordant analyses come from samples that experienced upper greenschist to amphibolite facies conditions and several grains from these samples show textures indicating partial dissolution, we interpret the reverse discordant analyses as the result of interaction with corrosive fluids. Thus, we reject these analyses from the detrital population, despite the overlap in ²⁰⁶Pb/²³⁸U dates.

 \leq 900 Ma detrital grain dates are used in KDE plots if the ²⁰⁶Pb/²³⁸U date has an uncertainty (2s internal) of <10% and <u>either</u> of the following criteria are met:

- 1. The 2s internal uncertainty ellipse intersects the concordia curve on a Tera-Wasserburg diagram, allowing the concordia curve to account for decay constant uncertainties.
- 2. The date is discordant, but the ${}^{207}Pb/{}^{206}Pb$ date is <3 times the ${}^{206}Pb/{}^{238}U$ date.

≥900 Ma detrital grain dates are used in KDE plots if <u>both</u> of the following criteria are met:

- 1. The date is <5% reverse discordant
- 2. The date is <20% normally discordant

Dates are interpreted to record post-depositional metamorphic recrystallization if the grain was recovered from a metamorphic rock that experienced appropriate temperatures to recrystallize zircon (estimated petrographically using mineral assemblages) and <u>one or more</u> of the following criteria are met:

1. The date overlaps with the known age of cross cutting intrusive rocks within the map unit.

- The dated grain, or region of the grain, lacks internal zoning, which is suggestive of metamorphic recrystallization (Hoskin and Schaltegger, 2003).
- 3. The analysis targeted an overgrowth rim identified in BSE images.
- The U/Th ratio of the analysis is elevated (>20) and/or variable within the population of dates.

Dates (as part of a population) are used to calculate metamorphic or igneous ages if <u>all</u> of the following criteria are met:

- 1. The 2s internal uncertainty ellipse intersects the concordia curve on a Tera-Wasserburg diagram, allowing the concordia curve to account for decay constant uncertainties.
- 2. The ²⁰⁶Pb/²³⁸U date has <10% uncertainty (2s internal) (For igneous analyses only).
- 3. Isoplot does not reject the date during the weighted mean calculation.

For populations of igneous or metamorphic grain dates, ages are calculated using the weighted mean function in Isoplot (Ludwig, 2008). Following the protocol of Horstwood et al. (2016), only 2s internal uncertainties are used in the weighted mean calculation and systematic uncertainties are added quadratically to the internal uncertainty after the weighted mean is calculated. Uncertainties on igneous or metamorphic ages reported in the main text include both internal (included in weighted mean calculation) and systematic (added on after weighted mean calculation) unless otherwise indicated.

Maximum depositional ages are estimated to be the mean age of the youngest statistical population of detrital dates (Herriott et al., 2019).

Supplemental file S2

	1	
Sample Number	Latitude (°N)	Longitude (°E)
15ATW-06	63.3008	-146.1135
15ATW-07	63.3566	-146.0608
15ATW-29	63.3636	-146.0478
15ATW-41b	63.3611	-145.8608
15ATW-52	63.3546	-145.8297
15ATW-23	63.3555	-146.1111
16ATW-10	63.3300	-146.1733
16ATW-44b	63.3392	-146.1708
16ATW-77	63.3432	-146.1527
16ATW-86	63.3443	-146.1477

Table S2-1: Detrital zircon U-Pb sample locations

Table S2-2: Detrital zircon U-Pb data

Sample 15ATW06		Apparent ages (Ma)																	
Analysis	U	206Pb	U/Th	206Pb *	±	207Pb *	±	206Pb *	±	erro r	206Pb *	±	207Pb *	÷	206Pb *	±	Best	±	Conc
	(ppm)	204Pb		207Pb *	(%)	235U *	(%)	238U	(%)	corr	238U *	(Ma)	235U	(Ma)	207Pb *	(Ma)	(Ma)	(Ma)	(%)
-Spot 51	1541	36144	3.2	21.1	2.7	0.0	3.4	0.0	2.1	0.6	28.1	0.6	28.6	1.0	73.8	64.6	28.1	0.6	NA
-Spot 200	1169	12004	3.3	22.3	2.5	0.0	3.5	0.0	2.4	0.7	28.3	0.7	27.3	0.9	61.3	61.3	28.3	0.7	NA
-Spot 270	283	11593	3.9	21.4	6.1	0.0	6.6	0.0	2.7	0.4	28.3	0.7	28.5	1.9	37.6	145.7	28.3	0.7	NA
-Spot 304	101	1751	5.1	24.1	7.3	0.0	8.0	0.0	3.2	0.4	28.4	0.9	25.3	2.0	254.9	185.6	28.4	0.9	NA
-Spot 121	1398	28854	5.5	21.6	2.5	0.0	3.1	0.0	1.8	0.6	28.4	0.5	28.3	0.9	17.7	59.8	28.4	0.5	NA
-Spot 153	1622	39216	2.0	21.5	2.6	0.0	3.5	0.0	2.3	0.7	28.5	0.6	28.4	1.0	23.8	63.1	28.5	0.6	NA
-Spot 130	723	35424	6.3	20.8	3.2	0.0	3.7	0.0	1.8	0.5	28.5	0.5	29.4	1.1	102.5	75.2	28.5	0.5	NA
-Spot 72	721	16574	2.9	21.3	4.2	0.0	4.6	0.0	2.0	0.4	28.6	0.6	28.7	1.3	41.2	99.5	28.6	0.6	NA
-Spot 198	810	161507	2.1	21.3	2.3	0.0	2.8	0.0	1.7	0.6	28.7	0.5	28.9	0.8	48.3	54.5	28.7	0.5	NA
-Spot 12	882	67192	5.4	21.2	2.3	0.0	3.0	0.0	2.0	0.7	28.8	0.6	29.1	0.9	58.4	53.7	28.8	0.6	NA
-Spot 177	568	10428	3.1	21.2	5.2	0.0	5.6	0.0	2.0	0.4	28.8	0.6	29.2	1.6	58.4	124.7	28.8	0.6	NA
-Spot 210	259	8921	4.3	20.7	5.5	0.0	5.9	0.0	2.1	0.4	28.8	0.6	29.9	1.7	115.7	129.7	28.8	0.6	NA
-Spot 184	240	2371	4.7	17.0	7.7	0.0	8.1	0.0	2.3	0.3	28.9	0.7	36.4	2.9	565.5	168.7	28.9	0.7	NA
-Spot 142	756	22771	2.9	20.9	3.6	0.0	4.7	0.0	3.0	0.6	28.9	0.9	29.7	1.4	93.0	85.2	28.9	0.9	NA
-Spot 246	1202	40330	4.9	21.4	2.7	0.0	3.3	0.0	1.9	0.6	28.9	0.6	29.0	0.9	33.0	64.0	28.9	0.6	NA
-Spot 160	895	17165	3.9	21.6	4.0	0.0	4.6	0.0	2.2	0.5	28.9	0.6	28.8	1.3	16.3	96.4	28.9	0.6	NA
-Spot 14	1100	26984	2.0	21.6	3.0	0.0	3.8	0.0	2.3	0.6	29.0	0.7	28.7	1.1	8.2	72.1	29.0	0.7	NA
-Spot 256	1274	19318	2.2	22.0	3.5	0.0	4.4	0.0	2.7	0.6	29.0	0.8	28.3	1.2	26.3	84.9	29.0	0.8	NA
-Spot 48	423	46065	3.8	19.8	4.9	0.0	5.5	0.0	2.5	0.5	29.0	0.7	31.4	1.7	217.7	112.9	29.0	0.7	NA
-Spot 306	67	3307	3.7	20.3	10. 4	0.0	11.0	0.0	3.6	0.3	29.1	1.0	30.7	3.3	158.9	242.9	29.1	1.0	NA
-Spot 166	406	5951	5.2	21.8	4.4	0.0	4.9	0.0	2.2	0.4	29.1	0.6	28.6	1.4	14.5	106.0	29.1	0.6	NA

-Spot 107	450	35534	4.1	20.7	4.4	0.0	4.9	0.0	2.1	0.4	29.1	0.6	30.2	1.4	115.5	102.9	29.1	0.6	NA
-Spot 214	1328	98363	2.2	21.2	2.9	0.0	3.5	0.0	2.0	0.6	29.2	0.6	29.5	1.0	56.3	68.6	29.2	0.6	NA
-Spot 134	654	43205	3.1	21.8	3.8	0.0	4.4	0.0	2.3	0.5	29.2	0.7	28.7	1.3	9.5	91.1	29.2	0.7	NA
-Spot 29	732	144513	5.7	20.7	3.2	0.0	3.8	0.0	2.1	0.6	29.2	0.6	30.3	1.1	118.6	75.2	29.2	0.6	NA
-Spot 152	460	33342	3.8	21.5	4.9	0.0	5.3	0.0	2.0	0.4	29.2	0.6	29.2	1.5	29.0	116.4	29.2	0.6	NA
-Spot 185	536	16044	5.9	20.8	3.8	0.0	4.3	0.0	2.0	0.5	29.2	0.6	30.2	1.3	106.5	89.8	29.2	0.6	NA
-Spot 145	1416	30601	1.5	21.3	2.3	0.0	2.8	0.0	1.6	0.6	29.2	0.5	29.4	0.8	43.5	54.4	29.2	0.5	NA
-Spot 187	526	47457	3.9	20.5	5.2	0.0	5.6	0.0	2.1	0.4	29.2	0.6	30.5	1.7	133.6	123.1	29.2	0.6	NA
-Spot 141	1072	39728	4.6	21.2	2.6	0.0	3.2	0.0	1.9	0.6	29.2	0.5	29.5	0.9	55.1	62.5	29.2	0.5	NA
-Spot 28	911	16888	4.5	21.5	2.5	0.0	3.1	0.0	1.8	0.6	29.2	0.5	29.1	0.9	21.1	60.2	29.2	0.5	NA
-Spot 52	696	32467	7.8	21.4	3.0	0.0	3.6	0.0	2.0	0.5	29.2	0.6	29.3	1.0	32.5	72.0	29.2	0.6	NA
-Spot 82	252	3437	6.1	20.8	5.6	0.0	6.4	0.0	2.9	0.5	29.2	0.9	30.2	1.9	107.0	133.2	29.2	0.9	NA
-Spot 27	758	17071	3.6	21.4	4.1	0.0	5.0	0.0	2.7	0.5	29.3	0.8	29.4	1.4	39.6	99.2	29.3	0.8	NA
-Spot 11	818	33279	2.5	21.8	3.9	0.0	4.6	0.0	2.6	0.6	29.3	0.8	28.8	1.3	13.0	93.3	29.3	0.8	NA
-Spot 16	272	15882	3.4	21.0	6.5	0.0	6.9	0.0	2.3	0.3	29.3	0.7	29.9	2.0	80.7	154.4	29.3	0.7	NA
-Spot 26	825	24344	3.7	21.4	3.0	0.0	3.8	0.0	2.3	0.6	29.3	0.7	29.3	1.1	30.6	73.1	29.3	0.7	NA
-Spot 103	552	14347	4.3	21.5	4.4	0.0	4.8	0.0	1.8	0.4	29.3	0.5	29.3	1.4	24.7	106.6	29.3	0.5	NA
-Spot 193	672	8734	2.5	22.7	3.6	0.0	4.0	0.0	1.8	0.4	29.3	0.5	27.7	1.1	107.4	89.2	29.3	0.5	NA
-Spot 206	537	20981	3.5	21.5	3.9	0.0	4.5	0.0	2.2	0.5	29.3	0.7	29.3	1.3	25.4	94.0	29.3	0.7	NA
-Spot 204	446	10444	5.7	20.6	3.1	0.0	3.8	0.0	2.2	0.6	29.4	0.6	30.5	1.1	124.3	73.3	29.4	0.6	NA
-Spot 56	354	7823	3.2	21.4	5.8	0.0	6.5	0.0	3.0	0.5	29.4	0.9	29.5	1.9	38.9	137.7	29.4	0.9	NA
-Spot 291	1083	39717	5.0	21.3	2.9	0.0	3.4	0.0	1.9	0.5	29.4	0.5	29.6	1.0	44.9	68.3	29.4	0.5	NA
-Spot 8	1334	32318	4.2	21.4	2.6	0.0	3.5	0.0	2.3	0.7	29.4	0.7	29.5	1.0	40.4	62.6	29.4	0.7	NA
-Spot 131	857	20923	3.1	21.3	2.5	0.0	3.4	0.0	2.4	0.7	29.4	0.7	29.6	1.0	43.6	58.8	29.4	0.7	NA
-Spot 55	959	46814	7.4	21.2	3.1	0.0	3.6	0.0	1.8	0.5	29.4	0.5	29.7	1.1	55.6	74.4	29.4	0.5	NA
-Spot 305	216	13191	5.4	20.9	5.8	0.0	6.4	0.0	2.7	0.4	29.4	0.8	30.2	1.9	92.5	137.5	29.4	0.8	NA
-Spot 170	150	13663	6.5	19.6	6.9	0.0	7.5	0.0	3.0	0.4	29.5	0.9	32.2	2.4	242.5	158.9	29.5	0.9	NA
-Spot 269	704	9511	4.7	22.1	3.7	0.0	4.5	0.0	2.6	0.6	29.5	0.8	28.6	1.3	43.3	89.7	29.5	0.8	NA
-Spot 292	971	25053	2.3	21.8	2.8	0.0	3.6	0.0	2.2	0.6	29.5	0.6	29.1	1.0	6.6	67.4	29.5	0.6	NA
-Spot 91	566	20895	6.5	21.6	3.7	0.0	4.4	0.0	2.3	0.5	29.5	0.7	29.4	1.3	17.3	89.9	29.5	0.7	NA
-Spot 34	342	13952	5.7	21.3	5.5	0.0	6.2	0.0	2.7	0.4	29.5	0.8	29.7	1.8	48.8	132.2	29.5	0.8	NA
-Spot 132	1577	72499	9.6	20.7	2.7	0.0	3.3	0.0	1.9	0.6	29.5	0.6	30.6	1.0	114.2	62.8	29.5	0.6	NA
-Spot 167	348	3827	5.5	22.8	4.9	0.0	5.2	0.0	1.8	0.3	29.5	0.5	27.8	1.4	114.2	119.6	29.5	0.5	NA
-Spot 126	366	6071	3.9	22.0	5.3	0.0	5.5	0.0	1.7	0.3	29.5	0.5	28.8	1.6	33.6	127.8	29.5	0.5	NA
-Spot 146	580	17259	3.9	21.9	3.8	0.0	4.2	0.0	1.8	0.4	29.5	0.5	29.0	1.2	17.0	92.0	29.5	0.5	NA
-Spot 46	755	79171	5.7	22.1	4.5	0.0	5.2	0.0	2.5	0.5	29.5	0.7	28.7	1.5	38.8	109.9	29.5	0.7	NA
-Spot 100	506	7623	3.3	21.3	4.2	0.0	4.9	0.0	2.5	0.5	29.5	0.7	29.7	1.4	43.3	101.1	29.5	0.7	NA
-Spot 223	301	7247	5.1	21.0	5.4	0.0	5.7	0.0	1.9	0.3	29.6	0.6	30.1	1.7	77.5	129.0	29.6	0.6	NA
-Spot 42	501	15795	4.6	21.2	4.2	0.0	4.8	0.0	2.5	0.5	29.6	0.7	29.9	1.4	59.8	99.2	29.6	0.7	NA
-Spot 191	479	22150	2.5	20.8	4.0	0.0	4.7	0.0	2.4	0.5	29.6	0.7	30.5	1.4	108.1	95.3	29.6	0.7	NA

-Spot 138	398	24757	3.6	22.0	4.1	0.0	5.0	0.0	2.8	0.6	29.6	0.8	28.8	1.4	36.6	100.1	29.6	0.8	NA
-Spot 9	392	18417	5.0	21.7	4.1	0.0	4.6	0.0	2.2	0.5	29.6	0.7	29.2	1.3	1.5	97.9	29.6	0.7	NA
-Spot 290	411	18849	4.0	20.5	4.1	0.0	4.7	0.0	2.4	0.5	29.6	0.7	30.9	1.4	133.0	96.7	29.6	0.7	NA
-Spot 307	669	60937	10.5	21.2	3.1	0.0	4.0	0.0	2.6	0.6	29.6	0.8	29.9	1.2	52.8	74.6	29.6	0.8	NA
-Spot 20	1443	38618	7.6	21.2	2.9	0.0	3.6	0.0	2.2	0.6	29.6	0.7	30.0	1.1	62.7	67.9	29.6	0.7	NA
-Spot 231	124	15481	5.0	20.7	7.6	0.0	8.1	0.0	2.8	0.3	29.6	0.8	30.6	2.5	109.9	180.8	29.6	0.8	NA
-Spot 135	237	6605	4.0	21.3	6.3	0.0	6.9	0.0	2.9	0.4	29.6	0.9	29.8	2.0	47.4	150.4	29.6	0.9	NA
-Spot 195	448	12559	2.7	22.5	4.2	0.0	5.0	0.0	2.6	0.5	29.6	0.8	28.3	1.4	84.9	104.0	29.6	0.8	NA
-Spot 22	776	25769	7.0	20.7	2.6	0.0	3.2	0.0	1.7	0.5	29.6	0.5	30.7	1.0	115.0	62.1	29.6	0.5	NA
-Spot 267	713	16751	2.6	21.3	4.0	0.0	5.0	0.0	3.1	0.6	29.6	0.9	29.9	1.5	48.1	95.1	29.6	0.9	NA
-Spot 158	250	6943	3.6	22.3	5.0	0.0	5.8	0.0	3.0	0.5	29.6	0.9	28.5	1.6	67.8	121.3	29.6	0.9	NA
-Spot 119	195	25297	4.4	22.9	5.5	0.0	5.9	0.0	2.1	0.4	29.6	0.6	27.8	1.6	128.6	136.8	29.6	0.6	NA
-Spot 76	1342	28692	2.8	21.7	2.7	0.0	3.7	0.0	2.4	0.7	29.6	0.7	29.3	1.1	3.7	66.1	29.6	0.7	NA
-Spot 83	745	103708	4.6	20.9	3.9	0.0	4.4	0.0	2.1	0.5	29.6	0.6	30.4	1.3	92.3	92.3	29.6	0.6	NA
-Spot 168	647	11778	2.5	22.3	4.3	0.0	4.7	0.0	2.1	0.4	29.6	0.6	28.5	1.3	68.2	103.8	29.6	0.6	NA
-Spot 211	393	27745	3.5	21.1	4.2	0.0	4.9	0.0	2.5	0.5	29.7	0.7	30.1	1.4	67.4	100.2	29.7	0.7	NA
-Spot 118	397	9627	5.6	22.3	4.8	0.0	5.1	0.0	1.9	0.4	29.7	0.6	28.6	1.4	61.0	116.6	29.7	0.6	NA
-Spot 171	1352	30354	13.1	21.4	3.2	0.0	3.8	0.0	2.0	0.5	29.7	0.6	29.7	1.1	31.9	76.4	29.7	0.6	NA
-Spot 273	1047	29519	3.2	21.8	2.7	0.0	3.8	0.0	2.7	0.7	29.7	0.8	29.2	1.1	11.2	64.2	29.7	0.8	NA
-Spot 106	486	18570	5.8	21.4	4.1	0.0	4.8	0.0	2.5	0.5	29.7	0.7	29.8	1.4	38.4	97.7	29.7	0.7	NA
-Spot 278	422	4821	8.0	22.2	5.8	0.0	6.2	0.0	2.3	0.4	29.7	0.7	28.7	1.8	50.9	141.4	29.7	0.7	NA
-Spot 216	448	11319	4.6	21.8	4.5	0.0	5.4	0.0	3.1	0.6	29.7	0.9	29.2	1.6	7.6	108.4	29.7	0.9	NA
-Spot 102	513	23849	3.8	21.2	3.9	0.0	4.6	0.0	2.5	0.5	29.7	0.7	30.0	1.4	54.2	93.3	29.7	0.7	NA
-Spot 241	925	27179	3.2	21.7	3.4	0.0	4.1	0.0	2.3	0.6	29.7	0.7	29.4	1.2	4.7	82.8	29.7	0.7	NA
-Spot 225	422	3404	2.9	23.0	4.5	0.0	5.1	0.0	2.3	0.4	29.7	0.7	27.7	1.4	143.3	112.6	29.7	0.7	NA
-Spot 186	364	4060	3.0	21.8	5.3	0.0	5.8	0.0	2.4	0.4	29.7	0.7	29.3	1.7	8.6	127.3	29.7	0.7	NA
-Spot 144	859	24636	2.5	21.6	3.4	0.0	4.1	0.0	2.4	0.6	29.7	0.7	29.5	1.2	13.2	81.4	29.7	0.7	NA
-Spot 92	479	33440	2.9	21.4	3.7	0.0	4.1	0.0	1.8	0.4	29.8	0.5	29.8	1.2	35.7	88.5	29.8	0.5	NA
-Spot 300	320	11253	3.1	21.3	4.9	0.0	5.5	0.0	2.6	0.5	29.8	0.8	30.0	1.6	50.8	117.1	29.8	0.8	NA
-Spot 71	945	27972	3.1	21.3	2.4	0.0	3.0	0.0	1.8	0.6	29.8	0.5	30.0	0.9	45.3	57.1	29.8	0.5	NA
-Spot 111	1037	45876	3.5	21.2	2.2	0.0	3.0	0.0	2.1	0.7	29.8	0.6	30.1	0.9	59.0	51.9	29.8	0.6	NA
-Spot 60	747	36403	4.2	22.3	3.8	0.0	4.2	0.0	1.8	0.4	29.8	0.5	28.7	1.2	61.9	92.7	29.8	0.5	NA
-Spot 260	637	32800	3.0	22.0	3.8	0.0	4.4	0.0	2.2	0.5	29.8	0.7	29.0	1.3	32.2	93.0	29.8	0.7	NA
-Spot 196	549	18329	2.1	21.7	4.3	0.0	4.9	0.0	2.2	0.5	29.8	0.7	29.5	1.4	7.1	104.6	29.8	0.7	NA
-Spot 38	507	12218	5.7	22.1	5.2	0.0	5.6	0.0	2.1	0.4	29.8	0.6	29.0	1.6	39.9	127.6	29.8	0.6	NA
-Spot 202	449	10122	5.6	21.4	4.1	0.0	4.8	0.0	2.5	0.5	29.8	0.8	29.8	1.4	30.1	98.4	29.8	0.8	NA
-Spot 188	655	18715	5.2	21.6	4.2	0.0	4.6	0.0	1.9	0.4	29.8	0.6	29.7	1.4	17.5	101.4	29.8	0.6	NA
-Spot 297	802	14033	2.7	21.5	4.3	0.0	4.8	0.0	2.2	0.5	29.8	0.7	29.7	1.4	20.3	103.3	29.8	0.7	NA
-Spot 37	373	10238	4.6	22.8	4.8	0.0	5.3	0.0	2.2	0.4	29.8	0.7	28.0	1.5	122.9	118.7	29.8	0.7	NA
-Spot 86	336	5415	4.6	22.6	4.5	0.0	5.0	0.0	2.0	0.4	29.8	0.6	28.3	1.4	99.1	111.3	29.8	0.6	NA

-Spot 194	701	10131	3.3	21.8	3.1	0.0	3.7	0.0	2.0	0.5	29.8	0.6	29.4	1.1	9.8	75.5	29.8	0.6	NA
-Spot 262	727	16188	5.2	20.9	3.5	0.0	4.5	0.0	2.9	0.6	29.8	0.9	30.6	1.4	88.6	82.4	29.8	0.9	NA
-Spot 39	577	9563	3.4	21.8	4.2	0.0	4.6	0.0	1.9	0.4	29.8	0.6	29.3	1.3	13.5	101.4	29.8	0.6	NA
-Spot 289	180	3687	5.1	23.1	6.4	0.0	6.9	0.0	2.4	0.3	29.9	0.7	27.8	1.9	149.0	160.0	29.9	0.7	NA
-Spot 183	253	6757	6.3	22.4	5.8	0.0	6.5	0.0	2.9	0.4	29.9	0.9	28.6	1.8	79.9	142.1	29.9	0.9	NA
-Spot 81	260	3240	5.1	22.9	4.7	0.0	5.3	0.0	2.3	0.4	29.9	0.7	28.0	1.5	132.3	117.0	29.9	0.7	NA
-Spot 288	928	22564	5.4	21.1	3.5	0.0	4.0	0.0	2.1	0.5	29.9	0.6	30.4	1.2	68.5	82.4	29.9	0.6	NA
-Spot 7	375	25361	3.8	21.7	4.0	0.0	4.6	0.0	2.3	0.5	29.9	0.7	29.5	1.3	1.3	96.3	29.9	0.7	NA
-Spot 73	427	9769	6.1	22.1	3.9	0.0	4.3	0.0	1.9	0.4	29.9	0.6	29.0	1.2	42.8	93.9	29.9	0.6	NA
-Spot 212	452	8150	4.5	21.1	5.2	0.0	6.1	0.0	3.2	0.5	29.9	1.0	30.4	1.8	66.6	124.0	29.9	1.0	NA
-Spot 40	788	45310	3.1	21.5	3.6	0.0	4.1	0.0	2.0	0.5	29.9	0.6	29.8	1.2	22.8	86.5	29.9	0.6	NA
-Spot 2	447	17790	5.4	20.8	4.5	0.0	5.0	0.0	2.1	0.4	29.9	0.6	30.9	1.5	105.2	106.7	29.9	0.6	NA
-Spot 192	387	9446	2.7	21.1	4.9	0.0	5.3	0.0	2.1	0.4	29.9	0.6	30.4	1.6	69.6	117.2	29.9	0.6	NA
-Spot 137	314	18424	7.4	20.1	4.1	0.0	5.0	0.0	2.7	0.6	29.9	0.8	31.8	1.6	178.9	96.3	29.9	0.8	NA
-Spot 163	594	7644	4.2	22.9	4.5	0.0	5.2	0.0	2.5	0.5	30.0	0.7	28.1	1.4	124.5	111.5	30.0	0.7	NA
-Spot 189	356	20987	4.0	21.9	5.3	0.0	6.0	0.0	2.8	0.5	30.0	0.8	29.3	1.7	21.7	128.2	30.0	0.8	NA
-Spot 266	504	37066	3.3	20.0	5.2	0.0	5.8	0.0	2.6	0.4	30.0	0.8	32.0	1.8	190.9	120.3	30.0	0.8	NA
-Spot 159	456	5539	5.4	22.0	5.6	0.0	6.0	0.0	2.2	0.4	30.0	0.7	29.2	1.7	29.6	135.3	30.0	0.7	NA
-Spot 249	403	14310	4.0	21.3	4.6	0.0	5.3	0.0	2.6	0.5	30.0	0.8	30.2	1.6	49.0	109.8	30.0	0.8	NA
-Spot 99	482	39703	5.4	21.4	4.7	0.0	5.1	0.0	2.0	0.4	30.0	0.6	30.0	1.5	33.8	112.2	30.0	0.6	NA
-Spot 257	312	16185	3.7	22.4	5.2	0.0	5.9	0.0	2.8	0.5	30.0	0.8	28.7	1.7	76.4	127.4	30.0	0.8	NA
-Spot 301	505	48007	3.3	20.8	4.3	0.0	4.9	0.0	2.2	0.5	30.0	0.7	30.9	1.5	99.0	102.1	30.0	0.7	NA
-Spot 54	860	18371	6.2	21.2	3.9	0.0	4.5	0.0	2.2	0.5	30.0	0.7	30.3	1.3	55.9	92.9	30.0	0.7	NA
-Spot 66	537	12063	7.5	22.0	3.5	0.0	4.0	0.0	1.9	0.5	30.0	0.6	29.2	1.1	34.5	84.0	30.0	0.6	NA
-Spot 235	725	41211	3.7	21.4	3.9	0.0	4.9	0.0	3.0	0.6	30.0	0.9	30.0	1.5	31.2	93.8	30.0	0.9	NA
-Spot 261	693	39065	4.1	21.1	4.0	0.0	4.4	0.0	1.9	0.4	30.0	0.6	30.5	1.3	73.2	94.7	30.0	0.6	NA
-Spot 10	592	16361	4.5	21.0	3.2	0.0	4.2	0.0	2.7	0.6	30.0	0.8	30.6	1.3	80.2	76.2	30.0	0.8	NA
-Spot 176	408	14340	3.1	21.3	4.5	0.0	5.0	0.0	2.1	0.4	30.0	0.6	30.3	1.5	49.7	108.4	30.0	0.6	NA
-Spot 59	464	29471	3.4	20.7	4.3	0.0	5.0	0.0	2.4	0.5	30.0	0.7	31.1	1.5	111.4	102.5	30.0	0.7	NA
-Spot 218	404	12552	5.0	21.2	4.3	0.0	4.9	0.0	2.2	0.5	30.0	0.7	30.4	1.5	62.7	102.7	30.0	0.7	NA
-Spot 25	423	29846	2.4	20.3	4.6	0.0	5.5	0.0	3.1	0.6	30.0	0.9	31.7	1.7	162.5	107.7	30.0	0.9	NA
-Spot 255	361	50442	4.3	20.3	5.0	0.0	5.4	0.0	2.2	0.4	30.0	0.7	31.7	1.7	158.2	116.4	30.0	0.7	NA
-Spot 116	593	21466	5.9	20.6	3.0	0.0	3.9	0.0	2.4	0.6	30.0	0.7	31.3	1.2	131.3	70.7	30.0	0.7	NA
-Spot 128	715	26763	4.2	21.4	3.9	0.0	4.5	0.0	2.2	0.5	30.0	0.6	30.1	1.3	35.9	94.1	30.0	0.6	NA
-Spot 180	265	16398	2.4	21.5	5.7	0.0	6.3	0.0	2.7	0.4	30.0	0.8	30.0	1.9	27.0	137.2	30.0	0.8	NA
-Spot 303	568	123511	4.4	21.0	3.9	0.0	4.4	0.0	2.1	0.5	30.0	0.6	30.7	1.3	81.1	92.9	30.0	0.6	NA
-Spot 268	1101	24535	3.1	21.2	2.8	0.0	3.5	0.0	2.0	0.6	30.0	0.6	30.4	1.0	58.5	66.7	30.0	0.6	NA
-Spot 150	465	7143	4.5	21.4	4.6	0.0	5.1	0.0	2.2	0.4	30.1	0.7	30.1	1.5	36.3	109.2	30.1	0.7	NA
-Spot 203	624	38610	4.8	21.9	4.8	0.0	5.2	0.0	2.0	0.4	30.1	0.6	29.4	1.5	20.8	115.4	30.1	0.6	NA
-Spot 182	734	29134	5.5	21.3	3.3	0.0	3.9	0.0	2.0	0.5	30.1	0.6	30.3	1.2	48.8	79.5	30.1	0.6	NA

-Spot 68	483	9385	4.2	22.0	3.9	0.0	4.3	0.0	1.7	0.4	30.1	0.5	29.4	1.2	29.0	94.3	30.1	0.5	NA
-Spot 313	251	22789	3.8	21.1	4.9	0.0	5.2	0.0	1.9	0.4	30.1	0.6	30.6	1.6	72.7	115.6	30.1	0.6	NA
-Spot 284	484	21975	4.1	22.9	4.3	0.0	4.8	0.0	2.2	0.5	30.1	0.6	28.2	1.3	128.1	105.5	30.1	0.6	NA
-Spot 285	584	18566	3.9	21.2	3.8	0.0	4.5	0.0	2.3	0.5	30.1	0.7	30.4	1.3	59.1	90.8	30.1	0.7	NA
-Spot 94	217	9824	4.2	21.6	5.0	0.0	5.6	0.0	2.5	0.4	30.1	0.8	30.0	1.7	18.1	120.5	30.1	0.8	NA
-Spot 287	552	31428	5.6	22.1	4.4	0.0	4.9	0.0	2.2	0.5	30.1	0.7	29.2	1.4	43.0	107.2	30.1	0.7	NA
-Spot 240	640	8941	2.4	21.0	5.1	0.0	6.0	0.0	3.2	0.5	30.1	1.0	30.8	1.8	80.4	120.9	30.1	1.0	NA
-Spot 65	909	69411	3.9	21.4	3.5	0.0	3.8	0.0	1.6	0.4	30.1	0.5	30.2	1.1	32.8	83.3	30.1	0.5	NA
-Spot 23	334	14764	3.2	21.0	5.1	0.0	5.5	0.0	1.9	0.3	30.1	0.6	30.8	1.7	82.9	121.7	30.1	0.6	NA
-Spot 314	679	23196	4.9	21.6	3.1	0.0	4.0	0.0	2.6	0.6	30.1	0.8	30.0	1.2	17.3	74.7	30.1	0.8	NA
-Spot 197	591	11498	4.2	21.7	4.0	0.0	4.4	0.0	1.8	0.4	30.1	0.6	29.8	1.3	3.6	95.2	30.1	0.6	NA
-Spot 47	458	4851	6.7	22.5	4.2	0.0	4.9	0.0	2.4	0.5	30.2	0.7	28.8	1.4	84.4	103.3	30.2	0.7	NA
-Spot 125	689	94146	6.9	21.2	3.7	0.0	4.3	0.0	2.2	0.5	30.2	0.7	30.5	1.3	57.5	89.3	30.2	0.7	NA
-Spot 224	481	7910	3.2	22.5	4.1	0.0	4.6	0.0	2.1	0.5	30.2	0.6	28.7	1.3	89.6	101.0	30.2	0.6	NA
-Spot 178	326	5457	3.7	21.4	5.3	0.0	5.7	0.0	2.1	0.4	30.2	0.6	30.2	1.7	32.0	126.9	30.2	0.6	NA
-Spot 248	717	8956	4.9	20.8	5.8	0.0	6.4	0.0	2.7	0.4	30.2	0.8	31.1	2.0	105.9	136.3	30.2	0.8	NA
-Spot 149	492	19111	4.8	22.7	4.3	0.0	4.9	0.0	2.4	0.5	30.2	0.7	28.6	1.4	102.6	104.6	30.2	0.7	NA
-Spot 140	851	22680	4.6	20.7	3.7	0.0	4.3	0.0	2.2	0.5	30.2	0.7	31.3	1.3	116.6	87.0	30.2	0.7	NA
-Spot 143	415	10651	6.2	21.5	4.1	0.0	4.9	0.0	2.7	0.6	30.2	0.8	30.1	1.5	19.6	98.2	30.2	0.8	NA
-Spot 97	303	5647	4.9	23.2	3.8	0.0	4.4	0.0	2.2	0.5	30.2	0.7	27.9	1.2	165.4	93.6	30.2	0.7	NA
-Spot 120	759	11104	7.1	21.3	3.7	0.0	4.4	0.0	2.3	0.5	30.2	0.7	30.5	1.3	48.6	89.2	30.2	0.7	NA
-Spot 13	316	10843	3.3	19.2	6.7	0.0	7.6	0.0	3.4	0.5	30.2	1.0	33.7	2.5	285.5	154.4	30.2	1.0	NA
-Spot 201	495	15375	4.0	21.6	4.0	0.0	4.4	0.0	1.9	0.4	30.2	0.6	30.0	1.3	11.1	96.3	30.2	0.6	NA
-Spot 222	551	14070	2.6	21.5	4.5	0.0	4.9	0.0	2.0	0.4	30.3	0.6	30.2	1.5	22.6	107.9	30.3	0.6	NA
-Spot 64	358	13119	3.9	22.2	5.5	0.0	6.0	0.0	2.4	0.4	30.3	0.7	29.2	1.7	56.3	133.4	30.3	0.7	NA
-Spot 254	454	9051	3.4	22.0	5.4	0.0	6.1	0.0	2.8	0.5	30.3	0.8	29.5	1.8	35.8	130.4	30.3	0.8	NA
-Spot 239	736	16442	2.4	22.2	3.5	0.0	4.0	0.0	2.1	0.5	30.3	0.6	29.2	1.2	58.2	84.7	30.3	0.6	NA
-Spot 53	582	67671	1.7	22.4	3.9	0.0	5.1	0.0	3.3	0.6	30.3	1.0	29.0	1.5	75.5	96.2	30.3	1.0	NA
-Spot 294	782	63931	8.0	19.8	3.4	0.0	4.0	0.0	2.0	0.5	30.3	0.6	32.8	1.3	217.2	78.8	30.3	0.6	NA
-Spot 190	329	8428	4.6	21.1	4.5	0.0	5.2	0.0	2.5	0.5	30.3	0.8	30.8	1.6	70.3	108.0	30.3	0.8	NA
-Spot 161	483	9497	4.5	21.3	4.1	0.0	4.5	0.0	2.0	0.4	30.3	0.6	30.5	1.4	43.9	97.8	30.3	0.6	NA
-Spot 62	471	9509	3.1	21.6	3.9	0.0	4.4	0.0	2.0	0.5	30.3	0.6	30.1	1.3	9.3	95.0	30.3	0.6	NA
-Spot 77	414	14571	4.9	21.5	4.6	0.0	5.2	0.0	2.4	0.5	30.4	0.7	30.2	1.5	19.6	109.3	30.4	0.7	NA
-Spot 70	446	13389	4.3	22.0	3.9	0.0	4.6	0.0	2.5	0.5	30.4	0.8	29.6	1.3	35.4	94.3	30.4	0.8	NA
-Spot 115	457	9849	3.5	21.3	4.4	0.0	4.8	0.0	1.9	0.4	30.4	0.6	30.5	1.4	42.7	105.1	30.4	0.6	NA
-Spot 105	1044	57658	2.2	20.8	2.6	0.0	3.1	0.0	1.6	0.5	30.4	0.5	31.3	0.9	103.8	61.5	30.4	0.5	NA
-Spot 282	759	18865	1.9	21.3	3.1	0.0	4.1	0.0	2.7	0.7	30.4	0.8	30.5	1.2	42.0	74.2	30.4	0.8	NA
-Spot 164	330	5705	2.3	20.7	5.6	0.0	5.9	0.0	2.0	0.3	30.4	0.6	31.5	1.8	119.3	131.9	30.4	0.6	NA
-Spot 302	528	12442	4.9	22.5	4.1	0.0	4.6	0.0	2.2	0.5	30.4	0.7	29.0	1.3	89.0	100.0	30.4	0.7	NA
-Spot 98	645	14903	4.6	21.2	4.3	0.0	4.8	0.0	2.2	0.5	30.4	0.7	30.7	1.5	54.9	101.9	30.4	0.7	NA
-Spot 156	663	25052	4.5	22.1	3.9	0.0	4.2	0.0	1.5	0.4	30.4	0.5	29.5	1.2	47.1	94.5	30.4	0.5	NA
-----------	------	-------	------	------	-----	-----	-----	-----	-----	-----	------	-----	------	-----	-------	-------	------	-----	----
-Spot 209	694	17266	2.8	22.0	4.2	0.0	5.2	0.0	3.0	0.6	30.4	0.9	29.7	1.5	30.9	102.9	30.4	0.9	NA
-Spot 109	311	14131	5.7	20.9	5.8	0.0	6.1	0.0	1.9	0.3	30.4	0.6	31.2	1.9	88.1	137.6	30.4	0.6	NA
-Spot 57	550	37423	3.6	21.7	4.5	0.0	5.0	0.0	2.1	0.4	30.4	0.6	30.0	1.5	1.6	109.2	30.4	0.6	NA
-Spot 1	949	32297	6.8	21.3	3.3	0.0	4.0	0.0	2.3	0.6	30.4	0.7	30.6	1.2	44.5	79.3	30.4	0.7	NA
-Spot 217	204	4645	5.7	23.1	5.8	0.0	6.3	0.0	2.5	0.4	30.4	0.7	28.3	1.8	149.3	144.0	30.4	0.7	NA
-Spot 227	629	15813	2.4	21.4	4.0	0.0	4.4	0.0	1.7	0.4	30.5	0.5	30.5	1.3	34.7	96.3	30.5	0.5	NA
-Spot 309	854	17025	8.2	20.9	3.7	0.0	4.4	0.0	2.4	0.5	30.5	0.7	31.3	1.3	96.0	87.4	30.5	0.7	NA
-Spot 101	488	18639	4.9	21.0	3.8	0.0	4.4	0.0	2.3	0.5	30.5	0.7	31.1	1.3	81.8	89.7	30.5	0.7	NA
-Spot 233	424	11975	3.2	21.9	3.5	0.0	4.0	0.0	1.9	0.5	30.5	0.6	29.8	1.2	25.6	85.8	30.5	0.6	NA
-Spot 84	804	25986	3.1	21.4	3.5	0.0	4.5	0.0	2.9	0.6	30.5	0.9	30.5	1.4	34.2	83.6	30.5	0.9	NA
-Spot 147	510	13774	5.9	21.4	3.8	0.0	4.1	0.0	1.7	0.4	30.5	0.5	30.5	1.2	33.1	90.6	30.5	0.5	NA
-Spot 95	363	41477	4.0	21.0	3.7	0.0	4.4	0.0	2.3	0.5	30.5	0.7	31.1	1.3	78.7	88.3	30.5	0.7	NA
-Spot 226	362	12190	3.6	21.2	5.1	0.0	5.5	0.0	2.1	0.4	30.6	0.6	30.9	1.7	52.5	122.4	30.6	0.6	NA
-Spot 78	1038	47834	1.8	21.0	2.5	0.0	3.2	0.0	2.0	0.6	30.6	0.6	31.2	1.0	77.6	59.9	30.6	0.6	NA
-Spot 49	318	11703	2.5	22.4	5.7	0.0	6.1	0.0	2.1	0.3	30.6	0.7	29.3	1.8	76.0	140.3	30.6	0.7	NA
-Spot 265	356	15587	4.8	21.4	5.6	0.0	6.6	0.0	3.3	0.5	30.6	1.0	30.8	2.0	40.8	135.0	30.6	1.0	NA
-Spot 174	118	25790	4.5	20.2	7.6	0.0	8.1	0.0	2.9	0.4	30.6	0.9	32.5	2.6	169.0	177.8	30.6	0.9	NA
-Spot 298	708	20512	3.9	20.7	4.0	0.0	4.8	0.0	2.7	0.6	30.7	0.8	31.7	1.5	111.0	94.1	30.7	0.8	NA
-Spot 33	356	8133	6.6	21.8	5.7	0.0	6.6	0.0	3.4	0.5	30.7	1.1	30.1	2.0	11.5	136.9	30.7	1.1	NA
-Spot 310	389	7529	3.9	21.9	4.8	0.0	5.1	0.0	1.9	0.4	30.7	0.6	30.1	1.5	17.0	115.0	30.7	0.6	NA
-Spot 63	328	6546	4.9	22.1	4.3	0.0	4.9	0.0	2.3	0.5	30.7	0.7	29.8	1.4	40.1	104.6	30.7	0.7	NA
-Spot 61	198	8713	5.2	22.0	5.7	0.0	6.1	0.0	2.1	0.3	30.7	0.6	29.9	1.8	32.3	138.2	30.7	0.6	NA
-Spot 274	326	18273	4.3	20.6	4.6	0.0	5.4	0.0	2.7	0.5	30.7	0.8	32.0	1.7	128.8	108.7	30.7	0.8	NA
-Spot 229	296	29973	2.7	21.1	4.7	0.0	6.2	0.0	4.0	0.7	30.7	1.2	31.2	1.9	66.8	111.8	30.7	1.2	NA
-Spot 272	281	21343	5.0	21.2	4.9	0.0	5.6	0.0	2.7	0.5	30.7	0.8	31.0	1.7	54.8	117.1	30.7	0.8	NA
-Spot 169	139	2401	4.6	21.9	7.5	0.0	8.0	0.0	2.8	0.4	30.8	0.9	30.1	2.4	19.2	180.9	30.8	0.9	NA
-Spot 230	893	25180	2.8	21.2	3.0	0.0	3.7	0.0	2.2	0.6	30.8	0.7	31.1	1.1	60.4	71.9	30.8	0.7	NA
-Spot 133	400	11266	3.9	21.6	4.4	0.0	5.4	0.0	3.0	0.6	30.8	0.9	30.5	1.6	11.4	106.6	30.8	0.9	NA
-Spot 232	237	24097	4.0	21.7	5.8	0.0	6.4	0.0	2.7	0.4	30.8	0.8	30.4	1.9	2.9	139.6	30.8	0.8	NA
-Spot 90	397	6242	3.2	23.0	4.4	0.0	5.1	0.0	2.6	0.5	30.8	0.8	28.7	1.4	142.3	108.9	30.8	0.8	NA
-Spot 250	127	8954	3.8	22.2	7.3	0.0	8.0	0.0	3.3	0.4	30.8	1.0	29.8	2.3	48.5	177.0	30.8	1.0	NA
-Spot 15	391	7366	11.6	21.7	4.4	0.0	4.9	0.0	2.1	0.4	30.8	0.6	30.4	1.5	3.0	107.3	30.8	0.6	NA
-Spot 199	425	13238	2.6	21.4	4.5	0.0	5.6	0.0	3.4	0.6	30.8	1.1	30.8	1.7	30.7	107.5	30.8	1.1	NA
-Spot 117	320	8146	3.4	22.2	4.5	0.0	5.1	0.0	2.4	0.5	30.9	0.8	29.9	1.5	48.0	109.2	30.9	0.8	NA
-Spot 245	361	6485	4.3	21.7	5.6	0.0	6.1	0.0	2.5	0.4	30.9	0.8	30.5	1.8	3.5	133.8	30.9	0.8	NA
-Spot 124	355	41164	4.7	21.0	4.6	0.0	5.2	0.0	2.5	0.5	30.9	0.8	31.6	1.6	85.5	108.3	30.9	0.8	NA
-Spot 154	401	7627	3.8	22.2	4.7	0.0	5.5	0.0	2.8	0.5	31.0	0.9	30.0	1.6	49.2	114.7	31.0	0.9	NA
-Spot 295	234	4563	4.1	20.9	5.3	0.0	6.0	0.0	2.8	0.5	31.0	0.9	31.8	1.9	95.0	126.7	31.0	0.9	NA
-Spot 87	297	11437	4.8	21.0	5.7	0.0	6.0	0.0	2.0	0.3	31.0	0.6	31.7	1.9	84.1	134.3	31.0	0.6	NA

-Spot 155	335	23259	6.7	21.6	4.6	0.0	5.2	0.0	2.5	0.5	31.0	0.8	30.8	1.6	14.9	109.5	31.0	0.8	NA
-Spot 276	230	35473	7.6	20.8	5.2	0.0	5.9	0.0	2.8	0.5	31.0	0.9	32.0	1.9	107.5	122.3	31.0	0.9	NA
-Spot 162	599	23598	3.5	21.7	3.7	0.0	4.3	0.0	2.2	0.5	31.0	0.7	30.7	1.3	1.4	89.7	31.0	0.7	NA
-Spot 30	377	4863	3.0	22.4	5.1	0.0	5.6	0.0	2.4	0.4	31.0	0.7	29.7	1.6	74.0	123.7	31.0	0.7	NA
-Spot 127	170	46194	7.2	22.0	5.8	0.0	6.6	0.0	3.1	0.5	31.1	1.0	30.2	2.0	36.1	140.1	31.1	1.0	NA
-Spot 113	782	8825	4.8	22.7	3.2	0.0	3.7	0.0	1.8	0.5	31.1	0.6	29.4	1.1	104.8	78.3	31.1	0.6	NA
-Spot 228	620	43220	1.9	20.0	3.4	0.0	4.4	0.0	2.8	0.6	31.1	0.9	33.3	1.4	192.5	79.4	31.1	0.9	NA
-Spot 17	575	16226	4.6	21.3	3.7	0.0	4.4	0.0	2.3	0.5	31.1	0.7	31.3	1.4	46.2	88.8	31.1	0.7	NA
-Spot 129	465	7725	3.9	23.3	3.1	0.0	3.5	0.0	1.7	0.5	31.1	0.5	28.7	1.0	170.2	77.4	31.1	0.5	NA
-Spot 74	229	16218	3.5	19.9	6.3	0.0	6.8	0.0	2.7	0.4	31.2	0.8	33.6	2.2	210.6	145.1	31.2	0.8	NA
-Spot 312	268	21741	4.4	21.1	4.1	0.0	4.9	0.0	2.7	0.5	31.2	0.8	31.8	1.5	73.2	97.4	31.2	0.8	NA
-Spot 213	252	3811	4.1	23.2	5.1	0.0	5.9	0.0	2.9	0.5	31.2	0.9	29.0	1.7	156.7	127.3	31.2	0.9	NA
-Spot 311	425	10256	6.6	22.3	4.4	0.0	4.9	0.0	2.2	0.4	31.3	0.7	30.1	1.5	66.7	107.9	31.3	0.7	NA
-Spot 79	402	6532	4.0	22.3	4.4	0.0	5.1	0.0	2.6	0.5	31.3	0.8	30.1	1.5	66.4	107.7	31.3	0.8	NA
-Spot 286	687	32031	2.6	21.6	3.5	0.0	4.5	0.0	2.9	0.6	31.5	0.9	31.3	1.4	15.4	84.1	31.5	0.9	NA
-Spot 58	561	31914	4.4	22.2	3.7	0.0	4.4	0.0	2.2	0.5	31.5	0.7	30.4	1.3	55.6	91.3	31.5	0.7	NA
-Spot 279	646	87817	3.3	21.0	3.9	0.0	5.0	0.0	3.1	0.6	31.6	1.0	32.3	1.6	83.9	93.4	31.6	1.0	NA
-Spot 4	160	34438	4.7	20.5	6.6	0.0	7.8	0.0	4.3	0.5	31.6	1.4	33.0	2.5	132.5	154.3	31.6	1.4	NA
-Spot 251	234	4193	3.5	22.6	6.2	0.0	7.1	0.0	3.4	0.5	31.6	1.1	30.0	2.1	99.5	151.7	31.6	1.1	NA
-Spot 299	433	13666	3.7	20.9	5.0	0.0	5.4	0.0	2.0	0.4	31.6	0.6	32.4	1.7	88.1	118.0	31.6	0.6	NA
-Spot 85	318	6156	6.0	23.1	5.7	0.0	6.2	0.0	2.4	0.4	31.7	0.8	29.5	1.8	151.5	142.5	31.7	0.8	NA
-Spot 88	397	23643	3.9	19.2	5.7	0.0	6.1	0.0	2.2	0.4	31.8	0.7	35.4	2.1	285.9	129.8	31.8	0.7	NA
-Spot 175	464	21116	3.7	23.0	4.3	0.0	9.1	0.0	8.1	0.9	31.9	2.6	29.7	2.7	142.6	107.0	31.9	2.6	NA
-Spot 172	340	5497	4.5	23.2	5.1	0.0	9.5	0.0	8.0	0.8	32.0	2.6	29.7	2.8	159.1	126.5	32.0	2.6	NA
-Spot 280	98	2247	6.5	22.1	8.2	0.0	8.9	0.0	3.6	0.4	32.2	1.1	31.3	2.7	36.9	199.0	32.2	1.1	NA
-Spot 3	312	12486	4.3	21.4	5.1	0.0	5.6	0.0	2.3	0.4	32.4	0.8	32.3	1.8	31.5	122.0	32.4	0.8	NA
-Spot 264	809	109383	6.7	20.7	2.8	0.0	3.7	0.0	2.4	0.6	32.4	0.8	33.5	1.2	113.8	65.8	32.4	0.8	NA
-Spot 271	493	11864	4.6	21.7	3.3	0.0	4.2	0.0	2.6	0.6	32.4	0.8	32.1	1.3	6.6	79.2	32.4	0.8	NA
-Spot 263	155	11733	5.8	21.5	7.1	0.0	7.4	0.0	2.3	0.3	32.6	0.7	32.5	2.4	26.2	169.5	32.6	0.7	NA
-Spot 236	201	6035	3.9	21.1	6.4	0.0	6.9	0.0	2.5	0.4	32.9	0.8	33.5	2.3	74.0	153.1	32.9	0.8	NA
-Spot 157	343	19430	1.7	19.3	5.0	0.0	5.9	0.0	3.0	0.5	33.5	1.0	37.2	2.1	278.0	115.2	33.5	1.0	NA
-Spot 252	320	39120	6.0	21.0	5.0	0.0	5.5	0.0	2.3	0.4	47.2	1.1	47.7	2.5	75.7	118.0	47.2	1.1	NA
-Spot 293	194	6114	3.6	21.6	4.9	0.1	5.2	0.0	1.7	0.3	73.7	1.3	71.8	3.6	9.0	117.4	73.7	1.3	NA
-Spot 93	797	27775	2.8	20.7	1.9	0.1	3.1	0.0	2.5	0.8	97.6	2.4	98.4	2.9	116.4	45.9	97.6	2.4	NA
-Spot 112	175	36583	2.6	20.9	3.0	0.1	3.8	0.0	2.3	0.6	123.5	2.8	121.8	4.3	89.3	70.8	123.5	2.8	NA
-Spot 41	95	17436	5.4	20.1	4.6	0.1	4.9	0.0	1.9	0.4	127.8	2.4	130.9	6.1	186.8	106.0	127.8	2.4	NA
-Spot 50	186	29219	7.0	21.1	3.2	0.1	3.9	0.0	2.3	0.6	137.1	3.1	133.4	4.9	68.2	75.5	137.1	3.1	NA
-Spot 165	1172	88192	2.0	20.4	1.5	0.1	2.6	0.0	2.1	0.8	140.6	2.9	140.9	3.4	146.4	34.5	140.6	2.9	NA
-Spot 80	374	21383	6.2	20.5	1.9	0.1	3.1	0.0	2.4	0.8	141.4	3.4	141.0	4.0	133.9	44.8	141.4	3.4	NA
-Spot 32	277	17854	10.9	21.2	2.7	0.1	3.2	0.0	1.6	0.5	142.3	2.3	137.5	4.1	55.5	64.7	142.3	2.3	NA

-Spot 205	118	7242	12.8	21.1	4.0	0.1	4.5	0.0	2.2	0.5	142.6	3.1	138.7	5.9	72.7	93.9	142.6	3.1	NA
-Spot 96	198	21062	20.1	20.6	3.9	0.2	4.3	0.0	1.9	0.4	144.4	2.7	143.2	5.7	121.8	91.0	144.4	2.7	NA
-Spot 108	226	33944	9.7	20.3	3.3	0.2	4.0	0.0	2.2	0.6	145.7	3.2	146.7	5.4	163.6	76.6	145.7	3.2	NA
-Spot 5	495	104218	2.4	20.5	2.1	0.2	2.8	0.0	1.9	0.7	146.3	2.7	145.7	3.8	135.8	48.7	146.3	2.7	NA
-Spot 253	322	39402	2.4	20.3	2.0	0.2	3.1	0.0	2.4	0.8	146.5	3.4	147.3	4.3	160.2	47.3	146.5	3.4	NA
-Spot 139	575	64826	2.5	20.0	2.1	0.2	2.8	0.0	1.8	0.7	147.2	2.7	149.8	3.9	191.3	49.1	147.2	2.7	NA
-Spot 67	69	7250	10.9	19.6	5.1	0.2	5.6	0.0	2.5	0.4	147.3	3.6	153.1	8.0	243.7	117.2	147.3	3.6	NA
-Spot 277	261	28864	8.5	19.8	2.5	0.2	3.6	0.0	2.6	0.7	148.1	3.7	152.0	5.1	214.3	58.6	148.1	3.7	NA
-Spot 208	465	61577	12.1	20.3	2.2	0.2	3.0	0.0	2.0	0.7	148.5	2.9	149.0	4.1	156.4	51.8	148.5	2.9	NA
-Spot 104	628	44432	5.0	19.4	1.8	0.2	2.5	0.0	1.7	0.7	155.4	2.7	162.7	3.8	270.8	42.3	155.4	2.7	NA
-Spot 258	332	311803	7.4	18.9	2.5	0.2	4.0	0.0	3.1	0.8	157.4	4.8	168.2	6.1	322.8	55.9	157.4	4.8	NA
-Spot 237	610	55514	1.1	19.9	1.5	0.2	2.4	0.0	1.9	0.8	225.1	4.2	223.7	4.9	208.9	34.6	225.1	4.2	NA
-Spot 6	229	43405	2.7	19.5	2.8	0.3	3.4	0.0	2.0	0.6	227.4	4.4	229.8	7.0	254.6	64.6	227.4	4.4	NA
-Spot 122	1738	186875	4.6	19.7	1.4	0.3	2.0	0.0	1.4	0.7	227.5	3.2	227.7	4.0	230.0	32.1	227.5	3.2	NA
-Spot 35	569	32482	3.4	19.3	1.6	0.3	2.5	0.0	1.9	0.8	227.7	4.4	232.7	5.3	282.9	37.3	227.7	4.4	NA
-Spot 296	2817	139934	2.6	19.5	1.5	0.3	2.3	0.0	1.8	0.8	227.7	4.0	230.0	4.8	252.8	34.6	227.7	4.0	NA
-Spot 181	967	83981	1.2	19.6	1.5	0.3	2.3	0.0	1.8	0.8	230.0	4.0	230.6	4.8	237.2	34.5	230.0	4.0	NA
-Spot 43	225	44767	1.9	19.8	2.4	0.3	3.0	0.0	1.8	0.6	231.8	4.0	230.4	6.1	216.3	54.9	231.8	4.0	NA
-Spot 207	256	122486	0.8	19.6	2.3	0.3	3.2	0.0	2.2	0.7	232.0	5.0	233.1	6.6	245.1	53.2	232.0	5.0	NA
-Spot 148	763	60558	1.7	19.4	1.6	0.3	2.4	0.0	1.8	0.8	232.1	4.2	234.8	5.1	261.2	36.2	232.1	4.2	NA
-Spot 242	235	147237	1.4	19.3	2.3	0.3	2.6	0.0	1.2	0.5	232.5	2.8	236.6	5.6	278.2	53.4	232.5	2.8	NA
-Spot 24	354	40035	1.1	19.5	2.0	0.3	2.9	0.0	2.0	0.7	233.0	4.6	235.4	6.0	258.7	46.9	233.0	4.6	NA
-Spot 110	1488	113934	1.9	19.6	1.4	0.3	2.8	0.0	2.4	0.9	233.1	5.6	234.0	5.9	242.4	32.4	233.1	5.6	NA
-Spot 220	1207	116599	1.1	19.7	1.4	0.3	2.4	0.0	2.0	0.8	233.2	4.5	232.8	5.0	227.9	32.2	233.2	4.5	NA
-Spot 31	152	16733	1.7	21.1	3.0	0.2	3.9	0.0	2.5	0.6	233.6	5.8	218.9	7.8	63.9	72.5	233.6	5.8	NA
-Spot 259	380	29355	1.5	19.9	1.9	0.3	2.7	0.0	1.9	0.7	233.7	4.3	231.5	5.5	209.7	43.9	233.7	4.3	NA
-Spot 179	331	83659	0.8	19.7	2.4	0.3	3.2	0.0	2.2	0.7	233.8	5.0	233.6	6.7	231.9	54.5	233.8	5.0	NA
-Spot 215	240	142931	2.6	20.0	2.3	0.3	3.0	0.0	2.0	0.7	234.7	4.5	231.4	6.2	198.0	52.6	234.7	4.5	NA
-Spot 308	250	28619	1.9	19.5	2.5	0.3	3.2	0.0	2.0	0.6	236.5	4.6	238.4	6.8	257.5	58.4	236.5	4.6	NA
-Spot 89	733	64772	2.4	19.5	1.7	0.3	2.3	0.0	1.4	0.6	236.5	3.4	237.8	4.8	250.9	40.0	236.5	3.4	NA
-Spot 18	518	37408	2.3	19.8	1.6	0.3	2.5	0.0	1.9	0.8	238.5	4.5	237.2	5.3	223.4	37.5	238.5	4.5	NA
-Spot 281	370	35709	1.7	20.0	1.7	0.3	3.0	0.0	2.5	0.8	239.1	5.8	235.3	6.3	197.5	39.0	239.1	5.8	NA
-Spot 36	592	61501	4.4	19.7	1.8	0.3	2.7	0.0	2.0	0.7	269.4	5.2	265.8	6.3	234.8	41.4	269.4	5.2	NA
-Spot 69	189	51802	6.7	18.8	1.9	0.4	3.0	0.0	2.3	0.8	301.3	6.8	305.2	7.9	334.6	43.2	301.3	6.8	NA
-Spot 151	57	48961	3.7	19.6	3.6	0.3	4.2	0.0	2.2	0.5	302.0	6.4	295.5	10.9	244.0	84.1	302.0	6.4	NA
-Spot 244	279	52336	9.1	19.2	1.9	0.3	2.6	0.0	1.7	0.7	302.4	5.1	301.5	6.8	294.7	44.0	302.4	5.1	NA
-Spot 75	508	35580	3.6	19.3	1.5	0.3	2.3	0.0	1.7	0.8	303.3	5.1	300.4	5.9	277.4	34.1	303.3	5.1	NA
-Spot 44	577	94727	5.6	18.9	1.3	0.4	2.0	0.0	1.5	0.8	303.8	4.5	306.3	5.2	325.3	28.5	303.8	4.5	NA
-Spot 219	710	233325	4.4	19.1	1.7	0.4	2.8	0.0	2.3	0.8	304.9	6.8	304.7	7.4	303.6	38.1	304.9	6.8	NA
-Spot 114	178	26904	4.7	19.2	2.2	0.4	3.0	0.0	2.0	0.7	312.9	6.2	309.6	7.9	284.7	49.4	312.9	6.2	NA

-Spot 315	294	26102	3.4	19.0	2.0	0.4	2.9	0.1	2.0	0.7	326.1	6.5	325.0	7.9	317.2	45.6	326.1	6.5	NA
-Spot 275	220	158790	3.5	9.4	1.3	4.6	2.1	0.3	1.7	0.8	1741. 2	25.6	1743. 8	17.6	1746. 8	23.6	1746. 8	23.6	99.7
-Spot 19	48	896	2.9	33.0	9.1	0.0	9.7	0.0	3.4	0.3	31.3	1.0	20.5	2.0	1126. 4	276.8	31.3	1.0	NA
-Spot 221	208	19191	6.0	14.9	8.0	0.1	8.5	0.0	2.6	0.3	49.1	1.3	69.4	5.7	841.9	167.6	49.1	1.3	NA
-Spot 247	116	37427	17.5	14.0	7.0	0.2	7.4	0.0	2.6	0.3	153.1	3.9	215.7	14.5	969.8	142.4	153.1	3.9	NA
-Spot 173	527	13721	4.8	16.1	6.5	0.0	7.0	0.0	2.7	0.4	31.2	0.9	41.3	2.8	675.9	138.2	31.2	0.9	NA
-Spot 123	150	1410	4.0	25.9	5.6	0.0	6.4	0.0	3.2	0.5	29.2	0.9	24.3	1.5	443.9	146.6	29.2	0.9	NA

Sample 15ATW23

Analysis	U	206Pb	U/Th	206Pb *	±	207Pb *	±	206Pb *	±	erro r	206Pb *	±	207Pb *	±	206Pb *	±	Best age	±	Conc
	(ppm)	204Pb		207Pb *	(%)	235U *	(%)	238U	(%)	corr	238U *	(Ma)	235U	(Ma)	207Pb *	(Ma)	(Ma)	(Ma)	(%)
15ATW23-Spot 156	1519	599735	2.6	20.5	1.1	0.2	3.2	0.0	3.0	0.9	149.8	4.5	149.2	4.5	140.5	26.2	149.8	4.5	NA
15ATW23-Spot 44	215	28746	2.3	20.9	1.4	0.2	2.9	0.0	2.5	0.9	150.4	3.8	147.2	4.0	96.6	33.6	150.4	3.8	NA
15ATW23-Spot 225	197	38872	2.5	20.4	1.3	0.2	3.1	0.0	2.8	0.9	152.2	4.2	152.0	4.4	150.4	31.6	152.2	4.2	NA
15ATW23-Spot 251	139	13519	2.0	20.8	1.5	0.2	3.3	0.0	2.9	0.9	152.3	4.3	149.4	4.5	105.5	36.5	152.3	4.3	NA
15ATW23-Spot 262	156	412711	2.2	19.6	1.9	0.2	2.9	0.0	2.2	0.8	152.6	3.4	158.4	4.3	247.2	43.9	152.6	3.4	NA
15ATW23-Spot 248	100	17602	1.6	19.4	1.9	0.2	3.2	0.0	2.6	0.8	152.9	3.9	159.6	4.7	262.1	42.5	152.9	3.9	NA
15ATW23-Spot 250	119	117529	3.1	19.7	1.7	0.2	3.1	0.0	2.6	0.8	152.9	4.0	157.4	4.6	225.8	40.0	152.9	4.0	NA
15ATW23-Spot 97	48	9075	2.9	19.8	3.1	0.2	4.1	0.0	2.7	0.7	152.9	4.0	157.1	5.9	221.1	71.2	152.9	4.0	NA
15ATW23-Spot 270	126	207779	2.2	19.6	2.4	0.2	3.5	0.0	2.6	0.7	153.1	3.9	158.8	5.1	245.2	54.8	153.1	3.9	NA
15ATW23-Spot 298	75	27284	2.4	20.3	2.6	0.2	3.6	0.0	2.5	0.7	153.2	3.8	153.8	5.1	164.0	59.7	153.2	3.8	NA
15ATW23-Spot 38	84	16163	3.0	20.4	3.0	0.2	4.0	0.0	2.7	0.7	153.6	4.0	152.9	5.7	143.9	70.5	153.6	4.0	NA
15ATW23-Spot 88	132	124590	2.6	19.4	2.0	0.2	3.4	0.0	2.8	0.8	153.9	4.2	160.9	5.1	265.8	46.8	153.9	4.2	NA
15ATW23-Spot 21	123	661063	2.4	20.3	1.6	0.2	3.0	0.0	2.5	0.8	153.9	3.8	154.1	4.3	157.5	38.2	153.9	3.8	NA
15ATW23-Spot 195	110	183767	2.5	20.1	1.8	0.2	2.9	0.0	2.3	0.8	154.0	3.4	155.5	4.2	180.2	42.7	154.0	3.4	NA
15ATW23-Spot 86	150	55084	3.6	20.3	1.6	0.2	3.2	0.0	2.8	0.9	154.0	4.2	154.1	4.6	155.3	38.3	154.0	4.2	NA
15ATW23-Spot 31	308	66800	1.3	20.1	1.5	0.2	2.9	0.0	2.5	0.9	154.7	3.8	156.2	4.3	180.7	35.9	154.7	3.8	NA
15ATW23-Spot 301	164	734554	1.6	19.6	1.6	0.2	3.1	0.0	2.6	0.9	154.7	4.0	159.7	4.5	236.3	36.2	154.7	4.0	NA
15ATW23-Spot 118	256	156839	1.2	20.4	1.7	0.2	2.9	0.0	2.4	0.8	154.7	3.6	154.5	4.2	153.5	39.5	154.7	3.6	NA
15ATW23-Spot 285	136	139175	1.7	20.2	1.7	0.2	3.3	0.0	2.9	0.9	155.0	4.4	156.3	4.8	176.8	39.1	155.0	4.4	NA
15ATW23-Spot 4	146	47149	2.8	20.0	2.0	0.2	2.9	0.0	2.1	0.7	155.0	3.3	157.4	4.3	194.7	46.2	155.0	3.3	NA
15ATW23-Spot 85	127	51442	2.7	19.6	2.0	0.2	3.4	0.0	2.8	0.8	155.0	4.2	160.8	5.1	247.2	46.5	155.0	4.2	NA
15ATW23-Spot 142	131	11877	3.5	20.4	2.2	0.2	3.4	0.0	2.5	0.8	155.1	3.9	154.8	4.8	150.2	51.9	155.1	3.9	NA
15ATW23-Spot 34	139	32602	1.8	20.0	1.9	0.2	3.5	0.0	3.0	0.8	155.4	4.6	157.9	5.2	196.7	44.8	155.4	4.6	NA
15ATW23-Spot 45	126	26646	1.6	20.4	1.5	0.2	3.5	0.0	3.2	0.9	155.4	4.9	154.7	5.1	145.3	35.1	155.4	4.9	NA

15ATW23-Spot 198	189	78470	1.8	20.2	1.6	0.2	3.1	0.0	2.6	0.9	155.5	4.1	156.4	4.5	170.3	37.6	155.5	4.1	NA
15ATW23-Spot 261	34	65510	2.1	19.6	3.2	0.2	4.4	0.0	3.1	0.7	155.6	4.7	160.7	6.6	238.5	73.7	155.6	4.7	NA
15ATW23-Spot 39	72	9999	2.6	20.1	2.4	0.2	3.8	0.0	3.0	0.8	155.6	4.6	157.6	5.6	188.1	55.9	155.6	4.6	NA
15ATW23-Spot 1	110	39329	3.5	19.4	2.3	0.2	3.3	0.0	2.4	0.7	155.7	3.7	162.8	5.0	269.3	52.7	155.7	3.7	NA
15ATW23-Spot 237	95	14986	1.8	20.8	2.1	0.2	3.5	0.0	2.9	0.8	155.8	4.4	152.7	5.0	106.4	48.6	155.8	4.4	NA
15ATW23-Spot 286	132	12997	2.5	19.6	1.9	0.2	3.0	0.0	2.4	0.8	155.9	3.7	161.1	4.5	240.2	42.9	155.9	3.7	NA
15ATW23-Spot 282	124	129624	3.7	20.1	1.8	0.2	3.1	0.0	2.6	0.8	155.9	4.0	157.8	4.6	186.5	41.0	155.9	4.0	NA
15ATW23-Spot 116	191	73313	1.4	20.2	2.0	0.2	3.3	0.0	2.7	0.8	156.2	4.2	157.1	4.8	172.5	45.5	156.2	4.2	NA
15ATW23-Spot 293	157	78316	2.3	20.1	1.4	0.2	2.5	0.0	2.1	0.8	156.2	3.2	158.1	3.7	187.7	32.9	156.2	3.2	NA
15ATW23-Spot 99	85	17283	1.9	20.6	1.9	0.2	3.5	0.0	2.9	0.8	156.3	4.5	154.6	5.0	130.1	45.1	156.3	4.5	NA
15ATW23-Spot 93	43	15674	2.1	20.3	2.8	0.2	4.0	0.0	2.9	0.7	156.3	4.5	156.7	5.9	163.7	66.4	156.3	4.5	NA
15ATW23-Spot 20	31	9482	3.6	20.1	3.1	0.2	4.9	0.0	3.8	0.8	156.4	5.9	158.3	7.2	188.4	71.6	156.4	5.9	NA
15ATW23-Spot 29	55	42443	4.1	19.3	2.5	0.2	4.6	0.0	3.9	0.8	156.4	6.0	164.3	7.0	279.7	56.2	156.4	6.0	NA
15ATW23-Spot 144	62	45892	3.6	20.1	2.2	0.2	3.5	0.0	2.6	0.8	156.5	4.1	157.9	5.1	179.3	51.8	156.5	4.1	NA
15ATW23-Spot 291	293	42083	1.7	20.1	1.6	0.2	3.9	0.0	3.6	0.9	156.5	5.5	157.9	5.7	179.6	36.7	156.5	5.5	NA
15ATW23-Spot 160	127	34751	2.7	19.7	1.8	0.2	3.2	0.0	2.7	0.8	156.5	4.2	161.4	4.8	233.8	41.5	156.5	4.2	NA
15ATW23-Spot 110	234	78863	2.4	20.5	1.8	0.2	3.4	0.0	2.9	0.9	156.7	4.5	155.1	4.9	132.2	41.8	156.7	4.5	NA
15ATW23-Spot 51	106	27851	2.2	19.9	2.1	0.2	3.6	0.0	3.0	0.8	156.8	4.6	159.5	5.4	201.6	48.8	156.8	4.6	NA
15ATW23-Spot 241	87	23471	3.3	20.9	2.0	0.2	3.4	0.0	2.7	0.8	156.8	4.2	152.8	4.8	93.2	47.6	156.8	4.2	NA
15ATW23-Spot 169	236	20612	2.5	20.4	1.6	0.2	3.6	0.0	3.2	0.9	157.0	4.9	156.4	5.2	147.8	38.6	157.0	4.9	NA
15ATW23-Spot 311	192	135163	4.3	19.6	1.6	0.2	3.8	0.0	3.4	0.9	157.0	5.3	162.6	5.6	245.2	36.3	157.0	5.3	NA
15ATW23-Spot 308	36	497458	2.1	19.3	3.2	0.2	4.6	0.0	3.4	0.7	157.1	5.3	164.6	7.1	274.9	72.9	157.1	5.3	NA
15ATW23-Spot 47	65	75619	3.7	18.5	3.2	0.2	4.3	0.0	2.9	0.7	157.2	4.6	171.5	6.8	373.7	71.6	157.2	4.6	NA
15ATW23-Spot 265	188	46519	2.8	20.5	1.6	0.2	3.4	0.0	3.0	0.9	157.3	4.7	155.9	4.9	135.7	37.8	157.3	4.7	NA
15ATW23-Spot 243	62	24309	3.6	20.8	2.3	0.2	3.8	0.0	3.1	0.8	157.3	4.8	153.8	5.5	101.8	54.2	157.3	4.8	NA
15ATW23-Spot 132	115	47685	2.6	20.2	2.2	0.2	3.4	0.0	2.6	0.8	157.3	4.1	158.4	5.0	176.9	50.8	157.3	4.1	NA
15ATW23-Spot 204	63	31581	2.9	20.7	2.4	0.2	4.5	0.0	3.8	0.8	157.4	5.9	155.0	6.5	118.8	56.1	157.4	5.9	NA
15ATW23-Spot 122	104	37260	2.9	20.7	2.4	0.2	3.5	0.0	2.5	0.7	157.5	3.8	154.7	5.0	112.9	57.8	157.5	3.8	NA
15ATW23-Spot 284	40	30519	2.7	20.6	4.0	0.2	5.3	0.0	3.5	0.7	157.5	5.4	155.4	7.6	124.8	94.7	157.5	5.4	NA
15ATW23-Spot 226	119	29144	2.0	20.5	1.9	0.2	3.3	0.0	2.7	0.8	157.5	4.2	156.5	4.8	142.7	45.4	157.5	4.2	NA
15ATW23-Spot 158	159	38281	2.0	20.2	1.8	0.2	3.9	0.0	3.5	0.9	157.5	5.4	158.7	5.7	176.8	42.3	157.5	5.4	NA
15ATW23-Spot 312	85	11688	3.7	20.7	2.5	0.2	4.4	0.0	3.6	0.8	157.5	5.6	155.1	6.3	118.3	59.1	157.5	5.6	NA
15ATW23-Spot 77	157	73568	1.8	18.2	2.6	0.2	3.6	0.0	2.6	0.7	157.7	4.0	174.9	5.9	414.8	58.0	157.7	4.0	NA
15ATW23-Spot 246	119	53967	3.3	20.4	2.2	0.2	4.2	0.0	3.6	0.9	157.7	5.6	157.2	6.1	151.2	50.6	157.7	5.6	NA

15ATW23-Spot 271	122	29311	1.5	20.1	2.1	0.2	3.3	0.0	2.6	0.8	157.8	4.0	159.5	4.9	184.9	48.2	157.8	4.0	NA
15ATW23-Spot 267	261	53665	3.0	19.9	1.5	0.2	2.9	0.0	2.5	0.9	158.0	4.0	160.9	4.4	204.7	33.7	158.0	4.0	NA
15ATW23-Spot 151	491	39917	0.9	20.4	1.2	0.2	2.4	0.0	2.1	0.9	158.0	3.3	157.4	3.5	149.3	27.7	158.0	3.3	NA
15ATW23-Spot 256	107	25739	3.2	20.6	2.0	0.2	3.6	0.0	3.0	0.8	158.0	4.7	155.9	5.2	125.0	45.9	158.0	4.7	NA
15ATW23-Spot 163	102	71529	1.9	19.9	2.2	0.2	3.2	0.0	2.4	0.7	158.1	3.7	161.1	4.8	207.2	50.5	158.1	3.7	NA
15ATW23-Spot 190	576	240843	1.5	20.3	1.3	0.2	3.0	0.0	2.7	0.9	158.1	4.2	158.2	4.4	160.9	30.3	158.1	4.2	NA
15ATW23-Spot 138	39	36375	2.6	21.4	3.4	0.2	4.2	0.0	2.5	0.6	158.1	4.0	150.8	5.9	38.1	81.4	158.1	4.0	NA
15ATW23-Spot 89	112	45662	2.2	20.4	2.1	0.2	3.7	0.0	3.0	0.8	158.1	4.7	157.8	5.4	154.3	49.7	158.1	4.7	NA
15ATW23-Spot 67	89	25432	3.8	20.4	2.0	0.2	3.5	0.0	2.8	0.8	158.4	4.4	157.8	5.1	149.6	47.2	158.4	4.4	NA
15ATW23-Spot 145	119	34195	2.5	20.6	2.1	0.2	3.4	0.0	2.7	0.8	158.4	4.2	156.3	4.9	125.1	48.4	158.4	4.2	NA
15ATW23-Spot 196	376	134377	1.6	20.0	1.4	0.2	2.8	0.0	2.4	0.9	158.4	3.7	161.0	4.1	200.6	32.0	158.4	3.7	NA
15ATW23-Spot 27	167	44928	1.9	20.7	1.7	0.2	2.6	0.0	2.0	0.8	158.5	3.1	155.8	3.8	115.4	41.2	158.5	3.1	NA
15ATW23-Spot 172	74	48924	3.6	19.0	2.5	0.2	3.8	0.0	2.9	0.8	158.5	4.6	168.8	6.0	316.1	56.5	158.5	4.6	NA
15ATW23-Spot 8	99	15382	2.5	20.7	2.0	0.2	3.6	0.0	3.0	0.8	158.6	4.7	155.6	5.2	112.2	47.4	158.6	4.7	NA
15ATW23-Spot 147	313	772706	2.2	19.8	1.4	0.2	3.2	0.0	2.9	0.9	158.6	4.5	162.3	4.7	217.5	31.7	158.6	4.5	NA
15ATW23-Spot 125	136	18806	1.6	20.3	1.7	0.2	3.1	0.0	2.6	0.8	158.7	4.1	159.0	4.6	164.9	40.8	158.7	4.1	NA
15ATW23-Spot 202	212	45600	2.2	20.4	1.6	0.2	3.2	0.0	2.8	0.9	158.8	4.4	158.1	4.7	149.9	37.1	158.8	4.4	NA
15ATW23-Spot 154	141	52719	1.9	20.3	1.6	0.2	2.9	0.0	2.5	0.8	158.8	3.9	158.5	4.3	155.0	37.5	158.8	3.9	NA
15ATW23-Spot 214	146	531241	2.6	19.4	1.9	0.2	3.5	0.0	3.0	0.9	158.8	4.7	165.7	5.4	265.4	42.5	158.8	4.7	NA
15ATW23-Spot 107	150	93355	1.9	20.6	1.7	0.2	3.0	0.0	2.5	0.8	158.9	3.9	156.6	4.4	124.1	40.0	158.9	3.9	NA
15ATW23-Spot 193	855	414396	1.9	19.7	1.1	0.2	2.9	0.0	2.7	0.9	158.9	4.2	163.5	4.4	232.4	24.7	158.9	4.2	NA
15ATW23-Spot 108	101	39841	3.3	20.5	2.2	0.2	3.3	0.0	2.4	0.7	158.9	3.8	157.7	4.8	141.4	52.3	158.9	3.8	NA
15ATW23-Spot 9	332	475688	2.3	20.7	1.3	0.2	3.1	0.0	2.9	0.9	158.9	4.5	155.9	4.5	111.9	29.7	158.9	4.5	NA
15ATW23-Spot 7	1209	338947	1.7	20.4	1.0	0.2	2.6	0.0	2.4	0.9	159.0	3.8	158.0	3.9	144.4	23.6	159.0	3.8	NA
15ATW23-Spot 115	24	7088	3.0	20.0	4.3	0.2	5.5	0.0	3.5	0.6	159.2	5.4	161.1	8.2	189.9	99.8	159.2	5.4	NA
15ATW23-Spot 18	195	40708	3.1	20.5	1.6	0.2	3.1	0.0	2.7	0.9	159.2	4.3	157.7	4.6	135.3	36.6	159.2	4.3	NA
15ATW23-Spot 32	217	19845	2.1	20.5	1.6	0.2	2.9	0.0	2.4	0.8	159.3	3.8	157.9	4.3	138.0	37.4	159.3	3.8	NA
15ATW23-Spot 14	193	54562	1.7	20.4	1.4	0.2	3.4	0.0	3.1	0.9	159.3	4.8	158.6	4.9	149.3	33.0	159.3	4.8	NA
15ATW23-Spot 96	81	49354	2.1	19.8	2.9	0.2	4.2	0.0	3.1	0.7	159.4	4.9	163.2	6.3	220.6	66.0	159.4	4.9	NA
15ATW23-Spot 199	36	30039	3.3	19.8	2.9	0.2	4.6	0.0	3.6	0.8	159.4	5.7	163.2	6.9	220.1	66.7	159.4	5.7	NA
15ATW23-Spot 309	136	137344	2.5	20.0	1.7	0.2	3.0	0.0	2.4	0.8	159.5	3.8	162.0	4.5	200.1	40.4	159.5	3.8	NA
15ATW23-Spot 82	254	122634	1.3	20.2	1.6	0.2	3.7	0.0	3.3	0.9	159.5	5.3	160.6	5.5	177.3	36.2	159.5	5.3	NA
15ATW23-Spot 233	88	38016	1.6	20.4	1.9	0.2	3.3	0.0	2.7	0.8	159.5	4.3	159.0	4.9	152.4	44.3	159.5	4.3	NA
15ATW23-Spot 76	94	17451	2.0	19.8	2.0	0.2	3.2	0.0	2.5	0.8	159.6	4.0	163.4	4.8	220.5	45.6	159.6	4.0	NA

15ATW23-Spot 175	240	184892	1.4	18.8	2.1	0.2	3.2	0.0	2.5	0.8	159.6	3.9	171.0	5.1	332.5	47.6	159.6	3.9	NA
15ATW23-Spot 16	557	63228	1.5	20.7	1.5	0.2	3.3	0.0	2.9	0.9	159.7	4.6	156.8	4.8	115.6	34.9	159.7	4.6	NA
15ATW23-Spot 257	2930	408526	1.5	19.8	0.9	0.2	2.8	0.0	2.7	1.0	159.7	4.2	163.0	4.2	213.5	20.2	159.7	4.2	NA
15ATW23-Spot 244	554	481342	1.4	20.0	1.4	0.2	2.5	0.0	2.1	0.8	159.7	3.3	161.7	3.8	191.9	32.9	159.7	3.3	NA
15ATW23-Spot 37	99	27688	2.2	20.7	2.1	0.2	3.1	0.0	2.3	0.7	159.7	3.6	157.1	4.6	118.4	50.3	159.7	3.6	NA
15ATW23-Spot 81	468	350757	7.2	20.4	1.4	0.2	3.5	0.0	3.2	0.9	159.8	5.1	159.1	5.1	148.5	31.8	159.8	5.1	NA
15ATW23-Spot 123	201	27011	1.8	20.7	1.5	0.2	3.0	0.0	2.6	0.9	159.9	4.0	156.7	4.3	110.4	36.2	159.9	4.0	NA
15ATW23-Spot 306	156	117846	1.8	20.5	2.0	0.2	3.5	0.0	2.9	0.8	160.2	4.5	158.4	5.1	132.5	47.5	160.2	4.5	NA
15ATW23-Spot 216	165	16761	2.0	20.3	1.6	0.2	3.1	0.0	2.6	0.8	160.3	4.1	160.1	4.6	158.2	38.0	160.3	4.1	NA
15ATW23-Spot 137	46	7689	2.5	20.5	2.6	0.2	3.9	0.0	2.9	0.7	160.6	4.6	158.9	5.8	135.4	62.1	160.6	4.6	NA
15ATW23-Spot 281	36	14451	2.1	20.7	3.0	0.2	4.6	0.0	3.4	0.8	160.6	5.5	157.7	6.7	114.7	70.9	160.6	5.5	NA
15ATW23-Spot 117	146	43252	1.5	20.1	2.2	0.2	3.6	0.0	2.8	0.8	160.7	4.5	161.9	5.4	180.7	51.5	160.7	4.5	NA
15ATW23-Spot 128	144	32627	2.4	20.4	1.8	0.2	3.6	0.0	3.1	0.9	160.9	4.9	160.2	5.3	151.1	42.7	160.9	4.9	NA
15ATW23-Spot 94	216	52226	1.6	19.7	1.5	0.2	3.2	0.0	2.8	0.9	160.9	4.5	165.4	4.9	231.2	35.3	160.9	4.5	NA
15ATW23-Spot 252	170	141838	2.6	19.9	2.0	0.2	4.1	0.0	3.6	0.9	160.9	5.8	163.7	6.3	204.9	45.7	160.9	5.8	NA
15ATW23-Spot 260	209	17194	3.1	18.6	1.5	0.2	3.6	0.0	3.3	0.9	161.0	5.3	174.3	5.8	360.2	32.9	161.0	5.3	NA
15ATW23-Spot 40	159	92951	2.7	19.9	2.0	0.2	3.6	0.0	2.9	0.8	161.1	4.6	163.9	5.4	204.6	47.1	161.1	4.6	NA
15ATW23-Spot 162	110	56255	2.4	19.5	2.0	0.2	3.8	0.0	3.3	0.9	161.2	5.2	167.4	5.9	257.3	46.0	161.2	5.2	NA
15ATW23-Spot 136	261	9381666	1.4	19.9	1.5	0.2	2.8	0.0	2.4	0.8	161.2	3.8	164.4	4.3	211.2	35.0	161.2	3.8	NA
15ATW23-Spot 64	237	56920	2.8	20.2	1.3	0.2	2.5	0.0	2.2	0.9	161.5	3.5	161.9	3.8	169.2	29.6	161.5	3.5	NA
15ATW23-Spot 28	87	23192	2.4	20.1	1.7	0.2	3.3	0.0	2.8	0.8	161.7	4.4	163.2	4.9	187.1	40.5	161.7	4.4	NA
15ATW23-Spot 245	172	76289	2.4	20.5	1.9	0.2	3.3	0.0	2.7	0.8	161.7	4.4	160.3	4.9	141.0	44.3	161.7	4.4	NA
15ATW23-Spot 84	270	43022	2.1	20.0	1.8	0.2	3.2	0.0	2.7	0.8	161.8	4.2	164.1	4.8	197.3	41.6	161.8	4.2	NA
15ATW23-Spot 187	211	105761	2.3	19.6	1.7	0.2	3.1	0.0	2.6	0.8	161.8	4.2	166.7	4.7	237.8	38.2	161.8	4.2	NA
15ATW23-Spot 177	63	27926	3.2	20.4	2.7	0.2	3.7	0.0	2.5	0.7	161.9	4.0	160.7	5.5	144.6	63.1	161.9	4.0	NA
15ATW23-Spot 272	288	67073	1.9	20.1	1.2	0.2	3.3	0.0	3.1	0.9	161.9	4.9	163.1	5.0	181.9	28.6	161.9	4.9	NA
15ATW23-Spot 221	107	133067	2.1	19.6	1.9	0.2	3.4	0.0	2.8	0.8	162.1	4.5	167.2	5.2	241.7	43.4	162.1	4.5	NA
15ATW23-Spot 203	389	54611	2.1	20.1	1.1	0.2	2.9	0.0	2.7	0.9	162.3	4.3	163.8	4.4	187.2	25.6	162.3	4.3	NA
15ATW23-Spot 310	90	603794	1.8	20.5	2.8	0.2	3.7	0.0	2.5	0.7	162.3	3.9	160.8	5.6	139.6	66.2	162.3	3.9	NA
15ATW23-Spot 157	666	192346	2.0	20.0	1.4	0.2	2.6	0.0	2.2	0.8	162.3	3.5	164.3	3.9	194.1	31.6	162.3	3.5	NA
15ATW23-Spot 5	218	262248	1.5	20.3	1.4	0.2	2.8	0.0	2.4	0.9	162.4	3.8	162.1	4.2	159.2	32.7	162.4	3.8	NA
15ATW23-Spot 155	533	181098	1.8	20.2	1.2	0.2	2.7	0.0	2.5	0.9	162.4	4.0	162.9	4.1	170.9	27.0	162.4	4.0	NA
15ATW23-Spot 103	162	786063	2.5	19.7	1.7	0.2	3.4	0.0	3.0	0.9	162.5	4.8	166.7	5.3	227.2	39.7	162.5	4.8	NA
15ATW23-Spot 83	105	137454	3.6	20.0	2.0	0.2	3.8	0.0	3.2	0.8	162.5	5.1	164.5	5.7	193.8	46.5	162.5	5.1	NA

15ATW23-Spot 215	229	152510	1.5	20.3	1.9	0.2	3.6	0.0	3.1	0.9	162.6	5.0	162.6	5.5	162.9	44.9	162.6	5.0	NA
15ATW23-Spot 92	89	70510	1.7	20.8	2.2	0.2	3.2	0.0	2.3	0.7	162.7	3.7	158.5	4.6	97.7	52.0	162.7	3.7	NA
15ATW23-Spot 164	337	621792	3.0	20.1	1.6	0.2	3.2	0.0	2.8	0.9	162.7	4.5	164.1	4.9	185.2	37.7	162.7	4.5	NA
15ATW23-Spot 30	238	125539	2.3	20.4	1.2	0.2	2.7	0.0	2.4	0.9	162.8	3.9	162.2	4.1	153.5	27.4	162.8	3.9	NA
15ATW23-Spot 300	101	28195	2.1	19.4	2.4	0.2	3.6	0.0	2.7	0.7	163.0	4.3	169.5	5.6	262.0	56.0	163.0	4.3	NA
15ATW23-Spot 127	897	152689	1.1	20.3	1.0	0.2	3.0	0.0	2.8	0.9	163.1	4.6	162.6	4.5	156.1	23.9	163.1	4.6	NA
15ATW23-Spot 258	229	50438	2.0	19.5	1.5	0.2	3.1	0.0	2.8	0.9	163.1	4.5	168.9	4.9	251.4	34.2	163.1	4.5	NA
15ATW23-Spot 274	254	92367	1.6	19.3	1.8	0.2	2.6	0.0	1.9	0.7	163.2	3.1	170.6	4.1	275.4	40.6	163.2	3.1	NA
15ATW23-Spot 191	144	33147	2.2	20.3	1.9	0.2	3.8	0.0	3.3	0.9	163.9	5.3	163.9	5.7	165.0	43.9	163.9	5.3	NA
15ATW23-Spot 126	224	142820	2.6	20.1	1.4	0.2	2.5	0.0	2.0	0.8	163.9	3.3	165.2	3.8	184.0	32.6	163.9	3.3	NA
15ATW23-Spot 275	504	389294	1.5	19.6	0.9	0.2	3.5	0.0	3.3	1.0	164.0	5.4	169.0	5.4	240.9	20.4	164.0	5.4	NA
15ATW23-Spot 303	120	27732	3.8	20.2	1.9	0.2	4.1	0.0	3.6	0.9	164.0	5.8	164.6	6.2	173.8	45.5	164.0	5.8	NA
15ATW23-Spot 152	232	58475	1.5	20.5	1.5	0.2	2.9	0.0	2.5	0.8	164.1	4.0	162.0	4.4	131.9	36.2	164.1	4.0	NA
15ATW23-Spot 197	972	420189	1.6	20.1	1.2	0.2	2.5	0.0	2.2	0.9	164.1	3.5	165.1	3.8	180.1	27.6	164.1	3.5	NA
15ATW23-Spot 139	107	15359	2.0	20.7	2.3	0.2	3.4	0.0	2.4	0.7	164.2	4.0	161.1	5.0	116.7	54.7	164.2	4.0	NA
15ATW23-Spot 239	35	9200	4.9	19.6	4.0	0.2	5.1	0.0	3.1	0.6	164.2	5.0	169.6	7.9	246.1	93.1	164.2	5.0	NA
15ATW23-Spot 98	463	492684	8.0	20.5	1.1	0.2	2.8	0.0	2.6	0.9	164.3	4.2	162.8	4.3	142.0	26.8	164.3	4.2	NA
15ATW23-Spot 95	78	256429	3.1	19.1	2.2	0.2	3.4	0.0	2.6	0.8	164.4	4.2	173.1	5.4	295.6	49.6	164.4	4.2	NA
15ATW23-Spot 41	60	27759	2.7	20.9	2.2	0.2	3.8	0.0	3.0	0.8	164.4	4.9	159.8	5.6	93.6	52.6	164.4	4.9	NA
15ATW23-Spot 25	211	306892	1.6	20.2	1.6	0.2	3.3	0.0	2.9	0.9	164.6	4.7	164.9	5.0	170.8	36.7	164.6	4.7	NA
15ATW23-Spot 153	185	34131	2.0	20.1	1.8	0.2	3.2	0.0	2.7	0.8	164.7	4.3	166.2	4.9	188.6	41.2	164.7	4.3	NA
15ATW23-Spot 168	298	83449	2.4	20.8	1.7	0.2	2.8	0.0	2.2	0.8	165.1	3.6	161.2	4.2	104.4	41.3	165.1	3.6	NA
15ATW23-Spot 143	51	13599	3.0	20.9	2.9	0.2	3.9	0.0	2.6	0.7	165.2	4.3	160.8	5.8	96.7	67.8	165.2	4.3	NA
15ATW23-Spot 266	1100	1293057	4.8	20.2	0.9	0.2	2.5	0.0	2.3	0.9	165.6	3.8	165.7	3.8	168.6	21.2	165.6	3.8	NA
15ATW23-Spot 165	149	29129	2.5	19.4	1.8	0.2	2.9	0.0	2.3	0.8	165.6	3.8	172.4	4.6	267.2	40.8	165.6	3.8	NA
15ATW23-Spot 217	56	63743	3.7	19.9	2.7	0.2	3.9	0.0	2.8	0.7	165.6	4.7	168.6	6.0	211.8	61.5	165.6	4.7	NA
15ATW23-Spot 178	75	96940	2.9	20.5	2.0	0.2	3.1	0.0	2.3	0.8	166.2	3.9	164.5	4.7	140.9	46.8	166.2	3.9	NA
15ATW23-Spot 180	314	59947	2.0	20.1	1.5	0.2	2.9	0.0	2.5	0.9	166.8	4.1	168.0	4.5	185.8	33.8	166.8	4.1	NA
15ATW23-Spot 49	143	34041	2.4	20.6	1.6	0.2	2.7	0.0	2.1	0.8	166.9	3.5	164.1	4.1	124.6	38.7	166.9	3.5	NA
15ATW23-Spot 33	133	264833	1.8	19.4	2.0	0.2	3.4	0.0	2.8	0.8	167.1	4.5	173.7	5.4	265.6	46.1	167.1	4.5	NA
15ATW23-Spot 13	307	136498	1.8	19.9	1.5	0.2	2.9	0.0	2.5	0.9	167.5	4.1	169.8	4.5	203.1	34.0	167.5	4.1	NA
15ATW23-Spot 222	214	47906	2.4	20.1	1.6	0.2	3.2	0.0	2.7	0.9	167.8	4.5	168.7	4.9	181.8	37.7	167.8	4.5	NA
15ATW23-Spot 263	109	58290	2.1	18.6	2.4	0.2	3.6	0.0	2.7	0.8	168.2	4.6	181.6	6.0	362.0	53.2	168.2	4.6	NA
15ATW23-Spot 140	356	112936	1.8	20.5	1.4	0.2	3.2	0.0	2.9	0.9	168.3	4.8	166.3	4.9	138.8	32.0	168.3	4.8	NA

15ATW23-Spot 10	226	69019	1.4	20.2	1.3	0.2	2.5	0.0	2.1	0.8	168.5	3.4	168.8	3.8	173.5	31.4	168.5	3.4	NA
15ATW23-Spot 2	170	205219	3.2	19.7	2.2	0.2	3.9	0.0	3.2	0.8	168.8	5.4	172.8	6.2	229.7	49.9	168.8	5.4	NA
15ATW23-Spot 101	495	259035	1.5	19.6	1.3	0.2	3.2	0.0	2.9	0.9	168.9	4.8	173.4	5.0	236.4	28.9	168.9	4.8	NA
15ATW23-Spot 228	147	25060	2.3	20.0	1.8	0.2	3.0	0.0	2.5	0.8	169.2	4.2	171.1	4.8	199.7	40.9	169.2	4.2	NA
15ATW23-Spot 146	193	24761	1.6	20.5	1.3	0.2	3.0	0.0	2.7	0.9	169.4	4.5	167.2	4.7	136.7	31.5	169.4	4.5	NA
15ATW23-Spot 19	151	33646	3.9	19.8	2.0	0.2	3.1	0.0	2.4	0.8	169.5	4.0	172.6	4.9	216.1	45.3	169.5	4.0	NA
15ATW23-Spot 120	61	183637	2.7	20.8	2.3	0.2	3.3	0.0	2.4	0.7	170.0	4.0	165.2	5.0	98.7	54.0	170.0	4.0	NA
15ATW23-Spot 135	518	153848	1.6	20.4	1.2	0.2	3.3	0.0	3.1	0.9	170.2	5.1	168.6	5.1	147.2	28.2	170.2	5.1	NA
15ATW23-Spot 173	439	188797	2.0	20.0	1.4	0.2	2.9	0.0	2.6	0.9	170.4	4.3	172.3	4.7	199.3	33.2	170.4	4.3	NA
15ATW23-Spot 186	143	55732	2.2	19.9	1.8	0.2	2.8	0.0	2.1	0.8	170.8	3.6	173.5	4.4	210.4	41.4	170.8	3.6	NA
15ATW23-Spot 201	81	22583	2.4	20.4	1.9	0.2	3.2	0.0	2.6	0.8	171.4	4.4	169.5	5.0	143.4	43.8	171.4	4.4	NA
15ATW23-Spot 220	275	96019	1.3	20.0	1.5	0.2	3.3	0.0	3.0	0.9	171.7	5.0	173.2	5.3	194.6	34.5	171.7	5.0	NA
15ATW23-Spot 105	523	178597	1.2	20.0	1.2	0.2	3.6	0.0	3.4	0.9	172.1	5.7	173.5	5.7	193.1	28.4	172.1	5.7	NA
15ATW23-Spot 104	728	1208830	2.3	20.2	1.0	0.2	3.0	0.0	2.9	0.9	172.8	4.9	172.8	4.8	173.9	22.3	172.8	4.9	NA
15ATW23-Spot 106	172	239990	1.9	18.4	2.8	0.2	3.4	0.0	1.9	0.6	173.3	3.3	189.0	5.8	391.4	62.0	173.3	3.3	NA
15ATW23-Spot 148	238	1462636	1.3	20.2	1.2	0.2	3.6	0.0	3.4	0.9	174.1	5.9	174.2	5.8	176.0	28.2	174.1	5.9	NA
15ATW23-Spot 15	172	19520	3.2	19.3	3.1	0.2	3.9	0.0	2.3	0.6	175.0	4.0	182.0	6.5	274.9	71.5	175.0	4.0	NA
15ATW23-Spot 299	162	76541	3.3	20.4	1.8	0.2	3.6	0.0	3.1	0.9	175.7	5.4	174.2	5.8	154.2	42.6	175.7	5.4	NA
15ATW23-Spot 6	265	468413	4.7	20.2	1.6	0.2	3.3	0.0	2.9	0.9	176.2	5.0	175.5	5.3	167.3	37.4	176.2	5.0	NA
15ATW23-Spot 307	421	89527	2.7	20.5	1.3	0.2	2.6	0.0	2.3	0.9	177.2	4.0	174.7	4.2	142.5	29.9	177.2	4.0	NA
15ATW23-Spot 112	375	119527	2.4	20.3	1.3	0.2	2.6	0.0	2.2	0.9	178.8	3.9	177.6	4.2	162.5	31.2	178.8	3.9	NA
15ATW23-Spot 119	558	1342202	4.9	19.9	1.2	0.2	2.9	0.0	2.7	0.9	180.3	4.7	182.4	4.9	210.0	28.3	180.3	4.7	NA
15ATW23-Spot 171	183	67882	3.1	20.1	1.8	0.2	3.1	0.0	2.6	0.8	182.4	4.6	182.1	5.2	179.1	41.7	182.4	4.6	NA
15ATW23-Spot 111	1227	218088	2.6	20.2	1.0	0.2	2.9	0.0	2.7	0.9	182.5	4.8	181.7	4.8	171.8	24.2	182.5	4.8	NA
15ATW23-Spot 280	103	49837	3.3	20.3	1.8	0.2	4.1	0.0	3.7	0.9	184.0	6.6	181.9	6.8	156.3	41.6	184.0	6.6	NA
15ATW23-Spot 102	133	31711	2.0	20.0	1.5	0.2	3.5	0.0	3.1	0.9	184.4	5.7	184.9	5.9	192.8	35.0	184.4	5.7	NA
15ATW23-Spot 240	1021	1438231	2.1	19.7	1.1	0.2	2.9	0.0	2.6	0.9	184.6	4.8	187.8	4.9	228.6	26.4	184.6	4.8	NA
15ATW23-Spot 161	342	177585	1.6	19.6	1.5	0.2	2.8	0.0	2.4	0.9	185.8	4.4	190.0	4.9	243.5	33.5	185.8	4.4	NA
15ATW23-Spot 255	380	135961	1.7	19.9	1.3	0.2	2.8	0.0	2.5	0.9	185.9	4.5	186.9	4.7	201.2	29.1	185.9	4.5	NA
15ATW23-Spot 212	377	63681	1.8	19.1	2.0	0.2	3.3	0.0	2.6	0.8	186.7	4.9	195.4	5.8	303.1	44.5	186.7	4.9	NA
15ATW23-Spot 184	472	3141542	1.5	20.5	1.2	0.2	3.0	0.0	2.7	0.9	187.2	5.0	183.6	5.0	139.3	28.9	187.2	5.0	NA
15ATW23-Spot 295	257	47547	2.3	20.0	1.4	0.2	3.1	0.0	2.8	0.9	187.2	5.1	188.0	5.4	198.6	33.4	187.2	5.1	NA
15ATW23-Spot 210	245	254582	2.5	20.0	1.5	0.2	3.0	0.0	2.6	0.9	187.6	4.7	188.4	5.1	199.9	34.1	187.6	4.7	NA
15ATW23-Spot 100	318	98531	2.2	19.9	1.3	0.2	3.2	0.0	2.9	0.9	187.9	5.4	189.4	5.5	208.0	30.8	187.9	5.4	NA

15ATW23-Spot 253	211	34067	2.8	19.6	1.8	0.2	3.5	0.0	3.0	0.9	188.0	5.6	191.6	6.1	237.0	41.1	188.0	5.6	NA
15ATW23-Spot 109	154	56104	2.6	19.8	1.4	0.2	2.7	0.0	2.3	0.9	188.7	4.2	191.1	4.6	222.2	32.0	188.7	4.2	NA
15ATW23-Spot 24	376	447862	1.1	20.2	1.5	0.2	3.4	0.0	3.0	0.9	188.8	5.6	187.6	5.8	173.2	35.8	188.8	5.6	NA
15ATW23-Spot 174	227	174623	1.7	19.7	1.7	0.2	3.2	0.0	2.7	0.8	189.0	4.9	191.7	5.5	225.3	39.5	189.0	4.9	NA
15ATW23-Spot 289	171	61572	3.1	20.2	1.5	0.2	3.2	0.0	2.8	0.9	189.7	5.2	187.9	5.5	166.1	35.4	189.7	5.2	NA
15ATW23-Spot 46	163	31930	1.9	19.9	1.7	0.2	3.2	0.0	2.7	0.8	189.7	5.0	190.7	5.5	203.7	39.3	189.7	5.0	NA
15ATW23-Spot 176	196	47704	2.6	18.0	2.9	0.2	3.7	0.0	2.4	0.6	189.9	4.4	208.8	7.0	429.0	63.6	189.9	4.4	NA
15ATW23-Spot 11	342	84530	2.2	20.0	1.1	0.2	3.1	0.0	2.9	0.9	190.0	5.4	190.7	5.4	200.6	26.2	190.0	5.4	NA
15ATW23-Spot 182	253	109170	1.7	20.1	1.5	0.2	2.6	0.0	2.2	0.8	190.0	4.0	189.5	4.5	183.6	34.3	190.0	4.0	NA
15ATW23-Spot 183	835	141084	1.5	20.1	1.0	0.2	3.5	0.0	3.3	1.0	190.5	6.3	190.0	6.0	185.1	23.5	190.5	6.3	NA
15ATW23-Spot 114	636	519323	2.6	19.9	1.1	0.2	3.0	0.0	2.8	0.9	190.6	5.2	191.5	5.3	203.1	26.6	190.6	5.2	NA
15ATW23-Spot 3	366	62888	2.7	20.4	1.2	0.2	2.9	0.0	2.6	0.9	190.6	4.9	187.4	4.9	147.4	27.5	190.6	4.9	NA
15ATW23-Spot 170	2060	164685	2.4	20.1	1.0	0.2	2.7	0.0	2.5	0.9	190.7	4.6	190.3	4.7	186.6	24.0	190.7	4.6	NA
15ATW23-Spot 167	483	61536	1.8	19.8	1.4	0.2	2.9	0.0	2.5	0.9	191.0	4.8	192.7	5.1	214.8	31.5	191.0	4.8	NA
15ATW23-Spot 290	102	17553	2.4	19.8	1.6	0.2	3.0	0.0	2.5	0.8	191.1	4.7	192.9	5.2	216.0	37.7	191.1	4.7	NA
15ATW23-Spot 124	950	123418	1.8	19.6	1.0	0.2	3.0	0.0	2.8	0.9	191.2	5.3	194.9	5.3	241.1	22.3	191.2	5.3	NA
15ATW23-Spot 200	220	56379	1.9	19.0	1.5	0.2	3.4	0.0	3.1	0.9	191.4	5.8	200.5	6.2	309.6	34.9	191.4	5.8	NA
15ATW23-Spot 181	394	202071	1.6	19.5	1.2	0.2	2.8	0.0	2.5	0.9	191.5	4.8	196.2	5.0	254.7	28.6	191.5	4.8	NA
15ATW23-Spot 35	150	122785	2.4	20.2	1.4	0.2	3.2	0.0	2.8	0.9	191.7	5.3	189.9	5.5	168.9	33.5	191.7	5.3	NA
15ATW23-Spot 129	233	70332	2.3	19.8	1.6	0.2	3.0	0.0	2.5	0.8	193.3	4.8	195.4	5.4	221.2	37.6	193.3	4.8	NA
15ATW23-Spot 131	793	425544	2.7	19.8	0.9	0.2	2.6	0.0	2.5	0.9	193.4	4.7	195.4	4.6	221.0	20.1	193.4	4.7	NA
15ATW23-Spot 224	210	92460	2.4	20.1	1.4	0.2	2.6	0.0	2.3	0.9	193.6	4.3	192.8	4.6	183.7	32.3	193.6	4.3	NA
15ATW23-Spot 141	860	198415	1.8	19.8	1.4	0.2	2.9	0.0	2.6	0.9	194.0	4.9	196.1	5.2	222.1	31.7	194.0	4.9	NA
15ATW23-Spot 292	249	105815	1.6	20.2	1.2	0.2	3.2	0.0	2.9	0.9	194.9	5.6	192.7	5.6	167.0	28.0	194.9	5.6	NA
15ATW23-Spot 22	432	102365	2.3	20.2	1.1	0.2	2.9	0.0	2.7	0.9	196.7	5.3	194.7	5.2	172.1	25.5	196.7	5.3	NA
15ATW23-Spot 283	219	87460	2.5	20.1	1.4	0.2	2.8	0.0	2.4	0.9	196.7	4.6	195.6	4.9	183.5	33.2	196.7	4.6	NA
15ATW23-Spot 71	265	50837	3.0	20.1	1.3	0.2	2.6	0.0	2.2	0.9	197.0	4.4	196.3	4.6	188.2	30.3	197.0	4.4	NA
15ATW23-Spot 232	246	48917	3.0	19.9	1.5	0.2	2.8	0.0	2.4	0.9	197.1	4.6	197.9	5.0	208.5	34.2	197.1	4.6	NA
15ATW23-Spot 179	343	141230	3.5	19.5	1.0	0.2	2.9	0.0	2.7	0.9	198.1	5.3	202.0	5.3	248.6	23.7	198.1	5.3	NA
15ATW23-Spot 36	1104	736841	3.6	19.9	1.1	0.2	2.9	0.0	2.6	0.9	199.0	5.2	199.4	5.2	205.9	26.6	199.0	5.2	NA
15ATW23-Spot 188	173	1490106	2.3	19.9	1.5	0.2	2.6	0.0	2.2	0.8	199.5	4.2	200.2	4.7	209.8	33.8	199.5	4.2	NA
15ATW23-Spot 23	450	1097708	1.7	20.3	1.0	0.2	2.9	0.0	2.7	0.9	201.1	5.4	198.3	5.2	165.3	23.6	201.1	5.4	NA
15ATW23-Spot 159	214	378630	2.4	19.5	1.2	0.2	2.6	0.0	2.3	0.9	201.4	4.5	205.1	4.8	249.0	28.2	201.4	4.5	NA
15ATW23-Spot 264	202	59349	3.6	19.5	1.0	0.2	2.9	0.0	2.7	0.9	202.7	5.5	207.1	5.5	258.4	23.7	202.7	5.5	NA

15ATW23-Spot 236	273	49496	2.9	20.0	1.4	0.2	2.9	0.0	2.5	0.9	203.5	5.1	202.6	5.3	192.6	32.8	203.5	5.1	NA
15ATW23-Spot 130	123	35414	2.8	19.6	1.9	0.2	3.7	0.0	3.1	0.9	203.7	6.3	206.7	6.9	242.4	44.3	203.7	6.3	NA
15ATW23-Spot 192	241	68714	2.7	19.7	1.7	0.2	3.4	0.0	2.9	0.9	203.9	5.9	205.7	6.3	226.9	39.9	203.9	5.9	NA
15ATW23-Spot 134	242	22552143	2.0	19.7	1.6	0.2	3.6	0.0	3.3	0.9	205.0	6.6	206.6	6.8	225.7	36.5	205.0	6.6	NA
15ATW23-Spot 166	915	349292	2.3	19.9	0.8	0.2	2.4	0.0	2.2	0.9	210.1	4.6	209.4	4.5	202.5	19.1	210.1	4.6	NA
15ATW23-Spot 294	569	381864	2.9	18.2	1.0	0.5	2.5	0.1	2.3	0.9	425.3	9.6	423.4	8.8	413.9	22.3	425.3	9.6	102.7
15ATW23-Spot 269	451	1633801	1.7	13.0	0.9	2.0	2.1	0.2	1.9	0.9	1098. 1	19.1	1103. 2	14.2	1114. 1	18.5	1114. 1	18.5	98.6
15ATW23-Spot 296	120	22104	2.1	14.7	4.0	0.2	4.8	0.0	2.6	0.5	156.3	4.0	210.5	9.2	871.1	83.9	156.3	4.0	NA
15ATW23-Spot 314	389	37184	1.6	15.7	4.1	0.2	5.5	0.0	3.7	0.7	159.8	5.8	201.8	10.1	726.8	87.5	159.8	5.8	NA
15ATW23-Spot 259	112	32123	2.3	16.2	4.9	0.2	8.4	0.0	6.8	0.8	160.9	10.8	197.9	15.1	666.9	105.7	160.9	10.8	NA
15ATW23-Spot 297	183	14118	1.5	12.3	5.0	0.3	6.0	0.0	3.2	0.5	163.0	5.2	255.7	13.5	1224. 8	98.8	163.0	5.2	NA
15ATW23-Spot 231	142	29974	2.3	15.7	3.7	0.2	4.6	0.0	2.8	0.6	163.5	4.5	206.8	8.7	735.0	78.3	163.5	4.5	NA
15ATW23-Spot 17	133	13559	2.2	12.7	6.7	0.3	7.7	0.0	3.8	0.5	165.8	6.2	252.3	17.2	1160. 9	133.2	165.8	6.2	NA
15ATW23-Spot 278	86	10912	2.2	9.5	9.7	0.4	10.2	0.0	3.3	0.3	169.0	5.5	330.3	28.9	1715. 2	178.5	169.0	5.5	NA
15ATW23-Spot 12	111	56605	2.6	14.0	7.0	0.3	8.0	0.0	3.9	0.5	174.0	6.7	241.7	17.2	965.1	142.5	174.0	6.7	NA
15ATW23-Spot 305	127	18895	3.5	13.8	8.0	0.3	12.7	0.0	9.8	0.8	174.6	16.9	245.4	27.7	993.6	163.3	174.6	16.9	NA
15ATW23-Spot 223	334	44815	1.6	16.1	3.2	0.2	4.0	0.0	2.4	0.6	185.0	4.4	226.2	8.1	680.7	68.7	185.0	4.4	NA
15ATW23-Spot 238	170	35895	2.9	16.5	3.8	0.2	4.7	0.0	2.8	0.6	187.6	5.1	223.2	9.3	618.8	81.0	187.6	5.1	NA
15ATW23-Spot 194	420	262703	1.2	16.1	2.5	0.3	3.8	0.0	2.8	0.7	202.1	5.6	245.4	8.2	683.9	54.1	202.1	5.6	NA
15ATW23-Spot 58	61	7023	2.9	16.7	3.2	0.2	4.0	0.0	2.4	0.6	156.9	3.7	187.8	6.9	596.5	69.7	156.9	3.7	NA
15ATW23-Spot 276	124	150274	2.3	15.9	5.6	0.2	6.1	0.0	2.5	0.4	161.5	4.0	201.6	11.1	701.1	118.5	161.5	4.0	NA
15ATW23-Spot 313	169	79878	2.7	20.7	1.6	0.2	3.4	0.0	3.0	0.9	191.0	5.6	185.3	5.8	114.1	38.0	191.0	5.6	NA
15ATW23-Spot 26	337	57825	1.6	20.7	1.4	0.2	2.6	0.0	2.2	0.8	173.7	3.8	169.9	4.1	118.2	32.3	173.7	3.8	NA
15ATW23-Spot 90	61	10782	3.2	21.4	2.4	0.2	3.8	0.0	3.0	0.8	153.4	4.5	146.4	5.2	36.7	57.8	153.4	4.5	NA
15ATW23-Spot 268	95	92873	3.9	21.1	2.1	0.2	3.4	0.0	2.7	0.8	155.3	4.1	150.3	4.7	72.7	49.5	155.3	4.1	NA
15ATW23-Spot 150	55	13136	3.0	21.3	2.6	0.2	3.7	0.0	2.7	0.7	158.4	4.3	151.8	5.3	50.8	61.0	158.4	4.3	NA
15ATW23-Spot 288	26	4457	2.6	23.3	4.9	0.1	5.8	0.0	3.1	0.5	159.0	4.9	139.6	7.6	NA	NA	159.0	4.9	NA
15ATW23-Spot 121	201	59930	1.5	20.9	1.5	0.2	2.9	0.0	2.5	0.9	159.9	4.0	155.4	4.2	89.1	36.4	159.9	4.0	NA
15ATW23-Spot 304	43	21099	3.0	22.0	3.1	0.2	4.5	0.0	3.3	0.7	160.0	5.1	148.7	6.2	NA	NA	160.0	5.1	NA
15ATW23-Spot 133	27	5764	2.9	22.8	4.0	0.2	4.8	0.0	2.7	0.6	161.3	4.3	144.9	6.5	NA	NA	161.3	4.3	NA
15ATW23-Spot 87	152	20633	2.6	21.3	1.8	0.2	2.9	0.0	2.3	0.8	162.4	3.8	155.3	4.2	50.4	42.6	162.4	3.8	NA
15ATW23-Spot 277	117	25597	3.6	21.3	2.6	0.2	3.8	0.0	2.8	0.7	164.0	4.5	156.8	5.5	50.8	61.9	164.0	4.5	NA
15ATW23-Spot 273	157	1956300	1.7	20.8	1.7	0.2	3.2	0.0	2.7	0.9	164.2	4.4	159.9	4.8	98.2	39.6	164.2	4.4	NA
15ATW23-Spot 242	164	20306	2.4	21.0	1.8	0.2	3.0	0.0	2.5	0.8	171.0	4.2	164.9	4.6	79.2	42.2	171.0	4.2	NA

Sample 15ATW29																			
Analysis	U	206Pb	U/Th	206Pb *	±	207Pb *	±	206Pb *	±	erro r	206Pb *	±	207Pb *	±	206Pb *	±	Best age	±	Conc
Roeske 15ATW29A 8Mar16- Sample 1 Spot 42	(ppm)	204Pb		207Pb *	(%)	235U *	(%)	238U	(%)	corr	238U *	(Ma)	235U	(Ma)	207Pb *	(Ma)	(Ma)	(Ma)	(%)
Roeske 15ATW29A 8Mar16-	119	2016	4.7	22.3	5.3	0.1	5.9	0.0	2.7	0.5	83.0	2.2	78.2	4.5	65.0	129.1	83.0	2.2	NA
Roeske 15ATW-29 3-7-2017-Spot	355	10123	2.0	20.5	1.8	0.1	2.6	0.0	1.9	0.7	84.2	1.6	85.9	2.2	133.0	41.8	84.2	1.6	NA
Roeske 15ATW32 8Mar16-Spot 9	184	12332	1.5	19.6	2.9	0.1	3.6	0.0	2.2	0.6	84.4	1.8	89.8	3.1	237.3	66.8	84.4	1.8	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 5	378	6051	1.9	21.3	2.1	0.1	3.3	0.0	2.5	0.8	84.6	2.1	83.3	2.6	46.9	50.3	84.6	2.1	NA
Roeske 15ATW32 8Mar16-Spot 51	312	17826	1.7	20.8	1.3	0.1	2.9	0.0	2.5	0.9	84.8	2.1	85.2	2.3	97.7	31.7	84.8	2.1	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 43	429	284569	1.1	20.7	1.4	0.1	2.7	0.0	2.3	0.9	84.8	2.0	86.0	2.3	118.9	33.8	84.8	2.0	NA
Roeske 15ATW32 8Mar16-Spot 29	199	3937	2.3	20.4	1.3	0.1	3.1	0.0	2.8	0.9	84.8	2.3	87.1	2.6	150.5	31.2	84.8	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot 179	3031	62388	0.7	20.5	0.7	0.1	1.6	0.0	1.5	0.9	84.9	1.2	86.8	1.3	140.2	15.4	84.9	1.2	NA
Roeske 15ATW-29 3-7-2017-Spot	160	112938	1.6	20.3	3.1	0.1	4.2	0.0	2.9	0.7	85.0	2.4	87.7	3.5	165.0	71.6	85.0	2.4	NA
Roeske 15ATW32 8Mar16-Spot 23	330	94123	0.9	20.4	1.7	0.1	3.2	0.0	2.6	0.8	85.2	2.2	87.3	2.6	146.7	41.0	85.2	2.2	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 36	793	83766	4.0	20.4	1.1	0.1	2.1	0.0	1.8	0.9	85.3	1.5	87.5	1.8	148.6	24.8	85.3	1.5	NA
Roeske 15ATW-29 3-7-2017-Spot 246	174	53387	3.4	19.8	2.0	0.1	3.5	0.0	2.9	0.8	85.7	2.5	90.4	3.1	216.1	45.5	85.7	2.5	NA
Roeske 15ATW-29 3-7-2017-Spot 69	263	26828	1.2	21.1	2.8	0.1	5.0	0.0	4.1	0.8	85.8	3.5	85.3	4.1	72.7	66.3	85.8	3.5	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 50	214	44940	2.1	20.2	2.1	0.1	3.6	0.0	2.9	0.8	85.9	2.5	88.7	3.0	166.4	50.0	85.9	2.5	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 16	222	9726	2.7	20.5	1.6	0.1	2.4	0.0	1.8	0.8	85.9	1.6	87.7	2.0	136.0	36.5	85.9	1.6	NA
Roeske 15ATW-29 3-7-2017-Spot 46	399	12788	0.9	20.7	1.3	0.1	2.2	0.0	1.8	0.8	86.0	1.6	86.9	1.8	113.3	29.9	86.0	1.6	NA
Roeske 15ATW-29 3-7-2017-Spot 156	238	8789	1.5	21.3	2.4	0.1	3.3	0.0	2.2	0.7	86.0	1.9	84.4	2.7	41.1	58.2	86.0	1.9	NA
Roeske 15ATW-29 3-7-2017-Spot 196	75	5328	1.8	20.1	3.3	0.1	4.8	0.0	3.5	0.7	86.3	3.0	89.7	4.1	181.0	75.8	86.3	3.0	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 45	91	185575	2.8	20.1	3.9	0.1	4.9	0.0	3.0	0.6	86.4	2.6	89.9	4.2	186.8	90.4	86.4	2.6	NA
Roeske 15ATW-29 3-7-2017-Spot 302	253	9251	2.6	20.6	2.0	0.1	3.1	0.0	2.4	0.8	86.5	2.1	87.8	2.6	122.3	47.0	86.5	2.1	NA
Roeske 15ATW-29 3-7-2017-Spot 177	240	76472	1.7	19.6	2.1	0.1	3.7	0.0	3.1	0.8	86.6	2.6	92.4	3.3	247.6	47.8	86.6	2.6	NA
Roeske 15ATW-29 3-7-2017-Spot 220	1282	98980	1.1	20.7	1.1	0.1	2.1	0.0	1.8	0.9	86.8	1.6	87.7	1.8	113.7	26.4	86.8	1.6	NA
Roeske 15ATW-29 3-7-2017-Spot	316	27890	2.2	20.6	2.2	0.1	3.4	0.0	2.6	0.8	86.8	2.3	88.2	2.9	127.4	51.6	86.8	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot	85	4842	2.3	20.8	4.0	0.1	4.8	0.0	2.7	0.6	86.8	2.3	87.4	4.0	105.6	93.6	86.8	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot	398	79854425 3	1.1	20.6	1.6	0.1	2.6	0.0	2.0	0.8	86.8	1.7	88.3	2.2	129.6	37.9	86.8	1.7	NA
211 Roeske 15ATW-29 3-7-2017-Spot	180	171366	1.3	19.9	2.3	0.1	3.9	0.0	3.1	0.8	86.9	2.7	91.4	3.4	209.8	52.9	86.9	2.7	NA
137 Roeske 15ATW-29 3-7-2017-Spot	637	177031	0.7	19.9	1.8	0.1	3.2	0.0	2.7	0.8	86.9	2.3	91.3	2.8	206.8	40.8	86.9	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot	264	30415	1.3	20.2	1.8	0.1	3.2	0.0	2.6	0.8	87.0	2.3	90.1	2.8	174.3	43.1	87.0	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot	154	26900	1.3	20.7	2.6	0.1	3.4	0.0	2.2	0.7	87.1	1.9	87.9	2.9	111.6	60.7	87.1	1.9	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 61	742	56928	1.1	20.8	1.1	0.1	2.8	0.0	2.6	0.9	87.1	2.2	87.5	2.4	99.2	26.4	87.1	2.2	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 55	324	56676	1.9	19.8	1.6	0.1	2.5	0.0	1.9	0.8	87.2	1.7	91.9	2.2	215.4	37.0	87.2	1.7	NA
and the second	129	30784	2.7	19.6	2.7	0.1	3.9	0.0	2.8	0.7	87.3	2.4	93.2	3.5	247.0	62.2	87.3	2.4	NA

15ATW23-Spot 113	191	78604	2.7	20.6	1.3	0.2	3.2	0.0	3.0	0.9	183.1	5.4	179.3	5.3	129.6	29.6	183.1	5.4	NA
45470422 5 4 222	450	00700		20.7												20.0			
15A1W23-Spot 279	168	80789	1.8	20.7	1.6	0.2	3.0	0.0	2.6	0.8	189.1	4.8	183.4	5.1	111./	38.0	189.1	4.8	NA
15ATW23-Spot 189	258	315998	5.4	20.7	1.7	0.2	3.4	0.0	2.9	0.9	210.4	6.1	202.7	6.2	114.8	40.0	210.4	6.1	NA
15ATW23-Spot 189	258	315998	5.4	20.7	1.7	0.2	3.4	0.0	2.9	0.9	210.4	6.1	202.7	6.2	114.8	40.0	210.4	6.1	NA

Roeske 15ATW-29 3-7-2017-Spot 28																			
Roeske 15ATW-29 3-7-2017-Spot 71	157	16836	1.2	20.2	2.3	0.1	3.4	0.0	2.5	0.7	87.4	2.2	90.3	3.0	169.2	54.2	87.4	2.2	NA
Roeske 15ATW32 8Mar16-Spot 10	119	11717	1.9	20.5	2.3	0.1	3.4	0.0	2.5	0.7	87.4	2.2	89.2	2.9	137.5	55.1	87.4	2.2	NA
Roeske 15ATW-29 3-7-2017-Spot 253	976	51623	2.4	20.8	1.0	0.1	2.2	0.0	2.0	0.9	87.4	1.7	88.1	1.8	107.4	23.0	87.4	1.7	NA
Roeske 15ATW-29 3-7-2017-Spot 263	151	6126	2.1	21.3	2.4	0.1	3.4	0.0	2.5	0.7	87.6	2.2	86.2	2.8	47.3	56.3	87.6	2.2	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 6	83	13820	4.1	19.5	3.5	0.1	4.5	0.0	2.7	0.6	87.6	2.4	93.9	4.0	258.0	81.6	87.6	2.4	NA
Roeske 15ATW-29 3-7-2017-Spot 117	367	15781	1.1	19.7	1.1	0.1	2.4	0.0	2.1	0.9	87.7	1.8	92.9	2.1	230.8	26.2	87.7	1.8	NA
Roeske 15ATW-29 3-7-2017-Spot 120	265	44143	1.2	20.6	2.1	0.1	3.6	0.0	2.9	0.8	87.7	2.6	89.1	3.1	129.4	49.7	87.7	2.6	NA
Roeske 15ATW-29 3-7-2017-Spot 134	184	69389	1.8	20.9	2.3	0.1	3.2	0.0	2.3	0.7	87.7	2.0	88.0	2.7	96.2	54.3	87.7	2.0	NA
Roeske 15ATW-29 3-7-2017-Spot 55	234	2461899	2.4	19.5	2.6	0.1	3.9	0.0	2.9	0.7	87.8	2.6	93.7	3.5	248.3	60.3	87.8	2.6	NA
Roeske 15ATW-29 3-7-2017-Spot 127	115	5396	2.1	20.9	3.9	0.1	5.2	0.0	3.3	0.6	87.8	2.9	87.9	4.3	91.8	93.5	87.8	2.9	NA
Roeske 15ATW-29 3-7-2017-Spot 148	61	11424	2.4	21.5	4.1	0.1	5.0	0.0	2.9	0.6	87.9	2.5	85.8	4.1	28.8	98.4	87.9	2.5	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 39	179	16033	1.4	21.2	2.1	0.1	3.5	0.0	2.8	0.8	88.0	2.5	87.0	2.9	62.4	51.1	88.0	2.5	NA
Roeske 15ATW-29 3-7-2017-Spot 16	907	50295	3.0	20.4	1.0	0.1	1.9	0.0	1.6	0.8	88.0	1.4	90.0	1.7	143.7	24.0	88.0	1.4	NA
Roeske 15ATW-29 3-7-2017-Spot 159	1221	76331	1.0	20.9	1.1	0.1	2.6	0.0	2.4	0.9	88.0	2.1	88.2	2.2	94.1	25.9	88.0	2.1	NA
Roeske 15ATW-29 3-7-2017-Spot 130	406	72894	1.1	20.9	1.4	0.1	2.8	0.0	2.4	0.9	88.1	2.1	88.3	2.3	93.9	33.2	88.1	2.1	NA
Roeske 15ATW-29 3-7-2017-Spot 193	80	56197	2.9	20.1	3.7	0.1	4.6	0.0	2.7	0.6	88.2	2.4	91.4	4.0	178.1	86.0	88.2	2.4	NA
Roeske 15ATW-29 3-7-2017-Spot 210	70	20581	2.9	19.5	3.9	0.1	5.1	0.0	3.3	0.6	88.2	2.9	94.2	4.6	250.2	89.3	88.2	2.9	NA
Roeske 15ATW-29 3-7-2017-Spot 77	1058	417795	1.1	20.7	1.1	0.1	2.7	0.0	2.5	0.9	88.2	2.2	89.2	2.3	116.8	25.6	88.2	2.2	NA
Roeske 15ATW-29 3-7-2017-Spot 276	230	42351	2.1	21.0	1.8	0.1	3.1	0.0	2.6	0.8	88.2	2.2	88.1	2.7	86.0	43.4	88.2	2.2	NA
Roeske 15ATW-29 3-7-2017-Spot 20	75	3780	1.9	21.6	4.0	0.1	5.2	0.0	3.3	0.6	88.2	2.9	85.7	4.3	18.7	96.4	88.2	2.9	NA
Roeske 15ATW-29 3-7-2017-Spot 313	132	40210	1.2	20.8	2.6	0.1	3.9	0.0	2.9	0.7	88.3	2.5	89.0	3.3	108.7	62.3	88.3	2.5	NA
Roeske 15ATW-29 3-7-2017-Spot 40	391	167124	0.7	20.7	1.9	0.1	3.0	0.0	2.4	0.8	88.3	2.1	89.3	2.6	116.6	45.1	88.3	2.1	NA
Roeske 15ATW-29 3-7-2017-Spot 222	433	23502	1.5	20.1	1.7	0.1	3.2	0.0	2.7	0.8	88.3	2.3	91.9	2.8	186.7	40.3	88.3	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot 53	66	12758	1.6	19.9	3.2	0.1	4.2	0.0	2.8	0.7	88.3	2.5	92.6	3.8	205.7	73.6	88.3	2.5	NA
Roeske 15ATW-29 3-7-2017-Spot 93	159	45631	2.2	19.9	2.6	0.1	4.0	0.0	3.1	0.8	88.4	2.7	92.7	3.6	205.3	59.3	88.4	2.7	NA
Roeske 15ATW-29 3-7-2017-Spot 135	911	918992	2.4	20.4	1.3	0.1	2.7	0.0	2.4	0.9	88.4	2.1	90.6	2.4	148.4	31.1	88.4	2.1	NA
Roeske 15ATW-29 3-7-2017-Spot 102	232	21507	1.4	20.7	2.1	0.1	3.3	0.0	2.6	0.8	88.4	2.3	89.1	2.8	109.5	48.5	88.4	2.3	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 31	219	33050	2.0	20.1	2.2	0.1	3.4	0.0	2.6	0.8	88.4	2.3	91.8	3.0	179.9	50.4	88.4	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot 160	94	2284	2.1	22.2	3.1	0.1	4.2	0.0	2.8	0.7	88.5	2.5	83.6	3.4	54.6	75.9	88.5	2.5	NA
Roeske 15ATW-29 3-7-2017-Spot 81	930	1449806	1.3	20.8	1.4	0.1	3.0	0.0	2.7	0.9	88.5	2.3	89.0	2.6	102.5	34.1	88.5	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot 2	664	112424	1.2	21.4	1.4	0.1	3.1	0.0	2.7	0.9	88.6	2.4	86.8	2.5	40.3	32.8	88.6	2.4	NA
Roeske 15ATW-29 3-7-2017-Spot 90	270	13860	1.7	21.2	1.4	0.1	3.4	0.0	3.1	0.9	88.6	2.7	87.5	2.9	57.4	34.3	88.6	2.7	NA
Roeske 15ATW-29 3-7-2017-Spot 173	102	11642	1.3	20.3	2.9	0.1	3.7	0.0	2.4	0.6	88.6	2.1	91.1	3.3	157.9	66.9	88.6	2.1	NA
Roeske 15ATW-29 3-7-2017-Spot 98	176	356242	3.0	20.4	2.6	0.1	3.7	0.0	2.6	0.7	88.7	2.3	90.6	3.2	143.2	61.1	88.7	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot 287	237	177696	1.8	20.8	2.0	0.1	3.0	0.0	2.2	0.7	88.7	2.0	89.0	2.5	99.7	46.6	88.7	2.0	NA
Roeske 15ATW32 8Mar16-Spot 53	181	12292	2.4	21.0	2.9	0.1	4.5	0.0	3.4	0.8	88.8	3.0	88.5	3.8	83.1	70.0	88.8	3.0	NA
Roeske 15ATW-29 3-7-2017-Spot 68	259	9997	1.7	20.0	2.2	0.1	3.4	0.0	2.6	0.8	88.9	2.3	92.8	3.0	193.7	51.9	88.9	2.3	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 1	77	6670	2.3	21.6	4.0	0.1	5.2	0.0	3.3	0.6	88.9	2.9	86.1	4.3	10.0	96.6	88.9	2.9	NA
Roeske 15ATW-29 3-7-2017-Spot 293	60	7563	2.4	21.4	2.7	0.1	4.1	0.0	3.1	0.8	89.0	2.7	87.1	3.4	36.6	65.2	89.0	2.7	NA
	134	17494	1.5	20.2	2.8	0.1	3.9	0.0	2.6	0.7	89.1	2.3	91.9	3.4	167.4	65.9	89.1	2.3	NA

Roeske 15ATW-29 3-7-2017-Spot 241																			
Roeske 15ATW-29 3-7-2017-Spot 97	123	18043	1.9	21.5	2.9	0.1	4.0	0.0	2.7	0.7	89.1	2.4	86.9	3.3	29.0	69.9	89.1	2.4	NA
Roeske 15ATW-29 3-7-2017-Spot 257	278	23275	1.7	21.0	1.6	0.1	2.9	0.0	2.4	0.8	89.1	2.1	88.9	2.5	84.3	38.1	89.1	2.1	NA
Roeske 15ATW-29 3-7-2017-Spot 285	77	3314	2.7	21.6	3.8	0.1	4.7	0.0	2.7	0.6	89.1	2.4	86.5	3.9	17.5	92.0	89.1	2.4	NA
Roeske 15ATW-29 3-7-2017-Spot 153	174	36352	2.4	20.8	2.6	0.1	3.9	0.0	2.9	0.7	89.1	2.5	89.6	3.3	103.1	61.9	89.1	2.5	NA
Roeske 15ATW-29 3-7-2017-Spot 194	69	6255	2.9	20.7	3.6	0.1	5.1	0.0	3.6	0.7	89.2	3.2	90.2	4.4	117.8	84.0	89.2	3.2	NA
Roeske 15ATW-29 3-7-2017-Spot 181	779	327270	1.2	21.5	1.6	0.1	2.9	0.0	2.5	0.8	89.2	2.2	87.0	2.5	29.5	39.2	89.2	2.2	NA
Roeske 15ATW-29 3-7-2017-Spot 301	151	13098	1.9	20.7	2.4	0.1	3.8	0.0	2.9	0.8	89.2	2.6	90.1	3.2	114.5	55.7	89.2	2.6	NA
Roeske 15ATW-29 3-7-2017-Spot 312	86	8420	2.3	20.5	3.8	0.1	5.0	0.0	3.3	0.7	89.2	2.9	91.0	4.4	138.1	88.6	89.2	2.9	NA
Roeske 15ATW-29 3-7-2017-Spot	290	10611	2.3	20.6	1.8	0.1	2.9	0.0	2.3	0.8	89.3	2.0	90.5	2.5	124.1	43.2	89.3	2.0	NA
Roeske 15ATW-29 3-7-2017-Spot	254	233343	2.3	20.5	2.3	0.1	3.4	0.0	2.5	0.7	89.3	2.3	91.1	3.0	139.3	52.9	89.3	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot	146	35727	1.6	21.5	3.3	0.1	4.6	0.0	3.2	0.7	89.3	2.8	87.2	3.8	29.2	79.4	89.3	2.8	NA
94 Roeske 15ATW-29 3-7-2017-Spot	154	10867	1.7	20.3	2.6	0.1	3.7	0.0	2.6	0.7	89.4	2.3	91.8	3.3	155.6	61.8	89.4	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot	407	25861	2.5	20.8	1.7	0.1	4.0	0.0	3.6	0.9	89.4	3.2	89.9	3.4	103.4	40.9	89.4	3.2	NA
26 Roeske 15ATW-29 3-7-2017-Spot	993	587773	1.2	20.5	1.3	0.1	2.6	0.0	2.3	0.9	89.4	2.0	90.9	2.2	131.9	29.6	89.4	2.0	NA
163 Roeske 15ATW-29 3-7-2017-Spot	489	63526	1.0	20.2	1.5	0.1	2.9	0.0	2.5	0.9	89.5	2.2	92.6	2.6	173.8	35.2	89.5	2.2	NA
57 Roeske 15ATW-29 3-7-2017-Spot	221	3470203	1.6	19.5	1.9	0.1	3.3	0.0	2.7	0.8	89.6	2.4	96.0	3.0	258.7	44.2	89.6	2.4	NA
22 Roeske 15ATW-29 3-7-2017-Spot	41	5592	4.4	20.6	4.2	0.1	5.6	0.0	3.7	0.7	89.7	3.3	90.9	4.9	123.7	99.1	89.7	3.3	NA
290 Roeske 15ATW-29 3-7-2017-Spot	153	12045	1.7	21.8	2.4	0.1	3.8	0.0	3.0	0.8	89.8	2.6	86.2	3.1	NA	NA	89.8	2.6	NA
195 Roeske 15ATW-29 3-7-2017-Spot	225	32270	1.3	21.9	2.0	0.1	3.2	0.0	2.5	0.8	89.8	2.2	86.0	2.6	NA	NA	89.8	2.2	NA
161 Roeske 15ATW-29 3-7-2017-Spot	205	261004	1.9	19.8	3.0	0.1	4.3	0.0	3.1	0.7	89.8	2.7	94.5	3.9	216.8	69.4	89.8	2.7	NA
289 Rocke 154TW 29 3-7 2017 Spot	416	93372	1.9	20.6	1.5	0.1	2.9	0.0	2.5	0.9	89.8	2.3	91.0	2.6	123.3	35.8	89.8	2.3	NA
114	496	116551	1.9	21.1	1.4	0.1	3.0	0.0	2.6	0.9	89.8	2.3	88.9	2.5	65.6	32.6	89.8	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot 109	237	19800	1.9	20.6	1.8	0.1	3.5	0.0	3.0	0.9	89.8	2.6	91.1	3.0	123.8	42.3	89.8	2.6	NA
306	461	79362	1.6	21.1	1.6	0.1	3.0	0.0	2.5	0.8	89.9	2.2	89.2	2.5	71.9	37.7	89.9	2.2	NA
Roeske 15ATW-29 3-7-2017-Spot 172	229	11829	1.1	21.0	2.5	0.1	3.7	0.0	2.7	0.7	89.9	2.4	89.4	3.1	75.7	59.6	89.9	2.4	NA
Roeske 15ATW-29 3-7-2017-Spot 118	789	152305	2.8	21.1	1.3	0.1	2.7	0.0	2.3	0.9	89.9	2.0	89.2	2.3	70.3	31.8	89.9	2.0	NA
Roeske 15ATW-29 3-7-2017-Spot 273	455	136375	2.6	20.4	1.7	0.1	3.1	0.0	2.6	0.8	89.9	2.3	91.9	2.7	144.2	40.7	89.9	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot 74	108	6051	1.4	20.1	2.9	0.1	35	0.0	21	0.6	90.0	1.9	93.6	3.2	188.1	66.6	90.0	19	NA
Roeske 15ATW-29 3-7-2017-Spot 140	443	47774	27	20.5	15	0.1	25	0.0	21	0.8	90.7	18	97.0	2.2	140.0	34.9	90.2	1.8	NΔ
Roeske 15ATW-29 3-7-2017-Spot 108	251	11510	2.7	20.5	2.5	0.1	2.0	0.0	2.2	0.0	00.2	2.0	90.6	2.0	99.5	51.0	00.2	2.0	NA
Roeske 15ATW-29 3-7-2017-Spot 274	502	20202	1.1	20.0	1.0	0.1	3.4	0.0	2.7	0.0	00.2	2.4	00.0	3.0	108.0	45.2	00.3	2.4	
Roeske 15ATW-29 3-7-2017-Spot 280	293	36262	1.1	20.8	1.9	0.1	5.6	0.0	3.2	0.9	90.5	2.9	90.9	3.5	108.0	45.5	90.5	2.9	NA
Roeske 15ATW-29 3-7-2017-Spot 104	370	60644	1.3	20.9	2.0	0.1	3.6	0.0	2.9	0.8	90.4	2.6	90.6	3.1	97.0	47.8	90.4	2.6	NA
Roeske 15ATW-29 3-7-2017-Spot 103	373	211816	2.0	20.8	1.7	0.1	3.5	0.0	3.1	0.9	90.4	2.7	90.7	3.0	98.3	40.1	90.4	2.7	NA
Roeske 15ATW-29 3-7-2017-Spot 82	72	14495	1.6	21.5	3.7	0.1	5.0	0.0	3.4	0.7	90.5	3.0	87.9	4.2	21.0	88.5	90.5	3.0	NA
Roeske 15ATW-29 3-7-2017-Spot 5	124	27945	2.0	20.3	2.6	0.1	4.5	0.0	3.7	0.8	90.6	3.3	93.2	4.0	163.6	60.3	90.6	3.3	NA
Roeske 15ATW-29 3-7-2017-Spot 255	69	7125	2.0	22.0	3.7	0.1	5.1	0.0	3.4	0.7	90.6	3.1	86.3	4.2	NA	NA	90.6	3.1	NA
Roeske 15ATW-29 3-7-2017-Spot 23	1824	117787	0.7	21.0	1.2	0.1	2.7	0.0	2.5	0.9	90.8	2.2	90.4	2.4	83.4	27.8	90.8	2.2	NA
Roeske 15ATW-29 3-7-2017-Spot 235	159	21545	1.4	21.7	3.0	0.1	4.1	0.0	2.8	0.7	90.8	2.5	87.5	3.4	NA	NA	90.8	2.5	NA
Roeske 15ATW-29 3-7-2017-Spot 295	122	7173	1.7	21.3	3.5	0.1	4.5	0.0	2.9	0.6	90.8	2.6	89.3	3.9	51.2	83.1	90.8	2.6	NA
	100	18401	1.8	21.6	3.3	0.1	4.7	0.0	3.3	0.7	90.8	3.0	88.1	3.9	15.6	79.4	90.8	3.0	NA

1	1	8

Roeske 15ATW-29 3-7-2017-Spot 34																			
Roeske 15ATW-29 3-7-2017-Spot 21	153	28331	1.6	20.9	2.8	0.1	3.7	0.0	2.5	0.7	90.8	2.3	91.0	3.3	96.5	66.0	90.8	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot 307	131	11227	1.3	20.8	2.4	0.1	3.5	0.0	2.5	0.7	90.9	2.3	91.1	3.0	98.6	56.4	90.9	2.3	NA
Roeske 15ATW32 8Mar16-Spot 52	178	63332	2.2	19.6	2.3	0.1	3.0	0.0	2.0	0.6	91.0	1.8	96.6	2.8	237.7	53.7	91.0	1.8	NA
Roeske 15ATW-29 3-7-2017-Spot 215	138	4888	1.7	21.7	4.2	0.1	5.3	0.0	3.2	0.6	91.0	2.9	88.0	4.4	6.1	101.6	91.0	2.9	NA
Roeske 15ATW-29 3-7-2017-Spot 251	150	19617	1.3	21.5	2.8	0.1	4.2	0.0	3.1	0.7	91.1	2.8	88.5	3.5	19.5	66.6	91.1	2.8	NA
Roeske 15ATW-29 3-7-2017-Spot 95	275	366703	1.9	20.3	2.1	0.1	3.6	0.0	2.9	0.8	91.1	2.6	93.7	3.2	162.3	49.6	91.1	2.6	NA
Roeske 15ATW-29 3-7-2017-Spot 299	31	2231	2.0	20.9	5.3	0.1	6.4	0.0	3.4	0.5	91.1	3.1	91.2	5.5	95.7	126.5	91.1	3.1	NA
Roeske 15ATW-29 3-7-2017-Spot 12	123	15557	1.8	21.3	3.1	0.1	4.4	0.0	3.1	0.7	91.1	2.8	89.3	3.7	42.3	74.2	91.1	2.8	NA
Roeske 15ATW-29 3-7-2017-Spot 221	72	19762	1.6	22.7	3.6	0.1	4.5	0.0	2.7	0.6	91.3	2.5	84.4	3.7	NA	NA	91.3	2.5	NA
Roeske 15ATW-29 3-7-2017-Spot 277	87	32967	2.3	20.9	3.3	0.1	4.4	0.0	2.9	0.7	91.7	2.7	91.5	3.8	86.9	77.9	91.7	2.7	NA
Roeske 15ATW-29 3-7-2017-Spot 265	116	30948	1.5	21.0	2.9	0.1	4.5	0.0	3.4	0.8	91.7	3.1	91.4	3.9	82.9	69.3	91.7	3.1	NA
Roeske 15ATW-29 3-7-2017-Spot 180	433	130427	1.3	20.7	1.6	0.1	3.2	0.0	2.7	0.9	91.8	2.5	92.7	2.8	115.7	38.5	91.8	2.5	NA
Roeske 15ATW-29 3-7-2017-Spot 189	759	813111	0.9	20.8	1.6	0.1	3.2	0.0	2.8	0.9	92.0	2.5	92.6	2.8	108.4	38.6	92.0	2.5	NA
Roeske 15ATW-29 3-7-2017-Spot	242	906138	2.8	20.9	2.0	0.1	3.3	0.0	2.6	0.8	92.2	2.4	92.1	2.9	90.8	48.0	92.2	2.4	NA
40 Roeske 15ATW-29 3-7-2017-Spot 62	257	26248	1.9	19.7	1.9	0.1	3.6	0.0	3.0	0.9	92.4	2.8	97.6	3.3	228.4	43.0	92.4	2.8	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 63	642	357721	1.7	20.3	1.6	0.1	2.6	0.0	2.0	0.8	92.5	1.9	94.8	2.4	154.9	38.0	92.5	1.9	NA
Roeske 15ATW-29 3-7-2017-Spot 248	360	4937	2.2	21.2	1.4	0.1	2.5	0.0	2.0	0.8	92.6	1.9	91.5	2.1	61.7	32.4	92.6	1.9	NA
Roeske 15ATW-29 3-7-2017-Spot 139	54	51760	2.1	21.4	3.8	0.1	4.9	0.0	3.0	0.6	92.8	2.8	90.6	4.2	33.5	91.5	92.8	2.8	NA
Roeske 15ATW-29 3-7-2017-Spot 116	899	201318	1.9	20.6	1.1	0.1	3.1	0.0	2.9	0.9	92.9	2.7	94.3	2.8	130.2	25.2	92.9	2.7	NA
Roeske 15ATW-29 3-7-2017-Spot 168	225	33190	1.8	20.5	1.9	0.1	3.3	0.0	2.7	0.8	93.0	2.5	94.8	3.0	143.0	44.0	93.0	2.5	NA
Roeske 15ATW-29 3-7-2017-Spot 190	491	76764	2.1	20.3	1.4	0.1	2.8	0.0	2.4	0.9	93.2	2.3	95.9	2.6	165.8	33.2	93.2	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot 141	237	84506	2.9	20.4	1.9	0.1	3.1	0.0	2.5	0.8	93.3	2.3	95.2	2.9	145.0	44.8	93.3	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot 266	106	18212	2.0	20.3	3.6	0.1	4.6	0.0	2.9	0.6	93.3	2.7	95.8	4.2	158.0	85.3	93.3	2.7	NA
Roeske 15ATW-29 3-7-2017-Spot 33	388	654393	1.6	21.1	1.8	0.1	2.8	0.0	2.1	0.8	93.4	1.9	92.5	2.4	70.8	43.2	93.4	1.9	NA
Roeske 15ATW-29 3-7-2017-Spot 187	193	24223	1.7	21.2	2.8	0.1	4.1	0.0	2.9	0.7	93.7	2.7	92.5	3.6	62.3	67.7	93.7	2.7	NA
Roeske 15ATW-29 3-7-2017-Spot 228	1929	3104850	7.8	20.5	0.9	0.1	2.3	0.0	2.1	0.9	94.9	2.0	96.4	2.1	136.1	21.4	94.9	2.0	NA
Roeske 15ATW-29 3-7-2017-Spot 298	65	7578	1.9	20.1	3.2	0.1	4.4	0.0	3.1	0.7	95.2	2.9	98.7	4.2	183.2	74.2	95.2	2.9	NA
Roeske 15ATW-29 3-7-2017-Spot 112	95	35351	2.5	21.9	2.9	0.1	4.0	0.0	2.7	0.7	95.9	2.6	91.7	3.5	NA	NA	95.9	2.6	NA
Roeske 15ATW-29 3-7-2017-Spot 11	577	26304	2.0	20.1	1.5	0.1	2.7	0.0	2.3	0.8	96.0	2.2	99.6	2.6	187.3	34.8	96.0	2.2	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 40	704	52441	1.8	20.9	1.6	0.1	3.6	0.0	3.2	0.9	96.6	3.1	96.5	3.3	94.9	37.0	96.6	3.1	NA
Roeske 15ATW32 8Mar16-Spot 34	243	6491	1.7	20.8	1.4	0.1	2.5	0.0	2.1	0.8	97.0	2.1	97.3	2.4	105.8	32.4	97.0	2.1	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 46	970	82226	2.4	20.4	1.1	0.1	2.6	0.0	2.3	0.9	97.3	2.2	99.3	2.4	147.6	26.4	97.3	2.2	NA
Roeske 15ATW-29 3-7-2017-Spot 150	85	2430	3.5	21.7	3.5	0.1	4.3	0.0	2.6	0.6	97.8	2.5	94.1	3.9	2.8	83.9	97.8	2.5	NA
Roeske 15ATW-29 3-7-2017-Spot 158	838	91613	2.6	20.6	1.3	0.1	2.6	0.0	2.3	0.9	98.1	2.2	99.3	2.5	129.5	30.4	98.1	2.2	NA
Roeske 15ATW32 8Mar16-Spot 1	75	6805	2.6	21.6	3.9	0.1	5.3	0.0	3.6	0.7	98.7	3.5	95.6	4.9	18.3	94.2	98.7	3.5	NA
Roeske 15ATW-29 3-7-2017-Spot 72	313	5482	3.3	20.9	1.9	0.1	3.2	0.0	2.5	0.8	98.8	2.5	98.5	3.0	91.1	46.1	98.8	2.5	NA
Roeske 15ATW-29 3-7-2017-Spot 264	119	22369	2.0	19.1	2.8	0.1	3.9	0.0	2.7	0.7	99.8	2.7	108.1	4.0	295.1	63.7	99.8	2.7	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 11	614	368931	1.9	20.6	1.2	0.1	3.5	0.0	3.2	0.9	100.5	3.2	101.5	3.3	124.8	28.6	100.5	3.2	NA
Roeske 15ATW-29 3-7-2017-Spot	52	4848	3.1	20.0	3.3	0.1	4.4	0.0	3.0	0.7	100.7	3.0	104.5	4.4	193.3	77.2	100.7	3.0	NA
	228	156300	2.8	21.5	2.2	0.1	3.2	0.0	2.3	0.7	100.9	2.3	98.0	3.0	28.6	52.9	100.9	2.3	NA

Roeske 15ATW-29 3-7-2017-Spot 41																			
Roeske 15ATW-29 3-7-2017-Spot 37	351	110346	1.9	20.9	1.7	0.1	3.2	0.0	2.6	0.8	101.7	2.7	101.1	3.0	86.7	41.4	101.7	2.7	NA
Roeske 15ATW-29 3-7-2017-Spot 52	796	128946	2.1	20.4	0.9	0.1	2.7	0.0	2.6	0.9	102.5	2.6	104.4	2.7	148.5	22.1	102.5	2.6	NA
Roeske 15ATW-29 3-7-2017-Spot 308	136	18855	2.8	20.0	2.2	0.1	3.1	0.0	2.1	0.7	103.5	2.2	107.2	3.1	190.8	51.4	103.5	2.2	NA
Roeske 15ATW-29 3-7-2017-Spot 311	663	69984	1.9	20.8	1.7	0.1	3.1	0.0	2.6	0.8	103.7	2.7	103.6	3.0	103.3	39.5	103.7	2.7	NA
Roeske 15ATW-29 3-7-2017-Spot 192	78	11552	2.5	21.4	3.4	0.1	4.7	0.0	3.2	0.7	103.9	3.3	101.1	4.5	37.7	81.3	103.9	3.3	NA
Roeske 15ATW-29 3-7-2017-Spot 96	551	335177	1.1	20.0	1.5	0.1	3.4	0.0	3.1	0.9	105.2	3.2	109.3	3.6	200.8	35.4	105.2	3.2	NA
Roeske 15ATW-29 3-7-2017-Spot 27	672	179768	1.6	20.5	0.9	0.1	2.0	0.0	1.8	0.9	105.5	1.9	106.8	2.0	136.9	20.8	105.5	1.9	NA
Roeske 15ATW-29 3-7-2017-Spot 282	614	92023	2.4	20.5	1.0	0.1	2.8	0.0	2.6	0.9	105.8	2.8	107.0	2.9	134.3	24.3	105.8	2.8	NA
Roeske 15ATW-29 3-7-2017-Spot 182	394	63106	3.3	21.1	1.6	0.1	2.5	0.0	2.0	0.8	106.3	2.1	104.9	2.5	73.8	36.9	106.3	2.1	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 35	2595	441020	1.8	20.5	1.3	0.1	2.5	0.0	2.1	0.8	109.3	2.3	110.3	2.6	132.2	31.1	109.3	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot 174	1711	22895	1.7	20.9	0.8	0.1	1.9	0.0	1.8	0.9	109.4	1.9	108.8	2.0	95.3	19.5	109.4	1.9	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 54	866	75933	0.8	20.4	1.2	0.1	2.4	0.0	2.1	0.9	111.3	2.3	112.7	2.6	144.4	27.4	111.3	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot 73	534	72051	1.3	20.1	1.2	0.1	2.9	0.0	2.6	0.9	112.5	2.9	115.5	3.1	178.7	27.6	112.5	2.9	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 57	432	137145	1.4	20.5	1.5	0.1	3.0	0.0	2.6	0.9	113.7	3.0	114.7	3.3	137.5	34.7	113.7	3.0	NA
Roeske 15ATW-29 3-7-2017-Spot 218	97	14514	4.4	19.8	2.5	0.1	4.1	0.0	3.3	0.8	114.1	3.8	118.8	4.6	213.4	57.3	114.1	3.8	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 37	213	40535	2.4	20.8	1.7	0.1	3.1	0.0	2.5	0.8	115.1	2.9	114.5	3.3	103.5	41.1	115.1	2.9	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 7	106	10948	3.1	19.9	2.1	0.1	3.5	0.0	2.7	0.8	116.1	3.1	120.3	3.9	203.6	49.7	116.1	3.1	NA
Roeske 15ATW-29 3-7-2017-Spot 78	157	3336	7.1	19.5	3.6	0.1	4.9	0.0	3.3	0.7	117.1	3.8	123.7	5.7	254.3	82.1	117.1	3.8	NA
Roeske 15ATW-29 3-7-2017-Spot 106	204	69847	3.0	20.5	2.5	0.1	3.9	0.0	3.1	0.8	117.3	3.6	118.3	4.4	140.0	58.0	117.3	3.6	NA
Roeske 15ATW-29 3-7-2017-Spot 249	424	39064	2.8	20.3	1.6	0.1	2.6	0.0	2.1	0.8	117.6	2.4	119.6	2.9	159.4	37.0	117.6	2.4	NA
Roeske 15ATW-29 3-7-2017-Spot 50	461	60475	286.7	20.8	1.3	0.1	2.9	0.0	2.6	0.9	124.2	3.2	123.0	3.4	101.2	31.8	124.2	3.2	NA
Roeske 15ATW-29 3-7-2017-Spot 204	917	112426	2.4	20.3	1.1	0.1	2.4	0.0	2.2	0.9	127.0	2.7	128.8	2.9	164.4	25.1	127.0	2.7	NA
Roeske 15ATW32 8Mar16-Spot 28	108	32274	1.6	19.9	3.0	0.1	4.1	0.0	2.8	0.7	132.9	3.6	136.7	5.2	204.7	69.9	132.9	3.6	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 21	981	253588	1.1	20.4	1.1	0.1	2.6	0.0	2.3	0.9	136.2	3.2	137.2	3.3	154.5	25.3	136.2	3.2	NA
Roeske 15ATW-29 3-7-2017-Spot 202	211	23580	2.6	20.4	1.5	0.1	3.0	0.0	2.6	0.9	137.6	3.6	138.2	3.9	147.1	35.5	137.6	3.6	NA
Roeske 15ATW32 8Mar16-Spot 7	1053	423361	1.1	20.3	1.1	0.2	2.4	0.0	2.2	0.9	141.0	3.0	142.1	3.2	161.8	25.5	141.0	3.0	NA
Roeske 15ATW32 8Mar16-Spot 16	153	5527	3.8	20.2	1.6	0.2	3.0	0.0	2.5	0.8	146.2	3.6	147.7	4.1	171.6	38.1	146.2	3.6	NA
Roeske 15ATW-29 3-7-2017-Spot 261	764	56289	2.6	20.2	0.9	0.2	2.0	0.0	1.8	0.9	146.7	2.6	148.3	2.8	174.5	21.0	146.7	2.6	NA
Roeske 15ATW-29 3-7-2017-Spot 24	192	20124	1.7	20.2	1.6	0.2	3.5	0.0	3.1	0.9	147.3	4.5	148.4	4.8	167.3	38.5	147.3	4.5	NA
Roeske 15ATW-29 3-7-2017-Spot 239	168	14654	1.9	20.1	2.0	0.2	3.0	0.0	2.3	0.8	148.6	3.4	150.9	4.3	188.1	45.5	148.6	3.4	NA
Roeske 15ATW32 8Mar16-Spot 8	57	6101	4.0	19.6	3.0	0.2	4.0	0.0	2.7	0.7	148.8	3.9	154.7	5.8	247.3	69.1	148.8	3.9	NA
Roeske 15ATW-29 3-7-2017-Spot 237	240	502118	2.5	19.5	1.5	0.2	2.6	0.0	2.2	0.8	149.0	3.2	155.5	3.8	255.1	34.0	149.0	3.2	NA
Roeske 15ATW-29 3-7-2017-Spot 170	69	57310	1.8	20.3	2.6	0.2	3.7	0.0	2.7	0.7	150.1	4.0	150.3	5.2	154.7	60.7	150.1	4.0	NA
Roeske 15ATW-29 3-7-2017-Spot 49	456	81737	1.7	19.7	1.8	0.2	3.2	0.0	2.6	0.8	150.5	3.9	155.1	4.6	228.2	40.6	150.5	3.9	NA
Roeske 15ATW-29 3-7-2017-Spot	159	24960	4.1	20.4	2.1	0.2	3.4	0.0	2.7	0.8	151.1	4.0	151.2	4.8	152.6	49.6	151.1	4.0	NA
Roeske 15ATW-29 3-7-2017-Spot 286	83	65291	2.7	20.4	2.5	0.2	3.7	0.0	2.7	0.7	152.1	4.1	151.9	5.2	150.3	57.8	152.1	4.1	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 32	178	13603	4.7	20.5	1.9	0.2	3.0	0.0	2.4	0.8	152.4	3.6	151.3	4.2	135.6	44.0	152.4	3.6	NA
Roeske 15ATW-29 3-7-2017-Spot	63	7748	3.6	20.6	1.8	0.2	3.3	0.0	2.8	0.8	152.6	4.2	151.2	4.7	128.6	43.2	152.6	4.2	NA
- Roeske 15ATW-29 3-7-2017-Spot 14	267	272577	1.6	20.5	1.5	0.2	2.8	0.0	2.3	0.8	152.8	3.5	151.7	3.9	135.8	34.9	152.8	3.5	NA
	491	144129	1.9	20.4	1.3	0.2	3.2	0.0	2.9	0.9	152.8	4.4	152.8	4.5	154.1	30.4	152.8	4.4	NA

Roeske 15ATW-29 3-7-2017-Spot 89																			
Roeske 15ATW29A 8Mar16- Sample 1 Spot 44	214	39701	2.3	19.7	1.3	0.2	3.5	0.0	3.2	0.9	153.5	4.8	157.9	5.0	225.6	30.4	153.5	4.8	NA
Roeske 15ATW-29 3-7-2017-Spot	98	6595	3.1	21.1	3.0	0.2	3.7	0.0	2.1	0.6	153.6	3.2	148.7	5.1	71.7	72.0	153.6	3.2	NA
Roeske 15ATW-29 3-7-2017-Spot 185	34	54161	3.4	18.7	3.4	0.2	4.7	0.0	3.2	0.7	154.0	4.9	166.7	7.2	351.0	76.7	154.0	4.9	NA
Roeske 15ATW-29 3-7-2017-Spot 147	314	79948	2.0	20.2	1.7	0.2	3.1	0.0	2.6	0.8	155.0	3.9	155.9	4.4	169.3	38.7	155.0	3.9	NA
Roeske 15ATW-29 3-7-2017-Spot 83	280	57323	6.0	20.6	1.7	0.2	3.3	0.0	2.8	0.9	157.7	4.4	155.9	4.8	129.9	41.1	157.7	4.4	NA
Roeske 15ATW-29 3-7-2017-Spot 236	234	16702	2.8	20.8	1.8	0.2	3.2	0.0	2.7	0.8	159.7	4.2	156.2	4.7	104.3	42.6	159.7	4.2	NA
Roeske 15ATW-29 3-7-2017-Spot 13	1077	74224	1.8	20.5	1.1	0.2	2.5	0.0	2.3	0.9	160.7	3.6	158.8	3.7	132.5	26.1	160.7	3.6	NA
Roeske 15ATW-29 3-7-2017-Spot 288	121	204978	2.8	19.2	1.8	0.2	3.6	0.0	3.1	0.9	160.8	4.9	168.8	5.6	284.5	42.0	160.8	4.9	NA
Roeske 15ATW-29 3-7-2017-Spot 278	292	336487	4.5	20.6	1.7	0.2	3.3	0.0	2.8	0.9	161.6	4.5	159.2	4.9	125.0	40.8	161.6	4.5	NA
Roeske 15ATW-29 3-7-2017-Spot 36	435	70475	2.5	20.4	1.6	0.2	3.2	0.0	2.8	0.9	163.4	4.6	162.3	4.9	147.4	36.5	163.4	4.6	NA
Roeske 15ATW-29 3-7-2017-Spot 304	113	12380	2.4	19.4	2.8	0.2	4.0	0.0	2.8	0.7	163.9	4.5	171.0	6.2	270.6	64.7	163.9	4.5	NA
Roeske 15ATW-29 3-7-2017-Spot 9	317	27126	1.3	20.1	1.6	0.2	4.6	0.0	4.4	0.9	164.2	7.1	165.7	7.1	189.0	36.8	164.2	7.1	NA
Roeske 15ATW32 8Mar16-Spot 5	98	35769	3.7	20.0	3.2	0.2	5.0	0.0	3.9	0.8	164.7	6.3	166.6	7.7	195.2	74.1	164.7	6.3	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 38	208	10793	3.2	20.6	1.7	0.2	3.3	0.0	2.8	0.9	169.7	4.7	166.5	5.0	121.7	40.0	169.7	4.7	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 59	111	4897	2.4	20.5	2.6	0.2	3.6	0.0	2.5	0.7	170.4	4.2	168.4	5.6	140.3	60.7	170.4	4.2	NA
Roeske 15ATW-29 3-7-2017-Spot 136	207	15304	1.7	20.4	1.3	0.2	2.7	0.0	2.3	0.9	171.7	4.0	170.1	4.2	148.3	31.5	171.7	4.0	NA
Roeske 15ATW-29 3-7-2017-Spot 45	229	26218	2.6	19.6	1.5	0.2	3.1	0.0	2.7	0.9	172.4	4.6	177.5	5.0	247.4	33.9	172.4	4.6	NA
Roeske 15ATW-29 3-7-2017-Spot 154	447	119041	2.4	20.5	1.3	0.2	3.0	0.0	2.7	0.9	172.4	4.6	170.3	4.7	142.8	30.2	172.4	4.6	NA
Roeske 15ATW-29 3-7-2017-Spot 162	89	34292	2.6	19.8	2.1	0.2	3.1	0.0	2.3	0.7	174.7	4.0	178.0	5.0	223.7	47.5	174.7	4.0	NA
Roeske 15ATW32 8Mar16-Spot 45	171	324415	2.7	20.5	1.7	0.2	3.0	0.0	2.4	0.8	174.8	4.2	172.4	4.7	140.1	40.4	174.8	4.2	NA
Roeske 15ATW-29 3-7-2017-Spot 184	521	834461	3.4	19.8	1.2	0.2	2.4	0.0	2.1	0.9	175.2	3.7	178.4	4.0	221.0	27.5	175.2	3.7	NA
Roeske 15ATW32 8Mar16-Spot	181	39555	2.5	19.8	2.0	0.2	3.7	0.0	3.1	0.8	176.7	5.5	179.3	6.1	215.3	46.7	176.7	5.5	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 2	674	85951	2.3	19.9	0.9	0.2	2.3	0.0	2.1	0.9	177.7	3.7	179.5	3.8	203.3	20.3	177.7	3.7	NA
Roeske 15ATW-29 3-7-2017-Spot 242	120	9781	1.5	19.6	1.4	0.2	3.1	0.0	2.8	0.9	178.1	4.9	182.2	5.2	236.4	33.2	178.1	4.9	NA
Roeske 15ATW-29 3-7-2017-Spot 113	164	173900	4.4	20.1	1.8	0.2	3.9	0.0	3.5	0.9	179.3	6.2	179.4	6.5	182.5	41.8	179.3	6.2	NA
Roeske 15ATW32 8Mar16-Spot 24	370	58104	1.0	19.7	1.3	0.2	2.9	0.0	2.6	0.9	179.8	4.7	183.5	4.9	231.8	29.0	179.8	4.7	NA
Roeske 15ATW-29 3-7-2017-Spot 208	811	62741	2.4	20.2	0.9	0.2	1.8	0.0	1.6	0.9	180.7	2.9	179.7	3.0	167.3	20.7	180.7	2.9	NA
Roeske 15ATW-29 3-7-2017-Spot 88	103	68355	2.0	19.8	2.7	0.2	5.1	0.0	4.3	0.9	182.0	7.8	184.2	8.6	212.8	62.4	182.0	7.8	NA
Roeske 15ATW-29 3-7-2017-Spot 244	241	181965	1.8	19.7	1.1	0.2	2.7	0.0	2.5	0.9	182.4	4.5	185.7	4.6	228.8	25.5	182.4	4.5	NA
Roeske 15ATW-29 3-7-2017-Spot 269	525	89250	1.4	20.0	1.0	0.2	2.7	0.0	2.5	0.9	182.4	4.5	183.0	4.5	191.5	23.5	182.4	4.5	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 64	195	67378	1.6	20.0	1.3	0.2	2.8	0.0	2.5	0.9	182.6	4.4	183.8	4.7	200.1	31.1	182.6	4.4	NA
Roeske 15ATW-29 3-7-2017-Spot 234	308	45486	2.7	19.5	1.0	0.2	2.3	0.0	2.0	0.9	183.2	3.7	188.0	3.9	248.8	23.6	183.2	3.7	NA
Roeske 15ATW-29 3-7-2017-Spot 205	379	75794	2.3	20.2	1.5	0.2	2.6	0.0	2.2	0.8	183.5	3.9	182.2	4.4	166.6	34.9	183.5	3.9	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 12	726	109537	1.7	19.8	1.1	0.2	2.5	0.0	2.2	0.9	183.6	4.0	185.7	4.2	214.0	25.9	183.6	4.0	NA
Roeske 15ATW-29 3-7-2017-Spot 229	290	47946	2.2	19.7	0.9	0.2	2.4	0.0	2.2	0.9	184.7	4.0	188.1	4.1	231.5	21.2	184.7	4.0	NA
Roeske 15ATW-29 3-7-2017-Spot 151	429	54093	1.8	20.3	1.2	0.2	2.4	0.0	2.0	0.9	184.8	3.7	182.8	4.0	158.1	29.1	184.8	3.7	NA
Roeske 15ATW-29 3-7-2017-Spot 275	1024	186455	1.2	20.2	1.0	0.2	2.8	0.0	2.6	0.9	185.3	4.7	184.4	4.7	174.3	23.7	185.3	4.7	NA
Roeske 15ATW-29 3-7-2017-Spot 155	404	143194	2.4	20.1	1.2	0.2	3.1	0.0	2.8	0.9	186.1	5.1	186.0	5.2	186.5	28.2	186.1	5.1	NA
Roeske 15ATW-29 3-7-2017-Spot 43	239	68522	2.2	20.1	1.8	0.2	3.0	0.0	2.4	0.8	186.2	4.5	186.1	5.1	186.2	40.9	186.2	4.5	NA
	445	141335	2.1	20.5	1.1	0.2	2.6	0.0	2.4	0.9	186.2	4.4	182.3	4.4	132.5	26.6	186.2	4.4	NA

Roeske 15ATW-29 3-7-2017-Spot 258																			
Roeske 15ATW-29 3-7-2017-Spot 133	937	312431	1.3	19.9	1.1	0.2	2.7	0.0	2.5	0.9	186.2	4.5	187.8	4.6	208.9	25.2	186.2	4.5	NA
Roeske 15ATW-29 3-7-2017-Spot 256	449	114374	1.6	19.6	1.5	0.2	3.2	0.0	2.8	0.9	186.2	5.1	190.5	5.5	244.9	34.9	186.2	5.1	NA
Roeske 15ATW-29 3-7-2017-Spot 209	329	67347	2.1	19.8	1.7	0.2	3.2	0.0	2.7	0.8	187.1	5.0	189.5	5.5	220.2	39.4	187.1	5.0	NA
Roeske 15ATW-29 3-7-2017-Spot 119	877	133004	3.7	19.9	1.1	0.2	2.6	0.0	2.4	0.9	187.9	4.4	188.9	4.5	203.0	26.0	187.9	4.4	NA
Roeske 15ATW-29 3-7-2017-Spot 186	926	119485	1.3	20.1	0.8	0.2	2.0	0.0	1.9	0.9	188.8	3.4	188.4	3.5	183.7	19.7	188.8	3.4	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 13	525	361929	1.5	19.7	1.2	0.2	3.1	0.0	2.8	0.9	189.0	5.2	192.0	5.4	230.2	28.8	189.0	5.2	NA
Roeske 15ATW-29 3-7-2017-Spot 44	239	5371	2.1	20.7	2.1	0.2	3.0	0.0	2.2	0.7	189.4	4.1	183.9	5.1	114.9	49.6	189.4	4.1	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 41	328	261125	2.0	19.9	1.5	0.2	3.1	0.0	2.7	0.9	189.4	5.1	190.6	5.5	206.3	35.5	189.4	5.1	NA
Roeske 15ATW-29 3-7-2017-Spot 19	212	5610	2.5	20.8	1.4	0.2	2.5	0.0	2.0	0.8	190.0	3.8	183.9	4.2	106.4	33.8	190.0	3.8	NA
Roeske 15ATW-29 3-7-2017-Spot 176	339	129798	2.2	20.1	1.5	0.2	2.8	0.0	2.3	0.8	190.0	4.4	189.4	4.8	182.5	35.2	190.0	4.4	NA
Roeske 15ATW-29 3-7-2017-Spot 152	281	1423726	3.6	19.3	1.6	0.2	2.9	0.0	2.4	0.8	190.3	4.4	196.8	5.1	275.7	36.8	190.3	4.4	NA
Roeske 15ATW-29 3-7-2017-Spot 100	1143	611936	1.7	19.6	1.0	0.2	2.4	0.0	2.2	0.9	190.4	4.1	194.6	4.3	247.4	23.8	190.4	4.1	NA
Roeske 15ATW-29 3-7-2017-Spot 250	136	33149	1.9	20.1	1.7	0.2	3.1	0.0	2.6	0.8	191.6	4.9	190.7	5.4	181.3	39.5	191.6	4.9	NA
Roeske 15ATW-29 3-7-2017-Spot 270	190	44106	2.7	20.3	1.7	0.2	3.0	0.0	2.5	0.8	191.6	4.8	189.1	5.2	158.4	39.3	191.6	4.8	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 67	175	103094	2.2	19.9	1.7	0.2	3.5	0.0	3.1	0.9	191.7	5.8	192.5	6.1	203.3	39.0	191.7	5.8	NA
Roeske 15ATW-29 3-7-2017-Spot 8	628	23316	3.3	20.0	0.8	0.2	2.2	0.0	2.1	0.9	192.1	4.0	192.0	3.9	191.1	18.8	192.1	4.0	NA
Roeske 15ATW-29 3-7-2017-Spot 310	640	125123	1.5	20.2	1.1	0.2	2.9	0.0	2.7	0.9	192.2	5.0	190.9	5.0	176.8	26.7	192.2	5.0	NA
Roeske 15ATW-29 3-7-2017-Spot 76	425	175774	2.2	19.4	1.4	0.2	3.0	0.0	2.7	0.9	192.6	5.1	198.0	5.4	264.6	31.8	192.6	5.1	NA
Roeske 15ATW-29 3-7-2017-Spot 283	553	62373	3.6	19.6	1.2	0.2	2.9	0.0	2.7	0.9	192.7	5.1	196.4	5.2	242.2	27.7	192.7	5.1	NA
Roeske 15ATW-29 3-7-2017-Spot 200	292	140283	1.3	20.8	1.7	0.2	3.0	0.0	2.5	0.8	193.1	4.8	186.7	5.2	106.9	39.4	193.1	4.8	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 22	1091	472866	2.1	19.9	0.9	0.2	2.5	0.0	2.3	0.9	193.6	4.3	194.9	4.4	212.4	21.9	193.6	4.3	NA
Roeske 15ATW32 8Mar16-Spot	206	25460	3.9	19.4	1.3	0.2	2.2	0.0	1.8	0.8	193.8	3.4	199.1	4.0	262.5	30.4	193.8	3.4	NA
Roeske 15ATW-29 3-7-2017-Spot 291	404	292472	4.3	19.8	1.1	0.2	2.7	0.0	2.4	0.9	194.1	4.7	196.2	4.8	222.1	24.9	194.1	4.7	NA
Roeske 15ATW-29 3-7-2017-Spot 61	149	46808	2.1	19.7	2.0	0.2	2.8	0.0	1.9	0.7	194.2	3.7	197.3	4.9	235.4	45.4	194.2	3.7	NA
Roeske 15ATW32 8Mar16-Spot	853	293349	1.0	20.0	1.3	0.2	3.6	0.0	3.4	0.9	194.6	6.5	194.2	6.4	190.3	29.9	194.6	6.5	NA
Roeske 15ATW-29 3-7-2017-Spot	490	6843933	2.7	19.1	1.1	0.2	2.4	0.0	2.1	0.9	195.7	4.1	203.9	4.5	299.8	25.9	195.7	4.1	NA
Roeske 15ATW-29 3-7-2017-Spot 206	311	731416	1.6	19.5	1.3	0.2	3.0	0.0	2.7	0.9	195.7	5.2	200.5	5.4	257.4	30.0	195.7	5.2	NA
Roeske 15ATW-29 3-7-2017-Spot	303	129612	2.4	19.8	1.4	0.2	3.1	0.0	2.8	0.9	196.1	5.3	197.5	5.6	215.9	33.0	196.1	5.3	NA
Roeske 15ATW-29 3-7-2017-Spot	807	522861	1.3	19.9	1.0	0.2	2.7	0.0	2.5	0.9	196.4	4.8	197.4	4.8	210.2	22.8	196.4	4.8	NA
Roeske 15ATW-29 3-7-2017-Spot	73	476813	3.4	19.9	2.3	0.2	3.7	0.0	3.0	0.8	196.8	5.8	197.9	6.7	211.9	52.2	196.8	5.8	NA
Roeske 15ATW-29 3-7-2017-Spot 51	315	182823	2.0	20.1	1.4	0.2	2.8	0.0	2.4	0.9	197.1	4.7	196.3	5.0	187.0	33.1	197.1	4.7	NA
Roeske 15ATW-29 3-7-2017-Spot	148	27017	2.9	19.9	2.0	0.2	3.2	0.0	2.5	0.8	197.4	4.8	197.6	5.7	201.0	46.5	197.4	4.8	NA
Roeske 15ATW-29 3-7-2017-Spot	928	3229001	1.3	20.0	1.0	0.2	3.0	0.0	2.8	0.9	197.8	5.5	197.6	5.4	196.2	23.0	197.8	5.5	NA
Roeske 15ATW-29 3-7-2017-Spot	110	195011	3.9	19.4	2.3	0.2	3.3	0.0	2.4	0.7	198.1	4.6	203.6	6.1	269.3	53.7	198.1	4.6	NA
Roeske 15ATW-29 3-7-2017-Spot	153	11685	5.2	20.4	2.0	0.2	3.5	0.0	2.8	0.8	198.4	5.5	194.7	6.1	152.3	47.2	198.4	5.5	NA
Roeske 15ATW-29 3-7-2017-Spot	255	43922	2.3	20.2	1.6	0.2	2.7	0.0	2.2	0.8	199.1	4.3	197.3	4.9	176.8	37.4	199.1	4.3	NA
 Roeske 15ATW-29 3-7-2017-Spot 260	422	146062	6.0	19.4	1.1	0.2	2.9	0.0	2.7	0.9	199.9	5.2	205.5	5.4	270.4	25.4	199.9	5.2	NA
Roeske 15ATW32 8Mar16-Spot	489	462440	2.0	19.7	1.5	0.2	2.9	0.0	2.5	0.9	201.1	5.0	202.9	5.4	225.8	34.5	201.1	5.0	NA
Roeske 15ATW-29 3-7-2017-Spot	544	1854505	2.1	19.0	1.0	0.2	2.1	0.0	1.9	0.9	201.4	3.8	210.0	4.0	307.1	21.7	201.4	3.8	NA
L3L	348	93524	1.7	20.2	1.5	0.2	2.8	0.0	2.4	0.8	201.5	4.7	199.0	5.1	169.7	36.1	201.5	4.7	NA

Roeske 15ATW-29 3-7-2017-Spot 32																			
Roeske 15ATW-29 3-7-2017-Spot 230	162	63295	2.4	20.2	1.8	0.2	3.2	0.0	2.6	0.8	202.2	5.3	199.4	5.8	167.5	41.4	202.2	5.3	NA
Roeske 15ATW-29 3-7-2017-Spot 164	136	22252	1.4	19.4	2.0	0.2	3.8	0.0	3.3	0.9	202.6	6.5	208.0	7.2	270.8	46.1	202.6	6.5	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 69	198	40366	3.6	19.7	1.5	0.2	2.6	0.0	2.1	0.8	204.1	4.2	205.9	4.9	228.0	35.5	204.1	4.2	NA
Roeske 15ATW-29 3-7-2017-Spot 64	246	7261	3.1	20.5	1.4	0.2	3.0	0.0	2.7	0.9	206.4	5.5	200.6	5.5	132.9	31.8	206.4	5.5	NA
Roeske 15ATW-29 3-7-2017-Spot 70	282	42469	2.5	19.6	1.9	0.2	2.8	0.0	2.1	0.8	206.5	4.4	209.1	5.4	239.9	42.8	206.5	4.4	NA
Roeske 15ATW-29 3-7-2017-Spot 233	253	54906	3.7	20.0	1.4	0.2	2.4	0.0	2.0	0.8	207.5	4.0	206.7	4.6	199.0	33.3	207.5	4.0	NA
Roeske 15ATW-29 3-7-2017-Spot 149	125	25219	3.3	20.1	1.9	0.2	3.5	0.0	3.0	0.8	212.7	6.2	210.6	6.7	188.4	43.5	212.7	6.2	NA
Roeske 15ATW32 8Mar16-Spot 20	174	33480	1.7	16.8	1.8	0.3	3.2	0.0	2.6	0.8	226.5	5.9	261.3	7.4	587.9	39.5	226.5	5.9	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 9	429	19579	3.6	16.6	1.4	0.3	3.1	0.0	2.8	0.9	229.1	6.2	266.7	7.3	611.7	29.6	229.1	6.2	NA
Roeske 15ATW-29 3-7-2017-Spot 29	399	100980	3.3	18.5	1.0	0.3	2.4	0.0	2.2	0.9	231.0	5.0	243.7	5.2	367.8	22.3	231.0	5.0	NA
Roeske 15ATW-29 3-7-2017-Spot 4	653	4106239	4.1	18.9	0.7	0.3	3.4	0.0	3.3	1.0	232.8	7.6	241.2	7.3	324.9	16.6	232.8	7.6	NA
Roeske 15ATW-29 3-7-2017-Spot 238	115	50739	3.5	20.2	2.4	0.3	4.0	0.0	3.2	0.8	238.2	7.4	232.4	8.3	174.8	55.7	238.2	7.4	NA
Roeske 15ATW-29 3-7-2017-Spot 303	369	117334	1.7	19.1	1.1	0.3	3.0	0.0	2.8	0.9	242.4	6.7	247.6	6.6	298.1	24.2	242.4	6.7	NA
Roeske 15ATW-29 3-7-2017-Spot	60	42899	4.3	19.6	2.3	0.3	3.6	0.0	2.8	0.8	243.0	6.8	242.9	7.9	243.2	52.9	243.0	6.8	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 53	35	24200	2.0	19.3	4.0	0.3	5.5	0.0	3.8	0.7	255.3	9.4	257.3	12.5	276.9	91.1	255.3	9.4	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 51	13	2064	1.7	19.3	3.3	0.3	6.6	0.0	5.7	0.9	261.3	14.6	262.6	15.3	274.5	76.5	261.3	14.6	NA
Roeske 15ATW-29 3-7-2017-Spot 207	197	16260	3.2	18.6	1.0	0.3	6.1	0.0	6.0	1.0	261.9	15.4	272.4	14.5	363.7	21.7	261.9	15.4	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 33	430	75323	3.0	18.8	1.5	0.3	2.5	0.0	2.0	0.8	264.4	5.1	272.3	5.9	342.4	33.1	264.4	5.1	NA
Roeske 15ATW29A 8Mar16- Sample 1 Spot 70	28	2427	2.3	17.3	6.9	0.3	9.4	0.0	6.3	0.7	266.7	16.5	294.5	24.0	521.3	152.2	266.7	16.5	NA
Roeske 15ATW-29 3-7-2017-Spot	563	76054	2.5	18.7	0.9	0.3	1.9	0.0	1.7	0.9	271.0	4.5	279.4	4.7	350.0	19.7	271.0	4.5	NA
Roeske 15ATW-29 3-7-2017-Spot	193	112328	0.7	18.7	1.5	0.3	2.7	0.0	2.3	0.8	274.8	6.2	283.1	6.7	353.1	33.2	274.8	6.2	NA
Roeske 15ATW-29 3-7-2017-Spot	1359	26354292	3.3	19.3	0.9	0.3	2.7	0.0	2.5	0.9	279.1	6.8	279.0	6.5	279.0	20.8	279.1	6.8	NA
Roeske 15ATW-29 3-7-2017-Spot	136	377481	1.8	18.9	1.7	0.3	2.7	0.0	2.1	0.8	280.5	5.7	285.2	6.6	325.1	38.2	280.5	5.7	NA
Roeske 15ATW-29 3-7-2017-Spot	1901	398551	7.2	18.5	1.2	0.3	3.3	0.0	3.1	0.9	280.9	8.4	290.3	8.3	367.6	26.8	280.9	8.4	NA
Roeske 15ATW-29 3-7-2017-Spot	66	22246	3.8	19.9	2.4	0.3	3.4	0.0	2.3	0.7	282.0	6.4	273.5	8.1	203.1	56.3	282.0	6.4	NA
Roeske 15ATW29A 8Mar16-	777	102334	2.1	19.1	0.8	0.3	2.6	0.0	2.4	0.9	284.7	6.8	285.7	6.4	295.2	18.3	284.7	6.8	NA
Sample 1 Spot 3 Roeske 15ATW32 8Mar16-Spot 3	1116	248523	2.2	19.1	0.6	0.3	1.7	0.0	1.6	0.9	286.1	4.5	287.7	4.3	300.5	12.6	286.1	4.5	NA
Roeske 15ATW-29 3-7-2017-Spot	626	61203	4.0	18.6	0.9	0.4	2.1	0.0	1.9	0.9	314.4	5.9	319.7	5.8	358.6	20.6	314.4	5.9	NA
Roeske 15ATW32 8Mar16-Spot	169	28145	2.0	17.9	1.8	0.4	3.0	0.1	2.4	0.8	322.9	7.5	338.5	8.6	448.1	40.0	322.9	7.5	NA
So Roeske 15ATW-29 3-7-2017-Spot	577	1690001	1.8	18.4	0.9	0.4	2.4	0.1	2.2	0.9	323.2	6.9	330.3	6.6	380.7	19.3	323.2	6.9	NA
Roeske 15ATW32 8Mar16-Spot	447	170678	3.0	18.2	1.2	0.4	3.0	0.1	2.7	0.9	331.2	8.7	340.4	8.5	404.9	27.2	331.2	8.7	NA
35 Roeske 15ATW32 8Mar16-Spot	509	56167	2.2	18.2	0.9	0.4	2.4	0.1	2.2	0.9	335.6	7.1	344.6	6.9	405.5	21.1	335.6	7.1	NA
36 Roeske 15ATW-29 3-7-2017-Spot	619	100394	3.1	16.4	0.9	0.5	3.1	0.1	3.0	1.0	338.2	9.7	379.6	9.8	640.8	18.9	338.2	9.7	NA
17 Roeske 15ATW29A 8Mar16-	284	269216	1.3	18.8	0.9	0.4	3.1	0.1	3.0	1.0	342.0	10.0	341.3	9.0	337.3	19.6	342.0	10.0	NA
Sample 1 Spot 62 Roeske 15ATW-29 3-7-2017-Spot	96	14004	4.6	18.5	1.6	0.4	3.2	0.1	2.8	0.9	342.1	9.3	345.6	9.4	369.4	35.8	342.1	9.3	NA
18 Roeske 15ATW-29 3-7-2017-Spot	634	194021	1.8	18.5	1.3	0.4	2.5	0.1	2.2	0.9	344.4	7.3	348.0	7.4	373.5	29.3	344.4	7.3	NA
157 Roeske 15ATW32 8Mar16-Spot	518	149828	1.8	18.7	0.8	0.4	2.8	0.1	2.7	1.0	348.2	9.2	347.6	8.4	344.5	19.1	348.2	9.2	NA
27 Roeske 15ATW-29 3-7-2017-Spot	1014	50722	2.0	18.7	0.7	0.4	2.0	0.1	1.9	0.9	348.7	6.3	348.1	5.9	343.8	16.7	348.7	6.3	NA
111 Roeske 15ATW-29 3-7-2017-Spot	980	341147	1.1	18.8	0.9	0.4	2.3	0.1	2.1	0.9	350.9	7.1	348.4	6.8	332.3	21.2	350.9	7.1	NA
87	432	335898	1.5	18.6	0.8	0.4	2.8	0.1	2.7	1.0	351.2	9.3	352.6	8.4	362.8	18.6	351.2	9.3	NA

Roeske 15ATW-29 3-7-2017-Spot 75																			
Roeske 15ATW-29 3-7-2017-Spot 167	548	116298	2.2	18.5	0.9	0.4	2.5	0.1	2.3	0.9	351.8	7.9	354.3	7.4	371.9	19.5	351.8	7.9	NA
Roeske 15ATW-29 3-7-2017-Spot 142	540	183569	0.4	18.1	1.0	0.4	2.5	0.1	2.3	0.9	352.3	8.0	361.0	7.7	417.9	23.1	352.3	8.0	NA
Roeske 15ATW-29 3-7-2017-Spot 145	216	147228	1.5	18.8	1.1	0.4	2.3	0.1	2.1	0.9	353.1	7.1	350.2	6.9	331.6	25.4	353.1	7.1	NA
Roeske 15ATW-29 3-7-2017-Spot 105	273	75557	2.0	18.2	1.1	0.4	3.0	0.1	2.8	0.9	354.4	9.7	361.4	9.2	407.2	23.9	354.4	9.7	NA
Roeske 15ATW-29 3-7-2017-Spot 305	877	431412	1.3	18.7	1.0	0.4	2.6	0.1	2.4	0.9	360.2	8.5	359.0	7.9	351.8	22.5	360.2	8.5	NA
Roeske 15ATW-29 3-7-2017-Spot 272	324	62179	2.8	18.8	1.4	0.4	2.6	0.1	2.2	0.8	360.9	7.6	357.7	7.7	337.8	30.7	360.9	7.6	NA
Roeske 15ATW-29 3-7-2017-Spot 267	660	131200	1.8	18.8	1.1	0.4	2.9	0.1	2.7	0.9	362.6	9.5	359.3	8.8	339.2	24.8	362.6	9.5	NA
Roeske 15ATW-29 3-7-2017-Spot 59	744	173268	2.1	18.3	0.9	0.4	2.7	0.1	2.5	0.9	363.1	8.8	366.9	8.2	391.9	20.9	363.1	8.8	NA
Roeske 15ATW-29 3-7-2017-Spot 129	199	393911	1.8	18.6	1.3	0.4	2.4	0.1	2.1	0.9	363.1	7.4	362.9	7.5	362.7	29.0	363.1	7.4	NA
Roeske 15ATW-29 3-7-2017-Spot 84	534	148617	2.0	18.6	1.0	0.4	3.0	0.1	2.8	0.9	363.3	9.8	362.7	9.0	359.6	22.8	363.3	9.8	NA
Roeske 15ATW32 8Mar16-Spot 17	672	581529	1.0	18.8	1.2	0.4	2.7	0.1	2.5	0.9	369.5	8.9	364.4	8.4	333.0	27.1	369.5	8.9	NA
Roeske 15ATW-29 3-7-2017-Spot 39	180	19030	1.2	17.9	0.9	0.5	2.5	0.1	2.4	0.9	412.9	9.5	417.3	8.6	441.5	19.1	412.9	9.5	93.5
Roeske 15ATW-29 3-7-2017-Spot 107	300	411974	1.5	18.0	1.2	0.5	3.0	0.1	2.8	0.9	437.2	11.8	437.6	10.8	440.3	26.4	437.2	11.8	99.3
Roeske 15ATW-29 3-7-2017-Spot 226	557	361208	3.0	17.7	1.1	0.6	3.1	0.1	2.9	0.9	483.5	13.5	482.3	11.8	477.4	23.9	483.5	13.5	101.3
Roeske 15ATW-29 3-7-2017-Spot 254	441	397179	12.7	16.0	1.0	1.0	2.3	0.1	2.1	0.9	701.1	13.9	697.9	11.7	688.3	20.7	701.1	13.9	101.9
Roeske 15ATW-29 3-7-2017-Spot 198	51	57541	1.9	12.6	1.2	2.1	2.9	0.2	2.7	0.9	1338	27.4	1350	19.9	1394	23.1	2	23.1	95.3
Roeske 15ATW-29 3-7-2017-Spot 300	84	297906	1.0	11.3	1.0	2.8	2.8	0.2	2.7	0.9	1338.	32.0	1418	21.1	1480	18.4	1480.	18.4	96.0
Roeske 15ATW32 8Mar16-Spot 15	620	1661688	1.7	10.8	0.9	3.0	2.5	0.2	2.3	0.9	0	28.8	3	19.0	3	16.9	3	16.9	93.1
Roeske 15ATW32 8Mar16-Spot 4	158	406939	1.0	9.4	0.7	4.1	2.7	0.3	2.6	1.0	1505.	36.5	1695	22.0	1794	12.5	1794	12.5	90.1
Roeske 15ATW-29 3-7-2017-Spot 35	888	494582	3.0	9.1	0.7	4.3	2.0	0.3	1.9	0.9	1013.	26.7	1050.	16.3	1754.	11.8	1808	11.8	90.3
Roeske 15ATW-29 3-7-2017-Spot 124	76	224059	0.8	9.0	0.9	4.7	2.8	0.3	2.7	0.9	1839	40.8	1831	23.6	1872	16.2	2	16.2	96.5
Roeske 15ATW-29 3-7-2017-Spot 85	320	571485	1.4	9.0	0.9	5.1	2.4	0.3	2.2	0.9	1335.	35.4	1750	20.1	1822.	15.5	2	15.5	101.0
Roeske 15ATW-29 3-7-2017-Spot 6	132	330053	3.4	8.9	1.2	4.7	3.0	0.3	2.7	0.9	1929	41.1	1963	24.9	1852.	21.4	1991	21.4	93.7
Roeske 15ATW32 8Mar16-Spot 59	63	65063	0.8	8.6	1.2	5.3	2.4	0.3	2.1	0.9	4	33.2	1002.	20.4	1031.	21.4	1022	21.4	97.2
Roeske 15ATW-29 3-7-2017-Spot 131	121	694244	1.4	8.4	0.7	5.6	2.2	0.3	2.1	0.9	1092.	34.3	1911.	19.1	3	13.4	3	13.4	97.9
Roeske 15ATW-29 3-7-2017-Spot 213	103	165046	1.0	8.2	1.0	6.1	2.6	0.4	2.4	0.9	1985.	40.5	1990	22.3	2	16.9	2	16.9	99.5
Roeske 15ATW-29 3-7-2017-Spot 80	207	227009	0.8	8.1	1.1	6.1	2.7	0.4	2.5	0.9	1970.	42.5	1990. 9	23.8	2007.	19.6	1	19.6	98.5
Roeske 15ATW-29 3-7-2017-Spot	81	151248	0.9	7.7	0.9	7.0	2.5	0.4	2.4	0.9	3	42.7	5	22.4	2099.	15.4	8	15.4	101.1
Roeske 15ATW-29 3-7-2017-Spot	68	160490	1.1	7.0	0.8	8.0	2.4	0.4	2.2	0.9	7	41.5	2235.	21.4	2201. 9	14.4	9	14.4	97.4
Roeske 15ATW-29 3-7-2017-Spot	271	672601	1.0	6.9	0.7	7.1	3.4	0.4	3.3	1.0	2	55.6	2122.	30.1	3	12.6	3	12.6	85.3
Roeske 15ATW-29 3-7-2017-Spot 10	323	1129250	1.4	6.8	0.9	8.5	4.0	0.4	3.9	1.0	2247.	74.1	2284.	36.4	2310.	15.0	7	15.0	96.9
Roeske 15ATW-29 3-7-2017-Spot	389	4597435	2.1	6.5	1.0	8.4	2.2	0.4	1.9	0.9	2145.	35.0	2276.	19.6	3	17.0	3	17.0	89.3
Roeske 15ATW-29 3-7-2017-Spot 259	195	540248	2.1	5.9	0.9	11.0	2.4	0.5	2.2	0.9	2487.	44.8	2524.	21.9	2554.	15.2	2554.	15.2	97.4
Roeske 15ATW-29 3-7-2017-Spot 243	167	335123	1.2	5.7	0.8	12.0	1.9	0.5	1.8	0.9	2596.	37.8	2604.	18.3	2012.	13.6	2612.	13.6	99.4
Roeske 15ATW-29 3-7-2017-Spot 197	84	1537785	1.5	5.1	0.7	14.3	2.3	0.5	2.2	1.0	2/33.	48.4	2770. 9	21.7	2799. 2	11.3	2799. 2	11.3	97.6
- Roeske 15ATW-29 3-7-2017-Spot 122	253	27965	1.6	19.1	1.6	0.1	2.8	0.0	2.3	0.8	96.3	2.2	104.9	2.8	304.9	37.0	96.3	2.2	NA
Roeske 15ATW-29 3-7-2017-Spot 65	61	4670	2.0	19.2	4.8	0.1	6.1	0.0	3.7	0.6	90.7	3.3	98.4	5.7	289.5	110.0	90.7	3.3	NA
Roeske 15ATW-29 3-7-2017-Spot 171	87	7355	2.5	19.2	3.1	0.1	4.3	0.0	3.0	0.7	88.4	2.7	96.2	4.0	294.0	70.4	88.4	2.7	NA
Roeske 15ATW-29 3-7-2017-Spot 60	85	16670	2.0	19.2	3.3	0.1	4.7	0.0	3.3	0.7	87.7	2.9	95.4	4.2	293.0	74.7	87.7	2.9	NA
	144	158435	1.5	19.0	2.7	0.1	3.7	0.0	2.5	0.7	87.4	2.2	95.8	3.4	310.7	62.5	87.4	2.2	NA

Roeske 15ATW-29 3-7-2017-Spot 203																			
Roeske 15ATW-29 3-7-2017-Spot 99	1180	50988	9.3	19.0	2.3	0.1	3.4	0.0	2.6	0.7	89.1	2.3	97.9	3.2	318.1	51.8	89.1	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot 128	165	13922	1.9	19.0	2.7	0.1	3.7	0.0	2.5	0.7	87.7	2.1	96.3	3.4	317.0	61.6	87.7	2.1	NA
Roeske 15ATW-29 3-7-2017-Spot 79	192	34157	2.3	15.5	2.5	0.3	3.7	0.0	2.7	0.7	203.6	5.3	254.9	8.3	758.2	53.3	203.6	5.3	NA
Roeske 15ATW-29 3-7-2017-Spot 279	50	6192	2.7	18.8	3.8	0.1	5.1	0.0	3.4	0.7	88.5	2.9	97.8	4.7	331.4	86.7	88.5	2.9	NA
Roeske 15ATW-29 3-7-2017-Spot 54	135	9986	2.1	18.3	4.9	0.1	6.2	0.0	3.8	0.6	101.8	3.8	115.1	6.8	400.6	110.5	101.8	3.8	NA
Roeske 15ATW-29 3-7-2017-Spot 262	92	69907	1.6	18.5	3.4	0.1	4.2	0.0	2.5	0.6	91.1	2.2	102.2	4.0	370.7	75.6	91.1	2.2	NA
Roeske 15ATW-29 3-7-2017-Spot 47	140	6503	2.4	18.5	2.2	0.1	3.3	0.0	2.5	0.7	89.0	2.2	99.9	3.2	370.0	50.6	89.0	2.2	NA
Roeske 15ATW-29 3-7-2017-Spot 146	286	28130	1.1	18.1	3.3	0.1	3.9	0.0	2.1	0.5	95.3	2.0	109.3	4.0	426.8	72.6	95.3	2.0	NA
Roeske 15ATW-29 3-7-2017-Spot 231	153	61764	1.3	18.0	2.9	0.1	4.0	0.0	2.8	0.7	92.1	2.6	105.8	4.1	428.7	64.5	92.1	2.6	NA
Roeske 15ATW-29 3-7-2017-Spot 315	46	2146	2.6	17.6	7.4	0.1	8.0	0.0	2.9	0.4	92.6	2.6	109.2	8.3	489.5	164.4	92.6	2.6	NA
Roeske 15ATW-29 3-7-2017-Spot 56	493	29460	1.4	16.7	3.4	0.1	4.9	0.0	3.5	0.7	110.7	3.8	135.3	6.2	592.8	74.6	110.7	3.8	NA
Roeske 15ATW-29 3-7-2017-Spot 121	127	38831	1.2	17.3	3.5	0.1	4.5	0.0	2.9	0.6	90.5	2.6	108.4	4.6	522.5	76.6	90.5	2.6	NA
Roeske 15ATW-29 3-7-2017-Spot 178	119	7689	2.0	17.1	2.7	0.1	4.4	0.0	3.5	0.8	91.2	3.2	110.1	4.6	542.1	58.2	91.2	3.2	NA
Roeske 15ATW-29 3-7-2017-Spot 232	82	61926	1.8	16.9	4.0	0.1	5.2	0.0	3.3	0.6	91.7	3.0	112.0	5.5	569.9	87.9	91.7	3.0	NA
Roeske 15ATW-29 3-7-2017-Spot 132	845	349027	11.2	14.7	1.6	0.2	3.0	0.0	2.5	0.8	135.3	3.4	183.7	5.0	863.7	33.1	135.3	3.4	NA
Roeske 15ATW-29 3-7-2017-Spot 309	572	29358	1.1	15.7	3.4	0.1	4.3	0.0	2.6	0.6	89.9	2.3	118.0	4.7	731.8	71.8	89.9	2.3	NA
Roeske 15ATW-29 3-7-2017-Spot 224	52	11133	2.5	15.2	4.0	0.1	4.8	0.0	2.8	0.6	93.4	2.6	126.5	5.8	805.6	83.0	93.4	2.6	NA
Roeske 15ATW-29 3-7-2017-Spot 245	78	9049	2.8	13.8	8.7	0.1	9.3	0.0	3.3	0.4	93.6	3.1	138.5	12.0	2	176.8	93.6	3.1	NA
Roeske 15ATW-29 3-7-2017-Spot	69	3373	2.1	13.4	3.6	0.2	4.9	0.0	3.4	0.7	94.5	3.1	144.0	6.6	1005.	71.6	94.5	3.1	NA
Roeske 15ATW-29 3-7-2017-Spot	222	7236	3.5	9.1	3.4	0.3	4.0	0.0	2.1	0.5	111.7	2.3	237.7	8.4	1791.	61.9	111.7	2.3	NA
Roeske 15ATW32 8Mar16-Spot	179	3569	1.5	5.3	8.0	0.4	10.1	0.0	6.2	0.6	109.7	6.7	374.2	31.7	1	132.3	109.7	6.7	NA
Roeske 15ATW32 8Mar16-Spot 2	118	10958	1.6	10.1	2.4	2.9	3.7	0.2	2.9	0.8	1248. 4	32.4	1389. 9	28.2	1614. 2	44.5	1614. 2	44.5	77.3
Roeske 15ATW32 8Mar16-Spot	181	2701668	2.1	9.4	0.8	3.3	4.2	0.2	4.1	1.0	1306. 3	48.8	1482.	32.8	1743.	14.8	1743.	14.8	74.9
Roeske 15ATW32 8Mar16-Spot	1296	345390	3.5	9.0	0.8	1.9	5.8	0.1	5.8	1.0	758.3	41.3	1082. 7	38.8	1810.	14.8	1810.	14.8	41.9
Roeske 15ATW32 8Mar16-Spot	550	61432	3.1	6.7	0.9	6.8	2.3	0.3	2.1	0.9	1846. 1	33.8	2083. 3	20.4	2326. 8	16.2	2326. 8	16.2	79.3
Roeske 15ATW32 8Mar16-Spot	588	30272	4.9	7.8	0.6	2.2	5.2	0.1	5.2	1.0	770.9	37.9	1192. 5	36.8	2066. 3	10.8	2066. 3	10.8	37.3
32 Roeske 15ATW32 8Mar16-Spot	1007	12114	8.4	8.8	2.5	1.5	15.1	0.1	14.9	1.0	576.1	81.9	917.6	91.3	1863. 2	45.0	1863. 2	45.0	30.9
47 Roeske 15ATW32 8Mar16-Spot	290	22430	2.2	16.1	1.2	0.3	2.4	0.0	2.1	0.9	200.3	4.1	242.9	5.2	678.5	26.2	200.3	4.1	NA
Roeske 15ATW32 8Mar16-Spot	808	18076	13.6	19.0	1.4	0.1	2.5	0.0	2.0	0.8	90.9	1.8	99.5	2.3	310.0	32.9	90.9	1.8	NA
13 Roeske 15ATW32 8Mar16-Spot	237	8717	7.0	18.6	2.9	0.1	4.3	0.0	3.1	0.7	90.4	2.8	101.2	4.1	362.6	64.9	90.4	2.8	NA
21 Roeske 15ATW32 8Mar16-Spot	1210	16211	7.6	14.3	5.6	0.3	6.9	0.0	4.0	0.6	201.3	7.9	271.0	16.3	927.0	114.9	201.3	7.9	NA
54 Roeske 15ATW32 8Mar16-Spot	766	1370261	17.6	18.3	2.5	0.1	4.2	0.0	3.4	0.8	79.5	2.7	90.5	3.7	392.3	55.0	79.5	2.7	NA
19 Roeske 15ATW32 8Mar16-Spot	2476	5487	2.7	13.2	5.4	0.4	7.0	0.0	4.4	0.6	213.4	9.3	304.9	18.4	1081. 1	108.9	213.4	9.3	NA
50 Roeske 15ATW32 8Mar16-Spot	2723	14341	147.0	17.5	2.7	0.1	3.1	0.0	1.6	0.5	88.8	1.4	105.5	3.2	499.6	59.3	88.8	1.4	NA
44 Roeske 15ATW32 8Mar16-Spot	271	74676	44.1	16.6	4.6	0.1	14.3	0.0	13.5	0.9	104.3	14.0	129.0	17.3	613.0	100.1	104.3	14.0	NA
25 Roeske 15ATW32 8Mar16-Spot	1209	7236	7.2	13.8	5.4	0.2	6.9	0.0	4.3	0.6	127.2	5.4	184.8	11.6	1005. 0	109.6	127.2	5.4	NA
4U Roeske 15ATW32 8Mar16-Spot	274	7707	13.9	13.5	4.3	0.2	8.0	0.0	6.8	0.8	100.6	6.8	151.1	11.3	1041. 8	85.9	100.6	6.8	NA
48 Roeske 15ATW32 8Mar16-Spot	492	2059	13.4	6.4	18. 2	0.5	38.5	0.0	33.9	0.9	149.5	50.2	414.6	131. 8	2411. 7	312.1	149.5	50.2	NA
26 Roeske 15ATW32 8Mar16-Spot 6	1124	708	7.0	8.3	7.1	0.2	9.8	0.0	6.7	0.7	94.9	6.4	223.8	19.7	1965. 5	127.5	94.9	6.4	NA
	144	950	4.3	5.9	3.5	0.4	5.3	0.0	3.9	0.7	115.4	4.5	358.0	15.9	2555. 5	59.0	115.4	4.5	NA

Roeske 15ATW32 8Mar16-Spot																			
BU Roeske 15ATW29A 8Mar16-	592	913	29.4	4.2	5.9	0.6	28.6	0.0	27.9	1.0	112.4	31.1	465.3	107. 0	3118. 3	94.6	112.4	31.1	NA
ampie 1 Spot 14 Roeske 15ATW29A 8Mar16-	250	7360	1.9	19.4	1.5	0.1	2.3	0.0	1.7	0.7	88.3	1.5	95.2	2.1	269.6	35.2	88.3	1.5	NA
Roeske 15ATW29A 8Mar16-	76	20840	2.0	19.4	2.6	0.1	3.7	0.0	2.6	0.7	86.1	2.2	92.6	3.3	265.2	59.3	86.1	2.2	NA
Roeske 15ATW29A 8Mar16-	97	5744	2.9	17.1	4.1	0.2	7.4	0.0	6.2	0.8	160.0	9.7	187.0	12.6	542.7	89.7	160.0	9.7	NA
oeske 15ATW29A 8Mar16- ample 1 Spot 47	553	9847	5.9	18.7	2.5	0.1	3.7	0.0	2.7	0.7	84.2	2.3	94.1	3.3	354.5	56.3	84.2	2.3	NA
peske 15ATW29A 8Mar16-	348	8398	3.1	15.2	2.3	0.2	3.1	0.0	2.0	0.7	114.4	2.3	152.4	4.4	793.8	49.2	114.4	2.3	NA
peske 15ATW29A 8Mar16-	305	6062	2.9	19.4	2.3	0.2	10.4	0.0	10.1	1.0	181.8	18.1	187.7	17.8	261.9	52.4	181.8	18.1	NA
veske 15ATW-29 3-7-2017-Spot	354	8312	3.4	20.6	1.1	0.2	2.4	0.0	2.2	0.9	191.6	4.1	186.8	4.1	126.4	24.7	191.6	4.1	NA
oeske 15ATW-29 3-7-2017-Spot	157	15094	2.8	21.0	2.1	0.2	2.9	0.0	2.1	0.7	198.9	4.1	189.8	5.1	78.4	49.0	198.9	4.1	NA
- veske 15ATW-29 3-7-2017-Spot	154	6833	2.3	22.3	2.3	0.1	3.3	0.0	2.3	0.7	88.5	2.0	83.0	2.6	NA	NA	88.5	2.0	NA
oeske 15ATW29A 8Mar16-	138	10387	1.5	22.3	2.3	0.1	3.8	0.0	3.0	0.8	86.9	2.6	82.0	3.0	NA	NA	86.9	2.6	NA
veske 15ATW29A 8Mar16-	255	3200	1.3	22.7	1.9	0.1	2.7	0.0	2.0	0.7	83.9	1.6	77.7	2.0	108.9	45.6	83.9	1.6	NA
veske 15ATW29A 8Mar16-	35	415	2.8	58.7	7.2	0.0	7.8	0.0	3.0	0.4	86.0	2.6	31.6	2.4	0.0	1513. 5	86.0	2.6	NA
ipie i spor os	61	3925	3.4	21.7	2.3	0.2	3.9	0.0	3.1	0.8	154.1	4.7	145.4	5.3	5.3	56.3	154.1	4.7	NA
asmple 16ATW10																		+ (15	
nalysis	U	206Pb	U/Th	206Pb *	±	207Pb *	±1s	206Pb *	± 1s	erro r	206Pb *	±	207Pb *	±	206Pb *	±	Best age	rando m)	Conc
	(ppm)	204Pb		207Pb *	(%)	235U *	(%)	238U	(%)	corr	238U *	(Ma)	235U	(Ma)	207Pb *	(Ma)	(Ma)	(Ma)	(%)
ATW-10-Spot 40	68	34375	3.1	20.1	1.9	0.2	3.0	0.0	2.3	0.8	148.5	3.4	150.8	4.2	188.9	45.1	148.5	3.4	NA
ATW-10-Spot 179	736	226841	19.9	20.3	1.1	0.2	2.4	0.0	2.1	0.9	149.1	3.2	149.8	3.3	161.5	25.1	149.1	3.2	NA
ATW-10-Spot 295	56	23483	4.0	19.6	2.7	0.2	3.6	0.0	2.4	0.7	149.8	3.5	155.3	5.2	240.8	62.3	149.8	3.5	NA
ATW-10-Spot 268	74	37272	2.5	20.9	1.8	0.2	3.0	0.0	2.4	0.8	150.5	3.6	146.7	4.1	88.0	42.3	150.5	3.6	NA
64TW-10-Spot 132	32	8786	36	20.0	2.6	0.2	35	0.0	2.4	0.7	150.6	35	153 3	5.0	1973	59.6	150.6	35	NA
5ATW-10-Spot 22	94	25892	1.5	20.5	1.8	0.2	3.1	0.0	2.6	0.8	150.8	3.8	150.3	4.3	143.0	41.5	150.8	3.8	NA
6ATW-10-Spot 237	22	10862	3.3	19.4	3.7	0.2	4.4	0.0	2.5	0.6	151.0	3.7	158.4	6.5	270.6	84.2	151.0	3.7	NA
6ATW-10-Spot 6	56	61561	4.3	19.8	2.1	0.2	3.3	0.0	2.6	0.8	151.5	3.9	155.8	4.8	223.0	49.5	151.5	3.9	NA
6ATW-10-Spot 284	75	20267	23	21.5	21	0.2	4.0	0.0	3.4	0.8	151.5	5.0	144.4	53	29.2	50.1	151.5	5.0	NA
	-		-													-			
SATW-10-Spot 290	19	5517	3.0	20.5	4.2	0.2	5.1	0.0	2.9	0.6	151.6	4.3	150.7	7.2	136.3	99.2	151.6	4.3	NA
5ATW-10-Spot 173	177	41981	1.5	20.2	1.3	0.2	2.4	0.0	2.0	0.8	151.8	3.0	152.8	3.4	168.9	31.4	151.8	3.0	NA
6ATW-10-Spot 129	35	132485	2.3	20.3	2.8	0.2	4.2	0.0	3.2	0.8	151.8	4.8	152.2	6.0	158.1	64.5	151.8	4.8	NA

16ATW-10-Spot 309	28	13160	2.8	20.8	2.9	0.2	3.8	0.0	2.5	0.7	152.0	3.8	148.9	5.3	100.2	68.1	152.0	3.8	NA
16ATW-10-Spot 4	81	50716	3.4	20.6	2.3	0.2	3.1	0.0	2.1	0.7	152.0	3.2	150.0	4.3	120.3	53.2	152.0	3.2	NA
16ATW-10-Spot 149	21	4991	3.6	19.7	4.5	0.2	5.3	0.0	2.8	0.5	152.0	4.3	157.0	7.7	234.3	103.1	152.0	4.3	NA
16ATW-10-Spot 69	36	7315	4.7	20.6	3.6	0.2	4.4	0.0	2.5	0.6	152.2	3.7	150.5	6.1	124.1	84.5	152.2	3.7	NA
16ATW-10-Spot 155	78	73491	2.5	20.3	1.8	0.2	2.8	0.0	2.2	0.8	152.2	3.3	152.3	4.0	155.0	41.5	152.2	3.3	NA
16ATW-10-Spot 277	29	114135	2.1	19.3	3.2	0.2	4.4	0.0	2.9	0.7	152.3	4.4	160.3	6.5	281.7	73.6	152.3	4.4	NA
16ATW-10-Spot 197	81	319940	2.0	19.7	1.6	0.2	2.7	0.0	2.2	0.8	152.4	3.3	156.9	4.0	226.8	37.8	152.4	3.3	NA
16ATW-10-Spot 275	39	60500	3.3	19.4	2.3	0.2	3.5	0.0	2.6	0.7	152.6	3.9	159.4	5.2	263.3	53.3	152.6	3.9	NA
16ATW-10-Spot 261	33	9082	3.3	20.7	2.5	0.2	3.9	0.0	3.0	0.8	152.7	4.6	150.4	5.5	114.7	59.3	152.7	4.6	NA
16ATW-10-Spot 158	38	24228	3.2	20.7	2.8	0.2	4.1	0.0	2.9	0.7	152.7	4.4	150.6	5.7	118.4	67.1	152.7	4.4	NA
16ATW-10-Spot 171	15	10738	6.4	20.9	4.0	0.2	5.6	0.0	3.9	0.7	152.7	5.9	149.1	7.7	92.8	93.8	152.7	5.9	NA
16ATW-10-Spot 126	30	8736	1.9	20.7	3.1	0.2	4.2	0.0	2.8	0.7	152.8	4.3	150.1	5.9	109.4	72.9	152.8	4.3	NA
16ATW-10-Spot 216	25	8787	3.0	19.7	3.2	0.2	4.5	0.0	3.2	0.7	152.8	4.8	157.7	6.6	233.7	75.0	152.8	4.8	NA
16ATW-10-Spot 206	36	36353	3.1	20.3	2.5	0.2	4.1	0.0	3.3	0.8	152.8	4.9	153.2	5.9	160.3	59.4	152.8	4.9	NA
16ATW-10-Spot 163	25	8200	2.4	20.2	3.1	0.2	3.6	0.0	1.8	0.5	153.0	2.8	154.3	5.2	174.9	72.8	153.0	2.8	NA
16ATW-10-Spot 1	66	23262	2.6	20.1	1.8	0.2	3.2	0.0	2.6	0.8	153.0	3.9	154.9	4.5	184.5	42.9	153.0	3.9	NA
16ATW-10-Spot 182	38	16145	2.4	19.8	2.7	0.2	3.7	0.0	2.5	0.7	153.1	3.8	157.2	5.4	221.1	63.2	153.1	3.8	NA
16ATW-10-Spot 267	72	573006	3.5	19.2	2.4	0.2	4.1	0.0	3.4	0.8	153.1	5.1	161.8	6.2	292.1	54.0	153.1	5.1	NA
16ATW-10-Spot 214	37	14389	2.4	20.1	2.4	0.2	3.4	0.0	2.5	0.7	153.1	3.7	154.6	4.9	177.8	55.0	153.1	3.7	NA
16ATW-10-Spot 211	23	402669	3.4	19.2	3.6	0.2	4.4	0.0	2.4	0.5	153.3	3.6	161.5	6.5	284.0	83.4	153.3	3.6	NA
16ATW-10-Spot 297	35	12292	2.2	20.6	3.0	0.2	3.7	0.0	2.2	0.6	153.4	3.3	151.4	5.3	121.1	71.7	153.4	3.3	NA
16ATW-10-Spot 234	76	20878	2.9	20.2	1.8	0.2	3.2	0.0	2.7	0.8	153.4	4.1	154.6	4.6	174.1	41.1	153.4	4.1	NA
16ATW-10-Spot 99	46	12498	4.2	20.3	2.9	0.2	3.6	0.0	2.2	0.6	153.4	3.4	153.6	5.2	156.5	66.7	153.4	3.4	NA
16ATW-10-Spot 229	31	10066	3.1	19.6	2.7	0.2	3.8	0.0	2.6	0.7	153.5	4.0	159.0	5.5	243.1	62.0	153.5	4.0	NA

16ATW-10-Spot 147	34	26788	6.8	20.0	2.7	0.2	3.6	0.0	2.4	0.7	153.5	3.6	156.0	5.2	195.9	63.4	153.5	3.6	NA
16ATW-10-Spot 187	45	9598	3.8	21.5	2.4	0.2	3.7	0.0	2.8	0.8	153.5	4.3	145.8	5.0	23.8	56.6	153.5	4.3	NA
16ATW-10-Spot 296	40	15231	3.6	19.4	2.5	0.2	3.3	0.0	2.2	0.7	153.5	3.4	160.8	5.0	270.4	57.2	153.5	3.4	NA
16ATW-10-Spot 256	42	13816	2.8	20.7	2.5	0.2	3.8	0.0	2.8	0.7	153.7	4.2	151.1	5.3	112.2	59.4	153.7	4.2	NA
16ATW-10-Spot 196	62	15115	3.6	21.4	2.5	0.2	3.7	0.0	2.8	0.8	153.7	4.3	146.6	5.1	34.3	59.2	153.7	4.3	NA
16ATW-10-Spot 307	53	56102	4.0	19.8	2.2	0.2	3.4	0.0	2.6	0.8	153.7	4.0	157.8	5.0	219.4	50.9	153.7	4.0	NA
16ATW-10-Spot 46	21	11107	2.7	20.5	3.7	0.2	4.8	0.0	3.0	0.6	154.0	4.6	152.7	6.8	134.5	86.8	154.0	4.6	NA
16ATW-10-Spot 145	54	14145	1.8	19.9	2.6	0.2	3.5	0.0	2.5	0.7	154.1	3.8	157.5	5.2	209.9	59.2	154.1	3.8	NA
16ATW-10-Spot 222	13	55988	3.9	19.7	3.6	0.2	5.0	0.0	3.4	0.7	154.1	5.2	159.0	7.3	233.9	82.2	154.1	5.2	NA
16ATW-10-Spot 314	43	23059	4.5	20.0	1.8	0.2	3.1	0.0	2.5	0.8	154.1	3.8	156.5	4.5	193.4	42.6	154.1	3.8	NA
16ATW-10-Spot 199	111	36342	2.1	20.6	1.9	0.2	3.2	0.0	2.6	0.8	154.2	3.9	152.2	4.5	121.7	45.1	154.2	3.9	NA
16ATW-10-Spot 103	188	41012	2.3	20.1	1.3	0.2	2.4	0.0	2.0	0.8	154.2	3.0	156.1	3.4	185.8	30.3	154.2	3.0	NA
16ATW-10-Spot 94	118	426178	7.2	20.3	1.8	0.2	3.2	0.0	2.7	0.8	154.3	4.1	154.3	4.6	154.9	41.3	154.3	4.1	NA
16ATW-10-Spot 86	33	48024	3.8	20.0	2.6	0.2	3.9	0.0	3.0	0.8	154.3	4.5	156.8	5.7	196.3	60.0	154.3	4.5	NA
16ATW-10-Spot 150	97	19993	1.4	21.2	1.6	0.2	2.6	0.0	2.0	0.8	154.4	3.1	148.7	3.5	60.2	37.9	154.4	3.1	NA
16ATW-10-Spot 122	27	5076	3.6	21.7	3.0	0.2	3.8	0.0	2.3	0.6	154.4	3.5	145.5	5.1	3.9	72.7	154.4	3.5	NA
16ATW-10-Spot 37	44	12389	4.8	21.0	1.9	0.2	3.3	0.0	2.6	0.8	154.4	4.0	149.9	4.6	79.5	46.1	154.4	4.0	NA
16ATW-10-Spot 300	55	109556	5.3	19.8	2.2	0.2	3.2	0.0	2.3	0.7	154.4	3.4	158.3	4.6	217.0	51.4	154.4	3.4	NA
16ATW-10-Spot 305	69	45492	2.4	19.8	2.9	0.2	4.1	0.0	2.9	0.7	154.5	4.5	158.4	6.1	218.6	67.6	154.5	4.5	NA
16ATW-10-Spot 34	68	83836	3.1	20.5	2.0	0.2	3.3	0.0	2.5	0.8	154.5	3.9	153.2	4.6	135.2	48.1	154.5	3.9	NA
16ATW-10-Spot 279	41	12889	5.0	20.0	2.1	0.2	3.5	0.0	2.7	0.8	154.5	4.2	157.1	5.0	197.2	49.6	154.5	4.2	NA
16ATW-10-Spot 114	51	65746	2.1	19.0	2.9	0.2	4.0	0.0	2.8	0.7	154.5	4.3	164.8	6.1	316.9	65.3	154.5	4.3	NA
16ATW-10-Spot 184	158	567502	3.2	20.2	1.3	0.2	3.0	0.0	2.6	0.9	154.5	4.0	155.7	4.3	174.9	31.5	154.5	4.0	NA
16ATW-10-Spot 119	50	36001	4.2	20.4	2.1	0.2	3.1	0.0	2.2	0.7	154.5	3.4	154.3	4.4	152.7	49.4	154.5	3.4	NA

16ATW-10-Spot 274	35	13118	2.4	20.5	3.3	0.2	4.2	0.0	2.6	0.6	154.6	3.9	153.7	5.9	140.4	76.6	154.6	3.9	NA
16ATW-10-Spot 298	29	4913	3.3	20.9	4.5	0.2	5.2	0.0	2.6	0.5	154.6	3.9	150.6	7.3	89.1	107.3	154.6	3.9	NA
16ATW-10-Spot 301	65	10636	3.9	20.8	2.4	0.2	3.6	0.0	2.7	0.7	154.7	4.1	151.3	5.1	99.8	57.7	154.7	4.1	NA
16ATW-10-Spot 269	97	116016	3.7	19.6	1.8	0.2	3.3	0.0	2.7	0.8	154.7	4.1	160.4	4.8	246.9	41.8	154.7	4.1	NA
16ATW-10-Spot 111	28	23370	2.8	19.7	2.2	0.2	3.5	0.0	2.6	0.8	154.7	4.0	159.1	5.1	227.1	51.5	154.7	4.0	NA
16ATW-10-Spot 98	18	54618	3.7	19.4	3.5	0.2	5.2	0.0	3.8	0.7	154.7	5.8	161.6	7.7	264.3	79.5	154.7	5.8	NA
16ATW-10-Spot 80	59	99319	1.9	19.8	2.1	0.2	3.2	0.0	2.5	0.8	154.8	3.8	158.6	4.8	215.9	48.7	154.8	3.8	NA
16ATW-10-Spot 16	117	80516	1.5	20.1	1.4	0.2	3.0	0.0	2.6	0.9	154.9	4.0	156.8	4.3	185.7	33.0	154.9	4.0	NA
16ATW-10-Spot 226	57	19456	2.0	19.6	2.5	0.2	4.1	0.0	3.2	0.8	154.9	4.9	160.3	6.0	241.1	57.7	154.9	4.9	NA
16ATW-10-Spot 96	19	4309	3.5	20.9	2.6	0.2	3.9	0.0	2.8	0.7	155.1	4.4	151.1	5.4	89.1	62.5	155.1	4.4	NA
16ATW-10-Spot 13	67	21664	2.7	21.0	2.4	0.2	3.4	0.0	2.4	0.7	155.1	3.7	150.5	4.7	79.4	56.5	155.1	3.7	NA
16ATW-10-Spot 168	21	7681	2.6	21.0	2.7	0.2	3.6	0.0	2.5	0.7	155.2	3.8	150.6	5.1	79.9	63.1	155.2	3.8	NA
16ATW-10-Spot 72	23	5497	3.5	20.3	3.5	0.2	4.3	0.0	2.5	0.6	155.2	3.9	155.6	6.2	162.9	81.5	155.2	3.9	NA
16ATW-10-Spot 258	41	337324	5.0	19.4	2.4	0.2	3.6	0.0	2.7	0.7	155.2	4.1	162.0	5.4	263.0	55.8	155.2	4.1	NA
16ATW-10-Spot 239	47	14322	4.2	20.1	2.7	0.2	4.0	0.0	2.9	0.7	155.2	4.4	157.2	5.8	188.4	63.2	155.2	4.4	NA
16ATW-10-Spot 278	29	145738	3.7	19.6	2.8	0.2	3.7	0.0	2.4	0.7	155.2	3.7	160.5	5.5	239.8	63.6	155.2	3.7	NA
16ATW-10-Spot 130	33	62011	4.0	19.9	2.9	0.2	4.1	0.0	2.9	0.7	155.3	4.4	158.5	6.0	207.8	66.9	155.3	4.4	NA
16ATW-10-Spot 113	24	45057	3.8	19.9	3.4	0.2	4.5	0.0	2.9	0.7	155.3	4.5	158.5	6.5	207.1	78.1	155.3	4.5	NA
16ATW-10-Spot 90	31	38009	2.3	21.3	2.6	0.2	3.6	0.0	2.4	0.7	155.3	3.8	149.1	5.0	51.7	62.2	155.3	3.8	NA
16ATW-10-Spot 84	52	671905	4.4	18.6	3.2	0.2	4.0	0.0	2.5	0.6	155.3	3.8	168.4	6.2	357.6	71.3	155.3	3.8	NA
16ATW-10-Spot 205	104	190764	3.0	20.4	1.5	0.2	2.3	0.0	1.8	0.8	155.3	2.8	154.8	3.4	147.7	34.5	155.3	2.8	NA
16ATW-10-Spot 200	29	6693	3.2	20.8	3.0	0.2	4.0	0.0	2.6	0.7	155.4	4.0	152.1	5.6	102.5	71.0	155.4	4.0	NA
16ATW-10-Spot 254	74	45904	3.8	20.5	2.0	0.2	3.5	0.0	2.8	0.8	155.4	4.3	154.1	5.0	134.7	47.5	155.4	4.3	NA
16ATW-10-Spot 68	57	69855	3.4	19.6	2.3	0.2	3.3	0.0	2.4	0.7	155.4	3.7	161.1	5.0	246.1	52.5	155.4	3.7	NA
16ATW-10-Spot 51	67	18741	3.2	20.3	2.1	0.2	3.2	0.0	2.4	0.8	155.5	3.7	156.0	4.6	164.9	48.2	155.5	3.7	NA
16ATW-10-Spot 100	24	66590	3.5	18.2	3.0	0.2	4.5	0.0	3.3	0.7	155.5	5.1	172.2	7.2	408.5	68.1	155.5	5.1	NA

16ATW-10-Spot 8	55	45072	2.6	20.7	1.8	0.2	3.2	0.0	2.7	0.8	155.5	4.1	152.7	4.6	110.4	41.9	155.5	4.1	NA
16ATW-10-Spot 195	25	4992	2.0	19.9	4.3	0.2	5.2	0.0	2.9	0.6	155.6	4.5	158.5	7.6	201.7	99.4	155.6	4.5	NA
16ATW-10-Spot 202	92	390963	2.4	20.2	1.8	0.2	3.4	0.0	2.9	0.9	155.7	4.5	156.6	5.0	172.8	41.5	155.7	4.5	NA
16ATW-10-Spot 54	96	36858	2.4	20.1	1.7	0.2	3.2	0.0	2.8	0.8	155.7	4.2	157.3	4.7	181.5	40.1	155.7	4.2	NA
16ATW-10-Spot 242	21	15977	4.1	20.2	3.5	0.2	4.4	0.0	2.7	0.6	155.8	4.1	156.4	6.4	167.8	81.8	155.8	4.1	NA
16ATW-10-Spot 207	31	22004	2.2	19.5	2.9	0.2	3.5	0.0	2.1	0.6	155.8	3.2	161.5	5.3	248.1	65.6	155.8	3.2	NA
16ATW-10-Spot 112	20	8135	3.8	21.9	3.6	0.2	4.7	0.0	2.9	0.6	155.8	4.5	145.6	6.3	NA	NA	155.8	4.5	NA
16ATW-10-Spot 14	46	12704	3.1	21.3	2.8	0.2	3.5	0.0	2.0	0.6	155.8	3.2	149.1	4.8	43.8	67.1	155.8	3.2	NA
16ATW-10-Spot 140	32	16887	3.1	20.2	3.1	0.2	4.5	0.0	3.2	0.7	155.9	5.0	156.8	6.5	172.1	72.9	155.9	5.0	NA
16ATW-10-Spot 148	59	26674	2.4	21.0	2.4	0.2	3.4	0.0	2.4	0.7	155.9	3.7	151.0	4.7	76.1	56.5	155.9	3.7	NA
16ATW-10-Spot 273	18	30167	3.8	19.3	3.8	0.2	4.8	0.0	2.9	0.6	156.0	4.5	163.4	7.2	273.1	86.6	156.0	4.5	NA
16ATW-10-5pot 236	29	9099	3.4	21.4	3.6	0.2	4.3	0.0	2.3	0.5	156.0	3.6	148.8	5.9	36.0	86.5	156.0	3.6	NA
16ATW-10-Spot 201	223	122664	3.1	20.3	1.4	0.2	2.3	0.0	1.9	0.8	156.0	2.9	156.5	3.4	164.7	31.9	156.0	2.9	NA
16ATW-10-Spot 50	28	46343	3.5	20.3	1.8	0.2	3.1	0.0	2.5	0.8	156.2	3.9	156.3	4.5	158.4	41.1	156.2	3.9	NA
16ATW-10-Spot 32	115	129761	1.8	19.8	1.8	0.2	2.8	0.0	2.1	0.8	156.2	3.3	159.9	4.1	215.5	41.3	156.2	3.3	NA
16ATW-10-Spot 151	49	10643	2.0	20.9	1.9	0.2	3.1	0.0	2.5	0.8	156.3	3.8	152.2	4.4	89.8	44.4	156.3	3.8	NA
16ATW-10-Spot 227	66	13145	4.1	21.3	2.3	0.2	3.5	0.0	2.6	0.8	156.3	4.1	149.7	4.9	46.8	55.2	156.3	4.1	NA
16ATW-10-Spot 56	38	36949	4.3	19.5	2.8	0.2	3.7	0.0	2.3	0.6	156.4	3.6	162.8	5.5	259.2	64.6	156.4	3.6	NA
16ATW-10-Spot 85	133	66390	2.0	20.1	1.6	0.2	2.8	0.0	2.3	0.8	156.4	3.5	157.8	4.1	180.1	38.0	156.4	3.5	NA
16ATW-10-Spot 293	25	41663	3.2	21.1	3.2	0.2	4.5	0.0	3.2	0.7	156.4	4.9	151.1	6.3	70.3	75.4	156.4	4.9	NA
16ATW-10-Spot 190	31	12270	3.7	19.6	3.0	0.2	4.3	0.0	3.0	0.7	156.4	4.7	161.8	6.4	242.2	68.9	156.4	4.7	NA
16ATW-10-Spot 265	22	24789	3.8	19.9	4.0	0.2	4.8	0.0	2.7	0.6	156.4	4.2	159.6	7.1	207.2	92.6	156.4	4.2	NA
16ATW-10-Spot 192	33	6172	3.3	20.4	2.3	0.2	3.4	0.0	2.4	0.7	156.6	3.7	156.3	4.9	153.3	54.9	156.6	3.7	NA
16ATW-10-Spot 292	35	83581	5.1	19.9	2.5	0.2	3.9	0.0	3.0	0.8	156.6	4.6	159.7	5.7	207.3	57.4	156.6	4.6	NA
16ATW-10-Spot 146	20	20681	2.7	20.3	4.0	0.2	5.0	0.0	2.9	0.6	156.6	4.5	157.0	7.2	164.7	94.0	156.6	4.5	NA

16ATW-10-Spot 60	61	39545	2.2	20.3	2.5	0.2	3.9	0.0	3.0	0.8	156.7	4.7	156.8	5.7	160.4	57.8	156.7	4.7	NA
16ATW-10-Spot 231	21	5761	4.3	19.9	3.7	0.2	4.5	0.0	2.6	0.6	156.7	4.0	160.0	6.7	210.1	86.6	156.7	4.0	NA
16ATW-10-Spot 101	40	12319	3.8	20.5	2.4	0.2	3.4	0.0	2.3	0.7	156.7	3.6	155.2	4.8	133.3	57.4	156.7	3.6	NA
16ATW-10-Spot 55	25	12109	3.3	21.6	3.3	0.2	4.1	0.0	2.4	0.6	156.7	3.7	148.3	5.7	17.0	80.2	156.7	3.7	NA
16ATW-10-Spot 29	82	70069	2.7	20.4	1.3	0.2	3.3	0.0	3.0	0.9	156.8	4.6	155.9	4.7	144.1	31.0	156.8	4.6	NA
16ATW-10-Spot 286	39	8516	2.4	20.5	2.5	0.2	3.8	0.0	2.9	0.8	156.8	4.5	155.5	5.5	136.7	58.2	156.8	4.5	NA
16ATW-10-Spot 164	30	61481	2.9	20.2	3.2	0.2	4.2	0.0	2.6	0.6	156.8	4.1	157.9	6.1	175.1	75.1	156.8	4.1	NA
16ATW-10-Spot 74	57	40279	2.8	20.2	2.3	0.2	3.4	0.0	2.5	0.7	156.9	3.9	157.5	4.9	168.3	52.9	156.9	3.9	NA
16ATW-10-Spot 59	69	50550	3.7	20.1	2.3	0.2	3.1	0.0	2.1	0.7	156.9	3.3	158.3	4.6	179.2	53.6	156.9	3.3	NA
16ATW-10-Spot 315	88	60860	4.5	20.1	1.8	0.2	2.5	0.0	1.8	0.7	157.0	2.8	158.8	3.7	187.0	41.0	157.0	2.8	NA
16ATW-10-Spot 289	32	19101	3.0	20.7	2.4	0.2	3.7	0.0	2.8	0.8	157.0	4.4	154.5	5.3	117.5	56.5	157.0	4.4	NA
16ATW-10-Spot 5	56	400660	2.3	21.1	1.9	0.2	3.4	0.0	2.8	0.8	157.0	4.4	151.8	4.8	72.2	45.4	157.0	4.4	NA
16ATW-10-Spot 66	23	18338	2.5	20.2	2.3	0.2	3.4	0.0	2.5	0.7	157.1	3.9	157.9	4.9	170.6	52.8	157.1	3.9	NA
16ATW-10-Spot 33	33	15730	3.0	21.1	2.6	0.2	3.7	0.0	2.7	0.7	157.1	4.2	152.0	5.2	74.1	60.7	157.1	4.2	NA
16ATW-10-Spot 52	83	23794	4.7	21.1	1.7	0.2	3.0	0.0	2.5	0.8	157.1	3.8	151.5	4.2	65.6	40.9	157.1	3.8	NA
16ATW-10-Spot 175	51	20167	3.1	20.7	1.9	0.2	3.3	0.0	2.7	0.8	157.1	4.2	154.2	4.7	110.1	44.0	157.1	4.2	NA
16ATW-10-Spot 63	30	41991	2.7	19.8	3.0	0.2	3.8	0.0	2.4	0.6	157.2	3.8	160.8	5.7	214.3	68.4	157.2	3.8	NA
16ATW-10-Spot 23	30	8839	3.9	20.8	3.1	0.2	3.7	0.0	2.1	0.6	157.3	3.2	154.2	5.3	107.9	72.5	157.3	3.2	NA
16ATW-10-Spot 263	42	20112	4.0	20.1	2.7	0.2	4.0	0.0	3.0	0.7	157.3	4.7	158.7	5.9	179.9	61.9	157.3	4.7	NA
16ATW-10-Spot 75	32	39730	3.6	19.8	3.1	0.2	4.5	0.0	3.3	0.7	157.4	5.1	160.9	6.7	213.8	72.4	157.4	5.1	NA
16ATW-10-Spot 3	82	119699	3.6	20.2	1.6	0.2	3.0	0.0	2.6	0.9	157.4	4.0	158.1	4.4	169.1	36.8	157.4	4.0	NA
16ATW-10-Spot 82	87	32621	2.3	20.9	1.6	0.2	3.0	0.0	2.6	0.9	157.4	4.0	153.3	4.3	91.4	37.0	157.4	4.0	NA
16ATW-10-Spot 276	26	6555	3.4	21.4	2.5	0.2	3.5	0.0	2.3	0.7	157.5	3.6	149.8	4.8	31.1	61.0	157.5	3.6	NA
16ATW-10-Spot 176	23	10130	3.8	20.8	3.8	0.2	4.9	0.0	3.1	0.6	157.5	4.8	154.1	6.9	102.3	89.3	157.5	4.8	NA
16ATW-10-Spot 41	101	359100	4.7	20.4	1.4	0.2	2.4	0.0	2.0	0.8	157.6	3.1	157.0	3.5	147.9	31.8	157.6	3.1	NA
16ATW-10-Spot 65	24	20374	3.0	21.0	2.5	0.2	3.6	0.0	2.5	0.7	157.7	4.0	152.8	5.1	77.5	60.1	157.7	4.0	NA
16ATW-10-Spot 133	68	16823	2.9	20.6	2.2	0.2	3.3	0.0	2.5	0.8	157.7	3.8	155.9	4.7	129.1	50.9	157.7	3.8	NA
16ATW-10-Spot 170	28	43379	3.4	20.9	2.6	0.2	3.2	0.0	1.8	0.6	157.8	2.9	153.6	4.6	90.3	62.4	157.8	2.9	NA

16ATW-10-Spot 152	24	34377	3.8	20.6	3.2	0.2	4.0	0.0	2.4	0.6	157.8	3.8	155.5	5.8	121.5	76.0	157.8	3.8	NA
16ATW-10-Spot 154	39	24408	3.6	20.8	2.5	0.2	3.4	0.0	2.3	0.7	157.8	3.5	154.7	4.8	107.2	58.7	157.8	3.5	NA
16ATW-10-Spot 44	38	73935	2.6	20.2	2.5	0.2	3.7	0.0	2.8	0.7	157.9	4.3	158.8	5.4	173.8	57.3	157.9	4.3	NA
16ATW-10-Spot 304	54	71803	5.3	20.9	2.3	0.2	3.6	0.0	2.8	0.8	158.0	4.3	154.0	5.2	94.7	54.3	158.0	4.3	NA
16ATW-10-5pot 240	22	51364	3.6	19.8	2.5	0.2	3.6	0.0	2.5	0.7	158.0	4.0	161.6	5.3	215.2	58.0	158.0	4.0	NA
16ATW-10-Spot 257	36	53328	3.1	20.5	2.3	0.2	3.8	0.0	3.0	0.8	158.0	4.7	156.5	5.5	135.0	55.0	158.0	4.7	NA
16ATW-10-Spot 169	29	9250	3.7	21.2	3.1	0.2	4.0	0.0	2.5	0.6	158.0	3.9	151.9	5.6	58.7	73.9	158.0	3.9	NA
16ATW-10-Spot 287	161	71510	2.6	20.1	1.5	0.2	2.5	0.0	2.0	0.8	158.2	3.1	159.4	3.7	178.2	35.4	158.2	3.1	NA
16ATW-10-Spot 53	36	10597	2.6	21.3	3.4	0.2	4.3	0.0	2.7	0.6	158.3	4.2	151.3	6.1	44.3	81.1	158.3	4.2	NA
16ATW-10-Spot 71	69	205355	2.1	20.0	1.8	0.2	2.7	0.0	2.1	0.8	158.3	3.3	160.6	4.0	195.2	40.8	158.3	3.3	NA
16ATW-10-Spot 178	20	12315	2.8	21.1	3.6	0.2	4.8	0.0	3.1	0.7	158.4	4.9	152.9	6.8	70.2	85.8	158.4	4.9	NA
16ATW-10-Spot 89	29	5886	3.5	20.6	2.6	0.2	4.2	0.0	3.3	0.8	158.4	5.2	156.5	6.1	128.9	60.5	158.4	5.2	NA
16ATW-10-Spot 189	34	11100	2.9	20.8	2.7	0.2	3.5	0.0	2.1	0.6	158.4	3.3	154.6	5.0	97.8	64.2	158.4	3.3	NA
16ATW-10-Spot 57	21	41005	4.6	19.5	4.1	0.2	5.0	0.0	2.9	0.6	158.5	4.6	164.6	7.7	254.0	94.4	158.5	4.6	NA
16ATW-10-Spot 81	76	22239	3.8	20.8	1.9	0.2	3.4	0.0	2.8	0.8	158.5	4.3	155.1	4.8	103.6	44.6	158.5	4.3	NA
16ATW-10-Spot 17	306	205607	11.6	20.5	1.2	0.2	2.5	0.0	2.2	0.9	158.7	3.5	157.1	3.6	133.7	27.3	158.7	3.5	NA
16ATW-10-Spot 35	26	10160	2.3	20.5	3.7	0.2	4.6	0.0	2.7	0.6	158.7	4.2	157.5	6.7	141.0	87.0	158.7	4.2	NA
16ATW-10-Spot 251	36	9475	3.0	19.9	2.4	0.2	3.4	0.0	2.4	0.7	158.7	3.8	161.7	5.1	207.0	55.3	158.7	3.8	NA
16ATW-10-Spot 313	23	16729	4.3	19.1	3.6	0.2	4.6	0.0	2.8	0.6	158.9	4.4	168.3	7.1	303.8	83.0	158.9	4.4	NA
16ATW-10-Spot 204	50	35962	2.5	20.7	2.2	0.2	3.5	0.0	2.7	0.8	159.1	4.2	156.2	5.0	114.1	51.9	159.1	4.2	NA
16ATW-10-Spot 45	17	12455	3.4	21.3	3.9	0.2	4.9	0.0	2.9	0.6	159.3	4.6	152.2	6.9	44.3	93.7	159.3	4.6	NA
16ATW-10-Spot 143	28	21064	3.5	21.0	3.4	0.2	4.6	0.0	3.1	0.7	159.3	4.8	154.3	6.5	78.5	80.6	159.3	4.8	NA
16ATW-10-Spot 144	52	100674	4.2	21.2	1.9	0.2	3.0	0.0	2.3	0.8	159.3	3.7	153.2	4.3	61.2	46.2	159.3	3.7	NA
16ATW-10-Spot 203	69	80762	3.2	20.2	2.0	0.2	3.2	0.0	2.5	0.8	159.4	4.0	159.8	4.7	166.7	46.5	159.4	4.0	NA
16ATW-10-Spot 47	29	51677	2.4	19.6	2.8	0.2	4.3	0.0	3.3	0.8	159.6	5.2	164.7	6.6	240.6	64.5	159.6	5.2	NA
16ATW-10-Spot 128	26	21113	3.6	20.2	3.2	0.2	4.5	0.0	3.2	0.7	159.7	5.0	160.6	6.7	174.8	75.5	159.7	5.0	NA

16ATW-10-Spot 303	63	118611	4.0	20.1	1.9	0.2	3.4	0.0	2.7	0.8	160.0	4.3	161.5	5.0	185.3	45.2	160.0	4.3	NA
16ATW-10-Spot 125	330	360092	29.6	20.3	1.2	0.2	2.8	0.0	2.6	0.9	160.0	4.1	159.7	4.2	155.6	27.9	160.0	4.1	NA
16ATW-10-Spot 217	54	80335	3.2	20.3	2.1	0.2	3.3	0.0	2.6	0.8	160.6	4.2	160.3	4.9	156.7	48.2	160.6	4.2	NA
16ATW-10-Spot 95	91	97549	2.4	20.0	2.0	0.2	3.3	0.0	2.6	0.8	160.6	4.1	162.7	4.9	194.7	46.4	160.6	4.1	NA
16ATW-10-Spot 26	37	92713	3.0	21.3	2.2	0.2	3.4	0.0	2.6	0.8	160.7	4.2	153.6	4.9	46.5	52.3	160.7	4.2	NA
16ATW-10-Spot 43	29	394199	2.5	20.8	2.9	0.2	3.9	0.0	2.6	0.7	160.8	4.2	157.1	5.7	102.2	67.7	160.8	4.2	NA
16ATW-10-Spot 185	91	17360	2.1	19.9	2.0	0.2	3.4	0.0	2.7	0.8	160.8	4.3	163.4	5.1	202.5	45.4	160.8	4.3	NA
16ATW-10-Spot 73	77	21386	1.9	20.5	1.9	0.2	3.0	0.0	2.3	0.8	160.8	3.6	159.1	4.4	134.7	45.0	160.8	3.6	NA
16ATW-10-Spot 64	38	12820	3.1	19.9	2.2	0.2	3.5	0.0	2.7	0.8	160.9	4.3	164.0	5.2	210.7	50.7	160.9	4.3	NA
16ATW-10-Spot 162	110	87000	3.5	20.2	1.2	0.2	3.1	0.0	2.8	0.9	161.0	4.5	161.8	4.6	174.2	28.3	161.0	4.5	NA
16ATW-10-Spot 174	189	204864	2.5	20.0	1.4	0.2	3.1	0.0	2.8	0.9	161.0	4.4	163.2	4.7	196.1	32.8	161.0	4.4	NA
16ATW-10-Spot 247	171	169581	2.9	20.2	1.3	0.2	2.8	0.0	2.4	0.9	161.1	3.9	161.7	4.1	172.4	30.3	161.1	3.9	NA
16ATW-10-Spot 42	55	389327	2.1	20.8	2.2	0.2	4.0	0.0	3.4	0.8	161.1	5.4	157.4	5.9	103.0	51.6	161.1	5.4	NA
16ATW-10-Spot 102	66	224977	3.4	20.9	1.9	0.2	2.9	0.0	2.2	0.8	161.1	3.6	157.0	4.3	96.0	45.0	161.1	3.6	NA
16ATW-10-Spot 79	57	42068	3.0	20.0	2.7	0.2	3.7	0.0	2.6	0.7	161.2	4.1	163.3	5.6	195.7	62.3	161.2	4.1	NA
16ATW-10-Spot 283	57	131360	2.8	21.0	1.6	0.2	3.2	0.0	2.8	0.9	161.2	4.4	156.3	4.7	84.0	38.4	161.2	4.4	NA
16ATW-10-Spot 291	19	3837	3.6	21.9	4.5	0.2	5.2	0.0	2.5	0.5	161.2	3.9	150.1	7.2	NA	NA	161.2	3.9	NA
16ATW-10-Spot 105	71	28102	4.9	20.9	1.8	0.2	2.8	0.0	2.1	0.8	161.2	3.4	156.7	4.1	89.8	43.3	161.2	3.4	NA
16ATW-10-Spot 271	54	21790	3.5	20.5	2.0	0.2	3.3	0.0	2.6	0.8	161.3	4.1	160.1	4.9	142.7	48.1	161.3	4.1	NA
16ATW-10-Spot 48	282	100353	4.0	20.4	1.3	0.2	2.3	0.0	1.9	0.8	161.7	3.0	160.7	3.4	147.8	29.6	161.7	3.0	NA
16ATW-10-Spot 25	31	20075	4.7	20.9	3.0	0.2	4.3	0.0	3.1	0.7	161.9	4.9	157.5	6.3	92.5	70.6	161.9	4.9	NA
16ATW-10-Spot 262	34	9098	2.4	20.7	2.9	0.2	3.9	0.0	2.5	0.7	161.9	4.0	159.0	5.7	117.1	68.7	161.9	4.0	NA
16ATW-10-Spot 306	54	54793	1.9	20.3	2.1	0.2	3.1	0.0	2.2	0.7	162.1	3.5	161.9	4.6	160.3	49.7	162.1	3.5	NA
16ATW-10-Spot 238	33	42756	5.4	20.4	2.7	0.2	3.9	0.0	2.7	0.7	162.6	4.3	161.5	5.8	146.5	64.2	162.6	4.3	NA
16ATW-10-Spot 77	34	36610	5.6	19.9	2.4	0.2	3.5	0.0	2.6	0.7	162.7	4.2	165.8	5.4	211.7	54.5	162.7	4.2	NA
16ATW-10-Spot 259	32	23788	3.7	19.5	3.0	0.2	3.9	0.0	2.4	0.6	163.1	3.8	168.7	6.0	248.7	70.2	163.1	3.8	NA

16ATW-10-Spot 88	162	54415	4.0	20.6	1.1	0.2	2.4	0.0	2.2	0.9	164.7	3.5	162.0	3.6	123.5	25.0	164.7	3.5	NA
16ATW-10-Spot 11	52	17749	3.5	20.8	2.2	0.2	3.1	0.0	2.3	0.7	164.8	3.7	160.9	4.7	105.6	51.9	164.8	3.7	NA
16ATW-10-Spot 218	113	44874	3.4	20.6	1.6	0.2	3.0	0.0	2.6	0.8	165.3	4.2	162.9	4.5	128.6	37.7	165.3	4.2	NA
16ATW-10-Spot 223	287	187997	3.6	20.0	1.0	0.2	2.4	0.0	2.2	0.9	165.9	3.6	167.9	3.8	197.0	23.8	165.9	3.6	NA
16ATW-10-Spot 308	135	51157	3.9	20.4	1.6	0.2	2.7	0.0	2.1	0.8	167.4	3.5	166.3	4.1	151.7	38.2	167.4	3.5	NA
16ATW-10-Spot 31	83	86156	2.9	19.9	2.0	0.2	2.9	0.0	2.1	0.7	167.6	3.4	169.8	4.6	202.1	47.4	167.6	3.4	NA
16ATW-10-Spot 18	56	39035	5.1	19.9	2.3	0.2	3.4	0.0	2.5	0.7	167.6	4.2	170.2	5.4	206.7	53.2	167.6	4.2	NA
16ATW-10-Spot 135	275	124456	3.1	20.3	1.4	0.2	3.0	0.0	2.6	0.9	168.1	4.3	167.4	4.6	158.1	31.8	168.1	4.3	NA
16ATW-10-Spot 139	92	64027	3.9	19.9	1.6	0.2	2.9	0.0	2.5	0.8	168.4	4.1	170.8	4.6	205.9	36.5	168.4	4.1	NA
16ATW-10-Spot 221	59	16110	4.0	20.4	1.9	0.2	3.1	0.0	2.4	0.8	168.9	4.0	167.2	4.7	143.1	45.1	168.9	4.0	NA
16ATW-10-Spot 272	135	20745	3.5	20.3	1.7	0.2	3.2	0.0	2.7	0.8	169.3	4.5	168.7	4.9	161.6	40.5	169.3	4.5	NA
16ATW-10-Spot 39	75	220756	4.9	20.3	1.8	0.2	2.5	0.0	1.8	0.7	169.8	3.0	169.4	3.9	165.9	42.1	169.8	3.0	NA
16ATW-10-Spot 188	14	10414	4.4	20.5	3.2	0.2	4.3	0.0	2.8	0.7	169.9	4.8	168.0	6.6	142.8	75.5	169.9	4.8	NA
16ATW-10-Spot 159	226	358629	3.4	20.4	1.3	0.2	2.9	0.0	2.6	0.9	170.0	4.4	168.8	4.6	153.4	30.1	170.0	4.4	NA
16ATW-10-Spot 160	93	38935	5.0	20.7	1.6	0.2	3.2	0.0	2.8	0.9	170.3	4.7	166.5	5.0	113.5	37.9	170.3	4.7	NA
16ATW-10-Spot 58	53	64773	4.2	20.1	2.0	0.2	2.9	0.0	2.1	0.7	171.0	3.6	171.6	4.6	179.8	46.0	171.0	3.6	NA
16ATW-10-Spot 312	173	325514	3.4	20.1	1.3	0.2	2.3	0.0	1.9	0.8	171.7	3.2	172.8	3.7	189.0	30.4	171.7	3.2	NA
16ATW-10-Spot 233	145	62737	4.3	20.4	1.2	0.2	2.8	0.0	2.6	0.9	172.0	4.3	170.5	4.4	150.4	28.5	172.0	4.3	NA
16ATW-10-Spot 97	53	41900	3.2	19.7	1.7	0.2	2.8	0.0	2.2	0.8	172.6	3.8	176.6	4.5	231.7	38.9	172.6	3.8	NA
16ATW-10-Spot 142	43	24597	4.7	20.6	2.3	0.2	2.8	0.0	1.7	0.6	172.7	2.9	169.2	4.4	122.5	54.0	172.7	2.9	NA
16ATW-10-Spot 249	55	127398	3.0	20.2	2.3	0.2	3.4	0.0	2.6	0.7	174.4	4.4	174.4	5.5	174.9	53.0	174.4	4.4	NA
16ATW-10-Spot 136	58	24178	2.7	20.0	1.9	0.2	3.5	0.0	3.0	0.8	174.6	5.1	176.1	5.7	197.5	43.8	174.6	5.1	NA
16ATW-10-Spot 124	123	48997	2.7	19.5	1.9	0.2	2.9	0.0	2.1	0.7	174.7	3.7	179.9	4.7	250.0	43.7	174.7	3.7	NA
16ATW-10-Spot 121	286	47153	2.2	20.3	1.0	0.2	2.5	0.0	2.4	0.9	175.5	4.1	174.7	4.1	164.4	22.6	175.5	4.1	NA
16ATW-10-Spot 252	160	147886	4.0	20.5	1.3	0.2	3.1	0.0	2.8	0.9	176.6	4.9	173.7	4.9	136.2	29.7	176.6	4.9	NA

16ATW-10-Spot 93	2673	600610	1.6	19.8	0.9	0.2	2.4	0.0	2.2	0.9	177.6	3.9	180.3	4.0	216.4	21.1	177.6	3.9	NA
16ATW-10-Spot 260	94	61560	2.7	19.8	1.5	0.2	2.5	0.0	2.0	0.8	178.2	3.5	180.9	4.1	217.2	34.6	178.2	3.5	NA
16ATW-10-Spot 131	299	560445	1.8	20.2	1.2	0.2	2.7	0.0	2.4	0.9	178.5	4.3	178.3	4.4	176.6	27.8	178.5	4.3	NA
16ATW-10-Spot 67	124	2199340	2.4	20.0	1.6	0.2	2.8	0.0	2.3	0.8	179.4	4.1	180.3	4.6	193.0	36.3	179.4	4.1	NA
16ATW-10-Spot 61	99	90310	2.0	20.0	1.7	0.2	4.3	0.0	4.0	0.9	182.2	7.1	182.7	7.2	190.8	40.6	182.2	7.1	NA
16ATW-10-Spot 241	347	872976	4.6	19.9	1.3	0.2	2.6	0.0	2.3	0.9	183.0	4.1	184.4	4.4	203.3	29.9	183.0	4.1	NA
16ATW-10-Spot 310	90	13085	3.0	20.8	1.9	0.2	2.9	0.0	2.1	0.7	183.5	3.9	178.1	4.7	107.9	44.9	183.5	3.9	NA
16ATW-10-Spot 193	441	199561	2.3	20.3	1.1	0.2	2.4	0.0	2.1	0.9	183.9	3.8	182.0	3.9	158.7	25.8	183.9	3.8	NA
16ATW-10-Spot 311	120	753386	3.3	20.5	1.4	0.2	2.6	0.0	2.2	0.9	183.9	4.0	180.4	4.3	136.3	32.0	183.9	4.0	NA
16ATW-10-Spot 138	374	408281	2.9	20.3	1.2	0.2	2.5	0.0	2.1	0.9	184.4	3.9	182.9	4.1	164.2	28.8	184.4	3.9	NA
16ATW-10-Spot 76	19	19457	2.8	19.7	3.1	0.2	4.1	0.0	2.7	0.7	185.7	5.0	188.8	7.1	228.3	72.0	185.7	5.0	NA
16ATW-10-Spot 36	66	79839	1.7	20.1	1.9	0.2	2.9	0.0	2.1	0.7	186.4	3.9	186.0	4.9	182.1	44.4	186.4	3.9	NA
16ATW-10-Spot 9	71	20370	2.6	20.4	1.7	0.2	3.1	0.0	2.5	0.8	186.5	4.6	183.7	5.1	148.9	40.6	186.5	4.6	NA
16ATW-10-Spot 134	134	856567	3.2	20.0	1.6	0.2	3.3	0.0	2.9	0.9	187.0	5.3	187.4	5.6	193.9	36.2	187.0	5.3	NA
16ATW-10-Spot 180	336	139933	2.8	19.9	1.3	0.2	2.4	0.0	2.1	0.8	187.1	3.8	188.1	4.2	202.2	30.2	187.1	3.8	NA
16ATW-10-Spot 27	152	81480	2.7	20.4	1.3	0.2	2.6	0.0	2.3	0.9	187.3	4.2	184.3	4.5	147.0	30.7	187.3	4.2	NA
16ATW-10-Spot 244	193	149422	3.0	20.5	1.1	0.2	2.9	0.0	2.7	0.9	187.3	4.9	183.9	4.9	141.0	25.7	187.3	4.9	NA
16ATW-10-Spot 288	51	57947	1.3	20.5	2.6	0.2	3.7	0.0	2.7	0.7	187.7	4.9	183.7	6.2	134.0	60.6	187.7	4.9	NA
16ATW-10-Spot 209	463	111634	1.9	20.1	1.0	0.2	2.2	0.0	2.0	0.9	187.7	3.7	187.8	3.8	189.2	23.1	187.7	3.7	NA
16ATW-10-Spot 246	105	73571	4.2	20.1	1.5	0.2	2.7	0.0	2.3	0.8	187.8	4.2	187.4	4.6	183.8	34.3	187.8	4.2	NA
16ATW-10-Spot 166	1149	3287784	4.2	19.8	1.0	0.2	2.2	0.0	2.0	0.9	188.0	3.6	190.1	3.8	217.0	23.6	188.0	3.6	NA
16ATW-10-Spot 28	76	43426	3.9	20.3	1.4	0.2	3.0	0.0	2.6	0.9	188.5	4.8	186.0	5.0	154.6	33.9	188.5	4.8	NA
16ATW-10-Spot 253	313	202540	0.8	20.0	1.2	0.2	2.4	0.0	2.1	0.9	188.9	4.0	189.7	4.2	200.0	27.5	188.9	4.0	NA
16ATW-10-Spot 118	159	202664	2.3	20.4	1.1	0.2	2.9	0.0	2.6	0.9	189.0	4.9	185.9	4.9	147.8	26.8	189.0	4.9	NA
16ATW-10-Spot 224	859	357426	3.0	20.0	1.2	0.2	2.8	0.0	2.6	0.9	189.1	4.8	189.2	4.9	192.1	27.3	189.1	4.8	NA

16ATW-10-Spot 157	61	163508	2.4	19.9	1.7	0.2	3.4	0.0	3.0	0.9	189.1	5.6	190.3	6.0	206.5	38.8	189.1	5.6	NA
16ATW-10-Spot 215	1157	593424	4.7	20.2	0.7	0.2	2.3	0.0	2.2	1.0	189.4	4.2	188.4	4.0	176.3	16.9	189.4	4.2	NA
16ATW-10-Spot 167	67	322940	2.9	20.3	1.5	0.2	2.6	0.0	2.1	0.8	189.5	3.8	187.7	4.4	165.9	35.6	189.5	3.8	NA
16ATW-10-Spot 127	189	171505	3.2	20.3	1.3	0.2	2.6	0.0	2.2	0.9	190.1	4.2	187.5	4.4	156.3	30.1	190.1	4.2	NA
16ATW-10-Spot 225	271	162027	2.8	20.0	1.0	0.2	2.9	0.0	2.7	0.9	190.3	5.1	190.8	5.0	197.7	22.3	190.3	5.1	NA
16ATW-10-Spot 24	58	974153	3.1	20.3	2.1	0.2	3.1	0.0	2.3	0.7	190.7	4.3	188.0	5.3	155.3	48.5	190.7	4.3	NA
16ATW-10-Spot 78	78	25251	2.9	20.8	2.1	0.2	3.1	0.0	2.3	0.7	190.8	4.3	184.2	5.2	101.4	48.7	190.8	4.3	NA
16ATW-10-Spot 15	183	53853	3.3	20.3	1.3	0.2	2.5	0.0	2.1	0.9	191.4	4.0	189.1	4.3	162.1	30.1	191.4	4.0	NA
16ATW-10-Spot 115	272	1917632	4.1	19.9	1.0	0.2	2.7	0.0	2.5	0.9	191.6	4.7	192.9	4.7	209.8	23.9	191.6	4.7	NA
16ATW-10-Spot 302	286	535295	4.5	20.0	0.9	0.2	2.5	0.0	2.4	0.9	191.7	4.5	192.1	4.4	198.0	20.0	191.7	4.5	NA
16ATW-10-Spot 83	99	69438	1.7	20.2	1.6	0.2	2.9	0.0	2.4	0.8	191.9	4.5	190.7	5.0	177.1	37.4	191.9	4.5	NA
16ATW-10-Spot 161	139	55542	3.3	20.1	1.3	0.2	2.7	0.0	2.3	0.9	192.2	4.4	191.6	4.7	186.1	31.1	192.2	4.4	NA
16ATW-10-Spot 191	1096	1774590	3.7	19.9	1.0	0.2	2.2	0.0	2.0	0.9	192.2	3.8	193.0	3.9	204.0	22.6	192.2	3.8	NA
16ATW-10-Spot 186	72	194385	3.2	20.0	1.9	0.2	3.1	0.0	2.5	0.8	192.2	4.7	192.2	5.4	193.5	43.6	192.2	4.7	NA
16ATW-10-Spot 232	855	922097	2.1	20.1	0.8	0.2	2.5	0.0	2.4	0.9	192.3	4.5	191.5	4.3	183.6	18.9	192.3	4.5	NA
16ATW-10-Spot 230	48	14581	3.4	20.0	1.9	0.2	3.2	0.0	2.6	0.8	192.4	5.0	192.2	5.6	191.3	43.2	192.4	5.0	NA
16ATW-10-Spot 245	65	23581	2.2	20.1	1.5	0.2	2.5	0.0	2.0	0.8	192.7	3.8	191.5	4.3	178.5	35.2	192.7	3.8	NA
16ATW-10-Spot 165	603	511243	2.1	20.3	0.9	0.2	2.1	0.0	1.9	0.9	192.7	3.5	190.0	3.6	157.0	21.2	192.7	3.5	NA
16ATW-10-Spot 280	34	12345	2.3	21.4	3.0	0.2	4.4	0.0	3.2	0.7	193.1	6.0	181.3	7.3	30.3	72.1	193.1	6.0	NA
16ATW-10-Spot 181	133	312556	2.2	20.1	1.1	0.2	2.3	0.0	2.0	0.9	193.2	3.8	192.4	4.0	183.8	25.0	193.2	3.8	NA
16ATW-10-Spot 120	163	152176	2.8	18.9	1.2	0.2	2.9	0.0	2.6	0.9	194.2	5.0	204.1	5.3	320.9	28.4	194.2	5.0	NA
16ATW-10-Spot 172	469	679002	2.2	20.1	1.0	0.2	2.2	0.0	2.0	0.9	194.8	3.8	193.6	3.9	180.6	23.9	194.8	3.8	NA
16ATW-10-Spot 212	104	266319	2.9	19.9	1.4	0.2	3.0	0.0	2.7	0.9	195.6	5.2	196.2	5.4	204.2	33.3	195.6	5.2	NA
16ATW-10-Spot 177	99	79041	2.6	20.7	1.3	0.2	3.3	0.0	3.0	0.9	196.1	5.7	190.0	5.7	116.5	31.7	196.1	5.7	NA

16ATW-10-Spot 285	38	12419	6.1	20.6	2.2	0.2	3.3	0.0	2.4	0.7	196.3	4.6	190.6	5.7	122.6	51.7	196.3	4.6	NA
16ATW-10-Spot 38	361	373391	4.0	20.0	1.0	0.2	2.3	0.0	2.1	0.9	197.4	4.1	196.7	4.1	189.5	22.1	197.4	4.1	NA
16ATW-10-Spot 220	209	107642	2.3	19.4	1.2	0.2	2.6	0.0	2.3	0.9	197.6	4.5	202.5	4.8	261.6	26.7	197.6	4.5	NA
16ATW-10-Spot 156	484	182722	3.1	20.2	0.9	0.2	2.4	0.0	2.2	0.9	198.4	4.3	196.2	4.2	170.4	20.8	198.4	4.3	NA
16ATW-10-Spot 294	512	292337	3.1	19.8	1.0	0.2	2.8	0.0	2.6	0.9	199.4	5.0	200.9	5.0	219.1	23.6	199.4	5.0	NA
16ATW-10-Spot 10	124	238191	4.3	18.9	1.3	0.2	2.8	0.0	2.5	0.9	200.2	4.9	210.1	5.3	323.9	28.9	200.2	4.9	NA
16ATW-10-Spot 7	114	70837	2.8	20.0	1.4	0.2	2.6	0.0	2.2	0.8	201.1	4.4	200.4	4.8	194.2	32.7	201.1	4.4	NA
16ATW-10-Spot 183	194	529151	4.4	20.1	1.2	0.2	2.6	0.0	2.4	0.9	201.4	4.7	200.0	4.8	184.6	26.8	201.4	4.7	NA
16ATW-10-Spot 228	305	79342	3.7	19.5	1.4	0.2	2.6	0.0	2.2	0.9	202.9	4.5	206.8	4.9	252.4	31.5	202.9	4.5	NA
16ATW-10-Spot 235	181	2684697	3.8	19.7	1.3	0.2	2.3	0.0	1.9	0.8	202.9	3.8	204.6	4.3	225.6	30.3	202.9	3.8	NA
16ATW-10-Spot 282	314	212559	4.4	20.2	1.1	0.2	2.7	0.0	2.5	0.9	203.4	5.1	200.4	5.0	166.4	25.1	203.4	5.1	NA
16ATW-10-Spot 270	270	702348	3.8	19.7	1.3	0.2	2.7	0.0	2.4	0.9	203.5	4.8	205.8	5.0	233.2	29.0	203.5	4.8	NA
16ATW-10-Spot 12	131	206082	3.2	19.9	1.3	0.2	2.5	0.0	2.1	0.8	203.6	4.2	203.8	4.5	207.4	30.4	203.6	4.2	NA
16ATW-10-Spot 194	115	98621	4.3	19.9	1.4	0.2	2.8	0.0	2.4	0.9	205.1	4.9	204.7	5.2	201.6	32.4	205.1	4.9	NA
16ATW-10-Spot 198	106	128247	2.7	19.5	1.5	0.2	2.7	0.0	2.3	0.8	205.7	4.6	209.5	5.1	253.8	33.5	205.7	4.6	NA
16ATW-10-Spot 70	124	35271	3.3	20.3	1.5	0.2	2.6	0.0	2.2	0.8	207.2	4.5	203.7	4.8	164.8	34.1	207.2	4.5	NA
16ATW-10-Spot 92	195	108984	3.3	20.1	1.2	0.2	2.8	0.0	2.5	0.9	208.3	5.1	206.4	5.2	185.4	28.0	208.3	5.1	NA
16ATW-10-Spot 91	46	62780	3.0	11.0	1.5	2.7	2.8	0.2	2.4	0.9	1260. 0	27.7	1327. 3	21.0	1438. 5	28.3	1438. 5	28.3	87.6
16ATW-10-Spot 19	54	13490	3.6	16.7	4.4	0.2	5.4	0.0	3.2	0.6	156.6	4.9	187.8	9.3	601.9	94.6	156.6	4.9	NA
16ATW-10-Spot 219	20	21282	2.8	15.8	3.9	0.2	4.9	0.0	2.8	0.6	160.1	4.5	201.3	8.9	716.2	83.7	160.1	4.5	NA
16ATW-10-Spot 104	34	5116	3.8	15.7	4.2	0.2	5.5	0.0	3.6	0.7	154.0	5.5	195.5	9.8	732.9	88.5	154.0	5.5	NA
16ATW-10-Spot 281	13	5681	4.3	15.2	7.2	0.2	7.8	0.0	3.0	0.4	167.5	4.9	217.3	15.3	798.5	152.1	167.5	4.9	NA
16ATW-10-Spot 208	37	61626	2.0	14.1	3.8	0.3	4.4	0.0	2.2	0.5	196.7	4.3	269.3	10.4	961.4	77.3	196.7	4.3	NA
16ATW-10-Spot 62	24	19246	2.9	14.1	7.4	0.2	8.0	0.0	3.0	0.4	162.2	4.8	225.4	16.2	951.3	152.3	162.2	4.8	NA
16ATW-10-Spot 107	39	24601	4.3	2.0	50. 0	1.8	51.6	0.0	12.6	0.2	166.3	20.6	1044. 3	349. 5	NA	NA	166.3	20.6	NA
16ATW-10-Spot 109	21	11956	2.9	31.2	3.4	0.1	33.3	0.0	33.2	1.0	168.8	55.3	112.6	35.5	NA	NA	168.8	55.3	NA

	16ATW-10-Spot 110	28	15272	2.6	21.8	3.1	0.2	8.7	0.0	8.1	0.9	166.6	13.4	155.4	12.6	NA	NA	166.6	13.4	NA
Stars Stars 3 <th< td=""><td>16ATW-10-Spot 108</td><td>13</td><td>8505</td><td>3.0</td><td>31.7</td><td>4.4</td><td>0.1</td><td>41.6</td><td>0.0</td><td>41.3</td><td>1.0</td><td>161.9</td><td>66.1</td><td>106.3</td><td>42.0</td><td>NA</td><td>NA</td><td>161.9</td><td>66.1</td><td>NA</td></th<>	16ATW-10-Spot 108	13	8505	3.0	31.7	4.4	0.1	41.6	0.0	41.3	1.0	161.9	66.1	106.3	42.0	NA	NA	161.9	66.1	NA
Image and by the state of	16ATW-10-Spot 137	36	22732	3.8	21.7	2.4	0.2	3.9	0.0	3.1	0.8	156.5	4.8	147.4	5.4	4.9	58.0	156.5	4.8	NA
Marke 1.5 (m) 1	16ATW-10-Spot 266	67	27001	3.4	21.3	1.7	0.2	3.0	0.0	2.5	0.8	151.9	3.8	145.5	4.1	44.4	41.3	151.9	3.8	NA
Norme-sequence 1	16ATW-10-Spot 20	96	333176	2.3	21.3	1.8	0.2	3.0	0.0	2.4	0.8	159.6	3.9	152.7	4.3	48.5	43.3	159.6	3.9	NA
Server bin 10 700 1.1 1.0 1.5 0.2 2.2 0.0 2.5 0.3 0.4 <th0.4< th=""> 0.4 <th0.4< th=""></th0.4<></th0.4<>	16ATW-10-Spot 210	76	19748	2.9	21.2	1.7	0.2	3.0	0.0	2.4	0.8	160.9	3.9	154.4	4.3	56.5	41.5	160.9	3.9	NA
Image with the strength of the strengh of the strength of the strength of the	16ATW-10-Spot 141	129	27689	1.8	21.0	1.5	0.2	2.8	0.0	2.4	0.9	168.0	4.0	162.0	4.2	74.9	34.7	168.0	4.0	NA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16ATW-10-Spot 87	85	30566	3.4	20.9	1.5	0.2	2.9	0.0	2.5	0.9	184.3	4.5	177.6	4.7	90.6	35.6	184.3	4.5	NA
Serve 10-0-0-0-13-0 200 7117 2.4 2.5 1 0.2 1 0.0 2.9 0.0 1.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.1 <td>16ATW-10-Spot 255</td> <td>295</td> <td>131136</td> <td>3.6</td> <td>20.7</td> <td>1.1</td> <td>0.2</td> <td>2.8</td> <td>0.0</td> <td>2.6</td> <td>0.9</td> <td>199.3</td> <td>5.1</td> <td>193.1</td> <td>5.0</td> <td>118.7</td> <td>26.1</td> <td>199.3</td> <td>5.1</td> <td>NA</td>	16ATW-10-Spot 255	295	131136	3.6	20.7	1.1	0.2	2.8	0.0	2.6	0.9	199.3	5.1	193.1	5.0	118.7	26.1	199.3	5.1	NA
161 256 25 25 15 0.1 4.0 0.0 2.1 0.5 152 12 130 NA NA 154. 130 140 0.0 2.1 0.5 152 12 130 NA NA 154. 130 140 100 120 120 130 140	16ATW-10-Spot 243	280	171177	2.4	20.5	1.1	0.2	3.1	0.0	2.9	0.9	214.9	6.1	208.9	5.8	142.1	25.4	214.9	6.1	NA
11 2466 34 22 37 0.1 45 0.0 26 0.5 10 16 18 N N 156 4.0 166	16ATW-10-Spot 30	16	25569	4.2	22.6	3.5	0.1	4.0	0.0	2.1	0.5	154.2	3.2	139.6	5.3	NA	NA	154.2	3.2	NA
13 668 32 2.7 3.7 0.1 4.7 0.0 2.5 0.6 15.3 4.4 10.2 6.2 NA NA 15.3 4.4 NA 164 TW-10 Sport 23 36 11804 3.4 2.0 2.7 0.2 3.8 0.0 2.7 0.7 15.3 4.2 145.5 5.2 NA NA 15.3 4.2 NA 16.3 16.4 16.4 16.2 16.4 16.3 16.4	16ATW-10-Spot 250	18	30466	3.4	23.2	3.7	0.1	4.5	0.0	2.6	0.6	154.6	4.0	136.6	5.8	NA	NA	154.6	4.0	NA
16ATW-10-Spect 213 36 11864 3.4 2.0 2.7 0.2 3.8 0.0 2.7 0.7 1553 4.2 1445 5.2 NA NA 1553 4.2 NA NA 1553 1.4 1645 S.2 NA NA 1553 1.4 1645 1.4	16ATW-10-Spot 153	19	6698	3.2	22.7	3.7	0.1	4.7	0.0	2.9	0.6	155.3	4.4	140.2	6.2	NA	NA	155.3	4.4	NA
161TW-10-Spot 2 23 218 36 221 32 0.2 39 0.0 2.2 0.6 155.7 3.4 143.8 5.2 NA NA 155.7 3.4 NA NA 155.7 3.4 143.8 5.2 NA NA 155.7 3.4 NA NA 155.7 3.4 143.8 5.2 NA NA 155.7 3.4 NA NA 155.7 3.4 NA NA 155.7 3.4 NA NA 155.7 3.4 NA NA 155.7 NA NA NA 155.7 NA NA NA 155.7 NA NA 155.7 NA NA 155.7 NA NA <t< td=""><td>16ATW-10-Spot 213</td><td>36</td><td>11804</td><td>3.4</td><td>22.0</td><td>2.7</td><td>0.2</td><td>3.8</td><td>0.0</td><td>2.7</td><td>0.7</td><td>155.3</td><td>4.2</td><td>144.5</td><td>5.2</td><td>NA</td><td>NA</td><td>155.3</td><td>4.2</td><td>NA</td></t<>	16ATW-10-Spot 213	36	11804	3.4	22.0	2.7	0.2	3.8	0.0	2.7	0.7	155.3	4.2	144.5	5.2	NA	NA	155.3	4.2	NA
16ATW-10-Spot 21 27 12193 33 220 27 0.2 43 0.0 33 0.8 156. 5.1 145.4 5.8 NA NA 156.5 5.1 NA 16ATW-10-Spot 248 24 4379 5.6 22.4 3.0 0.2 4.2 0.0 3.0 0.7 156.6 4.6 143.2 5.7 NA NA 156.6 4.6 NA 16ATW-10-Spot 248 23 8647 4.5 23.7 3.4 0.1 4.1 0.0 2.3 0.6 159.1 3.6 137.9 5.3 NA NA 159.1 3.6 NA 16ATW-10-Spot 123 18 7964 3.6 22.0 3.2 0.2 4.2 0.0 2.7 0.6 161.8 4.3 149.8 5.9 NA NA 159.1 3.6 NA 16ATW-10-Spot 123 18 796 3.6 2.8 0.1 4.1 0.0 3.0 0.7 159.2 4.6 133.8 5.1 NA NA 159.2 4.6	16ATW-10-Spot 2	23	21839	3.6	22.1	3.2	0.2	3.9	0.0	2.2	0.6	155.7	3.4	143.8	5.2	NA	NA	155.7	3.4	NA
164TW-10-Spot 248 24 4379 5.6 22.4 3.0 0.2 4.2 0.0 3.0 0.7 1566 4.6 143.2 5.7 NA NA 156.6 4.6 NA 164 TW-10-Spot 49 23 8647 4.5 23.7 3.4 0.1 4.1 0.0 2.3 0.6 159.1 3.6 137.9 5.3 NA NA 159.1 3.6 137.9 5.3 NA NA 159.1 3.6 NA NA 159.1 3.6 137.9 5.3 NA NA 159.1 3.6 NA NA 159.1 3.6 NA NA 159.1 3.6 137.9 5.3 NA NA 161.8 A3 169.8 5.9 NA NA 159.2 A6 133.8 5.1 NA NA 159.2 A6 133.8 5.1 NA NA	16ATW-10-Spot 21	27	12193	3.3	22.0	2.7	0.2	4.3	0.0	3.3	0.8	156.5	5.1	145.4	5.8	NA	NA	156.5	5.1	NA
16ATW-10-Spot 49 23 8647 4.5 23.7 3.4 0.1 4.1 0.0 2.3 0.6 159.1 3.6 137.9 5.3 NA NA 159.1 3.6 NA NA 159.1 3.6 137.9 5.3 NA NA 159.1 3.6 NA NA 159.1 3.6 137.9 5.3 NA NA 159.1 3.6 NA NA 159.1 3.6 157.9 5.3 NA NA 159.1 3.6 NA NA 159.1 3.6 159.1 3.6 157.9 5.3 NA NA 159.1 3.6 NA NA 159.1 3.6 NA NA 159.1 3.6 NA NA 159.1 3.6 NA NA 159.1 NA NA 159.1 3.6 NA NA 159.2 A.6 133.8 5.1 NA NA 159.2 A.6 133.8 5.1 NA NA 159.2 A.6 133.8 5.1 NA NA 159.2 A.6 133.6 133.6 1	16ATW-10-Spot 248	24	4379	5.6	22.4	3.0	0.2	4.2	0.0	3.0	0.7	156.6	4.6	143.2	5.7	NA	NA	156.6	4.6	NA
16ATW-10-Spot 123 18 7964 3.6 22.0 3.2 0.2 4.2 0.0 2.7 0.6 161.8 4.3 149.8 5.9 NA NA 161.8 4.3 NA 16ATW-10-Spot 264 21 11548 3.4 24.5 2.8 0.1 4.1 0.0 3.0 0.7 159.2 4.6 133.8 5.1 NA NA 159.2 4.6 NA Sample 16ATW44b ***********************************	16ATW-10-Spot 49	23	8647	4.5	23.7	3.4	0.1	4.1	0.0	2.3	0.6	159.1	3.6	137.9	5.3	NA	NA	159.1	3.6	NA
16ATW-10-Spot 264 21 11548 3.4 24.5 2.8 0.1 4.1 0.0 3.0 0.7 159.2 4.6 133.8 5.1 NA NA 159.2 4.6 NA Sample 16ATW44b Label{eq:starting} Sample 16ATW44b Label{eq:starting} Analysis U 206Pb U/Th ** ± *** ± 206Pb ± 07Pb ± 206Pb Best rando Concerned of the starting of the sta	16ATW-10-Spot 123	18	7964	3.6	22.0	3.2	0.2	4.2	0.0	2.7	0.6	161.8	4.3	149.8	5.9	NA	NA	161.8	4.3	NA
Sample 16ATW44b ± (1s 206Pb 207Pb 206Pb erro 206Pb 207Pb 206Pb Best rando Analysis U 206Pb U/Th * ± * ± * t * ± * ± * ± age m) Conc	16ATW-10-Spot 264	21	11548	3.4	24.5	2.8	0.1	4.1	0.0	3.0	0.7	159.2	4.6	133.8	5.1	NA	NA	159.2	4.6	NA
Sample IGATW44b ± (15 206Pb 207Pb 206Pb erro 206Pb 207Pb 206Pb Best rando Analysis U 206Pb U/Th * ± * ± * ± r * ± * ± * ± age m) Conc																				
	Sample 16ATW44b Analysis	U	206Pb	U/Th	206Pb *	±	207Pb *	±	206Pb *	±	erro r	206Pb *	±	207Pb *	±	206Pb *	±	Best age	± (1s rando m)	Conc

Analysis	U	206Pb	U/Th	206Pb *	±	207Pb *	±	206Pb *	±	erro r	206Pb *	±	207Pb *	±	206Pb *	±	Best age	rando m)	Conc
	(ppm)	204Pb		207Pb *	(%)	235U *	(%)	238U	(%)	corr	238U *	(Ma)	235U	(Ma)	207Pb *	(Ma)	(Ma)	(Ma)	(%)
16ATW-448-Spot 76	1979	355688	489.6	20.6	1.0	0.1	2.4	0.0	2.1	0.9	78.8	1.7	80.3	1.8	124.8	23.9	78.8	1.7	NA
16ATW-44B-Spot 27	2374	198295	1847. 1	19.9	0.8	0.1	2.6	0.0	2.4	1.0	99.6	2.4	104.0	2.5	207.5	18.0	99.6	2.4	NA

16ATW-44B-Spot 47	1269	395756	2684. 2	20.4	1.0	0.1	2.0	0.0	1.8	0.9	99.7	1.7	101.8	2.0	151.9	23.4	99.7	1.7	NA
16ATW-44B-Spot 56	1079	222279	1311. 1	19.3	3.7	0.1	7.7	0.0	6.8	0.9	100.4	6.7	108.0	7.9	280.0	83.8	100.4	6.7	NA
16ATW-44B-Spot 81	1326	94825	50.3	19.8	1.1	0.1	6.9	0.0	6.8	1.0	101.7	6.8	106.6	6.9	218.6	25.8	101.7	6.8	NA
16ATW-44B-Spot 70	3298	176604	88.0	19.5	1.1	0.1	1.9	0.0	1.6	0.8	103.4	1.6	109.9	2.0	255.4	25.9	103.4	1.6	NA
16ATW-44B-Spot 66	1693	222807	541.7	19.6	1.1	0.1	4.0	0.0	3.8	1.0	107.0	4.0	113.2	4.2	246.5	25.4	107.0	4.0	NA
16ATW-44B-Spot 4	888	400449	451.6	20.0	0.9	0.1	2.0	0.0	1.8	0.9	107.6	1.9	111.2	2.1	191.0	21.6	107.6	1.9	NA
16ATW-44B-Spot 67	488	57341	923.9	20.6	1.2	0.1	2.3	0.0	2.0	0.9	109.1	2.1	109.8	2.4	125.3	27.4	109.1	2.1	NA
16ATW-44B-Spot 41	547	163103	24.7	20.3	1.1	0.1	2.5	0.0	2.2	0.9	109.1	2.4	111.3	2.6	159.1	26.1	109.1	2.4	NA
16ATW-44B-Spot 78	658	97747	33.1	20.1	1.1	0.1	3.1	0.0	2.8	0.9	111.5	3.1	114.9	3.3	186.2	26.3	111.5	3.1	NA
16ATW-44B-Spot 28	182	76868	10.9	20.0	1.3	0.1	3.6	0.0	3.4	0.9	130.3	4.4	133.6	4.6	193.2	30.2	130.3	4.4	NA
16ATW-44B-Spot 3	719	1565031	7.9	20.2	0.9	0.1	2.1	0.0	1.9	0.9	131.3	2.5	133.1	2.6	166.8	21.4	131.3	2.5	NA
16ATW-44B-Spot 57	835	72086	12.7	18.2	1.2	0.2	3.8	0.0	3.6	1.0	142.2	5.1	158.2	5.6	406.6	26.3	142.2	5.1	NA
16ATW-44B-Spot 6	775	300560	3.5	20.2	0.9	0.2	2.5	0.0	2.3	0.9	152.2	3.5	153.5	3.5	173.9	19.9	152.2	3.5	NA
16ATW-44B-Spot 58	81	208321	6.8	20.1	1.6	0.2	3.3	0.0	2.8	0.9	152.6	4.3	154.3	4.7	181.7	37.6	152.6	4.3	NA
16ATW-44B-Spot 1	183	62000	4.7	19.7	1.4	0.2	2.5	0.0	2.1	0.8	153.4	3.2	158.0	3.7	227.2	32.1	153.4	3.2	NA
16ATW-44B-Spot 11	514	44215	1.3	20.3	1.1	0.2	2.0	0.0	1.6	0.8	157.1	2.5	157.1	2.8	158.4	24.8	157.1	2.5	NA
16ATW-44B-Spot 9	67	35770	3.9	20.3	2.5	0.2	3.9	0.0	2.9	0.8	158.3	4.6	158.2	5.7	158.4	59.5	158.3	4.6	NA
16ATW-44B-Spot 29	98	45094	3.5	20.0	1.4	0.2	2.5	0.0	2.1	0.8	159.8	3.3	161.8	3.8	192.8	32.9	159.8	3.3	NA
16ATW-44B-Spot 68	94	20694	2.6	20.7	1.7	0.2	2.7	0.0	2.0	0.8	160.5	3.2	157.2	3.9	109.5	41.0	160.5	3.2	NA
16ATW-44B-Spot 19	90	25637	2.4	19.0	1.9	0.2	3.1	0.0	2.5	0.8	165.0	4.1	174.6	5.0	307.2	42.5	165.0	4.1	NA
16ATW-44B-Spot 21	270	65696	15.2	20.8	1.6	0.2	3.2	0.0	2.8	0.9	172.5	4.8	167.8	5.0	103.8	37.0	172.5	4.8	NA
16ATW-44B-Spot 65	201	468910	1.7	19.0	2.5	0.2	3.7	0.0	2.7	0.7	172.5	4.6	182.6	6.2	315.3	57.5	172.5	4.6	NA
16ATW-44B-Spot 40	283	112714	3.7	18.8	1.3	0.2	2.2	0.0	1.8	0.8	180.9	3.2	192.6	3.9	339.9	30.4	180.9	3.2	NA

16ATW-44B-Spot 53	8	0 241824	1.8	19.5	1.8	0.2	3.0	0.0	2.4	0.8	182.9	4.3	188.2	5.2	256.0	41.3	182.9	4.3	NA
16ATW-44B-Spot 59	61	4 116748	3.3	20.6	1.3	0.2	2.6	0.0	2.2	0.9	183.3	4.1	179.2	4.3	126.5	31.0	183.3	4.1	NA
16ATW-448-Spot 79	57	8 385509	1.4	20.0	0.9	0.2	2.1	0.0	2.0	0.9	183.8	3.5	184.4	3.6	193.7	20.7	183.8	3.5	NA
16ATW-44B-Spot 31	137	4 265024	1.2	20.3	1.0	0.2	2.3	0.0	2.1	0.9	185.5	3.9	183.3	3.9	156.7	22.2	185.5	3.9	NA
16ATW-44B-Spot 62	9	0 31130	2.0	20.6	1.9	0.2	3.3	0.0	2.6	0.8	186.4	4.8	182.0	5.4	125.9	45.4	186.4	4.8	NA
16ATW-448-Spot 39	21	1 65133	1.2	20.0	1.5	0.2	2.5	0.0	2.0	0.8	188.0	3.7	188.5	4.3	197.0	35.5	188.0	3.7	NA
16ATW-44B-Spot 16	32	8 324792	3.2	19.6	1.0	0.2	3.9	0.0	3.8	1.0	188.1	7.0	191.9	6.8	240.7	22.8	188.1	7.0	NA
16ATW-448-Spot 75	91	6 1301966	0.9	20.1	0.8	0.2	2.2	0.0	2.0	0.9	188.4	3.8	187.7	3.7	180.6	18.9	188.4	3.8	NA
16ATW-448-Spot 50	3	9 9542	2.5	20.5	2.1	0.2	3.2	0.0	2.5	0.8	191.3	4.7	186.9	5.5	131.7	48.9	191.3	4.7	NA
16ATW-44B-Spot 71	37	3 263567	1.3	20.2	0.8	0.2	2.4	0.0	2.3	0.9	191.4	4.3	190.1	4.2	176.0	18.8	191.4	4.3	NA
16ATW-44B-Spot 72	24	2 70683	0.8	19.3	1.9	0.2	3.3	0.0	2.6	0.8	193.6	5.0	199.8	5.9	275.0	43.9	193.6	5.0	NA
16ATW-448-Spot 61	17	7 144410	1.6	20.4	1.2	0.2	2.3	0.0	1.9	0.8	193.8	3.6	190.3	3.9	148.1	29.2	193.8	3.6	NA
16ATW-44B-Spot 36	11	7 28109	2.0	20.6	1.7	0.2	3.6	0.0	3.2	0.9	195.0	6.1	189.8	6.2	127.1	40.1	195.0	6.1	NA
16ATW-44B-Spot 15	65	2 248100	2.8	20.1	1.1	0.2	2.4	0.0	2.1	0.9	197.9	4.1	196.5	4.2	180.1	26.1	197.9	4.1	NA
16ATW-448-Spot 63	31	6 291330	3.2	19.9	1.0	0.2	3.0	0.0	2.8	0.9	198.9	5.5	199.4	5.5	205.9	23.9	198.9	5.5	NA
16ATW-448-Spot 17	10	9 43100	3.0	20.5	1.5	0.2	2.8	0.0	2.4	0.8	199.6	4.7	194.4	5.0	132.2	35.1	199.6	4.7	NA
16ATW-448-Spot 60	24	6 65752	3.3	20.0	1.6	0.2	3.2	0.0	2.8	0.9	200.7	5.5	199.9	5.8	191.4	36.2	200.7	5.5	NA
16ATW-448-Spot 7	10	3 386477	4.7	20.1	1.7	0.2	2.8	0.0	2.2	0.8	202.9	4.5	201.6	5.1	187.7	38.8	202.9	4.5	NA
16ATW-44B-Spot 64	21	6 43834	2.1	20.0	1.4	0.2	2.8	0.0	2.5	0.9	203.2	5.0	202.2	5.2	191.2	32.3	203.2	5.0	NA
16ATW-44B-Spot 54	9	7 499610	3.6	19.7	1.7	0.2	3.2	0.0	2.7	0.9	204.8	5.5	206.9	6.0	232.7	38.2	204.8	5.5	NA
16ATW-44B-Spot 13	17	6 160901	2.8	19.8	1.2	0.2	2.3	0.0	2.0	0.9	204.8	3.9	206.2	4.3	222.7	27.5	204.8	3.9	NA
16ATW-44B-Spot 26	25	3 270570	3.2	19.9	1.3	0.2	2.7	0.0	2.4	0.9	205.1	4.8	205.6	5.0	211.8	29.3	205.1	4.8	NA
16ATW-44B-Spot 42	82	6 960517	2.4	20.0	0.9	0.2	2.3	0.0	2.1	0.9	205.4	4.2	204.4	4.2	193.6	21.7	205.4	4.2	NA
16ATW-44B-Spot 12	288	104110	2.1	19.9	1.4	0.2	2.8	0.0	2.4	0.9	207.0	4.9	206.8	5.2	205.6	32.0	207.0	4.9	NA
-------------------	------	--------	------------	------	----------	-----	------	-----	------	-----	-------	-----------	------------	-----------	------------	-------	------------	-------	----
16ATW-44B-Spot 73	104	65750	2.8	19.8	1.4	0.2	2.9	0.0	2.5	0.9	207.3	5.1	208.1	5.4	217.7	33.2	207.3	5.1	NA
16ATW-44B-Spot 38	532	115663	2.2	20.2	1.1	0.2	2.2	0.0	1.9	0.9	208.9	3.9	206.3	4.1	176.9	25.3	208.9	3.9	NA
16ATW-44B-Spot 37	700	177711	1.3	19.9	1.0	0.2	2.5	0.0	2.3	0.9	209.7	4.7	209.2	4.7	204.7	23.5	209.7	4.7	NA
16ATW-44B-Spot 45	4515	107856	1688. 9	18.9	2.3	0.1	3.0	0.0	2.0	0.7	101.4	2.0	110.9	3.2	322.2	51.8	101.4	2.0	NA
16ATW-44B-Spot 25	843	86904	9.8	18.0	1.2	0.2	2.8	0.0	2.5	0.9	127.6	3.2	145.0	3.8	440.5	27.5	127.6	3.2	NA
16ATW-44B-Spot 43	465	125510	1354. 3	18.5	3.9	0.1	7.6	0.0	6.5	0.9	92.1	5.9	103.3	7.4	372.5	88.1	92.1	5.9	NA
16ATW-44B-Spot 18	185	62212	9.4	17.6	1.7	0.1	3.3	0.0	2.8	0.8	120.2	3.3	139.7	4.3	487.0	38.5	120.2	3.3	NA
16ATW-44B-Spot 32	187	552530	131.9	18.5	1.9	0.1	3.3	0.0	2.7	0.8	80.7	2.2	91.2	2.9	374.6	42.5	80.7	2.2	NA
16ATW-44B-Spot 34	784	117602	1451. 1	17.4	1.7	0.1	2.7	0.0	2.0	0.8	101.2	2.0	120.0	3.0	511.1	37.3	101.2	2.0	NA
16ATW-44B-Spot 55	272	16176	4.7	9.9	10. 7	0.7	11.1	0.1	2.8	0.2	316.7	8.5	540.0	46.5	1645. 7	199.7	316.7	8.5	NA
16ATW-44B-Spot 14	3462	91491	170.5	17.2	1.9	0.1	3.4	0.0	2.9	0.8	102.3	2.9	122.6	4.0	537.2	41.7	102.3	2.9	NA
16ATW-44B-Spot 52	2662	60335	23.8	16.8	1.4	0.1	2.9	0.0	2.5	0.9	108.8	2.7	132.5	3.6	581.1	30.8	108.8	2.7	NA
16ATW-44B-Spot 48	394	254386	11.9	14.5	3.8	0.2	7.9	0.0	6.9	0.9	144.8	9.9	197.9	14.2	890.6	79.1	144.8	9.9	NA
16ATW-44B-Spot 5	580	18001	18.9	13.0	3.5	0.2	6.4	0.0	5.4	0.8	141.2	7.6	213.7	12.4	1114. 6	69.3	141.2	7.6	NA
16ATW-44B-Spot 23	552	47494	311.5	14.5	4.5	0.1	5.7	0.0	3.5	0.6	95.5	3.3	134.5	7.2	894.2	93.0	95.5	3.3	NA
16ATW-44B-Spot 69	78	6894	199.9	12.2	5.7	0.2	9.1	0.0	7.1	0.8	116.0	8.1	190.0	15.7	1250. 1	110.8	116.0	8.1	NA
16ATW-44B-Spot 33	1174	24457	246.3	13.1	6.6	0.2	6.8	0.0	1.6	0.2	95.5	1.5	147.6	9.3	1096. 8	131.7	95.5	1.5	NA
16ATW-44B-Spot 8	1026	11345	8.2	10.3	3.4	0.3	6.3	0.0	5.3	0.8	123.8	6.5	234.6	13.1	1571. 6	62.8	123.8	6.5	NA
16ATW-44B-Spot 49	242	8216	9.0	7.5	16. 4	0.5	17.8	0.0	7.0	0.4	163.3	11.3	392.7	58.0	2144. 9	287.9	163.3	11.3	NA
16ATW-44B-Spot 22	338	7762	24.5	8.2	5.0	0.3	6.3	0.0	3.8	0.6	118.2	4.5	274.1	15.2	1979. 2	89.8	118.2	4.5	NA
16ATW-44B-Spot 44	87	1229	2.5	2.0	6.8	8.0	22.9	0.1	21.9	1.0	719.8	149. 0	2230. 8	209. 7	NA	NA	5000. 0	100.3	NA

Sample 16ATW77																			
Analysis	U	206Pb	U/Th	206Pb *	±	207Pb *	±	206Pb *	±	erro r	206Pb *	±	207Pb *	±	206Pb *	±	Best age	±	Conc
	(ppm)	204Pb		207Pb *	(%)	235U *	(%)	238U	(%)	corr	238U *	(Ma)	235U	(Ma)	207Pb *	(Ma)	(Ma)	(Ma)	(%)
16ATW-77 -Spot 224	722	20818	3.5	20.4	1.4	0.1	3.1	0.0	2.8	0.9	51.8	1.4	53.7	1.6	143.6	32.6	51.8	1.4	NA
16ATW-77 -Spot 228	262	13479	3.4	20.0	2.7	0.1	3.6	0.0	2.4	0.7	51.8	1.2	54.8	1.9	189.4	62.3	51.8	1.2	NA
16ATW-77 -Spot 276	3275	141031	1.3	21.0	1.0	0.1	2.3	0.0	2.1	0.9	53.3	1.1	53.8	1.2	80.0	23.2	53.3	1.1	NA
16ATW-77 -Spot 124	3448	65273	3.9	20.6	1.1	0.1	2.2	0.0	1.9	0.9	53.4	1.0	55.0	1.2	123.6	24.9	53.4	1.0	NA
16ATW-77 -Spot 234	658	30387	2.8	20.6	1.6	0.1	3.1	0.0	2.6	0.9	54.2	1.4	55.6	1.7	120.3	37.4	54.2	1.4	NA
16ATW-77 -Spot 29	2292	3897990	4.3	20.5	1.1	0.1	2.7	0.0	2.4	0.9	54.5	1.3	56.3	1.5	136.1	25.9	54.5	1.3	NA
16ATW-77 -Spot 180	841	125898	2.6	20.3	1.3	0.1	2.8	0.0	2.4	0.9	54.6	1.3	57.1	1.5	163.5	31.1	54.6	1.3	NA
16ATW-77 -Spot 218	1687	176778	1.7	20.9	0.9	0.1	2.5	0.0	2.3	0.9	54.9	1.3	55.7	1.4	92.7	22.5	54.9	1.3	NA
16ATW-77 -Spot 216	452	21293	5.8	20.6	2.0	0.1	3.6	0.0	3.0	0.8	55.2	1.7	56.9	2.0	128.8	46.0	55.2	1.7	NA
16ATW-77 -Spot 175	845	61184	2.3	20.7	1.8	0.1	2.9	0.0	2.3	0.8	55.4	1.3	56.8	1.6	117.8	41.6	55.4	1.3	NA
16ATW-77 -Spot 203	2751	811057	1.6	20.7	0.7	0.1	2.0	0.0	1.9	0.9	55.8	1.0	57.0	1.1	111.1	16.5	55.8	1.0	NA
16ATW-77 -Spot 38	1792	75150	5.6	20.7	0.9	0.1	2.0	0.0	1.8	0.9	55.9	1.0	57.2	1.1	111.8	22.1	55.9	1.0	NA
16ATW-77 -Spot 282	2292	27925	3.7	21.1	1.2	0.1	2.4	0.0	2.1	0.9	56.0	1.1	56.4	1.3	74.0	28.0	56.0	1.1	NA
16ATW-77 -Spot 110	1190	19843	4.2	20.4	1.3	0.1	3.0	0.0	2.7	0.9	56.0	1.5	58.1	1.7	145.8	31.4	56.0	1.5	NA
16ATW-77 -Spot 68	1348	59667	2.9	20.4	1.3	0.1	2.7	0.0	2.4	0.9	56.1	1.3	58.4	1.5	153.6	31.2	56.1	1.3	NA
16ATW-77 -Spot 259	2980	58303	20.2	20.8	1.0	0.1	2.2	0.0	2.0	0.9	56.2	1.1	57.2	1.2	101.6	22.6	56.2	1.1	NA
16ATW-77 -Spot 313	1655	82158	2.5	21.3	1.0	0.1	2.3	0.0	2.1	0.9	56.3	1.2	56.1	1.3	47.5	24.7	56.3	1.2	NA
16ATW-77 -Spot 12	794	23354	1.8	21.0	1.8	0.1	3.1	0.0	2.5	0.8	56.3	1.4	56.9	1.7	83.9	42.5	56.3	1.4	NA
16ATW-77 -Spot 127	188	23741	4.3	20.8	2.8	0.1	3.4	0.0	1.9	0.6	56.3	1.1	57.4	1.9	105.8	65.9	56.3	1.1	NA
16ATW-77 -Spot 265	514	10508	3.7	20.6	1.5	0.1	2.6	0.0	2.1	0.8	56.3	1.2	58.0	1.5	129.5	36.4	56.3	1.2	NA
16ATW-77 -Spot 19	2032	170206	4.7	20.7	1.2	0.1	2.7	0.0	2.4	0.9	56.4	1.3	57.9	1.5	118.5	28.8	56.4	1.3	NA

16ATW-77 -Spot 246	1457	181861	2.4	20.4	1.0	0.1	2.6	0.0	2.3	0.9	56.4	1.3	58.5	1.5	146.0	24.5	56.4	1.3	NA
16ATW-77 -Spot 63	426	75611	2.7	20.2	2.0	0.1	2.8	0.0	2.0	0.7	56.4	1.1	59.2	1.6	175.9	45.8	56.4	1.1	NA
16ATW-77 -Spot 152	1740	76816	3.9	20.9	1.1	0.1	2.0	0.0	1.7	0.8	56.5	0.9	57.2	1.1	88.7	27.0	56.5	0.9	NA
16ATW-77 -Spot 93	2171	39641	2.5	20.8	0.9	0.1	2.2	0.0	2.0	0.9	56.5	1.1	57.5	1.2	101.4	20.5	56.5	1.1	NA
16ATW-77 -Spot 247	856	19415	4.1	20.9	2.3	0.1	3.9	0.0	3.1	0.8	56.6	1.7	57.4	2.2	90.8	55.3	56.6	1.7	NA
16ATW-77 -Spot 54	732	41984	2.7	20.6	1.6	0.1	2.7	0.0	2.2	0.8	56.6	1.3	58.3	1.5	128.9	36.7	56.6	1.3	NA
16ATW-77 -Spot 283	705	122093	3.0	20.4	1.7	0.1	2.5	0.0	1.9	0.8	56.6	1.1	58.8	1.4	153.9	39.5	56.6	1.1	NA
16ATW-77 -Spot 183	2727	85466	1.9	20.9	1.1	0.1	2.4	0.0	2.1	0.9	56.8	1.2	57.5	1.3	86.2	25.2	56.8	1.2	NA
16ATW-77 -Spot 184	1949	89623	4.6	20.8	1.1	0.1	2.2	0.0	2.0	0.9	56.8	1.1	57.7	1.3	99.3	25.4	56.8	1.1	NA
16ATW-77 -Spot 192	57	2212	6.5	21.9	8.1	0.1	8.6	0.0	2.9	0.3	56.8	1.6	55.0	4.6	NA	NA	56.8	1.6	##### #
16ATW-77 -Spot 115	364	7029	6.4	20.9	1.9	0.1	3.1	0.0	2.4	0.8	56.9	1.4	57.7	1.7	89.2	44.3	56.9	1.4	NA
16ATW-77 -Spot 202	1084	30418	7.2	20.7	1.1	0.1	2.4	0.0	2.2	0.9	56.9	1.2	58.1	1.4	112.6	26.3	56.9	1.2	NA
16ATW-77 -Spot 89	522	18082	5.5	20.3	2.0	0.1	3.8	0.0	3.2	0.8	56.9	1.8	59.2	2.2	154.9	47.9	56.9	1.8	NA
16ATW-77 -Spot 268	2234	763762	2.2	21.0	1.2	0.1	3.0	0.0	2.7	0.9	57.0	1.5	57.6	1.7	81.9	28.7	57.0	1.5	NA
16ATW-77 -Spot 50	1015	77302	4.1	20.5	1.3	0.1	2.9	0.0	2.6	0.9	57.0	1.5	58.8	1.6	134.5	30.8	57.0	1.5	NA
16ATW-77 -Spot 284	727	24907	3.1	20.5	1.3	0.1	2.8	0.0	2.5	0.9	57.0	1.4	58.8	1.6	135.0	31.3	57.0	1.4	NA
16ATW-77 -Spot 219	253	6841	4.0	20.9	2.7	0.1	3.5	0.0	2.3	0.6	57.1	1.3	57.9	2.0	90.4	64.4	57.1	1.3	NA
16ATW-77 -Spot 81	321	11266	4.2	20.9	2.2	0.1	2.9	0.0	1.9	0.7	57.1	1.1	57.9	1.6	92.5	51.7	57.1	1.1	NA
16ATW-77 -Spot 306	455	73057	4.3	21.0	1.8	0.1	2.9	0.0	2.2	0.8	57.2	1.2	57.8	1.6	82.9	43.7	57.2	1.2	NA
16ATW-77 -Spot 3	1129	62098	26.0	20.5	1.3	0.1	2.3	0.0	1.9	0.8	57.2	1.1	59.1	1.3	134.9	29.6	57.2	1.1	NA
16ATW-77 -Spot 103	495	9934	3.6	20.9	1.6	0.1	2.9	0.0	2.5	0.8	57.3	1.4	58.2	1.7	94.7	38.1	57.3	1.4	NA
16ATW-77 -Spot 262	641	59022	3.0	20.5	1.5	0.1	2.6	0.0	2.1	0.8	57.3	1.2	59.1	1.5	135.0	35.0	57.3	1.2	NA
16ATW-77 -Spot 189	586	45119	3.2	20.6	1.7	0.1	3.1	0.0	2.6	0.8	57.4	1.5	59.1	1.8	130.2	39.9	57.4	1.5	NA

16ATW-77 -Spot 85	757	47439	3.5	20.4	1.6	0.1	2.4	0.0	1.9	0.8	57.4	1.1	59.5	1.4	148.0	37.2	57.4	1.1	NA
16ATW-77 -Spot 28	1349	63047	2.8	20.7	1.1	0.1	2.3	0.0	2.1	0.9	57.6	1.2	59.0	1.3	118.7	25.7	57.6	1.2	NA
16ATW-77 -Spot 158	348	8891	3.6	20.5	1.8	0.1	3.1	0.0	2.5	0.8	57.6	1.4	59.4	1.8	134.0	42.8	57.6	1.4	NA
16ATW-77 -Spot 104	1825	110049	5.7	20.2	0.9	0.1	2.1	0.0	1.9	0.9	57.6	1.1	60.3	1.2	168.4	21.9	57.6	1.1	NA
16ATW-77 -Spot 87	341	23967	4.3	20.0	2.2	0.1	3.4	0.0	2.5	0.8	57.6	1.4	60.9	2.0	195.6	52.0	57.6	1.4	NA
16ATW-77 -Spot 162	425	18609	1.3	20.9	1.7	0.1	3.0	0.0	2.5	0.8	57.7	1.4	58.6	1.7	96.8	39.7	57.7	1.4	NA
16ATW-77 -Spot 240	273	6110	4.2	20.6	2.2	0.1	3.4	0.0	2.6	0.8	57.7	1.5	59.4	2.0	130.5	51.2	57.7	1.5	NA
16ATW-77 -Spot 301	560	20756	2.5	20.5	1.6	0.1	2.6	0.0	2.0	0.8	57.7	1.1	59.6	1.5	136.6	38.6	57.7	1.1	NA
16ATW-77 -Spot 274	636	104799	4.4	20.2	1.5	0.1	2.7	0.0	2.3	0.8	57.7	1.3	60.3	1.6	167.3	36.0	57.7	1.3	NA
16ATW-77 -Spot 174	468	28874	3.2	21.1	1.7	0.1	3.3	0.0	2.9	0.9	57.9	1.6	58.2	1.9	71.4	39.9	57.9	1.6	NA
16ATW-77 -Spot 307	706	28945	5.8	21.0	2.0	0.1	3.2	0.0	2.6	0.8	57.9	1.5	58.6	1.8	85.5	47.3	57.9	1.5	NA
16ATW-77 -Spot 60	1850	74299	9.5	20.3	0.9	0.1	2.6	0.0	2.5	1.0	57.9	1.4	60.3	1.5	156.8	19.9	57.9	1.4	NA
16ATW-77 -Spot 182	354	11077	3.7	21.2	1.9	0.1	3.3	0.0	2.7	0.8	58.0	1.5	58.1	1.9	61.2	45.5	58.0	1.5	NA
16ATW-77 -Spot 263	705	37377	2.3	21.3	1.5	0.1	2.3	0.0	1.8	0.8	58.1	1.0	57.7	1.3	45.5	35.8	58.1	1.0	NA
16ATW-77 -Spot 123	558	15096	6.6	21.1	2.4	0.1	3.7	0.0	2.9	0.8	58.1	1.6	58.3	2.1	66.5	57.9	58.1	1.6	NA
16ATW-77 -Spot 164	695	24959	3.4	21.2	1.6	0.1	2.8	0.0	2.3	0.8	58.2	1.3	58.3	1.6	62.7	37.3	58.2	1.3	NA
16ATW-77 -Spot 27	471	16310	3.1	20.3	1.7	0.1	3.0	0.0	2.4	0.8	58.3	1.4	60.7	1.8	155.4	40.3	58.3	1.4	NA
16ATW-77 -Spot 112	221	13241	5.9	21.0	2.5	0.1	4.1	0.0	3.3	0.8	58.4	1.9	58.8	2.4	76.8	59.8	58.4	1.9	NA
16ATW-77 -Spot 198	184	14349	4.5	19.6	3.1	0.1	3.8	0.0	2.1	0.6	58.4	1.2	62.9	2.3	236.7	72.4	58.4	1.2	NA
16ATW-77 -Spot 226	274	8083	3.0	21.0	2.1	0.1	3.3	0.0	2.5	0.8	58.5	1.5	58.8	1.9	76.0	50.6	58.5	1.5	NA
16ATW-77 -Spot 237	349	5851	4.4	21.5	2.0	0.1	3.0	0.0	2.3	0.8	58.8	1.4	58.1	1.7	29.0	47.7	58.8	1.4	NA
16ATW-77 -Spot 285	445	15130	4.1	20.8	1.7	0.1	2.7	0.0	2.1	0.8	58.8	1.2	59.7	1.6	97.6	40.9	58.8	1.2	NA
16ATW-77 -Spot 35	393	8123	3.0	20.9	2.6	0.1	3.5	0.0	2.3	0.7	58.9	1.4	59.7	2.0	91.1	61.1	58.9	1.4	NA

16ATW-77 -Spot 148	538	19184	2.4	20.4	2.1	0.1	3.0	0.0	2.2	0.7	58.9	1.3	61.1	1.8	150.8	48.5	58.9	1.3	NA
16ATW-77 -Spot 304	262	6951	3.1	21.6	2.8	0.1	3.8	0.0	2.5	0.7	59.0	1.5	57.8	2.1	10.0	67.1	59.0	1.5	NA
16ATW-77 -Spot 275	521	32335	1.9	21.3	1.8	0.1	3.1	0.0	2.6	0.8	59.0	1.5	58.6	1.8	41.7	42.5	59.0	1.5	NA
16ATW-77 -Spot 135	394	14361	2.7	20.2	1.8	0.1	3.2	0.0	2.6	0.8	59.0	1.5	61.7	1.9	167.9	42.4	59.0	1.5	NA
16ATW-77 -Spot 310	258	5462	4.2	22.5	2.4	0.1	3.2	0.0	2.1	0.7	59.1	1.3	55.8	1.7	NA	NA	59.1	1.3	##### #
16ATW-77 -Spot 51	960	203611	4.0	20.3	1.4	0.1	2.9	0.0	2.6	0.9	59.2	1.5	61.6	1.8	154.6	32.1	59.2	1.5	NA
16ATW-77 -Spot 293	142	10126	7.7	20.0	3.1	0.1	4.1	0.0	2.7	0.7	59.2	1.6	62.7	2.5	197.3	72.1	59.2	1.6	NA
16ATW-77 -Spot 195	327	7475	4.1	21.6	2.3	0.1	3.4	0.0	2.5	0.7	59.3	1.5	58.1	1.9	9.5	56.1	59.3	1.5	NA
16ATW-77 -Spot 260	227	14229	3.5	21.0	2.0	0.1	3.2	0.0	2.5	0.8	59.3	1.4	59.8	1.9	79.0	48.7	59.3	1.4	NA
16ATW-77 -Spot 305	481	17440	2.7	20.5	2.0	0.1	3.3	0.0	2.6	0.8	59.3	1.5	61.2	1.9	136.1	47.4	59.3	1.5	NA
16ATW-77 -Spot 238	265	72492	8.2	20.7	2.5	0.1	3.7	0.0	2.7	0.7	59.4	1.6	60.9	2.2	119.8	60.0	59.4	1.6	NA
16ATW-77 -Spot 156	516	30765	3.2	20.3	1.4	0.1	2.3	0.0	1.9	0.8	59.4	1.1	61.8	1.4	156.2	33.3	59.4	1.1	NA
16ATW-77 -Spot 140	557	23350	2.5	20.0	2.1	0.1	2.7	0.0	1.7	0.6	59.4	1.0	62.8	1.7	192.7	50.0	59.4	1.0	NA
16ATW-77 -Spot 25	263	5969	5.0	21.4	2.1	0.1	3.7	0.0	3.0	0.8	59.5	1.8	58.9	2.1	36.7	51.3	59.5	1.8	NA
16ATW-77 -Spot 215	500	7175	3.8	20.7	1.5	0.1	2.5	0.0	2.1	0.8	59.5	1.2	60.7	1.5	109.0	35.1	59.5	1.2	NA
16ATW-77 -Spot 157	499	37619	3.3	20.7	1.8	0.1	3.0	0.0	2.4	0.8	59.5	1.4	60.8	1.8	111.8	42.8	59.5	1.4	NA
16ATW-77 -Spot 105	1015	83037	20.7	20.6	1.4	0.1	2.4	0.0	2.0	0.8	59.5	1.2	61.1	1.4	124.1	32.7	59.5	1.2	NA
16ATW-77 -Spot 186	217	5840	4.4	22.0	2.4	0.1	3.2	0.0	2.1	0.7	59.5	1.3	57.2	1.8	NA	NA	59.5	1.3	##### #
16ATW-77 -Spot 299	655	108365	6.4	20.7	1.5	0.1	2.7	0.0	2.2	0.8	59.6	1.3	61.0	1.6	114.0	35.0	59.6	1.3	NA
16ATW-77 -Spot 77	326	22704	5.0	20.5	2.1	0.1	3.1	0.0	2.3	0.7	59.6	1.4	61.6	1.9	137.5	49.1	59.6	1.4	NA
16ATW-77 -Spot 10	466	18067	4.0	20.5	2.0	0.1	3.6	0.0	3.0	0.8	59.6	1.8	61.6	2.2	141.4	45.9	59.6	1.8	NA
16ATW-77 -Spot 272	760	51076	5.3	20.1	1.5	0.1	2.6	0.0	2.1	0.8	59.6	1.3	62.7	1.6	181.5	33.8	59.6	1.3	NA
16ATW-77 -Spot 309	1566	32444	3.6	21.1	1.1	0.1	2.7	0.0	2.5	0.9	59.7	1.5	60.0	1.6	72.4	26.0	59.7	1.5	NA

16ATW-77 -Spot 179	227	7597	4.4	20.9	1.9	0.1	3.0	0.0	2.3	0.8	59.8	1.3	60.6	1.8	94.0	45.8	59.8	1.3	NA
16ATW-77 -Spot 144	324	60242	3.4	20.7	1.8	0.1	3.0	0.0	2.4	0.8	59.9	1.4	61.2	1.8	114.0	42.0	59.9	1.4	NA
16ATW-77 -Spot 78	882	31641	2.4	20.2	1.3	0.1	2.3	0.0	1.9	0.8	59.9	1.1	62.7	1.4	172.5	29.7	59.9	1.1	NA
16ATW-77 -Spot 17	883	17322	4.0	21.1	1.5	0.1	2.9	0.0	2.4	0.9	60.0	1.5	60.1	1.7	66.0	36.5	60.0	1.5	NA
16ATW-77 -Spot 59	244	24285	4.3	20.2	2.5	0.1	3.5	0.0	2.4	0.7	60.0	1.4	62.7	2.1	168.3	58.6	60.0	1.4	NA
16ATW-77 -Spot 6	160	3356	7.5	22.5	3.8	0.1	5.0	0.0	3.4	0.7	60.0	2.0	56.5	2.8	NA	NA	60.0	2.0	##### #
16ATW-77 -Spot 138	319	7368	4.3	21.1	2.2	0.1	2.8	0.0	1.8	0.6	60.1	1.1	60.2	1.7	65.0	52.5	60.1	1.1	NA
16ATW-77 -Spot 133	142	4068	5.6	21.1	3.2	0.1	3.8	0.0	2.0	0.5	60.2	1.2	60.3	2.2	64.2	77.3	60.2	1.2	NA
16ATW-77 -Spot 209	2085	73530	17.2	20.7	1.1	0.1	2.2	0.0	1.9	0.9	60.2	1.1	61.4	1.3	111.8	25.1	60.2	1.1	NA
16ATW-77 -Spot 239	356	24156	3.4	20.2	2.0	0.1	3.2	0.0	2.4	0.8	60.2	1.4	62.9	1.9	166.3	47.7	60.2	1.4	NA
16ATW-77 -Spot 102	309	301670	6.8	19.7	2.9	0.1	4.0	0.0	2.8	0.7	60.2	1.7	64.5	2.5	228.4	67.7	60.2	1.7	NA
16ATW-77 -Spot 255	241	8540	4.4	20.6	2.8	0.1	3.3	0.0	1.7	0.5	60.5	1.0	62.2	2.0	127.2	66.6	60.5	1.0	NA
16ATW-77 -Spot 200	912	119421	38.3	20.2	1.2	0.1	2.7	0.0	2.4	0.9	60.5	1.4	63.2	1.6	167.8	27.7	60.5	1.4	NA
16ATW-77 -Spot 193	306	41709	2.8	20.2	2.0	0.1	2.9	0.0	2.1	0.7	60.5	1.3	63.4	1.8	173.8	47.2	60.5	1.3	NA
16ATW-77 -Spot 292	191	7048	4.4	21.2	2.2	0.1	3.5	0.0	2.8	0.8	60.6	1.7	60.4	2.1	55.4	52.1	60.6	1.7	NA
16ATW-77 -Spot 16	401	56168	8.0	20.6	2.1	0.1	3.8	0.0	3.2	0.8	60.6	1.9	62.3	2.3	128.5	48.9	60.6	1.9	NA
16ATW-77 -Spot 163	303	16863	4.0	20.5	2.0	0.1	3.2	0.0	2.5	0.8	60.6	1.5	62.4	1.9	133.7	47.6	60.6	1.5	NA
16ATW-77 -Spot 142	382	12876	2.9	20.9	2.2	0.1	3.4	0.0	2.6	0.8	60.7	1.6	61.5	2.0	95.3	51.3	60.7	1.6	NA
16ATW-77 -Spot 108	229	8910	3.7	20.7	2.0	0.1	2.9	0.0	2.1	0.7	60.7	1.3	62.0	1.7	116.4	47.4	60.7	1.3	NA
16ATW-77 -Spot 161	431	10532	6.8	20.7	1.5	0.1	2.3	0.0	1.7	0.8	60.7	1.0	62.1	1.4	116.5	35.7	60.7	1.0	NA
16ATW-77 -Spot 221	222	10609	3.6	21.4	2.4	0.1	3.3	0.0	2.3	0.7	60.9	1.4	60.2	1.9	33.5	57.5	60.9	1.4	NA
16ATW-77 -Spot 213	1254	41384	3.5	20.4	1.4	0.1	2.9	0.0	2.5	0.9	60.9	1.5	63.1	1.8	149.2	33.0	60.9	1.5	NA
16ATW-77 -Spot 8	155	8068	5.1	20.7	3.1	0.1	4.1	0.0	2.6	0.6	61.1	1.6	62.4	2.5	112.9	73.8	61.1	1.6	NA

16ATW-77 -Spot 18	357	18903	3.3	20.5	2.1	0.1	3.5	0.0	2.8	0.8	61.1	1.7	63.1	2.1	140.9	48.4	61.1	1.7	NA
16ATW-77 -Spot 315	275	52662	4.0	20.2	2.0	0.1	3.1	0.0	2.4	0.8	61.1	1.4	63.8	1.9	169.0	47.9	61.1	1.4	NA
16ATW-77 -Spot 269	627	171104	10.6	20.4	2.2	0.1	3.4	0.0	2.5	0.8	61.2	1.5	63.5	2.1	152.0	51.8	61.2	1.5	NA
16ATW-77 -Spot 271	616	47361	4.6	20.2	1.2	0.1	2.6	0.0	2.3	0.9	61.2	1.4	63.9	1.6	167.4	27.4	61.2	1.4	NA
16ATW-77 -Spot 278	922	55824	2.8	21.1	1.4	0.1	2.8	0.0	2.4	0.9	61.4	1.5	61.7	1.7	72.7	34.0	61.4	1.5	NA
16ATW-77 -Spot 72	2070	149298	6.5	20.5	1.0	0.1	2.9	0.0	2.7	0.9	61.4	1.7	63.4	1.8	140.1	23.6	61.4	1.7	NA
16ATW-77 -Spot 206	117	2777	5.9	22.7	3.4	0.1	3.9	0.0	2.0	0.5	61.4	1.2	57.3	2.2	NA	NA	61.4	1.2	##### #
16ATW-77 -Spot 69	855	59551	5.6	20.2	1.1	0.1	2.7	0.0	2.5	0.9	61.5	1.5	64.4	1.7	174.6	26.7	61.5	1.5	NA
16ATW-77 -Spot 15	202	4741	4.0	21.2	2.4	0.1	3.7	0.0	2.8	0.8	61.6	1.7	61.4	2.2	54.1	58.2	61.6	1.7	NA
16ATW-77 -Spot 241	331	34687	3.1	20.3	2.1	0.1	3.1	0.0	2.2	0.7	61.6	1.4	64.2	1.9	164.1	49.1	61.6	1.4	NA
16ATW-77 -Spot 11	278	35267	5.2	19.8	2.4	0.1	4.0	0.0	3.2	0.8	61.6	1.9	65.5	2.5	214.2	55.0	61.6	1.9	NA
16ATW-77 -Spot 154	462	15466	3.9	21.1	1.9	0.1	3.0	0.0	2.3	0.8	61.8	1.4	62.0	1.8	71.3	44.1	61.8	1.4	NA
16ATW-77 -Spot 57	181	4583	5.2	21.1	2.9	0.1	4.2	0.0	3.0	0.7	61.9	1.9	62.1	2.5	69.6	69.4	61.9	1.9	NA
16ATW-77 -Spot 264	528	61272	4.5	20.2	1.6	0.1	3.2	0.0	2.8	0.9	61.9	1.7	64.8	2.0	171.7	36.7	61.9	1.7	NA
16ATW-77 -Spot 106	621	271701	6.1	20.2	1.4	0.1	2.8	0.0	2.5	0.9	62.0	1.5	64.8	1.8	171.3	32.4	62.0	1.5	NA
16ATW-77 -Spot 173	1242	85785	28.0	20.6	1.4	0.1	2.7	0.0	2.3	0.9	62.2	1.4	63.7	1.6	120.2	33.4	62.2	1.4	NA
16ATW-77 -Spot 117	305	30141	6.1	20.0	2.2	0.1	2.8	0.0	1.8	0.6	62.2	1.1	65.7	1.8	196.0	50.2	62.2	1.1	NA
16ATW-77 -Spot 289	1718	196093	2.9	20.3	1.0	0.1	2.4	0.0	2.2	0.9	62.4	1.4	64.9	1.5	160.0	23.9	62.4	1.4	NA
16ATW-77 -Spot 287	698	23281	2.7	20.2	1.5	0.1	2.9	0.0	2.5	0.9	62.4	1.6	65.4	1.8	175.9	34.4	62.4	1.6	NA
16ATW-77 -Spot 113	206	15182	4.5	20.9	3.0	0.1	3.7	0.0	2.1	0.6	62.5	1.3	63.1	2.2	88.8	70.8	62.5	1.3	NA
16ATW-77 -Spot 270	198	11434	4.6	20.4	2.5	0.1	4.0	0.0	3.1	0.8	62.9	2.0	65.2	2.5	151.4	59.4	62.9	2.0	NA
16ATW-77 -Spot 139	554	95573	2.2	20.3	2.4	0.1	4.1	0.0	3.3	0.8	62.9	2.1	65.4	2.6	160.5	55.0	62.9	2.1	NA
16ATW-77 -Spot 137	497	9930	4.8	20.9	1.3	0.1	3.3	0.0	3.1	0.9	63.0	1.9	63.6	2.1	88.1	30.9	63.0	1.9	NA

16ATW-77 -Spot 24	1464	185918	5.6	20.1	1.3	0.1	3.1	0.0	2.8	0.9	63.1	1.8	66.2	2.0	178.0	30.1	63.1	1.8	NA
16ATW-77 -Spot 26	294	23465	5.1	20.4	2.0	0.1	3.3	0.0	2.6	0.8	63.2	1.6	65.4	2.1	148.2	47.6	63.2	1.6	NA
16ATW-77 -Spot 90	1108	60204	4.0	20.2	1.0	0.1	2.9	0.0	2.7	0.9	63.4	1.7	66.3	1.9	170.8	24.2	63.4	1.7	NA
16ATW-77 -Spot 33	323	16917	9.3	20.0	1.9	0.1	3.1	0.0	2.4	0.8	63.5	1.5	66.9	2.0	189.9	44.2	63.5	1.5	NA
16ATW-77 -Spot 244	1286	45653	5.3	21.0	1.2	0.1	3.0	0.0	2.7	0.9	63.7	1.7	64.1	1.8	83.5	28.6	63.7	1.7	NA
16ATW-77 -Spot 267	394	297350	3.6	20.5	1.8	0.1	3.0	0.0	2.4	0.8	63.7	1.5	65.7	1.9	139.3	42.8	63.7	1.5	NA
16ATW-77 -Spot 190	553	20998	7.0	20.7	1.9	0.1	2.9	0.0	2.2	0.8	63.9	1.4	65.4	1.8	119.9	44.7	63.9	1.4	NA
16ATW-77 -Spot 84	699	76233	4.7	20.4	1.4	0.1	2.7	0.0	2.3	0.9	63.9	1.5	66.1	1.7	149.7	33.8	63.9	1.5	NA
16ATW-77 -Spot 280	1453	111827	3.8	21.1	1.0	0.1	1.9	0.0	1.7	0.9	64.0	1.1	64.1	1.2	68.2	22.9	64.0	1.1	NA
16ATW-77 -Spot 314	639	41841	6.9	20.3	1.5	0.1	3.0	0.0	2.6	0.9	64.0	1.6	66.4	1.9	156.1	34.2	64.0	1.6	NA
16ATW-77 -Spot 251	644	39362	6.6	20.5	1.3	0.1	3.2	0.0	2.9	0.9	64.3	1.9	66.3	2.1	137.1	30.3	64.3	1.9	NA
16ATW-77 -Spot 199	661	26221	7.4	20.4	1.5	0.1	3.2	0.0	2.8	0.9	64.5	1.8	66.7	2.1	146.1	35.8	64.5	1.8	NA
16ATW-77 -Spot 1	1029	27412	4.1	20.3	1.6	0.1	3.0	0.0	2.6	0.9	64.5	1.7	67.0	2.0	158.9	36.6	64.5	1.7	NA
16ATW-77 -Spot 44	677	36528	9.2	20.3	1.5	0.1	2.5	0.0	2.0	0.8	64.6	1.3	67.1	1.7	157.1	35.6	64.6	1.3	NA
16ATW-77 -Spot 7	579	17718	7.7	21.0	1.9	0.1	2.9	0.0	2.2	0.8	65.0	1.4	65.3	1.8	77.2	44.2	65.0	1.4	NA
16ATW-77 -Spot 149	539	22128	5.9	20.4	2.0	0.1	3.2	0.0	2.5	0.8	65.1	1.6	67.4	2.1	148.5	46.4	65.1	1.6	NA
16ATW-77 -Spot 41	589	84668	8.8	20.2	1.9	0.1	3.7	0.0	3.2	0.9	65.4	2.1	68.4	2.4	177.0	43.6	65.4	2.1	NA
16ATW-77 -Spot 220	466	16606	2.9	20.2	1.7	0.1	2.8	0.0	2.2	0.8	65.7	1.4	68.5	1.8	167.6	39.3	65.7	1.4	NA
16ATW-77 -Spot 277	669	55214	4.7	20.8	1.5	0.1	2.6	0.0	2.2	0.8	65.8	1.4	66.8	1.7	103.2	34.9	65.8	1.4	NA
16ATW-77 -Spot 31	649	22833	7.2	20.5	1.4	0.1	2.6	0.0	2.3	0.9	66.0	1.5	68.0	1.7	141.4	31.9	66.0	1.5	NA
16ATW-77 -Spot 120	685	19885	7.0	20.6	1.3	0.1	2.6	0.0	2.3	0.9	66.1	1.5	67.7	1.7	125.4	30.3	66.1	1.5	NA
16ATW-77 -Spot 171	620	16043	6.8	21.1	1.6	0.1	2.9	0.0	2.4	0.8	66.3	1.6	66.3	1.9	65.8	38.9	66.3	1.6	NA
16ATW-77 -Spot 168	645	45182	3.3	21.1	1.4	0.1	2.8	0.0	2.4	0.9	66.6	1.6	66.5	1.8	65.7	33.9	66.6	1.6	NA

16ATW-77 -Spot 196	347	33880	4.1	20.7	1.8	0.1	3.3	0.0	2.7	0.8	67.1	1.8	68.5	2.2	118.0	43.4	67.1	1.8	NA
16ATW-77 -Spot 23	471	17780	8.0	20.4	1.5	0.1	3.1	0.0	2.8	0.9	67.8	1.9	70.2	2.1	154.1	34.6	67.8	1.9	NA
16ATW-77 -Spot 80	519	114794	5.5	20.5	1.6	0.1	2.6	0.0	2.1	0.8	67.9	1.4	69.7	1.8	131.6	37.5	67.9	1.4	NA
16ATW-77 -Spot 65	349	38228	5.3	20.0	1.3	0.1	2.5	0.0	2.1	0.9	68.0	1.4	71.6	1.7	194.5	30.9	68.0	1.4	NA
16ATW-77 -Spot 126	458	28029	9.1	20.0	2.0	0.1	3.3	0.0	2.7	0.8	68.1	1.8	71.7	2.3	196.5	45.5	68.1	1.8	NA
16ATW-77 -Spot 159	678	60816	6.3	20.6	1.5	0.1	2.6	0.0	2.1	0.8	68.2	1.4	69.8	1.7	123.8	36.1	68.2	1.4	NA
16ATW-77 -Spot 111	100	7963	3.6	21.0	3.9	0.1	5.1	0.0	3.3	0.6	68.8	2.2	69.2	3.4	82.0	93.3	68.8	2.2	NA
16ATW-77 -Spot 153	998	100130	4.8	20.7	1.0	0.1	2.4	0.0	2.2	0.9	69.5	1.5	71.0	1.7	119.9	23.5	69.5	1.5	NA
16ATW-77 -Spot 109	1313	172285	4.1	19.9	1.4	0.1	2.5	0.0	2.1	0.8	70.5	1.5	74.6	1.8	208.1	31.4	70.5	1.5	NA
16ATW-77 -Spot 256	135	9911	4.8	19.7	3.1	0.1	4.2	0.0	2.8	0.7	70.6	2.0	75.3	3.0	228.2	70.9	70.6	2.0	NA
16ATW-77 -Spot 181	129	22721	4.6	20.4	3.2	0.1	4.3	0.0	2.8	0.7	70.8	2.0	73.1	3.0	149.4	75.3	70.8	2.0	NA
16ATW-77 -Spot 230	160	5384	4.4	21.5	2.7	0.1	3.5	0.0	2.3	0.7	72.1	1.6	70.7	2.4	24.0	64.9	72.1	1.6	NA
16ATW-77 -Spot 170	148	5726	5.5	21.5	2.7	0.1	3.5	0.0	2.3	0.6	72.3	1.6	70.9	2.4	26.2	65.5	72.3	1.6	NA
16ATW-77 -Spot 146	384	12638	2.9	20.9	2.1	0.1	3.4	0.0	2.6	0.8	73.4	1.9	74.1	2.4	96.5	49.2	73.4	1.9	NA
16ATW-77 -Spot 169	656	43800	9.9	20.5	1.3	0.1	2.5	0.0	2.2	0.9	74.3	1.6	76.2	1.9	139.2	30.3	74.3	1.6	NA
16ATW-77 -Spot 96	146	8788	2.7	20.9	2.0	0.1	3.0	0.0	2.3	0.8	74.5	1.7	75.0	2.2	92.9	47.1	74.5	1.7	NA
16ATW-77 -Spot 258	442	85467	4.7	20.0	1.3	0.1	3.2	0.0	3.0	0.9	80.5	2.4	84.5	2.6	199.2	30.1	80.5	2.4	NA
16ATW-77 -Spot 185	47	5114	2.4	19.6	3.8	0.1	5.3	0.0	3.7	0.7	84.3	3.1	89.9	4.6	240.4	87.9	84.3	3.1	NA
16ATW-77 -Spot 178	1483	234247	2.6	20.5	1.0	0.1	3.0	0.0	2.8	1.0	93.7	2.6	95.5	2.7	142.0	22.6	93.7	2.6	NA
16ATW-77 -Spot 294	1547	833895	2.8	20.3	1.0	0.1	2.4	0.0	2.2	0.9	95.0	2.1	97.3	2.2	155.3	23.6	95.0	2.1	NA
16ATW-77 -Spot 232	1919	48457	3.8	20.4	1.1	0.1	2.5	0.0	2.2	0.9	95.5	2.1	97.5	2.3	147.2	26.5	95.5	2.1	NA
16ATW-77 -Spot 245	1255	880885	4.2	20.3	1.0	0.1	2.4	0.0	2.1	0.9	95.9	2.0	98.6	2.2	165.4	24.0	95.9	2.0	NA
16ATW-77 -Spot 4	1609	178100	4.0	20.5	1.3	0.1	2.4	0.0	2.1	0.9	96.3	2.0	98.1	2.3	142.5	29.5	96.3	2.0	NA

16ATW-77 -Spot 214	1929	125397	2.6	20.5	0.8	0.1	1.8	0.0	1.6	0.9	96.5	1.6	98.1	1.7	138.3	18.7	96.5	1.6	NA
16ATW-77 -Spot 34	1122	473093	2.6	20.2	1.3	0.1	2.9	0.0	2.5	0.9	96.5	2.4	99.5	2.7	173.8	31.5	96.5	2.4	NA
16ATW-77 -Spot 145	1371	171338	4.0	20.6	1.1	0.1	2.6	0.0	2.4	0.9	97.1	2.3	98.3	2.4	128.4	25.0	97.1	2.3	NA
16ATW-77 -Spot 99	964	36431	6.7	20.1	1.3	0.1	2.2	0.0	1.7	0.8	97.2	1.6	100.6	2.1	183.5	31.0	97.2	1.6	NA
16ATW-77 -Spot 147	1160	225830	4.8	19.2	1.7	0.1	2.7	0.0	2.0	0.8	97.6	1.9	105.5	2.7	287.6	39.7	97.6	1.9	NA
16ATW-77 -Spot 43	1239	101482	4.5	19.7	1.2	0.1	2.9	0.0	2.6	0.9	98.1	2.5	103.3	2.8	226.4	28.5	98.1	2.5	NA
16ATW-77 -Spot 236	1408	142633	4.0	20.6	1.2	0.1	3.0	0.0	2.7	0.9	98.3	2.7	99.1	2.8	121.0	29.2	98.3	2.7	NA
16ATW-77 -Spot 288	1222	111236	3.0	20.7	1.1	0.1	2.5	0.0	2.2	0.9	98.6	2.2	99.3	2.3	116.1	25.1	98.6	2.2	NA
16ATW-77 -Spot 311	600	41099	4.3	20.0	1.3	0.1	2.6	0.0	2.3	0.9	98.6	2.2	102.2	2.6	189.6	30.2	98.6	2.2	NA
16ATW-77 -Spot 22	1341	4783244	4.5	20.0	1.2	0.1	2.6	0.0	2.3	0.9	99.0	2.3	102.7	2.6	191.7	28.5	99.0	2.3	NA
16ATW-77 -Spot 79	1436	202458	2.3	20.0	1.0	0.1	2.6	0.0	2.4	0.9	99.2	2.3	103.1	2.5	197.0	24.3	99.2	2.3	NA
16ATW-77 -Spot 2	1030	65308	4.1	20.6	1.3	0.1	2.3	0.0	1.9	0.8	99.3	1.8	100.3	2.2	124.9	31.3	99.3	1.8	NA
16ATW-77 -Spot 187	914	105740	6.4	20.3	1.0	0.1	2.1	0.0	1.9	0.9	99.3	1.8	101.9	2.0	164.8	22.8	99.3	1.8	NA
16ATW-77 -Spot 9	1529	59116	3.0	20.9	1.0	0.1	2.5	0.0	2.2	0.9	99.4	2.2	99.0	2.3	88.8	24.0	99.4	2.2	NA
16ATW-77 -Spot 82	1913	162950	4.5	20.8	0.7	0.1	1.7	0.0	1.6	0.9	99.4	1.6	99.6	1.6	106.5	16.3	99.4	1.6	NA
16ATW-77 -Spot 212	882	210134	4.1	20.1	1.1	0.1	3.1	0.0	2.9	0.9	99.5	2.8	102.9	3.0	183.3	26.7	99.5	2.8	NA
16ATW-77 -Spot 211	455	37420	3.6	20.0	1.4	0.1	2.3	0.0	1.8	0.8	99.5	1.8	103.2	2.2	191.5	33.5	99.5	1.8	NA
16ATW-77 -Spot 160	1457	1256676	3.5	20.8	1.2	0.1	2.2	0.0	1.9	0.9	99.7	1.8	100.1	2.1	108.7	27.7	99.7	1.8	NA
16ATW-77 -Spot 73	1536	169959	3.0	20.5	1.0	0.1	2.0	0.0	1.7	0.9	99.7	1.7	101.2	2.0	138.4	24.5	99.7	1.7	NA
16ATW-77 -Spot 20	795	156886	2.7	20.2	1.0	0.1	1.9	0.0	1.6	0.9	99.7	1.6	102.7	1.8	172.7	22.8	99.7	1.6	NA
16ATW-77 -Spot 40	1309	119713	3.6	20.2	1.0	0.1	2.3	0.0	2.0	0.9	99.7	2.0	102.8	2.2	175.2	23.7	99.7	2.0	NA
16ATW-77 -Spot 176	603	46415	3.6	20.4	1.4	0.1	2.5	0.0	2.1	0.8	99.9	2.1	102.0	2.5	153.6	32.9	99.9	2.1	NA
16ATW-77 -Spot 141	1074	192565	3.7	20.0	1.1	0.1	2.6	0.0	2.3	0.9	99.9	2.3	103.8	2.5	194.8	25.5	99.9	2.3	NA

16ATW-77 -Spot 296	1103	71937	4.2	20.4	1.1	0.1	2.5	0.0	2.2	0.9	100.0	2.2	102.0	2.4	149.2	24.8	100.0	2.2	NA
16ATW-77 -Spot 194	1319	128504	3.0	20.4	1.1	0.1	2.7	0.0	2.5	0.9	100.0	2.5	102.1	2.7	152.3	25.3	100.0	2.5	NA
16ATW-77 -Spot 92	917	24362	3.8	20.5	1.0	0.1	2.2	0.0	2.0	0.9	100.5	2.0	101.9	2.2	136.0	23.5	100.5	2.0	NA
16ATW-77 -Spot 52	1440	95998	4.5	20.0	1.2	0.1	2.5	0.0	2.2	0.9	100.5	2.2	104.3	2.5	191.7	27.4	100.5	2.2	NA
16ATW-77 -Spot 257	536	45267	3.2	19.8	1.2	0.1	2.5	0.0	2.2	0.9	100.8	2.2	105.7	2.5	218.9	26.7	100.8	2.2	NA
16ATW-77 -Spot 222	1077	65457	4.9	19.6	1.1	0.1	2.4	0.0	2.1	0.9	101.0	2.1	107.0	2.4	242.3	25.6	101.0	2.1	NA
16ATW-77 -Spot 116	903	393396	3.5	20.2	1.2	0.1	2.8	0.0	2.6	0.9	101.1	2.6	103.7	2.8	166.3	27.5	101.1	2.6	NA
16ATW-77 -Spot 273	756	51018	3.2	20.6	1.2	0.1	2.2	0.0	1.9	0.8	101.2	1.9	102.2	2.2	126.9	29.4	101.2	1.9	NA
16ATW-77 -Spot 74	1386	244255	3.9	20.4	0.9	0.1	2.4	0.0	2.2	0.9	101.2	2.2	103.0	2.4	146.1	22.3	101.2	2.2	NA
16ATW-77 -Spot 201	838	103668	4.0	20.5	1.4	0.1	2.9	0.0	2.5	0.9	101.3	2.5	102.9	2.8	140.3	32.1	101.3	2.5	NA
16ATW-77 -Spot 205	1046	41662	4.0	20.3	1.1	0.1	2.4	0.0	2.1	0.9	101.3	2.1	103.6	2.3	158.8	25.7	101.3	2.1	NA
16ATW-77 -Spot 62	205	14203	3.1	20.3	2.0	0.1	3.4	0.0	2.7	0.8	101.5	2.7	103.8	3.3	156.5	46.5	101.5	2.7	NA
16ATW-77 -Spot 207	396	29521	4.2	19.8	1.6	0.1	3.4	0.0	3.0	0.9	101.6	3.0	106.5	3.4	217.9	36.9	101.6	3.0	NA
16ATW-77 -Spot 53	342	37654	5.7	20.0	1.5	0.1	2.7	0.0	2.3	0.8	102.3	2.3	106.4	2.7	199.7	34.8	102.3	2.3	NA
16ATW-77 -Spot 172	1851	248865	2.1	20.5	0.9	0.1	2.3	0.0	2.2	0.9	103.4	2.2	104.8	2.3	137.2	20.0	103.4	2.2	NA
16ATW-77 -Spot 100	119	7021	16.5	20.5	3.1	0.1	4.1	0.0	2.6	0.7	104.7	2.7	106.1	4.1	138.8	72.5	104.7	2.7	NA
16ATW-77 -Spot 114	617	38665	2.5	19.9	0.9	0.1	2.2	0.0	2.0	0.9	104.9	2.1	109.1	2.3	201.1	20.1	104.9	2.1	NA
16ATW-77 -Spot 76	870	156788	3.6	20.4	1.4	0.1	2.8	0.0	2.4	0.9	105.4	2.5	107.3	2.8	150.0	31.7	105.4	2.5	NA
16ATW-77 -Spot 58	559	178841	2.9	19.3	1.5	0.1	3.5	0.0	3.2	0.9	106.2	3.4	113.9	3.8	277.8	33.7	106.2	3.4	NA
16ATW-77 -Spot 37	217	8464	2.9	21.1	2.2	0.1	3.1	0.0	2.2	0.7	107.3	2.4	105.7	3.1	72.1	52.0	107.3	2.4	NA
16ATW-77 -Spot 308	275	28960	2.5	19.4	1.6	0.1	3.3	0.0	2.8	0.9	127.5	3.6	134.6	4.1	262.3	37.0	127.5	3.6	NA
16ATW-77 -Spot 48	230	32978	3.6	19.9	1.6	0.2	3.1	0.0	2.7	0.9	149.0	4.0	152.3	4.4	204.9	36.4	149.0	4.0	NA
16ATW-77 -Spot 235	181	12604	2.6	19.5	1.8	0.2	2.9	0.0	2.3	0.8	149.2	3.4	155.3	4.2	249.5	40.9	149.2	3.4	NA

16ATW-77 -Spot 233	131	12699	3.2	19.7	1.6	0.2	2.7	0.0	2.1	0.8	153.4	3.2	158.4	3.9	234.9	37.9	153.4	3.2	NA
16ATW-77 -Spot 70	77	8304	3.1	20.1	2.6	0.2	3.5	0.0	2.3	0.7	156.6	3.6	158.3	5.1	185.5	60.1	156.6	3.6	NA
16ATW-77 -Spot 250	191	26733	2.3	19.7	1.7	0.2	3.1	0.0	2.6	0.8	161.3	4.1	165.8	4.8	231.7	40.2	161.3	4.1	NA
16ATW-77 -Spot 107	227	31133	2.0	18.8	1.7	0.2	2.8	0.0	2.2	0.8	161.6	3.5	173.4	4.5	337.9	39.2	161.6	3.5	NA
16ATW-77 -Spot 166	40	3250	2.3	21.8	5.6	0.2	6.2	0.0	2.6	0.4	162.0	4.2	151.6	8.7	NA	NA	162.0	4.2	##### #
16ATW-77 -Spot 125	81	16403	3.2	18.9	2.2	0.2	3.2	0.0	2.4	0.7	162.8	3.8	173.4	5.1	321.6	49.3	162.8	3.8	NA
16ATW-77 -Spot 42	202	63937	1.0	19.3	1.6	0.2	4.3	0.0	4.0	0.9	164.6	6.4	172.0	6.8	277.0	37.5	164.6	6.4	NA
16ATW-77 -Spot 254	555	35025	1.9	19.9	1.2	0.2	2.8	0.0	2.6	0.9	165.6	4.2	168.4	4.4	210.1	27.5	165.6	4.2	NA
16ATW-77 -Spot 13	30	21175	4.9	18.8	4.5	0.2	5.6	0.0	3.3	0.6	172.8	5.7	184.3	9.4	336.3	102.3	172.8	5.7	NA
16ATW-77 -Spot 47	1015	205184	4.4	19.4	0.9	0.2	2.1	0.0	1.9	0.9	181.3	3.4	187.4	3.6	266.4	21.4	181.3	3.4	NA
16ATW-77 -Spot 231	701	276083	6.0	18.2	1.2	0.2	2.8	0.0	2.5	0.9	188.8	4.7	205.8	5.2	406.2	25.9	188.8	4.7	NA
16ATW-77 -Spot 297	246	139948	4.6	19.4	1.3	0.2	2.3	0.0	1.9	0.8	199.6	3.7	204.7	4.3	264.7	30.6	199.6	3.7	NA
16ATW-77 -Spot 45	283	85863	2.6	18.5	1.3	0.4	3.3	0.1	3.0	0.9	356.7	10.5	359.1	10.0	375.9	29.2	356.7	10.5	NA
16ATW-77 -Spot 21	571	475692	1.6	17.4	1.0	0.6	2.9	0.1	2.7	0.9	444.2	11.7	454.1	10.6	505.4	21.5	444.2	11.7	87.9
16ATW-77 -Spot 155	9	20263	1.4	10.7	2.0	3.3	3.2	0.3	2.5	0.8	1453. 8	32.6	1471. 2	24.8	1497. 3	37.2	1497. 3	37.2	97.1
16ATW-77 -Spot 64	664	16356374	3.8	10.4	1.0	3.0	2.6	0.2	2.4	0.9	1331. 5	28.5	1415. 1	19.5	1544. 1	18.1	1544. 1	18.1	86.2
16ATW-77 -Spot 56	167	79001	1.8	9.5	0.9	4.3	2.7	0.3	2.6	0.9	1674. 7	38.0	1697. 0	22.6	1725. 4	17.2	1725. 4	17.2	97.1
16ATW-77 -Spot 94	256	13280122	2.9	6.8	0.8	7.7	2.3	0.4	2.1	0.9	2079. 3	37.8	2194. 6	20.3	2304. 9	13.4	2304. 9	13.4	90.2
16ATW-77 -Spot 91	49	323891	2.7	5.5	0.8	12.3	2.3	0.5	2.1	0.9	2565. 4	44.4	2628. 3	21.2	2677. 8	13.7	2677. 8	13.7	95.8
16ATW-77 -Spot 118	247	4091	5.9	22.2	1.5	0.1	2.8	0.0	2.3	0.8	74.2	1.7	70.3	1.9	NA	NA	74.2	1.7	##### #
16ATW-77 -Spot 252	668	55644	3.6	20.2	1.7	0.1	3.5	0.0	3.0	0.9	55.0	1.7	57.6	1.9	168.0	38.8	55.0	1.7	NA
16ATW-77 -Spot 95	1116	42703	4.7	20.2	1.2	0.1	3.1	0.0	2.8	0.9	54.8	1.5	57.4	1.7	169.3	28.9	54.8	1.5	NA
16ATW-77 -Spot 83	1261	104337	4.5	20.1	1.3	0.1	2.2	0.0	1.7	0.8	58.6	1.0	61.6	1.3	184.6	31.3	58.6	1.0	NA

16ATW-77 -Spot 49	500	12828	2.0	20.1	1.9	0.1	3.9	0.0	3.4	0.9	57.4	1.9	60.4	2.3	182.6	44.3	57.4	1.9	NA
16ATW-77 -Spot 122	2472	95017	2.8	20.1	1.0	0.1	2.1	0.0	1.8	0.9	58.3	1.1	61.5	1.3	186.8	23.6	58.3	1.1	NA
16ATW-77 -Spot 150	926	95348	3.5	18.8	1.4	0.1	3.0	0.0	2.6	0.9	103.2	2.7	113.4	3.2	336.2	31.1	103.2	2.7	NA
16ATW-77 -Spot 242	257	33253	3.5	20.0	2.3	0.1	3.5	0.0	2.7	0.8	59.9	1.6	63.3	2.2	196.2	52.9	59.9	1.6	NA
16ATW-77 -Spot 131	906	42865	8.8	19.9	1.3	0.1	2.2	0.0	1.8	0.8	62.8	1.1	66.6	1.4	206.9	30.8	62.8	1.1	NA
16ATW-77 -Spot 88	932	32948	2.1	18.8	2.5	0.1	3.1	0.0	1.9	0.6	101.3	1.9	111.4	3.3	334.0	57.5	101.3	1.9	NA
16ATW-77 -Spot 61	530	190752	6.4	20.0	1.6	0.1	2.6	0.0	2.0	0.8	58.0	1.2	61.2	1.6	192.0	38.3	58.0	1.2	NA
16ATW-77 -Spot 165	522	41669	5.3	19.9	1.7	0.1	2.7	0.0	2.1	0.8	62.2	1.3	66.0	1.7	207.2	38.9	62.2	1.3	NA
16ATW-77 -Spot 229	489	187920	2.9	20.1	1.4	0.1	3.1	0.0	2.8	0.9	55.9	1.6	59.0	1.8	186.4	31.7	55.9	1.6	NA
16ATW-77 -Spot 97	666	40680	3.2	20.0	1.6	0.1	3.2	0.0	2.8	0.9	56.9	1.6	60.1	1.9	192.4	36.7	56.9	1.6	NA
16ATW-77 -Spot 217	709	751702	3.9	19.8	1.3	0.1	2.3	0.0	1.9	0.8	64.5	1.2	68.8	1.5	219.0	30.2	64.5	1.2	NA
16ATW-77 -Spot 303	853	332001	6.2	19.8	1.4	0.1	2.7	0.0	2.3	0.9	62.3	1.4	66.3	1.7	213.7	33.2	62.3	1.4	NA
16ATW-77 -Spot 227	690	153014	6.0	19.7	1.3	0.1	2.8	0.0	2.5	0.9	65.2	1.6	69.7	1.9	226.5	29.1	65.2	1.6	NA
16ATW-77 -Spot 121	266	8447	3.6	19.9	2.3	0.1	2.9	0.0	1.8	0.6	58.3	1.1	62.0	1.8	205.9	53.2	58.3	1.1	NA
16ATW-77 -Spot 225	530	27497	3.6	19.9	1.7	0.1	2.6	0.0	2.0	0.8	58.8	1.1	62.6	1.6	209.3	39.1	58.8	1.1	NA
16ATW-77 -Spot 128	278	105499	6.2	19.8	2.4	0.1	3.5	0.0	2.6	0.7	60.3	1.6	64.3	2.2	214.8	55.0	60.3	1.6	NA
16ATW-77 -Spot 177	390	17796	4.3	20.1	1.8	0.1	2.9	0.0	2.3	0.8	52.0	1.2	54.9	1.6	186.3	40.8	52.0	1.2	NA
16ATW-77 -Spot 55	1493	33080	5.1	19.8	1.2	0.1	2.5	0.0	2.2	0.9	59.0	1.3	63.0	1.5	216.3	28.1	59.0	1.3	NA
16ATW-77 -Spot 188	344	42411	3.2	18.4	1.7	0.1	2.4	0.0	1.7	0.7	105.6	1.8	118.6	2.7	389.1	38.1	105.6	1.8	NA
16ATW-77 -Spot 167	217	22234	10.0	19.5	2.6	0.1	3.9	0.0	2.9	0.8	67.9	2.0	73.4	2.7	257.9	59.0	67.9	2.0	NA
16ATW-77 -Spot 66	466	134933	3.7	19.8	1.7	0.1	2.8	0.0	2.3	0.8	56.6	1.3	60.5	1.7	215.2	38.2	56.6	1.3	NA
16ATW-77 -Spot 208	318	21740	3.2	19.7	1.8	0.1	2.7	0.0	2.0	0.7	59.6	1.2	63.8	1.7	227.4	41.8	59.6	1.2	NA
16ATW-77 -Spot 36	794	121133	5.1	19.8	1.5	0.1	2.5	0.0	2.0	0.8	57.4	1.2	61.4	1.5	220.4	35.4	57.4	1.2	NA

16ATW-77 -Spot 86	163	25577	4.3	19.6	2.3	0.1	3.1	0.0	2.1	0.7	63.1	1.3	67.9	2.0	244.2	52.6	63.1	1.3	NA
16ATW-77 -Spot 204	734	41241	2.3	19.8	1.5	0.1	2.6	0.0	2.2	0.8	55.6	1.2	59.4	1.5	217.3	34.1	55.6	1.2	NA
16ATW-77 -Spot 130	467	21953	8.0	19.6	1.8	0.1	3.3	0.0	2.7	0.8	62.2	1.7	67.1	2.1	244.6	41.9	62.2	1.7	NA
16ATW-77 -Spot 295	435	70238	2.4	19.6	1.6	0.1	2.9	0.0	2.4	0.8	61.0	1.5	65.7	1.9	241.3	37.4	61.0	1.5	NA
16ATW-77 -Spot 298	235	19837	4.8	19.6	2.1	0.1	3.2	0.0	2.4	0.8	59.1	1.4	63.5	2.0	236.2	49.5	59.1	1.4	NA
16ATW-77 -Spot 71	549	716200	8.5	19.5	1.2	0.1	2.3	0.0	2.0	0.9	62.6	1.2	67.7	1.5	253.3	27.1	62.6	1.2	NA
16ATW-77 -Spot 223	733	311876	2.5	18.1	1.7	0.1	2.9	0.0	2.4	0.8	99.7	2.4	113.7	3.2	419.2	38.2	99.7	2.4	NA
16ATW-77 -Spot 253	1012	34759	2.8	19.5	1.5	0.1	2.5	0.0	1.9	0.8	58.1	1.1	62.8	1.5	248.8	35.1	58.1	1.1	NA
16ATW-77 -Spot 197	1366	170664	2.7	19.6	1.2	0.1	2.3	0.0	2.0	0.9	57.0	1.1	61.6	1.4	246.3	26.7	57.0	1.1	NA
16ATW-77 -Spot 98	461	9544	2.9	19.7	2.0	0.1	2.9	0.0	2.1	0.7	51.5	1.1	55.4	1.5	229.0	45.3	51.5	1.1	NA
16ATW-77 -Spot 143	341	158212	2.6	19.5	2.3	0.1	3.6	0.0	2.8	0.8	58.1	1.6	63.1	2.2	258.4	52.9	58.1	1.6	NA
16ATW-77 -Spot 119	171	11077	3.1	19.3	2.6	0.1	3.7	0.0	2.7	0.7	61.2	1.6	66.9	2.4	277.8	58.7	61.2	1.6	NA
16ATW-77 -Spot 30	438	40059	2.3	19.4	2.1	0.1	3.4	0.0	2.7	0.8	58.4	1.6	63.7	2.1	267.7	47.9	58.4	1.6	NA
16ATW-77 -Spot 46	857	23841	4.2	17.7	2.0	0.1	3.1	0.0	2.4	0.8	102.6	2.5	119.5	3.5	471.6	43.7	102.6	2.5	NA
16ATW-77 -Spot 261	1424	34350	3.5	19.4	1.2	0.1	2.5	0.0	2.2	0.9	58.5	1.3	63.8	1.5	270.0	27.5	58.5	1.3	NA
16ATW-77 -Spot 210	545	24524	2.2	19.3	1.9	0.1	2.7	0.0	2.0	0.7	57.4	1.1	62.9	1.7	282.2	43.0	57.4	1.1	NA
16ATW-77 -Spot 312	567	44098	2.4	19.2	2.2	0.1	3.2	0.0	2.3	0.7	56.9	1.3	62.6	1.9	288.9	49.4	56.9	1.3	NA
16ATW-77 -Spot 286	620	21195	2.5	19.1	1.7	0.1	2.8	0.0	2.1	0.8	57.4	1.2	63.5	1.7	298.8	39.6	57.4	1.2	NA
16ATW-77 -Spot 136	405	12130	3.2	18.3	4.0	0.1	4.6	0.0	2.2	0.5	75.4	1.6	86.0	3.8	393.3	89.5	75.4	1.6	NA
16ATW-77 -Spot 101	312	18163	5.9	18.7	2.0	0.1	3.2	0.0	2.4	0.8	62.2	1.5	70.1	2.1	349.1	45.6	62.2	1.5	NA
16ATW-77 -Spot 129	1442	166459	2.0	18.5	1.0	0.1	2.0	0.0	1.7	0.9	59.5	1.0	67.7	1.3	371.9	22.1	59.5	1.0	NA
16ATW-77 -Spot 5	1103	21608	4.1	18.6	1.7	0.1	3.0	0.0	2.5	0.8	55.3	1.4	62.8	1.9	362.4	37.8	55.3	1.4	NA
16ATW-77 -Spot 300	1443	22120	5.9	18.2	1.9	0.1	2.6	0.0	1.7	0.7	60.6	1.1	69.9	1.8	404.6	43.1	60.6	1.1	NA

	16ATW-77 -Spot 132	2149	101773	6.4	18.0	1.4	0.1	2.6	0.0	2.2	0.9	63.5	1.4	74.2	1.9	437.1	30.6	63.5	1.4	NA
	16ATW-77 -Spot 191	292	10001	4.1	18.1	3.0	0.1	4.1	0.0	2.8	0.7	59.1	1.6	68.9	2.7	422.3	66.7	59.1	1.6	NA
	16ATW-77 -Spot 32	531	11280	6.8	17.8	1.9	0.1	2.8	0.0	2.1	0.7	64.4	1.3	76.1	2.1	461.3	42.4	64.4	1.3	NA
	16ATW-77 -Spot 249	524	16047	2.6	18.0	2.1	0.1	2.9	0.0	1.9	0.7	59.5	1.1	69.6	1.9	434.5	47.8	59.5	1.1	NA
	16ATW-77 -Spot 67	709	105120	8.0	16.4	2.5	0.1	3.4	0.0	2.3	0.7	61.6	1.4	78.8	2.5	638.6	53.1	61.6	1.4	NA
	16ATW-77 -Spot 134	710	14903	5.4	16.7	4.8	0.1	5.5	0.0	2.7	0.5	57.2	1.5	72.1	3.8	599.2	103.3	57.2	1.5	NA
	16ATW-77 -Spot 266	178	78862	5.1	16.3	3.2	0.1	4.3	0.0	2.9	0.7	61.8	1.8	79.7	3.3	657.8	68.6	61.8	1.8	NA
	16ATW-77 -Spot 302	449	44126	4.0	16.6	3.5	0.1	4.1	0.0	2.1	0.5	58.0	1.2	73.7	2.9	618.0	75.0	58.0	1.2	NA
	16ATW-77 -Spot 151	94	4189	1.9	7.0	16. 4	0.7	16.6	0.0	2.6	0.2	211.6	5.3	511.4	66.7	2256. 2	284.9	211.6	5.3	NA
	16ATW-77 -Spot 279	971	7655	4.5	14.5	1.8	0.1	2.6	0.0	1.9	0.7	61.1	1.2	87.8	2.2	894.0	37.5	61.1	1.2	NA
	16ATW-77 -Spot 281	4600	12229	1.9	14.7	4.2	0.1	4.9	0.0	2.5	0.5	56.4	1.4	80.3	3.8	868.2	87.5	56.4	1.4	NA
																1002.				
	16ATW-77 -Spot 243	746	7954	2.8	13.8	6.4	0.1	6.7	0.0	2.1	0.3	60.8	1.3	92.0	5.9	5	129.4	60.8	1.3	NA
	16ATW-77 -Spot 243 16ATW-77 -Spot 75	274	7954 2337	3.3	6.9	6.4 12. 1	0.1	6.7	0.0	5.5	0.3	60.8	1.3	92.0	22.4	5 2299. 2	208.1	60.8	1.3 3.5	NA
	16ATW-77 -Spot 243 16ATW-77 -Spot 75 Sample 16ATW86	274	7954 2337	3.3	13.8 6.9	6.4 12. 1	0.1	6.7	0.0	5.5	0.3	60.8 63.5	1.3	92.0 184.4	22.4	5 2299. 2	208.1	60.8 63.5	1.3	NA
	16ATW-77 -Spot 243 16ATW-77 -Spot 75 Sample 16ATW86 Analysis	746 274 U	2337 206Pb	2.8 3.3 U/Th	13.8 6.9 206Pb *	6.4 12. 1	0.1 0.2 207Pb *	6.7 13.3 ±	0.0 0.0 206Pb *	2.1 5.5 ±	0.3 0.4 erro r	60.8 63.5 206Pb *	1.3 3.5 ±	92.0 184.4 207Pb *	5.9 22.4 ±	5 22299. 2 206Pb *	129.4 208.1 ±	60.8 63.5 Best age	1.3 3.5 ±	NA NA Conc
-	16ATW-77 -Spot 243 16ATW-77 -Spot 75 Sample 16ATW86 Analysis	746 274 (ppm)	7954 2337 206РЬ 204РЬ	2.8 3.3 U/Th	13.8 6.9 206Pb * 207Pb *	6.4 12. 1	0.1 0.2 207Pb * 235U	6.7 13.3 ±	0.0 0.0 206Pb * 238U	2.1 5.5 (%)	0.3 0.4 erro r corr	60.8 63.5 206Pb * 238U *	1.3 3.5 ±	92.0 184.4 207Pb * 235U	5.9 22.4 ±	2299. 2 206Pb * 207Pb	129.4 208.1 ±	60.8 63.5 Best age (Ma)	1.3 3.5 (Ma)	NA NA (%)
	16ATW-77 - Spot 243 16ATW-77 - Spot 75 Sample 16ATW86 <u>Analysis</u> 16ATW-86 - Spot 207	746 274 (ppm) 62	7954 2337 206Pb 204Pb 150	2.8 3.3 U/Th 1.8	13.8 6.9 206Pb * 207Pb * 22.2	6.4 12. 1 (%) 10. 5	0.1 0.2 207Pb * 235U * 0.0	6.7 13.3 (%) 13.2	0.0 0.0 206Pb 238U 0.0	2.1 5.5 (%) 8.0	0.3 0.4 erro r corr	60.8 63.5 206Pb * 238U * 5.8	1.3 3.5 ± (Ma) 0.5	92.0 184.4 207Pb * 235U 5.7	5.9 22.4 (Ma) 0.7	5 2299. 2 206Pb * 207Pb * NA	129.4 208.1 ± (Ma)	60.8 63.5 Best age (Ma) 5.8	1.3 3.5 (Ma) 0.5	NA NA (%) NA
-	16ATW-77 - Spot 243 16ATW-77 - Spot 75 Sample 16ATW86 Analysis 16ATW-86 - Spot 207 16ATW-86 - Spot 195	274 274 (ppm) 62 401	7954 2337 206РЬ 204РЬ 150 6526	2.8 3.3 U/Th 1.8 3.0	13.8 6.9 206Pb * 207Pb * 22.2 18.0	6.4 12. 1 (%) 5.0	0.1 0.2 207Pb * 235U * 0.0 0.0	6.7 13.3 ± (%) 13.2 6.1	0.0 0.0 206Pb 238U 0.0 0.0	2.1 5.5 (%) 8.0 3.5	0.3 0.4 erro r 0.6 0.6	60.8 63.5 206Pb 238U * 5.8 5.8	1.3 3.5 (Ma) 0.5 0.2	92.0 184.4 207Pb 235U 5.7 7.0	5.9 22.4 (Ma) 0.7 0.4	5 2299. 2 206Pb * 207Pb * NA 433.9	129.4 208.1 ± (Ma) NA 112.5	60.8 63.5 Best age (Ma) 5.8	1.3 3.5 (Ma) 0.5 0.2	NA NA (%) NA NA
-	16ATW-77 - Spot 243 16ATW-77 - Spot 75 Sample 16ATW86 Analysis 16ATW-86 - Spot 207 16ATW-86 - Spot 195 16ATW-86 - Spot 133	746 274 (ppm) 62 401 149	7954 2337 206Pb 204Pb 150 6526 1180	2.8 3.3 U/Th 1.8 3.0 1.8	13.8 6.9 206Pb * 207Pb * 22.2 18.0 34.3	6.4 12. 1 (%) 10. 5 5.0 9.8	0.1 0.2 207Pb * 235U 0.0 0.0	6.7 13.3 (%) 13.2 6.1 10.8	0.0 0.0 206Pb 238U 0.0 0.0	2.1 5.5 (%) 8.0 3.5 4.6	0.3 0.4 erro r 0.6 0.6 0.4	60.8 63.5 206Pb * 238U * 5.8 5.8 5.8	1.3 3.5 (Ma) 0.5 0.2 0.3	92.0 184.4 207Pb 235U 5.7 7.0 3.7	5.9 222.4 (Ma) 0.7 0.4 0.4	5 2299. 2 2 200Pb 2 207Pb NA 433.9 NA	129.4 208.1 (Ma) NA 112.5 NA	60.8 63.5 (Ma) 5.8 5.9	1.3 3.5 (Ma) 0.5 0.2 0.3	NA NA (%) NA NA
	16ATW-77 - Spot 243 16ATW-77 - Spot 75 Sample 16ATW86 <u>Analysis</u> 16ATW-86 - Spot 207 16ATW-86 - Spot 195 16ATW-86 - Spot 133 16ATW-86 - Spot 217	274 274 (ppm) 62 401 149 557	7954 2337 206Pb 204Pb 150 6526 1180 19115	2.8 3.3 U/Th 1.8 3.0 1.8 2.4	13.8 6.9 200Pb * 207Pb * 22.2 18.0 34.3 20.0	6.4 12. 1 (%) 10. 5 5.0 9.8 3.6	0.1 0.2 207Pb 235U 235U 0.0 0.0 0.0	6.7 13.3 (%) 13.2 6.1 10.8 4.4	0.0 0.0 206Pb 238U 0.0 0.0 0.0	2.1 5.5 (%) 8.0 3.5 4.6 2.6	0.3 0.4 erro r 0.6 0.6 0.4 0.6	60.8 63.5 206Pb 238U 5.8 5.8 5.9 6.3	1.3 3.5 (Ma) 0.5 0.2 0.3 0.2	92.0 184.4 207Pb 235U 5.7 7.0 3.7 6.8	 5.9 22.4 * 0.7 0.4 0.3 	5 2299, 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	129.4 208.1 (Ma) NA 112.5 NA 82.6	60.8 63.5 (Ma) 5.8 5.8 5.9 6.3	1.3 3.5 (Ma) 0.5 0.2 0.3 0.2	NA NA (%) NA NA NA
-	16ATW-77 - Spot 243 16ATW-77 - Spot 75 Sample 16ATW86 <u>Analysis</u> 16ATW-86 - Spot 207 16ATW-86 - Spot 207 16ATW-86 - Spot 133 16ATW-86 - Spot 217 16ATW-86 - Spot 228	746 274 (ppm) 62 401 149 557 130	7954 2337 206Pb 204Pb 150 6526 1180 19115 4222	2.8 3.3 U/Th 1.8 3.0 1.8 2.4 1.9	13.8 6.9 206Pb * 227Pb * 22.2 18.0 34.3 20.0 12.2	6.4 12. 1 (%) 10. 5 5.0 9.8 3.6 9.5	0.1 0.2 207Pb 235U * 0.0 0.0 0.0 0.0	6.7 13.3 (%) 13.2 6.1 10.8 4.4 10.8	0.0 0.0 206Pb 238U 0.0 0.0 0.0 0.0	2.1 5.5 (%) 8.0 3.5 4.6 2.6 5.2	0.3 0.4 erro r 0.6 0.6 0.6 0.6 0.6	60.8 63.5 206Pb 238U * 5.8 5.8 5.8 5.9 6.3 6.8	1.3 3.5 (Ma) 0.5 0.2 0.3 0.2 0.4	92.0 184.4 207Pb 235U 5.7 7.0 3.7 6.8 11.9	 5.9 5.9 22.4 ± 0.7 0.4 0.3 1.3 	5 2299, 2 2 205Pb 2 207Pb 8 NA 433.9 NA 196.8 1244, 2	129.4 208.1 (Mə) NA 1112.5 NA 82.6 186.1	60.8 63.5 (Ma) 5.8 5.8 5.9 6.3 6.8	1.3 3.5 (Ma) 0.5 0.2 0.3 0.2 0.2 0.4	NA NA (%) NA NA NA
-	16ATW-77 - Spot 243 16ATW-77 - Spot 75 Sample 16ATW86 Analysis 16ATW-86 - Spot 207 16ATW-86 - Spot 207 16ATW-86 - Spot 195 16ATW-86 - Spot 217 16ATW-86 - Spot 228 16ATW-86 - Spot 225	746 274 (ppm) 62 401 149 557 130 54	7954 2337 206Pb 204Pb 150 6526 1180 19115 4222 2484	2.8 3.3 U/Th 1.8 3.0 1.8 2.4 1.9 1.2	13.8 6.9 206Pb * 22.2 18.0 34.3 20.0 12.2 14.9	6.4 12. 1 (%) 10. 5 5.0 9.8 3.6 9.5 13. 0	0.1 0.2 207Pb 235U * 0.0 0.0 0.0 0.0 0.0	6.7 13.3 (%) 13.2 6.1 10.8 4.4 10.8 14.6	0.0 0.0 206Pb 238U 0.0 0.0 0.0 0.0 0.0	2.1 5.5 (%) 8.0 3.5 4.6 2.6 5.2 6.7	0.3 0.4 erro r 0.6 0.6 0.6 0.6 0.6 0.6 0.5	60.8 63.5 206Pb 238U 5.8 5.8 5.8 5.9 6.3 6.8 6.8	1.3 3.5 (Ma) 0.5 0.2 0.3 0.2 0.3 0.2 0.4 0.5	92.0 184.4 207Pb 235U 5.7 7.0 3.7 6.8 11.9 9.9	 5.9 5.9 22.4 (Ma) 0.7 0.4 0.3 1.3 1.4 	5 2299. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	129.4 208.1 (Ma) NA 112.5 NA 82.6 186.1 220.8	60.8 63.5 (Ma) 5.8 5.9 6.3 6.8 6.8	1.3 3.5 (Ma) 0.5 0.2 0.3 0.2 0.3 0.2 0.4 0.5	NA NA (%) NA NA NA NA NA
- -	16ATW-77 - Spot 243 16ATW-77 - Spot 75 Sample 16ATW86 <u>Analysis</u> 16ATW-86 - Spot 207 16ATW-86 - Spot 195 16ATW-86 - Spot 133 16ATW-86 - Spot 217 16ATW-86 - Spot 228 16ATW-86 - Spot 225 16ATW-86 - Spot 114	274 274 (ppm) 62 401 149 557 130 54 336	7954 2337 206Pb 204Pb 150 6526 1180 19115 4222 2484 1075	2.8 3.3 1.8 3.0 1.8 2.4 1.9 1.2 1.2 1.3	13.8 6.9 200Pb 207Pb 22.2 18.0 34.3 20.0 12.2 14.9 26.1	6.4 12. 1 (%) 10. 5 5.0 9.8 3.6 9.5 13. 0 4.9	0.1 0.2 207Pb 235U 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.7 13.3 (%) 13.2 6.1 10.8 4.4 10.8 14.6 5.9	0.0 0.0 206Pb 238U 0.0 0.0 0.0 0.0 0.0	2.1 5.5 (%) 8.0 3.5 4.6 2.6 5.2 6.7 3.2	0.3 0.4 erro corr 0.6 0.6 0.6 0.5 0.5	60.8 63.5 206Pb 238U 5.8 5.8 5.8 5.9 6.3 6.3 6.8 6.8 6.8	1.3 3.5 (Ma) 0.5 0.2 0.3 0.2 0.4 0.5 0.5 0.2	92.0 184.4 207Pb 235U 5.7 7.0 3.7 6.8 11.9 9.9 6.3	 5.9 22.4 * (Ma) 0.7 0.4 0.3 1.3 1.4 0.4 	5 2299. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	129.4 208.1 (Ma) NA 112.5 NA 82.6 186.1 270.8 NA	60.8 63.5 (Ma) 5.8 5.9 6.3 6.8 6.8 6.8 7.5	1.3 3.5 (Ma) 0.5 0.2 0.3 0.2 0.3 0.2 0.4 0.5 0.5 0.2	NA NA (%) NA NA NA NA NA

16ATW-86-Spot 52	125	5068	4.5	21.2	3.4	0.1	4.3	0.0	2.6	0.6	59.3	1.5	59.4	2.5	62.1	81.7	59.3	1.5	NA
16ATW-86-Spot 260	183	5213	4.9	20.4	3.1	0.1	4.0	0.0	2.6	0.6	60.6	1.5	62.9	2.4	153.8	72.2	60.6	1.5	NA
16ATW-86-Spot 242	548	58709	5.2	20.1	1.6	0.1	3.2	0.0	2.8	0.9	71.5	2.0	74.7	2.3	179.6	36.1	71.5	2.0	NA
16ATW-86-Spot 151	344	29977	3.5	20.8	2.3	0.1	3.3	0.0	2.3	0.7	79.0	1.8	79.5	2.5	97.4	54.9	79.0	1.8	NA
16ATW-86-Spot 264	55	10727	9.5	18.5	2.7	0.2	4.0	0.0	2.9	0.7	145.9	4.2	159.6	5.9	369.1	61.3	145.9	4.2	NA
16ATW-86-Spot 225	319	179116	1.2	19.5	1.4	0.2	3.9	0.0	3.6	0.9	147.6	5.2	154.3	5.5	258.9	32.9	147.6	5.2	NA
16ATW-86-Spot 169	139	11085	1.9	19.9	2.0	0.2	3.2	0.0	2.5	0.8	149.1	3.7	152.5	4.5	205.8	46.1	149.1	3.7	NA
16ATW-86-Spot 283	514	62886	2.9	19.4	1.1	0.2	2.2	0.0	1.9	0.9	149.7	2.8	156.4	3.2	260.5	25.7	149.7	2.8	NA
16ATW-86-Spot 170	159	23556	1.8	19.6	2.0	0.2	3.1	0.0	2.4	0.8	150.5	3.5	156.3	4.5	247.3	46.1	150.5	3.5	NA
16ATW-86-Spot 297	98	14309	1.8	19.7	2.5	0.2	3.5	0.0	2.5	0.7	150.5	3.7	155.2	5.1	228.7	57.6	150.5	3.7	NA
16ATW-86-Spot 216	33	1853	4.8	22.3	3.8	0.1	4.9	0.0	3.1	0.6	150.9	4.6	138.9	6.3	NA	NA	150.9	4.6	NA
16ATW-86-Spot 252	228	29173	2.7	19.2	1.2	0.2	2.6	0.0	2.3	0.9	151.4	3.4	160.0	3.8	290.5	28.5	151.4	3.4	NA
16ATW-86-Spot 83	64	28223	2.0	19.1	3.0	0.2	3.8	0.0	2.3	0.6	151.5	3.4	161.1	5.7	305.5	69.3	151.5	3.4	NA
16ATW-86-Spot 161	41	8350	3.0	18.8	3.1	0.2	3.9	0.0	2.2	0.6	151.5	3.4	163.3	5.8	338.6	71.1	151.5	3.4	NA
16ATW-86-Spot 5	131	13991	1.6	19.6	1.6	0.2	2.9	0.0	2.5	0.8	151.9	3.7	157.7	4.3	245.6	36.5	151.9	3.7	NA
16ATW-86-Spot 122	43	13013	1.8	19.2	2.9	0.2	3.8	0.0	2.6	0.7	152.0	3.8	160.8	5.7	292.9	65.3	152.0	3.8	NA
16ATW-86-Spot 88	43	8101	3.5	19.7	3.7	0.2	4.8	0.0	3.1	0.6	152.1	4.6	156.7	7.0	228.1	85.3	152.1	4.6	NA
16ATW-86-Spot 282	217	72416	3.1	19.5	1.1	0.2	2.4	0.0	2.2	0.9	152.1	3.3	158.3	3.6	253.2	24.8	152.1	3.3	NA
16ATW-86-Spot 100	80	10771	1.6	19.8	2.5	0.2	3.5	0.0	2.5	0.7	152.2	3.7	156.3	5.1	220.8	58.2	152.2	3.7	NA
16ATW-86-Spot 64	70	18417	3.1	20.0	3.1	0.2	3.9	0.0	2.3	0.6	152.3	3.5	154.8	5.6	195.3	72.6	152.3	3.5	NA
16ATW-86-Spot 51	82	32013	2.7	19.2	2.1	0.2	3.0	0.0	2.1	0.7	152.4	3.1	161.1	4.4	292.2	49.0	152.4	3.1	NA
16ATW-86-Spot 223	152	30974	1.7	19.4	1.6	0.2	2.5	0.0	2.0	0.8	152.8	3.0	160.1	3.7	270.4	36.7	152.8	3.0	NA
16ATW-86-Spot 98	79	34314	2.1	18.7	2.0	0.2	3.5	0.0	2.8	0.8	153.2	4.3	165.5	5.3	345.4	45.4	153.2	4.3	NA
16ATW-86-Spot 182	133	36659	2.6	19.3	1.7	0.2	2.9	0.0	2.3	0.8	153.3	3.5	160.7	4.3	272.5	39.9	153.3	3.5	NA
16ATW-86-Spot 69	583	244299	2.8	19.7	1.2	0.2	2.7	0.0	2.4	0.9	153.3	3.6	157.8	3.9	226.4	28.4	153.3	3.6	NA

16ATW-86-Spot 107	184	37036	3.6	19.1	1.6	0.2	3.1	0.0	2.7	0.9	153.4	4.1	162.5	4.7	298.1	36.3	153.4	4.1	NA
16ATW-86-Spot 73	118	42406	1.8	19.4	2.0	0.2	3.0	0.0	2.3	0.8	153.4	3.4	160.3	4.5	264.4	45.7	153.4	3.4	NA
16ATW-86-Spot 32	129	22094	2.7	20.4	2.1	0.2	2.9	0.0	1.9	0.7	153.7	3.0	153.6	4.1	153.0	49.2	153.7	3.0	NA
16ATW-86-Spot 84	129	13208	1.9	19.9	1.9	0.2	3.3	0.0	2.7	0.8	153.9	4.2	156.9	4.9	203.1	44.5	153.9	4.2	NA
16ATW-86-Spot 265	54	10461	3.0	18.8	3.4	0.2	4.8	0.0	3.5	0.7	153.9	5.3	165.3	7.4	331.7	76.7	153.9	5.3	NA
16ATW-86-Spot 198	78	132986	2.4	18.8	2.5	0.2	3.5	0.0	2.4	0.7	154.0	3.7	165.6	5.3	335.0	56.5	154.0	3.7	NA
16ATW-86-Spot 219	69	6621	2.4	20.5	3.1	0.2	4.1	0.0	2.6	0.6	154.1	4.0	153.2	5.8	141.2	73.2	154.1	4.0	NA
16ATW-86-Spot 72	120	19095	1.6	18.9	1.8	0.2	3.0	0.0	2.4	0.8	154.3	3.7	165.3	4.6	326.9	40.5	154.3	3.7	NA
16ATW-86-Spot 159	188	43491	2.3	19.4	1.6	0.2	2.7	0.0	2.3	0.8	154.3	3.5	161.4	4.1	268.2	35.6	154.3	3.5	NA
16ATW-86-Spot 299	137	16651	2.1	19.4	1.6	0.2	3.6	0.0	3.2	0.9	154.3	4.9	161.4	5.4	268.0	37.6	154.3	4.9	NA
16ATW-86-Spot 165	59	6130	1.8	20.0	3.5	0.2	4.3	0.0	2.5	0.6	154.3	3.8	156.6	6.3	191.9	81.9	154.3	3.8	NA
16ATW-86-Spot 315	118	14954	2.9	19.3	1.9	0.2	3.6	0.0	3.0	0.8	154.4	4.6	161.7	5.3	272.0	43.8	154.4	4.6	NA
16ATW-86-Spot 136	193	73417	1.4	19.2	1.6	0.2	3.0	0.0	2.5	0.8	154.4	3.8	162.7	4.4	285.9	36.5	154.4	3.8	NA
16ATW-86-Spot 130	109	10779	2.5	19.7	1.8	0.2	3.0	0.0	2.4	0.8	154.4	3.7	158.9	4.5	227.8	42.2	154.4	3.7	NA
16ATW-86-Spot 300	328	48585	1.7	19.4	1.3	0.2	3.2	0.0	2.9	0.9	154.5	4.5	161.2	4.8	263.1	29.4	154.5	4.5	NA
16ATW-86-Spot 38	75	10985	1.8	21.2	2.9	0.2	4.2	0.0	3.1	0.7	154.6	4.7	148.5	5.8	53.3	68.8	154.6	4.7	NA
16ATW-86-Spot 306	33	3288	3.3	19.0	4.1	0.2	4.9	0.0	2.6	0.5	154.6	4.0	164.7	7.4	313.6	94.2	154.6	4.0	NA
16ATW-86-Spot 30	74	7544	2.2	18.2	3.4	0.2	4.3	0.0	2.6	0.6	154.8	4.0	171.4	6.8	408.0	76.1	154.8	4.0	NA
16ATW-86-Spot 201	40	74124	3.7	18.5	2.9	0.2	3.9	0.0	2.6	0.7	154.8	3.9	168.8	6.1	370.8	66.4	154.8	3.9	NA
16ATW-86-Spot 303	136	41259	2.6	20.5	2.1	0.2	3.1	0.0	2.3	0.7	154.9	3.5	153.6	4.4	134.3	48.7	154.9	3.5	NA
16ATW-86-Spot 233	223	56382	1.8	19.6	1.4	0.2	2.7	0.0	2.3	0.8	155.0	3.5	160.5	4.0	243.3	33.0	155.0	3.5	NA
16ATW-86-Spot 248	79	16269	2.7	19.2	2.7	0.2	3.6	0.0	2.3	0.6	155.0	3.5	163.6	5.4	290.6	62.6	155.0	3.5	NA
16ATW-86-Spot 295	297	57301	5.1	19.2	1.4	0.2	3.1	0.0	2.7	0.9	155.0	4.2	163.4	4.6	287.5	32.1	155.0	4.2	NA
16ATW-86-Spot 36	48	18913	2.9	19.4	2.5	0.2	3.7	0.0	2.7	0.7	155.1	4.1	161.7	5.5	260.9	56.8	155.1	4.1	NA
16ATW-86-Spot 294	69	93476	1.8	19.2	2.6	0.2	3.8	0.0	2.7	0.7	155.2	4.1	163.4	5.7	285.2	60.2	155.2	4.1	NA

16ATW-86-Spot 183	130	15446	2.2	20.1	1.6	0.2	2.8	0.0	2.3	0.8	155.2	3.5	156.8	4.1	182.4	37.3	155.2	3.5	NA
16ATW-86-Spot 8	67	38986	2.8	19.2	2.4	0.2	3.2	0.0	2.2	0.7	155.2	3.4	163.6	4.9	286.9	54.4	155.2	3.4	NA
16ATW-86-Spot 239	41	3474	2.7	21.5	4.2	0.2	4.9	0.0	2.4	0.5	155.3	3.7	147.6	6.7	27.0	101.5	155.3	3.7	NA
16ATW-86-Spot 124	89	178676	2.6	19.3	2.5	0.2	3.5	0.0	2.5	0.7	155.3	3.8	163.2	5.3	279.4	57.2	155.3	3.8	NA
16ATW-86-Spot 57	129	35974	2.2	19.1	1.5	0.2	3.5	0.0	3.1	0.9	155.4	4.8	164.6	5.3	300.5	34.5	155.4	4.8	NA
16ATW-86-Spot 117	129	54711	2.1	19.8	2.2	0.2	3.1	0.0	2.2	0.7	155.5	3.3	159.6	4.5	220.9	50.5	155.5	3.3	NA
16ATW-86-Spot 3	230	29485	1.5	19.5	1.5	0.2	2.7	0.0	2.3	0.8	155.6	3.5	161.4	4.0	249.2	34.6	155.6	3.5	NA
16ATW-86-Spot 119	109	55439	4.3	19.0	1.7	0.2	3.0	0.0	2.5	0.8	155.6	3.8	165.4	4.6	309.5	38.5	155.6	3.8	NA
16ATW-86-Spot 56	247	109941	3.6	19.4	1.6	0.2	3.6	0.0	3.2	0.9	155.7	5.0	162.9	5.5	270.6	37.6	155.7	5.0	NA
16ATW-86-Spot 213	31	18784	3.3	19.2	3.6	0.2	4.3	0.0	2.2	0.5	155.7	3.4	164.6	6.5	294.9	82.9	155.7	3.4	NA
16ATW-86-Spot 47	49	7484	2.3	20.1	3.4	0.2	4.4	0.0	2.8	0.6	155.8	4.2	157.8	6.4	188.4	78.5	155.8	4.2	NA
16ATW-86-Spot 154	323	103260	2.5	17.9	2.4	0.2	3.2	0.0	2.1	0.7	156.0	3.3	175.3	5.1	445.7	52.6	156.0	3.3	NA
16ATW-86-Spot 48	122	13621	1.5	19.8	2.2	0.2	3.2	0.0	2.3	0.7	156.0	3.6	159.5	4.7	212.7	50.5	156.0	3.6	NA
16ATW-86-Spot 110	79	75341	3.9	19.7	2.1	0.2	3.0	0.0	2.1	0.7	156.0	3.2	160.9	4.4	234.0	48.9	156.0	3.2	NA
16ATW-86-Spot 277	71	12183	2.5	19.6	2.5	0.2	3.5	0.0	2.5	0.7	156.2	3.9	161.8	5.3	245.8	57.1	156.2	3.9	NA
16ATW-86-Spot 61	37	4993	3.0	20.3	4.1	0.2	5.1	0.0	3.1	0.6	156.3	4.8	156.7	7.5	164.1	95.3	156.3	4.8	NA
16ATW-86-Spot 138	120	15434	1.5	19.3	1.8	0.2	3.5	0.0	3.1	0.9	156.3	4.8	163.9	5.4	275.7	40.3	156.3	4.8	NA
16ATW-86-Spot 174	83	14986	2.1	19.7	2.9	0.2	3.6	0.0	2.2	0.6	156.4	3.4	160.8	5.4	226.8	67.0	156.4	3.4	NA
16ATW-86-Spot 132	91	141237	1.7	19.4	2.2	0.2	3.6	0.0	2.9	0.8	156.4	4.4	163.6	5.5	270.3	51.1	156.4	4.4	NA
16ATW-86-Spot 74	75	27403	2.1	19.0	2.3	0.2	3.4	0.0	2.5	0.7	156.5	3.9	166.9	5.2	318.6	52.4	156.5	3.9	NA
16ATW-86-Spot 309	72	11573	2.1	19.4	2.4	0.2	3.9	0.0	3.0	0.8	156.5	4.7	163.6	5.8	268.2	55.5	156.5	4.7	NA
16ATW-86-Spot 150	60	67358	2.0	18.9	2.5	0.2	3.6	0.0	2.6	0.7	156.8	4.0	167.4	5.6	321.5	57.5	156.8	4.0	NA
16ATW-86-Spot 37	58	209308	3.0	19.0	3.2	0.2	4.1	0.0	2.5	0.6	156.8	3.9	167.0	6.3	314.6	73.0	156.8	3.9	NA
16ATW-86-Spot 6	160	60173	4.8	18.8	1.9	0.2	3.0	0.0	2.4	0.8	156.9	3.7	168.3	4.7	332.9	43.9	156.9	3.7	NA
16ATW-86-Spot 118	190	47471	1.5	19.2	1.5	0.2	2.9	0.0	2.5	0.9	157.0	4.0	165.4	4.5	289.3	33.6	157.0	4.0	NA
16ATW-86-Spot 95	100	42445	1.8	19.8	2.1	0.2	3.3	0.0	2.6	0.8	157.1	4.1	161.2	5.0	223.3	48.1	157.1	4.1	NA

16ATW-86-Spot 112	84	52316	3.0	19.5	2.0	0.2	3.4	0.0	2.8	0.8	157.1	4.3	163.3	5.2	255.1	45.9	157.1	4.3	NA
16ATW-86-Spot 40	53	18354	2.0	19.4	2.3	0.2	3.4	0.0	2.5	0.7	157.1	3.9	163.8	5.1	261.5	52.1	157.1	3.9	NA
16ATW-86-Spot 97	75	11528	2.4	19.7	2.3	0.2	3.4	0.0	2.4	0.7	157.2	3.8	161.6	5.1	228.5	54.0	157.2	3.8	NA
16ATW-86-Spot 259	117	7270	2.2	19.4	2.2	0.2	3.7	0.0	3.0	0.8	157.2	4.6	164.0	5.7	263.4	51.6	157.2	4.6	NA
16ATW-86-Spot 58	86	65267	3.7	19.7	2.4	0.2	3.9	0.0	3.0	0.8	157.3	4.7	162.1	5.8	233.9	56.5	157.3	4.7	NA
16ATW-86-Spot 10	64	10667	2.2	20.0	2.2	0.2	3.2	0.0	2.3	0.7	157.5	3.5	159.5	4.7	191.5	50.7	157.5	3.5	NA
16ATW-86-Spot 148	115	8358	2.8	20.0	2.1	0.2	3.3	0.0	2.6	0.8	157.5	4.1	159.5	4.9	191.0	47.7	157.5	4.1	NA
16ATW-86-Spot 46	99	41661	4.5	19.5	1.9	0.2	2.8	0.0	2.1	0.7	157.6	3.3	163.6	4.2	251.4	42.9	157.6	3.3	NA
16ATW-86-Spot 215	69	55257	3.2	19.3	2.4	0.2	3.9	0.0	3.1	0.8	157.7	4.8	165.4	5.9	279.4	54.0	157.7	4.8	NA
16ATW-86-Spot 33	247	27868	2.9	20.1	1.6	0.2	2.3	0.0	1.6	0.7	157.8	2.5	159.7	3.4	188.4	37.7	157.8	2.5	NA
16ATW-86-Spot 54	280	38576	1.5	19.4	1.5	0.2	3.0	0.0	2.6	0.9	157.8	4.0	165.0	4.6	269.5	34.4	157.8	4.0	NA
16ATW-86-Spot 314	64	12596	2.2	19.4	2.6	0.2	4.1	0.0	3.1	0.8	158.0	4.9	165.0	6.2	266.7	60.3	158.0	4.9	NA
16ATW-86-Spot 111	31	82756	5.2	19.7	2.7	0.2	4.0	0.0	2.9	0.7	158.0	4.6	162.6	6.0	230.9	61.4	158.0	4.6	NA
16ATW-86-Spot 190	87	60451	2.5	18.7	2.4	0.2	3.1	0.0	2.0	0.6	158.2	3.1	170.9	4.9	351.8	55.0	158.2	3.1	NA
16ATW-86-Spot 152	164	44090	1.4	19.6	2.0	0.2	3.4	0.0	2.7	0.8	158.3	4.2	163.5	5.1	241.5	46.2	158.3	4.2	NA
16ATW-86-Spot 274	710	87264	1.9	19.7	1.2	0.2	2.8	0.0	2.5	0.9	158.4	4.0	162.6	4.2	225.1	27.2	158.4	4.0	NA
16ATW-86-Spot 280	43	4996	3.5	20.3	3.4	0.2	4.1	0.0	2.3	0.6	158.4	3.5	158.6	6.0	162.6	79.3	158.4	3.5	NA
16ATW-86-Spot 94	94	32336	3.5	18.8	2.0	0.2	3.2	0.0	2.5	0.8	158.5	3.8	170.1	5.0	335.3	45.5	158.5	3.8	NA
16ATW-86-Spot 102	128	11014	1.4	19.8	1.9	0.2	3.8	0.0	3.3	0.9	158.6	5.1	162.6	5.7	222.1	43.8	158.6	5.1	NA
16ATW-86-Spot 78	46	662259	3.0	18.7	3.2	0.2	4.3	0.0	2.9	0.7	159.2	4.5	171.6	6.8	347.9	73.5	159.2	4.5	NA
16ATW-86-Spot 226	108	24506	2.7	18.7	2.1	0.2	3.7	0.0	3.1	0.8	159.3	4.9	172.0	5.9	351.6	46.9	159.3	4.9	NA
16ATW-86-Spot 125	71	26383	2.2	19.1	2.2	0.2	3.2	0.0	2.3	0.7	159.4	3.6	168.3	5.0	296.0	51.3	159.4	3.6	NA
16ATW-86-Spot 71	66	35886	2.7	18.9	2.0	0.2	3.1	0.0	2.3	0.8	159.4	3.7	169.9	4.9	319.6	46.6	159.4	3.7	NA
16ATW-86-Spot 87	114	109856	2.2	18.8	1.6	0.2	2.9	0.0	2.4	0.8	159.4	3.8	170.9	4.6	332.9	37.3	159.4	3.8	NA
16ATW-86-Spot 142	182	28519	2.8	19.3	1.4	0.2	3.2	0.0	2.8	0.9	159.7	4.5	167.5	4.9	279.6	32.3	159.7	4.5	NA
16ATW-86-Spot 39	45	23391	3.1	19.8	3.2	0.2	4.1	0.0	2.6	0.6	159.8	4.1	163.3	6.2	215.0	73.7	159.8	4.1	NA
16ATW-86-Spot 25	75	8532	2.2	19.9	2.9	0.2	3.8	0.0	2.4	0.6	159.9	3.8	162.8	5.7	206.1	68.1	159.9	3.8	NA

16ATW-86-Spot 105	275	274852	2.9	19.1	1.4	0.2	3.1	0.0	2.7	0.9	159.9	4.3	169.2	4.8	302.3	31.1	159.9	4.3	NA
16ATW-86-Spot 92	32	5680	3.0	20.9	3.5	0.2	4.3	0.0	2.6	0.6	160.0	4.0	155.5	6.2	89.0	82.8	160.0	4.0	NA
16ATW-86-Spot 121	176	29342	2.7	19.6	1.6	0.2	2.6	0.0	2.1	0.8	160.0	3.3	165.0	4.0	238.7	36.0	160.0	3.3	NA
16ATW-86-Spot 175	232	27285	1.8	19.4	1.5	0.2	2.6	0.0	2.1	0.8	160.0	3.3	166.4	4.0	259.5	34.5	160.0	3.3	NA
16ATW-86-Spot 243	123	267672	3.0	19.7	1.8	0.2	3.2	0.0	2.6	0.8	160.1	4.2	164.4	4.8	228.7	41.0	160.1	4.2	NA
16ATW-86-Spot 31	265	19035	5.0	19.8	1.4	0.2	2.5	0.0	2.1	0.8	160.2	3.4	164.3	3.9	224.0	32.4	160.2	3.4	NA
16ATW-86-Spot 42	90	257633	2.6	19.1	2.3	0.2	3.6	0.0	2.8	0.8	160.3	4.4	169.8	5.7	304.9	53.0	160.3	4.4	NA
16ATW-86-Spot 164	85	40837	2.9	19.6	1.7	0.2	3.1	0.0	2.5	0.8	160.5	4.0	165.3	4.7	236.4	39.4	160.5	4.0	NA
16ATW-86-Spot 203	136	18701	3.0	19.7	2.2	0.2	3.5	0.0	2.7	0.8	160.7	4.2	165.2	5.3	231.0	51.3	160.7	4.2	NA
16ATW-86-Spot 9	42	4547	3.1	21.6	3.6	0.2	4.2	0.0	2.3	0.5	160.8	3.6	152.1	6.0	18.3	85.9	160.8	3.6	NA
16ATW-86-Spot 128	94	72995	3.0	19.2	2.0	0.2	3.1	0.0	2.3	0.8	160.9	3.7	168.9	4.8	283.8	45.5	160.9	3.7	NA
16ATW-86-Spot 218	331	175358	1.5	19.4	1.1	0.2	2.2	0.0	1.8	0.9	160.9	2.9	167.7	3.4	265.7	26.2	160.9	2.9	NA
16ATW-86-Spot 79	191	68700	1.5	19.7	1.4	0.2	2.4	0.0	1.9	0.8	161.0	3.1	165.1	3.6	225.3	32.5	161.0	3.1	NA
16ATW-86-Spot 253	112	80083	2.3	18.0	2.1	0.2	3.3	0.0	2.6	0.8	161.1	4.1	180.1	5.5	437.9	46.6	161.1	4.1	NA
16ATW-86-Spot 185	319	32689	7.2	19.6	1.2	0.2	2.9	0.0	2.6	0.9	161.2	4.1	166.1	4.4	237.8	28.0	161.2	4.1	NA
16ATW-86-Spot 19	704	130102	1.9	20.0	1.1	0.2	2.1	0.0	1.8	0.9	161.4	2.9	163.7	3.2	198.5	24.7	161.4	2.9	NA
16ATW-86-Spot 241	168	19447	2.8	19.9	1.5	0.2	3.2	0.0	2.8	0.9	161.6	4.5	164.8	4.8	211.5	34.6	161.6	4.5	NA
16ATW-86-Spot 14	68	15413	3.0	20.1	2.5	0.2	3.1	0.0	1.8	0.6	161.6	2.9	163.2	4.6	186.7	57.4	161.6	2.9	NA
16ATW-86-Spot 222	109	23755	3.0	19.2	1.9	0.2	3.1	0.0	2.5	0.8	161.6	4.0	169.6	4.9	283.7	44.0	161.6	4.0	NA
16ATW-86-Spot 249	133	195068	2.9	19.4	2.3	0.2	3.6	0.0	2.8	0.8	161.7	4.5	168.6	5.6	268.2	51.9	161.7	4.5	NA
16ATW-86-Spot 311	115	14232	6.1	19.9	2.3	0.2	3.5	0.0	2.6	0.7	161.7	4.1	164.3	5.3	203.2	54.3	161.7	4.1	NA
16ATW-86-Spot 34	93	32817	2.8	19.7	2.1	0.2	2.8	0.0	1.9	0.7	161.8	3.1	165.8	4.3	224.5	47.7	161.8	3.1	NA
16ATW-86-Spot 75	109	49248	2.7	19.5	2.3	0.2	3.4	0.0	2.5	0.7	162.0	4.0	168.2	5.3	257.4	51.9	162.0	4.0	NA
16ATW-86-Spot 2	26	2849	2.8	17.9	4.7	0.2	5.6	0.0	3.0	0.5	162.1	4.8	181.4	9.3	442.6	104.3	162.1	4.8	NA
16ATW-86-Spot 106	54	4540	2.2	20.1	2.8	0.2	4.3	0.0	3.3	0.8	162.1	5.3	163.5	6.5	185.2	65.2	162.1	5.3	NA
16ATW-86-Spot 160	334	228845	1.7	20.1	1.3	0.2	3.5	0.0	3.2	0.9	162.1	5.2	163.4	5.2	183.5	29.8	162.1	5.2	NA

16ATW-86-Spot 267	393	35971	1.3	19.7	1.2	0.2	2.4	0.0	2.1	0.9	162.1	3.3	166.5	3.7	230.3	28.6	162.1	3.3	NA
16ATW-86-Spot 15	815	129313	1.3	19.5	1.0	0.2	2.3	0.0	2.1	0.9	162.4	3.4	168.6	3.6	257.2	23.2	162.4	3.4	NA
16ATW-86-Spot 91	134	41010	2.4	20.1	1.6	0.2	2.6	0.0	2.0	0.8	162.6	3.3	164.0	3.9	185.3	37.8	162.6	3.3	NA
16ATW-86-Spot 210	69	8274	2.8	20.0	2.9	0.2	3.7	0.0	2.4	0.6	162.9	3.9	165.0	5.7	196.5	66.4	162.9	3.9	NA
16ATW-86-Spot 45	100	20981	1.5	20.1	2.5	0.2	3.5	0.0	2.4	0.7	163.0	3.9	164.5	5.3	186.9	57.7	163.0	3.9	NA
16ATW-86-Spot 65	354	57611	3.9	19.9	1.4	0.2	2.0	0.0	1.4	0.7	163.1	2.3	165.9	3.1	206.4	32.6	163.1	2.3	NA
16ATW-86-Spot 77	316	37931	2.2	19.5	1.2	0.2	2.4	0.0	2.1	0.9	163.2	3.4	169.2	3.8	255.5	28.6	163.2	3.4	NA
16ATW-86-Spot 200	768	63635	1.4	18.5	1.7	0.2	2.9	0.0	2.4	0.8	163.5	3.8	177.5	4.8	370.3	38.8	163.5	3.8	NA
16ATW-86-Spot 17	78	90643	2.4	19.4	1.4	0.2	2.8	0.0	2.4	0.9	163.8	3.9	170.2	4.4	260.7	32.9	163.8	3.9	NA
16ATW-86-Spot 11	82	11431	2.4	19.9	2.4	0.2	3.3	0.0	2.4	0.7	163.8	3.8	166.9	5.1	211.5	54.5	163.8	3.8	NA
16ATW-86-Spot 204	146	95903	1.5	19.5	1.7	0.2	3.4	0.0	2.9	0.9	163.9	4.6	170.0	5.3	257.4	40.1	163.9	4.6	NA
16ATW-86-Spot 144	180	17985	1.9	19.3	1.7	0.2	3.3	0.0	2.9	0.9	164.2	4.6	171.7	5.2	277.8	37.8	164.2	4.6	NA
16ATW-86-Spot 285	67	10926	2.4	19.0	2.3	0.2	3.5	0.0	2.7	0.8	164.6	4.4	175.0	5.7	318.2	51.4	164.6	4.4	NA
16ATW-86-Spot 60	133	107925	2.3	19.6	1.8	0.2	2.7	0.0	2.0	0.7	164.9	3.2	169.8	4.2	239.1	41.5	164.9	3.2	NA
16ATW-86-Spot 208	238	54253	2.6	19.2	1.3	0.2	2.6	0.0	2.2	0.9	165.2	3.7	173.3	4.1	286.7	29.5	165.2	3.7	NA
16ATW-86-Spot 27	89	1110710	1.9	18.9	2.1	0.2	3.1	0.0	2.3	0.7	165.7	3.7	176.5	5.0	325.2	46.7	165.7	3.7	NA
16ATW-86-Spot 153	92	410664	2.5	18.9	1.4	0.2	3.2	0.0	2.8	0.9	166.1	4.6	176.6	5.1	320.4	32.1	166.1	4.6	NA
16ATW-86-Spot 18	204	56010	1.6	20.0	1.6	0.2	3.2	0.0	2.8	0.9	166.4	4.6	168.2	5.0	194.6	37.5	166.4	4.6	NA
16ATW-86-Spot 50	225	101112	3.7	19.4	1.8	0.2	3.1	0.0	2.5	0.8	166.6	4.1	172.9	4.9	261.5	41.9	166.6	4.1	NA
16ATW-86-Spot 23	96	145083	3.0	18.4	1.6	0.2	2.8	0.0	2.3	0.8	167.7	3.9	182.9	4.7	385.6	35.4	167.7	3.9	NA
16ATW-86-Spot 191	285	31355	1.5	19.3	1.2	0.2	2.8	0.0	2.6	0.9	167.8	4.2	175.5	4.6	281.7	28.1	167.8	4.2	NA
16ATW-86-Spot 221	52	5998	3.7	19.3	3.2	0.2	4.4	0.0	2.9	0.7	168.1	4.9	175.8	7.0	282.0	74.1	168.1	4.9	NA
16ATW-86-Spot 271	220	28021	2.5	19.7	1.3	0.2	2.9	0.0	2.6	0.9	169.6	4.4	173.7	4.7	230.7	30.8	169.6	4.4	NA
16ATW-86-Spot 13	273	290215	2.0	19.3	1.5	0.2	3.4	0.0	3.1	0.9	169.6	5.1	176.8	5.5	274.5	33.9	169.6	5.1	NA
16ATW-86-Spot 53	125	12338	1.7	19.8	2.0	0.2	2.9	0.0	2.1	0.7	170.1	3.5	173.2	4.5	217.0	45.7	170.1	3.5	NA
16ATW-86-Spot 189	124	152889	3.3	19.6	2.1	0.2	3.1	0.0	2.2	0.7	170.6	3.8	175.0	4.9	236.8	48.5	170.6	3.8	NA
16ATW-86-Spot 141	101	87125	2.1	19.9	1.9	0.2	2.8	0.0	2.1	0.7	171.7	3.5	173.8	4.6	202.9	44.9	171.7	3.5	NA

16ATW-86-Spot 247	119	92216	2.0	18.8	1.8	0.2	2.5	0.0	1.7	0.7	171.8	2.9	183.8	4.2	341.7	40.6	171.8	2.9	NA
16ATW-86-Spot 238	283	107525	1.9	19.7	1.4	0.2	2.9	0.0	2.6	0.9	172.3	4.4	176.2	4.7	229.1	32.1	172.3	4.4	NA
16ATW-86-Spot 101	134	38821	2.9	19.5	1.8	0.2	3.0	0.0	2.4	0.8	172.7	4.1	178.3	5.0	253.6	41.6	172.7	4.1	NA
16ATW-86-Spot 231	88	11037	3.4	19.3	3.3	0.2	4.4	0.0	2.9	0.7	173.0	5.0	179.8	7.2	271.4	74.8	173.0	5.0	NA
16ATW-86-Spot 263	82	99442	3.0	18.8	2.3	0.2	3.8	0.0	3.0	0.8	173.2	5.1	185.2	6.4	341.7	53.1	173.2	5.1	NA
16ATW-86-Spot 250	140	145442	4.9	19.3	1.8	0.2	3.1	0.0	2.5	0.8	173.5	4.3	180.7	5.1	277.4	40.5	173.5	4.3	NA
16ATW-86-Spot 286	216	442423	2.2	19.3	1.3	0.2	3.1	0.0	2.8	0.9	176.8	4.9	184.2	5.2	280.8	30.7	176.8	4.9	NA
16ATW-86-Spot 49	58	71788	1.1	18.7	2.9	0.2	3.6	0.0	2.1	0.6	177.3	3.7	189.8	6.2	348.2	64.7	177.3	3.7	NA
16ATW-86-Spot 109	644	647685	1.4	19.8	1.2	0.2	2.7	0.0	2.4	0.9	178.1	4.2	180.8	4.4	218.2	27.1	178.1	4.2	NA
16ATW-86-Spot 140	724	121405	2.4	19.6	1.0	0.2	2.4	0.0	2.2	0.9	178.3	3.8	182.5	4.0	238.5	24.2	178.3	3.8	NA
16ATW-86-Spot 235	251	169170	2.4	19.1	1.3	0.2	3.2	0.0	2.9	0.9	178.5	5.1	187.1	5.4	297.0	30.8	178.5	5.1	NA
16ATW-86-Spot 273	1442	301347	2.6	19.9	1.1	0.2	2.5	0.0	2.2	0.9	179.5	4.0	181.0	4.1	202.2	24.6	179.5	4.0	NA
16ATW-86-Spot 234	161	47515	2.1	19.5	1.7	0.2	3.2	0.0	2.7	0.9	180.1	4.8	185.4	5.4	254.6	38.5	180.1	4.8	NA
16ATW-86-Spot 131	124	211053	2.2	18.9	2.0	0.2	2.8	0.0	2.0	0.7	180.2	3.6	191.0	5.0	327.7	45.7	180.2	3.6	NA
16ATW-86-Spot 24	200	139169	2.1	19.5	1.2	0.2	2.3	0.0	2.0	0.9	180.7	3.5	185.8	3.9	251.3	27.2	180.7	3.5	NA
16ATW-86-Spot 134	105	17724	3.3	19.2	2.4	0.2	4.2	0.0	3.5	0.8	180.8	6.2	188.3	7.2	285.0	55.1	180.8	6.2	NA
16ATW-86-Spot 261	174	184664	3.2	18.5	1.4	0.2	2.6	0.0	2.2	0.8	181.6	3.9	195.7	4.6	370.1	32.6	181.6	3.9	NA
16ATW-86-Spot 179	81	33006	3.0	19.0	2.0	0.2	3.5	0.0	2.9	0.8	183.0	5.2	192.7	6.1	313.6	45.8	183.0	5.2	NA
16ATW-86-Spot 177	380	91419	1.9	19.5	1.3	0.2	3.5	0.0	3.3	0.9	183.1	5.9	188.3	6.1	255.6	30.8	183.1	5.9	NA
16ATW-86-Spot 76	90	10404	2.0	19.9	2.2	0.2	3.3	0.0	2.4	0.7	183.2	4.4	184.7	5.5	205.1	50.4	183.2	4.4	NA
16ATW-86-Spot 227	491	37523	1.1	19.6	1.3	0.2	2.8	0.0	2.5	0.9	184.1	4.6	188.3	4.9	242.3	30.3	184.1	4.6	NA
16ATW-86-Spot 145	109	42439	2.0	19.8	1.6	0.2	2.4	0.0	1.9	0.8	184.2	3.4	186.8	4.2	221.8	36.5	184.2	3.4	NA
16ATW-86-Spot 167	400	242782	1.4	19.4	1.2	0.2	2.7	0.0	2.4	0.9	184.3	4.3	189.8	4.7	260.0	28.7	184.3	4.3	NA
16ATW-86-Spot 108	83	11671	2.9	19.1	2.6	0.2	3.6	0.0	2.5	0.7	184.3	4.5	192.8	6.3	299.0	58.9	184.3	4.5	NA

16ATW-86-Spot 194	92	33535	2.3	18.7	1.5	0.2	2.9	0.0	2.5	0.9	184.3	4.5	197.1	5.2	354.8	33.7	184.3	4.5	NA
16ATW-86-Spot 181	146	24477	2.0	19.5	1.7	0.2	3.0	0.0	2.4	0.8	184.5	4.4	189.4	5.1	252.4	39.6	184.5	4.4	NA
16ATW-86-Spot 93	274	24567	2.4	18.8	2.2	0.2	3.4	0.0	2.7	0.8	184.5	4.9	196.3	6.1	341.5	48.8	184.5	4.9	NA
16ATW-86-Spot 312	158	102426	1.6	19.5	1.8	0.2	3.4	0.0	2.8	0.8	185.4	5.2	190.7	5.9	257.5	41.6	185.4	5.2	NA
16ATW-86-Spot 266	1061	269601	2.1	19.9	0.8	0.2	2.2	0.0	2.1	0.9	185.7	3.8	187.4	3.8	209.7	18.8	185.7	3.8	NA
16ATW-86-Spot 135	113	253373	2.1	19.1	1.7	0.2	2.9	0.0	2.3	0.8	186.4	4.3	195.0	5.1	302.0	39.4	186.4	4.3	NA
16ATW-86-Spot 276	73	14297	1.3	18.9	2.1	0.2	3.1	0.0	2.2	0.7	186.5	4.1	197.3	5.6	328.8	48.6	186.5	4.1	NA
16ATW-86-Spot 4	107	19985	3.2	19.2	1.4	0.2	3.0	0.0	2.6	0.9	186.5	4.9	194.5	5.3	292.5	31.5	186.5	4.9	NA
16ATW-86-Spot 244	1800	739572	1.0	19.5	0.8	0.2	2.2	0.0	2.1	0.9	187.1	3.8	191.9	3.9	252.7	19.0	187.1	3.8	NA
16ATW-86-Spot 26	221	363582	2.6	19.1	1.4	0.2	2.8	0.0	2.5	0.9	187.8	4.5	195.9	5.0	296.7	31.8	187.8	4.5	NA
16ATW-86-Spot 137	3785	627060	1.6	19.7	1.2	0.2	2.8	0.0	2.5	0.9	187.9	4.6	191.1	4.8	232.0	28.3	187.9	4.6	NA
16ATW-86-Spot 126	77	13556	2.6	20.1	2.6	0.2	3.9	0.0	2.9	0.7	188.0	5.4	187.4	6.7	181.9	61.2	188.0	5.4	NA
16ATW-86-Spot 284	522	165413	1.9	19.4	1.0	0.2	2.5	0.0	2.3	0.9	188.4	4.3	194.3	4.5	268.0	22.6	188.4	4.3	NA
16ATW-86-Spot 90	81	152594	2.3	18.6	2.4	0.2	6.5	0.0	6.1	0.9	188.7	11.3	202.1	12.0	363.1	55.1	188.7	11.3	NA
16ATW-86-Spot 178	83	14029	1.2	19.7	2.1	0.2	3.1	0.0	2.2	0.7	188.7	4.1	191.9	5.4	233.3	49.0	188.7	4.1	NA
16ATW-86-Spot 270	73	20449	2.7	19.5	2.0	0.2	4.1	0.0	3.6	0.9	188.8	6.7	194.0	7.2	259.3	44.9	188.8	6.7	NA
16ATW-86-Spot 21	139	28727	2.0	19.3	2.1	0.2	3.7	0.0	3.1	0.8	188.8	5.7	195.3	6.6	274.8	47.6	188.8	5.7	NA
16ATW-86-Spot 293	146	41042	3.0	19.4	1.3	0.2	2.8	0.0	2.5	0.9	189.0	4.6	195.1	5.0	271.0	29.6	189.0	4.6	NA
16ATW-86-Spot 305	69	38117	2.7	18.7	2.3	0.2	3.4	0.0	2.6	0.7	189.3	4.8	201.9	6.2	352.7	51.0	189.3	4.8	NA
16ATW-86-Spot 99	299	852325	2.6	19.3	1.1	0.2	2.4	0.0	2.1	0.9	189.7	3.9	196.0	4.2	272.3	25.2	189.7	3.9	NA
16ATW-86-Spot 7	120	13158	3.2	19.2	1.7	0.2	2.9	0.0	2.3	0.8	190.5	4.3	198.1	5.1	290.9	39.5	190.5	4.3	NA
16ATW-86-Spot 298	126	31028	2.2	17.6	2.1	0.2	3.3	0.0	2.6	0.8	190.7	4.8	214.8	6.4	488.8	46.0	190.7	4.8	NA
16ATW-86-Spot 16	136	25916	2.0	19.2	1.4	0.2	2.8	0.0	2.4	0.9	191.0	4.6	198.4	5.1	287.6	32.5	191.0	4.6	NA
16ATW-86-Spot 202	170	199525	1.5	19.1	1.7	0.2	3.2	0.0	2.7	0.8	191.3	5.1	200.1	5.8	305.8	39.3	191.3	5.1	NA
16ATW-86-Spot 302	633	178119	1.7	19.4	0.9	0.2	2.4	0.0	2.2	0.9	191.7	4.2	197.5	4.3	268.5	20.8	191.7	4.2	NA

16ATW-86-Spot 103	442	242634	1.5	19.5	1.3	0.2	2.8	0.0	2.5	0.9	191.8	4.7	196.3	5.0	252.1	30.1	191.8	4.7	NA
16ATW-86-Spot 224	199	98626	1.4	19.3	1.3	0.2	2.6	0.0	2.3	0.9	191.9	4.3	198.6	4.7	279.9	28.7	191.9	4.3	NA
16ATW-86-Spot 139	185	309408	2.9	18.9	1.4	0.2	2.6	0.0	2.2	0.8	192.0	4.2	202.2	4.8	323.5	31.6	192.0	4.2	NA
16ATW-86-Spot 115	165	2938937	1.8	19.2	1.6	0.2	2.7	0.0	2.2	0.8	192.2	4.2	199.8	4.9	292.1	36.2	192.2	4.2	NA
16ATW-86-Spot 275	163	190952	2.1	19.0	1.6	0.2	3.0	0.0	2.6	0.8	192.3	4.9	201.5	5.5	310.7	36.4	192.3	4.9	NA
16ATW-86-Spot 171	537	221968	1.8	19.7	1.0	0.2	2.0	0.0	1.7	0.9	192.9	3.3	195.8	3.6	231.9	24.2	192.9	3.3	NA
16ATW-86-Spot 289	756	214496	1.6	19.7	1.1	0.2	2.3	0.0	2.0	0.9	193.0	3.8	196.0	4.0	234.2	25.1	193.0	3.8	NA
16ATW-86-Spot 180	192	98227	1.8	18.5	1.0	0.2	2.3	0.0	2.1	0.9	193.1	4.0	207.0	4.4	369.1	22.8	193.1	4.0	NA
16ATW-86-Spot 22	341	22313194	2.7	19.8	1.2	0.2	2.4	0.0	2.1	0.9	193.3	4.0	195.0	4.2	215.9	27.6	193.3	4.0	NA
16ATW-86-Spot 157	915	63741	2.7	17.7	1.2	0.2	2.8	0.0	2.6	0.9	193.4	4.9	215.6	5.5	466.9	26.0	193.4	4.9	NA
16ATW-86-Spot 168	665	101740	1.0	18.9	1.2	0.2	2.9	0.0	2.6	0.9	194.2	5.0	204.4	5.3	325.2	27.1	194.2	5.0	NA
16ATW-86-Spot 246	866	171001	1.5	19.4	1.2	0.2	2.4	0.0	2.1	0.9	194.4	4.0	200.2	4.3	269.5	26.4	194.4	4.0	NA
16ATW-86-Spot 63	363	162387	2.1	19.1	1.3	0.2	2.8	0.0	2.5	0.9	194.5	4.8	202.5	5.2	297.5	30.3	194.5	4.8	NA
16ATW-86-Spot 55	670	58437	2.5	19.8	1.1	0.2	2.7	0.0	2.5	0.9	196.5	4.8	198.2	4.8	219.2	24.3	196.5	4.8	NA
16ATW-86-Spot 28	569	214208	1.5	19.6	1.4	0.2	4.7	0.0	4.5	1.0	198.0	8.7	201.5	8.6	243.5	31.8	198.0	8.7	NA
16ATW-86-Spot 62	512	59723	3.0	19.5	0.9	0.2	2.3	0.0	2.1	0.9	198.4	4.2	202.3	4.3	249.6	21.6	198.4	4.2	NA
16ATW-86-Spot 186	211	34584	1.9	19.2	1.5	0.2	2.8	0.0	2.4	0.9	198.7	4.8	206.2	5.3	293.8	33.4	198.7	4.8	NA
16ATW-86-Spot 220	311	308793	3.1	19.5	1.7	0.2	3.3	0.0	2.9	0.9	199.2	5.7	203.0	6.1	249.2	38.4	199.2	5.7	NA
16ATW-86-Spot 209	435	1960070	2.3	19.3	1.2	0.2	2.6	0.0	2.3	0.9	199.3	4.6	205.7	4.8	281.8	26.5	199.3	4.6	NA
16ATW-86-Spot 41	518	4999463	2.9	19.5	0.8	0.2	2.6	0.0	2.5	1.0	199.3	4.9	204.0	4.9	259.1	18.0	199.3	4.9	NA
16ATW-86-Spot 287	384	122690	2.5	19.1	1.1	0.2	2.8	0.0	2.6	0.9	200.1	5.1	207.8	5.3	297.1	25.5	200.1	5.1	NA
16ATW-86-Spot 206	339	85545	2.0	19.5	1.4	0.2	3.0	0.0	2.6	0.9	200.4	5.1	204.4	5.5	252.6	32.1	200.4	5.1	NA
16ATW-86-Spot 262	599	389610	2.9	19.4	1.1	0.2	2.5	0.0	2.2	0.9	201.9	4.3	207.3	4.6	270.6	26.1	201.9	4.3	NA
16ATW-86-Spot 187	676	211745	2.0	19.6	1.0	0.2	2.3	0.0	2.1	0.9	205.7	4.2	208.3	4.4	237.7	23.4	205.7	4.2	NA
16ATW-86-Spot 68	446	94686	3.3	19.4	1.1	0.2	2.6	0.0	2.3	0.9	205.8	4.7	210.4	4.9	262.6	24.6	205.8	4.7	NA

16ATW-86-Spot 304	148	16598	2.4	19.3	1.4	0.2	3.1	0.0	2.8	0.9	206.2	5.7	212.1	6.0	279.0	31.8	206.2	5.7	NA
16ATW-86-Spot 123	635	225914	2.3	19.2	1.1	0.2	2.8	0.0	2.6	0.9	206.6	5.2	213.7	5.4	293.0	25.2	206.6	5.2	NA
16ATW-86-Spot 127	466	70453	2.3	18.9	1.5	0.2	2.6	0.0	2.2	0.8	215.6	4.6	225.1	5.3	326.6	34.9	215.6	4.6	NA
16ATW-86-Spot 258	372	61131	2.4	18.7	1.3	0.3	2.5	0.0	2.1	0.9	217.2	4.5	228.9	5.1	351.3	28.8	217.2	4.5	NA
16ATW-86-Spot 199	541	370727	2.4	19.4	1.2	0.3	3.5	0.0	3.3	0.9	231.7	7.4	234.7	7.3	265.1	27.3	231.7	7.4	NA
16ATW-86-Spot 257	79	46306	1.5	19.1	2.1	0.3	3.4	0.0	2.7	0.8	234.1	6.2	240.0	7.4	298.9	49.0	234.1	6.2	NA
16ATW-86-Spot 308	1016	1497857	2.1	18.9	0.8	0.3	2.4	0.0	2.2	0.9	283.9	6.2	288.7	6.0	329.1	18.7	283.9	6.2	NA
16ATW-86-Spot 1	55	120880	3.9	17.7	2.0	0.4	6.2	0.0	5.8	0.9	285.3	16.2	307.2	16.3	477.7	44.2	285.3	16.2	NA
16ATW-86-Spot 188	927	143850	1.9	19.2	1.0	0.3	2.5	0.0	2.3	0.9	287.8	6.6	287.9	6.4	289.2	22.9	287.8	6.6	NA
16ATW-86-Spot 268	139	1220203	1.9	16.0	1.6	0.4	3.0	0.0	2.6	0.8	287.9	7.3	337.5	8.7	695.8	34.3	287.9	7.3	NA
16ATW-86-Spot 86	1432	242771	2.2	18.7	0.9	0.3	2.1	0.0	1.9	0.9	293.4	5.4	299.1	5.4	344.8	20.6	293.4	5.4	NA
16ATW-86-Spot 278	201	39727	4.0	18.3	1.0	0.4	3.4	0.0	3.3	1.0	294.5	9.5	305.9	9.1	394.8	21.8	294.5	9.5	NA
16ATW-86-Spot 155	660	279865	4.3	18.9	0.9	0.3	2.3	0.0	2.1	0.9	294.9	6.0	298.7	5.9	329.5	21.4	294.9	6.0	NA
16ATW-86-Spot 272	930	293324	1.9	18.7	1.0	0.3	2.4	0.0	2.1	0.9	296.2	6.2	302.0	6.2	347.8	23.4	296.2	6.2	NA
16ATW-86-Spot 158	691	262794	4.8	18.4	0.9	0.4	2.2	0.0	2.0	0.9	298.0	5.7	308.0	5.8	385.8	21.1	298.0	5.7	NA
16ATW-86-Spot 147	620	176164	3.6	19.0	0.9	0.3	3.2	0.0	3.1	1.0	298.3	8.9	300.3	8.3	316.6	19.8	298.3	8.9	NA
16ATW-86-Spot 288	154	364800	1.8	18.2	1.3	0.4	3.1	0.0	2.8	0.9	299.7	8.2	312.1	8.3	407.1	28.9	299.7	8.2	NA
16ATW-86-Spot 96	385	251723	3.2	18.7	1.0	0.4	2.4	0.0	2.2	0.9	300.1	6.5	306.0	6.5	352.4	22.3	300.1	6.5	NA
16ATW-86-Spot 196	411	1858031	1.9	18.8	1.1	0.4	3.0	0.0	2.7	0.9	302.6	8.1	306.9	7.9	340.3	25.6	302.6	8.1	NA
16ATW-86-Spot 85	508	165537	3.0	18.8	1.0	0.4	3.2	0.0	3.0	1.0	302.9	9.0	307.3	8.5	341.7	22.3	302.9	9.0	NA
16ATW-86-Spot 291	934	798179	6.5	18.9	1.0	0.4	2.4	0.0	2.2	0.9	303.0	6.4	304.9	6.3	320.0	23.0	303.0	6.4	NA
16ATW-86-Spot 232	454	203019	5.8	18.5	0.9	0.4	2.9	0.0	2.8	0.9	304.3	8.3	312.7	7.9	376.5	21.0	304.3	8.3	NA
16ATW-86-Spot 162	411	95146	1.9	18.9	0.9	0.4	1.9	0.0	1.7	0.9	304.5	5.1	306.6	5.1	323.7	19.5	304.5	5.1	NA
16ATW-86-Spot 116	1258	159377	6.6	19.1	1.0	0.3	2.1	0.0	1.9	0.9	304.7	5.7	304.4	5.6	302.4	22.0	304.7	5.7	NA

16ATW-86-Spot 29	547	209909	4.3	19.1	0.9	0.4	2.5	0.0	2.3	0.9	305.3	6.8	305.2	6.5	305.4	21.3	305.3	6.8	NA
16ATW-86-Spot 129	153	262715	4.2	18.1	1.6	0.4	3.5	0.0	3.1	0.9	306.8	9.1	320.2	9.5	419.9	36.0	306.8	9.1	NA
16ATW-86-Spot 146	1264	235164	4.7	18.9	1.0	0.4	2.5	0.0	2.3	0.9	308.4	6.8	310.1	6.5	324.4	21.7	308.4	6.8	NA
16ATW-86-Spot 212	294	123934	2.7	18.4	1.0	0.4	2.6	0.0	2.4	0.9	308.8	7.2	318.4	7.1	390.7	23.2	308.8	7.2	NA
16ATW-86-Spot 44	377	131267	4.1	18.7	0.9	0.4	2.1	0.0	1.9	0.9	309.2	5.7	313.8	5.7	348.4	21.0	309.2	5.7	NA
16ATW-86-Spot 120	73	30097	4.5	17.9	1.9	0.4	3.2	0.0	2.6	0.8	310.1	7.9	326.1	9.0	442.7	42.7	310.1	7.9	NA
16ATW-86-Spot 236	510	461841	5.1	18.7	1.0	0.4	2.6	0.0	2.4	0.9	310.2	7.3	314.7	7.0	349.3	22.5	310.2	7.3	NA
16ATW-86-Spot 184	341	256160	3.8	19.2	1.0	0.4	2.5	0.0	2.3	0.9	310.5	6.9	307.9	6.6	289.0	21.8	310.5	6.9	NA
16ATW-86-Spot 245	230	78435	2.2	18.0	1.1	0.4	2.6	0.0	2.4	0.9	310.8	7.3	325.0	7.3	429.0	23.6	310.8	7.3	NA
16ATW-86-Spot 70	270	392040	4.3	18.7	1.2	0.4	2.1	0.0	1.7	0.8	312.2	5.3	316.0	5.8	344.4	28.2	312.2	5.3	NA
16ATW-86-Spot 176	1480	6471981	1.6	19.2	0.8	0.4	2.5	0.0	2.4	0.9	312.5	7.2	309.9	6.6	291.4	18.8	312.5	7.2	NA
16ATW-86-Spot 67	313	201305	3.2	18.5	1.0	0.4	2.0	0.0	1.8	0.9	313.0	5.5	320.3	5.6	374.6	22.3	313.0	5.5	NA
16ATW-86-Spot 296	148	44329	1.2	17.7	1.5	0.4	2.7	0.0	2.2	0.8	313.0	6.8	333.0	7.7	476.1	34.1	313.0	6.8	NA
16ATW-86-Spot 59	373	592322	1.3	18.6	1.1	0.4	2.4	0.0	2.1	0.9	313.4	6.5	319.4	6.6	364.6	24.4	313.4	6.5	NA
16ATW-86-Spot 240	181	23740	3.7	18.4	1.1	0.4	2.6	0.1	2.3	0.9	319.8	7.3	328.1	7.2	388.4	24.1	319.8	7.3	NA
16ATW-86-Spot 104	458	788566	3.4	18.1	0.9	0.4	2.6	0.1	2.4	0.9	321.0	7.5	333.1	7.3	420.0	19.7	321.0	7.5	NA
16ATW-86-Spot 290	318	61109	2.1	16.0	1.4	0.4	3.1	0.1	2.8	0.9	321.5	8.7	371.0	9.7	694.0	30.7	321.5	8.7	NA
16ATW-86-Spot 156	91	17939	3.9	16.7	1.6	0.4	3.1	0.1	2.6	0.9	323.0	8.3	358.9	9.4	598.7	34.9	323.0	8.3	NA
16ATW-86-Spot 89	382	124589	1.6	17.9	1.7	0.4	2.9	0.1	2.3	0.8	324.6	7.3	339.8	8.2	445.8	37.5	324.6	7.3	NA
16ATW-86-Spot 229	466	197616	2.6	18.6	0.9	0.4	2.5	0.1	2.3	0.9	333.0	7.5	336.8	7.0	364.0	19.6	333.0	7.5	NA
16ATW-86-Spot 143	336	204163	1.1	18.0	1.0	0.5	2.8	0.1	2.6	0.9	431.5	10.7	431.6	9.7	433.0	22.0	431.5	10.7	99.6
16ATW-86-Spot 20	295	322005	2.7	17.6	1.3	0.6	2.4	0.1	2.0	0.8	446.5	8.6	452.8	8.6	486.1	27.6	446.5	8.6	91.8
16ATW-86-Spot 279	300	78622	5.1	17.6	0.9	0.6	2.9	0.1	2.8	1.0	467.3	12.6	470.2	11.0	485.4	19.1	467.3	12.6	96.3
16ATW-86-Spot 172	50	82550	2.6	16.1	1.4	0.8	2.5	0.1	2.1	0.8	558.2	11.3	583.2	11.2	683.0	29.9	558.2	11.3	81.7
16ATW-86-Spot 43	43	66962	2.0	16.5	1.7	0.8	3.0	0.1	2.5	0.8	562.7	13.5	574.8	13.3	623.8	36.6	562.7	13.5	90.2

16ATW-86-Spot 281	76	58203	2.9	11.8	1.1	2.5	3.0	0.2	2.8	0.9	1265. 5	32.6	1280. 5	22.1	1306. 5	20.8	1306. 5	20.8	96.9
16ATW-86-Spot 313	107	627307	1.3	9.9	1.1	4.1	2.8	0.3	2.6	0.9	1675. 3	37.8	1663. 8	22.9	1650. 1	20.9	1650. 1	20.9	101.5
16ATW-86-Spot 81	143	244740	1.8	5.6	0.9	11.8	2.5	0.5	2.3	0.9	2510. 0	48.2	2588. 7	23.3	2651. 5	14.9	2651. 5	14.9	94.7
16ATW-86-Spot 301	217	195163	1.4	16.8	2.3	0.2	3.3	0.0	2.4	0.7	172.9	4.1	204.1	6.1	582.6	49.9	172.9	4.1	3.4
16ATW-86-Spot 192	543	196904	4.0	19.7	1.6	0.1	2.8	0.0	2.3	0.8	67.3	1.6	72.1	1.9	234.8	35.8	67.3	1.6	3.5
16ATW-86-Spot 211	100	99629	1.7	17.1	3.2	0.2	4.0	0.0	2.4	0.6	154.2	3.7	180.7	6.7	545.3	70.8	154.2	3.7	3.5
16ATW-86-Spot 35	170	60577	2.9	16.8	2.1	0.2	3.0	0.0	2.1	0.7	159.0	3.3	188.9	5.1	581.6	45.8	159.0	3.3	3.7
16ATW-86-Spot 113	159	691081	1.0	15.1	3.9	0.2	4.8	0.0	2.7	0.6	169.7	4.6	221.0	9.5	812.0	81.5	169.7	4.6	4.8
16ATW-86-Spot 205	59	334416	2.2	14.3	2.1	0.2	3.3	0.0	2.5	0.8	158.3	3.9	217.8	6.4	923.3	43.4	158.3	3.9	5.8
16ATW-86-Spot 163	151	34696	2.0	13.9	5.2	0.2	5.8	0.0	2.5	0.4	156.4	3.9	220.7	11.4	977.8	105.1	156.4	3.9	6.3
16ATW-86-Spot 214	221	13810	1.6	13.4	5.1	0.3	5.6	0.0	2.3	0.4	169.8	3.9	246.9	12.3	1064. 4	102.3	169.8	3.9	6.3
16ATW-86-Spot 82	194	14221	3.0	11.6	6.9	0.4	7.3	0.0	2.2	0.3	198.8	4.3	321.5	20.1	1344. 4	134.3	198.8	4.3	6.8
16ATW-86-Spot 269	115	6452	3.1	11.8	8.6	0.4	9.5	0.0	4.0	0.4	190.2	7.5	304.9	24.9	1312. 6	166.7	190.2	7.5	6.9
16ATW-86-Spot 173	168	6829	3.1	10.5	7.2	0.3	7.7	0.0	2.8	0.4	163.7	4.5	294.2	19.7	1525. 1	135.3	163.7	4.5	9.3
16ATW-86-Spot 307	107	12943	2.0	10.4	3.8	0.3	4.4	0.0	2.3	0.5	165.2	3.8	299.1	11.4	1543. 1	70.8	165.2	3.8	9.3
16ATW-86-Spot 166	42	9764	2.2	10.0	8.5	0.3	8.9	0.0	2.7	0.3	158.7	4.2	301.1	23.2	1633. 1	157.9	158.7	4.2	10.3
16ATW-86-Spot 80	45	8885	2.1	7.9	10. 1	0.5	10.6	0.0	3.3	0.3	172.3	5.6	393.3	34.5	2052. 2	178.1	172.3	5.6	11.9
16ATW-86-Spot 197	263	6835	3.3	14.2	5.2	0.1	5.6	0.0	2.2	0.4	75.4	1.7	109.5	5.8	935.8	106.3	75.4	1.7	12.4
16ATW-86-Spot 237	114	4794	1.7	7.1	7.9	0.5	8.5	0.0	3.1	0.4	169.3	5.2	424.6	29.4	2246. 1	136.4	169.3	5.2	13.3
16ATW-86-Spot 254	111	7564	3.3	8.3	10. 1	0.2	11.9	0.0	6.3	0.5	79.4	4.9	189.5	20.6	1958. 6	180.9	79.4	4.9	24.7
16ATW-86-Spot 149	399	178519	2.4	22.7	1.6	0.2	15.5	0.0	15.5	1.0	194.3	29.6	173.2	24.8	NA	NA	194.3	29.6	##### #
Sample 15ATW47							± (1s		± (15								_	± (15	
Analysis	U	206Pb	U/Th	206Pb * 207Pb	±	207Pb * 235U	rando m)	206Pb *	rando m)	erro r	206Pb * 238U	±	207Pb *	±	206Pb * 207Pb	±	Best age	rando m)	Conc
	(ppm)	204Pb		*	(%)	*	(%)	238U	(%)		*	(Ma)	235U	(Ma)	*	(Ma)	(Ma)	(Ma)	(%)
-15ATW-47 Spot 33	5063	42932	15.2	21.2	1.0	0.1	2.7	0.0	2.5	0.9	49.5	1.2	49.6	1.3	58.2	23.2	49.5	1.2	NA

-15ATW-47 Spot 2	5072	219755	8.0	21.4	0.9	0.0	2.3	0.0	2.1	0.9	49.5	1.0	49.3	1.1	40.4	21.1	49.5	1.0	NA
-15ATW-47 Spot 1	3000	49780	5.6	20.8	1.3	0.1	2.5	0.0	2.2	0.9	50.6	1.1	51.7	1.3	105.1	30.7	50.6	1.1	NA
-15ATW-47 Spot 3	3973	83021	4.7	20.8	1.0	0.1	2.7	0.0	2.5	0.9	50.6	1.3	51.6	1.4	98.2	24.2	50.6	1.3	NA
-15ATW-47 Spot 27	2788	21005	3.9	21.2	1.0	0.1	2.8	0.0	2.6	0.9	50.7	1.3	50.9	1.4	60.9	23.7	50.7	1.3	NA
-15ATW-47 Spot 19	4755	105137	13.8	21.3	1.0	0.1	2.4	0.0	2.2	0.9	50.9	1.1	50.8	1.2	46.8	23.6	50.9	1.1	NA
-15ATW-47 Spot 4	3206	32760	10.3	21.1	0.9	0.1	2.0	0.0	1.8	0.9	51.6	0.9	52.0	1.0	69.6	21.2	51.6	0.9	NA
-15ATW-47 Spot 5	2312	119635	16.6	21.0	1.2	0.1	2.7	0.0	2.4	0.9	51.9	1.2	52.4	1.4	76.5	27.4	51.9	1.2	NA
-15ATW-47 Spot 13	1226	43336	6.7	20.7	1.3	0.1	2.9	0.0	2.6	0.9	51.9	1.3	53.3	1.5	118.3	30.2	51.9	1.3	NA
-15ATW-47 Spot 10	1311	15633	6.4	21.0	1.4	0.1	2.7	0.0	2.3	0.9	51.9	1.2	52.6	1.4	82.9	32.5	51.9	1.2	NA
-15ATW-47 Spot 16	1019	16628	3.9	20.8	1.5	0.1	2.8	0.0	2.3	0.8	52.0	1.2	53.1	1.4	100.8	36.6	52.0	1.2	NA
-15ATW-47 Spot 37	2577	33955	4.3	21.1	0.9	0.1	1.8	0.0	1.6	0.9	52.0	0.8	52.3	0.9	64.1	20.8	52.0	0.8	NA
-15ATW-47 Spot 29	2761	93415	6.8	21.1	1.1	0.1	2.3	0.0	2.0	0.9	52.2	1.1	52.5	1.2	65.1	27.0	52.2	1.1	NA
-15ATW-47 Spot 21	2095	6405	3.8	21.5	1.1	0.1	2.7	0.0	2.5	0.9	52.5	1.3	51.9	1.4	26.7	26.8	52.5	1.3	NA
-15ATW-47 Spot 32	1303	11672	10.5	20.7	1.4	0.1	2.9	0.0	2.5	0.9	52.7	1.3	54.1	1.5	119.0	34.0	52.7	1.3	NA
-15ATW-47 Spot 12	1496	13947	3.7	20.8	1.4	0.1	3.0	0.0	2.7	0.9	52.7	1.4	53.8	1.6	104.4	32.0	52.7	1.4	NA
-15ATW-47 Spot 26	2113	18891	5.3	21.0	1.0	0.1	2.6	0.0	2.4	0.9	52.8	1.3	53.3	1.3	76.4	23.2	52.8	1.3	NA
-15ATW-47 Spot 38	437	5712	6.4	20.8	1.7	0.1	3.4	0.0	3.0	0.9	53.0	1.6	54.0	1.8	99.5	40.2	53.0	1.6	NA
-15ATW-47 Spot 17	916	5942	4.0	21.3	1.5	0.1	3.3	0.0	2.9	0.9	53.1	1.5	52.9	1.7	44.6	36.9	53.1	1.5	NA
-15ATW-47 Spot 20	665	4667	3.6	21.6	1.6	0.1	3.2	0.0	2.8	0.9	53.2	1.5	52.4	1.7	16.7	39.0	53.2	1.5	NA
-15ATW-47 Spot 15	655	26144	2.1	20.7	1.7	0.1	2.6	0.0	2.0	0.8	53.7	1.1	55.0	1.4	116.1	39.2	53.7	1.1	NA
-15ATW-47 Spot 6	901	6661	4.5	21.7	2.7	0.1	3.3	0.0	1.9	0.6	53.9	1.0	52.7	1.7	NA	NA	53.9	1.0	NA
-15ATW-47 Spot 36	1379	11004	4.5	21.1	1.3	0.1	2.7	0.0	2.4	0.9	55.5	1.3	55.6	1.5	65.1	31.9	55.5	1.3	NA
-15ATW-47 Spot 22	222	4407	5.3	20.0	4.0	0.1	5.6	0.0	4.0	0.7	57.1	2.3	60.4	3.3	193.6	91.9	57.1	2.3	NA
-15ATW-47 Spot 7	2884	1678632	5.5	20.7	1.0	0.1	3.1	0.0	2.9	0.9	52.2	1.5	53.5	1.6	115.7	23.6	52.2	1.5	NA
-15ATW-47 Spot 8	1079	92339	7.8	20.5	1.3	0.1	3.3	0.0	3.0	0.9	54.1	1.6	56.0	1.8	138.5	30.4	54.1	1.6	NA
-15ATW-47 Spot 9	1805	47380	8.6	20.2	1.0	0.1	2.7	0.0	2.5	0.9	52.7	1.3	55.3	1.4	170.8	23.9	52.7	1.3	NA
-15ATW-47 Spot 18	2048	8429342	5.9	19.8	1.6	0.1	4.9	0.0	4.7	0.9	52.9	2.5	56.7	2.7	222.0	37.3	52.9	2.5	NA
-15ATW-47 Spot 34	914	8030	2.8	19.3	2.2	0.1	5.0	0.0	4.4	0.9	56.8	2.5	62.3	3.0	279.5	50.3	56.8	2.5	NA
-15ATW-47 Spot 11	612	13987	4.3	19.2	1.8	0.1	3.3	0.0	2.7	0.8	53.2	1.4	58.8	1.9	293.4	41.7	53.2	1.4	NA
-15ATW-47 Spot 14	1612	7677	11.1	18.0	2.6	0.1	4.4	0.0	3.6	0.8	57.0	2.1	66.8	2.9	435.6	57.3	57.0	2.1	NA
-15ATW-47 Spot 31	646	2829	5.2	9.5	8.0	0.1	8.6	0.0	3.2	0.4	58.1	1.8	125.2	10.1	1719. 2	147.2	58.1	1.8	NA
Sample 15ATW51				206Pb		207Ph		206Pb		erro	206Pb		207Ph		206Pb		Best	± (1s rando	
Analysis	U	206Pb	U/Th	*	±	*	±	*	±	r	*	±	*	±	*	±	age	m)	Conc

	(ppm)	204Pb		207Pb *	(%)	235U *	(%)	238U	(%)	corr	238U *	(Ma)	235U	(Ma)	207Pb *	(Ma)	(Ma)	(Ma)	(%)
-15ATW-51 Spot 81	505	21080	6.5	20.7	1.6	0.1	2.9	0.0	2.4	0.8	98.9	2.4	99.3	2.7	109.7	37.0	98.9	2.4	NA
-15ATW-51 Spot 79	1165	13547	2.9	20.8	1.0	0.1	2.4	0.0	2.2	0.9	99.2	2.1	99.1	2.2	98.1	22.9	99.2	2.1	NA
-15ATW-51 Spot 65	544	6807	4.6	20.9	2.6	0.1	4.0	0.0	3.0	0.8	99.8	3.0	99.4	3.8	89.6	62.2	99.8	3.0	NA
-15ATW-51 Spot 51	681	1811587	4.0	20.7	1.1	0.1	2.4	0.0	2.2	0.9	100.2	2.2	100.7	2.3	114.3	25.6	100.2	2.2	NA
-15ATW-51 Spot 53	714	218985	4.2	20.2	1.4	0.1	2.8	0.0	2.5	0.9	100.8	2.5	103.8	2.8	174.0	33.6	100.8	2.5	NA
-15ATW-51 Spot 58	773	88026	2.9	20.6	1.2	0.1	2.6	0.0	2.3	0.9	100.9	2.3	102.0	2.5	127.9	28.7	100.9	2.3	NA
-15ATW-51 Spot 72	650	16274	4.0	20.8	1.0	0.1	2.4	0.0	2.2	0.9	101.0	2.2	101.1	2.4	106.4	24.1	101.0	2.2	NA
-15ATW-51 Spot 74	648	25536	4.1	20.8	1.3	0.1	2.9	0.0	2.6	0.9	101.0	2.6	101.2	2.8	107.5	31.5	101.0	2.6	NA
-15ATW-51 Spot 85	224	7543	4.4	21.3	1.7	0.1	2.8	0.0	2.3	0.8	101.3	2.3	99.1	2.7	47.3	39.9	101.3	2.3	NA
-15ATW-51 Spot 84	405	38120	4.9	20.6	1.2	0.1	2.6	0.0	2.3	0.9	101.3	2.3	102.5	2.5	130.2	27.6	101.3	2.3	NA
-15ATW-51 Spot 67	231	49840	11.4	20.4	1.6	0.1	3.4	0.0	3.0	0.9	101.4	3.1	103.4	3.4	151.2	38.0	101.4	3.1	NA
-15ATW-51 Spot 62	743	32862	2.6	20.6	1.4	0.1	2.8	0.0	2.5	0.9	101.4	2.5	102.1	2.7	120.1	32.8	101.4	2.5	NA
-15ATW-51 Spot 59	471	70335	4.7	20.7	1.4	0.1	2.9	0.0	2.6	0.9	101.4	2.6	101.9	2.8	113.0	33.8	101.4	2.6	NA
-15ATW-51 Spot 76	550	14295	4.7	20.8	1.5	0.1	2.5	0.0	2.0	0.8	101.5	2.1	101.8	2.5	108.1	35.4	101.5	2.1	NA
-15ATW-51 Spot 75	423	27838	6.6	20.6	1.4	0.1	2.9	0.0	2.6	0.9	101.5	2.6	102.3	2.9	121.1	32.2	101.5	2.6	NA
-15ATW-51 Spot 54	504	12278	6.5	20.9	1.5	0.1	2.9	0.0	2.5	0.9	101.8	2.5	101.2	2.8	87.2	36.1	101.8	2.5	NA
-15ATW-51 Spot 73	809	19719	3.2	20.9	1.3	0.1	2.6	0.0	2.3	0.9	101.9	2.3	101.4	2.6	92.1	31.3	101.9	2.3	NA
-15ATW-51 Spot 88	783	99491	3.4	20.2	1.2	0.1	2.5	0.0	2.1	0.9	102.1	2.2	104.7	2.4	166.5	28.0	102.1	2.2	NA
-15ATW-51 Spot 78	442	28951	4.6	20.8	1.3	0.1	2.4	0.0	2.1	0.9	102.1	2.1	102.2	2.4	104.7	29.8	102.1	2.1	NA
-15ATW-51 Spot 66	633	83781	6.3	20.1	1.3	0.1	2.4	0.0	2.1	0.8	102.1	2.1	105.5	2.4	183.5	30.7	102.1	2.1	NA
-15ATW-51 Spot 57	866	42364	2.4	20.9	1.3	0.1	2.5	0.0	2.1	0.9	102.2	2.2	101.5	2.4	86.2	29.8	102.2	2.2	NA
-15ATW-51 Spot 87	363	12441	3.8	20.6	1.8	0.1	2.9	0.0	2.3	0.8	102.3	2.3	103.2	2.9	125.7	43.0	102.3	2.3	NA
-15ATW-51 Spot 68	687	16981	3.9	20.6	1.5	0.1	3.5	0.0	3.1	0.9	102.3	3.2	103.3	3.4	127.2	35.0	102.3	3.2	NA
-15ATW-51 Spot 90	417	24280	6.1	20.7	1.3	0.1	2.9	0.0	2.6	0.9	102.7	2.6	102.9	2.8	110.8	31.0	102.7	2.6	NA
-15ATW-51 Spot 61	365	14648	7.0	21.1	1.5	0.1	2.7	0.0	2.3	0.8	102.8	2.4	101.6	2.7	74.3	35.2	102.8	2.4	NA
-15ATW-51 Spot 89	439	26304	4.1	20.9	1.3	0.1	2.7	0.0	2.4	0.9	102.8	2.4	102.4	2.6	93.6	31.3	102.8	2.4	NA
-15ATW-51 Spot 63	624	23049	2.5	20.5	1.3	0.1	3.1	0.0	2.8	0.9	103.0	2.8	104.4	3.0	136.4	30.8	103.0	2.8	NA
-15ATW-51 Spot 70	374	8564	5.2	21.4	1.7	0.1	3.6	0.0	3.2	0.9	103.1	3.2	100.5	3.4	40.5	41.7	103.1	3.2	NA
-15ATW-51 Spot 71	356	37085	3.0	20.5	1.3	0.1	3.4	0.0	3.2	0.9	103.5	3.2	104.8	3.4	135.6	30.5	103.5	3.2	NA
-15ATW-51 Spot 82	524	40399	2.6	20.8	1.5	0.1	3.2	0.0	2.8	0.9	103.7	2.9	103.9	3.2	107.9	35.4	103.7	2.9	NA
-15ATW-51 Spot 92	416	20629	5.5	20.7	1.6	0.1	2.8	0.0	2.3	0.8	104.0	2.3	104.4	2.8	116.3	37.9	104.0	2.3	NA
-15ATW-51 Spot 69	630	47191	4.6	20.4	1.5	0.1	3.2	0.0	2.8	0.9	104.2	2.9	106.1	3.2	151.9	35.3	104.2	2.9	NA
-15ATW-51 Spot 91	368	39620	3.0	20.2	1.6	0.1	3.6	0.0	3.2	0.9	104.4	3.3	107.0	3.6	166.7	38.3	104.4	3.3	NA

	-15ATW-51 Spot 52	943	34333	2.2	20.6	1.4	0.1	2.7	0.0	2.3	0.8	104.5	2.3	105.2	2.7	122.4	33.9	104.5	2.3	NA	
	-15ATW-51 Spot 83	511	9346	3.5	21.2	1.2	0.1	2.6	0.0	2.3	0.9	105.0	2.4	103.1	2.5	60.5	28.5	105.0	2.4	NA	
	-15ATW-51 Spot 86	603	72685	3.1	20.3	1.0	0.1	2.3	0.0	2.0	0.9	107.0	2.2	109.2	2.3	158.3	22.8	107.0	2.2	NA	
	-15ATW-51 Spot 55	350	3886333	3.5	20.8	1.7	0.1	2.7	0.0	2.1	0.8	107.0	2.2	106.9	2.8	105.1	41.2	107.0	2.2	NA	
	-15ATW-51 Spot 60	349	6518	4.3	20.9	1.4	0.1	3.1	0.0	2.8	0.9	107.8	3.0	106.9	3.2	87.3	32.9	107.8	3.0	NA	
	-15ATW-51 Spot 64	1118	85731	1.8	19.9	1.4	0.1	2.6	0.0	2.2	0.8	100.9	2.2	105.1	2.6	203.9	32.7	100.9	2.2	NA	
	-15ATW-51 Spot 56	420	25485	4.7	19.8	1.2	0.1	2.7	0.0	2.4	0.9	103.1	2.5	108.0	2.8	218.0	27.5	103.1	2.5	NA	
	Sample 16ATW49																		± (1s		
_	Analysis	U	206Pb	U/Th	206Pb *	±	207Pb *	±	206Pb *	±	erro r	206Pb *	±	207Pb *	±	206Pb *	±	Best age	rando m)	Conc	
		(ppm)	204Pb		207Pb *	(%)	235U *	(%)	238U	(%)	corr	238U *	(Ma)	235U	(Ma)	207Pb *	(Ma)	(Ma)	(Ma)	(%)	
	-16ATW-49 Spot 23	460	91058	4.3	18.9	0.6	0.3	1.1	0.0	0.9	0.8	301.4	2.6	303.8	2.8	322.4	13.9	301.4	2.6	NA	
	-16ATW-49 Spot 9	227	289596	4.2	18.8	1.0	0.4	1.4	0.0	1.0	0.7	302.7	2.9	306.7	3.8	337.0	23.2	302.7	2.9	NA	
	-16ATW-49 Spot 1	381	97056	4.0	19.1	0.6	0.4	1.4	0.0	1.2	0.9	306.5	3.7	306.2	3.7	303.8	14.8	306.5	3.7	NA	
	-16ATW-49 Spot 4	395	701147	3.5	18.9	0.8	0.4	1.5	0.0	1.2	0.9	307.0	3.7	309.2	3.9	325.9	17.2	307.0	3.7	NA	
	-16ATW-49 Spot 11	1017	720228	2.8	19.0	0.9	0.4	1.5	0.0	1.3	0.8	309.7	3.8	310.5	4.1	316.2	20.1	309.7	3.8	NA	
	-16ATW-49 Spot 19	948	76186	2.8	19.1	0.6	0.4	1.1	0.0	0.9	0.8	310.1	2.8	309.4	2.9	304.4	14.0	310.1	2.8	NA	
	-16ATW-49 Spot 12	233	126480	5.9	18.9	0.8	0.4	1.4	0.0	1.1	0.8	311.1	3.4	312.7	3.7	324.6	18.3	311.1	3.4	NA	
	-16ATW-49 Spot 10	494	337175	4.9	19.1	0.7	0.4	1.5	0.0	1.3	0.9	311.7	4.0	309.7	3.9	294.9	15.1	311.7	4.0	NA	
	-16ATW-49 Spot 13	429	158127	3.0	19.2	0.7	0.4	1.3	0.0	1.1	0.8	313.0	3.3	310.5	3.5	292.1	16.0	313.0	3.3	NA	
	-16ATW-49 Spot 8	655	96378	3.5	18.8	0.7	0.4	1.4	0.0	1.2	0.9	313.3	3.7	315.5	3.7	331.8	14.8	313.3	3.7	NA	
	-16ATW-49 Spot 2	736	92492	2.6	18.9	0.8	0.4	1.3	0.0	1.1	0.8	314.2	3.2	315.3	3.6	323.6	17.9	314.2	3.2	NA	
	-16ATW-49 Spot 24	663	184111	2.9	19.0	0.7	0.4	1.6	0.0	1.4	0.9	314.2	4.2	313.4	4.2	307.3	16.9	314.2	4.2	NA	
	-16ATW-49 Spot 14	427	104130	4.2	19.1	0.9	0.4	1.4	0.1	1.1	0.8	316.5	3.4	314.3	3.8	297.9	20.3	316.5	3.4	NA	
	-16ATW-49 Spot 22	226	189160	5.4	19.4	0.9	0.4	1.6	0.1	1.3	0.8	318.1	4.0	312.1	4.2	267.8	20.3	318.1	4.0	NA	
	-16ATW-49 Spot 7	451	498360	3.2	19.1	0.8	0.4	1.3	0.1	1.1	0.8	318.5	3.4	316.9	3.7	304.7	17.9	318.5	3.4	NA	
	-16ATW-49 Spot 16	221	298468	4.4	18.8	0.8	0.4	1.4	0.1	1.2	0.8	318.6	3.7	320.3	3.9	332.5	17.5	318.6	3.7	NA	
	-16ATW-49 Spot 21	226	51725	3.2	19.2	1.0	0.4	1.8	0.1	1.5	0.8	319.9	4.5	315.9	4.8	286.2	22.6	319.9	4.5	NA	
	-16ATW-49 Spot 25	620	291760	3.4	19.2	0.5	0.4	1.2	0.1	1.1	0.9	320.3	3.5	317.0	3.3	293.1	11.8	320.3	3.5	NA	
	-16ATW-49 Spot 20	716	107587	3.2	19.1	0.7	0.4	1.3	0.1	1.1	0.8	320.8	3.4	317.9	3.5	296.4	15.5	320.8	3.4	NA	
	-16ATW-49 Spot 17	499	122887	3.6	19.0	0.8	0.4	1.6	0.1	1.3	0.8	321.2	4.2	319.4	4.3	306.1	19.0	321.2	4.2	NA	
	-16ATW-49 Spot 5	235	101526	5.4	19.1	0.8	0.4	1.4	0.1	1.2	0.8	321.6	3.6	319.0	3.9	300.7	19.1	321.6	3.6	NA	
	-16ATW-49 Spot 6	263	54876	4.6	19.0	0.9	0.4	1.6	0.1	1.3	0.8	324.1	4.1	322.2	4.4	308.5	20.5	324.1	4.1	NA	
	-16ATW-49 Spot 15	216	20693	4.6	19.4	0.8	0.4	1.4	0.1	1.2	0.8	319.6	3.6	313.4	3.7	268.3	17.2	319.6	3.6	NA	

-16ATW-49 Spot 18	475	90604	2.5	19.2	0.7	0.4	1.3	0.1	1.1	0.8	338.2	3.7	331.6	3.7	285.6	16.0	338.2	3.7	NA
-16ATW-49 Spot 3	815	189114	2.6	19.2	0.7	0.4	1.4	0.1	1.2	0.9	329.7	3.9	324.2	3.9	284.7	16.2	329.7	3.9	NA

Sample 16ATW82																			
Analysis	U	206Pb	U/Th	206Pb *	±	207Pb *	±	206Pb *	±	erro r	206Pb *	±	207Pb *	±	206Pb *	±	Best age	± (1s Rando m)	Conc
	(ppm)	204Pb		207Pb *	(%)	235U *	(%)	238U	(%)	corr	238U *	(Ma)	235U	(Ma)	207Pb *	(Ma)	(Ma)	(Ma)	(%)
-16ATW-82 Spot 27	785	107579	3.8	19.1	0.7	0.3	1.5	0.0	1.3	0.9	299.2	3.9	299.1	3.9	298.2	15.5	299.2	3.9	NA
-16ATW-82 Spot 28	378	41504	5.9	19.1	0.7	0.3	1.3	0.0	1.2	0.9	303.3	3.5	303.4	3.5	304.2	15.0	303.3	3.5	NA
-16ATW-82 Spot 22	340	53705	5.6	19.1	0.6	0.3	1.2	0.0	1.0	0.8	303.9	3.0	303.2	3.1	298.1	14.6	303.9	3.0	NA
-16ATW-82 Spot 21	569	291432	6.1	18.8	0.9	0.4	1.5	0.0	1.2	0.8	306.5	3.7	310.3	4.1	339.3	20.3	306.5	3.7	NA
-16ATW-82 Spot 24	480	155997	4.8	18.6	1.2	0.4	1.5	0.0	1.0	0.7	306.6	3.0	313.6	4.1	366.1	26.1	306.6	3.0	NA
-16ATW-82 Spot 20	478	472289	7.4	19.1	0.8	0.4	1.2	0.0	1.0	0.8	306.7	2.9	305.3	3.3	294.7	17.9	306.7	2.9	NA
-16ATW-82 Spot 25	365	123793	5.8	19.1	0.7	0.4	1.4	0.0	1.2	0.9	309.6	3.6	308.9	3.7	303.2	15.4	309.6	3.6	NA
-16ATW-82 Spot 2	370	70574	7.3	19.2	0.8	0.4	1.5	0.0	1.3	0.8	309.6	3.9	307.6	4.1	292.2	18.6	309.6	3.9	NA
-16ATW-82 Spot 11	385	43611	4.9	19.2	1.2	0.4	1.7	0.0	1.2	0.7	310.3	3.6	307.3	4.5	285.0	27.2	310.3	3.6	NA
-16ATW-82 Spot 16	398	27195	6.7	18.9	0.9	0.4	1.5	0.0	1.2	0.8	310.4	3.5	311.6	3.9	320.5	20.6	310.4	3.5	NA
-16ATW-82 Spot 15	453	114090	6.2	19.2	0.7	0.4	1.5	0.0	1.3	0.9	310.5	3.9	307.8	3.9	287.3	16.2	310.5	3.9	NA
-16ATW-82 Spot 18	364	114116	7.6	19.2	0.8	0.4	1.4	0.0	1.1	0.8	312.0	3.5	309.3	3.7	288.8	18.4	312.0	3.5	NA
-16ATW-82 Spot 3	368	46702	6.9	19.1	0.8	0.4	1.4	0.0	1.1	0.8	312.6	3.4	311.5	3.7	303.7	17.7	312.6	3.4	NA
-16ATW-82 Spot 12	589	213329	6.1	19.0	0.7	0.4	1.4	0.0	1.2	0.9	312.7	3.7	312.1	3.8	307.6	16.2	312.7	3.7	NA
-16ATW-82 Spot 23	463	127687	4.8	19.0	0.7	0.4	1.4	0.0	1.2	0.9	314.0	3.7	314.4	3.8	317.3	16.3	314.0	3.7	NA
-16ATW-82 Spot 13	618	1050994	4.9	19.1	0.8	0.4	1.3	0.1	1.0	0.8	316.2	3.0	314.2	3.5	299.3	18.6	316.2	3.0	NA
-16ATW-82 Spot 10	350	119458	4.3	19.0	0.8	0.4	1.2	0.1	0.9	0.8	317.9	2.9	317.7	3.3	316.0	17.6	317.9	2.9	NA
-16ATW-82 Spot 30	602	52345	4.9	19.1	0.9	0.4	1.5	0.1	1.2	0.8	319.2	3.7	316.4	4.1	295.9	21.3	319.2	3.7	NA
-16ATW-82 Spot 8	804	5145215	3.9	19.0	0.9	0.4	1.6	0.1	1.3	0.8	319.7	4.2	318.2	4.4	307.0	20.9	319.7	4.2	NA
-16ATW-82 Spot 17	293	179434	7.1	19.2	1.0	0.4	1.6	0.1	1.3	0.8	322.4	4.0	318.0	4.4	286.1	23.2	322.4	4.0	NA
-16ATW-82 Spot 1	431	19593	6.0	16.5	1.1	0.4	1.5	0.0	1.0	0.6	297.6	2.8	337.6	4.3	623.5	24.7	297.6	2.8	NA
-16ATW-82 Spot 26	648	3611	3.8	6.8	7	1.0	12.8	0.0	1.2	0.1	307.5	3.7	701.1	64.9	7	219.4	307.5	3.7	NA
-16ATW-82 Spot 4	660	17671	3.7	16.3	1.7	0.4	2.0	0.0	1.1	0.5	308.9	3.3	353.0	5.9	654.8	35.7	308.9	3.3	NA
-16ATW-82 Spot 14	424	81323	5.8	17.8	0.8	0.4	1.4	0.0	1.1	0.8	309.5	3.3	327.0	3.8	453.8	18.5	309.5	3.3	NA
-16ATW-82 Spot 9	397	21764	5.7	16.4	2.0	0.4	2.2	0.0	1.1	0.5	309.9	3.2	351.4	6.6	635.9	42.2	309.9	3.2	NA
-16ATW-82 Spot 29	403	9846	5.3	15.3	1.9	0.4	2.2	0.0	1.2	0.5	313.7	3.6	375.8	6.9	779.1	39.0	313.7	3.6	NA
-16ATW-82 Spot 6	557	48768	4.6	18.2	0.8	0.4	1.3	0.0	1.0	0.8	307.3	3.1	318.9	3.6	404.4	18.3	307.3	3.1	NA

-16ATW-82 Spot 19	779	79088	4.5	18.3	1.5	0.4	2.1	0.0	1.5	0.7	305.6	4.3	316.6	5.8	398.6	34.4	305.6	4.3	NA
-16ATW-82 Spot 5	429	53562	6.0	19.6	0.8	0.3	1.5	0.0	1.3	0.8	305.2	3.8	298.2	3.9	244.0	18.8	305.2	3.8	NA
-16ATW-82 Spot 7	585	106846	4.0	19.5	0.6	0.4	1.3	0.1	1.1	0.9	319.0	3.6	311.7	3.5	257.7	14.1	319.0	3.6	NA
Sample 16ATW83				206Pb		20.7Ph		206Pb		erro	206Pb		207Pb		206Pb		Best	± (1s	
Analysis	U	206Pb	U/Th	*	±	*	±	*	±	r	*	±	*	±	*	±	age	m)	Conc
	(ppm)	204Pb		207Pb *	(%)	235U *	(%)	238U	(%)	corr	238U *	(Ma)	235U	(Ma)	207Pb *	(Ma)	(Ma)	(Ma)	(%)
-16ATW-83 Spot 50	174	1303892	5.4	19.1	1.0	0.3	1.5	0.0	1.2	0.8	298.5	3.4	298.9	4.0	301.8	23.2	298.5	3.4	98.9
-16ATW-83 Spot 62	1576	1870325	3.3	19.0	0.8	0.3	1.4	0.0	1.2	0.8	301.4	3.6	302.3	3.8	309.4	17.3	301.4	3.6	97.4
-16ATW-83 Spot 53	389	110881	3.7	18.9	0.7	0.3	1.3	0.0	1.1	0.8	301.4	3.3	303.8	3.5	322.5	16.2	301.4	3.3	93.5
-16ATW-83 Spot 51	345	34324	4.5	19.0	0.8	0.3	1.4	0.0	1.2	0.8	302.4	3.5	302.9	3.7	306.4	18.6	302.4	3.5	98.7
-16ATW-83 Spot 57	1162	197511	2.5	19.2	0.7	0.3	1.2	0.0	1.0	0.8	302.4	3.0	300.6	3.2	286.6	15.9	302.4	3.0	105.5
-16ATW-83 Spot 70	1758	242937	3.0	19.1	0.6	0.3	1.2	0.0	1.0	0.9	302.4	3.0	301.7	3.1	296.3	14.0	302.4	3.0	102.1
-16ATW-83 Spot 48	1664	398014	2.7	18.8	0.8	0.4	1.6	0.0	1.4	0.9	303.3	4.3	306.5	4.3	330.6	17.4	303.3	4.3	91.7
-16ATW-83 Spot 42	694	103978	4.1	19.2	0.8	0.3	1.4	0.0	1.2	0.8	303.4	3.4	301.3	3.6	284.9	17.6	303.4	3.4	106.5
-16ATW-83 Spot 46	594	108160	2.6	18.9	0.9	0.4	1.6	0.0	1.4	0.8	304.1	4.1	305.9	4.3	320.0	20.1	304.1	4.1	95.0
-16ATW-83 Spot 60	244	349625	6.1	18.8	0.9	0.4	1.6	0.0	1.3	0.8	305.5	3.9	309.2	4.2	336.9	19.3	305.5	3.9	90.7
-16ATW-83 Spot 64	1004	209962	3.4	19.1	0.8	0.3	1.5	0.0	1.3	0.9	305.5	3.8	304.6	3.9	297.5	17.2	305.5	3.8	102.7
-16ATW-83 Spot 40	450	66692	4.8	19.1	0.8	0.4	1.4	0.0	1.1	0.8	306.1	3.4	305.2	3.7	298.1	19.2	306.1	3.4	102.7
-16ATW-83 Spot 61	985	112383	4.5	18.9	0.6	0.4	1.4	0.0	1.3	0.9	307.0	3.8	309.2	3.7	326.0	14.0	307.0	3.8	94.2
-16ATW-83 Spot 39	803	1735690	4.5	19.0	0.7	0.4	1.2	0.0	1.0	0.8	307.2	3.1	307.3	3.3	307.5	15.1	307.2	3.1	99.9
-16ATW-83 Spot 43	584	101965	7.2	19.1	0.7	0.4	1.5	0.0	1.3	0.9	307.4	4.0	306.0	4.0	295.2	16.0	307.4	4.0	104.1
-16ATW-83 Spot 63	971	403884	2.9	19.2	0.7	0.4	1.4	0.0	1.2	0.9	308.2	3.6	306.5	3.8	293.3	16.9	308.2	3.6	105.1
-16ATW-83 Spot 44	900	100699	4.3	19.1	0.6	0.4	1.3	0.0	1.1	0.9	308.2	3.3	307.3	3.4	300.1	13.8	308.2	3.3	102.7
-16ATW-83 Spot 38	859	329862	5.1	19.1	0.6	0.4	1.2	0.0	1.0	0.9	308.7	3.1	307.6	3.2	299.3	14.0	308.7	3.1	103.2
-16ATW-83 Spot 65	980	99983	3.6	18.8	0.7	0.4	1.3	0.0	1.1	0.8	309.3	3.2	311.8	3.4	330.3	15.1	309.3	3.2	93.7
-16ATW-83 Spot 52	355	200152	5.0	18.8	0.9	0.4	1.5	0.0	1.3	0.8	309.7	3.8	313.0	4.1	337.0	19.3	309.7	3.8	91.9
-16ATW-83 Spot 55	1733	359674	2.7	19.2	0.6	0.4	1.1	0.0	1.0	0.9	310.1	3.0	307.4	3.0	286.9	12.8	310.1	3.0	108.1
-16ATW-83 Spot 68	1170	124982	3.5	18.8	0.6	0.4	1.1	0.0	1.0	0.9	310.3	3.0	313.5	3.1	336.7	13.2	310.3	3.0	92.2
-16ATW-83 Spot 54	1050	199270	4.5	19.1	0.7	0.4	1.2	0.0	1.0	0.8	310.7	3.0	309.1	3.3	296.7	16.5	310.7	3.0	104.7
-16ATW-83 Spot 37	155	112604	7.6	18.6	1.3	0.4	1.6	0.0	1.0	0.6	311.0	3.1	316.8	4.5	359.7	29.1	311.0	3.1	86.5
-16ATW-83 Spot 59	437	103733	4.7	19.1	0.8	0.4	1.5	0.0	1.3	0.8	311.2	3.8	310.5	3.9	305.7	17.7	311.2	3.8	101.8
-16ATW-83 Spot 67	1505	600967	3.5	19.1	0.7	0.4	1.3	0.0	1.1	0.8	312.8	3.3	310.9	3.4	296.2	15.9	312.8	3.3	105.6
-16ATW-83 Spot 45	334	97374	3.3	19.0	0.8	0.4	1.5	0.1	1.3	0.9	314.6	3.9	314.6	4.0	314.4	17.8	314.6	3.9	100.1

-16ATW-83 Spot 49	1437	2274564	4.4	18.9	0.7	0.4	1.2	0.1	1.0	0.8	319.4	3.0	319.3	3.3	318.8	16.3	319.4	3.0	100.2
-16ATW-83 Spot 47	789	383071	5.6	18.9	0.6	0.4	1.3	0.1	1.2	0.9	324.5	3.7	324.0	3.7	320.8	14.6	324.5	3.7	101.1
-16ATW-83 Spot 41	486	27482	3.8	17.7	1.9	0.4	2.2	0.0	1.1	0.5	310.7	3.2	329.9	6.1	467.2	42.0	310.7	3.2	66.5
-16ATW-83 Spot 66	758	27555	4.6	17.3	1.1	0.4	1.7	0.1	1.3	0.8	318.0	4.0	344.2	4.9	525.5	23.5	318.0	4.0	60.5
-16ATW-83 Spot 56	1424	422177	4.8	18.6	0.8	0.4	1.4	0.0	1.2	0.8	298.6	3.4	305.4	3.7	358.3	17.1	298.6	3.4	83.3
-16ATW-83 Spot 58	1329	151341	3.4	18.7	0.6	0.4	1.4	0.0	1.2	0.9	306.1	3.6	310.9	3.7	347.2	14.2	306.1	3.6	88.2

Supplemental file S3 Table S3-1: ⁴⁰Ar/³⁹Ar data

16ATW-36 MU#L1

Weighted average of J from standards = 5.073e-03 +/-2.571e-05

Lasar Dawar	Cumula	40Ar/3		37Ar/3		36Ar/3		% At	. /	Ca/		CI/		40*/3		4.00		
Laser Power	live	9AI	+/-	9AI	+/-	9AI	+/-	40A	+/-	ĸ	+/-	ĸ	+/-	9K	+/-	Age (Ma	+/- (Ma	
(mW)	39Ar	meas.		meas.		meas.		r))	
500.00	0.00	46 44	0.9	0.06	0.0	0 14	0.0	92. 07	5.9 8	0.1	0.0	0.0	0.0	3 68	2.7	33.3 2	24. 92	
500.00	0.00	40.44	0.1	0.00	0.0	0.14	-	56	47	0.0	-	0.0	0.0	5.00	0.5	46.4	10	
1000.00	0.02	11.85	0.1	0.02	0.0	0.02	0.0	49	4.7	3	1	0.0	0.0	5.14	6	40.4	4.9	
			0.0		0.0		0.0	19.	2.7	0.0	0.0	0.0	0.0		0.2	59.0	1.9	
1500.00	0.05	8.17	4	0.01	0	0.01	0	43	2	1	0	0	0	6.56	2	1	9	
			0.0		0.0		0.0	10.	0.8	0.0	0.0	0.0	0.0		0.0	64.3	0.6	
2000.00	0.17	8.04	3	0.00	0	0.00	0	52	2	0	0	0	0	7.16	7	3	2	
			0.0		0.0		0.0	6.7	0.4	0.0	0.0	0.0	0.0		0.0	65.0	0.4	
2500.00	0.28	7.80	3	0.00	0	0.00	0	7	8	0	0	0	0	7.25	5	7	0	
			0.0		0.0		0.0	5.7	0.6	0.0	0.0	0.0	0.0		0.0	64.2	0.4	
3000.00	0.39	7.61	3	0.00	0	0.00	0	4	0	0	0	0	0	7.15	5	1	6	
5000.00	0.62	7 57	0.0	0.00	0.0	0.00	0.0	6.2	0.2	0.0	0.0	0.0	0.0	7.07	0.0	63.5	0.2	
5000.00	0.63	7.57	2	0.00	U	0.00	U	5	9	0	U	0	0	7.07	3	U	ь	
9000.00	1.00	7.54	0.0 2	0.00	0.0 0	0.00	0.0 0	4.2 1	0.3 1	0.0 0	0.0 0	0.0 0	0.0 0	7.19	0.0 3	64.5 6	0.2 7	
			0.0		0.0		0.0	9.2	0.2	0.0	0.0	0.0	0.0		0.0	63.7	0.3	
Integrated		7.85	1	0.00	0	0.00	0	1	6	0	0	0	0	7.10	2	5	7	

16ATW08 BI#L1

Weighted average of J from standards = 4.945e-03 +/-1.594e-05

	Cumula	404-12		2711/2		261-12		%		Cal		CI/		40*/2			
Laser Power	tive	9Ar	+/-	9Ar	+/-	9Ar	+/-	m.	+/-	K K	+/-	K	+/-	40 /3 9K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40A r								(Ma)	(Ma)
500.00	0.01	46.76	0.3 6	0.10	0.0 0	0.14	0.0 0	87. 85	1.3 4	0.1 8	0.0 1	0.0 0	0.0 0	5.68	0.6 3	49.8 8	5.4 3
1000.00	0.04	5.57	0.0 3	0.09	0.0 0	0.01	0.0 0	36. 28	3.2 7	0.1 7	0.0 0	0.0 0	0.0 0	3.53	0.1 8	31.1 6	1.6 0
1500.00	0.11	5.13	0.0 3	0.12	0.0 0	0.00	0.0 0	12. 15	1.8 1	0.2 1	0.0 0	0.0 0	0.0 0	4.48	0.1 0	39.4 7	0.8 4
2000.00	0.30	5.47	0.0 2	0.01	0.0 0	0.00	0.0 0	3.6 4	0.6 3	0.0 1	0.0 0	0.0 0	0.0 0	5.25	0.0 4	46.1 5	0.3 6
2500.00	0.52	5.36	0.0 2	0.00	0.0 0	0.00	0.0 0	2.3 7	0.4 9	0.0 1	0.0 0	0.0 0	0.0 0	5.20	0.0 3	45.7 8	0.2 9
3000.00	0.71	5.68	0.0 2	0.00	0.0 0	0.00	0.0 0	3.1 7	0.4 7	0.0 1	0.0 0	0.0 0	0.0 0	5.47	0.0 3	48.1 0	0.2 9
5000.00	0.94	5.46	0.0 1	0.00	0.0 0	0.00	0.0 0	1.2 6	0.5 1	0.0 0	0.0 0	0.0 0	0.0 0	5.36	0.0 3	47.1 5	0.2 7
9000.00	1.00	5.51	0.0 2	0.01	0.0 0	0.00	0.0 0	5.7 1	1.7 3	0.0 1	0.0 0	0.0 0	0.0 0	5.17	0.1 0	45.5 0	0.8 5
Integrated		6.02	0.0 1	0.02	0.0 0	0.00	0.0 0	13. 12	0.3 0	0.0 3	0.0 0	0.0 0	0.0 0	5.20	0.0 2	45.7 6	0.2 2

16ATW73 BI#L1

Weighted average of J from standards = 4.945e-03 +/-1.594e-05

Laser Power	Cumula tive	40Ar/3 9Ar	+/-	37Ar/3 9Ar	+/-	36Ar/3 9Ar	+/-	% At m.	+/-	Ca/ K	+/-	CI/ K	+/-	40*/3 9K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40A r								(Ma)	(Ma)
500.00	0.01	12.35	0.0 7	0.04	0.0 0	0.03	0.0 0	77. 29	3.8 2	0.0 7	0.0 1	0.0 0	0.0 0	2.80	0.4 7	24.7 7	4.1 5
1000.00	0.05	5.67	0.0 3	0.03	0.0 0	0.01	0.0 0	31. 04	2.3 0	0.0 6	0.0 0	0.0 0	0.0 0	3.89	0.1 3	34.3 2	1.1 5
1500.00	0.13	5.23	0.0 1	0.36	0.0 0	0.00	0.0 0	27. 19	1.7 0	0.6 6	0.0 0	0.0 0	0.0 0	3.79	0.0 9	33.4 4	0.7 8
2000.00	0.29	4.20	0.0 2	0.04	0.0 0	0.00	0.0 0	9.8 4	1.4 0	0.0 8	0.0 0	0.0 0	0.0 0	3.76	0.0 6	33.1 8	0.5 3
2500.00	0.45	4.10	0.0 1	0.07	0.0 0	0.00	0.0 0	8.6 4	1.3 0	0.1 2	0.0 0	0.0 0	0.0 0	3.72	0.0 5	32.8 2	0.4 8
3000.00	0.58	4.00	0.0 1	0.05	0.0 0	0.00	0.0 0	9.3 2	1.3 7	0.1 0	0.0 0	0.0 0	0.0 0	3.60	0.0 6	31.8 1	0.4 9
5000.00	0.84	3.87	0.0 1	0.07	0.0 0	0.00	0.0 0	4.6 6	0.7 2	0.1 2	0.0 0	0.0 0	0.0 0	3.67	0.0 3	32.3 7	0.2 7
9000.00	1.00	3.91	0.0 1	0.08	0.0 0	0.00	0.0 0	2.6 2	0.9 6	0.1 5	0.0 0	0.0 0	0.0 0	3.77	0.0 4	33.3 2	0.3 4
Integrated		4.28	0.0 1	0.09	0.0 0	0.00	0.0 0	12. 85	0.4 8	0.1 6	0.0 0	0.0 0	0.0 0	3.70	0.0 2	32.6 9	0.2 1

15ATW-45 MU#L1

Weighted average of J from standards = 5.645e-03 ± 2.188e-05 (1-sigma error)

Days since irradiation = 49

Base Power Ref Ruf I SAA I I I I I I CO/K I C/K I SAK I (mW) 39Ar mV mV V mV V mV V mV V mV V A I I C/K I C/K I SAK I (mW) 39Ar mV mV V mV V mV V mV V mV V A A B C <thc< th=""> C C <</thc<>	Lacor Power	Cumula	40Ar		2045		2945		37A		36A		% At		Calk		c1/k		40Ar*/3		A.c.o	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(mW)	39Ar	mV	±mV	mV	m V	mV	m V	mV	m V	mV	m V	40 Ar	÷	Cark	Ŧ	CI/K	-	SAIK	Ţ	(Ma)	- (M a)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	700.00	0.00	83.04	5.1 4	5.13	0.1 0	0.34	0.0 5	0.0 0	0.1 7	0.1 9	0.0 4	## ##	15. 97	0.01	0.0 6	0.01	0.0 0	5.14	2.6 9	51. 58	## ##
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1200.00	0.02	179.69	4.9 5	19.56	0.1 1	0.32	0.0 5	0.0 0	0.1 8	0.2 6	0.0 5	## ##	7.6 7	-0.01	0.0 2	0.00	0.0 0	5.31	0.7 4	53. 18	7.3 0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1800.00	0.25	1442.1 4	4.0 1	242.82	0.4 8	3.14	0.0 6	0.0 0	0.1 7	0.6 4	0.0 5	## ##	1.0 2	0.00	0.0 0	0.00	0.0 0	5.13	0.0 6	51. 45	0.6 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2600.00	0.43	1032.1 7	4.2 5	197.44	0.3 2	2.35	0.0 5	0.0 0	0.1 8	0.1 6	0.0 5	4.6 0	1.4 5	0.00	0.0 0	0.00	0.0 0	4.96	0.0 8	49. 75	0.7 8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3800.00	0.72	1633.4 8	3.7 7	312.64	0.6 2	3.55	0.0 6	0.0 0	0.2 0	0.1 8	0.0 4	3.3 5	0.7 4	0.00	0.0 0	0.00	0.0 0	5.02	0.0 4	50. 37	0.4 1
4.7 0.3 0.0 0.0 0.1 0.1 0.0 9.5 2.7 0.0 0.0 0.1 0.1 8000.00 1.00 567.82 1 105.38 5 1.37 6 0 8 8 5 3 0 0.00 0 0.0 4.85 5 11500.00 1.00 41.83 7 3.71 0 0.23 6 0 6 2 5 ## 99 0.16 8 0.01 0.1 1 <td>5200.00</td> <td>0.90</td> <td>1016.9 4</td> <td>4.0 5</td> <td>186.92</td> <td>0.3 8</td> <td>2.25</td> <td>0.0 5</td> <td>0.0 0</td> <td>0.1 6</td> <td>0.3 0</td> <td>0.0 4</td> <td>8.7 9</td> <td>1.2 1</td> <td>0.00</td> <td>0.0 0</td> <td>0.00</td> <td>0.0 0</td> <td>4.94</td> <td>0.0 7</td> <td>49. 52</td> <td>0.6 9</td>	5200.00	0.90	1016.9 4	4.0 5	186.92	0.3 8	2.25	0.0 5	0.0 0	0.1 6	0.3 0	0.0 4	8.7 9	1.2 1	0.00	0.0 0	0.00	0.0 0	4.94	0.0 7	49. 52	0.6 9
5.3 0.1 0.0 0.0 0.1 0.0 ## 33. 0.0 0.0 3.9 11500.00 1.00 41.83 7 3.71 0 0.23 6 0 6 2 5 ## 99 0.16 8 0.0 0.0 3.9 11500.00 1.00 41.83 7 3.71 0 0.23 6 0 6 2 5 ## 99 0.16 8 0.01 0.1 1 1 5997.1 12. 1073.5 1.0 0.1 0.4 2.0 0.1 ## 0.6 0.0 </td <td>8000.00</td> <td>1.00</td> <td>567.82</td> <td>4.7 1</td> <td>105.38</td> <td>0.3 5</td> <td>1.37</td> <td>0.0 6</td> <td>0.0 0</td> <td>0.1 8</td> <td>0.1 8</td> <td>0.0 5</td> <td>9.5 3</td> <td>2.7 0</td> <td>0.00</td> <td>0.0 0</td> <td>0.00</td> <td>0.0 0</td> <td>4.85</td> <td>0.1 5</td> <td>48. 66</td> <td>1.5 1</td>	8000.00	1.00	567.82	4.7 1	105.38	0.3 5	1.37	0.0 6	0.0 0	0.1 8	0.1 8	0.0 5	9.5 3	2.7 0	0.00	0.0 0	0.00	0.0 0	4.85	0.1 5	48. 66	1.5 1
5997.1 12. 1073.5 1.0 0.1 0.0 0.4 2.0 0.1 ## 0.6 0.0 0.0 0.0 Integrated 1 91 8 1 13.54 6 0 9 3 3 ## 5 0.00 0 0.0 5.00 4	11500.00	1.00	41.83	5.3 7	3.71	0.1 0	0.23	0.0 6	0.0 0	0.1 6	0.1 2	0.0 5	## ##	33. 99	0.16	0.0 8	0.01	0.0 0	2.10	3.9 1	21. 19	## ##
	Integrated		5997.1 1	12. 91	1073.5 8	1.0 1	13.54	0.1 6	0.0 0	0.4 9	2.0 3	0.1 3	## ##	0.6 5	0.00	0.0 0	0.00	0.0 0	5.00	0.0 4	50. 14	0.4 2

15ATW-45 BI#L1

Weighted average of J from standards = 5.645e-03 \pm 2.188e-05 (1-sigma error)

Days since irradiation = 50

Laser Power	Cumula tive	40Ar	±	39Ar	±	38Ar	±	37A r	±	36A r	±	% At m.	±	Ca/K	±	CI/K	±	40Ar*/3 9ArK	±	Age	±
(mW)	39Ar	mV	mV	mV	m V	mV	m V	mV	m V	mV	m V	40 Ar								(Ma)	(M a)
700.00	0.03	245.81	5.0 1	19.93	0.1 0	0.82	0.0 6	0.0 0	0.1 4	0.6 1	0.0 4	## ##	4.6 2	0.02	0.0 1	0.01	0.0 0	3.21	0.5 9	32. 36	5.9 3
1200.00	0.15	353.78	4.7 8	74.25	0.1 6	1.32	0.0 6	0.0 0	0.1 6	0.2 5	0.0 3	## ##	2.4 1	0.00	0.0 0	0.00	0.0 0	3.72	0.1 3	37. 47	1.3 0
1800.00	0.30	463.77	4.7 0	100.59	0.2 0	1.80	0.0 7	0.0 0	0.1 4	0.2 6	0.0 5	## ##	2.8 9	0.00	0.0 0	0.00	0.0 0	3.82	0.1 4	38. 49	1.4 0
2600.00	0.44	413.51	4.8 8	88.80	0.3 2	1.47	0.0 6	0.0 0	0.1 3	0.3 0	0.0 4	## ##	3.0 1	0.00	0.0 0	0.00	0.0 0	3.63	0.1 5	36. 53	1.4 9
3800.00	0.61	442.22	4.5 3	107.32	0.2 5	1.72	0.0 7	0.0 0	0.1 5	0.1 2	0.0 4	8.2 6	2.9 0	0.00	0.0 0	0.00	0.0 0	3.75	0.1 3	37. 78	1.2 6
5200.00	0.72	275.59	4.6 9	67.88	0.1 7	1.06	0.0 5	0.0 0	0.1 6	0.0 8	0.0 4	8.3 3	4.6 1	0.00	0.0 0	0.00	0.0 0	3.69	0.2 0	37. 20	1.9 8
8000.00	0.80	218.76	4.8 3	53.04	0.1 9	0.84	0.0 5	0.0 0	0.1 4	0.0 2	0.0 3	2.1 5	4.2 2	0.00	0.0 1	0.00	0.0 0	4.01	0.2 0	40. 31	1.9 5
11500.00	1.00	493.39	4.9 8	127.18	0.3 4	1.80	0.0 7	0.0 0	0.1 5	0.0 7	0.0 5	3.9 8	2.7 2	0.01	0.0 0	0.00	0.0 0	3.70	0.1 1	37. 22	1.1 2
Integrated		2906.8 3	13. 59	638.98	0.6 5	10.83	0.1 8	0.0 0	0.4 1	1.7 1	0.1 1	## ##	1.1 5	0.00	0.0 0	0.00	0.0 0	3.73	0.0 6	37. 55	0.5 8

16-43C HO#L1

Weighted average of J from standards = 5.073e-03 +/-2.571e-05

Laser Power	Cumula tive	40Ar/3 9Ar	+/-	37Ar/3 9Ar	+/-	36Ar/3 9Ar	+/-	% At m.	+/-	Ca/ K	+/-	CI/ K	+/-	40*/3 9K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40A r								(Ma)	(Ma)
500.00	0.00	226.28	8.1 9	0.63	0.0 6	0.59	0.0 3	77. 52	2.1 4	1.1 6	0.1 1	0.1 5	0.0 1	50.89	5.2 0	### ##	37. 82
1000.00	0.03	20.37	0.3 2	1.34	0.0 2	0.04	0.0 0	59. 28	6.6 4	2.4 5	0.0 3	0.0 1	0.0 0	8.29	1.3 7	74.2 3	12. 00
1500.00	0.07	9.44	0.0 6	3.95	0.0 2	0.01	0.0 0	37. 25	4.6 5	7.2 6	0.0 4	0.0 0	0.0 0	5.92	0.4 4	53.3 1	3.9 1
2000.00	0.14	9.11	0.0 4	0.96	0.0 1	0.01	0.0 0	24. 23	2.4 4	1.7 6	0.0 1	0.0 0	0.0 0	6.88	0.2 2	61.8 6	1.9 8
2500.00	0.21	9.09	0.0 5	2.76	0.0 1	0.00	0.0 0	11. 79	2.8 3	5.0 8	0.0 3	0.0 0	0.0 0	8.00	0.2 6	71.7 3	2.3 0
3000.00	0.35	10.28	0.0 4	4.00	0.0 1	0.00	0.0 0	6.3 1	1.3 3	7.3 7	0.0 2	0.0 0	0.0 0	9.63	0.1 4	85.9 8	1.2 5
5000.00	0.89	11.19	0.0 3	4.45	0.0 1	0.00	0.0 0	6.0 6	0.4 6	8.2 0	0.0 2	0.0 1	0.0 0	10.51	0.0 6	93.6 6	0.5 0
9000.00	1.00	11.78	0.0 4	4.22	0.0 1	0.01	0.0 0	9.9 4	1.3 3	7.7 6	0.0 3	0.0 1	0.0 0	10.62	0.1 6	94.5 6	1.4 0
Integrated		12.00	0.0 2	3.89	0.0 1	0.01	0.0 0	17. 34	0.5 4	7.1 7	0.0 1	0.0 1	0.0 0	9.92	0.0 7	88.5 2	0.7 3
15ATW-35 FU#L1

Weighted average of J from standards = 5.073e-03 +/-2.571e-05

Laser Power	Cumula tive	40Ar/3 9Ar	+/-	37Ar/3 9Ar	+/-	36Ar/3 9Ar	+/-	% At m.	+/-	Ca/ K	+/-	CI/ K	+/-	40*/3 9K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40A r								(Ma)	(Ma)
500.00	0.01	71.92	0.8 2	0.21	0.0 2	0.23	0.0 1	96. 39	2.4 1	0.3 8	0.0 3	0.0 1	0.0 0	2.60	1.7 4	23.5 9	15. 66
1000.00	0.03	18.58	0.1 3	0.14	0.0 1	0.04	0.0 0	69. 50	2.3 4	0.2 5	0.0 1	0.0 0	0.0 0	5.66	0.4 4	51.0 1	3.8 8
1500.00	0.14	9.90	0.0 5	0.04	0.0 0	0.01	0.0 0	27. 13	1.4 5	0.0 8	0.0 0	0.0 0	0.0 0	7.20	0.1 5	64.6 2	1.3 0
2000.00	0.28	8.91	0.0 3	0.02	0.0 0	0.01	0.0 0	18. 53	0.5 5	0.0 3	0.0 0	0.0 0	0.0 0	7.23	0.0 6	64.9 4	0.5 1
2500.00	0.43	8.97	0.0 3	0.01	0.0 0	0.01	0.0 0	19. 53	0.7 3	0.0 1	0.0 0	0.0 0	0.0 0	7.19	0.0 7	64.5 9	0.6 2
3000.00	0.55	8.90	0.0 3	0.02	0.0 0	0.01	0.0 0	18. 87	1.2 0	0.0 4	0.0 0	0.0 0	0.0 0	7.19	0.1 1	64.5 9	0.9 7
5000.00	0.78	8.44	0.0 3	0.00	0.0 0	0.00	0.0 0	14. 13	0.2 9	0.0 1	0.0 0	0.0 0	0.0 0	7.22	0.0 3	64.8 7	0.3 0
9000.00	1.00	8.73	0.0 3	0.00	0.0 0	0.00	0.0 0	15. 28	0.6 4	0.0 1	0.0 0	0.0 0	0.0 0	7.37	0.0 6	66.1 7	0.5 4
Integrated		9.45	0.0 1	0.02	0.0 0	0.01	0.0 0	23. 73	0.3 2	0.0 3	0.0 0	0.0 0	0.0 0	7.18	0.0 3	64.5 1	0.4 3
15ATW-05 WR#L1 Weighted average of J from standards = 4.263e-03 +/- 1.092e-05																	
15ATW-05 WR# Weighted avera 1.092e-05	#L1 age of J from :	standards = 4	.263e-03	+/-													
15ATW-05 WR# Weighted avera 1.092e-05 Laser Power	#L1 age of J from : Cumula tive	standards = 4 40Ar/3 9Ar	263e-03 +/-	+/- 37Ar/3 9Ar	+/-	36Ar/3 9Ar	+/-	% At m. 40A	+/-	Ca/ K	+/-	CI/ K	+/-	40*/3 9K	+/-	Age (Ma	+/- (Ma
15ATW-05 WR# Weighted avera 1.092e-05 Laser Power (mW)	#L1 age of J from : Cumula tive 39Ar	standards = 4 40Ar/3 9Ar meas.	263e-03 +/- 0.1	+/- 37Ar/3 9Ar meas.	+/-	36Ar/3 9Ar meas.	+/-	% At m. 40A r 58.	+/-	Ca/ K 2.4	+/-	CI/ K	+/-	40*/3 9K	+/-	Age (Ma) 66.9	+/- (Ma) 6.0
15ATW-05 WR# Weighted avera 1.092e-05 Laser Power (mW) 500.00	fL1 age of J from : Cumula tive 39Ar 0.05	standards = 4 40Ar/3 9Ar meas. 21.58	.263e-03 +/- 0.1 7 0.0	+/- 37Ar/3 9Ar meas. 1.33	+/- 0.0 3 0.0	36Ar/3 9Ar meas. 0.04	+/- 0.0 0	% At 40A r 58. 84 13.	+/- 3.7 6 1.2	Ca/ K 2.4 4 5.8	+/-	CI/ K 0.0 1 0.0	+/- 0.0 0	40*/3 9К 8.88	+/- 0.8 2 0.1	Age (Ma) 66.9 5 84.5	+/- (Ma) 6.0 4 1.2
15ATW-05 WRA Weighted avera 1.092e-05 Laser Power (mW) 500.00 1000.00	#L1 age of J from : Cumula tive 39Ar 0.05 0.25	standards = 4 40Ar/3 9Ar meas. 21.58 12.99	+/- 0.1 7 0.0 6 0.0	+/- 37Ar/3 9Ar meas. 1.33 3.17	+/- 0.0 3 0.0 2 0.0	36Ar/3 9Ar meas. 0.04 0.01	+/- 0.0 0 0.0 0 0	% At 40A r 58. 84 13. 24 8.9	+/- 3.7 6 1.2 2 1.2	Ca/ K 2.4 4 5.8 4 3.9	+/- 0.0 5 0.0 5	CI/ K 0.0 1 0.0 0	+/- 0.0 0 0.0 0	40*/3 9K 8.88 11.27	+/- 0.8 2 0.1 7 0.1	Age (Ma) 66.9 5 84.5 8	+/- (Ma) 6.0 4 1.2 3 1.3
15ATW-05 WRA Weighted avera 1.092e-05 Laser Power (mW) 500.00 1000.00 1500.00	#1 gge of J from : Cumula tive 39Ar 0.05 0.25 0.46	standards = 4 40Ar/3 9Ar meas. 21.58 12.99 14.05	263e-03 +/- 0.1 7 0.0 6 0.0 6 0.0	+/- 37Ar/3 9Ar meas. 1.33 3.17 2.14	+/- 0.0 3 0.0 2 0.0 2	36Ar/3 9Ar meas. 0.04 0.01 0.00	+/- 0.0 0 0.0 0 0.0 0 0.0	% At 40A r 58. 84 13. 24 8.9 5 0 5	+/- 3.7 6 1.2 2 1.2 2 2.0	Ca/ K 2.4 4 5.8 4 3.9 3 0 5	+/- 0.0 5 0.0 5 0.0 4 0.0	CI/ K 0.0 1 0.0 0 0 0	+/- 0.0 0 0.0 0 0.0 0 0.0	40*/3 9K 8.88 11.27 12.79	+/- 0.8 2 0.1 7 0.1 8 0.2	Age (Ma) 66.9 5 84.5 8 95.6 6 4 4444	+/- (Ma) 6.0 4 1.2 3 1.3 1 2.2
15ATW-05 WRA Weighted avera 1.092e-05 Laser Power (mW) 500.00 1000.00 1500.00 2000.00	#11 Cumula tive 39Ar 0.05 0.25 0.46 0.60	standards = 4 40Ar/3 9Ar meas. 21.58 12.99 14.05 14.96	263e-03 +/- 0.1 7 0.0 6 0.0 6 0.0 6 0.0 6	+/- 37Ar/3 9Ar meas. 1.33 3.17 2.14 5.19	+/- 0.0 3 0.0 2 0.0 2 0.0 2 0.0 4 0.0	36Ar/3 9Ar meas. 0.04 0.01 0.00 0.01	+/- 0.0 0 0.0 0 0.0 0 0.0 0 0.0	% At m. 40A r 58. 84 13. 24 8.9 5 9.5 5	+/- 3.7 6 1.2 2 1.2 2 2.0 7 2.4	Ca/ K 2.4 4 5.8 4 3.9 3 9.5 5 5	+/- 0.0 5 0.0 5 0.0 4 0.0 8	CI/ K 0.0 1 0.0 0 0 0.0 0 0.0 0 0.0	+/- 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	40*/3 9K 8.88 11.27 12.79 13.55	+/- 0.8 2 0.1 7 0.1 8 0.3 2 0.3	Age (Ma) 66.9 5 84.5 8 95.6 6 ### ###	+/- (Ma) 6.0 4 1.2 3 1.3 1 2.2 9 9
15ATW-05 WRA Weighted avera 1.092e-05 Laser Power (mW) 500.00 1000.00 1500.00 2000.00 2500.00	H1 Cumula tive 39Ar 0.05 0.25 0.46 0.60 0.70	40Ar/3 9Ar meas. 21.58 12.99 14.05 14.96 14.85	+/- +/- 0.1 7 0.0 6 0.0 6 0.0 6 0.0 7 2	+/- 37Ar/3 9Ar meas. 1.33 3.17 2.14 5.19 3.42	+/- 0.0 3 0.0 2 0.0 2 0.0 4 0.0 3 0.0	36Ar/3 9Ar 0.04 0.01 0.00 0.01	+/- 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% At m. 40A r 58. 84 13. 24 8.9 5 9.5 5 14. 43	+/- 3.7 6 1.2 2 1.2 2 2.0 7 2.4 1 2.4	Ca/ K 2.4 4 3.9 3 9.5 5 6.2 8	+/- 0.0 5 0.0 5 0.0 4 0.0 8 0.0 6	CI/ K 0.0 1 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	+/- 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	40*/3 9K 8.88 11.27 12.79 13.55 12.71	+/- 0.8 2 0.1 7 0.1 8 0.3 2 0.3 6	Age (Ma) 66.9 5 84.5 85.6 6 4### ## 95.6 6 95.1 3 3	+/- (Ma) 6.0 4 1.2 3 1.3 1 2.2 9 2.6 5
13ATW-05 WRA Weighted avera 1.092e-05 Laser Power (mW) 500.00 1000.00 1500.00 2000.00 2500.00 3000.00	H1 age of J from : Cumula tive 39Ar 0.05 0.25 0.46 0.60 0.70 0.80	40Ar/3 9Ar meas. 21.58 12.99 14.05 14.96 14.85 15.64	263e-03 +/- 0.1 7 0.0 6 0.0 6 0.0 6 0.0 7 0.0 8 8	+/- 37Ar/3 9Ar meas. 1.33 3.17 2.14 5.19 3.42 1.06	+/- 0.0 3 0.0 2 0.0 2 0.0 4 0.0 3 0.0 2 2	36Ar/3 9Ar 0.04 0.01 0.00 0.01 0.01	+/- 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% At m. 40A r 58. 84 13. 24 8.9 5 9.5 5 14. 43 10. 39	+/- 3.7 6 1.2 2 2.0 7 2.4 1 3.6 3	Ca/ K 5.8 4 3.9 3 9.5 5 6.2 8 1.9 4	+/- 0.0 5 0.0 5 0.0 4 0.0 8 0.0 6 0.0 3	CI/ K 0.0 1 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+/- 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40*/3 9K 8.88 11.27 12.79 13.55 12.71 14.00	+/- 0.8 2 0.1 7 0.1 8 0.3 2 0.3 6 0.5 7	Age (Ma) 66.9 5 84.5 8 95.6 6 ### 95.1 3 ### ##	+/- (Ma) 6.0 4 1.2 3 1.3 1 2.2 9 2.6 5 4.1 4
15ATW-05 WRA Weighted avera 1.092e-05 Laser Power (mW) 500.00 1000.00 2000.00 2000.00 3000.00 5000.00	H1 Cumula tive 39Ar 0.05 0.46 0.60 0.70 0.80 0.97	standards = 4 40Ar/3 9Ar 21.58 12.99 14.05 14.96 14.85 15.64 16.50	.263e-03 +/- 0.1 7 0.0 6 0.0 6 0.0 6 0.0 6 0.0 6 0.0 8 0.0 6 8 0.0 6	+/- 37Ar/3 9Ar meas. 1.33 3.17 2.14 5.19 3.42 1.06 4.00	+/- 0.0 3 0.0 2 0.0 2 0.0 4 0.0 3 0.0 2 0.0 3 3 0.0 2	36Ar/3 9Ar 0.04 0.01 0.01 0.01 0.01	+/- 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% At r 58. 84 13. 24 8.9 5 5 14. 43 10. 39 18. 23	+/- 3.7 6 1.2 2 2.0 7 2.4 1 3.6 3 1.6 5	Ca/ K 2.4 4 3.9 3 3 9.5 5 6.2 8 1.9 4 7.3 6	+/- 0.0 5 0.0 5 0.0 4 0.0 8 0.0 6 0.0 3 0.0 5	CI/ K 0.0 1 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+/- 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40*/3 9К 11.27 12.79 13.55 12.71 14.00 13.51	+/- 0.8 2 0.1 7 0.1 7 0.1 8 0.3 2 0.3 6 0.5 7 7 0.2 8	Age (Ma) 66.9 5 84.5 8 95.6 6 ### 95.1 3 ### ## ## ## ## ##	+/- (Ma) 6.0 4 1.2 3 1.3 1 1 2.2 9 2.6 5 4.1 4 2.0 1
15ATW-05 WRA Weighted avera 1.092e-05 Laser Power (mW) 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 5000.00 8000.00	H1 Cumula tive 39Ar 0.05 0.25 0.46 0.60 0.70 0.80 0.97 1.00	40Ar/3 9Ar meas. 21.58 12.99 14.05 14.85 15.64 16.50 25.64	.263e-03 +/- 0.1 7 0.0 6 0.0 6 0.0 6 0.0 7 0.0 8 0.0 6 0.0 6 0.0 6 0.0 6 0.0 6 0.0 6 0.0 6 0.0 6 0.0 6 0.0 7 0.0 8 0.0 9 0.0 0.0	+/- 37Ar/3 9Ar meas. 1.33 3.17 2.14 5.19 3.42 1.06 4.00 8.60	+/- 0.0 3 0.0 2 0.0 4 0.0 3 0.0 2 0.0 3 0.0 3 0.1 2	36Ar/3 9Ar 0.04 0.01 0.01 0.01 0.01 0.01 0.01	+/- 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% At r 58. 84 13. 24 8.9 5 9.5 5 14. 43 10. 39 9 18. 23 80	+/- 3.7 6 1.2 2 2.0 7 2.4 1.6 5 4.3 2	Ca/ K 2.4 4 5.8 4 3.9 3 9.5 5 5 6.2 8 1.9 4 7.3 6 15. 87	+/- 0.0 5 0.0 5 0.0 4 0.0 8 0.0 6 0.0 3 0.0 5 0.2 3	Cl/ K 0.0 1 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+/- 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40*/3 9К 11.27 12.79 13.55 12.71 14.00 13.51 13.97	+/- 0.8 2 0.1 7 0.1 8 0.3 6 0.5 7 0.2 8 1.1 3	Аде (Ма)) 66.95 84.5 8 95.66 6 8 4111 111 111 111 111 111 111 111 111	+/- (Ma) 6.0 4 1.2 3 1.3 1 2.2 9 9 2.6 5 4.1 4 0 0 1 8.1 6

Supplemental file S4

Figure S4-1– Amphibole x-ray maps for sample 16ATW-43c showing amphibole zoning textures. Mineral abbreviations are from Whitney and Evans (2010).

Figure S4-3– Zoomed-in chromite x-ray maps for sample 18ATW-06b showing zoning at the margins of the grains. Mineral abbreviations are from Whitney and Evans (2010).

abbreviations are from Whitney and Evans (2010).

Supplemental file S5:

Figure S5-1– A: ⁴⁰Ar/³⁹Ar whole rock age spectrum for sample 15ATW-05 (amphibole dike in Broxson Gulch). Filled release steps define the plateau age. **B:** Weighted mean age of analyzed zircon grains from sample 15ATW-51 (granodiorite in Ann Creek). **C:** Weighted mean of ca. 100 Ma metamorphic zircon grains in samples 16ATW-44b and 15ATW-07. **D:** U/Th vs. age plot for Phanerozoic zircon grains in samples 16ATW-07.

Figure S5-2– Backscatter electron maps of zircons in sample 16ATW-44b. Pink circles represent laser spot locations. The spot number (sp) and age of each spot are given next to each grain.

Supplemental file S6

16ATW-86 15ATW-06 18ATW-09 16ATW-77 damaged CPvs faul gravel Bedding Rainy 18ATW-18 large clast: Bedding 18ATW-14 large clasts 18ATW-10 Bedding

Supplemental file S6- Representative pictures of Cenozoic gravel deposits.

Supplemental File S7

Supplemental file S8:

Table S8.1: Electron Microprobe analyses of spinel group minerals

Comment	MgO	MnO	Fe total (as FeO)	Fe2O3 (calc)	FeO (calc)	AI2O3	Cr2O3	TiO2	Total	Adjusted Total*
16ATW-43b chrm 1-1**	0.77	1.28	33.25	2.47	30.78	15.35	45.50	0.08	96.29	96.52
16ATW-43b chrm 1-2**	1.27	1.07	33.06	2.51	30.55	15.39	46.14	0.12	97.14	97.14
16ATW-43b chrm 1-3**	1.21	1.04	32.85	2.21	30.64	15.33	46.27	0.11	96.90	96.90
16ATW-43b chrm 1-4**	0.65	1.37	33.60	3.12	30.48	14.72	44.98	0.11	95.49	95.49
16ATW-43b chrm 2-1**	0.89	1.30	32.94	2.22	30.72	15.50	45.71	0.09	96.52	96.52
16ATW-43b chrm 2-2**	0.92	1.21	32.48	1.79	30.69	15.49	45.81	0.11	96.08	96.08
16ATW-43b chrm 2-3**	0.77	1.29	32.66	1.79	30.87	15.42	45.74	0.12	96.09	96.09
18ATW-06b chrm 1-1	10.81	0.41	20.50	2.61	17.89	18.31	49.99	0.05	100.09	100.09
18ATW-06b chrm 1-2	10.59	0.42	20.89	2.76	18.13	18.18	49.92	0.05	100.06	100.06
18ATW-06b chrm 1-3	10.43	0.39	20.83	2.41	18.42	18.45	49.53	0.05	99.74	99.74
18ATW-06b chrm 1-4	10.39	0.43	20.91	2.51	18.40	18.31	49.68	0.05	99.86	99.86
18ATW-06b chrm 1-5	10.49	0.40	20.60	2.26	18.34	18.47	49.75	0.06	99.78	99.78
18ATW-06b chrm Fe rim 1-6	0.98	0.21	46.53	17.63	28.90	5.29	42.47	0.50	95.98	97.75
18ATW-06b chrm Fe rim 1-7	0.72	0.13	50.04	22.10	27.94	1.63	41.46	0.45	94.46	96.67
18ATW-06b chrm 2-1	1.13	0.19	38.51	8.83	29.68	6.54	50.54	0.14	97.08	97.97
18ATW-06b chrm 2-2	1.10	0.13	38.36	2.37	35.99	6.62	50.72	0.14	97.07	97.07
18ATW-06b chrm 2-3	0.77	0.19	41.59	12.65	28.94	1.51	51.50	0.31	95.92	97.19
18ATW-06b chrm rim 2-5	0.76	0.19	48.79	19.94	28.85	3.21	42.06	0.69	95.72	97.71
18ATW-06b chrm rim 2-6	0.95	0.20	41.66	12.35	29.32	5.81	46.87	0.30	95.83	97.06
18ATW-06b chrm rim 3-2	4.17	0.45	29.67	1.84	27.83	17.44	47.64	0.05	99.50	99.50
18ATW-06b chrm rim 3-3	6.66	0.43	26.35	2.15	24.20	17.98	48.42	0.07	99.93	99.93
18ATW-06b chrm rim 3-4	9.73	0.47	22.30	2.93	19.37	17.79	49.42	0.07	99.84	99.84
15ATW-35 chrm 1-1	0.34	2.16	34.89	1.66	33.23	7.77	48.00	0.31	93.97	94.51
15ATW-35 chrm 1-2	0.79	2.14	31.61	1.52	30.09	20.13	39.27	0.13	94.17	94.17
15ATW-35 chrm 1-3	0.27	2.44	36.27	2.36	33.90	7.74	45.05	0.55	92.51	92.51
15ATW-35 chrm 2-1	1.95	1.50	34.19	3.80	30.39	22.25	37.88	0.18	98.05	98.05
15ATW-35 chrm 2-2	2.35	1.35	34.17	4.02	30.15	22.48	38.19	0.17	98.75	98.75
15ATW-35 chrm 2-3	0.58	1.91	30.87	0.74	30.13	16.24	42.90	0.24	93.10	93.10
16ATW-43a mag 1-1	0.13	0.25	81.37	56.64	24.73	0.05	11.12	0.05	92.98	98.64
16ATW-43a mag 1-2	0.09	0.20	83.25	58.65	24.60	0.04	9.03	0.05	92.69	98.56
16ATW-43a mag 2-3	0.16	0.30	79.26	54.22	25.04	0.06	13.66	0.08	93.51	98.94
16ATW-43a mag 2-4	0.18	0.44	74.92	49.68	25.24	0.07	17.76	0.10	93.47	98.45
16ATW-43a mag 2-5	0.07	0.04	88.06	63.60	24.46	0.02	4.78	0.03	93.04	99.40
16ATW-43a mag 2-6	0.08	0.18	84.79	60.20	24.59	0.03	7.87	0.04	93.02	99.05
16ATW-43a mag 2-7	0.14	0.30	79.48	54.67	24.81	0.05	12.88	0.05	92.92	98.39

 * Total adjusted to account for extra oxygen related to calculated Fe2O3

** Zn detected by EDS; lower totals may reflect lack of Zn in analysis

*** Variable totals may reflect small grain size (<10 micron)

Ch. 2: Tectonic underplating and dismemberment of the Maclaren-Kluane schist records late Cretaceous terrane accretion polarity and ~480 km of post-52 Ma dextral displacement on the Denali fault

T. S. Waldien¹, S. M. Roeske¹, J. A. Benowitz²

¹Department of Earth and Planetary Sciences, University of California, Davis, 1 Shields Ave. Davis, California 95616, USA ²Geophysical Institute, University of Alaska, Fairbanks, 900 Yukon Drive Fairbanks, Alaska 99775, USA

ABSTRACT

Terrane accretion introduces irregular geometry and allochthonous material to obliquelyconvergent margins, which create opportunities to quantify strike-slip displacement along otherwise margin-parallel fault systems. Our new bedrock geologic mapping and U-Pb and ⁴⁰Ar/³⁹Ar geochronology from the Alaska Range suture zone in the eastern Alaska Range confirms a long-hypothesized correlation between the Maclaren Glacier metamorphic belt (Alaska, USA) and the Kluane metamorphic assemblage (Yukon Territory, Canada). Our palinspastic reconstruction uses the new data and updated geologic maps of eastern Alaska and southwestern Yukon to show that the metamorphic belts and associated rocks record ~480 km of right-lateral displacement along the Denali fault since ca. 52 Ma. Prior to strike-slip separation, the Maclaren-Kluane schist formed by west-vergent forearc underplating in the waning stage of the ca. 100-90 Ma arc built upon the Yukon-Tanana terrane. The prograde structural and metamorphic evolution of the Maclaren-Kluane schist records final collision of the Wrangellia composite terrane at ca. 75-65 Ma along a set of east-dipping thrust shear zones, which we infer to record the polarity of the late Cretaceous plate boundary between the composite terrane and North America. Paleogene extension partially exhumed the schists to the upper crust and may be a consequence of regionally distributed strike-slip faulting at that time. Localization of the modern Denali fault after ca. 52 Ma dismembered the schist and four neighboring belts of plutonic, metasedimentary, and volcanic rocks. The transition to Yakutat oblique flat slab subduction at ca. 30-25 Ma marks the onset of transpressional deformation in the Denali fault system, which reactivated late Cretaceous collisional structures bounding the Maclaren schist. Neogene reactivation of the Totschunda fault reduced strike-slip motion on the Denali fault east of the Denali-Totschunda intersection and continues to transfer residual plate boundary slip onto the Denali fault west of the intersection.

Key outcomes of our synthesis include: (1) Much of the ~480 km of displacement on the Denali fault accumulated after strike-slip on the neighboring Tintina and Border Ranges fault systems had largely shut down; (2) The modern Denali fault system should not be grouped with strike-slip faults credited with large-scale margin-parallel transport of Cordilleran terranes in the Cretaceous. Instead, a poorly understood proto-Denali fault system may be a candidate for large-scale Cretaceous translation; and (3) the longevity (\geq 33 Myr) of the highly localized Denali fault master strand (\leq 1 km wide) suggests that it occupies a major mechanical boundary that penetrates the lithosphere.

INTRODUCTION

Quantitative restoration of strike-slip deformation along obliquely convergent margins is commonly hindered by strike-slip localization within the arc (e.g. Busby-Spera and Saleeby, 1990; Lange et al., 2008) or forearc (Jarrard, 1986; Avé Lallemant, 1997), which translates sub-parallel elements of the margin relative to each other but may not cross cut restorable features (Beck, 1986). Terrane accretion and associated geometric modification of the margin (e.g. Dominguez et al., 1998) form unique markers that may be used to track syn- and post-collisional margin-parallel translation. Recognition, correlation, and restoration of such features requires identifying the suite of diagnostic characteristics by which they can be identified and correlated, knowledge of where/when the feature accreted to the margin, and how each part of the displaced feature has evolved since dismemberment.

Assembly of the North American Cordillera involved multiple episodes of strike-slip faulting and terrane accretion. Although both terrane accretion and translation have long been recognized as fundamental processes shaping the geologic evolution of western North America (e.g., Moores, 1970; Coney et al., 1980), they persist as controversial topics. Shortening structures formed during terrane accretion are essential for reconstructing strike-slip deformation in the Cordillera because they have been found in multiple places to be cut by strike-slip faults and thus create reliable geological markers for estimating strike-slip separation (Nokleberg et al., 1985; Gabrielse et al., 2006). New views of the Mesozoic Cordilleran orogeny (Johnston, 2008; Hildebrand, 2015; Sigloch and Mihalynuk, 2017), however, call into question the timing and polarity of various terrane accretionary events (e.g. Pavlis et al., 2019). A detailed reappraisal of terrane accretionary rocks and structures is necessary to vet the various models of Cordilleran assembly and associated margin-parallel translation.

Metamorphic belts and structures formed during closure of the ocean basin between the Wrangellia composite terrane and North America have been used to estimate total strike-slip displacement on the Denali fault between southern Alaska, USA and southwestern Yukon Territory, Canada. The purported correlative rock packages include schists, gneisses, and plutons in the Maclaren Glacier metamorphic belt¹ (Alaska) and Kluane metamorphic assemblage-Ruby Range batholith (Yukon) (Nokleberg et al., 1985; Figure 1). Since the correlation between these two metamorphic belts was first proposed by Forbes et al. (1974), the tectono-metamorphic evolution of the Kluane metamorphic assemblage has been the focus of a number of detailed studies (e.g., Mezger et al., 1999, 2001a, b, 2002; Israel et al., 2011; Stanley, 2012; Canil et al., 2015). In contrast, metamorphic and plutonic rocks near the Maclaren Glacier have mainly been studied as part of early regional mapping efforts (Smith, 1981; Nokleberg et al., 1985; 1992a), other than detailed studies on a small accessible portion (Davidson et al., 1992; Beam and Fisher, 1999; Davidson and McPhillips, 2007; Link, 2017). The difference in study resolution has led to doubt as to whether the rock units correlate (e.g., Mezger et al., 2001a). Moreover, tectonic models

describing the prograde metamorphic path of the Maclaren and Kluane belts have argued for opposing vergence directions for syn-collisional structures (cf. Csejtey et al., 1982; Nokleberg et al., 1985; Johnston and Canil, 2007). If the disparate tectonic models are correct, then the proposed correlation of the Maclaren and Kluane belts may be refutable and estimates of total displacement along the Denali fault system would require revision.

Here, we present a new regional synthesis map (Figure 2), zircon U-Pb age data from nine metasedimentary and thirteen plutonic samples, zircon Hf isotopic data from three metasedimentary samples, and ⁴⁰Ar/³⁹Ar geochronology on four volcanic samples located south of the Denali fault in the eastern Alaska Range. Our data bear on the timing of initial burial and tectono-metamorphic evolution of the Maclaren and Clearwater metasedimentary belts in Alaska leading up to and after strike-slip separation. We compare our data to equivalent datasets from the Kluane metamorphic assemblage and argue that the metasedimentary/plutonic belts represent a single body that was cut and displaced by the Denali fault. By integrating our data with other regional datasets, we are able to place the Maclaren-Kluane metamorphic belt into a regional tectonic framework during final accretion of the Wrangellia composite terrane and arrive at more precise measurements and timing of subsequent strike-slip separation.

¹Recent studies by Link (2017) and Waldien et al. (2021) have shown that the Maclaren Glacier metamorphic belt is a composite metamorphic belt wherein rocks at various structural positions have different protoliths, which experienced different metamorphic, magmatic, and structural histories prior to final juxtaposition by the Valdez Creek shear zone during Wrangellia composite terrane accretion to North America. The term "Maclaren Glacier metamorphic belt" as originally defined does not convey the disparate polyphase tectonic evolution of the metamorphic rocks in the area. We propose that the recent advances in understanding have rendered the term "Maclaren Glacier metamorphic belt" obsolete. We argue that parsing the metamorphic rocks into the Maclaren schist/gneiss (structurally above the Valdez Creek shear zone) and Clearwater metasediments (structurally below the Valdez Creek shear zone) is more informative and thus will be more useful for future studies in the region.

GEOLOGIC BACKGROUND

Slip on the modern Denali fault

The Denali fault system is an arcuate set of structures that transect the Cordillera from northern British Columbia to western Alaska (St. Amand, 1957). Active dextral slip is likely routed to the Denali fault master strand from the plate boundary fault systems by way of the Connector fault (Doser, 2014; Brothers et al., 2018; Elliott and Freymueller, 2020; Choi et al., 2021; Figure 1). Published estimates of total offset on the Denali fault range from 370 to 400 km and are based on a variety of offset markers ranging from topography to terrane boundaries. Lowey (1998) provided a synopsis of strike-slip displacement estimates and Table 1 contains an updated list of separation estimates for the Denali fault, including those presented here for the first time. It is important to emphasize that the tabulated separation estimates consider only the active strand of the Denali fault. We recognize the likelihood of an older Denali fault system, which may have had multiple strands active during the Cretaceous (Wahrhaftig et al., 1975; Miller et al., 2002; McDermott et al., 2019). Herein, our use of the words *Denali fault* refer to the active strand of the fault, which appears to have been a single highly localized strand for much of the Cenozoic (Cole et al., 1999; Regan et al., 2021). When necessary for clarity, we distinguish the modern- or proto-Denali fault to refer to the Cenozoic and Cretaceous fault systems, respectively. Our use of the words Denali fault system includes the active Denali fault master strand, Totschunda fault, and thrust systems at the northern and southern flanks of the Alaska Range.

Mesozoic terrane accretion and strike-slip faulting in the Cordillera

The Mesozoic geology of the North American Cordillera is characterized by the accretion and margin-parallel transport of allochthonous terranes (Coney et al., 1980; Nelson and Colpron, 2007; Colpron et al., 2015). The outboard belt of the Cordillera is largely composed of Paleozoic and Mesozoic arc rocks belonging to the Wrangellia, Peninsular, and Alexander terranes, which had accreted to each other prior to collision with the Cordilleran margin (Gardner et al., 1988; Beranek et al., 2014; Israel et al., 2014). Herein, we refer to the amalgamated terranes as the "Wrangellia composite terrane" and distinguish the individual terranes only when necessary. The structural polarity during accretion of the Wrangellia composite terrane to the Cordillera is disputed; some authors argue for W-dipping subduction (Hildebrand, 2015; Sigloch and Mihalynuk, 2017; Lowey, 2019), whereas others argue for E-dipping collisional structures and an unclear role of subduction during the collision (Trop and Ridgway, 2007; Pavlis et al., 2019). Regardless of structural polarity, the collision coincided with along-strike diachronous oblique closure of a marginal marine basin system from Late Jurassic to Late Cretaceous (McClelland et al., 1992; Ridgway et al., 2002; Manselle et al., 2020). Deformed and variably metamorphosed packages of clastic strata representing the closed marginal marine basins are exposed over 3000 km length of the Cordillera from southern British Columbia to western Alaska (Methow-Tyaughton-Gravina-Dezadeash-Nutzotin-Kahiltna basins-Figure 1B). In southern Alaska, the highly deformed region underlain by imbricated and metamorphosed Kahiltna basin strata, fragments of oceanic crust, and disparate continental terranes is referred to as the Alaska Range suture zone (Ridgway et al., 2002; Fitzgerald et al., 2014; Trop et al., 2019; ARSZ–Figure 1B).

Syn-and post-collisional strike-slip faulting contributed to margin-parallel transport of the Wrangellia composite terrane and dismemberment of the basinal assemblages along the inboard margin of the composite terrane. The strike-slip faulting is generally taken to accommodate the margin-parallel component of oblique relative plate motion between western North America and outboard oceanic plates (e.g. Monger and Gibson, 2019). Regional deformation patterns are

consistent with southward transport of outboard terranes along sinistral fault systems during the late Jurassic and early Cretaceous (Evenchick, 1991; Monger et al., 1994; Chardon et al., 1999; Israel et al., 2006; Mahoney et al., 2009; Cobbett et al., 2016). By the late Cretaceous, widespread dextral shear in the Cordillera contributed to northward transport of the terranes relative to the North American craton, which continued into the Cenozoic (Avé Lallemant and Oldow, 1988; Wyld et al., 2006). Many paleomagnetic-based studies call for large-scale (>1500 km) of Cretaceous-Cenozoic northward displacement of the Cordilleran terranes (e.g. Hillhouse and Coe, 1994; Johnston et al., 1996a; Stamatakos et al., 2001; Enkin, 2006). However, the sum of geology-based slip estimates does not reach the magnitude of translation inferred from the paleomagnetic estimates (e.g., Wyld et al., 2006), thus implying the potential for missing slip.

Much of the strike length of the Denali fault marks the boundary between rocks belonging to, or derived from, the Wrangellia composite terrane and rocks with peri-continental affinity. Thermochronological, structural, and stratigraphic datasets suggest that oblique closure of the Kahiltna basin, and associated development of the Alaska Range suture zone, involved slip on a potentially multi-stranded proto-Denali fault system along the paleo-eastern margin of the Wrangellia composite terrane, which may have translated the composite terrane relative to Mesozoic strata to the east (McDermott et al., 2019; Trop et al., 2020). In contrast, the modern Denali fault cuts obliquely through the Mesozoic basinal assemblages, continental margin rocks, and plutonic belts (Figure 1). The section of the Denali fault between the longitudes of the Delta River (~145.5°W–Alaska) and Kluane Lake (~139°W–Yukon) juxtaposes the Wrangellia terrane rocks directly against peri-Laurentian rocks, whereas Mesozoic basin strata and associated crystalline rocks are largely absent from that section of the fault system (Figure 1A). The similarities among Mesozoic-Paleogene rocks near the Delta River and Kluane Lake, and lack of

similar rocks between the two areas, has made them a target for estimating offset on the modern Denali fault (e.g., Eisbacher, 1976; Nokleberg et al., 1985).

Geology south of the Denali fault near the Delta River in the eastern Alaska Range

South of the Denali fault and west of the Delta River, a series of north-dipping thrust panels contain Triassic continental margin strata, Alaska Range suture zone metasedimentary and plutonic rocks, and Wrangellia terrane meta-igneous rocks. From north to south, important structures bounding the thrust panels are the Susitna Glacier thrust fault, Valdez Creek shear zone/fault, and the Talkeetna-Broxson Gulch fault (Figures 1A and 2).

The Triassic continental margin rocks in the northernmost and structurally highest panel south of the Denali fault comprise carbonate and clastic strata that are intruded by ca. 98-57 Ma plutons in the hanging wall of the Susitna Glacier thrust fault (Csejtey et al., 1992; Riccio et al., 2014). In the footwall south of the Susitna Glacier thrust fault, amphibolite facies pelitic-to-quartzofeldspathic schists and gneisses of the Maclaren schist are intruded by the East Susitna batholith (Davidson et al., 1992; Nokleberg et al., 1985; Waldien et al., 2021). Individual plutons within the East Susitna batholith have yielded crystallization ages ranging from ca. 74-33 Ma (Turner and Smith, 1974; Aleinikoff et al., 1981; Ridgway et al., 2002; Davidson and McPhillips, 2007; Regan et al., 2021). Across the Valdez Creek fault/shear zone to the south, the Clearwater metasediments comprise ca. 160-144 Ma generally arkosic-to-mafic metasedimentary strata with lesser argillaceous slate and phyllite, which are intruded by small volume intermediate-ultramafic intrusions with crystallization ages ranging from ca. 142 to 102 Ma (Mooney, 2010; Waldien et al. 2021). All of these metasedimentary and plutonic rocks are thrust southward over the Wrangellia terrane by the Broxson Gulch fault.

In the eastern Alaska Range, Wrangellia stratigraphy consists of Carboniferous volcanic and volcaniclastic strata overlain by lesser Permian carbonate strata and regionally extensive Triassic flood basalts. The Carboniferous strata in the area host generally intermediate composition intrusions that range in age from ca. 300-to-315 Ma (Waldien et al., 2021). Both the strata and the intrusions have been linked to the Skolai arc that forms the base of the Wrangellia terrane in southcentral Alaska (Bond, 1973; Beard and Barker, 1989). Carbonate strata containing early Permian fossils unconformably overly the Skolai arc rocks (Bond, 1973, 1976; Nokleberg et al., 1992b, Richter and Dutro, 1975) and may record cessation of Skolai arc magmatism in the Late Pennsylvanian (e.g., Beranek et al., 2014; Israel et al., 2014). Triassic Nikolai flood basalt strata unconformably overly the Paleozoic rocks in the region (Greene et al., 2008, 2010; Twelker et al., 2020). Intrusions and strata within the Nikolai province yield dates of 225-230 Ma (Bittenbender et al., 2007; Greene et al., 2010; Twelker et al., 2020; Waldien et al., 2021).

South of the Denali fault and east of the Delta River, a belt of Eocene felsic volcanic rocks with lesser basalt unconformably overlies and is faulted against pre-Cenozoic Wrangellia rocks between the Delta River in the west and the Chistochina River in the east (Nokleberg et al., 1992a; Gillis et al., 2019; Figures 1 and 2). The Eocene volcanic strata and Wrangellia rocks are carried in the hanging wall of the south-vergent McCallum-Slate Creek thrust system. The footwall south of the McCallum-Slate Creek fault system contains the Oligocene-Pliocene fluvial-lacustrine McCallum basin strata (Allen et al., 2016; Waldien et al., 2018).

The tectono-metamorphic evolution of rocks south of the Denali fault near the Delta River records imbrication of North American-affinity and Wrangellia-affinity rocks during late Cretaceous terrane accretion and late Cenozoic reactivation of the terrane accretionary structures. Prior to juxtaposition during terrane accretion, the Maclaren schist protolith was derived from, and deposited upon, the western margin of North America at ca. 94-86 Ma, whereas the Clearwater metasediments were deposited along the paleo-eastern margin of the Wrangellia terrane at ca. 150 Ma (Waldien et al., 2021). Initial juxtaposition of the Maclaren schist and Clearwater metasediments took place with formation of the Valdez Creek shear zone, which is a south-vergent thrust shear zone intruded by a ca. 74 Ma syn-kinematic tonalite sill (Ridgway et al., 2002). Motion on the shear zone produced a well-preserved inverted metamorphic gradient in the footwall Clearwater metasediments, which records the Cretaceous history of prograde metamorphism related to Wrangellia terrane accretion (Smith, 1981; Davidson et al., 1992; Hollister, 1993). In the Alaska Range east of the Maclaren River, the Maclaren schist experienced a pervasive greenschist facies retrograde metamorphic overprint that has been linked to post-32 Ma reactivation of the Valdez Creek shear zone as the Valdez Creek fault (Waldien et al., 2021). Reactivation of the shear zone nucleated a south-vergent imbricate thrust system that includes the Broxson Gulch fault at the northern margin of the Wrangellia terrane and reverse faults within the Wrangellia terrane to the south (Waldien et al., 2021). The Denali fault truncates the Maclaren schist and associated rocks and structures near the Delta River (Figures 1 and 2).

Geology northeast of the Denali fault near Kluane Lake in southwestern Yukon

Near Kluane Lake northeast of the Denali fault, a series of north-to-northeast-dipping thrust panels contain peri-Laurentian Yukon-Tanana terrane rocks, the Kluane Metamorphic assemblage, the Dezadeash formation, and the Bear Creek formation. Important structures in the region are the Kluhini River thrust and Tatshenshini shear zone/Shakwak fault.

Rocks belonging to the Yukon-Tanana terrane occupy the highest structural panel, which consist of pre-Carboniferous quartzose metasedimentary rocks with lesser carbonate and amphibolite that host late Devonian and younger intrusions (Johnston et al., 1996b; Israel et al., 2011). South of the Yukon-Tanana terrane, the Ruby Range batholith is a ca. 77-57 Ma composite intrusive suite emplaced along the boundary between Yukon-Tanana terrane rocks to the north and the Kluane metamorphic assemblage to the south (Israel et al., 2011; Stanley, 2012). The Kluane metamorphic assemblage consists of late Cretaceous amphibolite facies pelitic and quartzofeldspathic schist and gneiss (Mezger et al., 2001a). For simplicity, we hereafter refer to these rocks as the Kluane schist. The batholith largely obscures the contact between the Kluane schist and Yukon Tanana terrane, yet vestiges of a late Cretaceous W-vergent thrust shear zone (Kluhini River thrust-Vice et al., 2020) are preserved locally. Smaller intrusions within the 54-48 Ma Hayden Lake suite intruded the low structural position of the Kluane schist (Colpron et al., 2016).

The southern margin of the Ruby Range batholith and Kluane schist are juxtaposed against Dezadeash and Bear Creek formations to the southwest along the Shakwak fault and Tatshenshini shear zone (Lowey, 2000; Colpron et al., 2016; Vice et al., 2020). The Bear Creek assemblage consists of Upper Triassic marine strata and lava flows (Israel et al., 2015). The Late Jurassic-early Cretaceous Dezadeash formation unconformably overlies the Bear Creek assemblage and consists of ≥ 1 km of marine turbidite strata (Eisbacher, 1976; Lowey, 1998). Both the Bear Creek and Dezadeash strata host the ca. 126-106 Ma (K-Ar dates) Shorty Creek and Pyroxenite Creek intermediate-ultramafic intrusive suite (Eisbacher, 1976). The NW-striking Denali fault truncates the western margin of the entire package of north-dipping structural panels in southwestern Yukon.

The geologic evolution of rocks near Kluane Lake records closure of an ocean basin during the late Cretaceous (Mezger et al., 2001). Detrital zircon U-Pb data indicate that both schistose and gneissic Kluane rocks have ca. 95-90 Ma protolith ages and received sediment from YukonTanana and other peri-Laurentian terranes (Israel et al., 2011; Stanley 2012) prior to imbrication and prograde metamorphism along east-northeast-dipping convergent structures (Erdmer and Mortensen, 1993). In contrast, the Dezadeash formation was likely sourced from the Mesozoic arcs built upon the Wrangellia composite terrane as indicated by paleo-current indicators and detrital zircon U-Pb age spectra (Lowey, 2018). Similarly, the Bear Creek formation may correlate with similar age and composition rocks within the Alexander terrane (Israel et al., 2015). During Wrangellia composite terrane accretion, the Kluane schist experienced regional metamorphism as early as 82 Ma and was intruded by the Ruby Range batholith from ca. 77 to 57 Ma (Israel et al., 2011; Stanley 2012). The ca. 57 Ma phase of the Ruby Range batholith displays regional plutonicto-volcanic textural gradation that link it to the Rhyolite Creek volcanics to the north (Israel et al., 2011), which may record tilting of the crustal section following terrane accretion (Johnston and Canil, 2007).

METHODS

Geologic mapping

We performed 1:20,000-scale bedrock geologic mapping during the summers of 2018 and 2019 on base maps constructed from IfSAR Alaska and ArcticDEM digital terrain models. Mapping focused on along-strike correlation of major structures and bedrock units between the eastern Alaska Range and Clearwater mountains. Here we present a new bedrock geologic map (Figure 2), compiled from the new mapping and prior mapping by Turner and Smith (1974), Smith (1981), Mooney (2010), Waldien et al. (2018), Twelker et al. (2020), and Waldien et al. (2021).

Separation measurements

We measured the strike-slip separation of correlative rock units along the Denali fault on a NAD83 Alaska Albers Conic equal area projection using the *ruler* tool in ESRI Arcmap. If the body of rock used for measurement is cut by the Denali fault, then measurements represent the distance between the midpoints of the cut faces of the correlative units. If the body is not mapped as cut by the Denali fault, then we measured from the location on the fault nearest to the body. Differences in deformation, rotation, and erosional exhumation of the correlative rocks on opposite sides of the fault introduces uncertainty into the separation measurements that is difficult to quantify. A simple trigonometric calculation accounting for the dip of reactivated structures near the Delta River (~40-70°N), the inferred differential exhumation between the Maclaren and Kluane schist (~5-10 km), and the timing of the differential exhumation relative to slip on the Denali fault (post-32 Ma exhumation of Maclaren schist; Waldien et al., 2021) suggests that separation measurements have associated uncertainties as great as ~8.5 km. In lieu of measurement-specific uncertainties, we infer that the measurements of strike-slip separation presented and discussed herein have associated uncertainties of less than ± 10 km.

Zircon U-Pb dating

Sample preparation and data collection

We performed single-grain zircon U-Pb geochronology by Laser Ablation Quadrupole Inductively Couple Mass Spectrometry (LA-Q-ICP-MS) with three primary goals: 1) to fingerprint metasedimentary rocks by determining the sediment source areas of the protolith, 2) to estimate the maximum depositional age of the protolith, and 3) to date igneous intrusions in the map area. Mineral separation at UC Davis involved standard crushing techniques, a miner's gold pan, Frantz isodynamic separator, and Lithium Polytungstate and/or Methylene Iodide heavy liquids to concentrate zircon grains. For detrital zircon samples, we concentrated zircon grains enough to mount them by pouring; for igneous samples we hand-picked relatively large, inclusion-sparse zircon grains. Prior to LA-Q-ICP-MS analysis, we mounted the zircon grains and reference materials into 1" epoxy rounds, polished the rounds to expose the grain surface, and imaged them using a Cameca SX-100 Electron Microprobe. High-contrast back-scattered electron images allowed us to identify zoning and/or inherited cores in individual zircon grains, which informed our laser spot placement on each grain. We collected isotopic data using an Agilent 7700 series Q-ICP-MS coupled to a Photon Machines 193 nm Excimer laser ablation system at UC Davis. By polishing the grain mounts until zircon surfaces are exposed, rather than grinding to the core of the crystal, we were in some cases able to ablate through metamorphic rims into detrital cores. Obtaining dates on both the rim and core was achieved using the VizualAge plug-in as implemented with the U Pb geochronology3 data reduction scheme in the Iolite program (Paton et al., 2010; Petrus and Kamber, 2012). Supporting Information S1 contains detailed mineral extraction, analytical, data reduction, and data filtering methods used in the LA-Q-ICP-MS analyses. Supporting Information S2 contains the single-grain U-Pb data.

Data presentation

Our fingerprinting of metasedimentary protoliths is based on identifying distinctive populations of detrital zircon single grain U-Pb dates. Each multimodal detrital zircon age data set contains analyses on at least 117 grains (Vermeesch, 2004). One detrital sample displays a unimodal age spectrum that is defined by 50 single-grain analyses. We represent the detrital U-Pb data as Kernel Density Estimates using the DZStats and Density Plotter programs (Saylor and

Sundell, 2016 and Vermeesch, 2012, respectively). Because many of the rocks analyzed in our study experienced amphibolite and upper greenschist metamorphic temperatures and thus may have experienced metamorphic recrystallization and/or lead loss (e.g., Hoskin and Schaltegger, 2003), we screened each analysis from the youngest age population of each sample to parse detrital and post-depositional metamorphic grains on the basis of U content (ppm), U/Th ratio, imaged zoning patterns, age relative to the known ages of intrusions within the rock unit, and presence of age zoning reveled by laser depth profiling (Supporting Information S1). After parsing detrital and metamorphic grains, we calculated a maximum depositional age for each sample using the age of the youngest statistical population of the detrital grains (e.g., Herriott et al., 2019).

We used Isoplot (Ludwig, 2008) to determine the ages of igneous zircon populations by calculating the weighted mean of single grain dates with internal 2s errors. Reported uncertainties of weighted mean ages represent 95% confidence interval internal uncertainties and the quadratic addition of external uncertainties (e.g., Horstwood et al., 2016; Supporting Information S1).

Statistical tests

To assess the similarities between metasedimentary assemblages across the Denali fault, we performed statistical tests on the detrital zircon U-Pb age data using the multidimensional scaling program DZmds from Saylor et al (2017). We focused our multidimensional scaling approach on the cross-correlation of probability density distributions because that approach has been shown to work well with both simple and complex datasets that range in sample size (Saylor and Sundell, 2016).

Hf isotopic data

In order to refine sediment source areas of metasedimentary protoliths, we performed Hf isotopic analysis on Mesozoic detrital zircon grains from two samples of Clearwater metasediment and one sample of Maclaren schist. Hf analyses were performed using a Photon Machines 193 nm Analyte G2 excimer laser (40 um spot size) coupled to a Nu High Resolution Multicollector ICP-MS at the Arizona Laserchron Center. The analytical approach used the sample bracketing technique, wherein we performed at least one analysis on each of the six reference materials (FC, Mud Tank, 91500, Temora, Plesovice, R-33, and Sri Lanka natural zircon) between every 15-20 unknowns. U-Pb age data for the analyzed grains are published in Waldien et al. (2021). Complete Hf analysis methods and data are available in Supporting Information S1.

⁴⁰Ar/³⁹Ar dating methods

In order to determine the age of faulted volcanic rocks, we conducted ⁴⁰Ar/³⁹Ar analyses at the Geochronology Laboratory at the University of Alaska, Fairbanks, where samples were crushed, sieved, washed, and hand-picked for a pure phase of phenocryst-free groundmass or biotite. The sample aliquots and monitor mineral MMhb-1 (Samson and Alexander, 1987), which has an age of 523.5 Ma (Renne et al., 1994), were irradiated at McMaster University in Hamilton, Ontario, Canada. Upon their return from the reactor, the samples and monitors were loaded into 2 mm diameter holes in a copper tray and then loaded in an ultra-high vacuum extraction line. The monitors were fused, and samples heated, using a 6-watt argon-ion laser following the technique described in York et al. (1981), Layer et al. (1987), and Benowitz et al. (2014). Ar isotope measurements in this system were made using a VG-3600 mass spectrometer.

Supporting information S3 contains detailed 40 Ar/ 39 Ar analytical methods and contains the 40 Ar/ 39 Ar data, wherein all ages are reported at the 1 σ level and calculated using the constants of Renne et al. (2010). The integrated age is the age given by the total gas measured and is equivalent to a potassium-argon (K-Ar) age. The spectrum provides a plateau age if three or more consecutive gas fractions represent at least 50% of the total gas release and are within two standard deviations of each other (mean square weighted deviation <2.5).

RESULTS

New mapping and synthesis with existing maps

Our new mapping and U-Pb geochronology (discussed below) link two regions of previous detailed mapping to the west (Smith, 1981) and east (Waldien et al. 2021). Accordingly, the mapping presented herein addresses the correlation between Mesozoic structures in the Clearwater Mountains (bold faults on Figure 2) and reactivated versions of those structures to the east (thin faults on Figure 2). The transition between reactivated and non-reactivated structures broadly coincides with the Maclaren River, which is also the location of a 1:250,000-scale quadrangle boundary (147° W) (cf., Csejtey et al., 1992; Nokleberg et al., 1992a; Wilson et al., 1998, 2015). To our knowledge, our study is the first to attempt to correlate the geology across the region. Our along-strike correlation of structures from the Clearwater Mountains to the eastern Alaska Range relies on the continuity of distinct rock packages between the two regions (Figure 2).

Geology of the Maclaren River corridor

The 10-km-wide region between the Maclaren Glacier in the east and west fork of the Maclaren River in the west exposes the Maclaren schist, Clearwater metasediments, and the Wrangellia terrane (Figure 2). The structurally highest panel contains the Maclaren schist and a cross-cutting granodiorite body carried in the hanging wall of the Valdez Creek fault. South of the Valdez Creek fault, the Clearwater metasediments in this region are dominated by fine-grained metagreywacke and slate. East of the middle fork of the Maclaren River, the metasediments host a volumetrically-small zoned gabbro-diorite intrusion. Diorite dikes near the intrusion are folded with the foliation in the Clearwater slate (Figure 3A). Due to the composition of the intrusion, the zonal structure, and the deformation shared with the host rocks, we infer that the intrusion is early Cretaceous in age, which has been documented within the Clearwater metasediments to both the east and southwest (Mooney, 2010; Waldien et al., 2021). The Clearwater metasediments and associated intrusions were thrust southward over Wrangellia terrane rocks, which in this region are predominantly composed of Nikolai rocks and lesser Permian carbonate strata in the north near the Broxson Gulch fault. The Wrangellia strata host zoned intermediate-mafic composition granitoids.

Along the west and middle forks of the Maclaren River, two approximately north-striking faults cut the dominant east-west structural fabric in the region. Although the faults are not exposed due to their location in the river valleys, their existence is implied by the misalignment of east-west-trending structures across the river valleys and the steep topographic gradient between the eastern Alaska Range and Susitna River valley.

A northeast-southwest-trending belt of topography separates the Maclaren River from the Susitna River valley (headwaters of Boulder Creek- Figure 2). Structures in the area include the Talkeetna fault and the herein-named Boulder Creek fault (BCF-Figure 2). The Talkeetna fault in the area is a steeply northwest-dipping structure exposed near the southeastern margin of the topography, which likely has limited Cenozoic slip, based on modest offset of late Cretaceous

203

sedimentary rocks (O'Neill et al., 2001; Mooney, 2010). The map pattern suggests that the Boulder Creek fault dips steeply to the southeast and the topographic gradient across the fault trace marks the eastern boundary of the Susitna River valley. The Boulder Creek fault juxtaposes low-grade metagreywacke and slate of the Clearwater metasediments to the east against tonalite intrusions to the west (Figure 2). Thus, the southeast-side-up sense of slip on the Boulder Creek fault has cut out the higher-grade portion of the inverted metamorphic field gradient that is elsewhere present in the footwall of the Valdez Creek shear zone. Cataclastic deformation associated with the Boulder Creek fault overprints late Cretaceous (e.g., Ridgway et al., 2002) ductile fabrics in the tonalite body, thus implying Cenozoic slip on the Boulder Creek fault. Although post-collisional brittle faults are present in the Clearwater Mountains to the southwest of the Boulder Creek fault (e.g., Smith, 1981; Mooney, 2010), the Valdez Creek shear zone does not appear to have experienced reactivation (e.g., Davidson et al., 1992) and is crosscut by the Boulder Creek fault (Figure 2).

Along-strike correlation of structures

Published synthesis maps of the eastern Alaska Range have correlated the Valdez Creek shear zone in the west with a structure east of the Maclaren Glacier named the Meteor Peak fault (Wilson et al., 1998, 2015). The correlation appears to have stemmed from the location of the two structures at the southern margin of plutons within the Maclaren schist and the inference that all of the plutons in the area intruded at ca. 70 Ma (e.g., Aleinikoff et al., 1981; Nokleberg et al., 1992a, b).

Multiple lines of evidence indicate that the Valdez Creek shear zone and Meteor Peak fault are not correlative structures. Mainly, the Cenozoic evolution of structures east of the Maclaren River reveals that the Valdez Creek fault formed as a reactivation of the Valdez Creek shear zone during the Oligocene (Waldien et al., 2021). Moreover, our observations of the Meteor Peak fault between the Black Rapids and Augustana Glaciers (BRG and AG-Figure 2) show it to be an anastomosing brittle fault system that follows the southern margin of the 42-33 Ma phase of the East Susitna batholith. Dikes along the margin of the 42-33 Ma composite pluton are generally offset by fewer than 10 m and cataclasis associated with slip on strands of the Meteor Peak fault is poorly developed and restricted to discrete zones less than 5 m wide (Figure 3B). These observations together indicate that the Meteor Peak fault is a minor brittle fault that formed after ca. 33 Ma and thus is not related to the late Cretaceous Valdez Creek shear zone.

After reconciling the structural complications near the headwaters of the Maclaren River described above, the along-strike continuity in metasedimentary belts reveals the transition between Cretaceous structures in the Clearwater Mountains and reactivated versions of those structures nearer to the Denali fault in the eastern Alaska Range (Figure 2). The Talkeetna-Broxson Gulch fault marks the boundary between the Wrangellia terrane and the Wrangellia-affiliated Clearwater metasediments. The Talkeetna fault in the Clearwater Mountains is a steeply dipping to sub-vertical crustal-scale fault with limited evidence for Cenozoic slip (O'Neill et al., 2001; Brennan et al., 2011). The Broxson Gulch fault in the Alaska Range is a moderately north-dipping reverse fault that is part of the post-32 Ma thrust system along the south flank of the Alaska Range (Waldien et al., 2021). The boundary between the Maclaren schist and Clearwater metasediments is the Valdez Creek shear zone in the west and Valdez Creek fault to the east. Late Cretaceous syncollisional ductile thrusting is preserved on the Valdez Creek shear zone in the Clearwater Mountains (Davidson et al., 1992), whereas the shear zone has been reactivated as a brittle fault in

the eastern Alaska Range (Waldien et al., 2021). The Meteor Peak fault appears to have no correlative structure in the Clearwater Mountains.

Zircon U-Pb dating

Metasedimentary rocks

Detrital zircon U-Pb age spectra from four samples of Clearwater metagreywacke (621 grains, Figure 4) are dominated by Jurassic grains. Three of the samples (18ATW20, 18ATW23, 19ATW46) display bimodal distributions with modes at ca. 155 and 185 Ma. Pre-Jurassic grains in two of the samples define subordinate populations at ca. 550 Ma, 1100-1800 Ma, and 2500-2800 Ma. Sample 17ATW09 yielded a unimodal age peak centered at ca. 150 Ma (Figure 4). Maximum depositional ages of the samples range from ca. 155-144 Ma (Figure 4). Near the middle fork of the Maclaren River, sample 19ATW39 is a quartz-muscovite phyllite interfoliated with the Clearwater slate, which we interpret as a metamorphosed felsic tuff based on the composition and unimodal distribution of zircon dates, yielded a weighted mean age of 160.4 ± 1.5 Ma (Table 2).

Detrital zircon U-Pb age spectra from five samples of Maclaren schist (1,094 grains, Figure 5) display: (1) dominant Mesozoic age populations at ca. 110-85 Ma, 160-145 Ma, and 200-180 Ma, although the relative proportions vary; (2) a subordinate population of ca. 370-330 Ma grains; (3) Proterozoic and Archean grains in all samples, although abundances are low; (4) post-depositional metamorphic rims or recrystallized domains with dates of ca. 84-55 Ma (Supplemental Information S1); and (5) mid-Cretaceous maximum depositional ages of ca. 91-88 Ma (Figure 5).

Plutonic rocks

Multiple intrusive phases are present in the study area, each of which has a distinctive agecomposition relationship that is unique to the thrust panels that host them. Here we present the ages of the plutonic suites from structurally highest (youngest) to structurally lowest (oldest) level. The new ages are reported in Table 2 and Supporting Information S4 contains additional details.

<u>Maclaren schist:</u> The Maclaren schist hosts three intrusive suites that are distinguishable on the basis of age and petrographic features. The youngest phase intruded the structurally highest portion of the Maclaren schist adjacent to the Denali fault. Compositions in this plutonic suite are varied and include biotite tonalite, hornblende-biotite granodiorite, and biotite-muscovite granite. The margins of the bodies are zones of mutually crosscutting dikes that crosscut the metamorphic foliation in the Maclaren schist (Figure 3C). Many samples from the suite display a high temperature fabric defined by the alignment of amphibole and plagioclase grains. Some samples display sub-solidus mylonitic fabrics. Samples from this suite yielded U-Pb zircon dates ranging from ca. 42 Ma to 33 Ma (Benowitz et al., 2011; Regan et al., 2021).

An intermediate-age plutonic suite intruded the structurally lowest portion of the retrograded Maclaren schist in the Alaska Range and is cut by the Valdez Creek fault (Waldien et al., 2021). Plutons in this suite consist of non-foliated biotite or hornblende granodiorite with late biotite-muscovite-K-feldspar pegmatite veins. The margins of the plutons crosscut the Maclaren schist foliation (Waldien et al., 2021). One sample from this suite near the middle fork of the Maclaren River (19ATW79) yielded a U-Pb zircon weighted mean date of 51.9 ± 0.6 Ma.

The oldest intrusions in the Maclaren schist are tonalitic, found in the western portion of the study area near Boulder and Valdez Creeks (Figure 2), and generally contains a well-developed, high-temperature foliation defined by strained mafic enclaves and aligned biotite, plagioclase, and amphibole (Davidson et al., 1992; Figure 3D). The tonalite bodies display reaction textures wherein primary clinopyroxene has reacted to amphibole and then to biotite. Three samples from the tonalite suite yielded U-Pb zircon weighted mean dates of 70.5 ± 1.0 Ma (17ATW03), $68.3 \pm$ 1.3 (18ATW21), and 64.6 ± 0.7 , (19ATW40). In the headwaters of the west fork of the Maclaren River, the tonalite suite is associated with a garnet-and-biotite-bearing leucocratic body. The leucocratic body generally lacks internal structure and forms a series of disseminated veins and dikelets into the Maclaren schist along the margins. Zircon crystals separated from the leucocratic body (sample 19ATW66) display core-rim textures wherein the cores yield ages common of detrital zircons within the Maclaren schist and the rims yielded a weighted mean date of 75.8 ± 1.9 Ma.

<u>Clearwater metasediments:</u> Sample 19ATW55 came from a small (<50 meters across) body of non-foliated hornblende diorite, which intrudes the Clearwater metasediments east of Boulder Creek and yielded a weighted mean date of 53.1 ± 0.6 Ma. The new date on sample 19ATW55 expands the known age range of small volume intrusions within the Clearwater metasediments, which elsewhere have been dated at ca. 142 Ma, 102 Ma, and 63-68 Ma (Davidson and McPhillips, 2007; Mooney, 2010; Waldien et al., 2021).

<u>Wrangellia terrane</u>: Our zircon U-Pb dating of plutonic rocks bears on two phases of magmatism within the Wrangellia terrane (Figure 2). The oldest dates come from a tabular granodiorite body east of the Delta River, which yielded weighted mean dates of 309.8 ± 3.9 Ma (14ATW50) and 307.2 ± 6.1 Ma (17ATW11). Similarly, a composite granodiorite-granite body near the Eureka

Glacier (16CSR17) yielded a weighted mean date of 306.3 ± 4.0 Ma. Younger dates come from the Maclaren River corridor, where concentric diorite-granodiorite bodies with marginal dioritegabbro dike systems intrude Skolai and Nikolai rocks. Samples from these bodies yielded weighted mean dates of 144.1 ± 2.3 Ma (15DR140–hornblende diorite body), 129.8 ± 2.4 Ma (13ET270– biotite granodiorite body) and 112.9 ± 1.3 Ma (19ATW81–hornblende diorite dike).

Hf isotopic signatures of Mesozoic detrital zircon grains

Detrital zircon grains from both age populations in the Clearwater metasediments (ca. 155 and 185 Ma) display juvenile ε Hf isotopic signatures (Figure 6). Zircon grains belonging to the early Jurassic age population in sample 16ATW10 display ε Hf values ranging from +4 to +11, whereas early Jurassic grains in sample 15ATW23 have values of +5 to +16. Late Jurassic zircon grains in sample 16ATW10 yielded ε Hf values ranging from +6 to +10 and sample 15ATW23 contains grains with values of +8 to +15.

Hf isotopic signatures from detrital zircon grains in the Maclaren schist (sample 15ATW29) show a range of juvenile and evolved ε Hf compositions (Figure 6). Early Jurassic zircon grains display ε Hf values ranging from -10 to +12. Late Jurassic grains are more juvenile and display ε Hf values ranging from +2 to +15. The small population (3 grains) of ca. 100 Ma zircon grains displays a spread of ε Hf values ranging from -18 to +13. Circa 90 Ma detrital zircon grains have more juvenile ε Hf compositions ranging from +8 to +13.

⁴⁰Ar/³⁹Ar dates on volcanic strata

Volcanic strata overlap and are faulted against Paleozoic Wrangellia rocks along the southern margin of the Alaska Range east of the Delta River. The volcanic strata are generally felsic in composition, yet mafic flows, mafic dikes, and conglomeratic strata are found locally (Bond, 1976; Hults and Athey, 2011; Waldien et al., 2018; Gillis et al., 2019). Four felsic extrusive samples southeast of the Gulkana Glacier in our study area (Figure 2) yielded 40 Ar/ 39 Ar dates of 50.9 ± 0.5 Ma (12HODO–rhyodacite tuff, biotite plateau age), 45.5 ± 0.2 Ma (46GUNN–dacite flow, whole rock plateau age), 49.3 ± 0.7 Ma (15BG216–dacite flow, whole rock weighted mean age), and 49.8 ± 0.3 Ma (15BG209–rhyodacite tuff, whole rock weighted mean age) (Table 3; Supporting Information S3).

DISCUSSION

Protolith provenance and paleogeographic setting for metasedimentary assemblages

Clearwater metasediments

Detrital zircon U-Pb age spectra and Hf isotopic signatures suggest that the Clearwater metasedimentary rocks formed along the paleo-eastern margin of the Wrangellia composite terrane during the Late Jurassic-Early Cretaceous. Although terranes along the Laurentian margin contain Jurassic rocks that could have supplied Jurassic zircon grains to the Clearwater metasediment protolith (e.g., Gehrels et al., 2009; Allan et al., 2013; Sack et al., 2020), the general lack of pre-Mesozoic grains and juvenile &Hf values of the Jurassic grains together suggest that the protolith sediment was derived from juvenile arc crust within the Wrangellia composite terrane (Figures 4 and 7). Jurassic source areas within the Wrangellia composite terrane include Chitina arc rocks (ca. 160-140 Ma: Roeske et al., 2003; Day et al., 2016; Beranek et al., 2017) and Talkeetna arc rocks (ca. 205-150 Ma: Roeske et al., 1989; Amato et al., 2007b; Rioux et al., 2007). The maximum depositional ages of the Clearwater metasediments and the ages of inter-bedded volcanics indicate that the strata were deposited between ca. 160 and 144 Ma (Mooney, 2010; Table 2). Intrusion of

a ca. 142 Ma alkali gabbro in the Clearwater Mountains post-dates deposition of the Clearwater protolith strata (Mooney, 2010; Figure 2).

Depositional ages, interpreted sediment source areas, detrital zircon Hf signatures, and stratigraphic features place the Clearwater metasediments among a suite of late Jurassic-Early Cretaceous basinal assemblages that span the inboard (north and east in present coordinates) margin of the Wrangellia composite terrane from western Alaska to British Columbia. From west to southeast, these basinal assemblages include the Koksetna River sequence (Wallace et al., 1989; Hults et al., 2013; Box et al., 2019), Clearwater metasediments (Mooney, 2010; Waldien et al., 2021; this study), Nutzotin Mountains sequence (Manuszak et al., 2007; Trop et al, 2020; Fasulo et al., 2020), Dezadeash formation (Lowey, 2019), Vand Creek assemblage (Vice, 2017), and western Gravina belt (Yokelson et al., 2015). It is not necessary that these basinal assemblages were linked as a single basin system at the time of deposition (e.g. Hults et al., 2013); however the similarities in depositional setting and interpreted provenance within the Wrangellia composite terrane do suggest that they together represent a regionally extensive clastic marine sequence linked to the paleo-eastern margin of the Wrangellia composite terrane. An Early-mid Cretaceous phase of strike-slip faulting may have translated the marine sequence relative to the Wrangellia composite terrane (e.g., Gehrels et al., 2009; Mooney, 2010; Yokelson et al., 2015; McDermott et al., 2019), yet the displacement history for those structures remains unclear.

Maclaren schist

Detrital zircon U-Pb age spectra indicate that the protolith of the Maclaren schist was deposited into a basin between previously accreted Cordilleran terranes to the east and the Wrangellia composite terrane to the west at ca. 94-86 Ma. As with other detrital zircon U-Pb
studies of the Maclaren schist (Link, 2017; Waldien et al., 2021), the samples presented herein comprise dominant detrital age populations at ca. 100-85 Ma, 200-145 Ma, and 370-330 Ma (Figures 5 and 7). The ubiquitous presence of pre-Mesozoic grains suggests that the protolith strata received sediment from regions within the Yukon-Tanana terrane and paratautochthonous North America (e.g. Dusel-Bacon and Williams, 2009; Piercey and Colpron, 2009; Gehrels and Pecha, 2014; Pecha et al., 2016; Dusel-Bacon et al., 2017). The overlap between periods of high magmatic flux in the Coast Mountains arc and the populations of detrital zircon grains in the Maclaren schist further suggests that the protolith sediment was sourced from rocks along the western margin of North America (Figure 8). Hf isotopic compositions from Mesozoic zircon grains in the Maclaren schist display a range of juvenile and evolved EHf values that may record either isotopic heterogeneity in the peri-continental source area (e.g., Piercy et al., 2003; Cecil et al., 2011; Sack et al., 2020), sediment sourced from igneous belts built upon both the Wrangellia composite terrane and the North American margin, and/or sediment recycling from the Clearwater metasediments. All samples presented in this study display a population of metamorphic growth rims dated at ca. 84-55 Ma, which we interpret to post-date deposition (Figures 5 and 7; Supplemental information S1).

The Maclaren schist displays both similarities and differences compared to other Mesozoic basinal assemblages in the suture zone between the Wrangellia composite terrane and North America. Ca. 110-90 Ma strata are exposed in the northern domain of the Kahiltna assemblage throughout the central and western Alaska Range (Hampton et al., 2007, 2010; Kalbas et al., 2007; Hults et al., 2013; Box et al., 2019; Romero et a., 2020). The eastern Gravina belt of southeastern Alaska contains similar continental-derived strata, yet detrital zircon age spectra and available biostratigraphic information suggest the strata were deposited at ca. 120-110 Ma (Berg et al., 1972;

Kapp and Gehrels, 1998; Yokelson et al., 2015). The Maclaren schist, northern Kahiltna, and eastern Gravina assemblages all share a ca. 100-120 Ma detrital zircon age population that, in addition to Precambrian grains, likely records a sediment source from igneous belts corresponding to the Teslin, Whitehorse, and Coffee Creek plutonic suites built upon the western margin of North America (Tempelman-Kluit and Wanless, 1975; Allan et al., 2013). The additional presence of Jurassic age populations with juvenile EHf signatures in these basin assemblages permits sediment input from approaching outboard terranes as the marine basin closed. The Maclaren schist, however, differs from much of the northern Kahiltna and eastern Gravina strata in that it is 10-30 Myr younger and experienced amphibolite facies metamorphism during collision of the Wrangellia composite terrane. The sum of information suggests that the protolith of the Maclaren schist formed in one of the youngest, if not the youngest, known syn-collisional marine basins between the Wrangellia composite terrane and North American margin.

Correlative rock packages and strike-slip separation

Our restoration of the Denali fault system relies on the correlation of metasedimentary, plutonic, and volcanic belts across the fault. The correlative rock packages are listed in Table 1, located as boxed numbers on Figure 1, and described below.

Dezadeash-Nutzotin-Clearwater (meta)sedimentary strata

Our new data from the Clearwater metasediments suggest that they correlate with the Nutzotin Mountains sequence and Dezadeash formation. Presently, the Clearwater metasediments are exposed south of the Denali fault in the eastern Alaska Range, the Nutzotin Mountains sequence is exposed south of the Denali fault and east of the Totschunda fault in eastern Alaska,

and the Dezadeash formation is exposed the northeast of the Denali fault in southwestern Yukon (Figure 1). A correlation between the Dezadeash and Nutzotin strata was initially proposed on the basis of age and sedimentological features that are shared between the two successions (Eisbacher, 1976). Later work by Lowey (1998) documented the existence of a paleochannel carrying distinctive limestone boulders incised into the Dezadeash and Nutzotin strata, which has been offset ~370 km by the Denali fault. More recent studies involving detrital zircon U-Pb dating show similar age populations and distribution of Jurassic and early Cretaceous zircon grains within the Dezadeash formation, Nutzotin Mountains sequence, and Clearwater metasediments, which are interpreted to be sourced from Jurassic arcs built upon the Wrangellia composite terrane (Manuszak et al., 2007; Mooney, 2010; Link, 2017; Lowey, 2019; Fasulo et al 2020; Trop et al., 2020; Waldien et al., 2021). Among the dated samples, the Dezadeash formation and Clearwater metasediments of the Alaska Range show the greatest similarity because they both include a ca. 185 Ma age population that is absent from the Nutzotin strata and Clearwater metasediments of the Clearwater mountains (cf. Mooney, 2010; Lowey, 2019; Trop et al., 2020; Fasulo et al., 2020; Figure 7 and 9). Hf isotopic signatures from detrital zircon grains in the Clearwater metasediments show juvenile EHf values (Figure 6), which compare well with juvenile whole rock ENd values from the Dezadeash formation (Lowey, 2011) and juvenile zircon EHf values from detrital zircon grains in the Nutzotin Mountains sequence (Fasulo et al., 2020). Biostratigraphic and U-Pb radioisotopic ages indicate that Clearwater-Nutzotin-Dezadeash rocks were deposited from ca. 160 to 135 Ma (Lowey, 2011; Mooney, 2010; Fasulo et al., 2020; Trop et al., 2020; Figure 4).

Because the Clearwater, Nutzotin, and Dezadeash rocks are presently separated from each other along the Denali fault system, their restoration requires slip on both the Denali fault and Totschunda fault. The incised paleochannel records ~370 km of dextral separation between the

Dezadeash formation and Nutzotin Mountains sequence (Lowey, 1998). The measured 80-90 km of separation between the Clearwater and Nutzotin strata likely resulted from right-lateral slip transfer from the Totschunda fault to the Denali fault (e.g., Waldien et al., 2018; Brueseke et al., 2019; Berkelhammer et al., 2019). Cumulative translation and dissection of the Clearwater, Nutzotin, and Dezadeash assemblages records at least 465 km of separation on the Denali fault.

Ann Creek-Pyroxenite Creek intrusions

Ultramafic-to-intermediate intrusive bodies within the Clearwater metasediments (AK) and Dezadeash formation (YT) correlate on the basis of petrography and possibly age. Early workers in both the Clearwater metasediments and Dezadeash formation had described pegmatitic biotite-hornblende clinopyroxenite bodies associated with granodiorite (Stout, 1965; Eisbacher, 1976). In Yukon, the Pyroxenite Creek ultramafic body and associated Shorty Creek granodiorite within the Dezadeash formation yielded amphibole and biotite K-Ar dates ranging from ca. 126-106 Ma (Eisbacher, 1976). In the Alaska Range, similar biotite-hornblende clinopyroxenite cumulates and associated granodiorite bodies intrude the Clearwater metasediments north of Ann Creek and have been dated at ca. 102 Ma (Stout, 1965; Waldien et al., 2021). Due to similarities in petrography, structural position, proximity to the Denali fault, and general age information, the Pyroxenite Creek and Ann Creek ultramafic cumulate bodies may be dismembered portions of the same body. This correlation results in up to 505 km of dextral separation across the Denali fault.

Maclaren-Kluane schist

The Maclaren schist (AK) and Kluane schist (YT) correlate on the basis of petrography, metamorphic history, and detrital zircon U-Pb age spectra (Figures 7 and 9). Both schist bodies

display a dominant foliation that dips toward the continent (north or northeast). The foliation in both bodies contains porphyroclasts of garnet and distinctive 'black' plagioclase, both of which contain curved inclusion trails defined by rutile and graphite (Mezger et al., 2001; Stanley, 2012; Waldien et al., 2021). The shared metamorphic history involves an early Barrovian series path that peaked at Temperature (T) ~ 500 °C and Pressure (P) \geq 7 kbar, followed by a phase of isothermal decompression, and subsequent Buchan series conditions of T \sim 550-750 °C and P \leq 5 kbar (Mezger et al., 2001; Davidson and McPhillips, 2007). In the Alaska Range, the eastern portion of the Maclaren schist experienced a post-32 Ma retrograde metamorphic event that has been linked to reactivation of adjacent structures (Waldien et al., 2021). The absence of the retrograde event in the Kluane schist does not preclude the correlation because the retrogression took place after the bodies were separated by the Denali fault (see section 5.3). Detrital zircon age spectra from the Maclaren and Kluane schists both contain a predominance of Mesozoic grains accompanied by smaller Paleozoic and Precambrian populations and metamorphic overgrowth rims ranging in age from ca. 84 to 55 Ma (Figures 7 and 9). All published detrital zircon U-Pb datasets yield maximum depositional ages between 95 and 86 Ma (Figure 5; Supporting information S2). Because each schist body is cut obliquely by the Denali fault and no discrete diagnostic feature within the schists has been found for correlation, the measurement of strike-slip separation between the bodies is approximate. However, measuring from center-to-center of the cut face of each body yields ~445 km of dextral separation.

East Susitna-Ruby Range Batholith (74-57 Ma phase)

Late Cretaceous and Paleocene plutonic belts within the Maclaren and Kluane schists have similar ages and compositions. Both comprise predominantly late Cretaceous tonalite and Paleocene granodiorite, although their proportions differ. In the East Susitna batholith (AK), syncollisional tonalite bodies dated at ca. 74-65 Ma represent the oldest phase of magmatism within the Maclaren schist (Aleinikoff et al., 1981; Ridgway et al., 2002; this study). The oldest dated rocks within the Ruby Range batholith (YT) come from intermediate and mafic intrusions dated at 72-68 Ma (Israel et al., 2011), and possibly as old as 77 Ma (Stanley, 2012). Voluminous ca. 64-57 Ma granodiorite-to-granite plutons compose the main phase of the Ruby Range batholith (Israel et al., 2011). Granodiorite bodies dated at ca. 57 Ma represent a volumetrically minor portion of the East Susitna batholith (Riccio et al., 2014; Figure 2), but are present throughout the Talkeetna Mountains to the west (Csejtey et al., 1992). Although the proportions of each magmatic phase do not appear to be equal within the East Susitna and Ruby Range batholiths, the range of ages and composition of the intrusions are nearly identical. It remains unclear if there are individual bodies in the dissected 74-57 Ma batholith that can be matched across the Denali fault, yet correlating the easternmost 57 Ma pluton south of the Denali fault in Alaska to the Ruby Range batholith in Yukon results in a minimum dextral separation of 425 km.

Shakwak-Ann Creek pluton (52-48 Ma)

Early Eocene plutonic rocks hosted within the Maclaren and Kluane schists correlate on the basis of structural position, composition, and age. In Yukon, the Hayden Lake plutonic suite comprises ca. 55-48 Ma felsic plutons intruded into the structurally lowest portion of the Kluane schist (Stanley, 2012; Colpron et al., 2016). Similar plutons in Alaska include the ca. 52 Ma biotite granodiorite-monzonite plutons north of Ann Creek and in the west fork of the Maclaren River (Figure 2). The westernmost pluton within the Hayden Lake suite (Shakwak pluton) is a >54-to-46 Ma (K-Ar biotite cooling and U-Pb zircon crystallization dates, respectively) composite body consisting of unfoliated biotite tonalite, biotite granodiorite, and quartz diorite (Yukon Geological Survey, 2020). Due to the overlap in age, identical structural position, similar rock types, and proximity to the Denali fault, we propose a correlation between the Shakwak pluton and the ca. 52 Ma biotite quartz monzonite body north of Ann Creek. Matching these two igneous bodies results in ~465 km of dextral separation along the Denali fault. We regard this correlation as our highest quality match across the Denali fault and most accurate measurement of strike-slip separation.

Paleogene volcanic rocks-

Post-collisional volcanic strata may correlate on the basis of composition, structural setting, and general age. South of the Denali fault, ca. 51-46 Ma volcanic strata between the Delta and Chistochina Rivers (Figure 1) in Alaska consist predominantly of syn-extensional felsic tuffs with lesser basalt-to-andesite flows and dikes (Bond, 1976; Waldien et al., 2018; Gillis et al., 2019; Figure 2; Table 3). The volcanic rocks near the Chistochina River appear to be the eastern-most isolated extent of the Paleogene volcanic belt that covers much of the Talkeetna Mountains (Csejtey et al., 1978, 1992; Nokleberg et al., 1992a). Potentially correlative rocks northeast of the Denali fault in southwestern Yukon include graben-bounded rhyolite tuffs with lesser andesite and basalt (Miskovic and Francis, 2004; Colpron et al., 2016). Field relationships and radiometric ages link the volcanic rocks to the ca. 57-55 Ma plutonic suite throughout southwestern Yukon (Morris and Creaser, 2003; Miskovic and Francis, 2004; Israel et al., 2011). The Bennett Lake igneous complex near the Yukon-British Columbia border, however, contains lava flows as young as ca. 50 Ma (Morrison et al., 1979; Morris and Creaser, 2003). Although no unique correlation between Eocene volcanic complexes across the Denali fault has yet been identified, we propose that the ca. 50 Ma volcanic strata and intrusions in the eastern Alaska Range may be a displaced portion of the Bennett Lake igneous complex or a suite of distal channelized flows. Moreover, the northern Talkeetna Mountains west of our study area contain a suite of ca. 63-50 Ma bimodal volcanic strata and associated intrusions (Csejtey et al., 1992; Cole et al., 2007), which may correlate with the Rhyolite Creek volcanics and associated intrusions north of the Ruby Range batholith in Yukon. Each of these potential correlations would result in more than 480 km of dextral separation across the Denali fault, which we view as an upper bound for Cenozoic displacement (see section 5.4.1). The potential correlation raises the possibility that mineralization associated with the Eocene volcanic strata in Canada may also be present in the Alaskan volcanic rocks (e.g. Light et al., 1990), but more field-based geochemical and geochronological studies of Paleogene volcanic rocks in the Alaska Range and Talkeetna Mountains will be necessary to vet these hypotheses.

Palinspastic reconstruction

The Maclaren-Kluane schist and associated rocks record nearly 100 Myr of tectonic evolution in the North American Cordillera. Our palinspastic reconstruction of the Denali fault begins with deposition of the Maclaren-Kluane protolith in the middle Cretaceous and culminates with historic dextral slip in the Denali fault system. In addition to our data highlighting the total offset history on the modern Denali fault, we use markers presented by Regan et al. (2021) to restore post-33 Ma slip (Table 1).

<u>Ca. 95-82 Ma (Figure 10)</u>: The protolith of the Maclaren-Kluane schist was deposited into a marine basin west of the Coast Mountains arc. Sediment was delivered to the basin from uplifted regions to the east, south, and west. Due to stratigraphic, structural, and thermochronological evidence for Early-mid Cretaceous oblique shortening in the region (e.g. Johnston, 1999; Ridgway et al., 2002;

Mair et al., 2006; McDermott et al., 2019), it is likely that the Maclaren-Kluane protolith was deposited in a contractional setting. We infer that syn-depositional imbrication of the Maclaren-Kluane protolith took place along E-dipping structures because the prograde structures within the Maclaren-Kluane schist dip north and east toward the North American continent (Davidson et al., 1992; Lowey, 2000; Johnston and Canil, 2007) and the timing of deposition corresponds to an eastward migration of arc magmatism across present-day southwestern Yukon (cf. Tempelman-Kluit and Wanless, 1975; Hart et al., 2004, Allan et al., 2013). Taken together, these data suggest that the Maclaren-Kluane protolith sediment formed in a contractional forearc position during the waning stage of the west-facing mid-Cretaceous arc built upon the Yukon-Tanana terrane. Maximum depositional ages from the Maclaren schist require that final closure of the forearc basin and associated tectonic underplating of the Maclaren-Kluane schist took place after ca. 86 Ma.

In remains unclear whether late Cretaceous syn-collisional underplating of the Maclaren-Kluane schist requires a subduction zone between the Wrangellia composite terrane and the North American margin at that time. Hypotheses regarding the nature of the crust along the inboard margin of the Wrangellia terrane in the mid-to-late Cretaceous include oceanic crust, a thickened oceanic(?) plateau, or a combination of these end-member scenarios (e.g., Trop and Ridgway, 2007; Lowey, 2019; Waldien et al., 2021). The presence of oceanic crust is implied by the apparently disparate geologic histories between the eastern margin of the Wrangellia composite terrane and western margin of North America prior to collision in the mid-Cretaceous (Trop et al., 2020). Alternatively, it has been suggested that early Cretaceous collision of the Wrangellia composite terrane with western North America was followed by transtensional rifting that reopened the marine basin (McClelland et al., 1992), yet it is not clear if the rift basins evolved to full seafloor spreading. An argument against the presence of a wide marginal seaway along between the Wrangellia terrane and North America draws on the presence of an early-mid Cretaceous magmatic belt in Yukon (Whitehorse, Dawson Range, Tombstone suites) and lack of mid-Cretaceous arc rocks south of the Maclaren schist in southern Alaska. Because deposition and accretion of the McHugh Creek Assemblage record paleo-east-dipping subduction along the western margin of the Wrangellia composite terrane from ca. 100-90 Ma (Amato and Pavlis, 2010; Amato et al., 2013), the singular magmatic belt in Yukon could be explained by that subduction zone alone, and eastward migration of the arc magmatism across Yukon (Figure 11) could be attributed changes in the geometry of that slab leading up to underplating of the Maclaren-Kluane schist and cessation of arc magmatism between ca. 83-78 Ma (e.g. Gehrels et al., 2009; Figure 8). If a second subduction zone were present between the Wrangellia composite terrane and the North American margin, then two sub-parallel mid-Cretaceous igneous belts should be present. Acknowledging the aforementioned uncertainties regarding the nature of the crust beneath the mid-to-late Cretaceous marginal seaway between the Wrangellia composite terrane and western North America, we drafted figure 11 to include queried oceanic crust along the eastern margin of the Wrangellia composite terrane.

<u>Ca. 82-65 Ma (Figure 11A)</u>: Tectonic underplating of the Maclaren-Kluane schist beneath the western margin of North America resulted in Barrovian series metamorphism that began shortly after deposition. During underplating, the schist experienced kyanite grade conditions (e.g., Davidson et al., 1992; Mezger et al., 2001) and growth of ca. 82 Ma metamorphic zircon rims. In Yukon, the structure responsible for burial and metamorphism of the Kluane schist is largely overprinted by the Ruby Ranges batholith (e.g., Israel et al., 2011). Along strike to the south of Kluane Lake, the Kluhini River shear zone has been described as an east-dipping shear zone that

thrusts the Yukon-Tanana terrane and related igneous belts over pelitic gneiss with an early Cretaceous protolith age (Vice, 2017). In Alaska, a structure beneath the Susitna Glacier (SGTF-Figure 2) places pre-Jurassic continental margin rocks hosting ca. 98 Ma plutons in the north against the Maclaren schist and East Susitna batholith in the south (Figure 2). We infer that historic and Neogene slip on the Susitna Glacier thrust fault reactivated a Mesozoic collisional structure correlative with the Kluhini River shear zone.

Following underplating, shortening continued by formation of the Valdez Creek shear zone along the former plate boundary between the Maclaren-Kluane schist to the northeast and the Clearwater-Nutzotin-Dezadeash strata to the southwest (Waldien et al., 2021). Our date of ca. 76 Ma on the garnet-biotite leucocratic body within the Maclaren schist suggests that initiation of slip on the Valdez Creek shear zone may have facilitated decompression partial melting in the schist or served as a conduit for melt migration (e.g. Hollister, 1993). Shortening along the Valdez Creek-Tatshenshini shear zone developed an inverted metamorphic field gradient preserved in the footwall Clearwater-Dezadeash metasediments, which reached peak upper greenschist-lower amphibolite facies conditions at ca. 65 Ma (Lowey, 2000; Waldien et al., 2021).

<u>Ca. 60-50 Ma (Figure 11B)</u>: Cessation of slip on the Valdez Creek-Tatshenshini shear zone was followed by isothermal decompression throughout much of the Maclaren-Kluane schist (Mezger et al., 2001a), local cooling near the Valdez Creek shear zone in the Clearwater Mountains (AK) (Ridgway et al., 2002), and reheating associated with voluminous magmatism in the Ruby Range batholith in Yukon (Mezger et al., 2001a; Israel et al., 2011). The magmatism was accompanied by regional extension, which preserved volcanic strata within grabens throughout eastern Alaska, southwestern Yukon, and northern British Columbia (Bacon et al., 1990; Morris and Creaser,

2003; Miskovic and Francis, 2004). South of the Denali fault in Alaska, syn-extensional volcanic strata and intrusions near the Gulkana Glacier record formation of the McCallum Creek fault as part of the Paleogene extensional system (Terhune et al., 2015; Gillis et al., 2019; Figure 12A). Despite the regional importance of Paleogene extension, eastern Alaska and southwestern Yukon appear not to have experienced the high magnitude of extension that occurred in coeval extensional systems farther south in the Cordillera (e.g., Parrish et al., 1988). The ca. 60-50 Ma syn-extensional volcanism may record initiation of dextral motion along the modern Denali fault in concert with dextral-slip on the Tintina and Border Ranges fault systems during oblique subduction of a spreading center along the outboard margin of the Wrangellia composite terrane (Roeske et al., 2003; Gabrielse et al., 2006; Davidson and Garver, 2017). However, our correlation of the Shakwak and Ann Creek plutons asserts that localization of the modern Denali fault and subsequent dissection of the Maclaren-Kluane schist and the associated batholith is restricted to post-52 Ma (Figure 12A).

<u>Ca. 33 Ma (Figure 12B)</u>: The ca. 42-33 Ma phase of the East Susitna batholith (AK) and absence of age-equivalent plutons in the Ruby Range batholith (YT) support our hypothesis of localized dextral slip on the Denali fault by ca. 42 Ma (see also Figure 8). The 42-33 Ma plutons within the Maclaren schist constitute the eastern-most extent of a suite of plutons emplaced along the Denali fault as far west as Mt. Foraker in the Central Alaska Range (Regan et al., 2020, 2021). Rapid post-emplacement cooling and thermal resetting of the Ar isotopic system in biotite and muscovite only within ~3 km of the plutons (e.g., Benowitz et al., 2011, 2014, 2019; Waldien et al., 2021) indicate that this phase of the batholith was emplaced at a relatively shallow crustal level.

<u>Ca. 30-20 Ma (Figure 12C)</u>: The Oligocene and early Miocene marks a major change in the geology of southern Alaska and southwestern Yukon, which involves the onset of exhumation in the Alaska Range and the Kluane Ranges (Benowitz et al., 2011, 2012, 2014; Lease et al., 2016; McDermott et al., 2019), drainage reorganization (Finzel et al., 2011, 2015; Brennan and Ridgway, 2015; Benowitz et al., 2019), onset of Wrangell volcanism (Berkelhammer et al., 2019; Breuseke et al., 2019), and development of the St. Elias fold-and-thrust belt (Bruhn et al., 2004; Pavlis et al., 2012). Contemporaneous events in our study area include the post-32 Ma reactivation of the Valdez Creek shear zone indicated by cooling ages and brittle deformation features, development of an imbricate thrust system along the southern flank of the eastern Alaska Range (Valdez Creek, Broxson Gulch, Airstrip, and Rainy Creek faults), and retrograde metamorphism of the Maclaren schist (Waldien et al., 2021). The onset of transpressional deformation in the Denali fault system may have nucleated a short-lived structural complexity (e.g., a restraining bend), which resulted in abandonment of the Cottonwood terrane, a fragment of the Maclaren schist and ca. 33 Ma orthogneiss, on the north side of the active Denali fault strand near the present-day Yukon-Alaska border (Nokleberg and Richter, 2007; Regan et al., 2021; see also Figure 12B). The widespread ca. 30-25 Ma tectonic modification of southern Alaska is generally regarded as an upper plate response to increased plate coupling and progressive flat slab subduction of the Yakutat oceanic plateau beneath southern Alaska (Enkelmann et al., 2008, 2010; Jadamec et al., 2013; Haynie and Jadamec, 2017).

Late Miocene to Present (Figure 12D): Southern Alaska experienced pulses in bedrock cooling and basin development beginning in the late Miocene. Regional events at this time include uplift and exhumation of the Denali massif (Fitzgerald et al., 1993, 1995; Burkett et al., 2016), pulses of

low-temperature cooling in the western Alaska Range (Haeussler et al., 2008; Benowitz et al., 2012; Lease, 2018), a transition from lacustrine to alluvial facies in basins north and south of the Denali fault (Ridgway et al., 2002, 2007; Allen et al., 2016), development of the Northern Foothills fold and thrust belt (Bemis and Wallace, 2007; Ridgway et al. 2007), reactivation of shortening structures along the southern flank of the Alaska Range (Waldien et al., 2018), expansion of the Wrangell volcanic field (Preece and Hart, 2004), and a regional shift in precipitation related to topographic development (Bill et al., 2018; Otiniano et al., 2020).

One aspect of the late Miocene tectonic event that is integral to the development of the Denali fault system is post-18 Ma dextral slip on the Totschunda fault (Milde, 2014; Berkelhammer et al., 2019). Although it is plausible that the Totschunda fault was part of the proto-Denali fault system prior to 114 Ma (Trop et al., 2020), the present data only imply linkage with the modern Denali fault since the late Miocene. Contemporaneous dextral slip on the Totschunda and Denali faults feeds slip from the Totschunda fault onto the Denali fault west of their intersection (Haeussler et al., 2017), which produces transpression west of the junction (Bemis et al., 2015). Due to these observations and the similarity in magnitudes (~80-90 km) of post-7 Ma separation on the Denali fault west of the Denali-Totschunda juncture and post-18 Ma separation on the Totschunda fault, it is likely that both separations accumulated entirely since ca. 7 Ma. Restoring ~85 km of late Miocene to Present separation on the Totschunda and Denali faults places the Clearwater metasediments adjacent to the Nutzotin Mountains Sequence and would also match the Talkeetna fault to the Totschunda fault (see also Figures 11, 12A, B, and C). Such a restoration is supported both by the rock types near these structures and by crustal tomography revealing nearly identical contrasts in crustal seismic properties across those faults (Allam et al., 2017). Incorporating the ~ 85 km of dextral separation on the Totschunda fault is a key component of our

palinspastic reconstruction of the Denali fault system because it allows both the \sim 370 km of separation recorded by correlation of the Dezadeash and Nutzotin strata and the <505 km of separation recorded by the correlation of the Clearwater metasediments and Dezadeash formation to be correct.

Transpressional deformation in the Denali fault system during the Neogene was highly partitioned between dextral strike-slip on the Denali fault master strand and Totschunda fault and shortening on thrust systems at the northern and southern flanks of the Alaska Range. The record of long-term cooperation between strike-slip and shortening structures is also reflected in historic seismicity, including the 2002 M_w 7.9 Denali earthquake, which indicates that both strike-slip and shortening structures remain active components of the Denali fault system (Eberhart-Phillips et al., 2003; Doser, 2004; Ratchkovski et al., 2004; Vallage et al., 2014).

Implications for strike-slip faulting in the North American Cordillera

Separation versus slip on the Denali fault

Cenozoic shortening on structures in the Alaska Range causes the measurements of strikeslip separation to underestimate the magnitude of slip on the Denali fault between the offset markers. Our favored correlation of the ca. 52 Ma Shakwak and Ann Creek plutons yields 465 km of dextral separation. Post-32 Ma reactivation of the Valdez Creek shear zone nucleated the southeast-vergent thrust system that carried the Maclaren schist, Clearwater metasediments, and associated intrusive rocks in the hanging wall (Waldien et al., 2021). Synchronous slip between the thrust system and Denali fault resulted in slip transfer from the Denali fault to the thrusts. As a result of the slip transfer, translation of the Ann Creek pluton relative to the Shakwak pluton took place at a rate lower than the slip rate on the Denali fault. Over time, the accumulated shortening led to a discrepancy in the separation of the offset features relative to the amount of slip on the section of the Denali fault between the correlative plutons. It is not entirely clear how much slip has taken place on the Valdez Creek or Broxson Gulch faults, yet detailed mapping paired with thermochronological and geophysical datasets suggest that these structures accommodated at least 15 km of shortening during the Oligocene and Miocene (Allam et al., 2017; Waldien et al., 2021). Incorporating the Cenozoic shortening into our model of Denali fault evolution reveals that the 465 km of strike-slip separation corresponds to a total slip estimate of ~480 km.

Timing of strike-slip displacement

In agreement with other recent studies (e.g., Murphy, 2018), our review of the ages and separation of features displaced by the Denali fault requires that the ~480 km of displacement on the fault system took place entirely during the Cenozoic. There are two major implications of this outcome.

First, formation and localization of slip on the modern Denali fault appears to have begun as slip on other major strike-slip faults in the Cordillera was decreasing. Both the Border Ranges and Tintina fault systems were active dextral fault systems during the Paleogene, but appear to have experienced minor dextral slip since the late Eocene (Little, 1990; Roeske et al., 2003; Gabrielse et al., 2006; Till et al., 2007; Ryan et al., 2017). In contrast, we have documented that localization and major slip on the modern Denali fault took place after ca. 52 Ma. This time period corresponds to major changes in the tectonic configuration along the entire margin of western North America, which may be related to changes in the obliquity, rates, and physical properties of incoming oceanic plates (e.g., Atwater, 1989; Doubrovine and Tarduno, 2008; McCrory and Wilson, 2015). The prevalence of Paleogene extensional complexes from British Columbia, Canada into the northern contiguous United States may partially correspond to the coexistence of multiple dextral fault systems that were active at that time (e.g., Andronicos et al., 2003; Gabrielse et al., 2006; Foster et al., 2007). Likewise, the apparent decline of widespread extension in the late Eocene may record an increase in localized slip on the Denali fault and a decrease in major slip on neighboring strike-slip fault systems in concert with changing plate boundary conditions.

Second, the recognition of Cenozoic slip on the modern Denali fault allows for larger cumulative margin-parallel displacement of the Wrangellia composite terrane relative to inboard terranes since the early Cretaceous. Recently published geology-based datasets bear on longstanding hypotheses that the Cordilleran terranes experienced large magnitude (>1500 km) northward transport along dextral fault systems in the mid and late Cretaceous (Rusmore et al., 2013; Garver and Davidson, 2015; Matthews et al., 2017; Sauer et al., 2019; Coutts et al., 2020). Our review of slip in the Denali fault system reveals that the off-cited \geq 370-400 km of slip that was inferred to have taken place since the early Cretaceous is not an accurate assessment of Denali fault slip. We have shown herein that ~480 km of slip on the modern Denali fault took place entirely since ca. 52 Ma. Thus, the modern Denali fault should not be grouped with other fault systems contributing to large-scale margin-parallel displacement in the Cretaceous. Rather, thermochronological data and regional geologic correlations suggest the existence of a proto-Denali strike-slip fault system that was likely active during the early-mid Cretaceous (Wahrhaftig et al., 1975; Miller et al., 2002; McDermott et al., 2019). The amount of displacement and the sense of motion on the proto-Denali fault system are presently not well understood. Finding and interrogating the rock packages that record the slip history of the proto-Denali fault will undoubtedly help reconcile disputes regarding margin-parallel transport of Cordilleran terranes during the Cretaceous. If the proto-Denali fault experienced a phase of dextral slip, northward

displacement of the Wrangellia composite terrane along the Denali fault system relative to the North American margin would exceed the ~480 km of Cenozoic displacement established herein.

Lithospheric strength heterogeneity following terrane accretion

The key feature that allows offset on the modern Denali fault to be determined is the presence of correlative syn-collisional rock packages on both sides of the fault. Thermochronological and thermobarometric data indicate that the Maclaren-Kluane schist and associated batholithic rocks were in the upper ~ 15 km of the crust when the modern Denali fault formed. Because these rock packages, and fabrics within them, were cut obliquely by the fault, it is implied that their mechanical properties did not influence localization of the fault. Instead, we propose that the mechanical properties of the lower crust and/or lithospheric mantle were more important for controlling formation and localization of the modern Denali fault. Elements of the post-collisional lower crust and lithospheric mantle in the Cordillera that may have guided localization of the modern Denali fault include: a thick mafic root within the Wrangellia composite terrane, differences in mantle hydration as a result of subduction-related magmatism, and/or differences in the thickness of the mantle lithosphere. Such inferences are supported by a variety of geophysical datasets, all of which indicate a fundamental change in the properties of the lower crust and upper mantle across the eastern Denali fault (Saltus and Hudson, 2007; Rasendra et al., 2014; O'Driscoll and Miller, 2015; Audet et al., 2016; Allam et al., 2017; Miller et al., 2018; Berg et al., 2020). The sum of geophysical and geological data from the Denali fault, together with thermochronological and geophysical datasets from other regions of the Cordillera (Enkelmann et al., 2019; Estève et al., 2020), challenge the hypothesis of an active Cordillera-wide weak lower crustal décollement (e.g., Hyndman et al., 2005).

Instead, the contrasting mechanical properties of individual terranes may cause terranebounding structures to penetrate the lithosphere. Such a scenario is highly likely for southern Alaska, where the thermal structure of the lithosphere is strongly controlled by the shape of the subducting plate, and lithospheric-scale weaknesses along terrane boundaries (i.e., the Denali fault) are required to accurately model active deformation (Jadamec et al., 2013; Haynie and Jadamec, 2017).

CONCLUSIONS

Integration of new geologic mapping and geochronology data from the eastern Alaska Range with existing datasets from southwestern Yukon reveals five distinct rock packages that record total displacement on the Denali fault: (1) ca. 94-86 Ma Maclaren schist and Kluane schist; (2) the 74-57 Ma phase of the East Susitna batholith and the Ruby Range batholith; (3) ca. 52 Ma granodiorite bodies in a low structural position of the Maclaren schist and the Hayden Lake intrusive suite; (4) the ca. 160-144 Ma Clearwater metasediments, Nutzotin Mountains Sequence, and Dezadeash formation strata and ca. 102 Ma zoned pyroxenite-granodiorite bodies that intrude the strata; and (5) Eocene extension-related volcanic rocks and associated shallow intrusions. Restoring these offset features results in ~465 km of dextral separation, and accounting for Neogene shortening in the eastern Alaska Range results in ~480 km of dextral slip in the Denali fault system. All of this slip accumulated since ca. 52 Ma, following the main phase of slip on other major Cordilleran strike-slip faults.

Prior to offset by the Denali fault system, protolith deposition and prograde metamorphism of the Maclaren-Kluane schist records the closure of a marine basin between the Wrangellia composite terrane and the Cordilleran margin at ca. 95-86 Ma. Underplating and regional metamorphism of the schist took place along east-dipping ductile thrusts (Kluhini River and Valdez Creek shear zones) between ca. 82 and 65 Ma. The data presented and summarized herein provide additional evidence for diachronous accretion of the Wrangellia composite terrane along east-dipping structures.

FIGURES:

Figure 1 (Previous page): (A) Simplified geologic map of the southwestern Yukon and eastern Alaska region around the Denali fault (modified from Wilson et al., 2015 and Colpron et al., 2016). Basement geology is combined into the Wrangellia and Yukon composite terranes south and north of the Denali fault, respectively. Mesozoic-Cenozoic igneous belts and basinal assemblages are delineated as either pre-Wrangellia-collisional terranes and marginal marine strata (\geq 80 Ma) or overlap (\leq 80 Ma). The legend contains regional formation, metamorphic belt, or plutonic suite names that are contained within the map area and are pertinent to the study. The location of figure 2 is contained within the black box. Boxed numbers denote the locations of correlative geologic features that are listed in Table 1. SGTF–Susitna Glacier thrust fault; VCSZ–Valdez Creek shear zone; AK–Alaska; YT–Yukon Territory; B.C. British Columbia. **(B)** Regional terrane map of the Canadian-Alaska Cordillera showing the location of figure 1A and major strike-slip fault systems. Modified from Colpron et al. (2011). Abbreviations denoting the Methow, Tyaughton, Gravina, Dezadeash, Nutzotin, and Kahiltna basins are shown in the general locations.

Figure 2: Regional geologic and age compilation map of the study area in the eastern Alaska Range. The map is compiled from Smith and Turner (1974), Mooney (2010), Waldien et al. (2018), Twelker et al. (2020), Waldien et al. (2021) and our new mapping near the headwaters of the Maclaren River. Previously published ages are annotated with a symbol, whereas new ages are outlined by a red box. The locations of field photographs in figure 3 are shown as "F3A-D". WMA–Weighted mean age; MDA–Maximum Depositional age.

Figure 3: Field photos show key relationships in the map area. (A) An intermediate dike associated with a zoned mafic-intermediate intrusion is folded with the foliation in the Clearwater slate. Photo is from an outcrop east of the middle fork of the Maclaren River. (B) Distributed brittle deformation is associated with the southern margin of the ca. 42-33 Ma plutonic suite. Nokleberg et al. (1992a) mapped this outcrop as an exposure of the Meteor Peak fault. Dikes commonly cross cut the metamorphic foliation in the Maclaren schist and are cut by small brittle faults. Photo is from an outcrop north of the Augustana Glacier. (C) Dikes associated with the ca. 42-33 Ma plutonic suite intersect the Maclaren schist foliation (yellow broken line) at multiple angles both south and north of the Meteor Peak fault. Photo is of an arête east of the Black Rapids Glacier. (D) Mafic enclaves in the ca. 74-65 Ma tonalite suite are highly stretched and

commonly elongate in the down-dip direction. Photo is from sample location 17ATW03.

Figure 4: Kernel density estimate (KDE) plots of detrital zircon U-Pb age spectra (<500 Ma) for individual samples of Clearwater metagreywacke ordered from east (top) to west (bottom). Post-depositional metamorphic dates are indicated for sample 17ATW-09. The dark gray bar at 155-144 Ma highlights the range of maximum depositional ages for individual samples. KDE plots were made using the DensityPlotter program (Vermeesch, 2012). YSP-weighted mean and 2s uncertainty of the youngest statistical detrital population, taken to be the maximum depositional age; n-number of analyses composing the plot.

Figure 5: Kernel density estimate (KDE) plots of detrital zircon U-Pb age spectra (<500 Ma) for individual samples of Maclaren schist ordered from structurally highest (top) to structurally lowest (bottom). Postdepositional metamorphic dates are shown as a dashed line KDE curve and are outlined by a light grey bar at ca. 84-55 Ma. The dark gray bar at 91-87 Ma highlights the range of maximum depositional ages for individual samples in this study. KDE plots were made using the DensityPlotter program (Vermeesch, 2012). YSP-weighted mean and 2s uncertainty of the youngest statistical detrital population, taken to be the maximum depositional age; nnumber of analyses in the plot.

Figure 6: Epsilon (ε) Hf-versus-age plot of single grain analyses from the Maclaren schist and Clearwater metasediments (colored as in figure 1). The maximum 2s uncertainties (unc.) associated with the data points are represented by the data symbol in the upper right. CHUR–Chondritic uniform reservoir.

Figure 7 (Previous page): Kernel density estimate (KDE) plots of compiled detrital zircon U-Pb age spectra for the Maclaren schist, Kluane schist, Clearwater metasediments, and Dezadeash formation, colored as in figure 1. Note the change in horizontal scale and the 20x increase in area under the curves at 450 Ma. The dashed line KDE curves represent post-depositional metamorphic grains, which are plotted at half the vertical scale of the <450 Ma detrital age spectra. KDE plots were made using the DZStats and Density Plotter programs.

Figure 8: Probability density plot comparing ≤240 Ma detrital (dark red curve) and metamorphic (purple curve) U-Pb dates from the Maclaren-Kluane schist (this study; Israel et al., 2011; Stanley, 2012; Waldien et al., 2021) with the 240-40 Ma magmatic flux curve of the central Coast Mountains arc (filled gray curve; from Gehrels et al., 2009). LA-ICPMS dates from plutonic rocks within the Maclaren and Cottonwood schists constitute the blue curve (this study; Regan et al., 2021). The vertical yellow bars highlight important time periods that are shared in the evolution of the Maclaren-Kluane schist and associated batholithic rocks. Note how magmatism within the Maclaren and Cottonwood schists (Alaska intrusions) outlasts the shared magmatism. n–number of grains used in each curve.

Figure 9 (Previous page): Multidimensional scaling (MDS) plots of U-Pb age spectra from individual samples of Maclaren schist (hexagons), Kluane schist (circles), Clearwater metasediments (squares), and Dezadeash formation (triangles). All symbols are colored to match map units on figure 1. (**A**) Multidimensional scaling of U-Pb age spectra excluding postdepositional metamorphic grains. (**B**) Multidimensional scaling of U-Pb age spectra including post-depositional metamorphic grains. MDS plots were made using the DZmds program of (Saylor et al., 2017). Maclaren and Clearwater data are from this study and Waldien et al. (2021); Kluane data are from Israel et al. (2011) and Stanley (2012); Dezadeash data are from Lowey (2019).

Figure 10: Schematic map view diagram showing the tectonic setting of the Maclaren-Kluane protolith basin. Sediment was delivered to the basin by drainage systems (blue lines/arrows; dashed lines where uncertain) that sourced uplifted terranes to the east, south, and possibly the west. Strike-slip fault systems in the Coast shear zone (Coast SZ) and on both sides of the Maclaren-Kluane basin have been documented to be active at this time. Deposition and accretion of the McHugh Creek assemblage records ongoing subduction along the outboard margin of the Wrangellia composite terrane. Map unit colors are the same as figure 1. WCT–Wrangellia composite terrane; CND– Clearwater, Nutzotin, and Dezadeash assemblages; oc–oceanic; BRFS–Border Ranges fault system.

Figure 11: Schematic cross sections showing generalized crustal structure during accretion of the Wrangellia composite terrane and metamorphism of the Maclaren-Kluane schist. Colors are the same as figure 1. **(A)** From ca. 74-65 Ma the Maclaren-Kluane schist was undergoing regional amphibolite facies metamorphism contemporaneous with slip on the Valdez Creek shear zone and intrusion of tonalite bodies. Oceanic lithosphere may have been attached to the inboard margin of the Wrangellia composite terrane, but subduction in the marginal seaway is not necessary to explain regional magmatism. Deposition and accretion of the Valdez Group records ongoing subduction along the outboard margin of the Wrangellia composite terrane. **(B)** From ca. 60-50 Ma the Maclaren-Kluane schist were undergoing regional high temperature-low pressure metamorphic conditions contemporaneous with intrusion of the main voluminous phase of the Ruby Range batholith. If oceanic lithosphere were attached to the inboard margin of the Wrangellia composite terrane, it likely would have detached by this time. Deposition and accretion of the Orca Group records ongoing subduction along the outboard margin of the Wrangellia composite terrane, it likely would have detached by this time. Deposition and accretion of the Orca Group records ongoing subduction along the outboard margin of the Wrangellia composite terrane.

Figure 12 (previous page): Schematic map-view diagrams illustrating the ca. 50 Ma-Present evolution of the Denali fault system. The diagrams focus on correlative rock units and thus do not account for eroded material. The geology north and east of the Denali fault is not modified from figure 1 and modern political borders are retained as reference markers. The geology south and west of the Denali fault becomes increasingly schematic further back in time. Eocene volcanic rocks presently in the Talkeetna Mountains may be used to track restoration of the Denali fault. Kinematics are shown on faults that are active during the time frame. Colors are the same as figure 1. See text and map annotations for key events in each time frame and figure 1 for a Present-day time frame. (A) By ca. 50 Ma, all correlative rock packages between the Delta River region and Kluane Lake region had formed. Upon localization, the Denali fault will cut obliquely through the geology. (B) By ca. 33 Ma the Denali fault had localized as a dextral fault. The ca. 42-33 Ma intrusions that are shared among the Maclaren and Cottonwood schists are not present in the Kluane schist (see also figure 8). A structural complexity in the Denali fault abandons the Cottonwood schist near Alaska-Yukon border between 33 and 25 Ma. (C) By ca. 25 Ma, slip on the Valdez Creek fault had nucleated the imbricate thrust system along the south flank of the eastern Alaska Range. Deposition into the McCallum basin records sediment input from uplifted regions of the surrounding Alaska Range (Allen et al., 2016). The Totschunda fault was likely active at this time (Milde, 2014). (D) By ca. 6 Ma dextral slip transfer from the Totschunda fault to the Denali fault was ongoing, which resulted in transpression in the eastern Alaska Range and separation of the Clearwater metasediments from the Nutzotin Mountains sequence. Shortening on the Duke River fault absorbs a portion of the plate boundary convergence (Cobbett et al., 2017). The McCallum basin inverts as thrust systems expand the region of elevated Alaska Range topography (Waldien et al., 2018).

247
Reference	Fault section	Offset markers	Separation and Timing	Number on Figure 1
Lowey (1998)	Eastern Denali	Megaboulder channel in Dezadeash (YT)-Nutzotin (AK) strata	370 km since 52 Ma**	1
Waldien et al. (2021)	Eastern Denali	Clearwater metasediments (AK)-Dezadeash formation (YT)	465 km since 52 Ma**	1
Waldien et al. (2021)	Eastern Denali	Granodiorite and pyroxenite near Ann Creek (AK)-Shorty Creek granodiorite and Pyroxenite Cr. Pyroxenite (YT)*	≤505 km since 52 Ma**	2
Regan et al. (2021),	Eastern	Cottonwoodschist (AK)-Maclaren schist (AK)	305 km since 33 Ma 100-125	3
This study	Denali	Cottonwood schist (AK)-Kluane schist (YT)	km, 52-33 Ma	
Nokleberg et al. (1985), Riccio et al. (2014)	Eastern Denali	Maclaren schist and East Susitna batholith (AK)-Kluane schist and Ruby Range batholith (YT)	445 km since 52 Ma**	4
		Shakwak pluton (YT)-Ann Creek pluton (AK)	465km since 52 Ma	5
	Fastern	74-65Ma intrusions within Kluane schist and Maclaren schist*	≥425 km since 52 Ma	6
This Study	Denali	Eocene bimodal volcanic strata near Gakona Gl. (AK)- Bennett Lake igneous complex (YT)*	~580km since 52 Ma*	7
		Jack River Igneous field (AK)- Rhyolite Creek volcanics (YT)*	480 km since 52 Ma**	8
This Study; D. Murphy personal communication	Eastern Denali	Kluhini River Shear zone (YT)-Susitna Glacier thrust (AK)	≥425 km post 52 Ma**	7
Waldien et al. (2018)	Totschunda- Eastern Denali	Strain compatibility with fault linkage	≤91 km since 7 Ma	9
Berkelhammer et al. (2019)	Totschunda	Wrangell volcanics and intrusions (AK)	≤85 km since 7 Ma**	10
Fasulo et al. (2020); This study	Totschunda- Eastern Denali	Nutzotin basin strata and associated ca. 120 Ma intrusions (AK)	>75 km since 7 Ma**	Similar to 9
Allen et al. (2016)	Totschunda- Eastern Denali	Transtensional lower McCallum basin (AK) to transtension zone at Denali-Totschunda intersection (AK)	<95 km since 7 Ma**	Similar to 9
Regan et al. (2021)	Central Denali	Schist Creek pluton-Foraker pluton (AK)	155 km since 37 Ma	Not Shown
Trop et al. (2019)	Central Denali	Colorado Cr. Basin detritus-eastern Alaska Range sources (AK)	150 km since 29 Ma	Not Shown
Miller et al. (2002)	Western Denali	Algal Reef in Farewell terrane strata (AK)	134 km, post mid-K	Not Shown

TABLE 1: OFFSET MARKERS FOR THE MODERN DENALI FAULT SYSTEM

*Matched features may be different bodies

**Separation remeasured and/or new timing inferred from our data

Host rocks	Sample name	Latitude (°N)	Longitude (°W)	Rock type	Weighted mean ²⁰⁶ Pb/ ²³⁸ U Age (Ma)*	MSWD	Number of acceptable grains in age calculation ^a	Total number of zircons anlyzed ^b
Wrangellia terrane	19ATW81	63.2986	146.6962	Tonalite	112.9 ± 1.3	1.7	31	31
Wrangellia terrane	13ET270	63.2216	146.7085	Diorite	129.8 ± 2.4	1.5	31	31
Wrangellia terrane	15DR140	63.3054	146.6025	Quartz syenite	144.1 ± 2.3	1.9	15	17
Wrangellia terrane	16CSR17	63.3330	146.3319	Granite	306.3 ± 4.0	0.48	14	16
Wrangellia terrane	17ATW11	63.3498	145.6523	Granodiorite	307.2 ± 6.1	0.9	12	14
Wrangellia terrane	14ATW50	63.2483	145.4092	Granodiorite	309.8 ± 3.9	3.2	30	32
Clearwater metasediments	19ATW55	63.2699	146.8861	Diorite	53.1 ± 0.6	0.71	16	21
Clearwater metasediments	19ATW39	63.3318	146.6695	Felsic Tuff	160.4 ± 1.5	0.74	22	22
Maclaren schist	19ATW79	63.3548	146.6812	Quartz Monzonite	51.9 ± 0.6	3.2	45	53
Maclaren schist	19ATW40	63.4155	146.7800	Tonalite	64.6 ± 0.7	1.9	46	49
Maclaren schist	18ATW21	63.3070	146.9629	Tonalite	68.3 ± 1.3	3.7	33	40
Maclaren schist	17ATW03	63.2163	147.0698	Tonalite	70.5 ± 1.0	2.6	28	35
Maclaren schist	19ATW66	63.3473	146.8130	Biotite- garnet leucogranite	75.8 ± 1.9	1.14	9°	29

TABLE 2: IGNEOUS ZIRCON U-Pb ANALYTICAL RESULTS

*Weighted mean uncertainties represent quadratic addition of internal and external uncertainties at 2s.

MSWD: Mean Square Weighted Deviation

a- The number of analyses that passed the filtering criteria

b- The total number of analyzed grains

c- Rim analyses: Filtering criteria relaxed to allow more analyses in age calculation

Sample name	Latitude (°N)	Longitude (°W)	Rock type	Phase analyzed	Grain size analyzed (um)	Integrated age (Ma)**	Plateau age (Ma)**	Plateau information
12HODO	63.2233	145.4485	Rhyodacite tuff	Biotite	500- 1000	50.9 ± 0.3	50.9 ± 0.5	6 of 12 steps 91.8% ³⁹ Ar release MSWD = 1.91
46GUNN	63.2108	145.4025	Dacite flow	Whole rock	212-500	45.1 ± 0.1	45.5 ± 0.2	3 of 8 fractions 49.7% 39 Ar release MSWD = 1.55
15BG216	63.2098	145.3516	Dacite flow	Whole rock	212-501	48.8 ± 0.4	49.3 ± 0.7*	7 of 8 fractions 94% 39 Ar release MSWD = 3.34
15BG209	63.2123	145.3635	Rhyodacite tuff	Whole rock	212-502	49.6 ± 0.4	49.8 ± 0.3*	2 of 8 fractions 50.8% 39Ar release MSWD = 3.18

TABLE 3: ⁴⁰Ar/³⁹Ar ANALYTICAL RESULTS FOR VOLCANIC ROCKS

** Uncertainties are 1s.

*Did not meet all the criteria of a plateau age, hence a weighted average age is presented.

MSWD- Mean Square Weighted Deviation

REFERENCES CITED

- Aleinikoff, J. N., Nokleberg, W. J., and Herzon, P. L. (1981). Age of intrusion and metamorphism of the East Susitna batholith. Mount Hayes B-6 quadrangle, eastern Alaska Range, Alaska. U.S. Geological Survey Circular 844, 100-102.
- Allam, A. A., Schulte-Pelkum, V., Ben-Zion, Y., Tape, C., Ruppert, N., & Ross, Z. E. (2017). Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography, receiver functions, and fault zone head waves. *Tectonophysics*, 721, 56–69. <u>https://doi.org/10.1016/j.tecto.2017.09.003</u>
- Allan, M. M., Mortensen, J. K., Hart, C. J. R., Bailey, L. A., Sanchez, M. G., Ciolkiewicz, W., McKenzie, G.G., & Creaser, R.A. (2013). Magmatic and metallogenic framework of west-central Yukon and eastern Alaska. In M. Colpron, T. Bissig, B.G. Rusk, J.F.H. Thomposon (Ed.). *Tectonics, Metallogeny, and Discovery: The North American Cordillera and Similar Accretionary Settings:* (Society of Economic Geologists Special Publication 17, pp.111-168). Littleton, Colorado: Society of Economic Geologists https://doi.org/10.5382/SP.17
- Allen, W.K., Ridgway, K.D., Benowitz, J.A., Waldien, T.S., & Roeske, S.M. (2016). Sedimentary and volcanic record of Neogene transpressional foreland basin development along the central Denali Fault system, Eastern Alaska Range. *Geological Society of America Abstracts with Programs, 48.* doi: 10.1130/abs/2016AM-284817
- Amato, J. M., & Pavlis, T. L. (2010). Detrital zircon ages from the Chugach terrane, southern Alaska, reveal multiple episodes of accretion and erosion in a subduction complex. *Geology*, 38(5), 459– 462. <u>https://doi.org/10.1130/G30719.1</u>
- Amato, J. M., Pavlis, T. L., Clift, P. D., Kochelek, E. J., Hecker, J. P., Worthman, C. M., & Day, E. M. (2013). Architecture of the Chugach accretionary complex as revealed by detrital zircon ages and lithologic variations: Evidence for Mesozoic subduction erosion in south-central Alaska. GSA Bulletin, 125(11-12), 1891-1911.
- Amato, J. M., Rioux, M. E., Kelemen, P. B., Gehrels, G. E., Clift, P. D., Pavlis, T. L., & Draut, A. E. (2007). U-Pb geochronology of volcanic rocks from the Jurassic Talkeetna Formation and detrital zircons from prearc and postarc sequences: Implications for the age of magmatism and inheritance in the Talkeetna arc. . In Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, J.M. (Eds.). Special Paper 431: Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska (Vol. 431, pp. 253–271). Boulder, Colorado: Geological Society of America.
- Andronicos, C. L., Chardon, D. H., Hollister, L. S., Gehrels, G. E., & Woodsworth, G. J. (2003). Strain partitioning in an obliquely convergent orogen, plutonism, and synorogenic collapse: Coast Mountains Batholith, British Columbia, Canada. *Tectonics*, 22(2).
- Atwater, T. (1989). Plate tectonic history of the northeast Pacific and western North America. In E. L. Winterer, D. M. Hussong, & R. W. Decker (Eds.). *Geology of North America: Volume N, The Eastern Pacific Ocean and Hawaii.* (pp. 21–72). Boulder, Colorado: Geological Society of America. https://doi.org/10.1130/DNAG-GNA-N.21
- Audet, P., Sole, C., & Schaeffer, A. J. (2016). Control of lithospheric inheritance on neotectonic activity in northwestern Canada? *Geology*, 44(10), 807–810. <u>https://doi.org/10.1130/G38118.1</u>
- Avé Lallemant, H. G. (1997). Transpression, displacement partitioning, and exhumation in the eastern Caribbean/South American plate boundary zone. *Tectonics*, 16(2), 272-289.
- Avé Lallemant, H. G., & Oldow, J. S. (1988). Early Mesozoic southward migration of Cordilleran transpressional terranes. *Tectonics*, 7(5), 1057-1075.
- Bacon, C. R., Foster, H. L., & Smith, J. G. (1990). Rhyolitic calderas of the Yukon-Tanana Terrane, east central Alaska: Volcanic remnants of a Mid-Cretaceous magmatic arc. *Journal of Geophysical Research: Solid Earth*, 95(B13), 21451-21461.

- Beck Jr, M. E. (1986). Model for late Mesozoic-early Tertiary tectonics of coastal California and western Mexico and speculations on the origin of the San Andreas fault. *Tectonics*, 5(1), 49-64.
- Bemis, S. P., & Wallace, W. K. (2007). Neotectonic framework of the north-central Alaska Range foothills. In Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, J.M. (Eds.). Special Paper 431: Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska (Vol. 431, pp. 549–572). Boulder, Colorado: Geological Society of America. https://doi.org/10.1130/2007.2431(21)
- Benowitz, J. A., Davis, K., & Roeske, S. (2019). A river runs through it both ways across time: 40Ar/39Ar detrital and bedrock muscovite geochronology constraints on the Neogene paleodrainage history of the Nenana River system, Alaska Range. *Geosphere*, 15(3), 682–701. https://doi.org/10.1130/GES01673.1
- Benowitz, J. A., Haeussler, P. J., Layer, P. W., O'Sullivan, P. B., Wallace, W. K., & Gillis, R. J. (2012). Cenozoic tectono-thermal history of the Tordrillo Mountains, Alaska: Paleocene-Eocene ridge subduction, decreasing relief, and late Neogene faulting. *Geochemistry, Geophysics, Geosystems*, 13(4), n/a-n/a. <u>https://doi.org/10.1029/2011GC003951</u>
- Benowitz, J. A., Roeske, S.M., Layer, P. W. (2011). Deep exhumation, neotectonics, and constraints on the Denali fault system long-term off-set history: The Totschunda strand and the south-eastern Alaska Range. *Geological Society of America abstracts with programs, 43*(5), p. 438.
- Benowitz, J. A., Layer, P. W., & Vanlaningham, S. (2014). Persistent long-term (c. 24 Ma) exhumation in the Eastern Alaska Range constrained by stacked thermochronology. *Geological Society, London, Special Publications*, 378(1), 225–243. <u>https://doi.org/10.1144/SP378.12</u>
- Benowitz, J. A., Layer, P. W., Armstrong, P., Perry, S. E., Haeussler, P. J., Fitzgerald, P. G., & VanLaningham, S. (2011). Spatial variations in focused exhumation along a continental-scale strike-slip fault: The Denali fault of the eastern Alaska Range. *Geosphere*, 7(2), 455–467. <u>https://doi.org/10.1130/GES00589.1</u>
- Beranek, L. P., McClelland, W. C., van Staal, C. R., Israel, S., & Gordee, S. M. (2017). Late Jurassic flare-up of the Coast Mountains arc system, NW Canada, and dynamic linkages across the northern Cordilleran orogen: Flare-Up of the Coast Mountains Arc. *Tectonics*, 36(5), 877–901. <u>https://doi.org/10.1002/2016TC004254</u>
- Beranek, L. P., van Staal, C. R., McClelland, W. C., Joyce, N., & Israel, S. (2014). Late Paleozoic assembly of the Alexander-Wrangellia-Peninsular composite terrane, Canadian and Alaskan Cordillera. *Geological Society of America Bulletin*, 20.
- Berg, E. M., Lin, F., Allam, A., Schulte-Pelkum, V., Ward, K. M., & Shen, W. (2020). Shear Velocity Model of Alaska Via Joint Inversion of Rayleigh Wave Ellipticity, Phase Velocities, and Receiver Functions Across the Alaska Transportable Array. *Journal of Geophysical Research: Solid Earth*, 125(2). <u>https://doi.org/10.1029/2019JB018582</u>
- Berg, H. C., D. L. Jones, and D. H. Richter (1972), Gravina-Nutzotin belt: Tectonic significance of an upper Mesozoic sedimentary and volcanic sequence in southern and southeastern Alaska, U.S. Geol. Surv. Prof. Pap., 800D, D1–D24.
- Berkelhammer, S. E., Brueseke, M. E., Benowitz, J. A., Trop, J. M., Davis, K., Layer, P. W., & Weber, M. (2019). Geochemical and geochronological records of tectonic changes along a flat-slab arctransform junction: Circa 30 Ma to ca. 19 Ma Sonya Creek volcanic field, Wrangell Arc, Alaska. *Geosphere*, 15(5), 1508–1538. <u>https://doi.org/10.1130/GES02114.1</u>
- Bill, N. S., Mix, H. T., Clark, P. U., Reilly, S. P., Jensen, B. J. L., & Benowitz, J. A. (2018). A stable isotope record of late Cenozoic surface uplift of southern Alaska. *Earth and Planetary Science Letters*, 482, 300–311. <u>https://doi.org/10.1016/j.epsl.2017.11.029</u>
- Bittenbender, P.E., Bean, K.W., Kurtak, J.M., & Deininger, J. (2007). Mineral assessment of the Delta River mining district area, east-central Alaska. U.S. Bureau of Land Management Alaska Technical Report 57, 697 p.
- Bond, G. C. (1973). A Late Paleozoic Volcanic Arc in the Eastern Alaska Range, Alaska. *The Journal of Geology*, 81(5), 557–575.

- Bond, G.C. (1976). Geology of the Rainbow Mountain-Gulkana Glacier Area, Eastern Alaska Range, with Emphasis on Upper Paleozoic Strata. *State of Alaska Geologic Division of Geological & Geophysical Surveys Geologic Report 45*, 47 p., scale 1:40:000, 3 sheets.
- Box, S. E., Karl, S. M., Jones III, J. V., Bradley, D. C., Haeussler, P. J., & O'Sullivan, P. B. (2019). Detrital zircon geochronology along a structural transect across the Kahiltna assemblage in the western Alaska Range: Implications for emplacement of the Alexander-Wrangellia-Peninsular terrane against North America. *Geosphere*, 15(6), 1774-1808. https://doi.org/10.1130/GES02060.1
- Brennan, P. R. K., Gilbert, H., & Ridgway, K. D. (2011). Crustal structure across the central Alaska Range: Anatomy of a Mesozoic collisional zone. *Geochemistry, Geophysics, Geosystems, 12*(4). https://doi.org/10.1029/2011GC003519
- Brennan, P. R., & Ridgway, K. D. (2015). Detrital zircon record of Neogene exhumation of the central Alaska Range: A far-field upper plate response to flat-slab subduction. GSA Bulletin, 127(7-8), 945-961.
- Brothers, D. S., Elliott, J. L., Conrad, J. E., Haeussler, P. J., & Kluesner, J. W. (2018). Strain partitioning in Southeastern Alaska: Is the Chatham Strait Fault active?. *Earth and Planetary Science Letters*, *481*, 362-371.
- Brueseke, M. E., Benowitz, J. A., Trop, J. M., Davis, K. N., Berkelhammer, S. E., Layer, P. W., & Morter, B. K. (2019). The Alaska Wrangell Arc:~ 30 Ma of subduction-related magmatism along a still active arc-transform junction. *Terra Nova*, 31(1), 59-66.
- Bruhn, R. L., Pavlis, T. L., Plafker, G., & Serpa, L. (2004). Deformation during terrane accretion in the Saint Elias orogen, Alaska. *Geological Society of America Bulletin*, *116*(7-8), 771-787.
- Burkett, C. A., Bemis, S. P., & Benowitz, J. A. (2016). Along-fault migration of the Mount McKinley restraining bend of the Denali fault defined by late Quaternary fault patterns and seismicity, Denali National Park & Preserve, Alaska. *Tectonophysics*, 693, 489–506. <u>https://doi.org/10.1016/j.tecto.2016.05.009</u>
- Busby-Spera, C. J., & Saleeby, J. B. (1990). Intra-arc strike-slip fault exposed at batholithic levels in the southern Sierra Nevada, California. *Geology*, *18*(3), 255-259.
- Canil, D., Johnston, S. T., D'Souza, R. J., & Heaman, L. M. (2015). Protolith of ultramafic rocks in the Kluane Schist, Yukon, and implications for arc collisions in the northern Cordillera. *Canadian Journal of Earth Sciences*, 52(7), 431–443. <u>https://doi.org/10.1139/cjes-2014-0138</u>
- Cecil, M. R., Gehrels, G., Ducea, M. N., & Patchett, P. J. (2011). U-Pb-Hf characterization of the central Coast Mountains batholith: Implications for petrogenesis and crustal architecture. *Lithosphere*, 3(4), 247–260. <u>https://doi.org/10.1130/L134.1</u>
- Chardon, D., Andronicos, C. L., & Hollister, L. S. (1999). Large-scale transpressive shear zone patterns and displacements within magmatic arcs: The Coast Plutonic Complex, British Columbia. *Tectonics*, 18(2), 278–292. <u>https://doi.org/10.1029/1998TC900035</u>
- Cobbett, R., Israel, S., Mortensen, J., Joyce, N., & Crowley, J. (2017). Structure and kinematic evolution of the Duke River fault, southwestern Yukon. *Canadian Journal of Earth Sciences*, 54(3), 322–344. <u>https://doi.org/10.1139/cjes-2016-0074</u>
- Cole, R. B., Layer, P. W., Hooks, B., Cyr, A., & Turner, J. (2007). Magmatism and deformation in a terrane suture zone south of the Denali Fault, northern Talkeetna Mountains, Alaska. In Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, J.M. (Eds.). Special Paper 431: Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska (Vol. 431, pp. 477–506). Boulder, Colorado: Geological Society of America.
- Cole, R. B., Ridgway, K. D., Layer, P. W., & Drake, J. (1999). Kinematics of basin development during the transition from terrane accretion to strike-slip tectonics. Late Cretaceous-early Tertiary Cantwell Formation, south central Alaska. *Tectonics*, 18(6), 1224-1244.
- Colpron, M. and Nelson, J.L., 2011, A Digital Atlas of Terranes for the Northern Cordillera. British Columbia Ministry of Energy and Mines, BCGS GeoFile 2011-11.

- Colpron, M., Crowley, J. L., Gehrels, G., Long, D. G. F., Murphy, D. C., Beranek, L., & Bickerton, L. (2015). Birth of the northern Cordilleran orogen, as recorded by detrital zircons in Jurassic synorogenic strata and regional exhumation in Yukon. *Lithosphere*, 7(5), 541–562. <u>https://doi.org/10.1130/L451.1</u>
- Colpron, M., Israel, S., Murphy, D., Pigage, L. and Moynihan, D. (2016). Yukon Bedrock Geology Map. *Yukon Geological Survey, Open File 2016-1,* 1:1,000,000 scale map and legend.
- Coney, P. J., Jones, D. L., & Monger, J. W. (1980). Cordilleran suspect terranes. *Nature*, 288(5789), 329-333.
- Coutts, D. S., Matthews, W. A., Englert, R. G., Brooks, M. D., Boivin, M. P., & Hubbard, S. M. (2020). Along-strike variations in sediment provenance within the Nanaimo basin reveal mechanisms of forearc basin sediment influx events. *Lithosphere*, 12(1), 180-197.
- Csejtey, B., Cox, D. P., Evarts, R. C., Stricker, G. D., & Foster, H. L. (1982). The Cenozoic Denali Fault System and the Cretaceous accretionary development of southern Alaska. *Journal of Geophysical Research*, 87(B5), 3741. <u>https://doi.org/10.1029/JB087iB05p03741</u>
- Csejtey, B., Mullen, M.W., Cox, D.P., and Stricker, G.D. (1992). Geology and geochronology of the Healy Quadrangle, south-central Alaska, U.S. Geological Survey Miscellaneous Investigations Series Map 1961, 63 p., 2 sheets, scale 1:250,000.
- Csejtey, B., Nelson, W.H., Jones, D.L., Silberling, N.J., Dean, R.M., Morris, M.S., Lanphere, M.A., Smith, J.G., & Silberman, M.L. (1978). Reconnaissance geologic map and geochronology, Talkeetna Mountains Quadrangle, northern part of Anchorage Quadrangle, and southwest corner of Healy Quadrangle, Alaska. U.S. Geological Survey Open-File Report 78-558-A, 60 p., 1 sheet, scale 1:250,000.
- Davidson, C., & Garver, J. I. (2017). Age and origin of the resurrection ophiolite and associated turbidites of the Chugach–Prince William Terrane, Kenai Peninsula, Alaska. *The Journal of Geology*, 125(6), 681-700.
- Davidson, C., & McPhillips, D. (2007). Along strike variations in metamorphism and deformation of the strata of the Kahiltna basin, south-central Alaska. In Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, J.M. (Eds.). Special Paper 431: Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska (Vol. 431, pp. 439–453). Boulder, Colorado: Geological Society of America. https://doi.org/10.1130/2007.2431(17)
- Davidson, C., Hollister, L. S., & Schmid, S. M. (1992). Role of melt in the formation of a deep-crustal compressive shear zone: The Maclaren Glacier Metamorphic Belt, south central Alaska. *Tectonics*, 11(2), 348–359. <u>https://doi.org/10.1029/91TC02907</u>
- Day, E. M., Pavlis, T. L., & Amato, J. M. (2016). Detrital zircon ages indicate an Early Cretaceous episode of blueschist-facies metamorphism in southern Alaska: Implications for the Mesozoic paleogeography of the northern Cordillera. *Lithosphere*, 8(5), 451–462. https://doi.org/10.1130/L525.1
- Dominguez, S., S. E. Lallemand, J. Malavieille, & von Huene. R. (1998). Upper plate deformation associated with seamount subduction. *Tectonophysics 293*,(3-4), 207-224.
- Doser, D. I. (2004). Seismicity of the Denali-Totschunda Fault Zone in Central Alaska (1912-1988) and Its Relation to the 2002 Denali Fault Earthquake Sequence. *Bulletin of the Seismological Society* of America, 94(6B), S132–S144. <u>https://doi.org/10.1785/0120040611</u>
- Doser, D. I. (2014). Seismicity of Southwestern Yukon, Canada, and its relation to slip transfer between the Fairweather and Denali fault systems. *Tectonophysics*, *611*, 121-129.
- Doubrovine, P. V., & Tarduno, J. A. (2008). A revised kinematic model for the relative motion between Pacific oceanic plates and North America since the Late Cretaceous. *Journal of Geophysical Research*, *113*(B12), B12101. <u>https://doi.org/10.1029/2008JB005585</u>
- Dusel-Bacon, C., & Williams, I. S. (2009). Evidence for prolonged mid-Paleozoic plutonism and ages of crustal sources in east-central Alaska from SHRIMP U–Pb dating of syn-magmatic, inherited, and detrital zircon. *Canadian Journal of Earth Sciences*, 46(1), 21-39.

- Dusel-Bacon, C., Holm-Denoma, C. S., Jones, J. V., Aleinikoff, J. N., & Mortensen, J. K. (2017). Detrital zircon geochronology of quartzose metasedimentary rocks from parautochthonous North America, east-central Alaska. *Lithosphere*, 9(6), 927-952.
- Eberhart-Phillips, D., Haeussler, P. J., Freymueller, J. T., Frankel, A. D., Rubin, C. M., Craw, P., ... & Dawson, T. E. (2003). The 2002 Denali fault earthquake, Alaska: A large magnitude, slippartitioned event. *Science*, 300(5622), 1113-1118.
- Eisbacher, G. H. (1976). Sedimentology of the Dezadeash flysch and its implications for strike-slip faulting along the Denali Fault, Yukon Territory and Alaska. *Canadian Journal of Earth Sciences*, *13*(11), 1495–1513. <u>https://doi.org/10.1139/e76-157</u>
- Elliott, J., & Freymueller, J. T. (2020). A Block Model of Present-Day Kinematics of Alaska and Western Canada. *Journal of Geophysical Research: Solid Earth*, *125*(7), e2019JB018378.
- Enkelmann, E., Garver, J. I., & Pavlis, T. L. (2008). Rapid exhumation of ice-covered rocks of the Chugach–St. Elias orogen, Southeast Alaska. *Geology*, *36*(12), 915-918.
- Enkelmann, E., Zeitler, P. K., Garver, J. I., Pavlis, T. L., & Hooks, B. P. (2010). The thermochronological record of tectonic and surface process interaction at the Yakutat-North American collision zone in southeast Alaska. *American Journal of Science*, 310(4), 231–260. https://doi.org/10.2475/04.2010.01
- Enkelmann, Eva, Finzel, E., & Arkle, J. (2019). Deformation at the eastern margin of the Northern Canadian Cordillera: Potentially related to opening of the North Atlantic. *Terra Nova*, 31(3), 151–158. <u>https://doi.org/10.1111/ter.12374</u>
- Enkin, R. J. (2006). Paleomagnetism and the case for Baja British Columbia. In J.W. Haggart, R.J. Enkin,
 J.W.H. Monger (Eds.). *Paleogeography of the North American Cordillera: Evidence for and against large-scale displacements*. (Geological Association of Canada Special Paper 46 pp. 233-254). St. Johns, Newfoundland: Geological Association of Canada.
- Estève, C., Audet, P., Schaeffer, A. J., Schutt, D. L., Aster, R. C., & Cubley, J. F. (2020). Seismic evidence for craton chiseling and displacement of lithospheric mantle by the Tintina fault in the northern Canadian Cordillera. *Geology, 48*.
- Evenchick, C. A. (1991). Geometry, evolution, and tectonic framework of the Skeena Fold Belt, north central British Columbia. *Tectonics*, 10(3), 527–546. <u>https://doi.org/10.1029/90TC02680</u>
- Fasulo, C. R., Ridgway, K. D., & Trop, J. M. (2020). Detrital zircon geochronology and Hf isotope geochemistry of Mesozoic sedimentary basins in south-central Alaska: Insights into regional sediment transport, basin development, and tectonics along the NW Cordilleran margin. *Geosphere*.
- Finzel, E. S., Ridgway, K. D., & Trop, J. M. (2015). Provenance signature of changing plate boundary conditions along a convergent margin: Detrital record of spreading-ridge and flat-slab subduction processes, Cenozoic forearc basins, Alaska. *Geosphere*, 11(3), 823-849.
- Finzel, E. S., Trop, J. M., Ridgway, K. D., & Enkelmann, E. (2011). Upper plate proxies for flat-slab subduction processes in southern Alaska. *Earth and Planetary Science Letters*, 303(3-4), 348-360.
- Fitzgerald, P. G., Roeske, S. M., Benowitz, J. A., Riccio, S. J., Perry, S. E., & Armstrong, P. A. (2014). Alternating asymmetric topography of the Alaska range along the strike-slip Denali fault: Strain partitioning and lithospheric control across a terrane suture zone. *Tectonics*, 33(8), 1519–1533. https://doi.org/10.1002/2013TC003432
- Fitzgerald, P. G., Sorkhabi, R. B., Redfield, T. F., & Stump, E. (1995). Uplift and denudation of the central Alaska Range: A case study in the use of apatite fission track thermochronology to determine absolute uplift parameters. *Journal of Geophysical Research: Solid Earth*, 100(B10), 20175–20191. <u>https://doi.org/10.1029/95JB02150</u>
- Fitzgerald, P. G., Stump, E., & Redfield, T. F. (1993). Late Cenozoic uplift of Denali and its relation to relative plate motion and fault morphology. *Science*, *259*(5094), 497-499.

- Forbes, R. B., Smith, T. E., & Turner, D. L. (1974). Comparative petrology and structure of the Maclaren, Ruby Range, and Coast Range belts: Implications for offset along the Denali fault system, *Geological Society of America Abstracts with Programs*, v. 6, p. 177.
- Foster, D. A., Doughty, P. T., Kalakay, T. J., Fanning, C. M., Coyner, S., Grice, W. C., & Vogl, J. (2007). Kinematics and timing of exhumation of metamorphic core complexes along the Lewis and Clark fault zone, northern Rocky Mountains, USA. In A.B. Till, S.M. Roeske, J.C. Sample, D.A. Foster (Eds.). Special Paper 434: Exhumation Associated with Continental Strike-Slip Fault Systems (pp. 207-232). Boulder, Colorado: Geological Society of America.
- Gabrielse, H., Murphy, D. C., & Mortensen, J. K. (2006). Cretaceous and Cenozoic dextral orogenparallel displacements, magmatism, and paleogeography, north-central Canadian Cordillera. In J.W. Haggart, R.J. Enkin, J.W.H. Monger (Eds.). *Paleogeography of the North American Cordillera: Evidence for and against large-scale displacements*. (Geological Association of Canada Special Paper 46 pp. 255-276). St. Johns, Newfoundland: Geological Association of Canada
- Gardner, M. C., Bergman, S. C., Cushing, G. W., MacKevett Jr, E. M., Plafker, GR. B. Campbell, C. J. Dodds, W. C. McClelland, & Mueller, P. A. (1988). Pennsylvanian pluton stitching of Wrangellia and the Alexander terrane, Wrangell Mountains, Alaska. *Geology*, 16(11), 967-971.
- Garver, J. I., & Davidson, C. M. (2015). Southwestern Laurentian zircons in upper Cretaceous flysch of the Chugach-Prince William terrane in Alaska. *American Journal of Science*, 315(6), 537-556.
- Gehrels, G., & Pecha, M. (2014). Detrital zircon U-Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America. *Geosphere*, 10(1), 49-65.
- Gehrels, G., Rusmore, M., Woodsworth, G., Crawford, M., Andronicos, C., Hollister, L., Patchett, J., Ducea, M., Butler, R., Klepeis, K., Davidson, C., Friedman, R., Haggart, J., Mahoney, B., Crawford, W., Pearson, D., & Girardi, J. (2009). U-Th-Pb geochronology of the Coast Mountains batholith in north-coastal British Columbia: Constraints on age and tectonic evolution. *Geological Society of America Bulletin*, 121(9–10), 1341–1361. https://doi.org/10.1130/B26404.1
- Gillis, R.J., Fitzgerald, P.G., Ridgway, K.D., Keough, B.M., Benowitz, J.A., and Allen, W.K. (2019). Overview of the new 1:25,000-scale geologic mapping of the McCallum-Slate Creek fault system, eastern Alaska Range, Alaska, *Alaska Division of Geological & Geophysical Surveys Preliminary Interpretive Report 2018-3*, 10 p. http://doi.org/10.14509/30136
- Greene, A. R., Scoates, J. S., & Weis, D. (2008). Wrangellia flood basalts in Alaska: A record of plumelithosphere interaction in a Late Triassic accreted oceanic plateau. *Geochemistry, Geophysics, Geosystems, 9*(12).
- Greene, A. R., Scoates, J. S., Weis, D., Katvala, E. C., Israel, S., & Nixon, G. T. (2010). The architecture of oceanic plateaus revealed by the volcanic stratigraphy of the accreted Wrangellia oceanic plateau. *Geosphere*, *6*(1), 47-73.
- Haeussler, P. J., Matmon, A., Schwartz, D. P., & Seitz, G. G. (2017). Neotectonics of interior Alaska and the late Quaternary slip rate along the Denali fault system. *Geosphere*, *13*(5), 1445-1463.
- Haeussler, P. J., O'sullivan, P., Berger, A. L., & Spotila, J. A. (2008). Neogene Exhumation of the Tordrillo Mountains, Alaska, and Correlations With Denali (Mount Mckinley). In J. T. Freymueller, P. J. Haeussler, R. L. Wesson, & G. Ekström (Eds.), *Geophysical Monograph Series* (pp. 269–285). Washington D.C.: American Geophysical Union. https://doi.org/10.1029/179GM15
- Hampton, B. A., Ridgway, K. D., & Gehrels, G. E. (2010). A detrital record of Mesozoic island arc accretion and exhumation in the North American Cordillera: U-Pb geochronology of the Kahiltna basin, southern Alaska: A DETRITAL RECORD OF ARC ACCRETION. *Tectonics*, 29(4), n/an/a. <u>https://doi.org/10.1029/2009TC002544</u>
- Hampton, B. A., Ridgway, K. D., O'Neill, J. M., Gehrels, G. E., Schmidt, J., & Blodgett, R. B. (2007). Pre-, syn-, and postcollisional stratigraphic framework and provenance of Upper Triassic–Upper Cretaceous strata in the northwestern Talkeetna Mountains, Alaska. In In Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, J.M. (Eds.). Special Paper 431: Tectonic Growth of a Collisional

Continental Margin: Crustal Evolution of Southern Alaska (Vol. 431, pp. 401–438). Boulder, Colorado: Geological Society of America. <u>https://doi.org/10.1130/2007.2431(16)</u>

- Hart, C. J., Mair, J. L., Goldfarb, R. J., & Groves, D. I. (2004). Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungsten Belt, Yukon Territory, Canada. *Earth and Environmental Science Transactions of The Royal Society of Edinburgh*, 95(1-2), 339-356.
- Haynie, K. L., & Jadamec, M. A. (2017). Tectonic drivers of the Wrangell block: Insights on fore-arc sliver processes from 3-D geodynamic models of Alaska. *Tectonics*, *36*(7), 1180-1206.
- Herriott, T. M., Crowley, J. L., Schmitz, M. D., Wartes, M. A., & Gillis, R. J. (2019). Exploring the law of detrital zircon: LA-ICP-MS and CA-TIMS geochronology of Jurassic forearc strata, Cook Inlet, Alaska, USA. *Geology*, 47(11), 1044–1048. <u>https://doi.org/10.1130/G46312.1</u>
- Hildebrand, R. S. (2015). Dismemberment and northward migration of the Cordilleran orogen: Baja-BC resolved. *GSA Today*, 4–11. <u>https://doi.org/10.1130/GSATG255A.1</u>
- Hillhouse, J. W., Coe, R. S. (1994). Paleomagnetic data from Alaska. In G. Plafker, & H.C. Berg, (eds.). The geology of Alaska: Geology of North America, 1, (Vol. G-1, pp. 797-812). Boulder, Colorado: Geological Society of America.
- Hollister, L. S. (1993). The role of melt in the uplift and exhumation of orogenic belts. *Chemical Geology*, 108(1–4), 31–48. <u>https://doi.org/10.1016/0009-2541(93)90316-B</u>
- Horstwood, M. S. A., Košler, J., Gehrels, G., Jackson, S. E., McLean, N. M., Paton, C., Pearson, N. J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J. F., Condon, D. J., & Schoene, B. (2016). Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology—Uncertainty Propagation, Age Interpretation and Data Reporting. *Geostandards and Geoanalytical Research*, 40(3), 311–332. https://doi.org/10.1111/j.1751-908X.2016.00379.x
- Hoskin, P. W., & Schaltegger, U. (2003). The composition of zircon and igneous and metamorphic petrogenesis. In J.M Hanchar and P.W.O Hoskin (Eds.). *Reviews in mineralogy and* geochemistry: Zircon, 53(1), 27-62. Chantilly, Virginia: Mineralogical Society of America
- Hults, C. P., Wilson, F. H., Donelick, R. A., & O'Sullivan, P. B. (2013). Two flysch belts having distinctly different provenance suggest no stratigraphic link between the Wrangellia composite terrane and the paleo-Alaskan margin. *Lithosphere*, *5*(6), 575-594.
- Hults, C.P. & Athey, J.E. (2011). Similarities between early Tertiary conglomerates along the Slate Creek and Duke River faults, Alaska and Yukon. 2011 Cordilleran Tectonics Workshop; Yukon Geological Survey Miscellaneous Report 3, 11-12.
- Hyndman, R. D., Currie, C. A., & Mazzotti, S. P. (2005). Subduction zone backarcs, mobile belts, and orogenic heat. *GSA Today*, *15*(2), 4-10.
- Israel, S., Beranek, L., Friedman, R. M., & Crowley, J. L. (2014). New ties between the Alexander terrane and Wrangellia and implications for North America Cordilleran evolution. *Lithosphere*, 6(4), 270–276. <u>https://doi.org/10.1130/L364.1</u>
- Israel, S., Colpron, M., Cubley, J., Moynihan, D., Murphy, D.C. and Relf, C. (2015). The Bear Creek assemblage: A latest Triassic volcano-sedimentary succession in southwest Yukon. In: K.E. MacFarlane, M.G. Nordling and P.J. Sack (eds.), Yukon Exploration and Geology 2014, Yukon Geological Survey, p. 99-112.
- Israel, S., Murphy, D., Bennett, V., Mortensen, J., & Crowley, J. (2011). New insights into the geology and mineral potential of the Coast Belt in southwestern Yukon. *Yukon exploration and geology*, 101-123.
- Israel, S., Schiarizza, P., Kennedy, L. A., Friedman, R. M., & Villeneuve, M. (2006). Evidence for Early to Late Cretaceous sinistral deformation in the Tchaikazan River area, southwestern British Columbia: Implications for the tectonic evolution of the southern Coast belt. In J.W. Haggart, R.J. Enkin, J.W.H. Monger (Eds.). *Paleogeography of the North American Cordillera: Evidence for and against large-scale displacements*. (Geological Association of Canada Special Paper 46 pp. 331-350). St. Johns, Newfoundland: Geological Association of Canada.

- Jadamec, M. A., Billen, M. I., & Roeske, S. M. (2013). Three-dimensional numerical models of flat slab subduction and the Denali fault driving deformation in south-central Alaska. *Earth and Planetary Science Letters*, 376, 29–42. <u>https://doi.org/10.1016/j.epsl.2013.06.009</u>
- Jarrard, R. D. (1986). Terrane motion by strike-slip faulting of forearc slivers. *Geology*, 14(9), 780-783.
- Johnston, S. T. (1999). Large-scale coast-parallel displacements in the Cordillera: a granitic resolution to a paleomagnetic dilemma. *Journal of Structural Geology*, 21(8-9), 1103-1108.
- Johnston, S. T. (2008). The Cordilleran Ribbon Continent of North America. *Annual Review of Earth and Planetary Sciences*, *36*(1), 495–530. https://doi.org/10.1146/annurev.earth.36.031207.124331
- Johnston, S. T., & Canil, D. (2007). Crustal architecture of SW Yukon, northern Cordillera: Implications for crustal growth in a convergent margin orogen. *Tectonics*, *26*(1).
- Johnston, S. T., Jane Wynne, P., Francis, D., Hart, C. J., Enkin, R. J., & Engebretson, D. C. (1996a). Yellowstone in Yukon: the late Cretaceous Carmacks group. *Geology*, 24(11), 997-1000.
- Johnston, S. T., Mortensens, J. K., & Erdmer, P. (1996b). Igneous and metaigneous age constraints for the Aishihik metamorphic suite, southwest Yukon. *Canadian Journal of Earth Sciences*, 33(11), 1543-1555.
- Kalbas, J. L., Ridgway, K. D., & Gehrels, G. E. (2007). Stratigraphy, depositional systems, and provenance of the Lower Cretaceous Kahiltna assemblage, western Alaska Range: Basin development in response to oblique collision. In In Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, J.M. (Eds.). Special Paper 431: Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska (Vol. 431, pp. 307–343). Boulder, Colorado: Geological Society of America. https://doi.org/10.1130/2007.2431(13)
- Kapp, P. A., & Gehrels, G. E. (1998). Detrital zircon constraints on the tectonic evolution of the Gravina belt, southeastern Alaska. *Canadian Journal of Earth Sciences*, *35*(3), 253-268.
- Lange, D., Cembrano, J., Rietbrock, A., Haberland, C., Dahm, T., & Bataille, K. (2008). First seismic record for intra-arc strike-slip tectonics along the Liquiñe-Ofqui fault zone at the obliquely convergent plate margin of the southern Andes. *Tectonophysics*, 455(1-4), 14-24.
- Layer, P. W., Hall, C. M., & York, D. (1987). The derivation of ⁴⁰Ar/³⁹Ar age spectra of single grains of hornblende and biotite by laser step-heating. *Geophysical Research Letters*, 14(7), 757-760.
- Lease, R. O., Haeussler, P. J., & O'Sullivan, P. (2016). Changing exhumation patterns during Cenozoic growth and glaciation of the Alaska Range: Insights from detrital thermochronology and geochronology. *Tectonics*, 35(4), 934–955. <u>https://doi.org/10.1002/2015TC004067</u>
- Lease, R.O. (2018). Pliocene erosional pulse and glacier-landscape feedbacks in the western Alaska Range. *Earth and Planetary Science Letters*, 497, 62-68, https://doi.org/10.1016/j.epsl.2018.06.009.
- Light, T. D., Tripp, R. B., & King, H. D. (1990). Interpretation of reconnaissance geochemical data from the Healy quadrangle, Alaska. US Geological Survey Bulletin 1894.
- Link, B.J. (2017). From Deposition to Deformation Within an Accretionary Suture Zone: An Example from the Clearwater and Talkeetna Mountains, Alaska Range Suture Zone (unpublished master's thesis), Purdue University, West Lafayette, Indiana.
- Little, T. A. (1990). Kinematics of wrench and divergent-wrench deformation along a central part of the Border Ranges Fault System, Northern Chugach Mountains, Alaska. *Tectonics*, 9(4), 585-611.
- Lowey, G. W. (1998). A new estimate of the amount of displacement on the Denali fault system based on the occurrence of carbonate megaboulders in the Dezadeash Formation (Jura-Cretaceous), Yukon, and the Nutzotin Mountains sequence (Jura-Cretaceous), Alaska. *Bulletin of Canadian Petroleum Geology*, *46*(3), 379-386.
- Lowey, G. W. (2000). The Tatshenshini shear zone (new) in southwestern Yukon, Canada: Comparison with the Coast shear zone in British Columbia and southeastern Alaska and implications regarding the Shakwak suture. *Tectonics*, 19(3), 512–528. <u>https://doi.org/10.1029/1999TC001119</u>
- Lowey, G. W. (2011). Volcaniclastic gravity flow deposits in the Dezadeash Formation (Jura-Cretaceous), Yukon, Canada: Implications regarding the tectonomagmatic evolution of the

Chitina arc in the northern Cordillera of North America. *Lithos*, *125*(1–2), 86–100. https://doi.org/10.1016/j.lithos.2011.01.014

- Lowey, G. W. (2019). Provenance analysis of the Dezadeash Formation (Jurassic–Cretaceous), Yukon, Canada: Implications regarding a linkage between the Wrangellia composite terrane and the western margin of Laurasia. *Canadian Journal of Earth Sciences*, *56*(1), 77–100. <u>https://doi.org/10.1139/cjes-2017-0244</u>
- Ludwig, K. R. (2008). User's manual for Isoplot 3.70. *Berkeley Geochronology Center Special Publication*, 4, 76.
- Mahoney, J. B., Gordee, S. M., Haggart, J. W., Friedman, R. M., Diakow, L. J., & Woodsworth, G. J. (2009). Magmatic evolution of the eastern Coast Plutonic Complex, Bella Coola region, westcentral British Columbia. *Geological Society of America Bulletin*, 121(9–10), 1362–1380. <u>https://doi.org/10.1130/B26325.1</u>
- Mair, J. L., Hart, C. J., & Stephens, J. R. (2006). Deformation history of the northwestern Selwyn Basin, Yukon, Canada: Implications for orogen evolution and mid-Cretaceous magmatism. *Geological Society of America Bulletin*, 118(3-4), 304-323.
- Manselle, P., Brueseke, M. E., Trop, J. M., Benowitz, J. A., Snyder, D. C., & Hart, W. K. (2020). Geochemical and stratigraphic analysis of the Chisana Formation, Wrangellia terrane, eastern Alaska: Insights into Early Cretaceous magmatism and tectonics along the northern Cordilleran margin. *Tectonics*, e2020TC006131.
- Manuszak, J. D., Ridgway, K. D., Trop, J. M., & Gehrels, G. E. (2007). Sedimentary record of the tectonic growth of a collisional continental margin: Upper Jurassic-Lower Cretaceous Nutzotin Mountains sequence, eastern Alaska Range, Alaska. In Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, J.M. (Eds.). Special Paper 431: Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska (Vol. 431, pp. 345–377). Boulder, Colorado: Geological Society of America.
- Matthews, W. A., Guest, B., Coutts, D., Bain, H., & Hubbard, S. (2017). Detrital zircons from the Nanaimo basin, Vancouver Island, British Columbia: An independent test of Late Cretaceous to Cenozoic northward translation. *Tectonics*, *36*(5), 854-876.
- McClelland, W. C., Gehrels, G. E., & Saleeby, J. B. (1992). Upper Jurassic-Lower Cretaceous basinal strata along the Cordilleran Margin: Implications for the accretionary history of the Alexander-Wrangellia-Peninsular Terrane. *Tectonics*, 11(4), 823–835. <u>https://doi.org/10.1029/92TC00241</u>
- McCrory, P. A., & Wilson, D. S. (2013). A kinematic model for the formation of the Siletz-Crescent forearc terrane by capture of coherent fragments of the Farallon and Resurrection plates: *Tectonics*, 32(3), 718–736. <u>https://doi.org/10.1002/tect.20045</u>
- McDermott, R. G., Ault, A. K., Caine, J. S., & Thomson, S. N. (2019). Thermotectonic History of the Kluane Ranges and Evolution of the Eastern Denali Fault Zone in Southwestern Yukon, Canada. *Tectonics*, 38(8), 2983–3010. <u>https://doi.org/10.1029/2019TC005545</u>
- Mezger, J. E. (1999). Alpine-type'ultramafic rocks of the Kluane metamorphic assemblage, southwest Yukon: Oceanic crust fragments of a late Mesozoic back-arc basin along the northern Coast Belt. *Yukon exploration and geology*, 127-138.
- Mezger, J. E. (2002). Geology of the Dezadeash Range and adjacent northern Coast Mountains (115A), southwestern Yukon: Re-examination of a terrane boundary. Yukon Exploration and Geology, 149-163.
- Mezger, J. E., Chacko, T., & Erdmer, P. (2001a). Metamorphism at a late Mesozoic accretionary margin: A study from the Coast Belt of the North American Cordillera: *Journal of Metamorphic Geology*, 19(2), 121–137. https://doi.org/10.1046/j.0263-4929.2000.00300.x
- Mezger, J. E., Creaser, R. A., Erdmer, P., & Johnston, S. T. (2001b). A Cretaceous back-arc basin in the Coast Belt of the northern Canadian Cordillera: evidence from geochemical and neodymium isotope characteristics of the Kluane metamorphic assemblage, southwest Yukon. *Canadian Journal of Earth Sciences*, 38(1), 91-103.

- Milde, E. R. (2014). Using Low-Temperature Thermochronology to Constrain the Role of the Totschunda Fault in Southeastern Alaskan Tectonics. (unpublished master's thesis). Syracuse University, Syracuse, New York.
- Miller, M. L., Bradley, D. C., Bundtzen, T. K., & McClelland, W. (2002). Late Cretaceous through Cenozoic Strike-Slip Tectonics of Southwestern Alaska. *The Journal of Geology*, 110(3), 247– 270. https://doi.org/10.1086/339531
- Miller, M. S., O'Driscoll, L. J., Porritt, R. W., & Roeske, S. M. (2018). Multiscale crustal architecture of Alaska inferred from P receiver functions. *Lithosphere*, 10(2), 267–278. https://doi.org/10.1130/L701.1
- Miskovic, A., & Francis, D. (2003). The Early Tertiary Sifton Range volcanic complex, southwestern Yukon. *Yukon exploration and geology*, 143-155.
- Monger, J. W. H., Van Der Heyden, P., Journeay, J. M., Evenchick, C. A., & Mahoney, J. B. (1994). Jurassic-Cretaceous basins along the Canadian Coast Belt: Their bearing on pre-mid-Cretaceous sinistral displacements. *Geology*, 22(2), 175-178.
- Monger, J.W.H., & Gibson, H. D. (2019). Mesozoic-Cenozoic deformation in the Canadian Cordillera: The record of a "Continental Bulldozer"? *Tectonophysics*, 757, 153–169. <u>https://doi.org/10.1016/j.tecto.2018.12.023</u>
- Mooney P.R. (2010). Geology of the Clearwater Mountains and Southern Boundary of the Alaska Range Suture Zone (unpublished master's thesis). University of California, Davis, California.
- Moores, E. (1970). Ultramafics and orogeny, with models of the US Cordillera and the Tethys. *Nature*, 228(5274), 837-842.
- Morris, G. A., & Creaser, R. A. (2003). Crustal recycling during subduction at the Eocene Cordilleran margin of North America: a petrogenetic study from the southwestern Yukon. *Canadian Journal of Earth Sciences*, 40(12), 1805-1821.
- Morrison, G. W., Godwin, C. I., & Armstrong, R. L. (1979). Interpretation of isotopic ages and 87Sr/86Sr initial ratios for plutonic rocks in the Whitehorse map area, Yukon. *Canadian Journal of Earth Sciences*, 16(10), 1988-1997.
- Murphy, D. C. (2018). Latest Cretaceous–early Eocene Pacific-Arctic?-Atlantic connection: Co-evolution of strike-slip fault systems, oroclines, and transverse fold-and-thrust belts in the northwestern North American Cordillera. In K. Piepjohn, J. V. Strauss, L. Reinhardt, & W. C. McClelland (Eds.). Special Paper 541 Circum-Arctic Structural Events: Tectonic Evolution of the Arctic Margins and Trans-Arctic Links with Adjacent Orogens. Boulder, Colorado: Geological Society of America. <u>https://doi.org/10.1130/2018.2541(28)</u>
- Nelson, J., & Colpron, M. (2007). Tectonics and metallogeny of the British Columbia, Yukon and Alaskan Cordillera, 1.8 Ga to the present. Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: *Geological Association of Canada, Mineral Deposits Division, Special Publication, 5*, pp. 755-791.
- Nokleberg, W. J., Jones, D. L., & Silberling, N. J. (1985). Origin and tectonic evolution of the Maclaren and Wrangellia terranes, eastern Alaska Range, Alaska. *Geological Society of America Bulletin*, 96(10), 1251-1270.
- Nokleberg, W.J. Aleinikoff, J.N., Dutro, J.T., Jr. Lanphere, M.A. Silberling, N.J., Silva, S.R., Smith, T.E., & Turner, D.L. (1992b). Map, tables, and summary of fossil and isotopic age data, Mount Hayes quadrangle, eastern Alaska Range, Alaska. U.S. Geological Survey Miscellaneous Field Studies map 1996-D, 43 p., 1 sheet, scale 1:250,000.
- Nokleberg, W.J. and Richter, D.H. (2007). Origin of narrow terranes and adjacent major terranes occurring along the Denali fault in the Eastern and Central Alaska Range, Alaska. In Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, J.M. (Eds.). Special Paper 431: Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: (Vol. 431, pp. 129-154.). Boulder, Colorado, Geological Society of America.

- Nokleberg, W.J., Aleinikoff, J.N., Lange, I.M., Silva, S.R., Miyaoka, R.T., Schwab, C.E., & Zehner, R.E. (1992a). Preliminary geologic map of the Mount Hayes quadrangle, eastern Alaska Range, Alaska. U.S. Geological Survey Open File Report 92-594, 39p., 1 sheet, scale 1:250,000.
- O'Driscoll, L. J., & Miller, M. S. (2015). Lithospheric discontinuity structure in Alaska, thickness variations determined by *Sp* receiver functions. *Tectonics*, *34*(4), 694–714. https://doi.org/10.1002/2014TC003669
- O'Neill, J. M., Ridgway, K. D., & Eastham, K. R. (2001). Mesozoic Sedimentation and Deformation Along the Talkeetna Thrust Fault, South-Central Alaska—New Insights and Their Regional Tectonic Significance. 10. U.S. Geological Survey Professional Paper 1678.
- Otiniano, G. A., Porter, T. J., Benowitz, J. A., Bindeman, I. N., Froese, D. G., Jensen, B. J., ... & Phillips, M. A. A late Miocene to late Pleistocene reconstruction of precipitation isotopes and climate from hydrated volcanic glass shards and biomarkers in central Alaska and Yukon. *Paleoceanography* and Paleoclimatology, e2019PA003791.
- Parrish, R. R., Carr, S. D., & Parkinson, D. L. (1988). Eocene extensional tectonics and geochronology of the southern Omineca Belt, British Columbia and Washington. *Tectonics*, 7(2), 181-212.
- Pavlis, T. L., Amato, J. M., Trop, J. M., Ridgway, K. D., Roeske, S. M., & Gehrels, G. E. (2019). Subduction polarity in ancient arcs: A call to integrate geology and geophysics to decipher the Mesozoic tectonic history of the Northern Cordillera of North America. *GSA Today*, 29(11).
- Pavlis, T. L., Chapman, J. B., Bruhn, R. L., Ridgway, K., Worthington, L. L., Gulick, S. P., & Spotila, J. (2012). Structure of the actively deforming fold-thrust belt of the St. Elias orogen with implications for glacial exhumation and three-dimensional tectonic processes. *Geosphere*, 8(5), 991-1019.
- Pecha, M. E., Gehrels, G. E., McClelland, W. C., Giesler, D., White, C., & Yokelson, I. (2016). Detrital zircon U-Pb geochronology and Hf isotope geochemistry of the Yukon-Tanana terrane, Coast Mountains, southeast Alaska. *Geosphere*, 12(5), 1556-1574.
- Piercey, S. J., & Colpron, M. (2009). Composition and provenance of the Snowcap assemblage, basement to the Yukon-Tanana terrane, northern Cordillera: Implications for Cordilleran crustal growth. *Geosphere*, 5(5), 439-464.
- Piercey, S. J., Mortensen, J. K., & Creaser, R. A. (2003). Neodymium isotope geochemistry of felsic volcanic and intrusive rocks from the Yukon–Tanana Terrane in the Finlayson Lake Region, Yukon, Canada. *Canadian Journal of Earth Sciences*, 40(1), 77-97.
- Preece, S. J., & Hart, W. K. (2004). Geochemical variations in the< 5 Ma Wrangell Volcanic Field, Alaska: implications for the magmatic and tectonic development of a complex continental arc system. *Tectonophysics*, *392*(1-4), 165-191.
- Rasendra, N., Bonnin, M., Mazzotti, S., & Tiberi, C. (2014). Crustal and Upper-Mantle Anisotropy Related to Fossilized Transpression Fabric along the Denali Fault, Northern Canadian Cordillera. Bulletin of the Seismological Society of America, 104(4), 1964–1975. https://doi.org/10.1785/0120130233
- Ratchkovski, N. A., Wiemer, S., & Hansen, R. A. (2004). Seismotectonics of the central Denali fault, Alaska, and the 2002 Denali fault earthquake sequence. *Bulletin of the Seismological Society of America*, 94(6B), S156-S174.
- Regan, S. P., Benowitz, J. A., & Holland, M. E. (2020). A plutonic brother from another magma mother: Disproving the Eocene Foraker-McGonagall pluton piercing point and implications for long-term slip on the Denali Fault. *Terra Nova*, 32(1), 66–74. <u>https://doi.org/10.1111/ter.12437</u>
- Regan, S., Benowitz, J.B., Waldien, T.S., Holland, M., Roeske, S.M., O'Sullivan. P.B., and Layer, P. Tectonic social distancing: strained long distance plutonic relationships along the Denali fault: *Submitted to Geology*
- Renne, P. R., Deino, A. L., Walter, R. C., Turrin, B. D., Swisher III, C. C., Becker, T. A., ... & Jaouni, A. R. (1994). Intercalibration of astronomical and radioisotopic time. *Geology*, 22(9), 783-786.

- Renne, P. R., Mundil, R., Balco, G., Min, K., & Ludwig, K. R. (2010). Joint determination of ⁴⁰K decay constants and ⁴⁰Ar*/⁴⁰K for the Fish Canyon sanidine standard, and improved accuracy for ⁴⁰Ar/³⁹Ar geochronology. *Geochimica et Cosmochimica Acta*, *74*(18), 5349-5367.
- Riccio, S. J., Fitzgerald, P. G., Benowitz, J. A., & Roeske, S. M. (2014). The role of thrust faulting in the formation of the eastern Alaska Range: Thermochronological constraints from the Susitna Glacier Thrust Fault region of the intracontinental strike-slip Denali Fault system: Susitna Glacier thrust fault. *Tectonics*, 33(11), 2195–2217. https://doi.org/10.1002/2014TC003646
- Richter, D.H. & Dutro, J.T., Jr. (1975). Revision of the type Mankommen Formation (Pennsylvanian and Permian), Eagle Creek area, eastern Alaska Range, Alaska. U.S. Geological Survey Bulletin 1395–B, p. B1–B25.
- Ridgway, K. D., Thoms, E. E., Layer, P. W., Lesh, M. E., White, J. M., & Smith, S. V. (2007). Neogene transpressional foreland basin development on the north side of the central Alaska Range, Usibelli Group and Nenana Gravel, Tanana basin. In Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, J.M. (Eds.). Special Paper 431: Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska (Vol. 431, pp. 507–547). Boulder, Colorado: Geological Society of America. https://doi.org/10.1130/2007.2431(20)
- Ridgway, K. D., Trop, J. M., Nokleberg, W. J., Davidson, C. M., & Eastham, K. R. (2002). Mesozoic and Cenozoic tectonics of the eastern and central Alaska Range: Progressive basin development and deformation in a suture zone. *Geological Society of America Bulletin*, 114(12), 1480-1504.
- Rioux, M., Hacker, B., Mattinson, J., Kelemen, P., Blusztajn, J., & Gehrels, G. (2007). Magmatic development of an intra-oceanic arc: High-precision U-Pb zircon and whole-rock isotopic analyses from the accreted Talkeetna arc, south-central Alaska. *Geological Society of America Bulletin*, 119(9-10), 1168-1184.
- Roeske, S. M., Mattinson, J. M., & Armstrong, R. L. (1989). Isotopic ages of glaucophane schists on the Kodiak Islands, southern Alaska, and their implications for the Mesozoic tectonic history of the Border Ranges fault system. *Geological Society of America Bulletin*, 101(8), 1021-1037.
- Roeske, S. M., Snee, L. W., Pavlis, T. L., & Sisson, V. B. (2003). Dextral-slip reactivation of an arcforearc boundary during Late Cretaceous-early Eocene oblique convergence in the northern Cordillera. In Sisson, V.B., Roeske, S.M., Pavlis, T.L. (Eds.). Special Paper 371: Geology of a Transpressional Orogen Developed during Ridge-Trench interaction along the North Pacific Margin (Vol. 371, pp. 141–169). Boulder, Colorado: Geological Society of America.
- Romero, M. C., Ridgway, K. D., & Gehrels, G. E. (2020). Geology, U-Pb Geochronology, and Hf Isotope Geochemistry Across the Mesozoic Alaska Range Suture Zone (South-Central Alaska): Implications for Cordilleran Collisional Processes and Tectonic Growth of North America. *Tectonics*, 39(3). <u>https://doi.org/10.1029/2019TC005946</u>.
- Rusmore, M. E., Bogue, S. W., & Woodsworth, G. J. (2013). Paleogeography of the insular and intermontane terranes reconsidered: Evidence from the southern Coast Mountains Batholith, British Columbia. *Lithosphere*, *5*(5), 521-536.
- Ryan, J.J., Hayward, N., & Jackson, L. E. (2017). Landscape antiquity and Cenozoic drainage development of southern Yukon, through restoration modeling of the Tintina Fault. *Canadian Journal of Earth Sciences*, 54(10), 1085–1100. <u>https://doi.org/10.1139/cjes-2017-0053</u>
- Sack, P. J., Colpron, M., Crowley, J. L., Ryan, J. J., Allan, M. M., Beranek, L. P., & Joyce, N. L. (2020) Atlas of Late Triassic to Jurassic plutons in the Intermontane terranes of Yukon. 378.
- Saltus, R. W., & Hudson, T. L. (2007). Regional magnetic anomalies, crustal strength, and the location of the northern Cordilleran fold-and-thrust belt. *Geology*, *35*(6), 567-570.
- Saltus, R. W., Hudson, T. L., & Wilson, F. H. (2007). The geophysical character of southern Alaska— Implications for crustal evolution. In Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, J.M. (Eds.). Special Paper 431: Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska (Vol. 431, pp. 1–20). Boulder, Colorado: Geological Society of America. <u>https://doi.org/10.1130/2007.2431(01)</u>

- Samson, S. D., & Alexander Jr, E. C. (1987). Calibration of the interlaboratory ⁴⁰Ar/³⁹Ar dating standard, MMhb-1. *Chemical Geology: Isotope Geoscience section*, *66*(1-2), 27-34.
- Sauer, K. B., Gordon, S. M., Miller, R. B., Jacobson, C. E., Grove, M., Vervoort, J. D., & Fisher, C. M. (2019). Deep-crustal metasedimentary rocks support Late Cretaceous "Mojave-BC" translation. *Geology*, 47(2), 99-102.
- Saylor, J. E., & Sundell, K. E. (2016). Quantifying comparison of large detrital geochronology data sets. *Geosphere*, *12*(1), 203-220.
- Saylor, J. E., Jordan, J. C., Sundell, K. E., Wang, X., Wang, S., & Deng, T. (2018). Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau. *Basin Research*, 30(3), 544-563.
- Sigloch, K., & Mihalynuk, M. G. (2017). Mantle and geological evidence for a Late Jurassic–Cretaceous suture spanning North America. *GSA Bulletin*, *129*(11-12), 1489-1520.
- Smith, T.E. (1981). Geology of the Clearwater Mountains, south-central Alaska. Alaska Division of Geological & Geophysical Surveys Geologic Report 60, 72 p., 3 sheets, scale 1:63,360. doi:10.14509/406
- St. Amand, P. (1957). Geological and geophysical synthesis of the tectonics of portions of British Columbia, the Yukon Territory, and Alaska. *Geological Society of America Bulletin*, 68(10), 1343-1370.
- Stamatakos, J. A., Trop, J. M., & Ridgway, K. D. (2001). Late Cretaceous paleogeography of Wrangellia: paleomagnetism of the MacColl Ridge Formation, southern Alaska, revisited. *Geology*, 29(10), 947-950.
- Stanley, B. (2012). Structural geology and geochronology of the Kluane schist, southwestern Yukon Territory. (unpublished master's thesis). University of Waterloo, Waterloo, Ontario.
- Stout, J.H. (1965). Bedrock geology between Rainy Creek and the Denali fault, Eastern Alaska Range, Alaska (unpublished master's thesis). University of Alaska, Fairbanks, Alaska.
- Tempelman-Kluit, D. J., & Wanless, R. K. (1975). Potassium–argon age determinations of metamorphic and plutonic rocks in the Yukon Crystalline Terrane. *Canadian Journal of Earth Sciences*, 12(11), 1895-1909.
- Terhune, P.J., Benowitz, J.A., Waldien, T.S., Allen, W.K., Davis, K.N., Ridgway, K.D., Roeske, S.M., Fitzgerald, P.G., Brueseke, M.E., O'sullivan, P.B. (2015). Geochronological framework for the Cenozoic history of the southern Alaska Range fold and thrust belt: *Geological Society of America Abstracts with Programs*, 47(4), p. 60.
- Till, A.B, Roeske, S.M., Bradley, D.C., Friedman, R., Layer, P.W. (2007). Early Tertiary transtensionrelated deformation and magmatism along the Tintina fault system, Alaska, In Till, A.B., Roeske, S.M., Sample, J.C., and Foster, D.A. (Eds.). Special Paper 434 Exhumation Associated with Continental Strike-Slip Fault Systems: Geological Society of America. (Vol. 434, pp. 233–264). doi: 10.1130/2007.2434(11).
- Trop, J. M., & Ridgway, K. D. (2007). Mesozoic and Cenozoic tectonic growth of southern Alaska: A sedimentary basin perspective. In Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, J.M. (Eds.). Special Paper 431: Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska (Vol. 431, pp. 55–94). Boulder, Colorado: Geological Society of America. https://doi.org/10.1130/2007.2431(04)
- Trop, J. M., Benowitz, J. A., Koepp, D. Q., Sunderlin, D., Brueseke, M. E., Layer, P. W., & Fitzgerald, P. G. (2020). Stitch in the ditch: Nutzotin Mountains (Alaska) fluvial strata and a dike record ca. 117–114 Ma accretion of Wrangellia with western North America and initiation of the Totschunda fault. *Geosphere*, 16(1), 82–110. <u>https://doi.org/10.1130/GES02127.1</u>
- Trop, J. M., Benowitz, J., Cole, R. B., & O'Sullivan, P. (2019). Cretaceous to Miocene magmatism, sedimentation, and exhumation within the Alaska Range suture zone: A polyphase reactivated terrane boundary. *Geosphere*, 15(4), 1066–1101. <u>https://doi.org/10.1130/GES02014.1</u>
- Turner, D.L., and Smith, T.E. (1974). Geochronology and generalized geology of the central Alaska Range, Clearwater Mountains, and northern Talkeetna Mountains. *Alaska Division of Geological*

& Geophysical Surveys Alaska Open-File Report 72, 13 p., 1 sheet, scale 1:250,000. http://doi.org/10.14509/167

- Twelker, E., Waldien, T.S., Newberry, R.J., Freeman, L.K., Sicard, K.R., Lande, L.L., Wypych, A., Reioux, D.A., and Bachmann, E.N. (2020). Bedrock geologic map of the eastern Denali Highway area, Mount Hayes, Healy, and Talkeetna Mountains quadrangles, Alaska. *Alaska Division of Geological & Geophysical Surveys Report of Investigation 2020-7*: 1 sheet, 1:100,000 scale. http://doi.org/10.14509/30469
- Vallage, A., Devès, M. H., Klinger, Y., King, G. C. P., & Ruppert, N. A. (2014). Localized slip and distributed deformation in oblique settings: The example of the Denali fault system, Alaska. *Geophysical Journal International*, 197(3), 1284–1298. <u>https://doi.org/10.1093/gji/ggu100</u>
- Vermeesch, P. (2004). How many grains are needed for a provenance study?. *Earth and Planetary Science Letters*, 224(3-4), 441-451.
- Vermeesch, P. (2012). On the visualisation of detrital age distributions. Chemical Geology, 312, 190-194.
- Vice, L. (2017) Late Cretaceous to Paleocene evolution of the Blanchard River assemblage, southwest Yukon; implications for Mesozoic accretionary processes in the northwestern Cordillera (unpublished master's thesis). Simon Fraser University, Burnaby, British Columbia.
- Wahrhaftig, C., Turner, D. L., Weber, F. R., & Smith, T. E. (1975). Nature and timing of movement on Hines Creek strand of Denali fault system, Alaska. *Geology*, *3*(8), 463-466.
- Waldien, T. S., Roeske, S. M., Benowitz, J. A., Allen, W. K., Ridgway, K. D., & O'Sullivan, P. B. (2018). Late Miocene to Quaternary evolution of the McCallum Creek thrust system, Alaska: Insights for range-boundary thrusts in transpressional orogens. *Geosphere*, 14(6), 2379–2406. https://doi.org/10.1130/GES01676.1
- Waldien, T.S., Roeske, S.M., Benowitz, J.A., Twelker, E., & Miller, M.S. (2021). Oligocene-Neogene reactivation of Mesozoic lithospheric-scale terrane accretionary structures in the Alaska Range suture zone, southern Alaska, USA: Geological Society of America Bulletin, v. 133 (3-4), p. 691-716.
- Wallace, W. K., Hanks, C. L., & Rogers, J. F. (1989). The southern Kahiltna terrane: Implications for the tectonic evolution of southwestern Alaska. *Geological Society of America Bulletin*, 101(11), 1389-1407.
- Wilson, F.H., Dover, J.H., Bradley, D.C., Weber, F.R., Bundtzen, T.K., and Haeussler, P.J. (1998).
 Geologic map of Central (interior) Alaska. U.S. Geological Survey Open-File Report 98-133-A, 62 p., 3 sheets.
- Wilson, F.H., Hults, C.P., Mull, C.G., and Karl, S.M. (2015). Geologic map of Alaska. U.S. Geological Survey Scientific Investigations Map 3340, 196 p., 2 sheets, scale 1:1,584,000, <u>https://alaska.usgs.gov/science/geology/state_map/interactive_map/AKgeologic_map.html</u>.
- Wyld, S. J., Umhoefer, P. J., & Wright, J. E. (2006). Reconstructing northern Cordilleran terranes along known Cretaceous and Cenozoic strike-slip faults: Implications for the Baja British Columbia hypothesis and other models. In J.W. Haggart, R.J. Enkin, J.W.H. Monger (Eds.). *Paleogeography of the North American Cordillera: Evidence for and against large-scale displacements*. (Geological Association of Canada Special Paper 46 pp. 277-298). St. Johns, Newfoundland: Geological Association of Canada.
- Yokelson, I., Gehrels, G. E., Pecha, M., Giesler, D., White, C., & McClelland, W. C. (2015). U-Pb and Hf isotope analysis of detrital zircons from Mesozoic strata of the Gravina belt, southeast Alaska: *Tectonics*, 34(10), 2052–2066. <u>https://doi.org/10.1002/2015TC003955</u>
- York, D., Hall, C. M., Yanase, Y., Hanes, J. A., & Kenyon, W. J. (1981). ⁴⁰Ar/³⁹Ar dating of terrestrial minerals with a continuous laser. *Geophysical Research Letters*, 8(11), 1136-1138.
- Yukon Geological Survey. (2020, May 15). Yukon Geochronology A database of Yukon isotopic age determinations. Retrieved from http://data.geology.gov.yk.ca/Compilation/22.

SUPPLEMENTS

Supplemental information SI 1: Zircon U-Pb and Lu-Hf methods Sample preparation and zircon extraction at UC Davis:

Sample preparation for zircon extraction at UC Davis involves: 1) washing the sample with soap and warm water, 2) crushing the rock with a combination of a hydraulic press (if needed), mortar/pestle, and Bico Pulverizer, 3) sieving to the preferred size fraction (generally <250 um for detrital zircon samples, 63-125 um for igneous zircon samples), 4) heavy mineral concentration by decanting and panning, 5) magnetic separation using a Frantz isodynamic separater, 6) density separation with Lithium Polytungstate. These steps usually result in a sufficiently pure zircon separate. However, additional steps are sometimes required to further concentrate zircon. These steps include: 7) additional panning, 8) density separation with Methylene Iodide, 9) acid wash to dissolve pyrite. Once the mineral separate is sufficiently pure, zircon grains are mounted by pouring the detrital the zircon concentrate onto sticky tape or by picking for igneous zircon analysis.

Mounting:

Once the desired zircon separate is obtained, we mount the zircons in epoxy. This involves pressing double-sided sticky tape on a flat glass plate and placing (or pouring) the zircon grains and reference materials on the tape. Once grains are mounted, we submerge them en epoxy, which is contained by a 1" diameter plastic cylinder. After curing, the epoxy cylinder is removed from the sticky tape and ground/polished until the zircon grains are exposed. In contrast to a typical grain mount wherein the crystal interiors are exposed, we grind the mount until the crystals are barely exposed. This approach allows us to, in some cases, analyze the age

265

of the exterior of the crystal in addition to the core via depth profiling (described in more detail in the data reduction section) and retain imaging capabilities.

Imaging:

We image all zircon grains and standards prior to analysis by LA-ICP-MS. Our imaging protocol makes use of the Cameca SX-100 electron microprobe housed in the Earth and Planetary Sciences department at UC Davis. We image the zircon grains using the 'high-gain' electron beam setting on the Cameca SX-100. By adjusting the brightness and contrast of the backscattered electron (BSE) image, the high gain beam reveals internal zoning structure of the zircon grains. Increasing the scan rate on these BSE images yields a high-resolution greyscale image of the zircon crystal and its internal zoning structure. For igneous or metamorphic zircon analyses, we image each individual crystal and use the high-resolution BSE images to choose our laser spots prior to analysis. We also use the Cameca SX-100 to measure the width of metamorphic growth rims, which helps us determine whether or not it will yield a reliable U-Pb date. For detrital analyses, we use the high-gain beam with a moderate scan rate. This approach still displays zoning features of the zircon grain interior, but at a decreased resolution, which allows imaging of an entire detrital mount in a reasonable timeframe (generally less than 1.5 hr). We image the detrital grain mounts using the 'Video map' feature of the Cameca SX-100. This feature images user-designated domains of the mount in series and then stiches the images together into a rasterized image of the entire grain mount. The end result is a moderate resolution, high contrast image of all grains on the 1" epoxy round. We print all zircon images for igneous, metamorphic, and detrital analyses prior to LA-ICP-MS analysis and mark the printed images during the laser session.

266

U-Pb zircon data collection with the LA-Q-ICP-MS at UC Davis:

U-Pb geochronology of zircon is conducted by laser ablation quadrupole inductively coupled plasma mass spectrometry (LA-Q-ICP-MS) at UC Davis. The analyses involve ablation of zircon with a Photon Machines Analyte G2 excimer laser equipped with HelEx ablation cell using a spot diameter of 25 microns. The ablated material is carried in helium into the plasma source of an Agilent 7700 Series Q-ICP-MS, which sequences rapidly through masses corresponding to U, Th, Pb, and Hg isotopes. Dwell times for each of these masses are listed in Table S1.2.

Instrument settings on the LA-Q-ICP-MS system at UC Davis are based on a published calibration using nearly identical equipment (Matthews and Guest, 2017). Matthews and Guest (2017) used optical profilometry to measure a pit depth of ~12 um using the laser settings listed in Table S1.2. Since we used the instrument settings published by Matthews and Guest (2017), we infer that the analyses performed at UC Davis result in a laser pit depth of ~12 um. Uranium sensitivity with these settings is approximately ~230 cps/ppm, which we approximate using the NIST 610 glass. Each analysis consists of 10 sec on peaks with the laser off (for backgrounds) and 10 sec with the laser firing (for peak intensities),

Table SI1.1:	Instrument setting	gs and data	processing a	at UC	Davis

Laboratory & Sample Preparation	
Laboratory name	Dept. of Earth and Planetary Sciences, UC Davis
Sample type/mineral	Zircon U-Pb detrital and igneous
Sample preparation	Conventional mineral separation, 1 inch resin mount, $1\mu m$ polish to finish
Imaging	BSE images Cameca SX-100 electron microprobe

Laser ablation	
system	
Make, Model & type	Photon Machines Analyte G2 Excimer Laser
Ablation cell &	HelEx ablation cell
volume	100
Laser wavelength	193 nm
(nm)	0
Pulse width (ns)	$\sim 8 \text{ ns}$
Fluence (J.cm ⁻²)	1.88 J.cm ²
Repetition rate (Hz)	10 Hz
Ablation duration	10 s
Ablation pit depth /	$\sim 10 \mu m$ pit depth, inferred from Mathews and Guest (2017).
ablation rate	25 / 20
Spot diameter (µm)	$25 \ \mu\text{m} / \sim 30 \ \mu\text{m}$, square aperture
nominal/actual	Static and chlotica
sampling mode /	Static spot ablation
Carrier gas	Halium
Cell carrier gas flow	0.75
(1/min)	0.75
ICP-MS	
Instrument	
Make, Model & type	Agilent 7700 series O-ICP-MS
Sample introduction	Ablation aerosol
RF power (W)	1350W
Make-up gas flow	1.1
(1/min)	
Detection system	Electron Multiplier
Masses measured	91, 201, 202, 204, 206 207, 235, 238
Integration time per	0.01, 0.01, 0.01, 0.03, 0.04, 0.07,
peak/dwell times (s);	0.015, 0.015, 0.02 s. In order of masses listed above.
quadrupole settling	
time between mass	
jumps	
Total integration	0.239 s
'Sensitivity' as	~230 cps/ppm U
useful yield	Estimated on NIST 610 glass
IC Dead time (ns)	
Data Processing	
Gas blank	15 second on-peak zero subtracted
Calibration strategy	FC-1 used as primary reference material, R-33 used as
	secondary/validation

Reference Material	FC-1 (Paces and Miller, 1993; Schmitz et al., 2003)
info	R-33 (Black et al. 2004)
Data processing	Iolite-Igor data reduction scheme based on methods of Patton et al,
package used /	(2010) and Petrus and Kamber (2012). Laser-Induced Elemental
Correction for LIEF	Fractionation correction assumes reference material and samples
	behave identically.
Mass discrimination	²⁰⁶ Pb/ ²³⁸ U additionally normalized to reference material
Common-Pb	No common-Pb correction applied to the data.
correction,	
composition and	
uncertainty	
Uncertainty level &	Ages are quoted at 2s absolute, propagation is by quadratic
propagation	addition. Reproducibility and age uncertainty of reference material
	are propagated where appropriate.
Quality control /	FC-1 and R-33 natural zircon reference materials
Validation	
Other information	

U-Pb data reduction methods at UC Davis:

Data from the Q-ICP-MS are imported into Igor Pro-Iolite and displayed as a time series. Integration periods for gas blanks (backgrounds), standards, and unknowns are selected manually. FC-1 (Paces and Miller, 1993; Schmitz et al., 2003) is used as the primary reference material and R-33 (Black et al., 2004) is used as a secondary reference. Estimates of elemental concentrations, and thus U/Th, are also determined using FC-1. Isotope ratios, dates, and associated uncertainties are calculated from the integrations using the *U_Pb_geochronology3* data reduction scheme (Paton et al., 2010). After initial dates are calculated, we use the *Live Concordia* feature of the *VizualAge* data reduction scheme (Petrus and Kamber, 2012) to screen each integration period for discordance related to inclusions and/or mixed age domains (e.g., a spurious date resulting from ablating through a younger rim into an older core). If an analysis is found to be discordant apparently related to the aforementioned causes, we conservatively adjust the integration interval to obtain the most reliable date at reasonable uncertainty. Additionally, screening the analyses in this way allows us to determine if the zircon crystal has zones of different ages (e.g. a growth rim). If the zircon is zoned, we select integration periods for each age domain. This allows us to salvage what would otherwise be a discordant analysis resulting from mixed age domains and yields instead separate ages for the core and rim of the crystal. Once integration periods are adjusted, we export the data, 2s internal and external uncertainties, and elemental concentrations. We report our data using the data table template suggested by Horstwood et al. (2016), which may be found at www.Plasmage.org.

It is important to convey that the Agilent 7700 Q-ICP-MS at UC Davis is not currently equipped with a Hg trap in the carrier gas line. This results in generally high background ²⁰⁴Hg. Although we monitor mass 204 (Hg + Pb) during analysis sessions, the elevated background 204 signal precludes determination of meaningful ²⁰⁴Pb/²⁰⁶Pb ratios. Thus, we do not apply any common Pb correction to the data. However, we do consider the 204 signal during integration periods. If the 204 signal is elevated above background levels during ablation of a zircon, it is likely indicating the presence of ²⁰⁴Pb. Due to the assumptions and high level of uncertainty that would be introduced by attempting to do a common Pb correction on such analyses, we reject analyses on grains that display elevated 204 relative to the background gas blank. Such rejections are uncommon.

Figure S1.1 (Previous page): Calibration of zircon reference materials ranging from 28.2 to 3465 Ma using the LA-Q-ICP-MS at UC Davis. All analyses were performed using the ablation settings described above. Each diamond represents multiple analyses on multiple grains (n=number of analyses) during a single session.

Data filtering methods:

We parsed the single grain dates from both labs using Tera-Wasserburg concordia diagrams, U/Th ratios, and zoning patterns.

 \leq 900 Ma detrital grain dates are used in KDE plots if the ²⁰⁶Pb/²³⁸U date has an uncertainty (2s internal) of <10% and <u>either</u> of the following criteria are met:

- 1. The 2s internal uncertainty ellipse intersects the concordia curve on a Tera-Wasserburg diagram, allowing the concordia curve to account for decay constant uncertainties.
- 2. The date is discordant, but the ${}^{207}Pb/{}^{206}Pb$ date is <3 times the ${}^{206}Pb/{}^{238}U$ date.

≥900 Ma detrital grain dates are used in KDE plots if <u>both</u> of the following criteria are met:

- 1. The date is <5% reverse discordant
- 2. The date is <20% normally discordant

Dates are interpreted to record post-depositional metamorphic recrystallization if the grain was recovered from a metamorphic rock that experienced appropriate temperatures to recrystallize zircon (estimated petrographically using mineral assemblages) and <u>one or more</u> of the following criteria are met:

- 1. The date overlaps with the known age of cross cutting intrusive rocks within the map unit.
- 2. The dated grain, or region of the grain, lacks internal zoning, which is suggestive of metamorphic recrystallization (Hoskin and Schaltegger, 2003).
- 3. The analysis targeted an overgrowth rim identified in BSE images, or was interpreted as an overgrowth rim based on laser depth profiling.
- 4. The U/Th ratio of the analysis is elevated (>10) and/or high dispersion is present within the population of dates.

Dates (as part of a population) are used to calculate metamorphic or igneous ages if <u>all</u> of the following criteria are met:

- 1. The 2s internal uncertainty ellipse intersects the concordia curve on a Tera-Wasserburg diagram, allowing the concordia curve to account for decay constant uncertainties.
- 2. The ²⁰⁶Pb/²³⁸U date has <10% uncertainty (2s internal) (For igneous analyses only).
- 3. Isoplot does not reject the date during the weighted mean calculation.

For populations of igneous or metamorphic grain dates, ages are calculated using the weighted mean function in Isoplot (Ludwig, 2008). Following the protocol of Horstwood et al. (2016), only 2s internal uncertainties are used in the weighted mean calculation and systematic uncertainties are added quadratically to the internal uncertainty after the weighted mean is calculated. Uncertainties on igneous or metamorphic ages reported in the main text include both internal (included in weighted mean calculation) and systematic (added on after weighted mean calculation) unless otherwise indicated.

Maximum depositional ages are estimated to be the mean age of the youngest statistical population of detrital dates (Herriott et al., 2019).

U-Pb data parsing for Maclaren schist samples:

Zircon age spectra from samples of the Maclaren schist display a mix of detrital grains and detrital grains with post-depositional metamorphic grains. This supplement contains plots that we used to parse the detrital grains from the post-depositional metamorphic grains and representative images of zircon grains that we interpret as containing a metamorphic overgrowth on a detrital core.

Plots for each sample-

- A- Probability density plots (PDP) of the young age populations. The bold black curve is the PDP of all the data in the young age range. We used the "unmixing" function in the Density Plotter program (Vermeesch, 2012) to deconvolve the bulk dataset into age component populations (vertical lines centered on bell curves). Bell curves representing each constituent age population are plotted at 5% uncertainty and scaled vertically to the area equal to their proportion of the bulk PDP. Ages, uncertainties, and proportions for each constituent age population are given atop the vertical lines. Pink bell curves are interpreted as metamorphic populations and hollow black bell curves are interpreted as detrital.
- B- U/Th vs. age graph
- C- [U] (concentration in ppm) vs. age graph
- B/C- Red squares are rim analyses and black dots are analyses either from cores or uniform age grains. The cutoff between metamorphic and detrital grains (red vertical line) is interpreted on the basis of dispersion in U/Th and [U], the ages of rim analyses, and component population clustering.

Criteria for choosing cutoffs between detrital and post-depositional metamorphism-

The cutoff between detrital and post-depositional metamorphic zircon grains is determined by considering together the U/Th, [U], and deconvolved age populations. Although high U/Th and elevated [U] are generally considered hallmarks of zircon recrystallized in the solid state, zircon recrystallized in the presence of anatectic or igneous melts may not display such geochemical characteristics (Hoskin and Schaltegger, 2003). Moreover, because the Maclaren schist displays evidence for both partial melting of the sediment and protracted igneous intrusion ranging from ca. 80-50 Ma (Link, 2017 and this study), we view it as unlikely that all neo-formed metamorphic zircon in the Maclaren schist will display elevated U/Th or anomalously high [U]. Instead, we argue that *dispersion* in these geochemical parameters, the rim ages, and data clustering used <u>together</u> are the best metrics for identifying the cutoff between detrital and post-depositional metamorphic zircon. Accordingly, in the plots that follow we interpretted the cutoff (vertical red line) at locations- 1) between dispersed and undispersed U/Th and/or [U], 2) older than the oldest rim analyses determined from laser depth profiling, and 3) between component age populations.

Figure S1.2: Example of a time-series recording ablation through a zircon crystal with age zoning. The red curve represents Pb counts measured by the mass spectrometer and the grey curve represents U counts. The Pb and U curves are not plotted on the same vertical scale. Integration intervals (black boxes) #72 and #73 correspond to ages of 87.3 Ma

Figure S1.3: Backscatter electron (BSE) image of representative zircon grains extracted from samples of the Maclaren schist. Note how several grains contain dark rims that are commonly associated with a sieve texture in the crystal.

Hf analytical methods at the Arizona LaserChron Center

Hf isotope analyses are conducted with a Nu HR ICPMS connected to a Photon Machines Analyte G2 excimer laser. Instrument settings are established first by analysis of 10 ppb solutions of JMC475 and a Spex Hf solution, and then by analysis of 10 ppb solutions containing Spex Hf, Yb, and Lu. The mixtures range in concentration of Yb and Lu, with ¹⁷⁶(Yb+Lu) up to 70% of the ¹⁷⁶Hf. When all solutions yield ¹⁷⁶Hf/¹⁷⁷Hf of ~0.28216, instrument settings are optimized for laser ablation analyses and seven different standard zircons (Mud Tank, 91500, Temora, R33, FC52, Plesovice, and Sri Lanka) are analyzed. These standards are included with unknowns on the same epoxy mounts. When precision and accuracy are acceptable, unknowns are analyzed using exactly the same acquisition parameters.

Laser ablation analyses are conducted with a laser beam diameter of 40 microns, with the ablation pits located on top of the U-Pb analysis pits. CL images are used to ensure that the ablation pits do not overlap multiple age domains or inclusions. Each acquisition consists of one 40-second integration on backgrounds (on peaks with no laser firing) followed by 60 one-second integrations with the laser firing. Using a typical laser fluence of ~5 J/cm2 and pulse rate of 7 hz, the ablation rate is ~0.8 microns per second. Each standard is analyzed once for every ~20 unknowns.

Isotope fractionation is accounted for using the method of Woodhead et al. (2004): β Hf is determined from the measured ¹⁷⁹Hf/¹⁷⁷Hf; β Yb is determined from the measured ¹⁷³Yb/¹⁷¹Yb (except for very low Yb signals); β Lu is assumed to be the same as β Yb; and an exponential formula is used for fractionation correction. Yb and Lu interferences are corrected by measurement of ¹⁷⁶Yb/¹⁷¹Yb and ¹⁷⁶Lu/¹⁷⁵Lu (respectively), as advocated by Woodhead et al. (2004). Critical isotope ratios are ¹⁷⁹Hf/¹⁷⁷Hf =0.73250 (Patchett & Tatsumoto, 1980);

276

¹⁷³Yb/¹⁷¹Yb = 1.132338 (Vervoort et al. 2004); ¹⁷⁶Yb/¹⁷¹Yb =0.901691 (Vervoort et al., 2004; Amelin and Davis, 2005); ¹⁷⁶Lu/¹⁷⁵Lu = 0.02653 (Patchett, 1983). All corrections are done lineby-line. For very low Yb signals, β Hf is used for fractionation of Yb isotopes. The corrected ¹⁷⁶Hf/¹⁷⁷Hf values are filtered for outliers (2-sigma filter), and the average and standard error are calculated from the resulting ~58 integrations. There is no capability to use only a portion of the acquired data.

All solutions, standards, and unknowns analyzed during a session are reduced together. The cutoff for using β Hf versus β Yb is determined by monitoring the average offset of the standards from their known values, and the cutoff is set at the minimum offset. For most data sets, this is achieved at ~6 mv of ¹⁷¹Yb. For sessions in which the standards yield ¹⁷⁶Hf/¹⁷⁷Hf values that are shifted consistently from the know values, a correction factor is applied to the ¹⁷⁶Hf/¹⁷⁷Hf of all standards and unknowns. This correction factor, which is not necessary for most sessions, averages 1 epsilon unit.

The ¹⁷⁶Hf/¹⁷⁷Hf at time of crystallization is calculated from measurement of present-day ¹⁷⁶Hf/¹⁷⁷Hf and ¹⁷⁶Lu/¹⁷⁷Hf, using the decay constant of ¹⁷⁶Lu ($\lambda = 1.867e^{-11}$) from Scherer et al. (2001) and Söderlund et al. (2004). No capability is provided for calculating Hf Depleted Mantle model ages because the ¹⁷⁶Hf/¹⁷⁷Hf and ¹⁷⁶Lu/¹⁷⁷Hf of the source material(s) from which the zircon crystallized is not known.

Supplemental Information S2: U-Pb and Hf isotopic data

						Iso	otope ratio	s						Dates used in plots				
						207Ph				Erro	207Pb							26
Identifier	206Pb (CPS)	(ug/g)	U/Th	206Pb / 238U	1s (%)	/ 206Pb	1s (%)	207Pb / 235U	1s (%)	Corr	/ 206Pb	2s abs	206Pb / 238U	2s abs	207Pb / 235U	2s abs	Preferre d age	sys abs
Sample 15ATW-07																		
Output_1_14	67700	5390	561.0	0.01	1.12	0.05	1.03	0.09	1.24	0.81	122.0	46.0	85.6	1.9	86.4	2.0	85.6	2.4
Output_1_32	63700	6360	273.0	0.01	1.32	0.05	1.23	0.10	1.37	0.58	133.0	55.0	89.7	2.3	92.2	2.4	89.7	2.8
Output_1_57	2120	186	2.4	0.02	2.22	0.06	5.60	0.11	6.19	0.36	310.0	230.0	97.8	4.3	103.0	12. 0	97.8	4.6
Output_1_50	3650	316	1.5	0.02	2.14	0.05	4.58	0.11	4.20	0.29	100.0	170.0	101.7	4.3	105.0	8.5	101.7	4.6
Output_1_12	13720	840	24.3	0.02	1.66	0.05	2.99	0.12	2.96	0.37	180.0	130.0	113.8	3.7	114.9	6.5	113.8	4.2
Output_1_25	7350	369	1.5	0.02	1.77	0.06	4.00	0.18	5.40	0.47	320.0	160.0	144.3	5.0	163.0	15. 0	144.3	5.6
Output_1_16	2360	109	2.0	0.02	1.73	0.05	5.43	0.16	5.35	0.20	180.0	210.0	145.3	5.0	150.0	14. 0	145.3	5.6
Output_1_36	5290	367	1.0	0.02	1.30	0.05	3.54	0.16	3.37	0.07	230.0	150.0	146.9	3.8	154.3	8.8	146.9	4.5
Output_1_34	3450	223	1.1	0.02	1.60	0.05	5.19	0.17	5.09	0.14	240.0	210.0	147.5	4.7	158.0	15. 0	147.5	5.3
Output_1_51	4130	248	1.2	0.02	1.59	0.05	4.90	0.17	4.46	0.17	320.0	210.0	148.0	4.6	157.0	13. 0	148.0	5.3
Output_1_28	1512	76	2.1	0.02	2.31	0.05	5.71	0.17	5.15	0.11	240.0	230.0	151.4	6.6	155.0	14. 0	151.4	7.1
Output_1_27	4910	241	1.7	0.02	1.28	0.05	3.31	0.16	3.37	0.32	120.0	140.0	151.9	3.8	153.5	9.7	151.9	4.6
Output_1_31	1295	74	1.0	0.02	3.36	0.06	11.2 1	0.19	9.41	0.26	380.0	450.0	152.0	10. 0	177.0	32. 0	152.0	11.0
Output_1_4	10390	568	1.2	0.02	0.96	0.05	2.59	0.17	2.73	0.05	270.0	120.0	152.1	2.9	157.6	8.0	152.1	3.8
Output_1_45	1172	76	2.1	0.02	2.72	0.05	9.26	0.17	9.36	0.02	150.0	360.0	152.4	7.9	156.0	27. 0	152.4	8.3
Output_1_54	619	34	2.7	0.02	3.33	0.05	11.4 6	0.16	11.6 6	0.12	50.0	410.0	152.7	9.8	151.0	34. 0	152.7	10.0
Output_1_47	1911	120	1.5	0.02	2.07	0.05	5.92	0.18	5.83	0.10	280.0	240.0	153.2	6.4	166.0	18. 0	153.2	6.9
Output_1_7	3000	145	1.5	0.02	2.04	0.05	4.73	0.17	4.62	0.19	270.0	200.0	156.1	6.5	161.0	14. 0	156.1	7.0
Output_1_6	2454	124	2.2	0.02	1.91	0.06	4.73	0.19	5.08	0.31	390.0	190.0	156.4	5.9	177.0	15. 0	156.4	6.4
Output_1_24	938	42	2.9	0.02	2.64	0.05	9.06	0.17	9.12	0.19	80.0	340.0	156.5	7.9	155.0	27. 0	156.5	8.3
Output_1_13	526	23	1.9	0.02	3.28	0.07	10.7 7	0.21	10.1 4	0.11	480.0	430.0	157.0	11. 0	187.0	36. 0	157.0	11.0
Output_1_18	1169	48	3.0	0.02	3.04	0.05	7.51	0.18	8.33	0.26	210.0	290.0	157.3	9.4	164.0	25. 0	157.3	9.7
Output_1_60	1627	94	2.3	0.02	2.02	0.05	5.71	0.18	5.56	0.04	350.0	230.0	157.3	6.4	169.0	17. 0	157.3	6.9
Output_1_49	3350	195	1.4	0.02	1.60	0.06	4.71	0.19	4.52	0.19	360.0	190.0	157.6	5.0	175.0	14. 0	157.6	5.6
Output_1_21	4240	180	1.2	0.02	1.13	0.05	4.82	0.16	4.66	0.10	30.0	190.0	157.9	3.5	153.0	13. 0	157.9	4.4
Output_1_11	4390	194	1.6	0.02	1.83	0.05	3.95	0.18	3.95	0.28	290.0	160.0	157.9	5.7	164.0	12. 0	157.9	6.3
Output_1_22	1198	52	3.1	0.02	2.64	0.06	6.73	0.19	6.38	0.25	370.0	260.0	158.0	8.5	178.0	21. 0	158.0	8.9
Output_1_58	1850	105	2.7	0.02	2.01	0.05	6.24	0.17	5.88	0.04	100.0	250.0	158.2	6.3	157.0	17. 0	158.2	6.9
Output_1_8	2203	104	1.7	0.02	2.01	0.05	5.67	0.19	5.61	0.12	360.0	230.0	158.3	6.6	172.0	18. 0	158.3	7.1
Output_1_39	765	54	1.9	0.03	3.00	0.06	10.1 7	0.19	10.0 5	0.00	230.0	400.0	158.8	9.4	173.0	33. 0	158.8	9.8
Output_1_41	2750	189	1.8	0.03	1.75	0.05	4.87	0.18	4.52	0.00	140.0	190.0	159.8	5.5	164.0	14. 0	159.8	6.2
Output_1_20	2670	113	2.0	0.03	1.72	0.05	5.42	0.17	4.97	0.06	200.0	210.0	161.0	5.5	163.0	15. 0	161.0	6.1
Output_1_10	2447	109	1.9	0.03	1.85	0.05	5.32	0.17	5.59	0.21	150.0	200.0	161.8	5.9	157.0	17. 0	161.8	6.5
Output_1_44	3300	209	2.0	0.03	1.78	0.05	4.30	0.17	4.44	0.10	120.0	180.0	161.9	5.5	157.0	13. 0	161.9	6.1

											1						I	
Output_1_48	1048	62	1.7	0.03	1.95	0.06	8.11	0.19	7.51	0.01	350.0	300.0	163.7	6.4	183.0	25. 0	163.7	7.0
Output_1_55	2294	119	1.5	0.03	2.13	0.06	4.84	0.21	4.59	0.17	410.0	200.0	163.8	7.1	189.0	16. 0	163.8	7.6
Output_1_59	3739	202	1.8	0.03	1.50	0.05	4.29	0.17	4.39	0.11	150.0	180.0	165.2	4.9	163.0	13. 0	165.2	5.6
Output_1_37	985	64	1.6	0.03	2.66	0.06	8.47	0.21	8.29	0.05	370.0	340.0	167.3	8.7	183.0	28. 0	167.3	9.1
Output_1_1	8250	426	1.3	0.03	0.90	0.05	3.49	0.19	3.37	0.09	270.0	150.0	173.1	3.1	180.0	11. 0	173.1	4.2
Output_1_19	24200	905	0.5	0.03	0.73	0.05	1.66	0.19	1.74	0.31	279.0	76.0	175.1	2.5	179.0	5.7	175.1	3.8
Output_1_15	6980	266	2.5	0.03	0.77	0.05	2.98	0.20	2.94	0.01	340.0	130.0	176.8	2.7	188.1	9.9	176.8	4.0
Output_1_2	4511	217	0.1	0.03	0.96	0.05	4.31	0.19	3.99	0.20	100.0	170.0	178.8	3.4	174.0	13. 0	178.8	4.5
Output_1_23	8570	332	2.1	0.03	1.07	0.05	2.11	0.20	2.41	0.33	315.0	97.0	178.8	3.8	184.1	8.1	178.8	4.8
Output_1_26	15390	622	0.2	0.03	1.07	0.06	3.08	0.22	2.75	0.16	390.0	120.0	181.9	3.8	199.3	9.9	181.9	4.9
Output_1_9	6470	246	2.5	0.03	1.53	0.05	3.75	0.21	3.40	0.00	190.0	150.0	186.4	5.6	189.0	12. 0	186.4	6.4
Output_1_46	19300	1022	0.1	0.03	1.18	0.05	1.93	0.21	2.04	0.38	263.0	84.0	188.4	4.4	191.7	7.1	188.4	5.4
Output_1_35	5490	274	2.2	0.03	1.98	0.05	3.33	0.23	3.42	0.29	380.0	140.0	192.3	7.4	214.0	13. 0	192.3	8.0
Output_1_33	9120	421	1.4	0.03	1.40	0.05	3.10	0.22	3.15	0.19	230.0	130.0	194.8	5.4	202.0	12. 0	194.8	6.3
Output_1_43	5290	290	1.8	0.03	1.25	0.05	3.26	0.22	2.93	0.07	260.0	140.0	195.1	4.8	203.0	11. 0	195.1	5.8
Output_1_53	4690	205	2.2	0.03	1.50	0.05	3.31	0.22	3.14	0.20	290.0	140.0	196.4	5.8	205.0	12. 0	196.4	6.7
Output_1_30	71200	443	4.3	0.20	0.78	0.10	0.78	2.93	1.01	0.65	1680.0	29.0	1201.0	17. 0	######	15. 0	1680.0	38.0
Output_1_38	17020	998	0.4	0.03	1.09	0.06	2.62	0.24	2.55	0.32	570.0	110.0	183.3	4.0	213.7	9.9	183.3	5.0
Output_1_52	3360	171	1.5	0.03	3.36	0.06	7.74	0.23	7.36	0.01	540.0	350.0	171.0	11. 0	210.0	28. 0	171.0	11.0
Output_1_42	2630	162	1.2	0.03	1.43	0.06	5.23	0.24	4.87	0.04	620.0	220.0	175.1	5.0	216.0	18. 0	175.1	5.8
Output_1_29	1869	99	1.6	0.02	1.95	0.06	5.83	0.19	5.93	0.23	600.0	250.0	146.9	5.7	178.0	20. 0	146.9	6.2
Output_1_17	1349	57	2.4	0.03	2.17	0.07	6.86	0.21	5.84	0.09	670.0	270.0	160.8	7.2	194.0	21. 0	160.8	7.7
Output_1_3	1700	99	1.4	0.02	2.16	0.06	4.98	0.20	5.08	0.15	680.0	210.0	147.3	6.5	186.0	17. 0	147.3	6.9
Output_1_40	1202	90	1.4	0.02	2.53	0.07	9.03	0.23	8.55	0.10	770.0	410.0	151.1	7.5	211.0	31. 0	151.1	7.9
Output_1_5	1090	56	1.8	0.03	2.60	0.09	6.99	0.31	6.75	0.11	1510.0	270.0	159.3	8.3	293.0	30. 0	159.3	8.7
Output_1_56	1357	70	3.3	0.03	2.87	0.04	8.14	0.15	7.48	0.02	-200.0	270.0	165.9	9.2	136.0	20. 0	165.9	9.6
Sample 15ATW52								1									1	
Output_1_161	799	20	4.6	0.02	6.17	0.05	22.9 2	0.14	23.2 4	0.12	-20.0	360.0	144.9	8.7	129.0	29. 0	144.9	10.0
Output_1_263	1826	73	2.2	0.02	3.87	0.05	12.3 2	0.15	12.3 4	0.04	180.0	220.0	145.8	5.4	146.0	16. 0	145.8	7.4
Output_1_136	2660	139	1.8	0.02	3.56	0.05	11.6 3	0.16	9.76	0.23	260.0	220.0	146.8	5.2	153.0	14. 0	146.8	7.4
Output_1_53	1107	70	1.4	0.02	4.72	0.05	15.8 3	0.16	16.3 5	0.01	70.0	260.0	148.4	6.9	146.0	22. 0	148.4	8.8
Output_1_275	1863	62	3.1	0.02	4.12	0.05	11.4 6	0.16	10.6 3	0.04	220.0	220.0	148.5	6.0	149.0	15. 0	148.5	8.1
Output_1_42	4990	215	2.0	0.02	2.47	0.05	7.07	0.17	6.98	0.07	260.0	140.0	149.3	3.7	160.0	11. 0	149.3	6.5
Output_1_113	6810	161	1.7	0.02	2.26	0.05	7.32	0.16	7.93	0.25	240.0	140.0	149.5	3.4	154.0	11. 0	149.5	6.3
Output_1_172	4460	120	3.6	0.02	2.98	0.05	5.65	0.17	6.36	0.43	300.0	110.0	149.7	4.4	161.2	9.3	149.7	6.9
Output_1_75	4500	102	2.5	0.02	2.34	0.05	7.62	0.17	6.67	0.01	230.0	150.0	149.9	3.5	154.2	9.9	149.9	6.4
Output_1_220	3840	188	4.0	0.02	3.10	0.05	8.49	0.15	7.79	0.05	60.0	160.0	150.0	4.6	145.0	10. 0	150.0	7.1
Output_1_194	618	10	3.1	0.02	6.36	0.06	25.4 5	0.18	23.8	0.05	340.0	420.0	150.0	9.7	159.0	36. 0	150.0	11.0
Output_1_152	1718	52	1.3	0.02	3.99	0.05	13.3 8	0.15	14.2 9	0.34	70.0	240.0	150.1	5.9	145.0	20. 0	150.1	8.0

								I			I					ĺ		
Output_1_137	4550	233	3.4	0.02	2.76	0.05	7.00	0.16	6.96	0.29	160.0	130.0	150.2	4.1	148.2	9.6	150.2	6.8
Output_1_207	1307	24	1.6	0.02	4.66	0.05	13.8 3	0.17	12.9 4	0.03	270.0	250.0	150.4	6.9	157.0	19. 0	150.4	8.8
Output_1_154	2315	65	2.6	0.02	3.52	0.05	11.0 7	0.17	10.9 2	0.05	310.0	220.0	150.4	5.2	161.0	16. 0	150.4	7.5
Output_1_184	4030	95	3.9	0.02	2.58	0.05	8.21	0.18	8.00	0.06	350.0	160.0	150.6	3.8	164.0	12. 0	150.6	6.6
Output_1_281	2813	114	4.9	0.02	3.34	0.05	9.72	0.16	9.94	0.30	160.0	180.0	150.8	5.0	150.0	14. 0	150.8	7.4
Output_1_130	7710	377	2.6	0.02	2.07	0.05	7.62	0.17	7.60	0.12	260.0	150.0	150.8	3.1	159.0	11. 0	150.8	6.2
Output_1_121	1723	56	2.1	0.02	4.01	0.05	14.9 9	0.17	14.9 4	0.13	290.0	280.0	150.8	6.0	163.0	23. 0	150.8	8.1
Output_1_14	1262	94	1.7	0.02	4.64	0.04	19.7 2	0.14	19.4 2	0.12	-70.0	310.0	151.1	6.7	128.0	24. 0	151.1	8.7
Output_1_173	1238	33	2.0	0.02	5.06	0.05	14.7 3	0.16	14.4 7	0.09	220.0	270.0	151.1	7.7	150.0	19. 0	151.1	9.5
Output_1_87	4100	61	2.9	0.02	3.37	0.05	9.33	0.17	8.82	0.20	290.0	180.0	151.1	5.0	159.0	13. 0	151.1	7.4
Output_1_132	3110	155	1.9	0.02	4.22	0.05	11.3 7	0.16	10.4 3	0.10	220.0	220.0	151.2	6.6	152.0	15. 0	151.2	8.5
Output_1_144	940	38	1.7	0.02	5.88	0.04	19.2 2	0.16	19.2 5	0.17	110.0	320.0	151.3	8.5	154.0	28. 0	151.3	10.0
Output_1_216	5500	184	1.7	0.02	2.56	0.05	6.61	0.16	5.66	0.11	190.0	130.0	151.6	3.8	154.1	8.1	151.6	6.7
Output_1_94	6140	88	3.6	0.02	2.73	0.05	7.03	0.16	6.25	0.04	200.0	140.0	151.6	4.1	150.2	9.0	151.6	6.8
Output_1_191	9800	185	2.4	0.02	2.18	0.05	4.74	0.16	4.09	0.06	138.0	97.0	151.7	3.3	149.5	5.7	151.7	6.4
Output_1_297	2163	39	2.4	0.02	3.64	0.05	8.44	0.17	9.94	0.23	290.0	170.0	152.0	5.5	164.0	14. 0	152.0	7.7
Output_1_160	5100	126	3.3	0.02	2.59	0.05	6.87	0.16	7.01	0.24	60.0	130.0	152.2	3.9	148.0	10. 0	152.2	6.7
Output_1_225	1721	153	4.3	0.02	3.26	0.05	16.0 9	0.15	14.6 7	0.22	-50.0	260.0	152.3	4.9	142.0	19. 0	152.3	7.4
Output_1_142	6580	285	2.6	0.02	2.46	0.05	6.52	0.16	6.01	0.09	200.0	130.0	152.8	3.7	154.4	8.6	152.8	6.6
Output_1_90	2926	42	2.3	0.02	2.96	0.05	11.6 6	0.17	11.8 3	0.19	270.0	220.0	152.8	4.5	156.0	18. 0	152.8	7.1
Output_1_40	1876	72	2.8	0.02	4.58	0.06	12.7 6	0.19	11.7 0	0.11	410.0	240.0	152.8	7.0	175.0	19. 0	152.8	8.9
Output_1_259	3051	127	3.1	0.02	3.25	0.05	9.86	0.17	9.52	0.05	210.0	190.0	152.9	4.9	156.0	14. 0	152.9	7.4
Output_1_232	1774	126	2.2	0.02	5.00	0.05	14.7 6	0.15	14.2 9	0.10	50.0	250.0	153.0	7.3	143.0	19. 0	153.0	9.1
Output_1_26	1142	45	1.8	0.02	4.58	0.05	18.5 0	0.18	17.4 9	0.04	330.0	300.0	153.1	6.7	165.0	27. 0	153.1	8.7
Output_1_28	3180	122	2.3	0.02	3.20	0.05	8.69	0.17	8.93	0.09	150.0	160.0	153.2	4.9	158.0	13. 0	153.2	7.4
Output_1_186	8060	173	1.2	0.02	2.45	0.05	6.14	0.17	5.59	0.17	220.0	120.0	153.2	3.7	155.7	8.0	153.2	6.7
Output_1_5	4720	567	3.6	0.02	2.82	0.05	8.91	0.17	8.38	0.07	260.0	170.0	153.4	4.3	159.0	12. 0	153.4	7.0
Output_1_63	5220	304	1.1	0.02	2.65	0.05	7.23	0.17	6.63	0.24	220.0	140.0	153.6	4.0	155.2	9.9	153.6	6.8
Output_1_18	2178	125	2.1	0.02	3.36	0.05	12.8 6	0.17	12.7 3	0.06	90.0	230.0	153.8	5.1	156.0	19. 0	153.8	7.5
Output_1_51	2730	145	2.9	0.02	3.11	0.05	12.4 3	0.17	12.0 7	0.03	280.0	230.0	153.8	4.7	166.0	19. 0	153.8	7.3
Output_1_143	13060	540	2.3	0.02	2.32	0.05	4.77	0.17	4.90	0.35	209.0	99.0	153.9	3.5	155.0	7.1	153.9	6.6
Output_1_278	2042	68	2.4	0.02	4.55	0.06	13.7 1	0.18	13.2 6	0.05	360.0	250.0	154.0	6.8	169.0	20. 0	154.0	8.8
Output_1_174	828	22	2.9	0.02	4.96	0.04	25.5 8	0.13	24.6 3	0.12	-110.0	380.0	154.2	7.7	122.0	30. 0	154.2	9.5
Output_1_46	4510	209	3.0	0.02	2.73	0.05	7.93	0.17	7.06	0.18	250.0	160.0	154.2	4.2	159.0	11. 0	154.2	7.0
Output 1 205	1977	33	2.7	0.02	3.63	0.05	11.8 6	0.18	10.9 9	0.03	390.0	230.0	154.2	5.6	168.0	18. 0	154.2	7.9
Output 1 264	1546	56	1.7	0.02	4.55	0.05	16.9 5	0.16	14.7 4	0.02	40.0	270.0	154.3	6.7	147.0	21. 0	154.3	8.7
Output_1_29	3910	144	2.1	0.02	2.97	0.05	9.80	0.17	8.88	0.06	210.0	190.0	154.4	4.5	160.0	14. 0	154.4	7.2
 Output_1_196	2479	40	1.7	0.02	3.46	0.05	8.75	0.17	9.41	0.20	190.0	180.0	154.5	5.3	159.0	13. 0	154.5	7.7
Output 1 119	3007	87	4.8	0.02	2.76	0.05	10.4 4	0.17	10.1 8	0.08	140.0	190.0	154.6	4.2	155.0	15. 0	154.6	7.0
Output 1 6	3210	374	3.1	0.02	3.95	0.05	10.6 8	0.18	8.99	0.12	290.0	200.0	154.7	6.0	165.0	14. 0	154.7	8.2
							-				•							

								I			l					1		
Output_1_293	2331	79	3.1	0.02	4.12	0.05	11.0 9	0.18	11.6 7	0.38	330.0	220.0	154.8	6.3	166.0	18. 0	154.8	8.4
Output_1_271	3690	117	1.6	0.02	2.92	0.05	10.5 4	0.16	10.3 7	0.18	210.0	190.0	154.9	4.5	155.0	15. 0	154.9	7.1
Output_1_151	1853	57	3.1	0.02	3.74	0.05	13.6 6	0.18	12.2 2	0.07	310.0	250.0	154.9	5.8	168.0	19. 0	154.9	8.0
Output_1_98	4890	71	2.0	0.02	2.92	0.05	9.38	0.15	8.50	0.23	50.0	170.0	155.0	4.5	144.0	11. 0	155.0	7.2
Output_1_180	891	23	3.0	0.02	6.17	0.06	21.3 1	0.20	20.0 0	0.24	350.0	390.0	155.0	9.4	178.0	34. 0	155.0	11.0
Output_1_125	6530	261	4.5	0.02	2.51	0.05	7.27	0.17	6.32	0.09	280.0	150.0	155.1	3.8	162.6	9.5	155.1	6.8
Output_1_228	4280	460	1.9	0.02	2.67	0.05	7.94	0.18	7.82	0.15	300.0	160.0	155.2	4.1	168.0	12. 0	155.2	6.9
Output_1_286	4180	666	6.9	0.02	3.97	0.05	8.68	0.17	8.14	0.15	240.0	170.0	155.4	6.1	160.0	12. 0	155.4	8.3
Output_1_183	3462	80	1.7	0.02	3.77	0.05	8.91	0.18	9.14	0.34	220.0	170.0	155.5	5.8	162.0	14. 0	155.5	8.1
Output_1_209	3460	69	1.8	0.02	4.10	0.05	9.07	0.17	9.77	0.30	260.0	180.0	155.6	6.5	164.0	14. 0	155.6	8.6
Output_1_57	726	50	1.9	0.02	5.74	0.06	19.3 5	0.19	17.0 2	0.07	520.0	340.0	155.6	8.6	183.0	30. 0	155.6	10.0
Output_1_124	4200	158	4.1	0.02	3.92	0.05	8.80	0.18	8.52	0.26	300.0	180.0	155.8	6.1	163.0	13. 0	155.8	8.3
Output_1_245	6390	273	3.1	0.02	3.92	0.05	6.24	0.16	6.83	0.37	100.0	120.0	155.9	6.0	151.0	9.3	155.9	8.2
Output_1_49	2706	133	2.0	0.02	3.43	0.05	9.57	0.17	9.41	0.05	150.0	180.0	155.9	5.3	158.0	14. 0	155.9	7.7
Output_1_284	4750	403	2.4	0.02	2.90	0.05	6.24	0.17	6.55	0.23	190.0	130.0	155.9	4.4	158.6	9.4	155.9	7.2
Output_1_41	4640	184	2.3	0.02	2.69	0.05	7.26	0.17	8.43	0.43	200.0	140.0	155.9	4.2	157.0	12. 0	155.9	7.0
Output_1_127	1000	42	4.1	0.02	4.90	0.05	18.8 7	0.18	18.5 8	0.11	210.0	340.0	155.9	7.6	164.0	29. 0	155.9	9.4
Output_1_123	2603	95	2.2	0.02	3.10	0.05	13.3 8	0.17	12.3 5	0.10	220.0	240.0	155.9	4.8	160.0	19. 0	155.9	7.4
Output_1_208	1424	27	1.5	0.02	4.90	0.05	13.1 8	0.18	12.1 5	0.07	270.0	250.0	156.1	7.5	166.0	19. 0	156.1	9.4
Output_1_3	13860	1755	2.7	0.02	1.55	0.05	4.60	0.18	4.13	0.10	274.0	96.0	156.1	2.4	165.9	6.5	156.1	6.1
Output_1_299	2921	48	2.3	0.02	3.14	0.06	8.30	0.19	8.47	0.15	370.0	170.0	156.2	4.8	174.0	13. 0	156.2	7.4
Output_1_197	2909	44	1.2	0.02	3.91	0.05	10.3 8	0.18	10.5 6	0.23	250.0	200.0	156.3	6.0	166.0	16. 0	156.3	8.2
Output_1_221	2965	158	2.9	0.02	4.49	0.05	9.16	0.18	9.60	0.14	270.0	170.0	156.3	6.6	164.0	14. 0	156.3	8.7
Output_1_25	1983	80	2.4	0.02	3.95	0.05	14.0 8	0.17	14.1 2	0.14	190.0	260.0	156.4	6.1	157.0	21. 0	156.4	8.3
Output_1_116	6080	153	1.4	0.02	2.73	0.05	6.79	0.17	7.14	0.15	200.0	130.0	156.4	4.2	157.0	10. 0	156.4	7.0
Output_1_266	12060	411	1.0	0.02	1.99	0.05	6.48	0.16	6.75	0.36	40.0	120.0	156.6	3.1	152.6	9.7	156.6	6.4
Output_1_282	9090	508	0.9	0.02	2.60	0.05	5.62	0.17	5.62	0.17	180.0	110.0	156.7	4.0	160.9	8.5	156.7	6.9
Output_1_89	7110	98	1.3	0.02	2.52	0.05	7.47	0.17	6.40	0.03	250.0	140.0	156.8	3.9	160.8	9.9	156.8	6.9
Output_1_217	3070	107	1.4	0.02	3.04	0.05	10.8	0.16	10.4 3	0.08	20.0	190.0	157.0	4.7	154.0	14. 0	157.0	7.4
Output_1_72	8500	223	2.1	0.02	3.28	0.05	5.92	0.16	5.77	0.31	180.0	120.0	157.0	5.1	154.2	8.3	157.0	7.6
Output_1_101	2517	37	2.2	0.02	4.45	0.05	11.6	0.17	12.6	0.07	200.0	220.0	157.0	7.0	160.0	19. 0	157.0	9.0
Output_1_238	4090	209	1.7	0.02	3.57	0.05	10.0	0.17	9.58	0.04	100.0	180.0	157.1	5.5	160.0	14. 0	157.1	7.9
Output_1_255	1612	67	1.9	0.02	3.40	0.05	12.9 9	0.19	12.1	0.16	430.0	240.0	157.1	5.3	180.0	19. 0	157.1	7.8
Output_1_230	1135	132	1.8	0.02	3.60	0.05	19.2	0.16	18.0	0.04	30.0	310.0	157.2	5.6	147.0	25. 0	157.2	8.0
Output_1_35	2369	83	2.3	0.02	3.97	0.05	12.6	0.16	12.2	0.04	180.0	230.0	157.2	6.2	153.0	17. 0	157.2	8.4
Output_1_22	2640	119	2.3	0.02	3.84	0.05	10.4 0	0.18	8.99	0.14	240.0	190.0	157.3	6.0	165.0	13. 0	157.3	8.2
Output_1_56	8750	587	2.5	0.02	2.95	0.05	5.35	0.18	5.41	0.23	280.0	110.0	157.4	4.6	169.9	8.7	157.4	7.3
Output_1_223	5710	406	3.8	0.02	3.55	0.05	6.54	0.17	7.14	0.29	120.0	130.0	157.7	5.5	157.0	10. 0	157.7	7.9
Output_1_159	2605	64	8.2	0.02	3.63	0.05	9.27	0.17	8.88	0.08	190.0	180.0	157.7	5.7	157.0	13. 0	157.7	8.0
Output_1_234	5430	330	3.3	0.02	3.47	0.06	7.30	0.19	7.73	0.33	430.0	160.0	157.9	5.4	179.0	12. 0	157.9	7.8

			1					1			l					I		
Output_1_15	4080	277	2.4	0.02	3.06	0.05	9.45	0.18	8.84	0.18	270.0	180.0	158.0	4.8	168.0	14. 0	158.0	7.4
Output_1_103	3670	58	1.6	0.02	3.10	0.05	7.63	0.16	7.50	0.07	110.0	150.0	158.1	4.8	150.0	11. 0	158.1	7.5
Output_1_179	12670	322	1.6	0.02	2.74	0.05	4.41	0.17	4.02	0.29	182.0	89.0	158.2	4.3	160.5	6.0	158.2	7.1
Output_1_201	3540	54	1.2	0.02	3.46	0.05	7.74	0.18	8.24	0.36	320.0	150.0	158.2	5.4	173.0	13. 0	158.2	7.9
Output_1_7	3122	345	1.9	0.02	3.30	0.05	10.3 6	0.17	9.83	0.04	180.0	200.0	158.4	5.1	160.0	15. 0	158.4	7.7
Output_1_114	1639	37	1.2	0.03	4.80	0.05	13.3 9	0.17	14.9 7	0.28	110.0	240.0	158.9	7.3	157.0	21. 0	158.9	9.3
Output_1_34	5320	184	2.2	0.02	2.36	0.05	7.33	0.17	7.51	0.37	160.0	140.0	158.9	3.7	163.0	12. 0	158.9	6.8
Output_1_147	10370	357	8.8	0.02	3.45	0.05	5.77	0.17	5.44	0.41	210.0	120.0	158.9	5.4	161.3	8.2	158.9	7.9
Output_1_120	2510	76	3.2	0.02	3.93	0.05	10.4 3	0.19	10.8 1	0.27	310.0	200.0	158.9	6.2	173.0	17. 0	158.9	8.4
Output_1_298	5100	86	2.3	0.03	4.40	0.05	7.33	0.17	8.24	0.44	140.0	140.0	159.0	6.7	158.0	12. 0	159.0	8.8
Output_1_31	14800	517	1.3	0.02	1.76	0.05	4.39	0.17	3.89	0.15	185.0	91.0	159.0	2.8	161.3	5.8	159.0	6.4
Output_1_251	1483	63	4.6	0.03	5.20	0.06	14.7 9	0.18	14.8 4	0.23	370.0	280.0	159.1	8.1	170.0	23. 0	159.1	9.9
Output_1_177	3520	89	6.0	0.03	3.84	0.05	8.70	0.17	8.05	0.09	230.0	170.0	159.2	6.1	164.0	12. 0	159.2	8.3
Output_1_272	2072	63	2.8	0.03	3.36	0.05	11.1 1	0.16	10.8 3	0.19	-40.0	180.0	159.3	5.3	146.0	15. 0	159.3	7.8
Output_1_235	2924	170	2.7	0.03	3.04	0.05	10.7 8	0.17	11.0 5	0.10	200.0	190.0	159.3	4.8	162.0	17. 0	159.3	7.5
Output_1_274	7790	241	1.7	0.03	2.20	0.05	6.46	0.17	5.64	0.17	150.0	130.0	159.4	3.4	160.1	8.3	159.4	6.7
Output_1_95	6480	90	1.1	0.03	2.71	0.05	5.71	0.17	5.52	0.05	230.0	120.0	159.5	4.3	160.7	8.2	159.5	7.2
Output_1_168	3350	81	5.2	0.03	3.19	0.05	9.02	0.18	8.52	0.10	270.0	170.0	159.5	5.0	163.0	13. 0	159.5	7.6
Output_1_150	4600	142	2.8	0.03	3.23	0.05	8.54	0.18	9.04	0.40	160.0	160.0	159.8	5.1	166.0	13. 0	159.8	7.7
Output_1_182	7140	165	1.5	0.03	2.55	0.05	6.47	0.18	6.74	0.21	230.0	130.0	159.9	4.0	166.0	10. 0	159.9	7.0
Output_1_73	4820	114	2.7	0.03	2.39	0.05	7.28	0.18	7.10	0.11	330.0	140.0	159.9	3.8	169.0	12. 0	159.9	6.9
Output_1_60	2156	147	1.7	0.03	2.99	0.06	10.9 9	0.18	11.0 5	0.02	390.0	210.0	159.9	4.7	174.0	17. 0	159.9	7.4
Output_1_247	6210	261	1.2	0.03	3.06	0.05	7.38	0.16	6.88	0.04	90.0	140.0	160.0	4.9	150.0	9.4	160.0	7.5
Output_1_157	2786	69	2.5	0.03	3.18	0.05	9.26	0.17	9.77	0.23	170.0	170.0	160.0	5.0	164.0	14. 0	160.0	7.7
Output_1_62	2599	153	1.9	0.03	3.30	0.05	8.17	0.19	7.49	0.19	240.0	160.0	160.0	5.2	173.0	12. 0	160.0	7.8
Output_1_139	3950	182	1.2	0.03	2.35	0.05	10.5 0	0.17	10.2 4	0.10	100.0	190.0	160.1	3.7	154.0	15. 0	160.1	6.9
Output_1_24	16600	678	1.1	0.03	2.18	0.05	3.51	0.17	3.40	0.30	123.0	70.0	160.4	3.4	162.4	5.1	160.4	6.7
Output_1_68	2596	97	1.2	0.03	3.69	0.05	11.6 7	0.17	10.8 4	0.10	200.0	220.0	160.4	5.9	157.0	15. 0	160.4	8.2
Output_1_43	5700	231	1.4	0.03	2.10	0.05	6.19	0.18	6.08	0.08	250.0	130.0	160.4	3.4	168.3	9.4	160.4	6.7
Output_1_226	2332	209	1.8	0.03	4.35	0.04	12.3 5	0.16	12.7 4	0.11	-90.0	210.0	161.1	6.9	146.0	17. 0	161.1	9.0
Output_1_134	3010	144	1.9	0.03	3.75	0.04	10.3 2	0.16	10.7 6	0.27	-30.0	180.0	161.1	5.9	148.0	15. 0	161.1	8.3
Output_1_148	9080	297	1.5	0.03	2.41	0.05	6.12	0.17	6.32	0.30	140.0	120.0	161.1	3.8	162.4	9.5	161.1	6.9
Output_1_30	16890	604	1.9	0.03	2.25	0.05	3.73	0.18	4.16	0.18	223.0	81.0	161.4	3.6	167.8	6.4	161.4	6.8
Output_1_129	2448	108	2.9	0.03	3.23	0.05	8.67	0.19	8.47	0.00	290.0	170.0	161.4	5.1	174.0	13. 0	161.4	7.7
Output_1_61	3147	206	2.0	0.03	2.84	0.05	9.25	0.18	8.38	0.08	250.0	180.0	161.5	4.5	168.0	14. 0	161.5	7.4
Output_1_240	2135	97	1.5	0.03	4.72	0.05	15.5 2	0.17	15.5 7	0.03	120.0	270.0	161.7	7.7	157.0	23. 0	161.7	9.6
Output_1_229	1243	137	2.0	0.03	5.12	0.04	18.6 9	0.14	18.8 8	0.23	-120.0	290.0	161.8	8.0	135.0	25. 0	161.8	9.9
Output_1_285	2398	264	6.0	0.03	4.33	0.05	12.1 2	0.17	12.6 4	0.27	210.0	230.0	161.8	6.8	160.0	19. 0	161.8	8.9
Output_1_96	3390	47	1.0	0.03	3.46	0.05	8.74	0.19	8.11	0.08	360.0	180.0	162.0	5.5	171.0	13. 0	162.0	8.0
Output_1_210	3930	77	1.5	0.03	3.42	0.05	8.51	0.17	8.09	0.06	190.0	170.0	162.1	5.5	161.0	12. 0	162.1	8.0

								l			l							
Output_1_254	6780	269	1.5	0.03	3.85	0.05	6.79	0.17	8.38	0.56	80.0	130.0	162.2	6.1	160.0	12. 0	162.2	8.5
Output_1_13	1752	130	3.3	0.03	3.77	0.05	12.1 7	0.18	11.9 3	0.03	150.0	230.0	162.2	6.0	165.0	19. 0	162.2	8.4
Output_1_214	3454	91	1.7	0.03	2.55	0.05	7.98	0.19	7.81	0.18	350.0	170.0	162.2	4.1	179.0	14. 0	162.2	7.1
Output_1_48	7990	367	1.6	0.03	2.27	0.05	6.86	0.18	6.63	0.31	230.0	140.0	162.3	3.6	168.0	11. 0	162.3	6.9
Output_1_133	1482	71	2.3	0.03	3.92	0.06	15.0 9	0.19	15.2 6	0.27	290.0	280.0	162.3	6.6	179.0	26. 0	162.3	8.8
Output_1_33	4710	160	2.3	0.03	2.55	0.05	6.74	0.19	6.70	0.06	380.0	140.0	162.3	4.1	179.0	11. 0	162.3	7.1
Output_1_162	2840	67	2.1	0.03	3.92	0.06	10.2 5	0.19	9.95	0.01	400.0	200.0	162.3	6.3	180.0	16. 0	162.3	8.6
Output_1_181	2810	67	2.3	0.03	3.25	0.05	10.3 4	0.19	9.52	0.05	350.0	200.0	162.4	5.2	176.0	16. 0	162.4	7.8
Output_1_97	3950	53	1.3	0.03	3.56	0.05	9.24	0.17	9.30	0.15	160.0	180.0	162.5	5.8	160.0	14. 0	162.5	8.2
Output_1_77	2051	39	2.0	0.03	3.91	0.05	12.1 1	0.17	11.7 0	0.09	150.0	220.0	163.0	6.6	160.0	18. 0	163.0	8.8
Output_1_111	2965	56	1.7	0.03	3.20	0.05	12.5 5	0.18	11.1 7	0.04	260.0	230.0	163.3	5.2	165.0	17. 0	163.3	7.8
Output_1_188	3270	62	2.2	0.03	3.66	0.05	10.4 0	0.17	10.4 7	0.07	130.0	190.0	163.5	5.9	159.0	16. 0	163.5	8.4
Output_1_118	1226	33	2.0	0.03	5.06	0.05	18.2 7	0.17	16.5 7	0.23	200.0	320.0	163.6	8.4	158.0	24. 0	163.6	10.0
Output_1_27	2200	80	2.8	0.03	2.68	0.05	11.6 5	0.18	10.8 6	0.14	140.0	210.0	163.8	4.4	162.0	17. 0	163.8	7.3
Output_1_193	4320	69	4.3	0.03	2.72	0.05	9.69	0.17	9.20	0.02	120.0	180.0	163.9	4.4	162.0	14. 0	163.9	7.4
Output_1_170	2755	65	3.3	0.03	3.88	0.05	9.25	0.19	9.04	0.12	290.0	180.0	163.9	6.4	178.0	15. 0	163.9	8.7
Output_1_218	2883	105	5.1	0.03	3.35	0.05	8.66	0.18	9.66	0.28	140.0	170.0	165.1	5.5	164.0	15. 0	165.1	8.1
Output_1_166	18810	431	1.2	0.03	1.66	0.05	3.91	0.18	3.83	0.21	233.0	83.0	165.2	2.7	170.1	6.0	165.2	6.5
Output_1_280	1567	55	1.8	0.03	5.00	0.05	15.4 6	0.17	15.7 9	0.25	50.0	270.0	165.4	7.9	160.0	24. 0	165.4	9.9
Output_1_276	5201	156	2.6	0.03	2.81	0.05	7.39	0.19	7.94	0.28	210.0	140.0	165.4	4.6	174.0	13. 0	165.4	7.5
Output_1_126	1212	45	3.8	0.03	5.00	0.05	16.1 4	0.21	17.6 2	0.40	230.0	290.0	165.6	8.5	187.0	30. 0	165.6	10.0
Output_1_212	3460	79	1.5	0.03	3.03	0.05	10.7 2	0.16	10.4 9	0.01	-10.0	180.0	165.7	4.9	151.0	14. 0	165.7	7.7
Output 1 138	2710	120	1.1	0.03	3.85	0.05	9.74	0.19	10.5 8	0.14	240.0	190.0	165.7	6.6	174.0	17. 0	165.7	8.9
Output 1 8	2096	207	2.2	0.03	3.65	0.05	12.0 7	0.19	11.8 6	0.11	330.0	220.0	165.7	6.0	178.0	20. 0	165.7	8.4
Output 1 211	3800	79	2.2	0.03	3.30	0.05	9.61	0.17	8.67	0.17	160.0	170.0	165.8	5.4	161.0	13. 0	165.8	8.1
Output 1 106	834	13	1.9	0.03	5.36	0.06	21.8 2	0.19	21.3 9	0.24	220.0	380.0	165.8	8.9	171.0	35. 0	165.8	11.0
Output 1 241	4760	211	1.9	0.03	2.95	0.05	7.36	0.18	7.10	0.09	260.0	150.0	166.0	4.8	169.0	11. 0	166.0	7.7
Output 1 153	3570	94	3.2	0.03	2.84	0.06	7.09	0.20	6.15	0.03	420.0	140.0	166.5	4.5	183.0	11. 0	166.5	7.3
Output 1 99	4130	57	2.1	0.03	4.20	0.05	9.81	0.18	8.84	0.06	240.0	190.0	166.6	6.9	170.0	14. 0	166.6	9.2
Output 1 69	2479	80	1.6	0.03	3.82	0.05	9.63	0.18	8.89	0.01	130.0	180.0	166 7	63	171.0	13.	166.7	87
Output 1 265	2479	79	2.1	0.03	4 20	0.05	11.2 9	0.18	10.7	0.01	150.0	200.0	166.7	6.6	164.0	16. 0	166.7	8.9
Output 1 175	2975	02	2.1	0.03	2.42	0.05	0.04	0.20	0.50	0.03	240.0	190.0	166.9	5.5	194.0	16.	166.9	0.5
Output 1 22	9710	210	3.5	0.03	2.43	0.05	4.67	0.20	4.95	0.27	160.0	08.0	167.1	5.0	160.1	77	167.1	7.4
Output_1_32	5100	174	2.7	0.03	2.07	0.05	4.07	0.18	4.95	0.37	109.0	98.0	167.1	4.4 F 0	170.0	13.	167.1	7.4
Output_1_56	5190	174	2.5	0.03	3.50	0.05	5.60	0.18	6.15	0.12	190.0	110.0	167.1	2.6	162.4	0 7	167.2	o.5
Output_1_192	0000	154	2.2	0.03	2.15	0.05	0.75	0.17	5.75	0.50	90.0	110.0	107.5	5.5	102.4	8.7 14.	107.5	7.0
Output_1_82	3036	45	1.4	0.03	3.42	0.05	9.75	0.17	9.36 11.6	0.03	140.0	180.0	167.5	5.6	160.0	18.	167.5	8.2
Output_1_246	2324	91	1.9	0.03	3.79	0.05	0	0.18	/	0.03	200.0	210.0	107.7	0.5	120.0	0 12.	10/./	8.9
Output_1_262	5980	211	1.8	0.03	2.88	0.05	7.25	0.19	7.53	0.27	250.0	140.0	167.9	4.8	172.0	0 12.	167.9	7.7
Output_1_291	4690	644	1.9	0.03	3.14	0.05	8.76 20.4	0.17	8.82 20.9	0.07	40.0	160.0	168.0	5.2 12.	160.0	0 33.	168.0	8.0
Output_1_244	841	34	2.6	0.03	7.20	0.05	1	0.18	9	0.14	120.0	350.0	168.0	0	166.0	0	168.0	13.0
			1	1				1			l							
--------------	-------	------	-----	------	------	------	-----------	------	-----------	------	-------	-------	-------	-----	-------	----------	-------	------
Output_1_249	2530	101	3.4	0.03	4.55	0.05	9.25	0.18	10.7 3	0.30	130.0	190.0	168.0	7.6	164.0	16. 0	168.0	9.7
Output_1_2	3430	401	1.8	0.03	3.21	0.05	8.59	0.18	8.15	0.19	150.0	150.0	168.4	5.3	171.0	13. 0	168.4	8.1
Output_1_279	12620	410	4.5	0.03	3.36	0.05	4.48	0.19	5.03	0.48	236.0	95.0	168.4	5.6	173.5	8.0	168.4	8.2
Output_1_122	4123	131	1.6	0.03	3.77	0.05	8.54	0.20	8.63	0.36	290.0	160.0	168.4	6.6	183.0	14. 0	168.4	8.9
Output_1_222	4950	299	3.1	0.03	3.77	0.05	7.68	0.18	8.20	0.34	150.0	150.0	168.7	6.4	169.0	12. 0	168.7	8.8
Output_1_250	2044	80	2.9	0.03	4.49	0.05	11.1 8	0.18	11.6 0	0.27	250.0	210.0	169.8	7.8	172.0	18. 0	169.8	9.9
Output_1_169	1339	31	3.2	0.03	5.24	0.05	16.4 8	0.20	15.1 5	0.04	260.0	300.0	170.0	8.5	179.0	26. 0	170.0	10.0
Output_1_21	6580	291	1.9	0.03	2.84	0.05	6.57	0.19	6.38	0.08	200.0	130.0	170.2	4.8	175.0	10. 0	170.2	7.8
Output_1_55	28820	1723	0.4	0.03	1.46	0.05	2.99	0.19	2.95	0.29	205.0	67.0	170.5	2.4	173.2	4.7	170.5	6.6
Output_1_294	2686	66	2.4	0.03	3.54	0.05	12.8 3	0.18	11.3 6	0.02	-10.0	200.0	170.8	6.0	162.0	17. 0	170.8	8.6
Output_1_20	2027	96	3.3	0.03	3.72	0.04	14.5 7	0.17	14.1 2	0.04	40.0	250.0	171.3	6.3	163.0	21. 0	171.3	8.8
Output_1_233	10430	622	1.6	0.03	1.67	0.05	6.04	0.19	6.35	0.31	290.0	120.0	171.5	2.8	176.0	10. 0	171.5	6.8
Output_1_167	17050	379	2.3	0.03	1.52	0.05	5.14	0.18	5.04	0.14	150.0	110.0	171.7	2.5	171.5	8.0	171.7	6.7
Output_1_239	10220	463	2.2	0.03	3.37	0.05	4.99	0.18	6.52	0.48	200.0	100.0	171.8	5.7	171.0	10. 0	171.8	8.4
Output_1_243	3870	157	2.8	0.03	3.28	0.05	8.70	0.19	8.56	0.20	260.0	170.0	172.5	5.6	173.0	14. 0	172.5	8.4
Output_1_236	25900	1308	2.8	0.03	1.88	0.05	3.39	0.19	3.90	0.45	196.0	70.0	172.6	3.2	174.8	6.4	172.6	7.0
Output_1_273	6350	181	1.7	0.03	3.05	0.05	7.14	0.19	6.91	0.02	170.0	140.0	172.8	5.2	174.0	11. 0	172.8	8.1
Output_1_252	5160	194	1.6	0.03	2.61	0.05	7.56	0.19	7.22	0.04	270.0	150.0	172.8	4.4	179.0	12. 0	172.8	7.6
Output_1_10	3630	320	2.4	0.03	3.01	0.05	10.8 0	0.20	10.2 6	0.00	260.0	200.0	173.3	5.1	179.0	17. 0	173.3	8.1
Output_1_260	10930	392	0.7	0.03	3.63	0.05	5.79	0.20	6.37	0.39	350.0	120.0	173.6	6.2	187.0	11. 0	173.6	8.8
Output_1_88	4530	59	2.8	0.03	3.58	0.05	8.02	0.20	7.11	0.08	280.0	160.0	173.8	6.1	183.0	12. 0	173.8	8.8
Output_1_165	5550	118	2.7	0.03	2.62	0.05	7.23	0.19	5.41	0.15	130.0	140.0	174.7	4.5	172.0	8.9	174.7	7.7
Output_1_9	3410	311	2.1	0.03	2.33	0.05	10.3 9	0.20	9.23	0.06	190.0	190.0	174.9	4.0	181.0	15. 0	174.9	7.5
Output_1_202	2976	41	1.3	0.03	3.52	0.05	12.0 2	0.19	12.3 7	0.24	140.0	220.0	175.3	6.1	177.0	20. 0	175.3	8.8
Output_1_52	7580	395	0.9	0.03	2.13	0.05	6.12	0.19	5.88	0.12	140.0	120.0	176.1	3.7	173.3	9.3	176.1	7.3
Output_1_16	7500	421	1.7	0.03	2.13	0.05	6.36	0.19	5.70	0.02	210.0	130.0	176.3	3.7	180.1	9.5	176.3	7.3
Output_1_83	11940	164	2.0	0.03	2.81	0.05	5.24	0.19	5.16	0.15	160.0	110.0	176.4	4.9	172.7	8.2	176.4	8.0
Output_1_215	8140	213	1.2	0.03	2.77	0.05	5.75	0.19	5.67	0.41	200.0	120.0	176.4	4.8	179.7	9.6	176.4	8.0
Output_1_187	8970	163	1.2	0.03	1.94	0.05	5.73	0.21	5.29	0.08	290.0	120.0	176.9	3.4	191.1	8.9	176.9	7.2
Output_1_195	5250	74	1.9	0.03	2.77	0.05	8.57	0.21	8.78	0.11	300.0	170.0	177.0	4.8	188.0	15. 0	177.0	8.0
Output_1_227	4180	380	2.3	0.03	2.90	0.05	9.18	0.20	9.41	0.16	220.0	180.0	177.5	5.1	189.0	16. 0	177.5	8.1
Output_1_79	2208	36	2.0	0.03	3.93	0.05	9.67	0.19	9.38	0.21	240.0	180.0	177.7	7.0	177.0	15. 0	177.7	9.4
Output_1_270	6510	181	1.7	0.03	2.68	0.05	6.17	0.18	6.18	0.09	20.0	120.0	177.8	4.7	165.5	9.1	177.8	7.9
Output_1_190	3510	57	1.9	0.03	3.47	0.05	9.09	0.20	8.96	0.05	250.0	180.0	177.9	6.1	187.0	15. 0	177.9	8.8
Output_1_19	2866	135	2.3	0.03	3.20	0.05	11.0 6	0.19	10.8 8	0.05	100.0	200.0	178.6	5.6	177.0	18. 0	178.6	8.5
Output_1_37	7010	223	2.4	0.03	2.49	0.05	6.83	0.20	6.63	0.21	190.0	140.0	178.6	4.4	181.0	11. 0	178.6	7.8
Output_1_17	4130	216	2.0	0.03	3.39	0.05	10.0 4	0.19	9.14	0.13	80.0	180.0	179.9	6.0	172.0	14. 0	179.9	8.8
Output_1_156	4567	102	1.6	0.03	3.07	0.05	8.96	0.20	9.60	0.21	140.0	170.0	180.3	5.5	182.0	16. 0	180.3	8.5
Output_1_203	5380	74	1.7	0.03	2.96	0.05	8.41	0.20	8.08	0.18	240.0	160.0	180.5	5.3	183.0	14. 0	180.5	8.4
Output_1_163	3930	81	2.0	0.03	2.71	0.05	9.32	0.21	7.08	0.26	320.0	170.0	180.5	4.8	196.0	12. 0	180.5	8.1

								1										
Output_1_86	14560	185	1.9	0.03	1.94	0.05	5.33	0.20	5.47	0.05	240.0	110.0	181.2	3.4	185.5	9.3	181.2	7.1
Output_1_23	2951	110	2.6	0.03	3.51	0.05	10.3 5	0.21	10.5 8	0.15	270.0	200.0	181.2	6.5	190.0	19. 0	181.2	9.2
Output_1_237	6170	287	0.9	0.03	1.89	0.05	4.92	0.21	4.81	0.24	320.0	110.0	181.4	3.4	192.4	8.8	181.4	7.3
Output_1_91	7680	91	1.6	0.03	1.99	0.05	6.42	0.20	6.40	0.01	290.0	130.0	181.7	3.5	189.0	10. 0	181.7	7.4
Output_1_206	5430	81	2.3	0.03	2.59	0.05	6.68	0.22	6.88	0.15	360.0	140.0	181.7	4.7	199.0	13. 0	181.7	8.0
Output_1_65	6610	276	1.9	0.03	2.83	0.05	6.57	0.19	6.22	0.01	150.0	130.0	181.8	5.1	178.0	11. 0	181.8	8.3
Output_1_146	1805	57	2.4	0.03	4.88	0.05	14.1 7	0.21	14.0 1	0.02	210.0	260.0	182.2	8.6	187.0	24. 0	182.2	11.0
Output_1_300	1386	20	2.9	0.03	4.88	0.05	15.3 3	0.21	15.1 7	0.08	300.0	280.0	182.2	8.6	197.0	27. 0	182.2	11.0
Output_1_74	9650	190	1.8	0.03	2.58	0.05	5.95	0.21	5.29	0.07	300.0	130.0	182.4	4.6	190.9	9.3	182.4	8.0
Output_1_295	14510	281	2.2	0.03	1.81	0.05	3.88	0.21	4.51	0.34	249.0	83.0	182.9	3.2	192.2	7.8	182.9	7.3
Output_1_287	4530	894	1.9	0.03	4.17	0.05	13.5 4	0.21	13.8 1	0.24	290.0	280.0	183.0	7.5	192.0	25. 0	183.0	10.0
Output_1_44	9590	351	1.3	0.03	2.99	0.06	8.70	0.22	8.22	0.24	410.0	180.0	183.0	5.4	203.0	16. 0	183.0	8.5
Output_1_84	2800	36	1.6	0.03	3.03	0.05	10.2 5	0.20	10.0 5	0.15	210.0	190.0	183.2	5.6	182.0	17. 0	183.2	8.8
Output_1_105	10260	147	1.3	0.03	2.46	0.05	4.05	0.21	4.54	0.39	358.0	90.0	183.2	4.5	190.5	7.9	183.2	7.9
Output_1_92	3190	37	1.7	0.03	3.15	0.05	9.12	0.22	9.63	0.29	350.0	170.0	183.5	5.7	198.0	18. 0	183.5	8.7
Output_1_242	3007	115	2.3	0.03	4.50	0.05	10.6 9	0.19	10.1 1	0.16	120.0	200.0	183.9	8.0	173.0	16. 0	183.9	10.0
Output_1_290	7800	1563	1.1	0.03	2.32	0.05	5.53	0.20	5.47	0.14	230.0	120.0	183.9	4.2	185.4	9.3	183.9	7.8
Output_1_178	1610	36	2.4	0.03	3.42	0.05	14.1 0	0.22	13.4 3	0.09	440.0	260.0	184.0	6.2	194.0	24. 0	184.0	9.1
Output_1_301	11070	180	1.6	0.03	1.79	0.05	4.85	0.21	4.88	0.06	250.0	100.0	184.1	3.3	191.7	7.8	184.1	7.4
Output_1_277	3420	95	2.9	0.03	2.75	0.05	8.70	0.21	8.13	0.01	290.0	180.0	184.8	5.0	194.0	14. 0	184.8	8.3
Output_1_253	3600	126	2.2	0.03	3.12	0.05	8.15	0.20	8.37	0.24	220.0	160.0	185.1	5.7	190.0	14. 0	185.1	8.8
Output_1_158	4860	102	1.6	0.03	3.40	0.05	7.00	0.20	7.46	0.33	240.0	130.0	185.1	6.2	185.0	13. 0	185.1	9.1
Output_1_59	5800	348	1.0	0.03	3.33	0.05	6.84	0.22	6.45	0.11	350.0	140.0	185.1	6.1	200.0	12. 0	185.1	9.0
Output_1_198	22160	288	1.1	0.03	1.61	0.05	4.35	0.22	4.59	0.22	321.0	91.0	185.4	2.9	197.9	8.3	185.4	7.3
Output_1_204	3509	48	2.1	0.03	2.53	0.05	10.2 2	0.21	10.1 0	0.06	230.0	190.0	185.6	4.7	192.0	17. 0	185.6	8.1
Output_1_70	4330	117	0.9	0.03	1.95	0.06	8.63	0.23	8.15	0.00	490.0	170.0	185.6	3.6	213.0	16. 0	185.6	7.6
Output_1_149	9920	273	2.0	0.03	1.95	0.05	5.95	0.21	5.77	0.07	300.0	130.0	185.8	3.5	191.0	10. 0	185.8	7.6
Output_1_109	3760	59	1.8	0.03	3.11	0.05	7.94	0.20	7.58	0.20	200.0	160.0	186.0	5.7	182.0	13. 0	186.0	8.8
Output_1_289	9170	2452	0.9	0.03	2.39	0.05	5.37	0.21	5.69	0.25	290.0	120.0	186.4	4.4	194.0	10. 0	186.4	8.0
Output_1_64	5590	246	1.5	0.03	3.20	0.05	7.09	0.21	6.64	0.17	330.0	150.0	186.5	5.9	193.0	12. 0	186.5	8.9
Output_1_199	1761	23	1.2	0.03	4.76	0.05	15.7 8	0.19	15.7 1	0.26	20.0	260.0	186.9	8.8	173.0	25. 0	186.9	11.0
Output_1_102	28600	365	1.1	0.03	2.45	0.05	3.84	0.21	3.67	0.41	270.0	80.0	186.9	4.5	191.0	6.3	186.9	8.1
Output_1_231	2302	227	1.8	0.03	4.07	0.06	11.4 2	0.23	12.2 3	0.27	370.0	230.0	187.2	7.3	206.0	23. 0	187.2	9.9
Output_1_171	12660	270	1.3	0.03	2.60	0.05	6.38	0.22	6.02	0.18	370.0	130.0	187.8	4.8	198.0	11. 0	187.8	8.3
Output_1_39	4740	145	1.8	0.03	3.23	0.06	8.24	0.22	8.11	0.20	440.0	160.0	187.8	5.9	204.0	14. 0	187.8	8.8
Output_1_283	5240	295	2.1	0.03	2.84	0.05	8.20	0.20	7.96	0.20	190.0	160.0	187.9	5.3	184.0	13. 0	187.9	8.6
Output_1_85	4400	54	2.0	0.03	3.70	0.05	7.90	0.21	7.21	0.06	290.0	150.0	188.6	7.0	193.0	12. 0	188.6	9.8
Output_1_110	5280	84	1.2	0.03	3.26	0.05	7.20	0.21	6.83	0.19	240.0	140.0	188.8	6.1	188.0	12. 0	188.8	9.1
Output_1_115	5080	103	2.3	0.03	3.31	0.05	8.08	0.20	8.04	0.18	170.0	150.0	190.0	6.2	185.0	13. 0	190.0	9.2
_ Output_1_58	7000	412	1.2	0.03	2.23	0.05	7.95	0.22	7.41	0.04	330.0	160.0	190.4	4.2	199.0	14. 0	190.4	8.0

								I			I					ĺ		
Output_1_257	2870	99	0.9	0.03	3.33	0.05	11.4 8	0.20	10.7 1	0.06	120.0	210.0	190.5	6.4	182.0	18. 0	190.5	9.3
Output_1_78	2920	45	1.6	0.03	3.67	0.05	9.47	0.21	9.52	0.24	210.0	180.0	190.6	6.7	191.0	17. 0	190.6	9.6
Output_1_4	3650	360	2.4	0.03	2.50	0.05	10.2 7	0.21	9.71	0.13	160.0	180.0	190.8	4.7	188.0	17. 0	190.8	8.3
Output_1_128	8220	296	1.3	0.03	1.83	0.05	5.77	0.20	5.88	0.13	150.0	120.0	191.2	3.4	187.0	10. 0	191.2	7.7
Output_1_135	4840	196	2.1	0.03	3.32	0.05	7.69	0.20	6.93	0.00	140.0	150.0	191.4	6.6	187.0	11. 0	191.4	9.5
Output_1_292	3240	117	2.0	0.03	3.97	0.06	8.33	0.22	8.07	0.31	370.0	170.0	191.8	7.5	205.0	16. 0	191.8	10.0
Output_1_104	5580	74	1.5	0.03	2.51	0.05	6.77	0.21	6.60	0.23	250.0	140.0	191.9	4.8	196.0	12. 0	191.9	8.4
Output_1_50	7130	297	0.9	0.03	2.84	0.05	5.37	0.22	5.53	0.34	280.0	110.0	192.4	5.4	200.2	9.7	192.4	8.7
Output_1_93	5850	66	3.3	0.03	2.37	0.05	7.74	0.21	6.76	0.06	230.0	160.0	192.7	4.5	190.0	12. 0	192.7	8.2
Output_1_140	7630	286	1.7	0.03	3.23	0.05	7.10	0.20	6.37	0.08	140.0	140.0	192.9	6.1	188.0	11. 0	192.9	9.2
Output_1_54	3990	202	1.3	0.03	3.29	0.06	7.34	0.25	7.54	0.40	560.0	150.0	193.0	6.3	226.0	16. 0	193.0	9.3
Output_1_145	5787	178	1.9	0.03	2.20	0.05	6.69	0.21	6.13	0.32	280.0	130.0	193.3	4.2	197.0	12. 0	193.3	8.1
Output_1_67	15270	513	1.1	0.03	1.71	0.05	4.59	0.21	4.33	0.31	210.0	97.0	193.5	3.2	193.4	7.6	193.5	7.7
Output_1_112	5140	89	1.1	0.03	2.91	0.05	6.39	0.22	6.39	0.15	290.0	130.0	194.0	5.5	203.0	11. 0	194.0	8.9
Output_1_80	5720	80	1.8	0.03	2.65	0.05	7.03	0.22	7.41	0.21	160.0	130.0	194.1	5.1	199.0	13. 0	194.1	8.6
Output_1_164	4770	93	2.9	0.03	2.94	0.05	8.07	0.21	7.80	0.08	150.0	150.0	194.6	5.6	190.0	13. 0	194.6	9.0
Output_1_141	6090	216	2.0	0.03	3.91	0.05	7.22	0.22	6.31	0.11	310.0	150.0	194.6	7.4	204.0	12. 0	194.6	10.0
Output_1_108	3720	53	1.6	0.03	3.16	0.06	10.2 0	0.22	9.63	0.18	400.0	200.0	194.7	6.1	201.0	17. 0	194.7	9.2
Output_1_268	5090	135	1.8	0.03	3.19	0.05	8.66	0.20	8.91	0.14	180.0	170.0	195.2	6.2	189.0	15. 0	195.2	9.3
Output_1_200	1343	16	2.2	0.03	4.87	0.06	15.6 9	0.23	14.5 4	0.20	320.0	270.0	195.3	9.6	207.0	26. 0	195.3	12.0
Output_1_1	6230	649	0.9	0.03	2.24	0.05	5.87	0.23	5.73	0.08	360.0	130.0	195.3	4.3	210.0	11. 0	195.3	8.2
Output_1_261	11970	379	1.1	0.03	2.50	0.05	4.26	0.21	4.65	0.37	171.0	88.0	195.8	4.8	193.7	8.2	195.8	8.5
Output_1_296	5640	88	2.2	0.03	3.15	0.05	7.30	0.23	6.47	0.19	390.0	150.0	195.8	6.1	215.0	12. 0	195.8	9.3
Output_1_256	9250	308	2.3	0.03	3.24	0.05	6.65	0.21	6.25	0.20	160.0	130.0	196.3	6.3	191.0	11. 0	196.3	9.5
Output_1_11	6860	470	2.8	0.03	2.26	0.05	6.15	0.22	6.39	0.18	190.0	120.0	196.6	4.4	200.0	11. 0	196.6	8.3
Output_1_100	5860	69	1.3	0.03	3.06	0.05	5.42	0.22	6.05	0.22	210.0	110.0	196.9	5.9	197.0	10. 0	196.9	9.2
Output_1_258	12220	397	1.9	0.03	1.80	0.05	5.31	0.23	5.31	0.20	290.0	110.0	196.9	3.3	206.0	9.8	196.9	7.5
Output_1_47	3715	132	1.7	0.03	2.90	0.05	9.48	0.24	8.86	0.04	360.0	190.0	198.8	5.7	218.0	17. 0	198.8	9.1
Output_1_76	5500	91	2.2	0.03	3.50	0.05	7.20	0.22	7.31	0.17	240.0	140.0	199.3	6.6	202.0	14. 0	199.3	9.7
Output_1_267	8150	214	2.3	0.03	3.12	0.05	5.71	0.22	6.33	0.45	210.0	110.0	201.6	6.2	204.0	12. 0	201.6	9.5
Output_1_117	9060	185	1.2	0.03	2.88	0.05	5.91	0.22	5.83	0.18	210.0	120.0	205.0	5.8	204.0	11. 0	205.0	9.4
Output_1_71	13950	325	1.6	0.03	3.08	0.05	3.93	0.22	4.41	0.50	222.0	85.0	205.8	6.2	205.3	8.2	205.8	9.6
Output_1_176	4810	76	2.9	0.04	3.20	0.05	7.55	0.31	7.74	0.16	440.0	150.0	256.6	7.8	271.0	19. 0	256.6	12.0
Output_1_288	47580	5156	3.7	0.07	1.62	0.06	2.36	0.52	2.68	0.46	409.0	54.0	422.9	6.6	426.9	9.1	422.9	16.0
Output_1_12	5390	159	2.6	0.07	3.24	0.06	7.21	0.54	7.25	0.22	460.0	150.0	423.0	13. 0	432.0	26. 0	423.0	20.0
Output_1_81	23300 0	389	1.9	0.25	1.49	0.09	1.28	3.17	1.71	0.69	1507.0	25.0	1431.0	19. 0	######	13. 0	1507.0	28.0
Output_1_224	39310	307	1.7	0.25	2.84	0.09	2.43	3.33	3.00	0.60	1522.0	46.0	1453.0	37. 0	#####	24. 0	1522.0	47.0
Output_1_38	84500	145	1.3	0.52	1.93	0.20	1.54	14.14	1.98	0.71	2785.0	25.0	2689.0	43. 0	#####	18. 0	2785.0	27.0
Output_1_189	11410	225	1.3	0.02	2.10	0.06	4.83	0.19	4.33	0.18	500.0	110.0	154.4	3.2	177.9	7.1	154.4	6.4
Output_1_185	2186	48	4.7	0.02	3.18	0.06	10.7 2	0.21	9.62	0.07	600.0	210.0	157.9	5.0	190.0	17. 0	157.9	7.6

Output_1_66	1216	53	1.1	0.02	5.35	0.07	16.6 7	0.21	15.7 1	0.06	610.0	310.0	154.8	8.2	193.0	29. 0	154.8	9.9
Output_1_219	8230	314	1.6	0.03	2.97	0.06	4.93	0.25	4.78	0.33	750.0	110.0	175.7	5.1	226.7	9.9	175.7	8.1
Output_1_213	4690	96	0.7	0.03	2.49	0.09	7.46	0.41	8.31	0.25	1440.0	160.0	199.1	4.9	344.0	24. 0	199.1	8.6
Output_1_107	2710	37	1.9	0.03	4.40	0.13	10.4 0	0.53	12.5 7	0.55	1880.0	220.0	201.6	8.4	427.0	43. 0	201.6	11.0
Output_1_45	12900	405	1.0	0.03	6.19	0.16	11.1 1	0.78	15.3 8	0.70	2400.0	200.0	215.0	13. 0	573.0	69. 0	215.0	15.0
Output_1_131	651	32	2.7	0.02	6.67	0.03	29.4 1	0.10	28.1 6	0.05	-430.0	380.0	154.0	9.5	95.0	27. 0	154.0	11.0
Output_1_155	4130	93	2.4	0.03	3.03	0.04	10.0 2	0.17	9.83	0.12	-120.0	170.0	186.3	5.6	163.0	15. 0	186.3	8.7
Output_1_269	5290	170	1.5	0.02	3.05	0.04	7.87	0.15	6.67	0.08	-20.0	140.0	156.8	4.7	141.5	8.9	156.8	7.4
Output_1_248	13550	484	1.4	0.03	2.60	0.05	4.65	0.19	4.37	0.30	88.0	92.0	185.7	4.7	173.4	6.8	185.7	8.2
Sample 18ATW-13								1										
18ATW-13-15	8340	2609	9.5	0.03	4.06	0.05	5.80	0.24	6.17	0.31	160.0	120.0	218.7	8.5	220.0	12. 0	218.7	8.6
18ATW-13-37	3790	398	1.5	0.03	4.05	0.05	7.68	0.26	8.88	0.37	280.0	160.0	219.4	8.8	232.0	18. 0	219.4	8.9
18ATW-13-22	11060	1659	0.9	0.03	2.47	0.05	4.12	0.24	4.92	0.45	217.0	91.0	220.3	5.4	221.0	9.5	220.3	5.6
18ATW-13-6	11950	1312	0.6	0.04	3.11	0.05	5.44	0.26	5.02	0.27	340.0	120.0	224.4	7.1	233.0	11. 0	224.4	7.4
18ATW-13-16	14580	3725	3.2	0.04	3.37	0.05	4.76	0.25	4.72	0.42	280.0	100.0	225.3	7.2	232.0	11. 0	225.3	7.4
18ATW-13-27	5960	1642	0.5	0.04	2.58	0.05	6.99	0.26	6.67	0.19	290.0	150.0	225.6	5.7	229.0	13. 0	225.6	6.0
18ATW-13-36	5560	532	1.0	0.04	5.32	0.05	11.3 3	0.25	11.7 9	0.11	210.0	250.0	226.0	12. 0	221.0	23. 0	226.0	12.0
18ATW-13-17	10980	2276	0.9	0.04	3.35	0.05	4.60	0.26	4.67	0.25	320.0	110.0	226.6	7.5	232.0	10. 0	226.6	7.7
18ATW-13-19	9690	1406	4.6	0.04	3.37	0.05	4.35	0.26	4.69	0.48	315.0	93.0	226.6	7.6	231.3	9.7	226.6	7.8
18ATW-13-4	11840	1440	0.6	0.04	2.11	0.05	4.60	0.26	3.91	0.15	277.0	97.0	227.8	4.8	231.3	8.3	227.8	5.1
18ATW-13-8	8520	923	1.1	0.04	3.33	0.05	5.96	0.26	5.45	0.21	250.0	130.0	228.0	7.7	232.0	11. 0	228.0	7.9
18ATW-13-13	11930	2597	1.8	0.04	4.97	0.06	5.06	0.27	5.19	0.57	390.0	110.0	229.0	11. 0	242.0	12. 0	229.0	11.0
18ATW-13-14	19040	5016	0.6	0.04	3.04	0.05	5.02	0.27	4.87	0.26	350.0	100.0	229.1	6.7	240.0	11. 0	229.1	6.9
18ATW-13-7	13370	1408	0.7	0.04	3.58	0.05	5.17	0.26	5.38	0.48	280.0	120.0	229.7	8.3	234.0	11. 0	229.7	8.5
18ATW-13-12	6540	1160	0.9	0.04	4.67	0.05	6.71	0.26	6.64	0.37	190.0	140.0	230.0	10. 0	233.0	14. 0	230.0	10.0
18ATW-13-23	7950	1514	1.5	0.04	4.68	0.06	7.07	0.27	5.66	0.21	410.0	150.0	230.0	10. 0	238.0	12. 0	230.0	11.0
18ATW-13-21	8690	1088	1.5	0.04	3.57	0.05	6.33	0.26	6.61	0.32	260.0	140.0	230.2	7.9	231.0	14. 0	230.2	8.1
18ATW-13-26	9750	3328	1.3	0.04	3.57	0.05	4.73	0.26	5.79	0.58	290.0	100.0	230.3	8.2	234.0	13. 0	230.3	8.4
18ATW-13-42	16760	2831	0.7	0.04	3.56	0.05	4.94	0.26	5.86	0.57	310.0	100.0	230.9	8.0	234.0	11. 0	230.9	8.2
18ATW-13-28	11670	2396	1.1	0.04	4.68	0.05	4.36	0.26	5.38	0.58	306.0	93.0	231.0	11. 0	236.0	12. 0	231.0	11.0
18ATW-13-35	12590	1067	0.9	0.04	2.60	0.05	5.12	0.25	5.51	0.25	220.0	110.0	231.6	5.9	229.0	11. 0	231.6	6.2
18ATW-13-43	18940	3101	1.1	0.04	5.72	0.05	6.32	0.25	5.14	0.37	260.0	130.0	232.0	13. 0	228.0	11. 0	232.0	13.0
18ATW-13-25	15920	5092	0.8	0.04	7.90	0.06	5.05	0.26	6.90	0.72	410.0	110.0	232.0	18. 0	235.0	14. 0	232.0	18.0
18ATW-13-39	8880	1049	1.6	0.04	3.54	0.06	6.68	0.27	6.34	0.11	380.0	140.0	232.1	8.2	240.0	14. 0	232.1	8.4
18ATW-13-41	13340	2149	1.0	0.04	3.00	0.05	4.33	0.25	4.35	0.19	227.0	98.0	232.1	6.7	228.9	8.8	232.1	6.9
18ATW-13-34	13430	1082	0.9	0.04	4.36	0.05	6.62	0.26	7.34	0.35	290.0	140.0	232.4	9.8	236.0	16. 0	232.4	9.9
18ATW-13-10	18000	2029	0.8	0.04	3.25	0.05	3.75	0.26	4.18	0.52	326.0	83.0	233.5	7.3	236.3	8.9	233.5	7.5
18ATW-13-20	11060	1409	0.7	0.04	3.78	0.05	5.58	0.25	5.14	0.36	250.0	120.0	234.0	8.6	228.0	11. 0	234.0	8.8
18ATW-13-31	14330	1201	0.9	0.04	3.23	0.05	4.77	0.26	4.63	0.49	270.0	110.0	234.5	7.7	234.8	9.5	234.5	7.9

								1										
18ATW-13-9	6830	711	1.2	0.04	4.85	0.05	7.81	0.27	5.86	0.02	320.0	180.0	235.0	11. 0	245.0	13. 0	235.0	11.0
18ATW-13-30	6400	760	1.0	0.04	4.58	0.05	6.78	0.26	6.13	0.21	250.0	150.0	235.0	11. 0	234.0	13. 0	235.0	11.0
18ATW-13-24	4220	1036	1.7	0.04	4.80	0.05	7.74	0.26	6.15	0.26	170.0	170.0	237.0	11. 0	233.0	13. 0	237.0	11.0
18ATW-13-11	16000	2359	0.8	0.04	3.73	0.05	4.53	0.26	4.62	0.39	240.0	100.0	237.2	8.6	235.7	9.1	237.2	8.8
18ATW-13-29	14590	2112	1.0	0.04	4.24	0.05	4.76	0.26	6.13	0.53	200.0	100.0	238.7	9.7	235.0	13. 0	238.7	9.9
18ATW-13-18	23910	3876	0.6	0.04	3.95	0.05	4.99	0.26	4.96	0.32	180.0	110.0	240.3	9.1	237.6	9.6	240.3	9.3
18ATW-13-33	14460	1139	1.5	0.04	2.60	0.05	4.33	0.28	4.00	0.28	316.0	97.0	243.7	6.6	246.5	8.9	243.7	6.8
18ATW-13-32	15450	1234	0.8	0.04	3.36	0.05	5.11	0.26	5.32	0.38	280.0	110.0	244.6	7.8	237.0	11. 0	244.6	8.0
18ATW-13-38	4760	541	1.6	0.03	3.20	0.06	5.89	0.28	6.05	0.22	570.0	130.0	218.2	7.1	250.0	13. 0	218.2	7.4
18ATW-13-40	7870	1047	1.1	0.04	4.41	0.06	8.55	0.29	7.69	0.06	510.0	180.0	230.0	9.6	257.0	18. 0	230.0	9.8
18ATW-13-5	27500	2837	0.6	0.04	2.10	0.05	3.29	0.29	3.00	0.29	295.0	73.0	252.6	5.2	257.6	6.8	252.6	5.6
Sample 18ATW-22								1										
18ATW-22 Spot 57	9720	534	3.2	0.05	1.98	0.05	5.11	0.36	5.31	0.05	370.0	110.0	293.2	5.7	309.0	14. 0	293.2	12.0
18ATW-22 Spot 63	4540	311	3.0	0.05	2.33	0.05	5.71	0.35	5.80	0.02	320.0	120.0	297.1	6.5	301.0	15. 0	297.1	13.0
18ATW-22 Spot 59	2660	149	2.8	0.05	2.75	0.05	8.32	0.33	8.51	0.21	190.0	160.0	299.0	7.8	288.0	20. 0	299.0	13.0
18ATW-22 Spot 60	21280	1271	2.4	0.05	2.32	0.05	4.82	0.35	5.48	0.20	290.0	110.0	299.1	7.0	302.0	15. 0	299.1	13.0
18ATW-22 Spot 41	2370	169	3.8	0.05	2.74	0.05	9.67	0.36	9.55	0.09	320.0	190.0	299.2	8.2	308.0	25. 0	299.2	14.0
18ATW-22 Spot 46	2220	136	4.6	0.05	2.74	0.05	8.42	0.36	8.52	0.11	420.0	160.0	299.2	8.0	317.0	22. 0	299.2	13.0
18ATW-22 Spot 53	5220	283	4.1	0.05	2.06	0.05	6.02	0.36	6.09	0.01	360.0	130.0	299.7	6.0	311.0	16. 0	299.7	12.0
18ATW-22 Spot 65	16950	1261	1.7	0.05	3.14	0.05	3.85	0.35	4.84	0.22	268.0	86.0	301.0	9.1	305.0	12. 0	301.0	14.0
18ATW-22 Spot 48	15160	893	3.0	0.05	1.31	0.05	3.23	0.35	2.87	0.03	298.0	71.0	302.0	3.9	303.2	7.8	302.0	12.0
18ATW-22 Spot 61	13180	809	2.7	0.05	2.30	0.05	5.51	0.36	5.82	0.10	350.0	110.0	302.4	7.0	311.0	16. 0	302.4	13.0
18ATW-22 Spot 47	7070	418	3.3	0.05	1.94	0.05	4.80	0.35	4.57	0.00	280.0	100.0	304.3	5.8	303.0	12. 0	304.3	12.0
18ATW-22 Spot 42	8810	616	2.7	0.05	1.92	0.05	4.01	0.36	4.16	0.16	381.0	87.0	304.9	5.7	312.0	11. 0	304.9	12.0
18ATW-22 Spot 43	15790	1052	1.7	0.05	1.47	0.05	2.82	0.36	3.09	0.30	326.0	64.0	305.0	4.3	310.1	8.2	305.0	12.0
18ATW-22 Spot 66	27100	2170	3.2	0.05	2.88	0.05	4.18	0.35	5.17	0.39	306.0	95.0	305.9	8.5	303.0	14. 0	305.9	14.0
18ATW-22 Spot 49	5330	306	2.4	0.05	3.07	0.05	6.10	0.35	5.65	0.11	330.0	130.0	307.1	9.1	311.0	15. 0	307.1	14.0
18ATW-22 Spot 58	9590	503	2.2	0.05	2.45	0.05	4.42	0.35	5.40	0.40	268.0	96.0	308.2	7.1	305.0	0	308.2	13.0
18ATW-22 Spot 62	66700	4289	3.5	0.05	1.11	0.05	1.76	0.35	1.81	0.46	354.0	38.0	299.5	3.3	307.9	4.7	299.5	11.0
18ATW-22 Spot 64	3010	212	3.7	0.05	2.95	0.06	6.89	0.43	6.51	0.12	690.0	150.0	298.3	8.4	361.0	20. 0	298.3	14.0
18ATW-22 Spot 67	12140	909	3.9	0.05	1.24	0.06	3.55	0.41	3.46	0.13	439.0	77.0	318.6	3.9	344.0	10. 0	318.6	12.0
18ATW-22 Spot 54	15220	775	2.5	0.05	5.75	0.05	9.98	0.35	9	0.75	230.0	210.0	317.0	0	300.0	55. 0	317.0	21.0
18ATW-22 Spot 45	9390	552	2.5	0.05	2.13	0.05	4.82	0.37	4.89	0.03	270.0	100.0	324.2	6.9	320.0	0	324.2	14.0
18ATW-22 Spot 52	31310	1588	2.1	0.05	1.64	0.05	2.66	0.37	2.53	0.31	313.0	60.0	321.2	5.1	320.6	7.0	321.2	13.0
18ATW-22 Spot 50	2960	170	3.4	0.05	3.18	0.05	7.95	0.34	8.19	0.52	340.0	160.0	297.4	9.4	295.0	21. 0	297.4	14.0
18ATW-22 Spot 51	9460	528	2.3	0.05	1.95	0.05	5.63	0.34	4.94	0.09	310.0	120.0	297.8	5.7	299.0	13. 0 15	297.8	12.0
18ATW-22 Spot 55	4420	257	7.2	0.04	3.02	0.05	5.77	0.32	6.21	0.32	330.0	120.0	271.6	7.9	283.0	12. 0 24	271.6	13.0
18ATW-22 Spot 56	2190	125	3.3	0.04	3.83	0.05	0	0.32	12.9	0.28	380.0	230.0	280.0	0	289.0	34. 0	280.0	14.0

										1								
Sample 13ET270								I										
13ET270-Spot 47	3140	592	1.7	0.02	4.41	0.05	12.1	0.13	12.0	0.10	190.0	230.0	125.8	5.5	125.0	14. 0	125.8	7.1
13ET270-Spot 52	7320	1096	1.2	0.02	2.28	0.05	5.79	0.14	5.50	0.23	250.0	120.0	125.9	2.8	131.2	6.7	125.9	5.4
13ET270-Spot 53	7900	1077	1.3	0.02	3.04	0.05	6.15	0.13	5.67	0.26	130.0	120.0	125.9	3.8	125.9	6.7	125.9	5.9
13ET270-Spot 48	4880	1045	1.8	0.02	2.77	0.05	6.91	0.13	6.59	0.16	160.0	140.0	126.8	3.5	126.8	8.1	126.8	5.7
13ET270-Spot 45	8590	990	1.1	0.02	2.74	0.05	6.34	0.13	6.10	0.31	150.0	120.0	127.9	3.4	128.8	7.5	127.9	5.8
13ET270-Spot 61	6540	453	1.1	0.02	2.94	0.05	6.45	0.13	5.83	0.19	190.0	130.0	128.0	3.7	127.1	7.0	128.0	5.9
13ET270-Spot 66	5750	368	1.7	0.02	3.24	0.05	7.76	0.13	6.77	0.11	140.0	150.0	128.1	4.1	125.0	8.0	128.1	6.2
13ET270-Spot 41	6800	510	1.2	0.02	3.08	0.05	7.36	0.13	7.14	0.24	120.0	140.0	128.3	3.9	127.6	8.6	128.3	6.1
13ET270-Spot 70	5580	504	1.5	0.02	3.52	0.05	7.75	0.14	8.09	0.19	190.0	150.0	128.6	4.5	128.5	9.7	128.6	6.5
13ET270-Spot 46	6450	861	1.2	0.02	2.58	0.05	6.14	0.13	5.61	0.27	90.0	120.0	128.7	3.3	125.1	6.8	128.7	5.7
13ET270-Spot 57	3400	528	1.5	0.02	3.12	0.05	10.1 9	0.14	9.42	0.05	240.0	190.0	128.8	4.0	130.0	12. 0	128.8	6.1
13ET270-Spot 63	3150	185	1.6	0.02	3.32	0.05	10.6 4	0.14	10.3 7	0.01	160.0	200.0	128.8	4.3	128.0	12. 0	128.8	6.3
13ET270-Spot 50	3540	707	1.8	0.02	3.91	0.05	7.97	0.15	8.22	0.34	280.0	150.0	128.9	5.0	139.0	11. 0	128.9	6.8
13ET270-Spot 49	6200	1434	1.8	0.02	2.56	0.05	6.14	0.14	6.50	0.27	270.0	130.0	129.6	3.3	135.2	8.3	129.6	5.7
13ET270-Spot 64	7970	456	1.4	0.02	2.51	0.05	6.04	0.14	6.44	0.31	230.0	120.0	129.8	3.2	136.4	8.2	129.8	5.7
13ET270-Spot 58	8420	1067	1.0	0.02	2.36	0.05	5.93	0.14	5.51	0.22	200.0	120.0	129.9	3.0	135.2	6.7	129.9	5.6
13ET270-Spot 44	4610	467	1.3	0.02	3.04	0.05	7.33	0.14	6.87	0.09	200.0	140.0	130.2	3.9	132.3	8.5	130.2	6.1
13ET270-Spot 65	2930	175	1.9	0.02	2.89	0.05	9.19	0.14	8.82	0.09	130.0	180.0	130.2	3.7	128.0	10. 0	130.2	6.0
13ET270-Spot 67	6160	429	1.5	0.02	2.73	0.05	6.95	0.14	6.81	0.15	170.0	140.0	130.8	3.5	128.1	8.2	130.8	5.9
13ET270-Spot 51	5420	891	1.3	0.02	2.96	0.05	7.39	0.14	8.45	0.33	190.0	150.0	131.6	3.8	137.0	10. 0	131.6	6.1
13ET270-Spot 42	4870	365	1.4	0.02	3.44	0.05	7.51	0.14	8.39	0.38	180.0	140.0	131.7	4.5	135.0	10. 0	131.7	6.5
13FT270-Spot 43	2570	230	17	0.02	4 07	0.05	10.5	0.14	10.7	0.07	140.0	200.0	131.8	53	133.0	13.	131.8	71
13FT270-Spot 60	3980	360	1.9	0.02	2.66	0.05	7.92	0.14	7.86	0.19	180.0	150.0	131.9	3.5	132.5	9,9	131.9	5.9
13ET270-Spot 68	12060	906	11	0.02	3.09	0.05	4 72	0.14	5.04	0.34	231.0	99.0	132.0	4.0	136.9	6.5	132.0	6.2
13ET270-Spot 69	7640	666	2.0	0.02	2.60	0.05	5.45	0.15	5.04	0.09	250.0	110.0	132.0	3.4	137.5	7.0	132.3	5.0
1257270 Spot 62	5500	222	1.0	0.02	2.00	0.05	6.54	0.13	6.97	0.05	230.0	120.0	122.5	4.0	137.5	×.0	122.5	6.2
1351270-Spot 62	6820	1007	1.5	0.02	3.05	0.05	5.34	0.13	0.87	0.29	120.0	120.0	132.4	4.0	127.1	8.U 7.0	132.4	6.2
13E1270-Spot 54	7500	1007	1.0	0.02	3.52	0.05	5.75	0.14	5.77	0.29	130.0	110.0	132.0	4.4	134.7	7.5	132.0	0.5
13E1270-Spot 40	7590	552	1.2	0.02	2.55	0.05	5.63	0.14	5.28	0.03	100.0	110.0	132.7	3.3	129.6	6.4 11.	132.7	5.8
13E1270-Spot 55	3940	656	1.4	0.02	3.68	0.05	9.80	0.14	8.51	0.02	1/0.0	180.0	133.7	4.9	133.0	0	133.7	6.9
13ET270-Spot 56	6000	994	1.6	0.02	3.35	0.05	8.37 11.5	0.15	7.59 10.6	0.00	170.0	160.0	135.1	4.5	139.6	9.3 13.	135.1	6.6
13ET270-Spot 59	3068	303	1.5	0.02	3.36	0.05	3	0.14	4	0.08	150.0	210.0	138.6	4.6	132.0	0	138.6	6.8
Sample 16CSR17			2671.															
-16CSR-17A Spot 8 -16CSR-17A Spot	16720	2672	7 1772.	0.05	2.27	19.04	0.89	0.34	2.44	0.93	307.7	20.3	298.5	6.6	299.4	6.3	298.5	12.6
14 -16CSR-17A Spot	19110	1772	2 2495.	0.05	2.40	18.79	0.87	0.35	2.55	0.94	337.8	19.6	301.1	7.1	305.2	6.7	301.1	13.4
17	15330	2496	8	0.05	2.61	18.95	1.13	0.35	2.84	0.92	318.6	25.7	302.5	7.7	304.3	7.5	302.5	14.7
-16CSR-17A Spot 7	14830	2325	0	0.05	1.51	18.82	0.81	0.35	1.72	0.88	334.0	18.4	303.8	4.5	307.2	4.6	303.8	8.5
23	20350	1764	7	0.05	4.33	18.89	1.19	0.35	4.49	0.96	326.5	27.1	304.0	9	306.5	9	304.0	24.4
-тосэк-17А Spot 12	8540	3000	3000. 2	0.05	2.58	19.20	0.91	0.35	2.73	0.94	288.9	20.9	304.3	7.7	302.4	7.1	304.3	14.5

-16CSR-17A Spot 28	17760	2247	2247. 0	0.05	2.26	19.08	1.09	0.35	2.51	0.90	303.3	24.9	304.9	6.7	304.6	6.6	304.9	12.8
-16CSR-17A Spot 35	25160	2362	2362. 2	0.05	1.90	19.07	0.89	0.35	2.10	0.91	304.9	20.3	305.0	5.7	304.9	5.5	305.0	10.8
-16CSR-17A Spot 27	20170	1743	1743. 4	0.05	2.13	19.21	0.83	0.35	2.29	0.93	287.4	19.1	305.5	6.3	303.3	6.0	305.5	12.1
-16CSR-17A Spot 13	15520	2769	2769. 4	0.05	2.01	18.97	0.86	0.35	2.18	0.92	316.4	19.5	305.7	6.0	306.9	5.8	305.7	11.4
-16CSR-17A Spot 10	25190	1920	1919. 9	0.05	2.29	18.84	1.06	0.36	2.52	0.91	332.4	24.0	306.1	6.8	309.0	6.7	306.1	13.0
-16CSR-17A Spot 29	17140	951	950.8	0.05	2.50	19.13	1.01	0.35	2.69	0.93	297.8	23.0	306.9	7.5	305.7	7.1	306.9	14.2
-16CSR-17A Spot 15	20600	2215	2215. 2	0.05	1.94	19.11	1.02	0.35	2.19	0.88	300.0	23.3	309.7	5.9	308.5	5.8	309.7	11.2
-16CSR-17A Spot 26	16760	2031	2030. 9	0.05	2.55	18.93	0.96	0.36	2.72	0.94	321.4	21.9	310.2	7.7	311.4	7.3	310.2	14.7
-16CSR-17A Spot 22	14900	3788	3787. 6	0.05	2.21	18.82	0.76	0.36	2.34	0.95	334.5	17.2	311.4	6.7	314.0	6.3	311.4	12.8
-16CSR-17A Spot 16	20680	1562	1561. 7	0.05	2.57	19.13	0.85	0.36	2.71	0.95	297.6	19.5	313.9	7.9	311.9	7.3	313.9	15.0
-16CSR-17A Spot 1	15870	1031	1031. 0	0.05	2.37	19.20	0.92	0.36	2.54	0.93	289.3	21.0	318.7	7.4	315.1	6.9	318.7	14.0
-16CSR-17A Spot 20	29510	1010	1010. 2	0.05	2.28	17.76	1.64	0.39	2.81	0.81	464.6	36.4	312.2	7.0	330.8	7.9	312.2	13.2
-16CSR-17A Spot 11	65700	4375	4375. 1	0.03	3.37	18.56	0.84	0.24	3.47	0.97	366.1	19.0	207.9	6.9	221.2	6.9	207.9	13.1
14ATW50			I					I						I	1	I		
14ATW-50 Spot24	20040	2000 0	1.6	0.05	2.97	0.05	4.31	0.35	4.34	0.48	319.0	93.0	296.6	8.3	302.0	12. 0	296.6	11.0
14ATW-50 Spot48	21380	413	2.4	0.05	2.32	0.05	4.02	0.35	3.97	0.24	403.0	93.0	299.3	6.8	306.0	11. 0	299.3	10.0
14ATW-50 Spot49	14750	229	2.3	0.05	2.72	0.05	5.51	0.34	5.04	0.13	300.0	120.0	300.7	8.0	296.0	13. 0	300.7	11.0
14ATW-50 Spot51	19430	181	2.0	0.05	2.92	0.05	4.47	0.36	5.07	0.36	332.0	95.0	301.6	8.4	307.0	14. 0	301.6	11.0
14ATW-50 Spot40	8740	785	3.1	0.05	2.92	0.05	5.87	0.35	5.65	0.26	370.0	120.0	301.7	8.6	308.0	16. 0	301.7	11.0
14ATW-50 Spot47	20910	437	1.8	0.05	2.49	0.05	3.52	0.35	4.00	0.42	352.0	76.0	303.4	7.4	304.0	10. 0	303.4	10.0
14ATW-50 Spot43	16700	142	2.8	0.05	2.90	0.05	4.10	0.35	4.84	0.50	353.0	87.0	303.7	8.5	306.0	12. 0	303.7	11.0
14ATW-50 Spot35	19280	480	1.6	0.05	2.69	0.05	4.07	0.37	3.54	0.19	353.0	89.0	304.0	7.9	317.3	9.8	304.0	11.0
14ATW-50 Spot34	24290	896	1.4	0.05	2.26	0.05	3.93	0.37	3.54	0.08	362.0	90.0	305.6	7.0	316.9	9.6	305.6	10.0
14ATW-50 Spot38	21680	745	1.8	0.05	2.67	0.05	4.01	0.37	4.61	0.47	390.0	90.0	306.5	7.8	318.0	13. 0	306.5	11.0
14ATW-50 Spot50	16720	202	2.1	0.05	2.05	0.05	3.72	0.36	4.21	0.43	353.0	83.0	306.7	6.4	313.0	11. 0	306.7	10.0
14ATW-50 Spot37	19110	431	1.8	0.05	2.25	0.05	3.93	0.36	3.88	0.36	323.0	83.0	307.1	6.9	313.0	10. 0	307.1	9.9
14ATW-50 Spot45	15330	148	2.1	0.05	2.85	0.05	5.36	0.36	5.25	0.13	370.0	120.0	308.9	8.5	314.0	14. 0	308.9	11.0
14ATW-50 Spot31	14830	2530	1.8	0.05	2.84	0.05	4.11	0.36	4.46	0.52	341.0	92.0	309.8	8.4	313.0	12. 0	309.8	11.0
14ATW-50 Spot46	20350	261	1.8	0.05	2.84	0.05	3.08	0.35	4.03	0.64	287.0	73.0	310.2	8.3	302.0	11. 0	310.2	11.0
14ATW-50 Spot27	8540	335	2.1	0.05	2.63	0.05	6.11	0.38	5.84	0.17	360.0	140.0	310.9	7.7	324.0	16. 0	310.9	11.0
14ATW-50 Spot26	17760	688	1.4	0.05	3.44	0.05	5.86	0.38	4.75	0.13	390.0	130.0	311.0	10. 0	326.0	13. 0	311.0	13.0
14ATW-50 Spot28	25160	1505	1.4	0.05	3.44	0.05	6.59	0.38	4.72	0.23	380.0	140.0	311.0	0	327.0	13. 0	311.0	12.0
14ATW-50 Spot36	20170	406	2.7	0.05	3.03	0.05	4.09	0.37	4.07	0.38	360.0	86.0	311.2	9.0	321.0	11. 0 12	311.2	12.0
14ATW-50 Spot39	15520	940	2.0	0.05	2.61	0.05	4.57	0.37	4.37	0.21	384.0	93.0	313.6	7.8	316.0	12. 0	313.6	11.0
14ATW-50 Spot32	25190	4150	1.4	0.05	2.79	0.05	3.04	0.36	3.89	0.57	321.0	70.0	315.1	8.8	312.0	10. 0	315.1	12.0
14ATW-50 Spot33	17140	1830	1.8	0.05	2.39	0.05	3.45	0.37	4.02	0.38	280.0	73.0	315.4	7.2	321.0	11. 0 10	315.4	10.0
14ATW-50 Spot23	20600	-1615	1.8	0.05	2.58	0.05	4.28	0.38	3.67	0.26	362.0	90.0	316.5	8.3	327.0	0	316.5	11.0
14ATW-50 Spot30	16760	2187	1.9	0.05	1.97	0.05	3.95	0.36	3.61	0.14	313.0	87.0	316.8	6.1	311.2	9.8 12	316.8	9.3
14ATW-50 Spot42	14900	178	3.0	0.05	2.78	0.06	4.70	0.38	4.47	0.22	400.0	96.0	316.8	8.3	328.0	12. 0	316.8	11.0

														1				
14ATW-50 Spot54	20680	180	1.9	0.05	2.38	0.05	3.17	0.38	3.93	0.50	369.0	73.0	317.1	7.6	329.0	11. 0	317.1	11.0
14ATW-50 Spot53	15870	137	2.4	0.05	2.94	0.05	3.56	0.38	4.22	0.22	372.0	81.0	320.4	9.2	325.0	12. 0	320.4	12.0
14ATW-50 Spot41	19200	367	1.9	0.05	2.73	0.05	4.28	0.37	4.62	0.12	335.0	91.0	322.1	8.7	317.0	13. 0	322.1	11.0
14ATW-50 Spot44	29510	222	2.2	0.05	2.51	0.05	3.71	0.39	3.88	0.46	344.0	79.0	324.7	7.7	332.0	11. 0	324.7	11.0
14ATW-50 Spot29	65700	4200	1.6	0.05	2.30	0.05	2.38	0.39	2.81	0.54	385.0	54.0	327.6	7.2	335.3	7.7	327.6	10.0
14ATW-50 Spot25	18200	756	1.4	0.05	2.36	0.06	3.80	0.39	4.07	0.43	413.0	80.0	319.1	7.6	336.0	12. 0	319.1	11.0
14ATW-50 Spot52	48200	393	1.7	0.05	2.97	0.05	3.07	0.39	2.84	0.51	273.0	65.0	337.6	9.5	331.8	8.2	337.6	12.0
Sample 15DR140								1								1	l	
15DR-140 Spot 1	3775	89	8.0	0.02	2.89	0.05	11.6 4	0.15	11.2 6	0.00	190.0	220.0	139.1	4.0	141.0	15. 0	139.1	5.5
15DR-140 Spot 13	10660	993	2.4	0.02	3.77	0.05	5.94	0.15	6.62	0.43	220.0	120.0	140.5	5.3	143.9	8.6	140.5	6.5
15DR-140 Spot 2	2072	53	10.2	0.02	3.61	0.05	10.1 8	0.15	10.3 9	0.18	220.0	200.0	141.4	5.1	144.0	14. 0	141.4	6.3
15DR-140 Spot 18	4050	181	7.6	0.02	3.38	0.05	7.76	0.15	8.28	0.34	110.0	150.0	141.5	4.7	137.0	10. 0	141.5	6.1
15DR-140 Spot 7	2340	100	14.3	0.02	3.00	0.05	12.0 6	0.16	10.8 3	0.18	210.0	220.0	142.2	4.2	146.0	15. 0	142.2	5.7
15DR-140 Spot 5	2710	91	18.2	0.02	3.36	0.05	11.2 4	0.16	10.1 3	0.17	300.0	210.0	142.4	4.7	152.0	14. 0	142.4	6.1
15DR-140 Spot 9	3010	242	6.9	0.02	3.66	0.05	14.5 0	0.17	13.9 4	0.11	410.0	280.0	142.9	5.1	157.0	19. 0	142.9	6.4
15DR-140 Spot 4	2460	75	8.6	0.02	3.92	0.05	21.5 7	0.16	19.6 2	0.14	160.0	380.0	143.2	5.5	148.0	27. 0	143.2	6.8
15DR-140 Spot 14	5720	388	5.0	0.02	2.77	0.05	7.79	0.15	7.79	0.19	140.0	150.0	145.2	4.0	145.0	10. 0	145.2	5.6
15DR-140 Spot 12	7060	1123	2.1	0.02	2.48	0.05	6.82	0.15	7.28	0.28	110.0	130.0	146.8	3.6	141.8	9.3	146.8	5.4
15DR-140 Spot 16	5060	217	7.3	0.02	2.99	0.05	8.03	0.16	7.69	0.14	220.0	150.0	147.1	4.3	150.0	10. 0	147.1	5.9
15DR-140 Spot 8	3650	217	4.7	0.02	3.03	0.05	11.5 1	0.16	10.3 2	0.05	110.0	200.0	147.3	4.4	145.0	14. 0	147.3	6.0
15DR-140 Spot 6	2600	94	14.4	0.02	3.52	0.05	9.48	0.16	9.76	0.22	260.0	200.0	148.3	5.2	153.0	14. 0	148.3	6.6
15DR-140 Spot 17	4350	181	8.3	0.02	4.27	0.05	9.28	0.16	10.0 0	0.41	160.0	180.0	149.3	6.3	149.0	14. 0	149.3	7.5
15DR-140 Spot 15	3368	175	7.9	0.02	2.38	0.05	7.78	0.17	7.51	0.15	300.0	160.0	152.7	3.6	162.0	11. 0	152.7	5.5
15DR-140 Spot 3	2800	71	5.6	0.02	4.64	0.08	15.5 8	0.26	13.1 8	0.06	1060.0	300.0	151.3	6.9	236.0	28. 0	151.3	8.0
15DR-140 Spot 10	3340	366	5.8	0.02	3.55	0.05	9.79	0.14	9.35	0.19	140.0	190.0	132.8	4.6	131.0	12. 0	132.8	5.9
Sample 17ATW03								I								i	I	
17ATW03 Spot 38	5540	839	3.4	0.01	2.85	0.05	6.54	0.07	6.03	0.06	130.0	130.0	67.6	1.9	68.3	4.0	67.6	2.6
17ATW03 Spot 47	2640	2657	4.1	0.01	3.70	0.05	10.0 4	0.07	10.2 4	0.16	120.0	190.0	67.7	2.5	65.9	6.6	67.7	3.1
17ATW03 Spot 37	1841	237	5.6	0.01	4.05	0.05	12.7 8	0.07	12.4 3	0.03	140.0	240.0	68.0	2.7	70.9	8.6	68.0	3.3
17ATW-03 Spot 11	4791	1856	2.1	0.01	2.24	0.05	6.65	0.07	5.97	0.01	80.0	130.0	68.8	1.5	68.9	4.0	68.8	2.4
17ATW03 Spot 31	2995	410	2.4	0.01	2.70	0.05	7.49	0.07	6.91	0.04	140.0	140.0	69.0	1.8	70.8	4.7	69.0	2.6
17ATW03 Spot 21	3820	500	6.0	0.01	2.88	0.04	10.0 9	0.07	10.3 0	0.02	-60.0	170.0	69.1	2.0	65.5	6.3	69.1	2.8
17ATW03 Spot 34	5860	597	3.5	0.01	2.59	0.05	7.33	0.07	6.90	0.11	30.0	130.0	69.3	1.8	66.8	4.5	69.3	2.6
17ATW03 Spot 25	4230	972	3.2	0.01	2.68	0.05	8.00	0.07	8.25	0.30	100.0	150.0	69.4	1.8	69.9	5.6	69.4	2.6
17ATW03 Spot 28	4680	822	3.1	0.01	3.51	0.05	11.2 4	0.07	11.0 5	0.17	220.0	220.0	69.4	2.4	72.4	7.7	69.4	3.1
17ATW03 Spot 44	4810	4900	3.0	0.01	3.12	0.05	7.29	0.07	7.17	0.12	100.0	140.0	69.9	2.2	71.6	4.8	69.9	2.9
17ATW03 Spot 41	3240	1145	3.6	0.01	2.74	0.05	9.67	0.07	9.04	0.06	130.0	180.0	70.1	1.9	69.2	6.0	70.1	2.7
17ATW03 Spot 48	3493	2091	5.0	0.01	2.91	0.05	7.49	0.07	7.62	0.30	170.0	140.0	70.5	2.0	73.1	5.3	70.5	2.8

								I			l							
17ATW03 Spot 50	2830	911	3.3	0.01	2.90	0.05	9.41	0.08	8.92	0.02	150.0	180.0	70.7	2.0	73.2	6.3	70.7	2.8
17ATW03 Spot 27	3430	634	3.8	0.01	2.71	0.05	8.45	0.08	8.30	0.15	280.0	170.0	71.1	1.9	77.4	6.2	71.1	2.7
17ATW03 Spot 32	4840	577	4.0	0.01	2.98	0.05	7.82	0.08	7.55	0.03	140.0	150.0	71.1	2.1	73.7	5.4	71.1	2.8
17ATW03 Spot 53	6000	1230	5.9	0.01	2.88	0.05	6.37	0.07	6.77	0.17	0.0	120.0	71.3	2.0	69.4	4.5	71.3	2.8
17ATW03 Spot 45	8350	9490	2.7	0.01	2.33	0.05	6.51	0.07	5.82	0.01	30.0	120.0	71.4	1.7	69.0	3.9	71.4	2.6
17ATW03 Spot 49	4460	2140	6.7	0.01	3.40	0.05	7.04	0.07	7.85	0.33	60.0	130.0	71.6	2.4	69.8	5.3	71.6	3.1
17ATW03 Spot 22	7700	1200	2.7	0.01	3.49	0.05	9.51	0.08	8.96	0.19	160.0	190.0	71.8	2.5	74.1	6.4	71.8	3.2
17ATW03 Spot 52	5780	1346	4.8	0.01	4.81	0.05	11.0 9	0.08	9.34	0.08	220.0	220.0	72.0	3.5	76.2	6.9	72.0	4.0
17ATW03 Spot 51	4150	1124	3.9	0.01	2.93	0.05	7.71	0.07	7.07	0.09	140.0	150.0	72.1	2.1	71.9	4.9	72.1	2.9
17ATW03 Spot 39	7130	1214	4.0	0.01	3.73	0.05	6.90	0.07	6.64	0.09	90.0	130.0	72.2	2.7	72.1	4.6	72.2	3.3
17ATW03 Spot 30	4670	719	3.6	0.01	3.44	0.05	9.13	0.07	8.84	0.19	50.0	160.0	72.8	2.5	70.7	6.1	72.8	3.2
17ATW03 Spot 42	540	315	4.2	0.01	6.16	0.05	30.1 9	0.08	27.2 7	0.08	-20.0	470.0	72.8	4.5	78.0	21. 0	72.8	4.9
17ATW03 Spot 24	4330	943	3.8	0.01	4.57	0.05	8.61	0.08	9.33	0.00	200.0	160.0	73.0	3.3	78.2	7.0	73.0	3.8
17ATW03 Spot 40	9910	2632	3.1	0.01	2.53	0.05	5.64	0.07	5.75	0.25	120.0	110.0	73.3	1.9	73.1	4.0	73.3	2.7
17ATW03 Spot 26	4760	883	3.4	0.01	2.77	0.05	6.55	0.08	7.10	0.05	190.0	130.0	74.1	2.1	76.9	5.2	74.1	2.9
17ATW03 Spot 23	12320	2513	1.9	0.01	3.57	0.05	4.77	0.07	5.21	0.47	13.0	93.0	75.5	2.7	73.2	3.7	75.5	3.4
17ATW03 Spot 36	4120	432	5.3	0.01	2.92	0.05	7.51	0.09	7.73	0.19	380.0	160.0	72.4	2.1	82.9	6.1	72.4	2.9
17ATW03 Spot 29	5550	882	3.6	0.01	4.74	0.06	8.01	0.09	7.84	0.13	420.0	170.0	73.1	3.5	84.3	6.3	73.1	4.0
17ATW03 Spot 20	4202	477	3.0	0.01	2.57	0.06	7.22	0.09	7.39	0.36	500.0	150.0	69.8	1.8	85.4	6.0	69.8	2.6
17ATW03 Spot 35	3740	382	5.8	0.01	2.91	0.06	8.93	0.08	8.87	0.22	360.0	180.0	70.5	2.0	78.9	6.8	70.5	2.8
17ATW03 Spot 43	2999	841	1.9	0.03	3.53	0.06	9.32	0.23	9.40	0.19	420.0	190.0	197.9	7.2	212.0	18. 0	197.9	8.9
17ATW03 Spot 46	31000	1680	0.9	0.22	3.59	0.11	2.27	3.31	4.53	0.81	1807.0	44.0	1286.0	43. 0	#####	35. 0	1286.0	54.0
17ATW03 Spot 33	3790	377	4.9	0.01	3.37	0.04	9.63	0.07	8.85	0.02	-80.0	160.0	74.2	2.5	66.4	5.7	74.2	3.2
Sample 17ATW11								I										
17ATW11-Spot 33	11830	447	2.5	0.05	2.27	0.05	4.45	0.35	5.38	0.38	383.0	98.0	304.4	7.0	307.0	14. 0	304.4	13.0
17ATW11-Spot 30	21500	1490	1.6	0.05	1.22	0.05	2.82	0.35	3.12	0.26	323.0	64.0	304.5	3.6	306.6	8.0	304.5	11.0
17ATW11-Spot 28	11970	1149	2.1	0.05	1.78	0.05	5.46	0.35	5.44	0.33	310.0	120.0	305.0	5.3	306.0	15. 0	305.0	12.0
17ATW11-Spot 37	5040	151	3.9	0.05	3.30	0.06	6.36	0.37	6.99	0.41	370.0	130.0	305.4	9.8	319.0	19. 0	305.4	15.0
17ATW11-Spot 34	6620	227	4.5	0.05	3.29	0.05	6.01	0.34	6.69	0.44	280.0	120.0	306.3	9.7	298.0	17. 0	306.3	15.0
17ATW11-Spot 39	18100	540	2.5	0.05	2.45	0.06	4.90	0.36	5.34	0.48	390.0	100.0	308.1	7.4	308.0	14. 0	308.1	13.0
17ATW11-Spot 31	33900	1674	4.9	0.05	2.24	0.06	3.07	0.37	2.52	0.25	436.0	63.0	308.7	6.9	316.2	6.8	308.7	13.0
17ATW11-Spot 27	9300	910	5.3	0.05	2.65	0.05	6.75	0.36	5.77	0.09	370.0	140.0	309.7	7.8	316.0	15. 0	309.7	13.0
17ATW11-Spot 38	6300	182	4.6	0.05	3.25	0.05	5.66	0.36	5.54	0.21	390.0	120.0	310.0	10. 0	315.0	14. 0	310.0	15.0
17ATW11-Spot 35	29700	874	2.2	0.05	2.23	0.05	3.05	0.35	3.70	0.53	293.0	68.0	310.2	7.0	304.8	9.5	310.2	13.0
17ATW11-Spot 32	26900	1152	1.5	0.05	2.43	0.05	4.21	0.36	3.91	0.00	308.0	86.0	310.4	7.3	310.0	11. 0	310.4	13.0
17ATW11-Spot 26	15290	1401	2.5	0.05	2.21	0.05	4.12	0.36	4.18	0.24	318.0	90.0	313.4	6.5	310.0	11. 0	313.4	13.0
17ATW11-Spot 29	11100	960	3.2	0.05	3.09	0.06	7.38	0.39	8.38	0.39	610.0	160.0	305.5	9.1	343.0	22. 0	305.5	14.0
17ATW11-Spot 36	13800	399	2.4	0.05	2.86	0.06	4.65	0.38	4.50	0.29	457.0	99.0	307.6	8.5	326.0	12. 0	307.6	14.0

Sample 18ATW21																		
18ATW-21 Spot 7	1664	374	3.8	0.01	5.77	0.05	9.63	0.07	9.29	0.21	260.0	180.0	64.4	3.7	68.5	6.2	64.4	4.4
18ATW-21 Spot 4	3040	677	4.1	0.01	2.98	0.05	7.37	0.07	7.45	0.16	190.0	140.0	64.9	1.9	66.4	4.7	64.9	3.0
18ATW-21 Spot 2	2565	612	4.3	0.01	3.46	0.05	10.3 9	0.07	10.2 4	0.10	80.0	190.0	64.9	2.2	64.1	6.4	64.9	3.3
18ATW-21 Spot 9	5190	1200	3.7	0.01	3.03	0.05	6.85	0.07	6.79	0.25	170.0	130.0	65.5	1.9	65.0	4.3	65.5	3.1
18ATW-21 Spot 3	4810	1086	3.1	0.01	2.25	0.05	6.79	0.07	6.92	0.24	70.0	130.0	65.6	1.5	65.3	4.4	65.6	2.8
18ATW-21 Spot 1	2277	567	5.1	0.01	2.92	0.05	10.3 1	0.07	9.56	0.03	150.0	180.0	65.8	1.9	69.4	6.4	65.8	3.1
18ATW-21 Spot 6	930	196	2.8	0.01	4.99	0.04	20.6 0	0.06	21.6 7	0.02	-210.0	310.0	66.8	3.3	58.0	12. 0	66.8	4.1
18ATW-21 Spot 10	3070	733	3.8	0.01	2.78	0.05	7.26	0.07	7.29	0.16	130.0	140.0	66.9	1.9	67.2	4.7	66.9	3.1
18ATW-21 Spot 17	3327	1273	2.6	0.01	2.59	0.05	8.58	0.07	8.50	0.11	220.0	160.0	67.0	1.8	70.2	5.7	67.0	3.0
18ATW-21 Spot 26	1931	666	3.6	0.01	2.77	0.05	10.3 2	0.07	10.0 3	0.10	120.0	190.0	67.2	1.9	69.1	6.8	67.2	3.1
18ATW-21 Spot 8	4290	924	3.7	0.01	2.66	0.05	7.39	0.07	7.53	0.09	120.0	140.0	67.4	1.8	68.9	5.0	67.4	3.0
18ATW-21 Spot 38	2886	1025	3.6	0.01	2.16	0.05	10.0 6	0.07	10.6 2	0.22	200.0	200.0	68.2	1.5	72.6	7.4	68.2	2.9
18ATW-21 Spot 22	1802	669	4.3	0.01	4.21	0.05	11.9 7	0.07	10.9 2	0.08	160.0	220.0	68.5	2.9	69.6	7.4	68.5	3.8
18ATW-21 Spot 34	2292	842	4.2	0.01	3.27	0.05	8.95	0.07	7.25	0.24	220.0	170.0	68.6	2.2	71.4	5.0	68.6	3.4
18ATW-21 Spot 14	1886	562	5.1	0.01	4.11	0.05	13.5 3	0.07	12.1 0	0.28	240.0	250.0	68.7	2.8	72.5	8.4	68.7	3.8
18ATW-21 Spot 11	1801	456	4.2	0.01	4.38	0.05	16.1 0	0.08	15.5 8	0.20	180.0	300.0	68.8	3.0	75.0	12. 0	68.8	3.9
18ATW-21 Spot 12	2070	572	6.4	0.01	2.89	0.05	10.0 2	0.07	9.52	0.08	240.0	180.0	68.8	2.0	68.8	6.3	68.8	3.2
18ATW-21 Spot 24	2560	918	3.4	0.01	3.34	0.05	12.5 0	0.07	11.6 6	0.16	10.0	220.0	69.2	2.3	65.4	7.4	69.2	3.4
18ATW-21 Spot 32	2600	990	3.0	0.01	4.15	0.05	12.0 1	0.08	11.5 7	0.11	170.0	220.0	69.5	2.8	74.5	8.4	69.5	3.8
18ATW-21 Spot 29	1400	475	4.3	0.01	4.69	0.04	16.2 1	0.07	14.6 7	0.22	-110.0	250.0	69.7	3.3	65.2	9.3	69.7	4.2
18ATW-21 Spot 15	2740	859	4.3	0.01	2.84	0.05	8.25	0.07	7.98	0.14	170.0	160.0	69.9	2.0	71.0	5.5	69.9	3.2
184TW-21 Spot 18	1649	632	4.4	0.01	4 67	0.05	15.0	0.08	13.9	0.01	300.0	280.0	70.0	3.2	78.7	9.6	70.0	4.1
184TW-21 Spot 30	2103	782	3.0	0.01	2.47	0.05	9 90	0.07	0 02	0.05	120.0	170.0	70.0	1.7	72.6	7.0	70.0	3.1
184TW 21 Spot 27	5120	1720	4.2	0.01	2.47	0.05	7.69	0.07	7.21	0.00	110.0	140.0	70.1	1.7	72.0	1.0	70.1	3.1
10ATW 24 Cout 22	3130	1750	4.5	0.01	2.74	0.05	7.00	0.07	7.21	0.15	110.0	140.0	70.2	1.9	70.5	4.9	70.2	3.2
18A1 W-21 Spot 55	2390	802	4.1	0.01	5.11	0.05	10.0	0.07	0.44	0.12	190.0	170.0	70.2	2.1	71.7	5.9	70.2	5.4
18ATW-21 Spot 19	3120	1223	4.1	0.01	2.83	0.05	0	0.07	9.70	0.01	220.0	200.0	70.3	2.0	/2.4	6.8	70.3	3.3
18ATW-21 Spot 31	2343	829	3.5	0.01	3.56	0.05	8.90 10.2	0.07	8.87	0.15	60.0	160.0	70.3	2.5	68.3	5.9	70.3	3.6
18ATW-21 Spot 23	4230	1511	2.2	0.01	4.90	0.05	0 12.5	0.07	5 12.1	0.28	20.0	180.0	70.6	3.5	68.9	6.9	70.6	4.3
18ATW-21 Spot 28	1599	536	4.2	0.01	3.72	0.05	5 10.7	0.07	5	0.10	50.0	220.0	70.6	2.6	66.7	7.9	70.6	3.7
18ATW-21 Spot 21	2351	873	4.6	0.01	3.80	0.05	3 10.2	0.08	9.71	0.02	210.0	200.0	70.8	2.7	74.3	7.0	70.8	3.7
18ATW-21 Spot 37	1747	591	3.7	0.01	3.51	0.05	7 11.1	0.07	9.03 11.0	0.12	170.0	200.0	71.3	2.5	72.3	6.3	71.3	3.6
18ATW-21 Spot 20	2070	783	4.1	0.01	3.23	0.04	9	0.07	5	0.11	-30.0	190.0	71.6	2.3	67.1	7.2	71.6	3.5
18ATW-21 Spot 36	2120	728	4.4	0.01	3.39	0.05	9.59	0.07	9.92	0.13	70.0	180.0	71.8	2.4	69.9	6.7	71.8	3.6
18ATW-21 Spot 5	5920	931	4.0	0.01	2.70	0.06	5.88	0.11	5.44	0.16	530.0	120.0	90.0	2.4	109.2	5.6 31	90.0	4.1
18ATW-21 Spot 13	6020	606	5.8	0.03	8.75	0.09	6.03	0.36	0	0.47	1350.0	130.0	188.0	0	305.0	0	188.0	18.0
18ATW-21 Spot 40	1924	229	1.5	0.03	3.79	0.05	7.98	0.19	7.77	0.17	140.0	150.0	184.2	6.9	179.0	13. 0	184.2	9.6
18ATW-21 Spot 35	3470	1225	3.8	0.01	3.40	0.05	8.04	0.08	7.72	0.02	120.0	150.0	73.4	2.5	74.0	5.4	73.4	3.7
18ATW-21 Spot 39	3910	1281	3.3	0.01	2.87	0.05	7.13	0.08	6.77	0.18	150.0	130.0	71.5	2.0	73.5	4.9	71.5	3.3
18ATW-21 Spot 25	3560	1151	3.2	0.01	2.58	0.10	59.3 8	0.15	58.5 0	0.39	900.0	#### #	74.5	1.9	134.0	73. 0	74.5	3.3

18ATW-21 Spot 16	3568	1195	2.5	0.01	2.88	0.05	7.42	0.07	6.59	0.08	60.0	130.0	73.4	2.1	69.8	4.5	73.4	3.4
Sample 12CSR20								I								1	1	
Output_1_13	56450	1673	14.0	0.01	1.92	0.05	4.88	0.06	4.54	0.07	70.0	100.0	56.9	1.1	56.5	2.5	56.9	1.1
Output_1_67	28990	902	9.5	0.01	2.21	0.05	7.55	0.06	7.07	0.28	180.0	170.0	58.0	1.3	61.2	4.2	58.0	1.2
Output_1_42	37900	4420	23.4	0.01	6.16	0.05	11.2 0	0.06	14.4 8	0.82	110.0	240.0	58.3	3.6	59.2	8.3	58.3	4.3
Output_1_65	13600	365	18.0	0.01	1.74	0.05	4.69	0.06	4.58	0.03	147.0	94.0	59.2	1.0	60.3	2.7	59.2	1.0
Output_1_18	20800	561	41.3	0.01	4.00	0.05	8.30	0.06	4.15	0.15	70.0	160.0	59.3	2.4	61.7	2.5	59.3	5.3
Output_1_156	38690	1836	13.4	0.01	1.72	0.05	3.13	0.06	3.13	0.32	97.0	65.0	59.8	1.0	60.1	1.9	59.8	1.0
Output_1_58	7740	196	49.2	0.01	2.33	0.05	6.30	0.07	7.14	0.18	150.0	130.0	63.3	1.5	66.0	4.6	63.3	2.2
Output_1_28	7870	400	19.1	0.01	2.80	0.05	8.32	0.07	8.93	0.06	230.0	180.0	66.4	1.9	70.2	6.0	66.4	2.0
Output_1_103	1063	28	14.8	0.01	5.33	0.06	20.0 0	0.08	17.5 0	0.08	350.0	360.0	67.3	3.5	77.0	13. 0	67.3	3.5
Output_1_57	7170	173	39.2	0.01	3.12	0.05	13.2 6	0.07	13.5 1	0.08	230.0	260.0	67.8	2.1	72.6	9.7	67.8	2.1
Output_1_88	5400	159	4.6	0.01	3.84	0.05	8.62	0.07	9.58	0.19	140.0	180.0	68.6	2.6	71.5	6.6	68.6	2.7
Output_1_17	14590	352	10.5	0.01	5.07	0.05	11.9 0	0.08	12.9 9	0.58	200.0	250.0	70.9	3.6	75.1	9.8	70.9	3.8
Output_1_166	4400	171	14.0	0.01	4.13	0.05	14.1 2	0.08	14.4 6	0.10	260.0	300.0	72.9	3.0	84.0	10. 0	72.9	3.0
Output_1_89	4130	114	4.3	0.01	5.55	0.05	16.6 0	0.08	16.6 7	0.29	210.0	330.0	74.0	4.1	76.0	12. 0	74.0	4.1
Output_1_60	14820	280	8.1	0.01	2.49	0.05	10.7 0	0.08	9.11	0.13	120.0	210.0	74.5	1.8	75.0	6.5	74.5	2.8
Output_1_167	4680	180	16.1	0.01	3.23	0.05	12.6 2	0.08	13.2 5	0.42	210.0	260.0	75.4	2.4	81.0	10. 0	75.4	2.6
Output_1_22	7880	185	4.7	0.01	4.21	0.05	11.8 6	0.09	13.0 4	0.34	300.0	250.0	79.1	3.3	89.0	11. 0	79.1	3.4
Output_1_41	14970	1392	10.1	0.01	6.06	0.05	9.92	0.09	11.4 9	0.65	200.0	210.0	80.4	4.8	85.0	9.5	80.4	5.1
Output_1_91	3430	82	8.0	0.01	2.37	0.07	7.50	0.12	7.28	0.16	940.0	150.0	81.0	1.9	115.6	7.9	81.0	1.9
Output_1_10	10530	223	19.9	0.01	2.83	0.05	6.39	0.09	6.10	0.01	210.0	130.0	83.7	2.4	85.9	5.0	83.7	2.6
Output_1_5	7680	160	8.0	0.01	3.07	0.05	11.9 5	0.09	11.7 0	0.19	320.0	210.0	85.6	2.6	91.0	10. 0	85.6	2.5
Output_1_138	5900	269	4.8	0.01	5.58	0.05	15.0 6	0.10	13.6 8	0.03	170.0	290.0	87.2	4.9	92.0	12. 0	87.2	4.9
Output_1_72	3170	84	12.7	0.01	9.56	0.05	21.5 7	0.10	26.5 3	0.76	190.0	430.0	87.3	8.4	94.0	24. 0	87.3	8.5
Output_1_66	14870	278	3.1	0.01	2.58	0.05	9.96	0.10	9.84	0.41	150.0	190.0	91.8	2.3	93.3	8.7	91.8	2.1
Output_1_115	3390	83	5.7	0.01	4.57	0.05	14.9 7	0.10	15.0 0	0.18	240.0	290.0	93.9	4.2	97.0	14. 0	93.9	4.2
Output_1_43	7580	469	3.2	0.02	2.59	0.05	7.80	0.11	7.47	0.20	200.0	140.0	98.9	2.6	104.4	7.4	98.9	3.0
Output_1_122	4300	130	5.3	0.02	6.37	0.06	18.9 7	0.13	21.0 9	0.51	460.0	410.0	100.3	6.4	121.0	25. 0	100.3	5.2
Output_1_34	16420	915	2.9	0.02	1.74	0.05	4.63	0.11	4.37	0.08	171.0	96.0	103.0	1.8	105.7	4.4	103.0	2.0
Output_1_75	21080	785	2.8	0.02	2.64	0.05	6.01	0.11	6.12	0.40	180.0	120.0	104.0	2.7	103.9	6.0	104.0	2.4
Output_1_51	22510	620	4.1	0.02	1.87	0.05	5.11	0.11	5.31	0.14	220.0	110.0	105.8	2.0	110.2	5.5	105.8	1.9
Output_1_83	9800	214	2.2	0.02	2.92	0.05	7.28	0.13	6.77	0.10	210.0	150.0	118.3	3.4	121.2	7.8	118.3	3.6
Output_1_157	19300	468	5.3	0.02	1.83	0.05	5.61	0.13	5.21	0.23	180.0	120.0	118.6	2.2	121.1	5.9	118.6	2.2
Output_1_87	6690	115	1.8	0.02	3.76	0.06	17.8 6	0.14	18.4 4	0.03	370.0	370.0	118.8	4.4	133.0	23. 0	118.8	4.4
Output_1_8	9550	142	1.4	0.02	2.15	0.05	5.51	0.13	5.50	0.11	150.0	110.0	119.0	2.6	119.8	6.2	119.0	2.7
Output_1_139	6040	204	1.9	0.02	3.91	0.05	8.37	0.13	8.80	0.21	120.0	170.0	120.8	4.7	119.5	9.5	120.8	4.7
Output_1_107	8860	131	2.8	0.02	2.11	0.05	5.47	0.13	5.72	0.14	270.0	110.0	121.3	2.5	126.4	6.8	121.3	2.7
Output_1_76	21140	641	1.6	0.02	2.75	0.05	8.56	0.13	6.98	0.08	290.0	180.0	123.0	3.4	128.2	8.5	123.0	2.6

								1		1	1					1	1	
Output_1_163	14130	334	1.5	0.02	1.92	0.05	4.50	0.14	4.45	0.10	229.0	96.0	123.3	2.3	130.2	5.4	123.3	2.2
Output_1_82	25510	567	1.1	0.02	3.10	0.05	3.19	0.13	4.51	0.72	198.0	68.0	123.5	3.8	124.7	5.3	123.5	4.4
Output_1_20	45900	650	5.5	0.02	4.72	0.05	4.44	0.13	7.11	0.80	170.0	100.0	124.6	5.8	126.1	8.5	124.6	5.8
Output_1_97	11090	151	2.2	0.02	2.71	0.05	5.61	0.14	5.11	0.13	320.0	120.0	124.7	3.3	137.1	6.6	124.7	3.0
Output_1_71	11780	196	1.7	0.02	2.51	0.05	5.27	0.15	5.34	0.25	330.0	110.0	127.0	3.2	139.8	7.0	127.0	3.5
Output_1_98	10070	129	2.2	0.02	3.08	0.05	9.53	0.14	9.72	0.59	330.0	210.0	128.3	3.9	136.0	13. 0	128.3	3.5
Output_1_73	7290	130	4.0	0.02	3.32	0.05	8.10	0.15	8.97	0.33	170.0	170.0	128.7	4.2	137.0	11. 0	128.7	6.4
Output_1_61	9360	107	1.7	0.02	2.52	0.05	6.34	0.13	6.18	0.09	130.0	120.0	128.9	3.2	127.6	7.4	128.9	3.3
Output_1_173	9990	201	1.5	0.02	1.86	0.05	5.64	0.15	5.37	0.07	240.0	120.0	130.6	2.4	139.0	7.0	130.6	2.6
Output_1_16	6040	75	2.9	0.02	2.78	0.06	12.5 2	0.15	11.9 2	0.02	330.0	250.0	130.7	3.6	142.0	16. 0	130.7	5.7
Output_1_7	22810	308	3.2	0.02	1.46	0.05	3.45	0.14	3.65	0.30	153.0	73.0	130.8	1.9	130.3	4.5	130.8	1.8
Output_1_39	6340	369	1.2	0.02	4.18	0.06	12.7 3	0.15	10.7 4	0.18	350.0	260.0	131.1	5.4	141.0	14. 0	131.1	5.4
Output_1_2	32740	533	3.0	0.02	3.15	0.05	6.47	0.14	5.58	0.22	230.0	140.0	131.7	4.1	132.9	7.0	131.7	4.0
Output_1_74	15900	294	2.4	0.02	1.40	0.05	4.31	0.14	4.04	0.13	222.0	91.0	132.3	1.8	136.1	5.1	132.3	1.7
Output_1_9	3950	52	1.9	0.02	3.52	0.05	10.0 0	0.15	10.2 7	0.14	200.0	190.0	134.0	4.7	137.0	13. 0	134.0	4.8
Output_1_6	13200	178	1.6	0.02	2.73	0.05	5.31	0.16	5.02	0.26	360.0	110.0	135.5	3.7	146.4	6.9	135.5	3.5
Output_1_132	4680	150	3.3	0.02	3.45	0.05	7.41	0.15	8.78	0.28	290.0	150.0	136.6	4.7	141.0	12. 0	136.6	4.4
Output_1_33	14860	479	2.0	0.02	2.14	0.05	7.09	0.15	7.38	0.36	170.0	140.0	136.8	2.9	141.0	10. 0	136.8	4.6
Output_1_1	13620	230	1.6	0.02	2.52	0.05	6.15	0.15	6.68	0.35	200.0	130.0	136.8	3.4	141.2	8.5	136.8	3.6
Output_1_3	3680	53	1.4	0.02	3.39	0.05	10.1 7	0.15	9.15	0.01	300.0	200.0	137.5	4.6	144.0	13. 0	137.5	4.6
Output_1_63	5540	60	1.5	0.02	2.73	0.05	8.13	0.15	6.76	0.13	140.0	150.0	138.0	3.7	139.7	9.1	138.0	3.6
Output_1_130	5280	159	2.4	0.02	2.43	0.05	8.58	0.16	8.64	0.09	320.0	180.0	139.3	3.4	152.0	12. 0	139.3	3.3
Output_1_123	3740	84	2.7	0.02	5.94	0.05	15.9 2	0.15	13.7 3	0.08	270.0	300.0	139.7	8.2	144.0	19. 0	139.7	8.1
Output_1_45	5350	187	1.0	0.02	5.02	0.05	13.4 3	0.16	16.7 7	0.44	240.0	280.0	139.9	7.2	146.0	23. 0	139.9	7.0
Output_1_137	48500	1421	1.2	0.02	1.73	0.05	2.57	0.16	2.44	0.19	213.0	56.0	140.4	2.4	146.9	3.3	140.4	2.6
Output_1_56	11600	137	1.2	0.02	1.41	0.05	8.35	0.16	7.45	0.02	350.0	180.0	140.4	2.0	153.0	12. 0	140.4	2.2
Output_1_55	6240	75	1.6	0.02	2.40	0.05	8.83	0.16	8.75	0.04	310.0	180.0	140.5	3.4	150.0	12. 0	140.5	3.5
Output_1_172	7990	156	2.6	0.02	2.86	0.05	8.60	0.15	8.61	0.26	170.0	170.0	140.7	4.0	142.0	11. 0	140.7	4.7
Output_1_153	5350	107	2.3	0.02	2.34	0.05	6.65	0.17	6.02	0.16	330.0	140.0	141.4	3.3	155.8	9.1	141.4	3.5
Output_1_21	27430	350	2.0	0.02	1.98	0.05	3.77	0.15	3.92	0.07	212.0	82.0	141.5	2.8	144.5	5.3	141.5	3.4
Output_1_92	28450	381	2.3	0.02	3.10	0.05	3.56	0.16	4.68	0.59	331.0	80.0	142.0	4.3	154.6	6.7	142.0	3.8
Output_1_12	10440	124	1.2	0.02	1.66	0.05	4.25	0.16	4.73	0.21	259.0	92.0	142.3	2.3	149.0	6.6	142.3	2.4
Output_1_54	13230	209	1.7	0.02	1.92	0.05	4.66	0.15	4.79	0.32	161.0	95.0	142.5	2.7	145.5	6.5	142.5	2.6
Output_1_52	16600	314	2.0	0.02	1.88	0.05	5.10	0.16	5.27	0.22	220.0	110.0	142.6	2.6	149.4	7.6	142.6	2.4
Output_1_32	9990	283	1.0	0.02	2.98	0.05	8.92	0.17	8.88	0.18	370.0	190.0	143.1	4.3	158.0	13. 0	143.1	5.5
Output_1_100	8040	95	2.4	0.02	2.27	0.05	5.41	0.15	5.09	0.12	190.0	110.0	143.3	3.2	144.3	6.9	143.3	3.4
Output_1_148	30520	665	1.4	0.02	1.78	0.05	3.46	0.15	3.33	0.33	168.0	74.0	143.4	2.5	144.6	4.5	143.4	2.6
Output_1_160	3750	76	1.5	0.02	2.49	0.05	8.38	0.17	8.67	0.01	370.0	170.0	143.4	3.5	161.0	13. 0	143.4	3.7
Output_1_23	8400	118	2.6	0.02	5.31	0.05	7.60	0.15	7.79	0.53	210.0	160.0	143.7	7.6	145.0	11. 0	143.7	7.3
Output_1_14	27340	317	1.9	0.02	1.55	0.05	3.62	0.16	3.73	0.02	183.0	79.0	143.8	2.2	146.5	5.0	143.8	2.3

								1		1	1					1	1	
Output_1_19	8710	102	1.3	0.02	3.44	0.05	11.9 3	0.15	11.1 1	0.22	180.0	230.0	144.4	4.9	144.0	15. 0	144.4	5.6
Output_1_104	11850	144	3.7	0.02	2.16	0.05	4.68	0.16	5.47	0.42	242.0	98.0	144.6	3.1	149.2	7.4	144.6	2.9
Output_1_116	8370	133	1.9	0.02	2.73	0.05	5.32	0.16	5.19	0.16	140.0	100.0	144.7	3.9	148.0	7.3	144.7	3.8
Output_1_145	15760	357	2.7	0.02	2.11	0.05	4.15	0.16	5.07	0.58	213.0	90.0	144.8	3.0	149.8	6.7	144.8	3.0
Output_1_151	13490	281	1.0	0.02	2.37	0.05	6.20	0.17	6.51	0.06	240.0	130.0	145.4	3.4	158.2	9.1	145.4	3.2
Output_1_105	46600	570	1.7	0.02	3.28	0.05	3.29	0.16	3.57	0.53	274.0	74.0	145.7	4.7	149.1	4.6	145.7	4.7
Output_1_95	2930	35	1.4	0.02	3.44	0.05	10.8 5	0.16	10.3 2	0.19	260.0	200.0	146.3	5.0	147.0	13. 0	146.3	5.5
Output_1_69	3550	46	1.5	0.02	2.91	0.05	11.1 8	0.16	11.1 8	0.11	180.0	210.0	146.5	4.2	150.0	16. 0	146.5	4.4
Output_1_70	19530	262	1.9	0.02	1.47	0.05	4.61	0.15	4.46	0.01	87.0	92.0	147.0	2.1	144.0	6.0	147.0	2.1
Output_1_141	5590	146	2.4	0.02	2.25	0.05	9.07	0.16	8.59	0.12	220.0	180.0	147.2	3.3	152.0	12. 0	147.2	3.5
Output_1_140	5380	145	2.1	0.02	3.24	0.05	8.64	0.16	8.18	0.19	270.0	160.0	147.3	4.7	149.0	12. 0	147.3	4.8
Output_1_128	3690	94	1.3	0.02	3.26	0.05	9.42	0.17	9.41	0.14	270.0	180.0	147.5	4.6	160.0	13. 0	147.5	4.5
Output_1_114	15960	237	1.6	0.02	2.36	0.05	5.03	0.18	5.08	0.40	330.0	110.0	148.3	3.4	164.9	8.0	148.3	3.3
Output_1_112	60300	832	1.5	0.02	1.98	0.05	3.39	0.16	3.20	0.32	199.0	75.0	148.4	2.9	150.3	4.5	148.4	3.1
Output_1_99	2860	32	2.2	0.02	4.29	0.06	13.2 5	0.18	11.2 4	0.31	380.0	280.0	148.4	6.3	165.0	18. 0	148.4	7.0
Output_1_154	9550	184	1.6	0.02	2.27	0.05	5.15	0.16	5.52	0.19	140.0	100.0	148.6	3.3	148.3	7.6	148.6	3.6
Output_1_111	3620	49	2.8	0.02	3.58	0.05	8.98	0.16	9.32	0.30	180.0	170.0	148.7	5.0	153.0	13. 0	148.7	5.2
Output_1_142	6080	154	2.3	0.02	2.96	0.05	6.41	0.17	7.02	0.19	270.0	130.0	148.7	4.4	160.0	10. 0	148.7	4.2
Output_1_77	5230	125	1.8	0.02	2.44	0.05	7.26	0.16	6.83	0.16	180.0	140.0	148.8	3.6	151.2	9.8	148.8	3.5
Output_1_35	3630	143	1.5	0.02	3.41	0.05	11.1 6	0.16	11.5 4	0.19	150.0	210.0	149.5	5.0	148.0	15. 0	149.5	5.0
Output_1_36	85300	4040	5.3	0.02	1.83	0.05	2.20	0.16	2.50	0.66	186.0	47.0	150.1	2.7	154.1	3.6	150.1	2.8
Output_1_131	11410	325	1.3	0.02	2.72	0.05	7.36	0.17	6.51	0.08	240.0	150.0	150.1	4.1	158.2	9.9	150.1	4.1
Output_1_164	3660	70	3.0	0.02	2.71	0.05	8.78	0.15	8.44	0.14	90.0	170.0	150.6	4.0	146.0	12. 0	150.6	4.3
Output_1_134	13990	402	1.4	0.02	1.86	0.05	4.74	0.16	5.06	0.40	124.0	94.0	150.7	2.7	148.6	7.1	150.7	2.7
Output_1_102	3290	36	2.6	0.02	3.68	0.05	10.4 0	0.17	10.4 7	0.04	240.0	210.0	150.7	5.4	163.0	16. 0	150.7	5.4
Output_1_171	11570	214	1.3	0.02	1.82	0.05	6.07	0.16	6.03	0.23	150.0	120.0	150.8	2.7	149.4	8.4	150.8	2.5
Output_1_135	28750	815	3.1	0.02	2.32	0.05	3.77	0.17	4.23	0.30	208.0	82.0	150.9	3.5	155.3	6.1	150.9	3.3
Output_1_125	6310	142	1.5	0.02	2.62	0.05	7.44	0.16	6.75	0.08	170.0	140.0	151.0	3.9	153.2	9.7	151.0	3.9
Output_1_49	3540	86	4.2	0.02	2.74	0.05	10.1 8	0.17	9.52	0.18	240.0	200.0	151.2	4.1	157.0	14. 0	151.2	4.6
Output_1_158	20880	388	2.4	0.02	1.64	0.05	3.92	0.17	3.77	0.13	226.0	84.0	151.6	2.5	161.4	5.6	151.6	2.7
Output_1_118	11280	193	2.3	0.02	2.22	0.05	5.40	0.17	5.62	0.17	220.0	110.0	151.8	3.3	156.8	8.1	151.8	3.4
Output_1_168	3400	63	2.4	0.02	2.59	0.05	11.7 2	0.17	10.3 0	0.19	260.0	220.0	152.6	3.9	154.0	14. 0	152.6	3.9
Output_1_68	49200	561	2.4	0.02	2.95	0.05	2.85	0.17	3.82	0.63	166.0	64.0	153.1	4.5	155.0	5.5	153.1	4.0
Output_1_86	34560	511	1.9	0.02	2.74	0.05	4.01	0.17	4.76	0.39	182.0	88.0	153.3	4.2	155.7	6.9	153.3	4.0
Output_1_62	16200	154	1.7	0.02	1.70	0.05	4.33	0.17	3.71	0.01	219.0	90.0	153.3	2.5	156.9	5.3	153.3	2.7
Output_1_127	5290	125	2.4	0.02	2.91	0.05	10.8 7	0.17	9.70	0.02	140.0	190.0	153.5	4.4	153.0	14. 0	153.5	4.7
Output_1_155	49400	912	1.8	0.02	2.74	0.05	2.39	0.17	3.95	0.74	205.0	56.0	153.6	4.1	156.6	5.7	153.6	4.2
Output_1_59	28570	271	1.8	0.02	1.24	0.05	4.09	0.16	4.19	0.02	139.0	87.0	154.4	1.9	154.7	6.0	154.4	1.8
Output_1_15	11410	121	2.0	0.02	1.64	0.05	6.16	0.17	5.71	0.11	220.0	130.0	155.6	2.5	158.6	8.1	155.6	2.9
Output_1_44	6280	221	2.1	0.02	4.49	0.06	15.3 0	0.19	15.8 7	0.23	510.0	360.0	156.0	6.9	175.0	26. 0	156.0	6.5

								I		1	l							
Output_1_146	32830	686	4.0	0.02	1.59	0.05	3.50	0.17	3.36	0.30	129.0	71.0	156.1	2.5	156.3	4.9	156.1	2.6
Output_1_37	6250	296	1.9	0.02	2.90	0.05	7.28	0.17	7.10	0.08	230.0	140.0	156.1	4.5	158.0	10. 0	156.1	4.7
Output_1_101	10490	111	2.7	0.02	2.15	0.05	5.36	0.17	5.21	0.12	270.0	110.0	156.9	3.3	161.4	7.8	156.9	3.3
Output_1_4	18520	228	2.4	0.02	1.86	0.05	5.58	0.17	5.75	0.22	260.0	120.0	157.1	2.9	162.4	8.6	157.1	2.9
Output_1_120	9180	173	6.5	0.02	3.15	0.05	10.6 9	0.18	10.8 0	0.24	200.0	220.0	157.5	4.9	164.0	16. 0	157.5	4.1
Output_1_79	2981	60	1.4	0.02	3.25	0.05	10.5 1	0.17	10.4 7	0.01	310.0	200.0	158.8	5.1	163.0	16. 0	158.8	5.2
Output_1_144	12120	258	1.1	0.03	2.95	0.05	4.96	0.18	5.42	0.31	300.0	110.0	159.8	4.7	171.0	8.3	159.8	4.6
Output_1_27	4410	78	1.9	0.03	2.67	0.05	9.05	0.17	8.93	0.18	80.0	170.0	161.9	4.3	157.0	13. 0	161.9	4.2
Output_1_129	20800	532	2.4	0.03	2.71	0.05	5.36	0.17	4.56	0.13	140.0	110.0	162.0	4.3	158.2	6.7	162.0	4.0
Output_1_93	22690	257	2.1	0.03	1.76	0.05	5.13	0.19	4.48	0.01	300.0	110.0	163.0	2.8	172.5	7.1	163.0	2.5
Output_1_25	9230	144	1.7	0.03	1.75	0.05	6.13	0.19	5.67	0.18	320.0	120.0	163.8	2.9	179.0	9.5	163.8	3.7
Output_1_109	63910	726	2.0	0.03	1.99	0.05	2.38	0.18	2.34	0.45	214.0	53.0	166.0	3.3	170.9	3.7	166.0	3.3
Output_1_106	4680	51	4.5	0.03	2.71	0.06	10.6 8	0.20	10.2 0	0.31	390.0	210.0	166.8	4.5	183.0	18. 0	166.8	4.4
Output_1_117	3980	58	2.8	0.03	3.46	0.05	7.78	0.18	8.29	0.18	200.0	150.0	169.2	5.8	168.0	13. 0	169.2	5.7
Output_1_152	12570	214	2.3	0.03	2.17	0.05	4.48	0.19	4.21	0.06	162.0	93.0	172.5	3.7	172.2	6.7	172.5	3.6
Output_1_46	20730	485	1.9	0.03	3.14	0.06	4.30	0.26	3.88	0.27	531.0	91.0	199.9	6.2	232.7	8.3	199.9	5.4
Output_1_50	11000	168	4.5	0.03	2.13	0.06	5.40	0.25	5.91	0.40	470.0	120.0	205.7	4.3	231.0	12. 0	205.7	4.8
Output_1_121	9000	124	3.8	0.03	4.50	0.05	15.9 3	0.25	16.4 0	0.05	360.0	340.0	210.9	9.1	226.0	33. 0	210.9	7.5
Output_1_170	8080	103	2.3	0.03	3.17	0.05	6.01	0.24	7.02	0.47	180.0	120.0	220.1	6.6	219.0	14. 0	220.1	6.9
Output_1_126	10730	169	1.9	0.03	2.54	0.06	5.94	0.28	5.38	0.14	530.0	130.0	220.4	5.3	249.0	12. 0	220.4	5.6
Output_1_29	21400	318	2.4	0.04	3.20	0.05	6.85	0.28	6.81	0.43	340.0	150.0	237.3	7.2	250.0	15. 0	237.3	6.7
Output_1_136	20050	348	1.2	0.04	2.64	0.05	4.80	0.27	4.91	0.21	200.0	100.0	239.9	6.3	238.0	10. 0	239.9	6.5
Output_1_119	19010	211	3.8	0.04	4.24	0.06	7.90	0.32	7.76	0.29	550.0	180.0	253.0	10. 0	283.0	19. 0	253.0	13.0
Output_1_84	13520	124	2.5	0.04	3.82	0.06	5.70	0.37	4.07	0.30	650.0	120.0	264.4	9.9	319.0	11. 0	264.4	10.0
Output_1_90	95000	648	1.3	0.05	1.50	0.05	2.77	0.33	2.68	0.12	369.0	63.0	285.1	4.2	290.8	6.8	285.1	4.4
Output_1_150	12930	123	1.0	0.05	3.78	0.06	4.24	0.41	5.10	0.47	577.0	90.0	316.0	12. 0	349.0	15. 0	316.0	12.0
Output_1_81	9100	84	1.8	0.05	2.34	0.06	5.51	0.42	5.26	0.49	600.0	130.0	322.5	7.4	354.0	16. 0	322.5	7.5
Output_1_169	67780	577	2.1	0.05	1.79	0.06	2.78	0.42	2.38	0.27	508.0	61.0	326.5	5.7	356.3	7.4	326.5	5.0
Output_1_143	39550	370	4.2	0.06	1.86	0.06	2.60	0.50	2.21	0.13	651.0	59.0	369.7	6.8	410.8	7.5	369.7	6.1
Output_1_24	23620	136	3.3	0.06	3.21	0.07	3.21	0.55	4.77	0.67	791.0	71.0	370.0	12. 0	440.0	17. 0	370.0	11.0
Output_1_11	14570	67	1.9	0.06	1.85	0.06	5.10	0.47	5.36	0.17	480.0	110.0	371.9	6.6	387.0	17. 0	371.9	7.0
Output_1_80	11520	93	1.6	0.06	6.21	0.06	10.8 6	0.51	12.5 7	0.38	810.0	210.0	373.0	23. 0	431.0	50. 0	373.0	23.0
Output_1_162	25250	184	2.0	0.06	1.76	0.06	3.32	0.52	3.63	0.14	618.0	65.0	389.9	6.8	427.0	12. 0	389.9	6.2
Output_1_161	92100	601	1.1	0.07	1.45	0.06	2.04	0.57	2.30	0.56	550.0	44.0	430.1	6.1	456.1	8.5	430.1	6.6
Output_1_124	55000	409	2.9	0.07	1.99	0.06	2.04	0.62	2.27	0.54	724.0	43.0	438.2	8.5	488.3	8.7	438.2	7.6
Output 1 94	45300	179	1.7	0.07	1.70	0.06	3.48	0.56	3.06	0.03	484.0	79.0	439.1	7.4	450.0	10. 0	439.1	9.8
Output_1_113	73500	326	1.6	0.08	1.70	0.06	2.18	0.62	2.25	0.41	575.0	49.0	474.2	7.5	489.9	8.9	474.2	8.8
 Output_1_149	47180	226	0.4	0.10	1.70	0.07	2.20	0.93	2.57	0.51	870.0	46.0	614.3	9.9	668.0	13. 0	614.3	10.0
Output 1 48	19110	118	1.1	0.10	2.60	0.07	3.67	0.98	3.68	0.55	855.0	78.0	637.0	16. 0	694.0	18. 0	637.0	15.0
Output 1 108	34850	86	1.0	0.12	1.50	0.07	2.56	1.10	2.64	0.44	812.0	54.0	729.0	10. 0	750.0	- 14. 0	729.0	11.0
			-					•	-		-			-				

Output_1_38	60500	537	6.8	0.15	6.11	0.11	1.71	2.10	5.71	0.95	1710.0	32.0	874.0	50. 0	#####	41. 0	874.0	53.0
Sample 18ATW19																		
Output_1_59	7340	1251	136.0	0.01	3.39	0.05	10.4 1	0.06	10.1 4	0.13	230.0	220.0	58.6	2.0	62.0	6.1	58.6	2.3
Output_1_7	9860	361	109.0	0.01	2.39	0.05	9.48	0.06	9.03	0.07	90.0	190.0	59.0	1.4	59.9	5.3	59.0	1.8
Output_1_124	8800	405	80.4	0.01	3.85	0.05	9.52	0.07	7.40	0.30	230.0	220.0	66.7	2.5	69.0	4.9	66.7	2.8
Output_1_66	10090	1071	13.4	0.01	3.50	0.05	9.49	0.07	10.0 1	0.17	180.0	200.0	69.6	2.4	73.2	7.1	69.6	2.8
Output_1_11	8900	223	11.3	0.01	3.58	0.05	8.86	0.07	8.97	0.31	50.0	170.0	71.5	2.6	72.0	6.2	71.5	2.9
Output_1_135	10440	474	5.6	0.01	2.58	0.05	6.33	0.08	5.30	0.17	130.0	140.0	72.1	1.8	73.9	3.8	72.1	2.3
Output_1_71	10290	423	37.2	0.01	3.59	0.05	7.57	0.08	8.35	0.41	180.0	160.0	73.2	2.6	77.1	6.2	73.2	2.9
Output_1_139	14890	517	31.4	0.01	2.24	0.05	5.67	0.08	6.11	0.25	150.0	120.0	74.3	1.6	76.7	4.5	74.3	2.2
Output_1_67	6920	459	5.7	0.01	3.43	0.05	10.5 1	0.08	10.4 7	0.01	210.0	220.0	74.8	2.5	79.1	8.0	74.8	2.9
Output_1_43	23500	2009	109.1	0.01	4.78	0.05	6.84	0.08	6.57	0.31	240.0	160.0	75.0	3.6	80.2	5.1	75.0	3.8
Output_1_127	3550	156	4.2	0.01	3.22	0.05	8.86	0.08	8.44	0.29	170.0	180.0	75.6	2.4	80.5	6.4	75.6	2.8
Output_1_128	12510	583	2.6	0.01	2.95	0.05	6.18	0.08	5.30	0.03	190.0	140.0	76.0	2.2	79.1	4.0	76.0	2.7
Output_1_136	3480	140	2.0	0.01	3.71	0.05	7.65	0.08	7.60	0.07	260.0	170.0	76.1	2.8	81.6	5.7	76.1	3.2
Output_1_106	4500	303	1.5	0.01	2.27	0.05	8.51	0.08	7.91	0.09	200.0	170.0	76.2	1.7	80.0	6.1	76.2	2.3
Output_1_20	8530	875	7.2	0.01	4.62	0.05	8.62	0.08	7.50	0.24	150.0	180.0	76.3	3.5	78.1	5.7	76.3	3.8
Output_1_107	7600	505	3.3	0.01	3.24	0.05	12.1 8	0.09	11.3 6	0.07	360.0	250.0	77.0	2.5	85.3	9.3	77.0	2.9
Output_1_30	3160	232	5.8	0.01	4.56	0.05	13.6 7	0.09	11.5 0	0.37	260.0	280.0	77.3	3.5	83.5	9.3	77.3	3.8
Output_1_5	10130	357	71.3	0.01	3.43	0.05	10.7 8	0.09	11.7 6	0.27	290.0	190.0	78.4	2.6	83.0	9.3	78.4	3.1
Output_1_81	9420	1384	1.4	0.01	2.53	0.05	8.33	0.08	8.14	0.05	160.0	170.0	78.4	2.0	82.0	6.3	78.4	2.5
Output_1_144	11240	390	2.0	0.01	3.00	0.05	8.63	0.09	9.42	0.31	190.0	190.0	81.1	2.4	86.5	7.8	81.1	2.9
Output_1_98	8290	296	28.6	0.01	3.22	0.05	5.04	0.08	5.56	0.45	90.0	110.0	81.5	2.6	82.3	4.4	81.5	3.1
Output_1_138	11250	346	0.5	0.01	1.87	0.05	7.30	0.09	7.10	0.05	240.0	150.0	82.1	1.6	86.1	5.8	82.1	2.2
Output_1_120	1217	43	1.4	0.01	8.40	0.07	27.2 7	0.12	28.2 1	0.02	440.0	510.0	84.1	7.0	109.0	29. 0	84.1	7.1
Output_1_88	1960	224	2.3	0.01	5.79	0.06	23.2 1	0.10	20.5 9	0.21	370.0	450.0	84.1	4.8	98.0	19. 0	84.1	5.1
Output_1_16	10240	324	16.7	0.01	6.07	0.05	10.0 4	0.09	9.37	0.18	220.0	220.0	84.3	5.1	88.0	7.9	84.3	5.3
Output_1_125	20500	730	22.1	0.01	5.69	0.05	6.02	0.09	4.93	0.56	170.0	130.0	84.4	4.8	86.7	4.1	84.4	5.0
Output_1_12	4450	103	2.1	0.01	4.14	0.05	8.25	0.09	7.97	0.20	170.0	170.0	84.9	3.5	85.1	6.5	84.9	3.9
Output_1_31	18880	1299	3.8	0.01	2.11	0.05	6.34	0.09	6.95	0.27	130.0	140.0	84.9	1.8	88.0	5.8	84.9	2.4
Output_1_61	2250	285	2.6	0.01	3.84	0.05	13.8 6	0.09	13.1 9	0.04	190.0	280.0	85.0	3.2	88.0	11. 0	85.0	3.6
Output_1_13	13240	300	4.8	0.01	4.50	0.05	6.02	0.09	6.93	0.42	130.0	130.0	86.9	3.9	89.1	6.0	86.9	4.2
Output_1_10	22700	497	3.4	0.01	4.72	0.05	8.12	0.10	8.42	0.28	230.0	180.0	88.1	4.1	94.2	7.6	88.1	4.5
Output_1_102	15770	745	2.1	0.01	5.29	0.05	10.3 1	0.10	9.62	0.23	370.0	270.0	89.6	4.7	96.5	8.9	89.6	5.0
Output_1_8	9190	204	2.5	0.01	2.84	0.05	6.68	0.10	6.86	0.23	160.0	140.0	90.1	2.6	93.1	6.1	90.1	3.1
Output_1_37	9290	590	3.8	0.01	4.25	0.05	7.33	0.10	7.77	0.49	190.0	160.0	91.9	3.9	96.3	7.5	91.9	4.2
Output_1_62	9090	1027	1.2	0.01	2.00	0.05	9.13	0.09	8.40	0.11	60.0	180.0	92.9	1.8	91.0	7.3	92.9	2.6
Output_1_32	17530	1098	3.0	0.01	6.16	0.05	10.4 7	0.10	8.76	0.16	230.0	230.0	93.6	5.7	99.1	8.3	93.6	6.0
Output_1_27	13450	784	2.2	0.01	2.46	0.05	4.62	0.10	5.35	0.38	90.0	100.0	93.7	2.3	92.3	4.7	93.7	2.9

								1		l	l					l		
Output_1_126	13640	461	1.1	0.01	2.72	0.05	6.53	0.10	6.94	0.35	80.0	140.0	94.0	2.6	93.4	6.1	94.0	3.1
Output_1_103	17460	757	2.1	0.01	2.38	0.05	4.79	0.10	5.23	0.46	180.0	110.0	94.3	2.3	97.2	5.0	94.3	2.9
Output_1_3	15530	648	2.8	0.02	4.57	0.05	6.10	0.11	6.48	0.44	270.0	130.0	96.7	4.4	101.3	6.2	96.7	4.8
Output_1_141	10270	259	4.8	0.02	3.75	0.05	11.3 6	0.10	10.7 8	0.05	90.0	240.0	99.0	3.7	99.0	10. 0	99.0	4.2
Output_1_95	16920	444	1.4	0.02	2.69	0.05	6.67	0.11	5.26	0.31	220.0	150.0	99.9	2.6	104.4	5.2	99.9	3.3
Output_1_33	34400	1987	0.6	0.02	3.44	0.05	5.53	0.11	7.21	0.52	150.0	130.0	102.2	3.5	101.6	7.0	102.2	4.0
Output_1_140	13200	322	4.5	0.02	3.23	0.05	7.00	0.11	8.10	0.53	190.0	150.0	105.0	3.4	109.0	8.3	105.0	3.9
Output_1_76	10630	320	1.7	0.02	2.92	0.05	7.03	0.11	7.44	0.40	210.0	150.0	105.1	3.0	108.2	7.7	105.1	3.6
Output_1_110	13430	630	2.2	0.02	2.94	0.05	5.72	0.12	6.08	0.30	230.0	130.0	106.5	3.1	112.0	6.4	106.5	3.7
Output_1_35	25990	1416	1.3	0.02	5.13	0.05	6.80	0.12	6.71	0.37	200.0	150.0	107.2	5.5	111.5	7.1	107.2	5.9
Output_1_46	13180	815	2.8	0.02	2.35	0.05	4.90	0.12	5.39	0.39	130.0	100.0	108.9	2.5	110.4	5.7	108.9	3.3
Output_1_51	7960	546	6.0	0.02	6.47	0.05	12.1 4	0.12	13.8 2	0.52	260.0	260.0	108.9	6.8	117.0	16. 0	108.9	7.1
Output_1_83	13290	2310	10.5	0.02	3.13	0.05	5.78	0.12	5.60	0.26	240.0	130.0	110.1	3.4	112.9	6.0	110.1	4.0
Output_1_34	39800	2139	0.6	0.02	3.06	0.05	6.49	0.12	5.84	0.26	170.0	140.0	110.6	3.3	113.3	6.3	110.6	4.0
Output_1_109	9960	462	3.0	0.02	3.68	0.05	7.14	0.12	7.25	0.26	190.0	160.0	111.2	4.0	114.9	7.8	111.2	4.6
Output_1_70	14750	410	3.6	0.02	4.76	0.05	6.37	0.13	7.87	0.31	330.0	150.0	112.6	5.3	120.2	9.0	112.6	5.7
Output_1_92	10340	301	15.1	0.02	3.42	0.05	13.8 3	0.12	13.7 1	0.15	190.0	300.0	113.9	3.9	119.0	15. 0	113.9	4.4
Output_1_49	20500	1313	2.1	0.02	7.14	0.05	7.49	0.13	7.69	0.55	270.0	170.0	116.3	8.1	123.6	9.0	116.3	8.4
Output_1_90	11530	461	23.2	0.02	7.69	0.06	7.26	0.13	6.73	0.53	360.0	160.0	116.4	8.8	125.8	8.0	116.4	9.0
Output_1_91	27400	877	1.7	0.02	2.83	0.05	4.06	0.12	3.89	0.26	160.0	88.0	117.5	3.3	118.0	4.4	117.5	4.0
Output_1_64	11280	830	2.0	0.02	6.97	0.05	15.1 5	0.14	14.1 8	0.02	220.0	330.0	128.1	8.9	133.0	17. 0	128.1	9.2
Output_1_26	20730	854	3.9	0.02	2.29	0.05	3.61	0.14	3.80	0.39	185.0	84.0	128.4	2.9	130.1	4.6	128.4	3.9
Output_1_50	23850	1304	1.3	0.02	4.93	0.05	5.53	0.14	5.69	0.25	130.0	120.0	129.7	6.4	131.8	7.0	129.7	6.8
Output_1_117	2001	52	2.1	0.02	5.83	0.05	16.4 2	0.14	14.6 9	0.09	170.0	320.0	131.7	7.8	134.0	19. 0	131.7	8.2
Output_1_24	12100	451	1.3	0.02	2.90	0.05	6.81	0.15	7.33	0.43	290.0	150.0	131.9	3.8	141.4	9.7	131.9	4.6
Output_1_74	11600	244	1.9	0.02	2.56	0.05	9.49	0.16	8.97	0.20	340.0	220.0	139.5	3.5	147.0	12. 0	139.5	4.5
Output_1_73	35780	672	3.6	0.02	1.95	0.05	5.60	0.16	5.30	0.03	280.0	130.0	144.1	2.8	150.9	7.4	144.1	4.0
Output_1_45	1013	43	2.8	0.02	5.60	0.04	21.3 4	0.14	20.5 7	0.08	-190.0	370.0	147.6	8.5	130.0	26. 0	147.6	8.9
Output_1_36	13440	525	3.1	0.02	3.99	0.05	5.23	0.16	6.96	0.49	220.0	110.0	148.6	5.9	150.8	8.9	148.6	6.5
Output_1_53	7990	420	1.5	0.02	5.13	0.05	8.35	0.16	9.62	0.42	130.0	180.0	149.3	7.4	146.0	13. 0	149.3	7.9
Output_1_72	39810	764	3.5	0.02	2.93	0.05	6.30	0.16	6.79	0.43	220.0	140.0	150.0	4.3	153.0	10. 0	150.0	5.2
Output_1_54	9460	514	1.4	0.02	3.83	0.05	8.24	0.17	7.23	0.13	210.0	170.0	154.5	5.8	156.0	11. 0	154.5	6.6
Output_1_99	2130	44	4.8	0.02	5.74	0.05	13.0 8	0.18	13.1 4	0.28	330.0	270.0	155.1	9.1	168.0	20. 0	155.1	9.6
Output_1_116	36440	854	2.4	0.02	3.77	0.05	3.73	0.17	3.99	0.47	240.0	86.0	157.1	5.9	162.9	6.2	157.1	6.6
Output_1_38	2127	79	1.4	0.03	3.98	0.05	11.3 6	0.18	11.3 6	0.18	100.0	230.0	159.5	6.4	163.0	17. 0	159.5	7.1
Output_1_9	11600	141	2.7	0.03	3.31	0.05	5.70	0.17	6.40	0.36	220.0	120.0	159.8	5.2	160.7	9.4	159.8	6.1
Output_1_41	8320	321	2.8	0.03	3.05	0.05	6.30	0.17	5.75	0.26	230.0	140.0	160.8	4.9	162.1	8.9	160.8	5.8
Output_1_14	10280	134	3.3	0.03	2.82	0.05	6.67	0.18	6.15	0.08	270.0	140.0	160.8	4.4	166.3	9.3	160.8	5.3
Output_1_97	5940	103	3.2	0.03	3.94	0.05	6.52	0.17	7.56	0.32	150.0	130.0	161.8	6.3	161.0	11. 0	161.8	7.0
Output_1_108	11270	355	1.8	0.03	2.35	0.05	6.13	0.18	6.01	0.21	270.0	120.0	165.5	3.8	170.1	9.6	165.5	5.2

								1			l					l		
Output_1_63	32520	1981	0.7	0.03	2.17	0.05	3.28	0.18	3.62	0.34	277.0	77.0	167.1	3.6	169.8	5.7	167.1	4.9
Output_1_146	15090	280	2.2	0.03	3.18	0.05	5.92	0.18	6.15	0.24	130.0	120.0	168.0	5.3	166.6	9.4	168.0	6.2
Output_1_75	12340	208	1.2	0.03	4.58	0.05	4.52	0.18	5.56	0.58	250.0	110.0	168.2	7.2	169.9	9.4	168.2	7.8
Output_1_2	17640	476	4.2	0.03	3.56	0.06	6.54	0.22	6.02	0.10	440.0	140.0	175.2	6.2	198.0	11. 0	175.2	7.0
Output_1_142	19780	281	2.6	0.03	2.05	0.05	4.73	0.21	4.82	0.34	320.0	100.0	186.1	3.8	190.5	8.0	186.1	5.2
Output_1_79	14800	399	3.8	0.03	3.69	0.05	4.65	0.21	5.16	0.49	260.0	100.0	189.3	6.9	195.3	8.9	189.3	7.8
Output_1_19	18400	559	2.3	0.03	5.02	0.05	5.74	0.21	5.80	0.42	250.0	120.0	189.6	9.2	192.0	11. 0	189.6	9.9
Output_1_132	10950	217	2.5	0.03	3.03	0.05	5.14	0.21	5.24	0.38	210.0	110.0	190.5	5.7	193.4	9.1	190.5	6.8
Output_1_133	72300	1390	5.5	0.03	9.21	0.05	6.59	0.22	11.5 7	0.86	260.0	150.0	193.0	18. 0	198.0	21. 0	193.0	18.0
Output_1_18	13530	335	3.1	0.03	4.95	0.05	5.98	0.22	7.37	0.47	300.0	130.0	193.5	9.1	198.0	13. 0	193.5	9.8
Output_1_80	11840	540	3.3	0.03	2.06	0.05	5.26	0.22	5.50	0.26	180.0	110.0	197.0	4.0	199.0	10. 0	197.0	5.5
Output_1_119	13110	202	2.2	0.03	2.97	0.06	4.92	0.25	5.16	0.39	580.0	100.0	200.7	5.9	227.0	11. 0	200.7	7.0
Output_1_28	21570	546	2.1	0.03	2.88	0.06	3.83	0.26	3.80	0.39	503.0	91.0	218.6	6.3	236.8	8.3	218.6	7.5
Output_1_1	25640	593	2.9	0.03	2.71	0.06	6.96	0.28	6.03	0.07	520.0	150.0	219.8	5.9	252.0	14. 0	219.8	7.2
Output_1_148	19240	318	1.6	0.03	2.44	0.06	3.56	0.28	3.94	0.44	565.0	74.0	220.3	5.3	249.0	8.7	220.3	6.8
Output_1_56	18610	787	3.2	0.04	2.80	0.05	5.95	0.25	6.37	0.41	340.0	130.0	225.9	6.5	230.0	14. 0	225.9	7.8
Output_1_96	3190	38	9.1	0.04	3.86	0.05	12.2 1	0.26	12.3 1	0.15	180.0	240.0	230.0	8.9	231.0	26. 0	230.0	9.9
Output_1_52	23570	724	2.4	0.04	4.95	0.06	3.99	0.34	5.52	0.74	622.0	92.0	255.0	12. 0	298.0	15. 0	255.0	13.0
Output_1_101	20470	300	2.1	0.04	1.97	0.05	4.49	0.30	4.64	0.29	347.0	97.0	260.4	4.8	269.0	10. 0	260.4	7.0
Output_1_57	14310	488	2.2	0.04	2.56	0.06	7.18	0.32	7.19	0.24	400.0	160.0	270.6	7.0	286.0	19. 0	270.6	8.8
Output_1_55	5800	200	2.5	0.04	4.63	0.06	7.03	0.32	7.79	0.45	410.0	160.0	273.0	12. 0	281.0	19. 0	273.0	13.0
Output_1_134	96700	1210	2.1	0.04	4.36	0.06	3.45	0.33	4.28	0.71	420.0	73.0	275.0	12. 0	287.0	11. 0	275.0	13.0
Output_1_84	19890	1437	3.1	0.05	2.92	0.06	3.95	0.39	4.39	0.45	557.0	79.0	301.8	8.4	332.0	12. 0	301.8	10.0
Output_1_89	17300	432	4.3	0.05	1.84	0.06	3.93	0.37	4.11	0.44	433.0	90.0	304.8	5.5	317.0	12. 0	304.8	8.1
Output_1_40	51200	976	5.2	0.05	3.27	0.07	3.36	0.46	4.12	0.36	876.0	70.0	307.8	9.6	384.0	13. 0	307.8	11.0
Output_1_82	31890	1328	2.2	0.05	2.21	0.05	3.10	0.41	3.21	0.34	391.0	71.0	340.2	7.1	345.1	9.0	340.2	9.7
Output_1_25	23190	350	2.0	0.05	4.24	0.07	4.02	0.50	5.80	0.71	849.0	89.0	341.0	14. 0	415.0	21. 0	341.0	15.0
Output_1_42	26130	461	1.7	0.05	2.20	0.05	3.49	0.41	3.69	0.41	380.0	79.0	342.3	7.1	346.0	11. 0	342.3	9.7
Output_1_22	79400	679	16.0	0.08	1.80	0.07	2.06	0.72	2.21	0.54	867.0	42.0	481.9	8.3	555.3	9.2	481.9	12.0
Output_1_115	16240	109	1.4	0.09	5.56	0.08	4.44	1.06	8.14	0.76	1271.0	93.0	571.0	29. 0	739.0	40. 0	571.0	31.0
Output_1_112	37180	265	1.9	0.10	5.71	0.11	3.46	1.53	6.20	0.81	1835.0	64.0	623.0	34. 0	940.0	38. 0	623.0	36.0
Output_1_47	20180	197	1.6	0.11	2.82	0.06	4.44	0.95	4.96	0.49	715.0	93.0	673.0	18. 0	677.0	26. 0	673.0	22.0
Output_1_78	31970	188	5.8	0.11	2.68	0.09	3.31	1.35	3.34	0.45	1370.0	62.0	683.0	18. 0	867.0	20. 0	683.0	22.0
Output_1_131	61090	317	4.0	0.12	6.10	0.11	3.42	1.73	6.94	0.85	1722.0	60.0	727.0	42. 0	#####	45. 0	727.0	44.0
Output_1_114	16360	85	1.0	0.12	6.09	0.09	7.73	1.48	8.11	0.51	1360.0	150.0	748.0	43. 0	920.0	50. 0	748.0	45.0
Output_1_100	32200	144	8.0	0.13	5.91	0.11	4.46	2.03	6.40	0.48	1843.0	94.0	769.0	43. 0	######	47. 0	769.0	45.0
Output_1_4	15680 0	602	3.1	0.13	2.09	0.10	2.18	1.79	1.96	0.53	1557.0	40.0	812.0	16. 0	#####	13. 0	812.0	22.0
Output_1_113	71100	311	1.7	0.15	3.47	0.07	2.82	1.44	3.05	0.65	941.0	59.0	888.0	30. 0	911.0	18. 0	941.0	80.0
Output_1_122	80200	228	3.4	0.16	3.06	0.07	3.50	1.61	2.99	0.58	967.0	71.0	976.0	28. 0	973.0	19. 0	967.0	89.0
Output_1_6	48780	136	1.2	0.14	2.31	0.07	2.09	1.38	2.91	0.66	976.0	43.0	838.0	18. 0	883.0	16. 0	976.0	69.0

														25		21		
Output_1_150	82900	290	1.5	0.19	3.34	0.08	2.99	1.99	3.17	0.57	1101.0	60.0	1130.0	35. 0	#####	0	1101.0	80.0
Output_1_123	72100	204	2.8	0.16	2.47	0.08	2.71	1.70	3.06	0.63	1127.0	55.0	946.0	22. 0	######	20. 0	1127.0	77.0
Output_1_143	75500	192	2.5	0.17	3.03	0.08	2.93	1.80	2.95	0.65	1166.0	56.0	985.0	27. 0	#####	19. 0	1166.0	76.0
Output_1_118	36220	115	2.4	0.16	3.02	0.08	2.89	1.76	3.86	0.70	1174.0	58.0	968.0	27. 0	#####	25. 0	1174.0	79.0
Output_1_149	78400	325	2.1	0.19	3.00	0.08	1.99	2.02	3.42	0.76	1198.0	39.0	1103.0	30. 0	######	24. 0	1198.0	66.0
Sample 17ATW09																_		
Output_1_019	2190	122	1.7	0.02	5.23	0.06	13.8 8	0.13	13.6 0	0.17	440.0	280.0	102.6	5.3	121.0	16. 0	102.6	6.2
Output_1_012	1990	129	2.1	0.02	5.14	0.05	24.5 3	0.16	20.5 0	0.21	350.0	350.0	136.2	6.7	145.0	31. 0	136.2	8.6
Output 1 006	4440	170	1.6	0.02	5.07	0.05	10.8 5	0.15	9.52	0.02	180.0	220.0	138.5	6.7	138.0	12. 0	138.5	8.0
Output 1 034	2220	56	21	0.02	4 19	0.05	15.5	0.16	13.2	0.26	260.0	300.0	140.2	5.8	151.0	19.	140.2	72
Output 1 046	2/00	70	1.4	0.02	4.00	0.05	16.9	0.15	15.8	0.20	140.0	310.0	140.4	5.6	136.0	20.	140.4	7.1
Output 1 010	2450	120	1.4	0.02	2.54	0.05	14.8	0.15	14.4	0.20	120.0	280.0	140.4	4.0	147.0	20.	140.7	,. <u>.</u>
	2220	130	1.0	0.02	3.34	0.05	9	0.10	10.4	0.10	220.0	200.0	140.7	4.5	147.0	14.	140.7	0.0
Output_1_044	5890	208	1.9	0.02	3.40	0.06	9.62	0.16	3	0.13	320.0	210.0	140.7	4.7	154.0	13.	140.7	6.4
Output_1_045	4220	143	1.8	0.02	3.43	0.05	9.26	0.16	9.38	0.19	290.0	190.0	141.1	4.8	149.0	0 12.	141.1	6.5
Output_1_037	6570	231	1.9	0.02	5.43	0.05	7.86 10.8	0.15	8.44 10.5	0.50	220.0	170.0	141.2	7.7	145.0	0 14.	141.2	8.9
Output_1_009	3800	214	2.5	0.02	4.44	0.05	7 11.5	0.15	3 11.7	0.15	150.0	220.0	142.0	6.2	142.0	0 15.	142.0	8.0
Output_1_028	2570	55	1.8	0.02	3.67	0.05	4 13.1	0.15	2 12.8	0.04	50.0	210.0	142.4	5.2	141.0	0 17.	142.4	6.8
Output_1_041	2700	109	2.5	0.02	5.31	0.05	1	0.16	2	0.23	230.0	250.0	144.1	7.4	148.0	0	144.1	8.6
Output_1_029	19450	416	1.5	0.02	1.68	0.05	3.52	0.15	3.42	0.27	131.0	77.0	144.2	2.4	143.5	4.6 13	144.2	5.1
Output_1_033	4370	104	1.6	0.02	3.13	0.05	8.59	0.17	8.48	0.11	260.0	190.0	144.5	4.5	154.0	0	144.5	6.4
Output_1_031	1580	34	2.8	0.02	6.61	0.06	27.5 9	0.17	30.7 7	0.89	100.0	560.0	144.7	9.7	169.0	0 17	144.7	11.0
Output_1_048	2368	57	2.3	0.02	3.89	0.05	13.2	0.16	0	0.27	90.0	250.0	145.6	5.6	144.0	0	145.6	7.3
Output_1_027	2420	53	2.1	0.02	4.80	0.05	9.90	0.16	10.5	0.34	270.0	200.0	146.0	6.7	152.0	15. 0	146.0	7.8
Output_1_032	2045	46	2.0	0.02	5.24	0.06	15.9 1	0.17	15.2 0	0.15	410.0	350.0	146.0	7.7	159.0	22. 0	146.0	8.9
Output_1_017	1837	78	2.5	0.02	6.52	0.05	12.2 8	0.16	14.0 1	0.39	170.0	260.0	146.2	9.7	148.0	19. 0	146.2	11.0
Output_1_043	3200	116	2.7	0.02	6.17	0.05	11.4 0	0.17	11.1 8	0.08	330.0	220.0	146.2	8.8	161.0	16. 0	146.2	9.9
Output_1_015	1586	78	2.2	0.02	5.22	0.05	17.7 8	0.16	16.5 6	0.04	140.0	320.0	146.3	7.4	144.0	22. 0	146.3	8.7
Output_1_039	4850	188	1.8	0.02	4.26	0.05	8.79	0.15	8.50	0.25	80.0	180.0	146.5	6.2	144.0	12. 0	146.5	7.7
Output_1_016	8120	353	1.4	0.02	4.26	0.05	8.07	0.16	6.92	0.26	200.0	170.0	146.7	6.2	149.0	10. 0	146.7	7.7
Output_1_035	1591	42	2.4	0.02	4.78	0.06	15.4 4	0.18	14.6 1	0.08	320.0	320.0	146.7	6.7	164.0	23. 0	146.7	8.2
Output_1_011	2150	136	1.8	0.02	6.06	0.06	20.0 0	0.18	20.5 6	0.03	430.0	410.0	147.0	8.9	166.0	31. 0	147.0	10.0
Output_1_020	16520	612	1.2	0.02	2.99	0.05	6.83	0.17	5.57	0.04	310.0	160.0	147.0	4.3	155.1	8.0	147.0	6.3
Output_1_004	1910	39	2.5	0.02	5.19	0.05	22.6 4	0.16	21.7 4	0.16	280.0	390.0	147.3	7.8	161.0	27. 0	147.3	9.1
Output_1_023	2320	66	2.4	0.02	5.17	0.05	12.7 7	0.17	11.7 6	0.16	230.0	250.0	147.5	7.6	157.0	17. 0	147.5	8.7
Output 1 042	2251	86	2.6	0.02	5.60	0.05	12.9 7	0.16	13.6 6	0.27	210.0	260.0	147.5	8.0	149.0	19. 0	147.5	9.2
Output 1 030	2200	45	3.5	0.02	6.90	0.06	11.6 6	0.18	12.0 9	0.32	430.0	250.0	147.7	9.8	171.0	19. 0	147.7	11.0
Output 1 001	2245	35	3.3	0.02	6,09	0.05	9.65	0.16	10.0	0.22	290.0	190.0	147.9	8.4	152.0	14. 0	147.9	9.4
Output 1 026	2040	64	1.6	0.02	3 66	0.05	11.0	0.15	9 80	0.00	120.0	220.0	148.0	5.4	144.0	14.	1/18.0	71
Output 1 010	2940	04	1.0	0.02	3.00	0.05	, 11.6	0.13	11.2	0.09	420.0	220.0	140.0	5.4	144.0	17.	140.0	/.1
Outhor_1_019	2427	90	1.8	0.02	4.55	0.06	/	0.17	4	0.12	430.0	250.0	148.1	0.8	100.0	U	148.1	8.0

Output_1_003	3070	56	2.0	0.02	4.72	0.06	10.6 9	0.19	11.7 6	0.08	430.0	230.0	148.3	6.7	173.0	19. 0	148.3	8.1
Output_1_050	2080	46	3.0	0.02	6.01	0.04	22.2 8	0.13	27.6 9	0.16	-320.0	360.0	148.3	8.6	122.0	23. 0	148.3	10.0
Output_1_021	1824	59	2.0	0.02	5.15	0.04	14.5 1	0.15	14.6 7	0.33	-100.0	250.0	148.4	7.6	139.0	19. 0	148.4	8.9
Output_1_049	3350	73	2.7	0.02	5.15	0.05	11.5 7	0.15	10.6 7	0.21	80.0	230.0	148.5	7.5	141.0	14. 0	148.5	8.8
Output_1_036	3070	95	1.7	0.02	3.76	0.05	11.8 5	0.17	10.9 2	0.09	320.0	240.0	148.6	5.7	161.0	16. 0	148.6	7.4
Output_1_007	3230	128	2.5	0.02	4.70	0.05	15.4 2	0.14	13.2 9	0.09	-80.0	240.0	149.0	7.0	134.0	17. 0	149.0	8.4
Output_1_013	2790	152	2.2	0.02	5.93	0.05	10.8 8	0.17	9.47	0.23	320.0	220.0	150.0	8.9	159.0	15. 0	150.0	9.7
Output_1_024	2950	75	1.9	0.02	5.08	0.05	12.2 4	0.15	12.3 4	0.30	70.0	230.0	150.3	7.3	144.0	17. 0	150.3	8.7
Output_1_008	2050	95	2.1	0.02	5.49	0.06	15.5 2	0.17	14.4 5	0.07	280.0	310.0	150.7	8.1	159.0	21. 0	150.7	9.4
Output_1_014	6350	312	1.7	0.02	5.49	0.05	12.2 0	0.17	13.3 7	0.46	330.0	240.0	151.0	8.4	169.0	19. 0	151.0	9.7
Output_1_025	14110	345	1.9	0.02	2.44	0.05	7.62	0.16	6.17	0.13	210.0	160.0	151.4	3.6	152.2	9.0	151.4	6.0
Output_1_047	1632	41	3.2	0.02	4.18	0.05	16.3 9	0.16	16.8 8	0.04	10.0	290.0	152.0	6.5	147.0	23. 0	152.0	8.1
Output_1_005	2950	66	1.9	0.02	5.00	0.06	14.3 4	0.20	16.5 0	0.38	500.0	330.0	152.7	7.7	183.0	28. 0	152.7	9.0
Output_1_038	3490	118	2.9	0.02	4.12	0.05	10.5 9	0.17	10.0 6	0.01	240.0	220.0	155.0	6.4	157.0	15. 0	155.0	8.0
Output_1_051	1461	27	3.9	0.02	6.48	0.05	16.5 7	0.17	17.0 6	0.05	110.0	300.0	157.0	10. 0	169.0	31. 0	157.0	11.0
Output_1_002	9770	131	1.9	0.03	2.35	0.05	6.47	0.20	6.86	0.24	270.0	140.0	183.9	4.3	189.0	11. 0	183.9	7.2
Output_1_040	19900	396	2.2	0.05	2.12	0.05	4.14	0.34	4.15	0.26	339.0	90.0	294.8	6.1	297.0	11. 0	294.8	11.0
Sample 18ATW20			1					i								i		
Output_1_019	2190	122	1.7	0.02	5.23	0.06	13.8 8	0.13	13.6 0	0.17	440.0	280.0	102.6	5.3	121.0	16. 0	102.6	6.2
Output_1_012	1990	129	2.1	0.02	5.14	0.05	24.5 3	0.16	20.5 0	0.21	350.0	350.0	136.2	6.7	145.0	31. 0	136.2	8.6
Output_1_006	4440	170	1.6	0.02	5.07	0.05	10.8 5	0.15	9.52	0.02	180.0	220.0	138.5	6.7	138.0	12. 0	138.5	8.0
Output_1_034	2220	56	2.1	0.02	4.19	0.05	15.5 8	0.16	13.2 9	0.26	260.0	300.0	140.2	5.8	151.0	19. 0	140.2	7.2
Output_1_046	2490	70	1.4	0.02	4.00	0.05	16.9 4	0.15	15.8 6	0.20	140.0	310.0	140.4	5.6	136.0	20. 0	140.4	7.1
Output_1_010	2220	138	1.8	0.02	3.54	0.05	14.8 9	0.16	14.4 7	0.10	120.0	280.0	140.7	4.9	147.0	20. 0	140.7	6.6
Output_1_044	5890	208	1.9	0.02	3.40	0.06	9.62	0.16	10.4 3	0.13	320.0	210.0	140.7	4.7	154.0	14. 0	140.7	6.4
Output_1_045	4220	143	1.8	0.02	3.43	0.05	9.26	0.16	9.38	0.19	290.0	190.0	141.1	4.8	149.0	13. 0	141.1	6.5
Output_1_037	6570	231	1.9	0.02	5.43	0.05	7.86	0.15	8.44	0.50	220.0	170.0	141.2	7.7	145.0	12. 0	141.2	8.9
Output_1_009	3800	214	2.5	0.02	4.44	0.05	10.8 7	0.15	10.5 3	0.15	150.0	220.0	142.0	6.2	142.0	14. 0	142.0	8.0
Output_1_028	2570	55	1.8	0.02	3.67	0.05	11.5 4	0.15	11.7 2	0.04	50.0	210.0	142.4	5.2	141.0	15. 0	142.4	6.8
Output_1_041	2700	109	2.5	0.02	5.31	0.05	13.1 1	0.16	12.8 2	0.23	230.0	250.0	144.1	7.4	148.0	17. 0	144.1	8.6
Output_1_029	19450	416	1.5	0.02	1.68	0.05	3.52	0.15	3.42	0.27	131.0	77.0	144.2	2.4	143.5	4.6	144.2	5.1
Output_1_033	4370	104	1.6	0.02	3.13	0.05	8.59	0.17	8.48	0.11	260.0	190.0	144.5	4.5	154.0	13. 0	144.5	6.4
Output_1_031	1580	34	2.8	0.02	6.61	0.06	27.5 9	0.17	30.7 7	0.89	100.0	560.0	144.7	9.7	169.0	30. 0	144.7	11.0
Output_1_048	2368	57	2.3	0.02	3.89	0.05	13.2 4	0.16	12.9 0	0.27	90.0	250.0	145.6	5.6	144.0	17. 0	145.6	7.3
Output_1_027	2420	53	2.1	0.02	4.80	0.05	9.90	0.16	10.5 6	0.34	270.0	200.0	146.0	6.7	152.0	15. 0	146.0	7.8
Output_1_032	2045	46	2.0	0.02	5.24	0.06	15.9 1	0.17	15.2 0	0.15	410.0	350.0	146.0	7.7	159.0	22. 0	146.0	8.9
Output_1_017	1837	78	2.5	0.02	6.52	0.05	12.2 8	0.16	14.0 1	0.39	170.0	260.0	146.2	9.7	148.0	19. 0	146.2	11.0
Output_1_043	3200	116	2.7	0.02	6.17	0.05	11.4 0	0.17	11.1 8	0.08	330.0	220.0	146.2	8.8	161.0	16. 0	146.2	9.9
Output_1_015	1586	78	2.2	0.02	5.22	0.05	17.7 8	0.16	16.5 6	0.04	140.0	320.0	146.3	7.4	144.0	22. 0	146.3	8.7

								I			1							
Output_1_039	4850	188	1.8	0.02	4.26	0.05	8.79	0.15	8.50	0.25	80.0	180.0	146.5	6.2	144.0	12. 0	146.5	7.7
Output_1_016	8120	353	1.4	0.02	4.26	0.05	8.07	0.16	6.92	0.26	200.0	170.0	146.7	6.2	149.0	10. 0	146.7	7.7
Output_1_035	1591	42	2.4	0.02	4.78	0.06	15.4 4	0.18	14.6 1	0.08	320.0	320.0	146.7	6.7	164.0	23. 0	146.7	8.2
Output_1_011	2150	136	1.8	0.02	6.06	0.06	20.0 0	0.18	20.5 6	0.03	430.0	410.0	147.0	8.9	166.0	31. 0	147.0	10.0
Output_1_020	16520	612	1.2	0.02	2.99	0.05	6.83	0.17	5.57	0.04	310.0	160.0	147.0	4.3	155.1	8.0	147.0	6.3
Output_1_004	1910	39	2.5	0.02	5.19	0.05	22.6 4	0.16	21.7 4	0.16	280.0	390.0	147.3	7.8	161.0	27. 0	147.3	9.1
Output_1_023	2320	66	2.4	0.02	5.17	0.05	12.7 7	0.17	11.7 6	0.16	230.0	250.0	147.5	7.6	157.0	17. 0	147.5	8.7
Output_1_042	2251	86	2.6	0.02	5.60	0.05	12.9 7	0.16	13.6 6	0.27	210.0	260.0	147.5	8.0	149.0	19. 0	147.5	9.2
Output_1_030	2200	45	3.5	0.02	6.90	0.06	11.6 6	0.18	12.0 9	0.32	430.0	250.0	147.7	9.8	171.0	19. 0	147.7	11.0
Output_1_001	2245	35	3.3	0.02	6.09	0.05	9.65	0.16	10.0 0	0.22	290.0	190.0	147.9	8.4	152.0	14. 0	147.9	9.4
Output_1_026	2940	64	1.6	0.02	3.66	0.05	11.0 7	0.15	9.80	0.09	120.0	220.0	148.0	5.4	144.0	14. 0	148.0	7.1
Output_1_018	2427	96	1.8	0.02	4.33	0.06	11.6 7	0.17	11.2 4	0.12	430.0	230.0	148.1	6.8	160.0	17. 0	148.1	8.0
Output_1_003	3070	56	2.0	0.02	4.72	0.06	10.6 9	0.19	11.7 6	0.08	430.0	230.0	148.3	6.7	173.0	19. 0	148.3	8.1
Output_1_050	2080	46	3.0	0.02	6.01	0.04	22.2 8	0.13	27.6 9	0.16	-320.0	360.0	148.3	8.6	122.0	23. 0	148.3	10.0
Output_1_021	1824	59	2.0	0.02	5.15	0.04	14.5 1	0.15	14.6 7	0.33	-100.0	250.0	148.4	7.6	139.0	19. 0	148.4	8.9
Output_1_049	3350	73	2.7	0.02	5.15	0.05	11.5 7	0.15	10.6 7	0.21	80.0	230.0	148.5	7.5	141.0	14. 0	148.5	8.8
Output_1_036	3070	95	1.7	0.02	3.76	0.05	11.8 5	0.17	10.9 2	0.09	320.0	240.0	148.6	5.7	161.0	16. 0	148.6	7.4
Output_1_007	3230	128	2.5	0.02	4.70	0.05	15.4 2	0.14	13.2 9	0.09	-80.0	240.0	149.0	7.0	134.0	17. 0	149.0	8.4
Output_1_013	2790	152	2.2	0.02	5.93	0.05	10.8 8	0.17	9.47	0.23	320.0	220.0	150.0	8.9	159.0	15. 0	150.0	9.7
Output_1_024	2950	75	1.9	0.02	5.08	0.05	12.2 4	0.15	12.3 4	0.30	70.0	230.0	150.3	7.3	144.0	17. 0	150.3	8.7
Output_1_008	2050	95	2.1	0.02	5.49	0.06	15.5 2	0.17	14.4 5	0.07	280.0	310.0	150.7	8.1	159.0	21. 0	150.7	9.4
Output_1_014	6350	312	1.7	0.02	5.49	0.05	12.2 0	0.17	13.3 7	0.46	330.0	240.0	151.0	8.4	169.0	19. 0	151.0	9.7
Output_1_025	14110	345	1.9	0.02	2.44	0.05	7.62	0.16	6.17	0.13	210.0	160.0	151.4	3.6	152.2	9.0	151.4	6.0
Output_1_047	1632	41	3.2	0.02	4.18	0.05	16.3 9	0.16	16.8 8	0.04	10.0	290.0	152.0	6.5	147.0	23. 0	152.0	8.1
Output_1_005	2950	66	1.9	0.02	5.00	0.06	14.3 4	0.20	16.5 0	0.38	500.0	330.0	152.7	7.7	183.0	28. 0	152.7	9.0
Output_1_038	3490	118	2.9	0.02	4.12	0.05	10.5 9	0.17	10.0 6	0.01	240.0	220.0	155.0	6.4	157.0	15. 0	155.0	8.0
Output_1_051	1461	27	3.9	0.02	6.48	0.05	16.5 7	0.17	17.0 6	0.05	110.0	300.0	157.0	10. 0	169.0	31. 0	157.0	11.0
Output_1_002	9770	131	1.9	0.03	2.35	0.05	6.47	0.20	6.86	0.24	270.0	140.0	183.9	4.3	189.0	11. 0	183.9	7.2
Output_1_040	19900	396	2.2	0.05	2.12	0.05	4.14	0.34	4.15	0.26	339.0	90.0	294.8	6.1	297.0	11. 0	294.8	11.0
Output_1_233	687	23	3.2	0.02	8.07	0.06	22.5 8	0.18	19.6 7	0.09	390.0	430.0	142.0	11. 0	165.0	31. 0	142.0	12.0
Output_1_83	1310	36	3.6	0.02	8.89	0.05	33.9 6	0.16	33.7 5	0.08	40.0	610.0	143.0	13. 0	153.0	48. 0	143.0	14.0
Output_1_195	1097	25	3.2	0.02	5.75	0.05	20.7 5	0.17	22.5 4	0.21	120.0	400.0	144.0	8.3	156.0	33. 0	144.0	9.5
Output_1_96	2030	63	3.3	0.02	5.68	0.06	16.2 0	0.17	14.7 1	0.10	270.0	290.0	146.0	8.2	162.0	23. 0	146.0	9.4
Output_1_057	909	20	2.4	0.02	6.90	0.05	20.3 7	0.16	20.3 7	0.16	220.0	400.0	148.0	9.8	147.0	29. 0	148.0	11.0
Output_1_134	3310	193	1.7	0.02	7.73	0.05	12.4 8	0.17	12.7 2	0.44	310.0	260.0	148.0	12. 0	160.0	19. 0	148.0	12.0
Output_1_62	2100	58	4.4	0.02	7.73	0.06	15.2 6	0.18	14.1 2	0.19	300.0	310.0	148.0	11. 0	162.0	21. 0	148.0	12.0
Output_1_176	2310	31	3.3	0.02	8.09	0.05	13.1 7	0.16	14.1 1	0.35	90.0	250.0	149.0	12. 0	154.0	21. 0	149.0	13.0
Output_1_162	1216	30	3.6	0.02	5.56	0.06	21.0 5	0.18	23.2 0	0.07	210.0	380.0	149.2	8.0	168.0	33. 0	149.2	9.2
Output_1_72	1685	37	3.2	0.02	6.03	0.05	20.0 0	0.15	20.0 0	0.29	-20.0	360.0	149.3	8.9	139.0	27. 0	149.3	9.7
Output_1_198	1295	23	4.4	0.02	5.58	0.06	19.6 4	0.17	18.8 2	0.08	220.0	360.0	149.4	8.4	159.0	28. 0	149.4	9.6

			1					1		1	1							
Output_1_120	3340	350	2.4	0.02	5.51	0.06	13.6 7	0.18	13.8 9	0.28	390.0	280.0	150.1	8.2	166.0	22. 0	150.1	9.5
Output_1_243	6340	483	1.1	0.02	4.66	0.05	10.4 4	0.16	11.5 9	0.13	160.0	180.0	150.4	6.7	157.0	15. 0	150.4	8.4
Output_1_202	6060	131	1.6	0.02	4.64	0.05	6.02	0.16	6.29	0.29	90.0	130.0	150.8	6.8	149.1	8.8	150.8	8.3
Output_1_201	4690	92	2.8	0.02	4.64	0.05	10.0 6	0.16	9.94	0.39	190.0	210.0	151.0	6.9	151.0	14. 0	151.0	8.4
Output_1_89	1245	54	3.1	0.02	6.84	0.05	25.5 3	0.16	25.9 5	0.23	30.0	450.0	151.0	10. 0	149.0	37. 0	151.0	11.0
Output_1_059	5150	127	2.5	0.02	4.05	0.05	9.27	0.17	9.77	0.13	240.0	190.0	151.2	6.1	162.0	15. 0	151.2	7.7
Output_1_128	3040	312	2.1	0.02	4.64	0.05	10.6 3	0.18	11.4 3	0.30	450.0	190.0	151.3	6.7	162.0	18. 0	151.3	8.9
Output_1_121	2490	278	1.4	0.02	5.04	0.06	12.5 0	0.18	12.2 9	0.17	310.0	250.0	151.5	7.8	171.0	19. 0	151.5	9.2
Output_1_160	3950	122	1.9	0.02	3.49	0.05	10.6 5	0.17	9.70	0.10	130.0	210.0	151.7	5.2	158.0	14. 0	151.7	7.1
Output_1_053	3660	67	9.3	0.02	6.30	0.05	10.4 2	0.16	10.4 9	0.38	120.0	220.0	151.8	9.7	151.0	15. 0	151.8	11.0
Output_1_111	2310	79	1.5	0.02	5.46	0.05	13.1 8	0.17	12.3 5	0.07	230.0	270.0	151.8	8.2	157.0	18. 0	151.8	9.5
Output_1_179	6680	115	4.4	0.02	4.62	0.05	7.85	0.17	8.33	0.39	200.0	160.0	151.8	6.9	157.0	12. 0	151.8	8.4
Output_1_116	2960	170	2.0	0.02	5.46	0.05	14.5 9	0.18	12.7 1	0.04	290.0	280.0	151.9	8.0	167.0	19. 0	151.9	9.4
Output_1_169	2710	37	2.9	0.02	7.56	0.06	20.6 9	0.19	17.0 2	0.16	320.0	320.0	152.0	12. 0	172.0	27. 0	152.0	12.0
Output_1_227	2420	52	2.9	0.02	7.53	0.05	12.4 2	0.17	12.5 0	0.25	110.0	240.0	152.0	11. 0	155.0	18. 0	152.0	12.0
Output_1_71	3450	75	3.9	0.02	5.02	0.04	17.5 9	0.15	12.7 5	0.21	-200.0	300.0	152.2	7.7	144.0	19. 0	152.2	8.9
Output_1_109	1920	55	2.5	0.02	5.44	0.05	14.0 3	0.17	14.7 1	0.36	170.0	280.0	152.4	8.2	160.0	22. 0	152.4	9.5
Output_1_95	2370	77	3.4	0.02	6.28	0.06	15.1 5	0.18	13.7 4	0.10	320.0	300.0	152.4	9.7	167.0	22. 0	152.4	11.0
Output_1_230	5530	139	2.1	0.02	5.86	0.05	7.92	0.16	8.23	0.32	90.0	160.0	152.5	8.6	148.0	12. 0	152.5	9.9
Output_1_85	1047	36	3.5	0.02	5.49	0.05	19.2 2	0.17	18.5 0	0.37	120.0	370.0	152.5	7.9	157.0	28. 0	152.5	9.6
Output_1_166	1014	17	2.7	0.02	5.42	0.05	25.4 9	0.18	25.1 4	0.37	30.0	390.0	152.6	7.9	154.0	38. 0	152.6	9.4
Output_1_183	3480	97	2.6	0.02	3.92	0.05	10.9 6	0.17	11.9 0	0.21	200.0	220.0	152.8	5.9	156.0	17. 0	152.8	7.6
Output_1_164	2380	46	3.1	0.02	5.42	0.05	13.5 6	0.17	12.1 2	0.08	200.0	240.0	153.0	8.4	162.0	18. 0	153.0	9.7
Output_1_211	3350	280	3.5	0.02	4.58	0.05	10.7 4	0.16	11.7 3	0.39	160.0	220.0	153.1	7.0	151.0	17. 0	153.1	8.4
Output_1_22	2040	59	2.5	0.02	4.58	0.05	14.5 7	0.16	14.0 2	0.34	90.0	270.0	153.1	7.1	152.0	20. 0	153.1	8.6
Output_1_132	2430	156	2.8	0.02	4.56	0.05	14.4 3	0.17	13.7 7	0.07	140.0	270.0	153.4	6.6	154.0	20. 0	153.4	8.2
Output_1_196	2337	47	5.0	0.02	5.81	0.05	12.6 5	0.16	12.9 6	0.40	70.0	230.0	153.6	9.1	151.0	18. 0	153.6	10.0
Output_1_118	4260	300	1.7	0.02	6.20	0.06	9.69	0.18	10.5 6	0.20	350.0	200.0	153.7	9.7	167.0	16. 0	153.7	11.0
Output_1_223	1692	40	2.9	0.02	4.15	0.05	15.6 6	0.17	14.2 0	0.19	260.0	290.0	153.7	6.5	165.0	21. 0	153.7	8.0
Output_1_112	3160	119	1.1	0.02	3.56	0.05	11.6 7	0.17	11.1 8	0.01	120.0	230.0	153.8	5.4	157.0	16. 0	153.8	7.3
Output_1_69	4570	102	4.5	0.02	5.79	0.05	9.81	0.17	10.9 8	0.22	230.0	210.0	153.9	8.7	164.0	16. 0	153.9	10.0
Output_1_222	4820	118	2.3	0.02	3.88	0.05	8.13	0.17	7.74	0.20	220.0	160.0	154.1	5.9	160.0	11. 0	154.1	7.6
Output_1_99	2410	61	1.6	0.02	5.37	0.05	14.2 9	0.18	13.9 7	0.12	320.0	270.0	154.1	8.2	168.0	22. 0	154.1	9.5
Output_1_130	80000	5880	3.2	0.02	3.51	0.05	3.14	0.17	3.91	0.66	220.0	73.0	154.2	5.3	158.1	5.7	154.2	7.2
Output_1_177	1610	20	3.5	0.02	6.20	0.05	15.3 3	0.18	14.7 7	0.07	240.0	310.0	154.2	9.4	165.0	23. 0	154.2	11.0
Output_1_184	5150	169	2.3	0.02	5.37	0.05	10.4 3	0.17	10.0 6	0.37	210.0	220.0	154.3	8.1	157.0	15. 0	154.3	9.5
Output_1_167	3330	51	2.9	0.02	4.53	0.05	10.7 4	0.16	10.3 7	0.02	120.0	220.0	154.4	6.8	153.0	15. 0	154.4	8.4
Output_1_73	15110	306	12.6	0.02	4.55	0.05	6.60	0.17	6.32	0.43	260.0	140.0	154.4	6.9	162.2	9.6	154.4	8.5
Output_1_203	3180	74	2.4	0.02	5.44	0.05	10.2 8	0.16	10.4 3	0.39	170.0	220.0	154.8	7.9	152.0	15. 0	154.8	9.3
Output_1_144	4940	203	1.7	0.02	4.12	0.05	9.41	0.16	9.88	0.14	80.0	190.0	154.9	6.3	151.0	14. 0	154.9	8.0

								1		1	1					1		
Output_1_214	7510	427	2.5	0.02	4.53	0.05	7.19	0.17	6.51	0.14	180.0	140.0	154.9	6.8	158.5	9.3	154.9	8.4
Output_1_133	2860	175	1.2	0.02	7.41	0.06	13.4 4	0.19	12.9 5	0.02	470.0	260.0	155.0	11. 0	176.0	21. 0	155.0	12.0
Output_1_143	2004	86	3.8	0.02	6.58	0.05	16.5 6	0.15	14.9 4	0.16	90.0	300.0	155.0	10. 0	143.0	20. 0	155.0	11.0
Output_1_68	1820	42	3.9	0.02	7.47	0.04	13.4 8	0.14	12.6 8	0.26	-70.0	260.0	155.0	11. 0	134.0	16. 0	155.0	12.0
Output_1_67	14760	346	3.9	0.02	5.74	0.05	6.40	0.17	6.63	0.39	250.0	130.0	155.3	8.5	157.4	9.8	155.3	9.8
Output_1_156	7930	354	2.0	0.02	5.33	0.05	8.87	0.16	9.20	0.23	170.0	180.0	155.4	7.9	152.0	13. 0	155.4	9.4
Output_1_63	2770	71	3.5	0.02	5.33	0.05	10.0 4	0.17	10.4 0	0.24	210.0	200.0	155.6	7.9	160.0	15. 0	155.6	9.3
Output_1_052	4490	82	7.5	0.02	4.51	0.05	11.1 6	0.17	10.7 1	0.16	170.0	220.0	155.7	6.9	156.0	16. 0	155.7	8.5
Output_1_142	4260	175	2.2	0.02	5.31	0.05	9.36	0.17	9.58	0.32	260.0	180.0	155.7	8.1	156.0	13. 0	155.7	9.5
Output_1_208	3400	183	2.5	0.02	7.35	0.05	10.1 8	0.17	10.0 6	0.23	210.0	220.0	156.0	11. 0	158.0	15. 0	156.0	12.0
Output_1_234	2420	80	2.7	0.02	6.56	0.05	15.2 5	0.18	16.0 0	0.39	150.0	300.0	156.0	10. 0	166.0	25. 0	156.0	11.0
Output_1_79	7340	144	2.4	0.02	3.67	0.05	7.33	0.17	7.56	0.24	250.0	150.0	156.2	5.6	162.0	12. 0	156.2	7.5
Output_1_151	3220	144	2.4	0.02	6.10	0.05	12.2 2	0.17	12.0 7	0.16	140.0	230.0	156.3	9.6	161.0	18. 0	156.3	11.0
Output_1_106	14900	374	1.3	0.02	4.07	0.05	3.56	0.18	4.28	0.57	227.0	83.0	156.9	6.4	164.5	6.3	156.9	8.1
Output_1_192	2460	103	4.5	0.02	6.07	0.05	13.7 8	0.17	14.5 3	0.53	70.0	240.0	157.3	9.5	158.0	21. 0	157.3	10.0
Output_1_170	2912	35	3.2	0.02	6.07	0.05	13.1 0	0.16	13.4 1	0.20	90.0	260.0	157.4	9.5	155.0	19. 0	157.4	11.0
Output_1_81	7510	174	4.1	0.02	4.05	0.05	6.50	0.17	7.47	0.51	220.0	140.0	157.4	6.3	164.0	11. 0	157.4	8.0
Output_1_194	2790	68	5.3	0.02	5.65	0.05	13.4 3	0.17	15.6 1	0.10	50.0	260.0	157.7	9.1	158.0	23. 0	157.7	10.0
Output_1_060	4070	119	9.0	0.02	5.65	0.05	9.36	0.17	10.0 0	0.19	130.0	190.0	157.8	9.0	158.0	14. 0	157.8	10.0
Output_1_058	7140	157	1.7	0.02	6.85	0.05	6.23	0.18	7.91	0.74	340.0	130.0	158.0	11. 0	165.0	12. 0	158.0	12.0
Output 1 117	1492	92	1.4	0.02	8.03	0.05	17.5 8	0.18	17.3 2	0.29	280.0	350.0	158.0	13. 0	164.0	27. 0	158.0	15.0
Output 1 225	4260	89	3.2	0.02	6.85	0.05	10.6 5	0.16	10.3 7	0.18	50.0	210.0	158.0	11. 0	153.0	15. 0	158.0	12.0
Output_1_61 18ATW-20	747	19	4.9	0.02	8.84	0.06	22.5 8	0.20	21.1 1	0.17	410.0	380.0	158.0	14. 0	177.0	35. 0	158.0	15.0
Output 1 140	6520	271	3.1	0.02	5.22	0.05	8.50	0.17	7.60	0.02	180.0	170.0	158.2	7.9	159.0	12. 0	158.2	9.5
Output 1 66	2021	47	2.9	0.02	5.22	0.05	12.9	0.18	11.9	0.18	260.0	240.0	158.3	8.1	163.0	18. 0	158.3	9.5
Output 1 224	3780	82	19	0.02	4.82	0.05	10.5	0.18	10.0	0.17	260.0	210.0	158 5	7.6	169.0	16. 0	158 5	9.1
Output 1 113	9880	306	1.5	0.02	3 61	0.05	7 10	0.18	7 30	0.38	180.0	140.0	158.6	5.6	163.0	11. 0	158.6	7.5
Output 1 199	13/1	220	13	0.02	6.02	0.05	16.8	0.10	18.1	0.30	70.0	290.0	158.7	9.7	151.0	26.	158.7	11.0
Output 1 240	2820	1/9	3.6	0.02	5.22	0.05	10.6 1	0.17	8 33	0.27	70.0	200.0	158.7	8.1	159.0	12.	158.7	9.5
Output 1 215	1361	14J 61	3.0	0.02	5.22	0.05	18.1	0.16	17.6	0.10	100.0	200.0	150.7	0.1	151.0	25.	150.7	10.0
Output_1_213	5070	117	1.0	0.03	4.00	0.05	4 0 E 0	0.10	0.22	0.03	200.0	170.0	150.0	5.0	151.0	13.	150.0	7.7
Output_1_14	1070	117	1.2	0.03	4.00	0.05	19.7	0.10	20.1	0.09	60.0	260.0	150.0	11.	144.0	28.	150.0	12.0
Output_1_148	1070	45	4.2	0.02	7.23	0.05	13.3	0.16	13.5	0.10	-60.0	360.0	159.0	12.	144.0	20.	159.0	12.0
Output_1_80	5290	113	3.4	0.02	7.63	0.05	2	0.19	1	0.31	220.0	260.0	159.0	U	174.0	11.	159.0	13.0
Output_1_217	/110	263	1.4	0.03	4.00	0.05	11.7	0.17	6.94 11.0	0.32	240.0	160.0	159.3	6.3	162.0	15.	159.3	8.1
Output_1_241	3020	178	1.9	0.03	5.98	0.05	6	0.16	4	0.22	140.0	230.0	159.7	9.7	154.0	0 12.	159.7	11.0
Output_1_124	5130	612	1.4	0.03	3.98	0.05	8.15 15.6	0.17	8.09 15.2	0.21	140.0	160.0	160.0	6.4 10.	162.0	0 22.	160.0	8.2
Output_1_216	1532	67	4.9	0.03	6.75	0.05	7 17.9	0.17	0 17.9	0.52	30.0	270.0	160.0	0	157.0	0 25.	160.0	12.0
Output_1_056	1098	20	2.2	0.03	5.60	0.05	8 16.9	0.17	6 17.2	0.04	-20.0	300.0	160.1	8.3	152.0	0 27.	160.1	9.7
Output_1_146	1423	59	2.9	0.03	5.95	0.05	7	0.19	0	0.11	180.0	340.0	160.2	9.4	169.0	0	160.2	11.0
Output_1_155	52300	2310	0.9	0.03	3.61	0.05	3.04	0.17	3.88	0.66	156.0	67.0	160.3	5.7	162.5	5.9	160.3	7.6

				1				1			l						l .	
Output_1_186	1400	70	5.5	0.03	5.95	0.05	17.5 6	0.18	18.5 8	0.32	250.0	330.0	160.3	9.5	170.0	30. 0	160.3	11.0
Output_1_182	4220	95	3.1	0.03	5.56	0.05	11.4 5	0.17	10.5 3	0.00	170.0	240.0	160.4	9.1	159.0	15. 0	160.4	10.0
Output_1_220	3930	106	2.2	0.03	5.56	0.05	11.7 5	0.19	11.2 9	0.25	340.0	240.0	160.4	9.0	175.0	17. 0	160.4	10.0
Output_1_171	748	9	4.0	0.03	8.70	0.05	22.6 4	0.20	21.1 1	0.22	400.0	380.0	161.0	14. 0	183.0	34. 0	161.0	14.0
Output_1_185	2350	94	3.3	0.03	6.75	0.05	14.8 6	0.19	15.1 4	0.24	290.0	290.0	161.0	11. 0	170.0	23. 0	161.0	12.0
Output_1_210	6250	548	2.3	0.03	6.30	0.05	9.20	0.18	9.55	0.38	150.0	190.0	161.0	10. 0	166.0	14. 0	161.0	11.0
Output_1_153	11700	533	2.5	0.03	3.94	0.05	5.74	0.18	6.78	0.47	280.0	120.0	161.4	6.5	165.0	10. 0	161.4	8.2
Output_1_231	4060	99	2.2	0.03	4.72	0.05	8.84	0.18	8.84	0.27	230.0	180.0	161.5	7.6	167.0	14. 0	161.5	9.4
Output_1_101	2480	55	2.4	0.03	5.91	0.05	12.3 0	0.17	11.9 8	0.24	140.0	230.0	161.6	9.2	155.0	17. 0	161.6	10.0
Output_1_206	5910	205	2.1	0.03	5.51	0.05	11.0 9	0.18	12.0 9	0.22	200.0	210.0	161.6	9.0	168.0	19. 0	161.6	10.0
Output_1_65	4770	113	3.3	0.03	5.91	0.05	8.47	0.18	8.89	0.26	190.0	190.0	161.6	9.2	169.0	13. 0	161.6	10.0
Output_1_105	4650	107	3.1	0.03	5.51	0.05	11.3 1	0.17	11.7 0	0.55	80.0	220.0	161.9	8.8	158.0	17. 0	161.9	11.0
Output_1_138	5910	255	4.5	0.03	4.71	0.05	10.0 2	0.18	8.89	0.08	310.0	210.0	162.0	7.5	167.0	14. 0	162.0	9.1
Output_1_213	2162	140	5.9	0.03	6.27	0.05	11.9 4	0.18	11.6 0	0.28	220.0	240.0	162.0	10. 0	167.0	18. 0	162.0	11.0
Output_1_92	2290	88	2.6	0.03	4.71	0.05	15.4 0	0.19	15.8 7	0.14	180.0	310.0	162.3	7.6	171.0	25. 0	162.3	9.2
Output_1_135	2430	117	2.0	0.03	4.71	0.05	11.1 1	0.18	9.78	0.02	230.0	230.0	162.4	7.3	170.0	15. 0	162.4	8.9
Output_1_226	3820	81	5.3	0.03	5.10	0.05	12.7 1	0.18	11.8 0	0.06	330.0	240.0	162.4	8.4	167.0	17. 0	162.4	9.9
Output_1_102	1880	42	3.2	0.03	5.86	0.05	16.8 6	0.18	17.8 8	0.41	120.0	320.0	162.7	9.1	163.0	27. 0	162.7	10.0
Output_1_204	3250	82	3.7	0.03	5.08	0.05	12.1 7	0.18	12.9 9	0.36	190.0	230.0	162.7	8.2	163.0	19. 0	162.7	9.8
Output_1_104	2850	64	1.5	0.03	4.69	0.05	12.4 3	0.18	12.5 7	0.26	270.0	240.0	162.9	7.6	171.0	19. 0	162.9	9.1
Output 1 178	3370	42	2.5	0.03	7.42	0.05	15.3 5	0.17	14.4 5	0.25	180.0	300.0	163.0	12. 0	160.0	21. 0	163.0	13.0
Output_1_238	3530	166	2.6	0.03	7.78	0.05	10.3 5	0.19	10.5 8	0.34	210.0	210.0	163.0	12. 0	174.0	17. 0	163.0	13.0
Output 1 90	4350	183	2.2	0.03	8.20	0.05	12.0 2	0.18	12.9 2	0.36	250.0	210.0	163.0	13. 0	166.0	19. 0	163.0	14.0
Output 1 157	3830	156	2.9	0.03	5.86	0.05	10.1 9	0.20	12.5 6	0.06	410.0	160.0	163.1	9.3	182.0	21. 0	163.1	12.0
Output_1_209	5280	478	2.9	0.03	4.67	0.05	9.86	0.18	10.0 6	0.23	210.0	200.0	163.3	7.7	169.0	16. 0	163.3	9.3
Output_1_110	7070	210	2.3	0.03	3.89	0.05	6.90	0.19	8.51	0.53	330.0	150.0	163.4	6.5	174.0	13. 0	163.4	8.3
Output 1 158	5260	196	2.4	0.03	4.67	0.05	9.90	0.18	10.9 9	0.58	80.0	190.0	163.4	7.4	167.0	17. 0	163.4	9.3
Output 1 189	9580	677	3.1	0.03	4.31	0.05	6.48	0.17	7.51	0.46	150.0	140.0	163.5	7.3	162.0	11. 0	163.5	8.8
Output 1 193	3050	99	4.7	0.03	6.23	0.05	10.3 6	0.18	9.94	0.41	270.0	210.0	163.5	9.9	167.0	15. 0	163.5	11.0
Output 1 212	3010	216	2.2	0.03	5.06	0.05	9.25	0.19	9.14	0.10	250.0	190.0	163.5	8.1	172.0	14. 0	163.5	9.6
Output 1 191	6250	309	2.6	0.03	5.84	0.05	6.49	0.18	6.78	0.17	130.0	130.0	163.7	9.3	165.0	10. 0	163.7	11.0
Output 1 126	4090	445	1.9	0.03	4.67	0.05	12.1	0.17	12.4	0.60	40.0	220.0	163.8	7.6	156.0	18.	163.8	9.2
Output 1 245	2051	136	2.5	0.03	6 59	0.05	10.4	0.19	11.8	0.36	400.0	230.0	164.0	10.	174.0	18.	164.0	12.0
Output 1 200	21510	360	3.2	0.03	4.25	0.05	5.41	0.18	4.75	0.34	290.0	110.0	164.6	6.7	168.8	7.4	164.6	8.5
Output 1 107	1965	48	2.6	0.03	5 79	0.05	12.4	0.19	12.7	0.20	340.0	250.0	164.9	9.7	175.0	21.	164.9	11.0
Output 1 168	1503	40	2.0	0.03	0.09	0.00	13.5	0.15	, 17.3 7	0.20	540.0	230.0	165.0	13.	195.0	31.	165.0	14.0
Output 1 225	4000 2000	220	3.1 2 E	0.05	5.00	0.00	0 C N 2	0.21	ر ۵ د ک	0.51	120.0	170.0	165 5	U Q /	195.0	13.	102.U	10.0
Output 1 153	5500	200	2.2	0.03	5.00	0.05	7.07	0.10	0.00	0.41	150.0	160.0	105.5	0.4	167.0	14.	165.0	10.0
Output_1_152	20500	240	2.3	0.03	3.50	0.05	1.97	0.18	0.69	0.45	150.0	100.0	366.0	9.0 12.	107.0	14.	105.8	10.0
Output_1_232	28500	722	1.0	0.03	7.66	0.05	6.46 10.9	0.19	8.95 11.7	0.61	350.0	150.0	166.0	0	180.0	0 17.	166.0	13.0
Output_1_154	3470	153	2.4	0.03	5.36	0.05	5	0.17	6	0.35	120.0	210.0	166.3	8.9	158.0	0	166.3	10.0

								I			I							
Output_1_88	11680	456	2.7	0.03	3.58	0.05	6.22	0.18	5.98	0.15	200.0	140.0	166.9	5.9	172.4	9.0	166.9	7.9
Output_1_207	1730	73	3.1	0.03	6.87	0.05	26.0 9	0.16	26.5 4	0.54	-150.0	450.0	167.0	11. 0	145.0	38. 0	167.0	12.0
Output_1_86	10460	351	3.3	0.03	4.56	0.05	6.22	0.18	7.91	0.64	150.0	130.0	167.0	7.5	165.0	12. 0	167.0	9.1
Output_1_221	8250	201	4.5	0.03	4.18	0.05	6.28	0.18	6.08	0.28	170.0	140.0	167.6	7.0	168.3	9.8	167.6	8.8
Output_1_244	6780	443	2.1	0.03	4.58	0.05	9.72	0.18	10.5 0	0.46	120.0	200.0	167.7	7.0	167.0	16. 0	167.7	8.9
Output_1_70	6800	135	2.5	0.03	4.92	0.05	8.38	0.18	9.24	0.46	150.0	170.0	167.7	7.8	172.0	15. 0	167.7	9.5
Output_1_139	3140	122	2.8	0.03	6.06	0.05	13.4 5	0.18	13.0 7	0.02	80.0	260.0	168.0	10. 0	162.0	19. 0	168.0	11.0
Output_1_175	6930	75	1.7	0.03	5.30	0.05	8.72	0.19	8.11	0.13	220.0	180.0	168.1	8.8	172.0	13. 0	168.1	10.0
Output_1_74	4160	76	3.9	0.03	7.12	0.05	11.7 3	0.20	14.2 9	0.42	270.0	250.0	170.0	12. 0	179.0	24. 0	170.0	13.0
Output_1_149	10590	419	1.7	0.03	3.73	0.05	5.80	0.19	6.84	0.39	230.0	120.0	170.2	6.3	175.0	11. 0	170.2	8.3
Output_1_242	6930	439	1.7	0.03	5.22	0.05	10.8 2	0.19	12.3 7	0.47	240.0	220.0	170.5	8.7	178.0	20. 0	170.5	10.0
Output_1_150	12300	503	2.5	0.03	5.19	0.05	6.15	0.19	6.28	0.59	180.0	130.0	171.5	8.7	177.0	10. 0	171.5	10.0
Output_1_163	4140	80	2.2	0.03	5.19	0.05	11.2 1	0.21	9.71	0.06	330.0	210.0	171.9	8.8	188.0	17. 0	171.9	11.0
Output_1_114	1256	55	1.2	0.03	7.38	0.06	16.7 5	0.21	16.4 3	0.16	490.0	380.0	172.0	13. 0	193.0	30. 0	172.0	14.0
Output_1_174	6170	66	1.8	0.03	6.67	0.05	8.79	0.18	9.24	0.34	150.0	170.0	172.0	11. 0	175.0	14. 0	172.0	12.0
Output_1_78	42200	751	3.9	0.03	4.76	0.05	4.12	0.19	4.11	0.52	217.0	90.0	173.3	8.3	174.2	6.6	173.3	9.9
Output_1_228	6910	143	3.0	0.03	5.86	0.05	8.78	0.18	8.15	0.45	100.0	170.0	173.4	9.9	171.0	13. 0	173.4	11.0
Output 1 75	9990	178	4.3	0.03	5.47	0.05	6.86	0.19	6.49	0.34	200.0	140.0	174.4	9.6	172.0	10. 0	174.4	11.0
Output 1 173	5260	53	2.5	0.03	5.43	0.05	8.15	0.19	9.52	0.45	180.0	170.0	175.3	9.2	177.0	15. 0	175.3	11.0
Output 1 229	2170	48	4.3	0.03	7.97	0.05	12.8 4	0.18	12.0	0.29	220.0	270.0	176.0	14.	172.0	20.	176.0	15.0
Output 1 147	4650	175	2.7	0.03	5.40	0.05	10.2	0.19	9.28	0.19	240.0	210.0	176.6	91	178.0	15.	176.6	11.0
Output 1 165	5640	92	3.3	0.03	7.14	0.06	14.9 5	0.21	15.9	0.49	330.0	320.0	178.0	13. 0	194.0	29. 0	178.0	14.0
Output 1 141	96200	3440	12	0.03	4.74	0.05	6.43	0.21	5 34	0.12	204.0	72.0	180 1	73	189.4	89	180 1	10.0
Output 1 161	6540	152	2.0	0.03	4.24	0.05	6.22	0.21	7 00	0.12	250.0	140.0	190.1	7.5	197.0	13.	190.1	10.0
Output_1_101	4510	152	2.0	0.03	4.23	0.05	13.0	0.20	12.6	0.30	40.0	250.0	191.0	11.	196.0	22.	191.0	12.0
Output_1_55	4310	457	2.5	0.03	5.36	0.05	0 10	0.21	0.27	0.23	40.0	160.0	181.0	0.5	180.0	14.	101.0	13.0
Output_1_119	2050	457	2.4	0.03	5.20	0.05	20.6	0.20	19.5	0.56	150.0	100.0	101.2	9.5	245.0	39.	101.2	12.0
Output_1_205	2050	205	2.6	0.03	8.74	0.06	3	0.24	8	0.04	690.0	380.0	182.0	0	215.0	12.	182.0	16.0
Output_1_103	10340	205	1.4	0.03	3.23	0.05	10.9	0.21	6.80	0.38	260.0	140.0	182.7	5.8	190.0	16.	182.7	8.2
Output_1_64	4520	93	2.4	0.03	6.25	0.05	8 18.1	0.20	9.69 18.8	0.16	80.0	210.0	183.0	0 13.	180.0	0 34.	183.0	13.0
Output_1_84	5890	135	2.2	0.03	6.94	0.06	8 11.6	0.22	1 10.1	0.26	330.0	340.0	183.0	0 11.	197.0	0 19.	183.0	15.0
Output_1_91	3920	142	2.3	0.03	5.90	0.05	6	0.21	0	0.49	200.0	190.0	183.0	0	194.0	0 12.	183.0	12.0
Output_1_108	5340	123	1.9	0.03	4.84	0.05	7.39 14.4	0.20	7.14 13.0	0.24	150.0	150.0	183.5	8.7 11.	181.0	0 20.	183.5	10.0
Output_1_187	3400	191	7.8	0.03	5.86	0.05	7 13.7	0.18	4 14.9	0.29	-20.0	240.0	184.0	0 11.	168.0	0 24.	184.0	13.0
Output_1_237	6700	258	1.9	0.03	6.21	0.05	0	0.22	3	0.44	390.0	260.0	184.0	0	209.0	0 15.	184.0	13.0
Output_1_94	5860	169	2.0	0.03	3.78	0.05	9.00	0.21	8.21	0.08	300.0	180.0	184.9	7.1 10.	192.0	0 11.	184.9	9.2
Output_1_181	13840	246	2.7	0.03	5.84	0.05	6.07 11.7	0.20	7.00 11.9	0.50	250.0	130.0	185.0	0 13.	185.0	0 21.	185.0	12.0
Output_1_131	3830	217	2.4	0.03	6.83	0.05	0	0.22	8 10.8	0.29	330.0	250.0	186.0	0	197.0	0 18.	186.0	14.0
Output_1_172	4400	43	3.1	0.03	5.80	0.05	9.70	0.19	2	0.23	130.0	200.0	186.0	0	184.0	0 16.	186.0	12.0
Output_1_055	6230	93	4.2	0.03	4.42	0.05	7.50	0.22	8.29	0.53	380.0	160.0	187.0	8.1	201.0	0	187.0	10.0
Output_1_82	13120	259	4.0	0.03	4.07	0.05	6.37	0.20	6.50	0.39	140.0	130.0	187.3	7.8	184.0	0	187.3	9.7

														46		10		
Output_1_054	4780	69	3.8	0.03	8.78	0.05	11.1	0.23	9.91	0.34	400.0	250.0	188.0	16. 0	211.0	19. 0	188.0	17.0
Output_1_100	10740	212	2.0	0.03	5.05	0.05	5.55	0.21	6.70	0.60	330.0	120.0	188.6	9.4	192.0	12. 0	188.6	11.0
Output_1_125	12240	1188	2.0	0.03	4.67	0.05	6.15	0.21	6.83	0.43	110.0	130.0	190.2	8.8	191.0	11. 0	190.2	11.0
Output_1_190	2350	121	2.6	0.03	4.33	0.05	14.4 7	0.22	12.9 5	0.43	190.0	280.0	190.6	8.4	201.0	24. 0	190.6	10.0
Output_1_123	5220	525	2.3	0.03	4.93	0.05	8.16	0.21	9.39	0.35	250.0	180.0	193.0	9.4	197.0	17. 0	193.0	11.0
Output_1_137	9190	334	2.4	0.03	4.89	0.05	7.51	0.21	7.66	0.44	130.0	160.0	195.1	9.2	191.0	13. 0	195.1	11.0
Output_1_188	17710	1098	2.0	0.03	3.56	0.05	6.11	0.21	5.21	0.31	290.0	130.0	196.2	6.6	194.2	9.0	196.2	9.0
Output_1_136	24500	900	2.0	0.03	3.81	0.05	4.17	0.23	5.31	0.56	297.0	93.0	199.6	7.4	207.0	10. 0	199.6	9.7
Output_1_239	26180	1050	3.3	0.03	4.44	0.05	4.77	0.22	5.41	0.63	270.0	110.0	199.9	8.6	205.0	11. 0	199.9	11.0
Output_1_98	44700	911	2.2	0.03	1.49	0.05	2.59	0.22	2.51	0.25	194.0	59.0	200.1	2.9	201.4	4.6	200.1	7.0
Output_1_218	15580	392	2.2	0.03	5.99	0.06	5.09	0.23	8.62	0.63	390.0	110.0	201.0	12. 0	211.0	16. 0	201.0	13.0
Output_1_127	35200	2830	0.9	0.03	2.62	0.05	3.56	0.22	3.52	0.32	236.0	79.0	205.4	5.3	205.5	6.5	205.4	8.4
Output_1_159	7010	200	4.8	0.03	5.86	0.05	7.63	0.22	8.07	0.39	180.0	160.0	206.0	12. 0	203.0	15. 0	206.0	13.0
Sample 18ATW23								ı								I		
Output_1_127	642	35	3.3	0.02	8.11	0.05	29.1 7	0.15	25.8 5	0.14	170.0	470.0	141.0	11. 0	134.0	34. 0	141.0	11.0
Output_1_65	2700	61	1.8	0.02	4.07	0.05	11.6 5	0.16	10.6 3	0.05	200.0	230.0	144.0	5.8	150.0	15. 0	144.0	6.0
Output_1_2	2750	142	2.8	0.02	5.24	0.04	17.1 0	0.14	16.9 0	0.07	-50.0	300.0	146.2	7.5	133.0	22. 0	146.2	7.6
Output_1_17	1580	59	2.0	0.02	4.31	0.06	18.1 8	0.18	17.4 2	0.04	370.0	350.0	147.7	6.6	163.0	27. 0	147.7	6.7
Output_1_92	3050	100	2.4	0.02	3.66	0.06	10.6 1	0.17	9.25	0.04	400.0	220.0	148.1	5.4	161.0	14. 0	148.1	5.5
Output_1_80	6250	216	1.3	0.02	3.44	0.05	9.25	0.16	9.26	0.13	190.0	180.0	148.2	5.1	151.0	13. 0	148.2	5.3
Output_1_72	1334	30	1.5	0.02	6.01	0.06	21.0 5	0.17	20.0 0	0.11	350.0	390.0	148.5	8.9	161.0	31. 0	148.5	9.0
Output_1_25	1118	17	2.4	0.02	6.41	0.06	22.0 3	0.18	20.0 0	0.06	380.0	400.0	148.8	9.6	164.0	31. 0	148.8	9.7
Output_1_77	1940	55	2.5	0.02	5.98	0.06	17.8 2	0.18	15.2 2	0.36	430.0	340.0	148.8	8.6	169.0	24. 0	148.8	8.8
Output_1_7	1205	97	3.2	0.02	5.53	0.06	20.0 0	0.19	18.2 8	0.20	570.0	330.0	149.7	8.4	177.0	31. 0	149.7	8.5
Output_1_90	2620	96	2.8	0.02	6.78	0.05	18.8 2	0.17	16.1 7	0.16	300.0	360.0	150.0	10. 0	155.0	23. 0	150.0	10.0
Output_1_132	2201	89	2.0	0.02	4.66	0.05	13.6 4	0.17	15.2 0	0.39	180.0	260.0	150.1	7.1	158.0	22. 0	150.1	7.2
Output_1_5	5260	389	2.7	0.02	3.65	0.05	11.2 0	0.17	10.7 8	0.10	250.0	230.0	150.1	5.4	159.0	15. 0	150.1	5.6
Output_1_43	3410	146	2.0	0.02	3.14	0.05	11.0 7	0.17	10.3 0	0.15	240.0	210.0	150.4	4.6	154.0	15. 0	150.4	4.9
Output_1_53	1350	53	2.1	0.02	5.93	0.05	17.8 0	0.18	16.8 5	0.05	450.0	320.0	150.6	9.0	164.0	26. 0	150.6	9.1
Output_1_45	2092	113	2.1	0.02	5.06	0.04	16.3 3	0.15	14.9 4	0.10	-20.0	270.0	151.2	7.3	143.0	20. 0	151.2	7.5
Output_1_136	4540	115	3.9	0.02	3.40	0.05	9.62	0.17	8.82	0.02	250.0	190.0	151.9	5.1	159.0	13. 0	151.9	5.3
Output_1_10	3730	269	2.1	0.02	3.47	0.05	13.3 8	0.18	13.4 8	0.21	310.0	260.0	152.2	5.2	171.0	22. 0	152.2	5.4
Output_1_58	1598	47	1.8	0.02	6.25	0.06	16.9 5	0.19	17.4 6	0.07	390.0	330.0	152.5	9.6	173.0	28. 0	152.5	9.7
Output_1_139	4080	97	2.3	0.02	3.88	0.05	10.2 5	0.16	10.0 6	0.36	120.0	190.0	152.6	5.8	149.0	14. 0	152.6	6.0
Output_1_98	5370	167	2.8	0.02	3.67	0.05	9.39	0.16	9.20	0.11	140.0	180.0	152.6	5.5	152.0	13. 0	152.6	5.7
Output_1_41	1674	47	4.2	0.02	5.42	0.05	17.9 4	0.16	17.0 7	0.36	130.0	310.0	152.8	8.4	151.0	24. 0	152.8	8.5
Output_1_40	3850	93	2.0	0.02	3.79	0.05	11.6 3	0.16	11.7 3	0.04	100.0	220.0	153.1	5.7	151.0	17. 0	153.1	5.9
Output_1_138	17090	404	2.4	0.02	3.12	0.05	5.11	0.16	6.71	0.44	170.0	110.0	153.1	4.7	153.4	9.6	153.1	4.9
Output_1_15	1794	78	3.9	0.02	6.67	0.05	17.0 1	0.18	16.0 2	0.09	350.0	310.0	153.1	9.9	171.0	24. 0	153.1	10.0

								I			1					1		
Output_1_141	1065	23	1.8	0.02	5.81	0.06	23.6 4	0.16	21.7 4	0.21	170.0	380.0	153.5	8.8	154.0	32. 0	153.5	8.9
Output_1_126	1242	70	2.4	0.02	6.22	0.06	21.0 5	0.18	18.9 9	0.15	450.0	400.0	153.5	9.4	169.0	31. 0	153.5	9.5
Output_1_83	2056	82	2.8	0.02	4.15	0.05	12.5 2	0.18	13.6 4	0.24	200.0	250.0	153.6	6.5	163.0	21. 0	153.6	6.7
Output_1_140	2242	51	2.1	0.02	4.15	0.06	17.2 4	0.18	16.0 2	0.10	350.0	320.0	153.6	6.6	166.0	25. 0	153.6	6.7
Output_1_9	2697	205	1.7	0.02	4.15	0.06	15.7 3	0.18	16.2 0	0.21	310.0	300.0	153.7	6.4	165.0	24. 0	153.7	6.6
Output_1_99	5330	168	1.4	0.02	3.52	0.05	10.6 8	0.17	10.5 9	0.19	220.0	210.0	153.9	5.3	158.0	16. 0	153.9	5.5
Output_1_13	3400	175	2.9	0.02	3.64	0.05	10.9 0	0.16	10.1 9	0.09	110.0	190.0	154.0	5.5	147.0	14. 0	154.0	5.7
Output_1_30	3720	45	1.9	0.02	5.37	0.05	12.5 7	0.18	11.4 3	0.25	290.0	240.0	154.0	8.1	163.0	17. 0	154.0	8.2
Output_1_116	4980	372	2.9	0.02	2.94	0.05	10.9 3	0.18	9.50	0.15	300.0	210.0	154.0	4.5	166.0	15. 0	154.0	4.7
Output_1_81	2970	105	3.0	0.02	3.68	0.05	13.2 5	0.18	11.4 3	0.16	220.0	240.0	154.2	5.6	162.0	18. 0	154.2	5.8
Output_1_145	7130	164	2.5	0.02	3.70	0.05	6.97	0.17	6.94	0.21	220.0	150.0	155.0	5.6	163.9	9.6	155.0	5.8
Output_1_109	10710	746	1.5	0.02	9.47	0.05	6.82	0.18	12.8 5	0.80	290.0	160.0	155.0	14. 0	167.0	19. 0	155.0	15.0
Output_1_20	4000	114	1.4	0.02	3.67	0.05	10.1 8	0.17	8.38	0.22	140.0	190.0	156.3	5.7	157.0	12. 0	156.3	5.9
Output_1_148	4180	102	1.6	0.02	4.49	0.06	10.4 5	0.18	9.34	0.22	390.0	220.0	156.3	6.6	169.0	14. 0	156.3	6.8
Output_1_59	2790	75	2.2	0.02	4.47	0.05	14.4 9	0.18	13.1 4	0.13	210.0	250.0	156.4	6.9	162.0	20. 0	156.4	7.1
Output_1_21	5430	138	1.5	0.02	2.93	0.05	8.03	0.17	7.51	0.07	290.0	170.0	156.4	4.5	161.0	11. 0	156.4	4.8
Output_1_78	3230	93	2.4	0.02	3.98	0.05	10.5 0	0.19	11.8 9	0.14	210.0	180.0	156.9	6.2	170.0	19. 0	156.9	6.4
Output 1 101	1108	57	2.9	0.02	6.88	0.05	19.2 3	0.18	18.7 5	0.08	210.0	340.0	157.0	11. 0	167.0	29. 0	157.0	11.0
Output 1 124	1652	100	1.9	0.02	6.05	0.05	17.8 4	0.18	18.1 3	0.04	190.0	320.0	157.6	9.1	166.0	28. 0	157.6	9.2
Output 1 46	3690	203	1.6	0.02	3.92	0.05	11.9 5	0.18	11.1	0.05	310.0	230.0	157.7	6.1	166.0	17.	157.7	6.3
Output 1 115	4400	326	2.0	0.02	4.84	0.05	10.5	0.18	10.3 3	0.30	340.0	210.0	157.7	7.6	170.0	16. 0	157.7	7.8
Output 1 93	1494	46	3.4	0.02	6.05	0.05	17.0 3	0.18	15.0 8	0.06	340.0	320.0	157.8	9.5	169.0	22.	157.8	9.6
Output 1 143	3700	81	3.5	0.02	3 38	0.06	11.5	0.19	10.5	0.13	380.0	230.0	158.4	5.3	175.0	17.	158.4	5.5
Output 1 137	4170	100	2.6	0.02	4.82	0.05	11.0 7	0.17	10.3 4	0.14	250.0	220.0	158.6	77	164.0	15.	158.6	7.8
Output 1 28	8250	100	1.5	0.02	2.65	0.05	8.46	0.17	8 67	0.02	210.0	170.0	158.7	1.7	162.0	13.	158.7	1.5
Output 1 1	3980	157	2.9	0.02	4.02	0.04	9.80	0.17	11.5	0.02	20.0	190.0	158.8	6.3	154.0	17.	158.8	6.5
Output_1_1	2860	- 51	2.0	0.02	4.02	0.05	11.6	0.17	12.0	0.20	20.0	220.0	150.0	6.5	175.0	19.	150.0	7.1
Output_1_35	2000	45	1.0	0.03	4.40	0.05	17.1	0.18	16.4	0.27	320.0	220.0	150.5	0.5	162.0	25.	150.5	7.1
Output_1_142	14040	43	1.5	0.03	4.00	0.05	0.27	0.18	10.0	0.13	230.0	200.0	155.1	1.2	167.0	16.	155.1	7.4
Output_1_55	14540	437	1.0	0.03	7.20	0.05	25.4	0.18	25.4	0.58	400.0	470.0	100.0	12.	107.0	46.	100.0	12.0
Output_1_100	1649	42	3.2	0.02	6.25	0.06	14.9	0.21	ہ 14.1	0.12	400.0	470.0	160.0	10.	191.0	24.	160.0	12.0
Output_1_85	1046	65	2.1	0.03	0.55	0.06	20.0	0.20	19.4	0.14	440.0	300.0	160.0	15.	181.0	33.	160.0	10.0
Output_1_89	1440	51	2.7	0.03	9.52	0.05	15.8	0.20	14.9	0.07	490.0	400.0	160.0	0	185.0	23.	160.0	15.0
Output_1_42	1810	65	1.8	0.03	5.56	0.05	9	0.19	,	0.04	270.0	300.0	160.2	8.7	176.0	0	160.2	8.8
Output_1_113	0	7200	3.5	0.03	2.30	0.05	13.7	0.18	2.88	0.79	223.0	55.0	160.4	3.7	165.4	4.4 24.	160.4	4.0
Output_1_75	3010	70	2.5	0.03	5.53	0.05	1 20.0	0.19	4 20.0	0.41	340.0	280.0	160.8	9.1	173.0	0 32.	160.8	9.2
Output_1_69	2048	39	1.5	0.03	5.53	0.05	0 17.5	0.19	0 17.6	0.06	250.0	400.0	160.9	8.7	169.0	0 25.	160.9	8.8
Output_1_94	2070	62	3.3	0.03	4.74	0.04	0 28.2	0.16	1 28.5	0.19	10.0	300.0	161.3	7.8	151.0	0 39.	161.3	7.9
Output_1_47	866	44	2.5	0.03	5.91	0.05	6	0.16	7	0.04	-50.0	430.0	161.4	9.4	144.0	0 15.	161.4	9.6
Output_1_104	3120	172	2.2	0.03	3.27	0.05	9.88 24.5	0.17	9.83 25.0	0.49	230.0	190.0	161.7	5.2	161.0	0 41.	161.7	5.4
Output_1_66	848	17	2.8	0.03	5.49	0.06	9	0.20	0	0.10	470.0	450.0	162.5	9.0	178.0	0	162.5	9.1

			Í					l			I					ĺ		
Output_1_55	951	29	2.7	0.03	5.47	0.05	24.4 4	0.16	22.9 8	0.08	-30.0	400.0	163.0	9.0	146.0	33. 0	163.0	9.1
Output_1_102	3990	202	3.3	0.03	3.91	0.05	11.2 1	0.19	10.2 7	0.05	350.0	210.0	163.1	6.3	174.0	17. 0	163.1	6.5
Output_1_67	4080	76	2.0	0.03	3.57	0.05	11.3 2	0.16	10.9 8	0.10	40.0	200.0	163.8	5.8	153.0	16. 0	163.8	6.0
Output_1_26	2603	34	2.7	0.03	3.88	0.05	14.3 4	0.18	14.2 9	0.04	160.0	260.0	164.0	6.5	168.0	22. 0	164.0	6.7
Output_1_131	3178	120	4.3	0.03	3.82	0.05	12.9 2	0.18	12.6 4	0.10	230.0	250.0	166.4	6.5	171.0	20. 0	166.4	6.7
Output_1_135	3650	86	1.4	0.03	3.77	0.05	13.0 9	0.18	13.5 6	0.34	60.0	230.0	168.6	6.4	163.0	21. 0	168.6	6.6
Output_1_79	4060	116	3.1	0.03	3.53	0.05	12.6 3	0.18	13.1 1	0.14	100.0	230.0	169.6	5.9	168.0	20. 0	169.6	6.1
Output_1_123	5600	323	2.4	0.03	4.49	0.05	11.3 3	0.19	10.7 0	0.06	170.0	220.0	170.0	7.7	173.0	17. 0	170.0	7.8
Output_1_111	3480	221	2.7	0.03	3.48	0.05	13.7 2	0.19	11.9 2	0.26	210.0	250.0	173.4	5.9	177.0	20. 0	173.4	6.2
Output_1_125	6220	318	3.8	0.03	4.03	0.05	9.03	0.18	7.73	0.02	150.0	180.0	173.5	7.0	168.0	12. 0	173.5	7.2
Output_1_91	4630	133	3.1	0.03	3.20	0.05	7.29	0.21	7.80	0.42	360.0	150.0	174.9	5.5	191.0	13. 0	174.9	5.8
Output_1_38	5760	91	2.0	0.03	3.58	0.05	7.88	0.20	9.23	0.44	260.0	160.0	177.4	6.4	182.0	15. 0	177.4	6.6
Output_1_27	14580	168	2.7	0.03	2.03	0.05	4.86	0.19	4.84	0.11	180.0	110.0	178.7	3.6	180.0	8.0	178.7	4.0
Output_1_112	16870	1054	1.8	0.03	2.48	0.05	6.33	0.20	6.50	0.39	270.0	130.0	179.4	4.4	185.0	11. 0	179.4	4.7
Output_1_108	2310	135	2.9	0.03	4.61	0.05	13.1 3	0.21	13.6 8	0.11	380.0	250.0	179.4	8.0	192.0	24. 0	179.4	8.2
Output_1_144	10990	211	2.5	0.03	3.15	0.05	8.96	0.19	8.56	0.09	100.0	170.0	179.8	5.6	174.0	13. 0	179.8	5.8
Output_1_16	26310	876	1.5	0.03	3.39	0.05	7.00	0.20	6.97	0.29	240.0	150.0	179.9	6.0	186.0	12. 0	179.9	6.2
Output_1_149	7380	165	1.4	0.03	3.53	0.05	7.06	0.21	7.28	0.18	220.0	140.0	180.0	6.5	190.0	13. 0	180.0	6.8
Output_1_147	10250	212	3.2	0.03	3.31	0.05	7.62	0.19	6.19	0.13	220.0	150.0	180.4	5.9	179.9	9.9	180.4	6.2
Output_1_34	4720	54	3.6	0.03	3.42	0.06	12.2 4	0.22	11.4 7	0.29	400.0	240.0	180.4	6.1	198.0	21. 0	180.4	6.3
Output_1_97	10750	277	1.5	0.03	3.04	0.06	4.49	0.22	4.23	0.18	416.0	94.0	181.9	5.4	201.4	7.7	181.9	5.7
Output_1_36	6840	86	1.6	0.03	4.17	0.05	10.9 7	0.20	10.4 0	0.23	40.0	200.0	183.2	7.5	186.0	18. 0	183.2	7.7
Output_1_12	6570	303	6.0	0.03	3.81	0.06	9.87	0.23	8.37	0.04	420.0	200.0	183.5	6.6	207.0	16. 0	183.5	6.8
Output_1_118	17440	1076	1.4	0.03	2.01	0.05	4.99	0.20	5.05	0.46	190.0	100.0	183.7	3.6	183.0	8.6	183.7	4.1
Output_1_103	11280	539	2.1	0.03	2.77	0.05	6.73	0.20	5.97	0.21	260.0	140.0	183.8	5.0	188.0	11. 0	183.8	5.3
Output_1_130	6400	252	2.8	0.03	2.72	0.05	8.00	0.21	7.51	0.01	320.0	180.0	184.7	5.0	196.0	14. 0	184.7	5.3
Output_1_31	14200	141	2.9	0.03	2.57	0.05	4.13	0.21	3.92	0.42	224.0	89.0	185.2	4.7	192.6	6.9	185.2	5.0
Output_1_84	22820	777	1.5	0.03	2.64	0.05	4.41	0.21	5.29	0.37	290.0	100.0	185.2	4.8	192.0	8.8	185.2	5.1
Output_1_23	7880	119	2.1	0.03	4.11	0.05	13.7 5	0.22	14.2 9	0.14	300.0	280.0	185.4	7.5	198.0	26. 0	185.4	7.7
Output_1_14	9010	350	2.5	0.03	3.42	0.05	6.98	0.19	7.77	0.37	110.0	140.0	185.6	6.5	179.0	13. 0	185.6	6.7
Output_1_76	2620	55	1.9	0.03	5.14	0.05	15.7 5	0.22	14.4 8	0.25	300.0	290.0	185.7	9.2	200.0	27. 0	185.7	9.4
Output_1_119	8580	518	2.4	0.03	2.80	0.05	8.64	0.21	7.51	0.03	250.0	170.0	185.9	5.2	195.0	13. 0	185.9	5.5
Output_1_122	9790	535	2.2	0.03	3.04	0.05	7.04	0.20	7.61	0.31	140.0	140.0	186.2	5.5	182.0	12. 0	186.2	5.8
Output_1_129	14560	591	1.9	0.03	3.20	0.06	5.17	0.22	6.31	0.43	430.0	120.0	186.4	5.9	203.0	12. 0	186.4	6.1
Output_1_73	6870	123	2.0	0.03	2.79	0.05	8.05	0.20	7.92	0.09	190.0	160.0	187.0	5.2	186.0	13. 0	187.0	5.5
Output_1_44	6010	245	2.1	0.03	3.29	0.05	8.61	0.21	8.49	0.12	250.0	180.0	187.0	6.1	196.0	15. 0	187.0	6.4
Output_1_6	3380	210	2.7	0.03	5.08	0.05	9.70	0.21	9.35	0.03	260.0	200.0	187.4	9.1	195.0	17. 0	187.4	9.3
Output_1_32	29310	293	2.3	0.03	2.23	0.05	4.08	0.22	4.31	0.64	345.0	90.0	187.8	4.1	201.8	7.9	187.8	4.5
Output_1_134	8590	251	2.6	0.03	2.87	0.05	8.55	0.20	7.92	0.05	190.0	170.0	188.3	5.3	186.0	14. 0	188.3	5.6
Output_1_11	6010	291	1.8	0.03	3.37	0.05	11.1 5	0.22	10.0 0	0.12	310.0	220.0	188.5	6.4	201.0	18. 0	188.5	6.7

								I			1					ĺ		
Output_1_71	8460	138	2.3	0.03	2.29	0.05	7.74	0.22	7.37	0.04	330.0	170.0	188.7	4.2	199.0	14. 0	188.7	4.6
Output_1_63	22540	422	1.5	0.03	2.45	0.05	6.05	0.21	6.64	0.03	280.0	150.0	189.2	4.6	195.0	12. 0	189.2	4.9
Output_1_52	8840	287	1.6	0.03	2.78	0.05	6.31	0.21	6.67	0.38	340.0	130.0	189.4	5.2	193.0	12. 0	189.4	5.5
Output_1_8	32520	2082	2.1	0.03	2.75	0.05	3.45	0.21	3.70	0.42	174.0	74.0	189.7	5.1	191.0	6.8	189.7	5.4
Output_1_96	13980	345	2.1	0.03	2.64	0.05	5.04	0.22	5.56	0.37	270.0	110.0	189.7	5.0	198.0	10. 0	189.7	5.3
Output_1_35	11680 0	1368	2.3	0.03	2.14	0.05	1.96	0.21	2.47	0.57	212.0	45.0	189.9	4.0	193.8	4.4	189.9	4.4
Output_1_82	18250	585	2.3	0.03	1.97	0.05	4.68	0.21	4.14	0.26	240.0	100.0	189.9	3.7	197.1	7.9	189.9	4.1
Output_1_74	9380	172	1.9	0.03	2.44	0.06	4.21	0.24	4.60	0.28	485.0	97.0	190.1	4.6	218.5	8.4	190.1	4.9
Output_1_54	13220	376	2.5	0.03	2.20	0.05	6.32	0.21	6.10	0.21	260.0	130.0	190.2	4.1	196.0	11. 0	190.2	4.5
Output_1_107	3860	206	3.1	0.03	3.33	0.05	10.2 0	0.21	12.2 1	0.44	190.0	200.0	190.4	6.5	198.0	22. 0	190.4	6.7
Output_1_114	15360	934	1.8	0.03	3.12	0.05	6.75	0.20	6.86	0.14	190.0	140.0	191.5	5.9	188.0	12. 0	191.5	6.2
Output_1_110	12350	699	1.5	0.03	4.30	0.06	6.53	0.23	5.65	0.47	460.0	150.0	191.5	8.0	210.0	11. 0	191.5	8.2
Output_1_61	48400	903	2.0	0.03	2.11	0.05	3.20	0.21	3.32	0.38	188.0	71.0	192.6	4.0	195.5	6.2	192.6	4.4
Output_1_70	8340	132	1.9	0.03	2.47	0.05	10.4 0	0.23	10.2 2	0.13	290.0	220.0	192.6	4.7	205.0	19. 0	192.6	5.1
Output_1_4	43370	2256	1.8	0.03	2.26	0.05	2.99	0.21	2.91	0.34	206.0	69.0	194.1	4.3	196.1	5.2	194.1	4.7
Output_1_19	6010	146	1.3	0.03	4.23	0.06	10.2 6	0.23	10.3 0	0.27	510.0	200.0	194.8	7.9	217.0	22. 0	194.8	8.2
Output_1_128	7540	306	3.3	0.03	1.79	0.05	8.51	0.21	7.25	0.27	200.0	170.0	195.2	3.4	191.0	13. 0	195.2	3.9
Output_1_51	4300	143	1.7	0.03	2.99	0.05	11.1 1	0.23	11.0 6	0.14	330.0	240.0	195.6	5.7	209.0	22. 0	195.6	6.1
Output_1_86	9840	312	1.6	0.03	3.04	0.05	7.78	0.21	7.94	0.27	180.0	150.0	196.1	5.9	196.0	15. 0	196.1	6.2
Output_1_3	4860	222	2.6	0.03	3.03	0.05	10.4 0	0.21	10.5 8	0.09	130.0	190.0	196.8	5.9	194.0	18. 0	196.8	6.2
Output_1_22	10620	173	2.2	0.03	2.77	0.05	5.18	0.23	5.75	0.17	270.0	110.0	199.1	5.4	206.0	10. 0	199.1	5.8
Output_1_60	7560	148	2.9	0.03	3.02	0.05	7.92	0.21	7.28	0.03	70.0	150.0	199.9	6.0	189.0	12. 0	199.9	6.3
Output_1_146	8170	152	2.1	0.03	4.75	0.05	9.07	0.22	9.42	0.30	300.0	190.0	200.4	9.6	203.0	17. 0	200.4	9.8
Output_1_56	2660	65	2.6	0.03	4.11	0.06	11.4 1	0.24	11.3 4	0.12	380.0	230.0	200.4	7.9	215.0	22. 0	200.4	8.2
Output_1_62	30300	536	1.5	0.03	1.96	0.05	5.49	0.23	4.74	0.02	310.0	120.0	200.7	3.9	211.7	9.4	200.7	4.3
Output_1_33	59300	568	2.2	0.03	2.40	0.05	2.61	0.22	3.31	0.64	167.0	61.0	201.1	4.8	199.4	6.0	201.1	5.1
Output_1_48	4330	166	2.3	0.03	3.46	0.05	10.9 8	0.24	9.62	0.01	300.0	220.0	201.9	6.7	216.0	19. 0	201.9	7.0
Output_1_120	14860	784	3.3	0.03	2.09	0.05	4.75	0.23	4.89	0.21	210.0	100.0	203.0	4.2	205.3	9.3	203.0	4.6
Output_1_133	20150	569	2.4	0.03	2.70	0.05	5.77	0.24	5.49	0.01	320.0	120.0	206.5	5.5	215.0	11. 0	206.5	5.8
Output_1_68	5900	86	2.3	0.03	4.24	0.05	9.33	0.24	8.75	0.00	320.0	180.0	209.1	8.5	221.0	16. 0	209.1	8.7
Output_1_64	4100	67	3.1	0.03	3.92	0.05	11.5 2	0.22	11.4 2	0.18	100.0	210.0	210.4	8.3	203.0	21. 0	210.4	8.5
Output_1_18	7930	166	1.7	0.03	4.32	0.05	6.68	0.25	9.88	0.50	160.0	150.0	219.9	9.6	229.0	20. 0	219.9	9.8
Output_1_106	23900	1050	1.6	0.03	2.60	0.05	3.77	0.24	4.17	0.52	216.0	82.0	221.4	5.7	218.2	8.4	221.4	6.1
Output_1_49	29440	404	1.6	0.09	1.70	0.06	3.59	0.73	3.97	0.25	577.0	81.0	544.2	9.1	555.0	17. 0	544.2	10.0
Output_1_88	9460	48	1.3	0.18	3.18	0.08	5.61	1.90	4.94	0.20	1150.0	110.0	1046.0	31. 0	#####	35. 0	1150.0	110. 0
Output_1_105	46380	291	2.3	0.23	2.14	0.09	2.70	2.90	3.79	0.70	1401.0	52.0	1351.0	26. 0	#####	28. 0	1401.0	52.0
Output_1_24	86200	122	1.6	0.28	2.45	0.10	2.16	3.86	3.63	0.65	1573.0	40.0	1601.0	35. 0	#####	28. 0	1573.0	40.0
Output_1_121	84000	476	3.4	0.28	1.94	0.10	2.63	3.97	3.02	0.52	1681.0	52.0	1606.0	28. 0	#####	25. 0	1681.0	52.0
Output_1_117	51270	317	1.2	0.29	2.44	0.11	2.26	4.24	2.59	0.56	1727.0	42.0	1647.0	35. 0	#####	21. 0	1727.0	42.0
Output_1_57	10720 0	258	1.1	0.30	1.52	0.11	1.60	4.39	2.10	0.72	1738.0	29.0	1669.0	22. 0	#####	17. 0	1738.0	29.0

Output_1_37	10990 0	153	3.0	0.29	2.64	0.11	2.77	4.52	2.21	0.66	1827.0	50.0	1647.0	39. 0	****	21. 0	1827.0	50.0
Sample 19ATW40			i					I								I		
Output_1_7	24700	4810	7.2	0.01	6.19	0.05	6.99	0.06	7.60	0.50	70.0	140.0	57.0	3.5	58.4	4.3	57.0	3.7
Output_1_4	13070	2259	7.7	0.01	4.73	0.05	9.04	0.06	11.1 5	0.46	180.0	180.0	58.4	2.7	62.6	6.8	58.4	3.0
Output_1_11	4980	963	4.7	0.01	4.88	0.05	9.80	0.06	9.72	0.32	10.0	180.0	60.5	2.9	58.8	5.6	60.5	3.2
Output_1_44	13190	2442	22.0	0.01	4.53	0.05	7.71	0.06	6.18	0.26	100.0	150.0	60.9	2.8	59.0	3.6	60.9	3.0
Output_1_37	13110	2060	0.6	0.01	4.81	0.05	7.14	0.06	7.96	0.39	200.0	140.0	61.4	3.0	63.0	4.9	61.4	3.2
Output_1_34	3760	461	12.2	0.01	5.19	0.05	14.5 1	0.07	14.2 0	0.09	280.0	290.0	61.8	3.2	67.4	9.3	61.8	3.4
Output_1_10	1360	245	2.3	0.01	6.83	0.05	24.5 3	0.08	22.3 7	0.03	300.0	400.0	62.0	4.2	77.0	16. 0	62.0	4.4
Output_1_24	7480	870	3.6	0.01	5.05	0.05	10.2 4	0.07	9.86	0.37	150.0	190.0	62.2	3.2	64.6	6.2	62.2	3.4
Output_1_49	7690	1058	4.5	0.01	4.13	0.05	8.26	0.06	8.03	0.05	100.0	170.0	62.2	2.6	62.5	4.8	62.2	2.9
Output_1_47	1430	217	2.3	0.01	9.32	0.05	23.5 3	0.07	20.9 0	0.02	250.0	380.0	62.6	5.8	68.0	14. 0	62.6	5.9
Output_1_6	9820	1689	3.9	0.01	4.07	0.05	7.80	0.07	7.75	0.40	160.0	160.0	63.0	2.6	65.9	5.0	63.0	2.9
Output_1_22	11860	1405	2.9	0.01	4.18	0.05	7.19	0.06	7.57	0.21	130.0	140.0	63.0	2.6	63.6	4.7	63.0	2.9
Output_1_20	9850	1283	7.7	0.01	4.47	0.05	6.55	0.07	7.20	0.59	70.0	130.0	63.1	2.8	64.2	4.5	63.1	3.1
Output_1_42	8430	1632	2.6	0.01	4.17	0.05	8.14	0.06	9.11	0.34	50.0	150.0	63.1	2.6	61.5	5.4	63.1	2.9
Output_1_36	8570	1223	6.7	0.01	4.26	0.05	8.88	0.07	7.84	0.35	240.0	180.0	63.3	2.7	66.3	5.0	63.3	3.0
Output_1_15	8630	1370	5.7	0.01	3.73	0.05	8.67	0.07	9.24	0.33	90.0	170.0	63.6	2.4	65.8	5.9	63.6	2.7
Output_1_28	8500	873	4.8	0.01	4.94	0.05	8.98	0.07	9.27	0.26	120.0	180.0	63.6	3.2	65.8	6.1	63.6	3.4
Output_1_30	7550	780	9.0	0.01	5.44	0.05	9.20	0.07	9.45	0.36	160.0	180.0	63.7	3.4	64.4	5.9	63.7	3.7
Output_1_1	11200	1744	3.8	0.01	5.51	0.05	8.76	0.07	9.04	0.33	90.0	170.0	64.1	3.5	65.1	5.7	64.1	3.8
Output_1_27	9460	940	3.7	0.01	5.91	0.05	8.73	0.07	9.31	0.54	100.0	170.0	64.1	3.8	65.4	5.9	64.1	4.0
Output_1_3	7830	1278	6.7	0.01	5.48	0.05	14.5 4	0.07	11.0 3	0.46	80.0	180.0	64.4	3.5	64.8	6.8	64.4	3.8
Output_1_12	11320	1940	4.0	0.01	4.59	0.05	11.8 8	0.07	11.9 7	0.00	250.0	230.0	64.4	2.9	67.2	7.8	64.4	3.2
Output_1_33	10010	1141	3.3	0.01	5.65	0.05	12.0 4	0.07	11.3 4	0.44	320.0	250.0	64.7	3.6	70.8	7.7	64.7	3.9
Output_1_23	1930	205	5.1	0.01	4.75	0.05	19.0 3	0.07	20.2 9	0.14	10.0	330.0	64.8	3.1	67.0	13. 0	64.8	3.4
Output_1_5	13500	2154	3.8	0.01	4.85	0.05	6.06	0.07	7.70	0.59	190.0	130.0	64.9	3.2	68.7	5.1	64.9	3.4
Output_1_17	5550	795	2.5	0.01	6.22	0.05	16.3 6	0.07	13.3 0	0.09	130.0	290.0	65.0	4.0	64.2	8.3	65.0	4.2
Output_1_32	14490	1630	3.3	0.01	6.09	0.05	5.30	0.07	7.61	0.68	200.0	120.0	65.3	4.0	68.2	5.0	65.3	4.2
Output_1_41	13540	2557	7.2	0.01	4.72	0.05	9.13	0.07	8.23	0.13	150.0	170.0	65.3	3.0	65.6	5.2	65.3	3.3
Output_1_31	4510	497	16.1	0.01	7.15	0.05	10.7 5	0.07	10.7 8	0.21	70.0	200.0	65.5	4.6	65.4	6.8	65.5	4.8
Output_1_13	1307	204	2.9	0.01	5.84	0.04	28.2 1	0.06	31.0 3	0.28	-260.0	410.0	65.8	3.8	57.0	17. 0	65.8	4.1
Output_1_26	10830	1090	4.1	0.01	4.19	0.05	8.55	0.07	7.32	0.04	190.0	160.0	65.9	2.8	69.5	5.0	65.9	3.1
Output_1_43	8610	1525	5.6	0.01	6.10	0.05	9.15	0.06	9.22	0.06	20.0	170.0	66.2	4.0	62.9	5.7	66.2	4.3
Output_1_2	6980	1079	0.4	0.01	4.93	0.05	9.49	0.07	9.61	0.40	190.0	180.0	66.4	3.3	68.2	6.3	66.4	3.5
Output_1_39	4510	782	2.3	0.01	6.08	0.06	13.3 1	0.07	10.6 7	0.06	340.0	260.0	66.4	4.0	71.2	6.8	66.4	4.2
Output_1_38	10190	1668	3.8	0.01	5.96	0.05	6.75	0.07	7.16	0.24	200.0	140.0	66.7	4.0	67.1	4.7	66.7	4.2
Output_1_29	21090	2102	1.4	0.01	5.00	0.05	6.57	0.07	6.53	0.43	70.0	130.0	66.8	3.3	66.2	4.2	66.8	3.6
Output_1_14	16070	2472	4.6	0.01	4.60	0.05	6.37	0.07	6.66	0.55	0.0	120.0	66.9	3.0	67.8	4.4	66.9	3.3

Output_1_8	11620	1938	5.9	0.01	3.73	0.05	7.31	0.07	7.30	0.35	40.0	140.0	67.0	2.5	65.9	4.7	67.0	2.9
Output_1_48	10080	1343	7.7	0.01	4.98	0.05	7.99	0.07	7.83	0.27	190.0	170.0	67.0	3.3	68.8	5.2	67.0	3.6
Output_1_25	16400	1626	4.9	0.01	7.07	0.05	8.00	0.07	8.42	0.51	110.0	160.0	67.1	4.7	68.6	5.3	67.1	4.9
Output_1_45	15270	2490	2.3	0.01	5.06	0.05	8.04	0.07	8.28	0.39	120.0	150.0	67.1	3.4	66.3	5.4	67.1	3.7
Output_1_21	17940	2010	3.6	0.01	5.16	0.05	10.9 5	0.07	10.2 9	0.20	150.0	220.0	67.2	3.4	70.4	7.0	67.2	3.7
Output_1_16	3920	552	5.2	0.01	5.08	0.05	12.3 2	0.07	12.1 3	0.16	140.0	230.0	68.1	3.4	71.6	8.4	68.1	3.7
Output_1_35	12750	1484	3.2	0.01	4.21	0.05	7.39	0.07	7.02	0.34	180.0	150.0	68.6	2.9	69.3	4.4	68.6	3.2
Output_1_19	3980	511	2.0	0.01	6.78	0.05	12.1 3	0.07	11.6 4	0.32	80.0	220.0	69.0	4.6	67.2	7.6	69.0	4.8
Output_1_18	5340	676	3.0	0.01	5.79	0.04	12.8 7	0.07	12.5 2	0.02	-80.0	220.0	69.8	4.0	64.9	7.9	69.8	4.3
Sample 19ATW55			i														ì	
Output_1_101	4150	746	1.1	0.01	5.73	0.05	11.7 2	0.06	12.6 7	0.40	320.0	230.0	53.7	3.1	56.6	7.0	53.7	3.3
Output_1_93	36210	5560	0.5	0.01	3.44	0.05	4.49	0.05	5.28	0.55	146.0	93.0	52.2	1.8	54.2	2.8	52.2	2.1
Output_1_90	14500	2485	0.8	0.01	3.06	0.05	6.26	0.06	6.52	0.32	100.0	120.0	52.4	1.6	54.5	3.5	52.4	1.9
Output_1_95	5900	846	0.9	0.01	3.91	0.05	10.0 8	0.06	10.1 6	0.11	150.0	200.0	52.5	2.0	54.4	5.4	52.5	2.3
Output_1_96	3780	515	1.4	0.01	4.65	0.05	11.6 5	0.06	12.0 3	0.16	160.0	210.0	52.5	2.4	57.2	6.7	52.5	2.6
Output_1_89	7870	1374	0.9	0.01	5.73	0.05	9.07	0.06	8.74	0.29	160.0	180.0	52.6	3.0	56.4	4.8	52.6	3.2
Output_1_91	14940	2408	0.7	0.01	3.41	0.05	6.45	0.06	7.16	0.51	160.0	130.0	52.6	1.8	55.2	3.8	52.6	2.1
Output_1_98	10700	1520	0.9	0.01	4.03	0.05	7.33	0.06	6.90	0.21	180.0	160.0	52.6	2.1	54.4	3.7	52.6	2.4
Output_1_94	16050	2279	0.6	0.01	3.77	0.05	11.4 9	0.06	12.1 6	0.33	180.0	240.0	52.8	2.0	57.6	6.9	52.8	2.2
Output_1_97	13190	1815	0.8	0.01	4.13	0.05	5.14	0.05	6.68	0.58	130.0	110.0	52.9	2.2	53.2	3.5	52.9	2.4
Output_1_81	5040	750	1.1	0.01	6.24	0.05	13.6 3	0.06	13.4 9	0.34	100.0	260.0	53.5	3.4	56.3	7.3	53.5	3.5
Output_1_88	8740	1539	1.2	0.01	5.76	0.05	11.1 3	0.06	12.7 4	0.23	180.0	220.0	53.6	3.1	56.4	7.0	53.6	3.3
Output_1_99	7750	1112	1.0	0.01	3.22	0.05	8.92	0.06	8.83	0.15	170.0	170.0	53.8	1.7	55.6	4.5	53.8	2.0
Output_1_82	11840	1747	0.8	0.01	5.21	0.05	10.4 6	0.06	10.5 2	0.32	180.0	220.0	54.2	2.8	57.2	5.8	54.2	3.0
Output_1_84	12290	1912	0.9	0.01	4.01	0.05	8.18	0.06	6.75	0.19	140.0	160.0	54.3	2.2	57.0	3.8	54.3	2.4
Output_1_83	7420	1119	1.0	0.01	4.27	0.05	9.42	0.06	7.72	0.12	200.0	170.0	55.7	2.4	60.0	4.5	55.7	2.6
Sample 19ATW66								1										
Output_1_61	417	43	0.3	0.01	12.9 6	0.07	28.9 9	0.10	35.3 5	0.29	350.0	570.0	69.0	8.8	91.0	31. 0	69.0	9.2
Output_1_64	987	110	13.3	0.01	6.34	0.04	20.3 6	0.07	20.0 0	0.02	30.0	350.0	72.8	4.6	68.0	13. 0	72.8	5.4
Output_1_59	492	41	0.1	0.01	16.6 7	0.06	35.9 4	0.10	31.2 5	0.03	630.0	680.0	73.0	12. 0	92.0	28. 0	73.0	13.0
Output_1_71	649	110	12.2	0.01	7.36	0.06	26.3 2	0.09	22.7 3	0.10	330.0	450.0	73.2	5.3	88.0	20. 0	73.2	6.0
Output_1_70	370	61	8.0	0.01	13.0 4	0.07	35.1 4	0.10	31.6 8	0.11	470.0	630.0	73.9	9.3	94.0	28. 0	73.9	9.8
Output_1_49	1180	79	8.0	0.01	6.49	0.05	23.4 0	0.08	21.2 5	0.17	20.0	350.0	76.0	4.9	77.0	16. 0	76.0	5.7
Output_1_63	250	25	32.0	0.01	14.0 5	0.05	71.1 1	0.10	68.9 3	0.29	-100.0	#### #	77.0	11. 0	91.0	62. 0	77.0	11.0
Output_1_72	4270	692	38.2	0.01	4.36	0.05	11.3 8	0.08	11.4 4	0.13	160.0	210.0	77.8	3.4	82.3	9.0	77.8	4.5
Output_1_62	1876	175	10.4	0.01	5.04	0.05	14.0 7	0.09	14.2 9	0.21	370.0	270.0	78.8	4.0	88.0	12. 0	78.8	5.0
Sample 19ATW/91																		

Sample 19ATW81

313

Output_1_75	2750	249	2.1	0.02	6.43	0.06	16.5 2	0.13	15.9 1	0.04	370.0	330.0	109.2	6.9	124.0	19. 0	109.2	7.3
Output_1_70	2930	296	3.1	0.02	5.57	0.05	15.9 9	0.14	14.7 1	0.03	330.0	280.0	113.5	6.3	129.0	18. 0	113.5	6.7
Output_1_77	3920	281	1.3	0.02	5.26	0.05	11.3 3	0.13	9.92	0.20	330.0	230.0	115.3	6.0	125.0	12. 0	115.3	6.5
Output_1_78	3280	235	2.9	0.02	5.01	0.05	13.4 3	0.13	14.3 9	0.13	270.0	260.0	113.6	5.6	124.0	17. 0	113.6	6.1
Output_1_61	2330	203	2.7	0.02	5.31	0.05	16.1 8	0.12	16.2 6	0.18	260.0	310.0	110.7	5.8	123.0	20. 0	110.7	6.2
Output_1_56	2620	190	2.5	0.02	7.73	0.05	14.3 9	0.13	12.1 2	0.14	260.0	280.0	115.3	8.7	125.0	15. 0	115.3	9.0
Output_1_69	7280	692	1.9	0.02	4.49	0.05	9.48	0.13	9.02	0.27	240.0	180.0	119.6	5.3	126.0	10. 0	119.6	5.8
Output_1_57	6640	494	2.1	0.02	4.06	0.05	9.88	0.13	10.8 5	0.26	230.0	200.0	114.9	4.7	123.0	12. 0	114.9	5.2
Output 1 60	3350	273	3.7	0.02	5.10	0.05	15.1 9	0.13	14.2 9	0.05	210.0	290.0	111.4	5.6	120.0	16. 0	111.4	6.0
Output 1 53	7980	562	1.7	0.02	2.88	0.05	9.88	0.12	8.70	0.12	200.0	190.0	108.6	3.1	112.3	9.9	108.6	3.8
Output 1 80	4660	334	1.3	0.02	3.38	0.05	11.9 9	0.12	11.4	0.07	190.0	240.0	109.7	3.7	117.0	13. 0	109.7	4.3
Output 1 55	14060	969	1.0	0.02	4 35	0.05	6.83	0.12	6 34	0.40	200.0	150.0	116.0	5.0	116.3	7.0	116.0	5.5
Output_1_55	2720	257	2.7	0.02	6.53	0.05	16.9	0.12	17.1	0.40	200.0	220.0	117.0	7.0	122.0	20.	117.0	0.5
Output_1_50	3720	257	2.5	0.02	0.32	0.05	11.6	0.13	10.8	0.30	200.0	320.0	117.8	7.8	122.0	11.	117.0	0.2
Output_1_67	3550	303	2.1	0.02	6.74	0.05	16.6	0.12	16.6	0.10	190.0	220.0	113.9	7.9	114.0	18.	113.9	8.2
Output_1_59	3320	279	1.9	0.02	3.38	0.05	7	0.12	7	0.22	180.0	290.0	109.6	3.7	114.0	0 14.	109.6	4.3
Output_1_54	3640	257	1.7	0.02	5.21	0.05	2	0.12	5 10.0	0.24	170.0	260.0	110.5	5.7	113.0	0 12.	110.5	6.1
Output_1_64	8230	767	1.5	0.02	4.68	0.05	8.67 16.3	0.13	8 15.7	0.56	160.0	170.0	116.0	5.4	123.0	0 17.	116.0	5.9
Output_1_65	2150	215	3.2	0.02	6.40	0.05	6 11.3	0.12	0 10.4	0.01	150.0	300.0	110.2	6.9	115.0	0 11.	110.2	7.3
Output_1_51	3390	219	3.0	0.02	4.88	0.05	8 12.1	0.13	0 10.6	0.06	160.0	210.0	117.8	5.7	121.0	0 11.	117.8	6.2
Output_1_73	5490	492	1.3	0.02	3.74	0.05	2	0.12	6	0.08	150.0	230.0	111.2	4.1	117.0	0 10.	111.2	4.7
Output_1_72	5950	538	1.6	0.02	3.05	0.05	9.55 14.4	0.13	8.80 16.8	0.13	140.0	180.0	117.1	3.5	119.0	0	117.1	4.3
Output_1_58	2990	225	2.9	0.02	5.19	0.05	0	0.13	0	0.36	130.0	270.0	116.8	6.0	122.0	0	116.8	6.4
Output_1_79	5100	379	1.5	0.02	4.47	0.05	2	0.12	6	0.21	120.0	190.0	110.2	4.9	112.0	0	110.2	5.4
Output_1_66	5270	543	2.0	0.02	3.17	0.05	9.50	0.12	8.34	0.06	110.0	180.0	110.9	3.5	112.4	8.8	110.9	4.1
Output_1_63	6880	640	1.4	0.02	4.22	0.05	10.7	0.12	9.32	0.04	110.0	200.0	112.1	4.7	112.0	10. 0	112.1	5.2
Output_1_76	4950	380	1.5	0.02	5.01	0.05	10.6	0.13	10.9	0.06	110.0	210.0	117.2	5.8	122.0	0	117.2	6.3
Output_1_68	4080	402	2.8	0.02	5.32	0.05	13.2	0.12	12.1	0.04	100.0	240.0	117.7	6.2	120.0	14. 0	117.7	6.7
Output_1_71	3420	331	2.0	0.02	5.38	0.05	15.2 1	0.12	15.9 7	0.14	50.0	260.0	111.6	6.0	113.0	17. 0	111.6	6.4
Output_1_74	7130	622	6.6	0.02	4.27	0.05	7.48	0.12	7.93	0.22	50.0	140.0	113.6	4.8	117.0	9.5	113.6	5.4
Output_1_52	3630	241	2.0	0.02	6.01	0.05	13.5 3	0.12	11.3 0	0.06	50.0	240.0	116.7	7.0	110.0	12. 0	116.7	7.4
Output_1_62	1900	177	3.3	0.02	6.98	0.05	17.0 8	0.12	18.1 8	0.25	40.0	290.0	110.1	7.4	114.0	19. 0	110.1	7.7
Sample 19ATW01			i					1								1		
Output_1_120	8430	1010	4.5	0.01	3.70	0.05	7.46	0.08	7.70	0.34	20.0	140.0	76.2	2.8	73.6	5.4	76.2	2.8
Output_1_135	1410	97	3.2	0.01	7.00	0.05	16.4 6	0.07	15.9 4	0.20	70.0	270.0	72.3	5.1	67.0	11. 0	72.3	5.1
Output_1_147	1431	88	2.0	0.01	5.65	0.05	20.4 3	0.07	21.6 2	0.29	-20.0	330.0	73.7	4.1	71.0	15. 0	73.7	4.1
Output_1_149	1310	81	1.9	0.01	5.79	0.05	19.2 3	0.08	19.0 5	0.12	190.0	350.0	77.5	4.5	81.0	15. 0	77.5	4.5
Output_1_15	4630	473	1.9	0.01	4.11	0.05	10.6 3	0.08	10.3 3	0.09	120.0	200.0	81.1	3.3	81.8	8.1	81.1	3.3
Output_1_154	7800	604	5.9	0.01	3.92	0.05	7.47	0.09	7.69	0.39	190.0	140.0	83.3	3.2	84.6	6.3	83.3	3.2
Output_1_157	2130	192	2.0	0.01	5.92	0.05	17.5 7	0.09	14.2 9	0.11	270.0	310.0	81.1	4.8	87.0	12. 0	81.1	4.8

			1	l				ı –			l						l	
Output_1_163	634	93	2.6	0.01	8.06	0.05	23.5 3	0.08	21.2 5	0.01	120.0	390.0	79.6	6.4	77.0	16. 0	79.6	6.4
Output_1_164	43000	5900	1.2	0.01	5.40	0.05	5.49	0.09	5.80	0.53	100.0	120.0	84.3	4.5	85.6	4.8	84.3	4.5
Output_1_166	9990	1487	1.8	0.01	3.93	0.05	5.77	0.09	5.64	0.28	120.0	120.0	83.1	3.3	82.8	4.5	83.1	3.3
Output_1_169	2090	349	1.8	0.01	6.97	0.05	15.2 6	0.09	14.6 1	0.12	330.0	300.0	80.8	5.6	88.0	13. 0	80.8	5.6
Output_1_192	7370	384	1.2	0.01	3.42	0.05	7.20	0.09	7.61	0.24	350.0	160.0	82.4	2.8	86.7	6.3	82.4	2.8
Output_1_193	9080	484	2.7	0.01	4.42	0.05	7.53	0.08	7.93	0.38	40.0	140.0	78.2	3.4	78.7	6.0	78.2	3.4
Output_1_195	9670	472	3.8	0.01	3.28	0.05	7.24	0.08	8.00	0.37	170.0	140.0	80.1	2.6	82.7	6.0	80.1	2.6
Output_1_200	2520	108	1.8	0.01	7.69	0.05	14.2 2	0.08	12.6 0	0.07	-30.0	240.0	83.2	6.4	75.7	9.2	83.2	6.4
Output_1_201	6850	323	1.6	0.01	3.10	0.05	5.87	0.08	7.25	0.22	190.0	130.0	74.4	2.3	76.7	5.3	74.4	2.3
Output_1_22	13460	2101	1.0	0.01	3.16	0.05	6.02	0.09	6.89	0.27	170.0	120.0	83.2	2.6	86.0	5.7	83.2	2.6
Output_1_221	781	92	2.2	0.01	8.44	0.06	31.0 3	0.08	29.1 1	0.25	200.0	530.0	67.6	5.7	75.0	22. 0	67.6	5.7
Output_1_225	10280	1260	2.3	0.01	5.06	0.05	8.40	0.09	7.86	0.35	340.0	170.0	81.0	4.1	85.3	6.4	81.0	4.1
Output_1_226	2400	302	1.9	0.01	4.54	0.05	15.5 3	0.07	13.5 1	0.11	20.0	260.0	73.4	3.3	72.4	9.7	73.4	3.3
Output_1_228	3730	445	2.4	0.01	5.57	0.05	14.3 2	0.08	12.6 6	0.11	110.0	270.0	78.2	4.4	76.4	9.6	78.2	4.4
Output_1_230	12900	1567	1.6	0.01	2.74	0.05	5.59	0.08	6.05	0.35	190.0	110.0	72.6	2.0	75.9	4.4	72.6	2.0
Output_1_233	39900	4620	3.3	0.01	2.94	0.05	8.13	0.08	9.41	0.38	200.0	170.0	76.2	2.3	78.8	7.1	76.2	2.3
Output_1_234	9160	1021	2.5	0.01	3.56	0.05	7.25	0.08	6.93	0.24	140.0	150.0	77.5	2.7	81.2	5.1	77.5	2.7
Output_1_239	6230	775	2.1	0.01	5.58	0.05	7.54	0.08	7.50	0.35	190.0	150.0	78.0	4.3	80.5	5.8	78.0	4.3
Output_1_240	29830	4030	2.6	0.01	4.42	0.05	5.29	0.07	6.98	0.64	70.0	100.0	72.4	3.2	72.8	4.9	72.4	3.2
Output_1_241	20310	2689	1.5	0.01	3.50	0.05	6.16	0.08	5.34	0.27	70.0	120.0	78.8	2.7	76.8	4.0	78.8	2.7
Output_1_245	62400	1125 0	2.9	0.01	4.63	0.05	4.85	0.08	4.79	0.57	72.0	95.0	76.0	3.5	75.6	3.5	76.0	3.5
Output_1_248	4080	845	2.3	0.01	5.32	0.05	11.8 4	0.08	10.2 0	0.08	270.0	230.0	73.4	3.9	79.2	7.8	73.4	3.9
Output_1_25	4430	531	2.0	0.01	4.07	0.05	7.00	0.08	8.22	0.34	130.0	140.0	75.5	3.1	78.3	6.2	75.5	3.1
Output_1_250	15190	3255	2.1	0.01	3.35	0.05	5.30	0.08	5.40	0.40	150.0	110.0	78.4	2.6	81.1	4.2	78.4	2.6
Output_1_254	5800	1186	0.8	0.01	7.44	0.05	14.1 7	0.09	13.1 9	0.21	300.0	320.0	83.5	6.2	88.0	11. 0	83.5	6.2
Output_1_258	1394	304	2.0	0.01	6.52	0.05	18.0 4	0.08	16.8 8	0.06	230.0	310.0	70.8	4.6	76.0	12. 0	70.8	4.6
Output_1_259	3510	658	4.9	0.01	7.12	0.05	12.9 7	0.08	11.9 0	0.01	230.0	260.0	75.5	5.3	82.1	9.6	75.5	5.3
Output_1_26	5630	569	9.9	0.01	4.80	0.05	10.0 6	0.08	10.9 6	0.37	120.0	190.0	78.7	3.8	79.8	8.4	78.7	3.8
Output_1_265	2290	286	1.4	0.01	8.16	0.05	23.5 3	0.09	21.8 4	0.13	180.0	440.0	76.1	6.2	84.0	18. 0	76.1	6.2
Output_1_27	15300	1520	67.0	0.01	9.10	0.06	21.0 5	0.07	15.2 8	0.58	430.0	420.0	67.7	6.1	71.0	10. 0	67.7	6.1
Output_1_282	1850	111	8.5	0.01	6.98	0.04	17.5 5	0.07	17.8 1	0.27	-110.0	280.0	78.0	5.4	71.0	13. 0	78.0	5.4
Output_1_285	1153	69	2.5	0.01	6.42	0.06	21.6 7	0.10	20.2 0	0.15	360.0	410.0	82.7	5.3	95.0	18. 0	82.7	5.3
Output_1_286	3280	224	2.7	0.01	4.94	0.06	25.4 0	0.10	27.5 5	0.53	280.0	310.0	74.6	3.5	92.0	23. 0	74.6	3.5
Output_1_301	2070	332	2.7	0.01	8.33	0.05	18.4 2	0.09	19.5 4	0.44	220.0	320.0	73.1	6.0	84.0	16. 0	73.1	6.0
Output_1_4	2323	212	1.9	0.01	5.50	0.04	13.0 9	0.08	15.7 9	0.22	-190.0	210.0	80.4	4.4	74.0	11. 0	80.4	4.4
Output_1_52	11380	910	2.8	0.01	2.71	0.05	6.29	0.09	7.07	0.55	210.0	130.0	80.4	2.2	83.9	5.7	80.4	2.2
Output_1_53	13680	1311	1.7	0.01	3.29	0.05	6.37	0.08	5.97	0.01	90.0	130.0	72.1	2.3	73.7	4.2	72.1	2.3
Output_1_65	3590	856	1.6	0.01	6.48	0.06	20.0 0	0.09	24.1 4	0.33	300.0	370.0	83.1	5.3	90.0	18. 0	83.1	5.3
Output_1_80	633	91	2.7	0.01	9.01	0.05	32.6 5	0.08	30.7 7	0.18	-90.0	480.0	70.8	6.7	74.0	22. 0	70.8	6.7
Output_1_98	4240	297	1.6	0.01	4.02	0.05	12.3 3	0.07	12.4 7	0.10	-10.0	210.0	71.7	2.9	71.2	8.5	71.7	2.9

								l .			l							
Output_1_76	3340	509	1.6	0.01	4.47	0.05	11.9 4	0.09	11.3 6	0.18	130.0	230.0	84.5	3.7	85.0	9.3	84.5	3.7
Output_1_293	2600	213	1.8	0.01	7.32	0.05	20.7 5	0.10	19.6 1	0.29	230.0	370.0	84.9	6.2	98.0	19. 0	84.9	6.2
Output_1_202	5260	220	1.5	0.01	5.42	0.05	9.78	0.09	10.1 1	0.25	130.0	180.0	85.0	4.6	89.0	8.6	85.0	4.6
Output_1_102	4090	302	1.5	0.01	5.80	0.06	13.9 5	0.10	14.1 4	0.36	380.0	280.0	85.0	4.9	95.0	13. 0	85.0	4.9
Output_1_66	3870	880	1.6	0.01	4.51	0.05	14.2 0	0.09	12.5 0	0.19	160.0	260.0	85.2	3.8	85.0	10. 0	85.2	3.8
Output_1_144	1750	92	2.3	0.01	9.02	0.06	22.9 5	0.11	21.5 0	0.08	450.0	430.0	85.4	7.7	103.0	21. 0	85.4	7.7
Output_1_204	18980	782	2.3	0.01	3.55	0.05	4.85	0.09	5.08	0.44	100.0	100.0	86.5	3.0	86.1	4.2	86.5	3.0
Output_1_44	20660	1052	1.0	0.01	5.45	0.05	7.49	0.09	6.19	0.39	50.0	140.0	86.9	4.7	84.9	5.0	86.9	4.7
Output_1_93	5700	314	1.2	0.01	4.19	0.05	6.17	0.09	6.31	0.40	120.0	120.0	87.0	3.6	85.9	5.5	87.0	3.6
Output_1_72	3900	730	2.9	0.01	4.26	0.05	12.0 6	0.09	13.0 4	0.06	140.0	230.0	87.1	3.7	89.0	11. 0	87.1	3.7
Output_1_171	11130	1680	1.7	0.01	4.63	0.05	6.99	0.09	7.61	0.31	180.0	140.0	87.1	4.0	91.5	6.8	87.1	4.0
Output_1_168	3800	561	2.4	0.01	4.91	0.05	14.5 7	0.09	14.1 2	0.00	20.0	260.0	87.3	4.3	82.0	11. 0	87.3	4.3
Output_1_302	5560	723	2.0	0.01	3.37	0.05	9.70	0.09	9.89	0.11	70.0	180.0	87.5	2.9	86.3	8.2	87.5	2.9
Output_1_294	3320	284	2.6	0.01	6.79	0.06	17.8 6	0.11	17.7 6	0.07	470.0	320.0	87.7	5.9	103.0	17. 0	87.7	5.9
Output_1_28	9600	760	46.0	0.01	8.76	0.05	19.6 1	0.09	18.4 8	0.18	190.0	380.0	87.8	7.9	94.0	18. 0	87.8	7.9
Output_1_264	1880	224	2.7	0.01	5.95	0.05	16.9 4	0.09	17.2 0	0.40	180.0	290.0	88.3	5.2	89.0	15. 0	88.3	5.2
Output_1_243	15270	2076	0.6	0.01	3.83	0.05	5.59	0.09	7.22	0.57	120.0	110.0	88.5	3.3	91.2	6.3	88.5	3.3
Output_1_260	4080	671	4.6	0.01	5.84	0.04	11.5 3	0.09	14.1 2	0.11	-120.0	200.0	88.7	5.1	83.0	12. 0	88.7	5.1
Output_1_90	21590	1283	4.5	0.01	2.09	0.05	5.16	0.09	4.88	0.13	40.0	100.0	88.8	1.8	87.7	4.1	88.8	1.8
Output_1_2	5650	484	1.9	0.01	3.96	0.05	9.98	0.10	10.2 0	0.07	240.0	210.0	88.9	3.5	94.7	9.5	88.9	3.5
Output 1 113	21670	2118	2.4	0.01	3.52	0.05	7.71	0.10	7.92	0.44	250.0	160.0	89.1	3.1	93.0	7.0	89.1	3.1
Output 1 213	1005	49	2.6	0.01	6.60	0.04	22.7 3	0.10	21.8 8	0.02	140.0	400.0	89.2	5.8	91.0	19. 0	89.2	5.8
Output 1 14	21160	1755	1.7	0.01	3.57	0.05	4.88	0.09	5.64	0.60	150.0	100.0	89.7	3.2	91.2	5.0	89.7	3.2
Output 1 17	3200	404	1.4	0.01	4.77	0.05	11.8 4	0.09	11.7 0	0.14	120.0	220.0	89.9	4.2	90.7	9.7	89.9	4.2
Output 1 115	8810	890	1.2	0.01	3.93	0.05	6.67	0.09	6.04	0.30	160.0	130.0	91.3	3.6	91.4	5.3	91.3	3.6
Output 1 175	3550	459	1.4	0.01	4.48	0.05	10.5	0.10	10.4	0.15	120.0	200.0	91.3	4.0	93.0	9.6	91.3	4.0
Output 1 83	4190	346	1.5	0.01	4.48	0.05	10.9 1	0.10	9.71	0.01	310.0	220.0	91.5	4.1	98.2	9.1	91.5	4.1
Output 1 183	2710	196	2.5	0.01	4.62	0.05	15.1	0.10	13.5 4	0.03	220.0	280.0	91.5	4.2	93.0	12.	91.5	4.2
Output 1 224	2500	256	2.4	0.01	5 35	0.05	17.1 9	0.10	18.0	0.22	140.0	310.0	92.0	4.9	98.0	17.	92.0	49
Output 1 13	18320	1376	2.8	0.01	3.45	0.05	5 29	0.10	5 79	0.25	210.0	120.0	92.0	3.2	95.2	53	92.7	3.2
Output 1 30	1198	75	3 3	0.01	6 34	0.04	21.1	0.09	20.9	0.29	-170.0	320.0	92.8	5.8	82.0	17.	92.8	5.8
Output 1 218	19440	1216	2.1	0.01	4 10	0.05	4 95	0.05	6 69	0.61	120.0	100.0	92.0	3.0	92.6	5 9	02.0	3.0
Output 1 185	4740	300	2.2	0.01	5.44	0.05	8.83	0.09	0.05	0.01	130.0	170.0	92.9	5.0	91.0	8.6	02.0	5.0
Output_1_134	4320	228	1.7	0.01	5.92	0.05	14.7	0.05	12.8	0.20	190.0	270.0	92.5	5.5	97.0	12.	02.0	5.5
Output_1_134	4320	220	1.7	0.01	3.52	0.05	0 70	0.10	,	0.12	110.0	170.0	02.5	2.2	90.0	7.1	02.5	2.2
Output_1_1	11990	390	3.5	0.01	5.02	0.05	8.70	0.09	0.22	0.24	210.0	170.0	95.5	2.0	07.4	7.1	95.5	2.6
Output_1_206	/360	286	3./	0.01	4.8b	0.05	9.06	0.10	9.73	0.42	210.0	110.0	93.5	4.5	97.1	9.0	93.5	4.5
Output_1_96	38/30	2085	3.8	0.01	3.49	0.05	4.99	0.10	4.91	0.36	190.0	110.0	93.6	3.3	94.7	4.4	93.6	3.3
Output_1_73	7230	1180	2.5	0.01	5.12	0.05	7.22	0.10	7.92	0.46	70.0	140.0	93.8	4.8	92.9	7.0	93.8	4.8
Output_1_174	9760	1262	1.1	0.01	3.95	0.05	7.69 20.4	0.10	7.76 19.1	0.32	150.0	150.0	94.0	3.7	94.7	7.0 16.	94.0	3.7
Output_1_162	1667	191	2.2	0.01	6.76	0.05	7	0.09	5	0.12	70.0	350.0	94.4	6.5	90.0	0	94.4	6.5

								1		i	1					1		
Output_1_141	7380	340	1.5	0.01	2.37	0.05	7.69	0.10	7.98	0.18	110.0	150.0	94.6	2.2	94.4	7.2	94.6	2.2
Output_1_87	45700	2870	2.8	0.01	3.78	0.05	4.42	0.10	4.64	0.54	174.0	94.0	94.8	3.6	96.0	4.2	94.8	3.6
Output_1_114	22700	2200	1.8	0.01	7.43	0.05	13.8 6	0.10	10.2 0	0.12	170.0	270.0	94.8	7.3	94.6	9.5	94.8	7.3
Output_1_136	1460	73	2.4	0.01	6.76	0.05	20.8 3	0.09	18.4 8	0.01	-10.0	340.0	94.9	6.3	88.0	16. 0	94.9	6.3
Output_1_160	11270	1059	1.4	0.01	5.04	0.05	8.62	0.10	8.55	0.12	210.0	160.0	95.2	4.8	98.1	8.0	95.2	4.8
Output_1_3	33140	2609	3.0	0.01	5.04	0.05	3.29	0.10	5.25	0.77	133.0	68.0	95.3	4.8	94.0	4.8	95.3	4.8
Output_1_253	3030	541	2.2	0.01	7.38	0.06	14.0 5	0.11	13.6 4	0.29	470.0	250.0	95.3	6.8	110.0	14. 0	95.3	6.8
Output_1_161	21800	2276	2.4	0.01	4.14	0.05	5.93	0.10	6.18	0.29	90.0	120.0	95.7	4.0	92.4	5.4	95.7	4.0
Output_1_300	33600	4190	8.4	0.01	5.61	0.05	4.72	0.11	8.29	0.77	220.0	100.0	95.8	5.4	102.1	8.1	95.8	5.4
Output_1_31	2400	132	1.0	0.02	6.19	0.05	13.3 3	0.10	13.4 0	0.28	130.0	240.0	96.2	5.9	93.0	12. 0	96.2	5.9
Output_1_32	5000	242	3.6	0.02	4.52	0.05	12.3 4	0.09	10.7 5	0.05	120.0	230.0	96.3	4.3	89.8	9.5	96.3	4.3
Output_1_107	27720	2059	1.9	0.02	3.83	0.05	4.24	0.11	4.48	0.42	167.0	91.0	96.8	3.7	103.3	4.4	96.8	3.7
Output_1_36	9220	390	1.6	0.02	2.84	0.05	7.07	0.11	6.88	0.13	210.0	140.0	96.9	2.7	103.4	6.8	96.9	2.7
Output_1_235	18700	1640	0.9	0.02	6.58	0.05	9.77	0.11	8.01	0.15	300.0	230.0	97.0	6.6	105.7	8.0	97.0	6.6
Output_1_291	3340	216	1.3	0.02	5.80	0.05	12.2 7	0.11	13.2 1	0.37	160.0	230.0	97.1	5.6	102.0	13. 0	97.1	5.6
Output_1_275	7610	408	1.7	0.02	3.61	0.05	7.28	0.11	8.80	0.34	260.0	150.0	97.5	3.5	103.8	8.7	97.5	3.5
Output_1_280	1069	52	2.2	0.02	6.62	0.05	19.6 8	0.10	18.4 5	0.15	110.0	340.0	97.6	6.8	98.0	18. 0	97.6	6.8
Output_1_71	17580	3180	0.8	0.02	4.64	0.05	8.22	0.10	8.18	0.05	280.0	180.0	98.0	4.5	100.3	7.8	98.0	4.5
Output_1_292	5880	385	2.8	0.02	5.48	0.05	11.4 2	0.11	13.6 4	0.57	260.0	240.0	98.1	5.3	106.0	13. 0	98.1	5.3
Output_1_85	7160	485	4.7	0.02	3.90	0.05	8.46	0.11	9.17	0.11	280.0	180.0	98.4	3.8	106.3	8.8	98.4	3.8
Output_1_214	4640	223	1.9	0.02	8.44	0.05	11.4 2	0.11	13.3 3	0.39	140.0	240.0	98.5	8.3	101.0	13. 0	98.5	8.3
Output_1_126	19370	1412	6.5	0.02	3.23	0.05	5.38	0.10	4.69	0.26	110.0	110.0	98.9	3.2	95.0	4.2	98.9	3.2
Output_1_57	2270	209	1.7	0.02	5.94	0.04	17.1 2	0.09	18.0 9	0.33	-50.0	280.0	99.1	5.9	91.0	15. 0	99.1	5.9
Output_1_276	1604	84	1.3	0.02	5.80	0.06	16.4 6	0.12	14.5 3	0.08	350.0	300.0	99.3	5.7	112.0	16. 0	99.3	5.7
Output_1_78	7690	815	1.7	0.02	5.77	0.05	8.95	0.11	10.6 2	0.52	310.0	220.0	99.8	5.7	109.0	11. 0	99.8	5.7
Output_1_297	17620	1822	2.9	0.02	5.70	0.05	7.47	0.11	7.94	0.31	110.0	150.0	99.9	5.6	102.0	7.7	99.9	5.6
Output_1_197	37260	1393	1.1	0.02	2.93	0.05	4.88	0.10	5.02	0.36	150.0	100.0	100.3	2.9	99.9	4.8	100.3	2.9
Output_1_156	6050	461	6.1	0.02	6.33	0.06	14.6 7	0.11	10.0 9	0.04	380.0	300.0	100.9	6.5	105.0	10. 0	100.9	6.5
Output_1_189	3150	151	1.8	0.02	4.02	0.05	13.8 1	0.12	14.1 7	0.12	260.0	280.0	101.9	4.0	114.0	15. 0	101.9	4.0
Output_1_138	5360	239	2.3	0.02	4.57	0.05	10.1 0	0.11	9.21	0.07	170.0	200.0	102.2	4.7	102.3	8.9	102.2	4.7
Output_1_94	14110	660	1.5	0.02	3.55	0.05	6.03	0.10	5.67	0.22	40.0	120.0	102.8	3.6	100.3	5.4	102.8	3.6
Output_1_111	11340	904	1.3	0.02	4.04	0.05	6.55	0.11	6.36	0.12	260.0	140.0	102.9	4.1	108.8	6.6	102.9	4.1
Output_1_287	6560	331	1.3	0.02	3.93	0.05	7.69	0.12	8.15	0.14	240.0	160.0	104.2	4.0	112.7	8.7	104.2	4.0
Output_1_37	12620	497	2.4	0.02	3.23	0.05	7.32	0.12	8.01	0.42	280.0	150.0	104.9	3.4	112.4	8.5	104.9	3.4
Output_1_205	5090	160	2.2	0.02	7.88	0.06	20.6 9	0.13	19.5 5	0.03	440.0	440.0	105.5	8.1	126.0	24. 0	105.5	8.1
Output_1_268	5190	394	1.1	0.02	4.59	0.05	6.33	0.11	8.19	0.45	60.0	130.0	105.9	4.8	103.3	8.0	105.9	4.8
Output_1_68	26200	4730	3.3	0.02	4.98	0.05	8.02	0.11	8.64	0.35	70.0	160.0	106.6	5.3	108.9	9.0	106.6	5.3
Output_1_215	4670	211	1.7	0.02	7.78	0.05	11.3 3	0.12	12.1 0	0.26	360.0	240.0	106.6	8.3	118.0	13. 0	106.6	8.3
Output_1_263	6310	733	3.2	0.02	4.00	0.05	9.63	0.12	9.68	0.19	260.0	200.0	107.0	4.2	118.0	11. 0	107.0	4.2
Output_1_142	21180	841	3.1	0.02	3.82	0.05	6.69	0.11	6.31	0.37	180.0	140.0	107.2	4.1	108.1	6.5	107.2	4.1

								I			l							
Output_1_133	1865	90	2.9	0.02	5.24	0.05	18.8 7	0.13	16.8 0	0.24	280.0	350.0	108.6	5.6	118.0	19. 0	108.6	5.6
Output_1_21	28800	3730	0.8	0.02	2.51	0.05	4.24	0.12	4.65	0.36	169.0	87.0	109.3	2.7	111.5	4.9	109.3	2.7
Output_1_203	60000	1946	1.2	0.02	4.53	0.05	2.82	0.12	3.78	0.63	186.0	67.0	110.0	4.9	114.1	4.1	110.0	4.9
Output_1_273	21330	1103	2.1	0.02	4.08	0.05	5.57	0.12	5.39	0.41	150.0	120.0	111.3	4.5	115.4	5.9	111.3	4.5
Output_1_79	5590	560	1.6	0.02	6.90	0.05	17.6 7	0.12	17.6 5	0.40	230.0	340.0	111.5	7.5	113.0	20. 0	111.5	7.5
Output_1_101	14830	752	0.8	0.02	3.30	0.05	5.94	0.12	6.87	0.57	300.0	130.0	112.2	3.7	118.3	7.7	112.2	3.7
Output_1_165	20900	2270	2.5	0.02	6.21	0.05	9.94	0.13	11.2 0	0.48	320.0	210.0	113.0	7.2	120.0	12. 0	113.0	7.2
Output_1_103	19470	1082	2.1	0.02	5.17	0.05	5.91	0.12	5.47	0.37	150.0	120.0	113.8	5.8	112.3	5.8	113.8	5.8
Output_1_295	2789	211	0.7	0.02	6.70	0.05	14.0 7	0.12	11.9 7	0.07	100.0	250.0	114.4	7.3	112.0	13. 0	114.4	7.3
Output_1_34	15140	570	1.4	0.02	3.89	0.05	10.6 9	0.13	13.4 9	0.21	240.0	270.0	114.9	4.4	120.0	15. 0	114.9	4.4
Output_1_196	21170	698	1.7	0.02	4.11	0.05	5.25	0.12	5.85	0.53	80.0	100.0	115.0	4.7	114.6	6.4	115.0	4.7
Output_1_91	2530	111	3.2	0.02	7.61	0.06	16.4 3	0.15	16.5 5	0.14	470.0	330.0	117.7	9.0	137.0	21. 0	117.7	9.0
Output_1_51	4570	222	1.2	0.02	6.91	0.05	10.1 9	0.12	10.9 2	0.49	170.0	200.0	119.8	8.2	117.0	12. 0	119.8	8.2
Output_1_74	5440	657	6.5	0.02	6.88	0.05	16.4 8	0.13	13.1 8	0.01	350.0	330.0	120.9	8.5	123.0	15. 0	120.9	8.5
Output_1_45	3680	137	7.4	0.02	5.17	0.05	17.4 9	0.13	16.4 2	0.09	240.0	330.0	121.1	6.2	127.0	19. 0	121.1	6.2
Output_1_55	2270	149	1.8	0.02	5.79	0.05	15.4 2	0.13	16.5 4	0.27	70.0	270.0	121.3	6.7	120.0	19. 0	121.3	6.7
Output_1_20	6090	722	2.2	0.02	6.22	0.05	10.2 5	0.13	11.1 9	0.43	340.0	230.0	122.9	7.9	127.0	13. 0	122.9	7.9
Output_1_67	5160	832	1.5	0.02	2.84	0.05	9.24	0.13	9.70	0.14	160.0	180.0	123.7	3.5	127.0	12. 0	123.7	3.5
Output_1_70	6830	961	2.5	0.02	3.49	0.05	8.76	0.14	7.75	0.15	180.0	170.0	131.8	4.5	134.4	9.6	131.8	4.5
Output_1_270	4230	223	1.9	0.02	6.76	0.05	12.3 4	0.14	13.1 4	0.37	10.0	210.0	132.1	9.0	129.0	16. 0	132.1	9.0
Output_1_146	9090	291	1.0	0.02	4.42	0.05	5.64	0.15	6.34	0.49	260.0	120.0	138.3	6.1	145.5	8.6	138.3	6.1
Output_1_172	6780	614	2.1	0.02	5.86	0.05	10.8 1	0.16	10.0 6	0.29	210.0	240.0	141.8	8.4	150.0	14. 0	141.8	8.4
Output_1_222	3570	215	2.5	0.02	4.85	0.05	12.5 2	0.16	11.5 9	0.19	290.0	250.0	144.6	6.7	153.0	17. 0	144.6	6.7
Output_1_9	13090	551	0.9	0.02	4.23	0.05	6.87	0.16	6.37	0.17	280.0	140.0	145.8	6.5	148.9	8.6	145.8	6.5
Output_1_97	2330	79	2.9	0.02	5.65	0.04	14.2 2	0.15	14.8 6	0.05	-60.0	240.0	146.5	8.3	142.0	18. 0	146.5	8.3
Output_1_274	13140	487	2.0	0.02	2.87	0.05	9.41	0.17	9.09	0.08	300.0	210.0	146.8	4.1	155.0	13. 0	146.8	4.1
Output_1_10	5750	236	1.0	0.02	3.46	0.05	9.16	0.16	9.88	0.36	250.0	180.0	149.2	5.1	154.0	14. 0	149.2	5.1
Output_1_219	15000	626	1.3	0.02	3.88	0.05	5.27	0.16	6.71	0.50	160.0	110.0	149.5	5.7	157.3	9.6	149.5	5.7
Output_1_277	3590	115	1.7	0.02	4.68	0.05	13.6 0	0.18	13.2 6	0.06	390.0	250.0	149.7	6.8	167.0	20. 0	149.7	6.8
Output_1_232	5170	289	1.2	0.02	3.87	0.05	10.6 9	0.17	10.1 8	0.20	180.0	210.0	149.8	5.7	156.0	15. 0	149.8	5.7
Output_1_238	10210	614	2.6	0.02	5.04	0.05	7.74	0.16	9.15	0.47	90.0	150.0	151.5	7.6	153.0	13. 0	151.5	7.6
Output_1_60	4030	317	6.1	0.02	4.98	0.05	10.1 6	0.15	9.74	0.35	130.0	190.0	153.2	7.4	145.0	13. 0	153.2	7.4
Output_1_12	14610	618	3.6	0.02	2.81	0.05	6.03	0.17	6.47	0.28	260.0	130.0	154.2	4.3	159.3	9.9	154.2	4.3
Output_1_198	5970	143	3.2	0.02	5.35	0.05	9.51	0.17	8.19	0.11	320.0	200.0	154.9	8.4	160.0	12. 0	154.9	8.4
Output_1_279	3320	102	2.8	0.02	7.41	0.05	12.3 4	0.18	13.8 1	0.00	320.0	250.0	155.0	11. 0	169.0	21. 0	155.0	11.0
Output_1_199	2605	58	2.5	0.02	5.71	0.05	12.7 2	0.17	12.9 4	0.34	240.0	250.0	156.3	8.5	158.0	19. 0	156.3	8.5
Output_1_145	6000	170	2.4	0.02	3.98	0.05	7.38	0.17	8.43	0.49	140.0	140.0	156.8	6.2	156.0	13. 0	156.8	6.2
Output_1_62	1370	127	2.6	0.03	6.37	0.05	18.4 0	0.19	17.7 1	0.02	290.0	350.0	159.5	9.9	174.0	29. 0	159.5	9.9
Output_1_104	7740	322	1.9	0.03	8.37	0.05	10.3 2	0.19	12.4 4	0.47	400.0	230.0	160.0	13. 0	178.0	20. 0	160.0	13.0
Output_1_6	2820	122	3.7	0.03	5.12	0.05	13.7 5	0.17	13.7 9	0.03	140.0	250.0	161.9	7.9	165.0	21. 0	161.9	7.9

							10.0									14		
Output_1_112	8790	447	1.3	0.03	5.38	0.05	7	0.17	8.98	0.08	150.0	220.0	165.4	9.0	160.0	14. 0	165.4	9.0
Output_1_123	18320	893	1.7	0.03	3.33	0.05	5.95	0.18	4.97	0.20	150.0	120.0	166.3	5.4	165.3	7.6	166.3	5.4
Output_1_16	1805	99	5.7	0.03	7.22	0.06	15.7 9	0.22	16.6 7	0.08	530.0	320.0	167.0	12. 0	200.0	30. 0	167.0	12.0
Output_1_95	3340	99	3.6	0.03	4.55	0.05	11.3 8	0.19	9.33	0.11	320.0	210.0	167.8	7.7	178.0	15. 0	167.8	7.7
Output_1_69	46500	5450	1.8	0.03	7.89	0.05	7.35	0.19	7.22	0.76	370.0	160.0	169.0	13. 0	180.0	12. 0	169.0	13.0
Output_1_49	25040	776	1.1	0.03	2.14	0.05	5.14	0.19	4.27	0.25	290.0	110.0	172.3	3.7	176.2	6.9	172.3	3.7
Output_1_216	7140	208	0.8	0.03	5.17	0.05	9.33	0.19	9.38	0.34	260.0	180.0	172.4	8.8	178.0	15. 0	172.4	8.8
Output_1_303	2810	178	3.5	0.03	6.23	0.04	12.7 1	0.16	12.8 8	0.26	-80.0	220.0	174.0	11. 0	151.0	18. 0	174.0	11.0
Output_1_75	3400	285	2.9	0.03	7.87	0.05	15.5 2	0.18	15.6 4	0.52	150.0	290.0	174.0	12. 0	166.0	24. 0	174.0	12.0
Output_1_179	3400	175	1.3	0.03	5.09	0.06	14.2 6	0.21	11.2 1	0.29	480.0	290.0	175.0	8.8	197.0	20. 0	175.0	8.8
Output 1 153	8640	291	1.2	0.03	4.33	0.05	6.74	0.20	6.09	0.39	280.0	140.0	175.8	7.7	182.0	11. 0	175.8	7.7
Output 1 99	2950	87	2.1	0.03	6.50	0.05	16.2 4	0.18	14.7 5	0.06	160.0	300.0	176.0	11. 0	173.0	23.	176.0	11.0
Output 1 211	2460	58	3.1	0.03	6.09	0.06	13.7	0.21	12.8	0.12	440.0	280.0	177.0	10.	193.0	23.	177.0	10.0
Output 1 121	2250	111	3.6	0.03	5 71	0.05	15.0	0.20	14.7	0.12	270.0	300.0	178 1	9.8	186.0	25.	178 1	0.8
Output_1_121	2230		5.0	0.03	2.25	0.05	5.00	0.20		0.15	270.0	300.0	170.1	5.0	180.0	0	170.1	5.0
Output_1_11	19220	662	1.5	0.03	2.35	0.05	5.06	0.19	5.17	0.31	160.0	110.0	178.7	4.1	176.1	8.4 13.	1/8./	4.1
Output_1_109	6900	296	2.3	0.03	3.27	0.05	8.59	0.19	8.06	0.12	160.0	170.0	179.1	5./	173.0	0	179.1	5.7
Output_1_63	43600	4310	1.0	0.03	4.26	0.05	4.37	0.19	4.83	0.68	220.0	100.0	179.3	7.3	181.0	8.8 14.	179.3	7.3
Output_1_257	12850	1162	1.8	0.03	4.59	0.05	6.29 15.8	0.20	8.46 15.7	0.36	280.0	150.0	179.7	8.4 11.	185.0	0 24.	179.7	8.4
Output_1_305	3230	162	4.0	0.03	6.01	0.05	7	0.18	3	0.32	110.0	290.0	180.0	0	165.0	0 11.	180.0	11.0
Output_1_24	7230	406	2.1	0.03	3.87	0.05	6.94	0.20	6.53	0.32	220.0	140.0	180.3	7.1	184.0	0 11.	180.3	7.1
Output_1_41	10000	227	1.6	0.03	3.22	0.05	6.80	0.20	6.57	0.30	180.0	140.0	181.6	5.8	185.0	0	181.6	5.8
Output_1_59	16500	977	1.5	0.03	3.83	0.05	6.13	0.21	5.74	0.27	330.0	130.0	182.3	6.7	192.3	9.8 12	182.3	6.7
Output_1_46	9700	242	1.6	0.03	4.10	0.05	8.41	0.22	6.98	0.01	350.0	170.0	185.9	7.7	201.0	0	185.9	7.7
Output_1_54	8990	364	1.9	0.03	4.78	0.06	7.04	0.23	8.00	0.53	430.0	150.0	185.9	8.5	205.0	0	185.9	8.5
Output_1_131	27970	861	1.4	0.03	3.75	0.05	3.93	0.21	5.31	0.67	243.0	88.0	186.4	6.9	190.7	9.6	186.4	6.9
Output_1_122	6030	266	2.3	0.03	3.73	0.05	9.90	0.21	9.95	0.05	260.0	200.0	187.2	7.0	193.0	17. 0	187.2	7.0
Output_1_236	19960	935	1.3	0.03	3.37	0.05	5.26	0.22	5.99	0.46	310.0	110.0	188.6	6.2	199.0	11. 0	188.6	6.2
Output_1_266	5860	282	4.6	0.03	5.72	0.05	9.70	0.21	11.5 4	0.38	280.0	200.0	189.0	11. 0	196.0	18. 0	189.0	11.0
Output_1_190	8930	225	2.1	0.03	9.36	0.05	9.32	0.21	7.98	0.44	430.0	220.0	190.0	17. 0	196.0	15. 0	190.0	17.0
Output_1_124	21610	872	1.5	0.03	3.64	0.05	5.81	0.22	6.02	0.30	320.0	120.0	191.6	6.6	198.0	11. 0	191.6	6.6
Output_1_129	6280	205	2.7	0.03	4.29	0.05	9.34	0.22	8.80	0.21	260.0	190.0	192.1	8.0	198.0	16. 0	192.1	8.0
Output_1_130	4250	131	1.8	0.03	4.95	0.05	11.0 4	0.20	12.8 1	0.45	100.0	210.0	192.5	9.2	191.0	23. 0	192.5	9.2
Output_1_289	3120	91	3.6	0.03	5.56	0.05	11.4 2	0.21	12.6 8	0.44	60.0	200.0	194.0	10. 0	187.0	22. 0	194.0	10.0
Output_1_267	2570	112	3.2	0.03	8.82	0.06	17.4 6	0.25	15.8 7	0.27	550.0	340.0	194.0	17. 0	226.0	32. 0	194.0	17.0
Output_1_262	14970	1011	1.8	0.03	3.15	0.05	4.87	0.23	5.73	0.32	340.0	100.0	195.6	6.0	208.0	10. 0	195.6	6.0
Output 1 110	3800	145	3.1	0.03	4.49	0.05	11.5 6	0.22	11.9 3	0.19	230.0	210.0	197.7	8.7	203.0	21. 0	197.7	8.7
Output 1 82	3300	143	1.9	0.03	5.36	0.05	11.4 2	0.23	10.2 2	0.05	190.0	220.0	201.0	11. 0	204.0	20.	201.0	11.0
Output 1 249	12100	965	3.1	0.03	3.79	0.05	6 5 5	0.23	6.96	0.29	260.0	140.0	201 1	74	210.0	13. 0	201 1	7.4
Output 1 227	0400	202	J.1 D 1	0.03	E 00	0.05	0.55	0.23	0.17	0.20	170.0	160.0	202.0	10.	100.0	16.	202.0	10.0
Output_1_23/	8400	3/2	3.1	0.03	5.00	0.05	8.22 19.0	0.22	22.0	0.30	170.0	100.0	203.0	0 14.	199.0	U 48.	203.0	10.0
Output_1_132	3900	102	3.0	0.03	6.79	0.06	5	0.28	2	0.67	830.0	370.0	205.0	0	245.0	0	205.0	14.0
								I		ĺ	1						1	
--------------	-------	------	-----	------	------	------	-----------	------	-----------	------	-------	-------	-------	----------	-------	----------	-------	------
Output_1_252	27500	2330	1.8	0.03	5.54	0.05	4.68	0.23	5.63	0.58	240.0	100.0	206.0	11. 0	210.0	10. 0	206.0	11.0
Output_1_42	2350	46	2.1	0.03	5.04	0.05	16.8 4	0.22	15.3 8	0.17	80.0	290.0	213.0	11. 0	199.0	29. 0	213.0	11.0
Output_1_244	2530	151	3.8	0.03	4.96	0.05	13.7 4	0.27	13.6 5	0.08	510.0	250.0	217.0	11. 0	251.0	27. 0	217.0	11.0
Output_1_178	14030	623	3.3	0.03	4.62	0.05	6.31	0.24	7.05	0.48	150.0	130.0	219.0	9.7	219.0	14. 0	219.0	9.7
Output_1_105	8810	234	2.5	0.04	6.81	0.05	11.0 0	0.27	7.78	0.09	210.0	230.0	242.0	16. 0	242.0	17. 0	242.0	16.0
Output_1_38	18600	299	1.9	0.04	3.06	0.05	6.36	0.28	6.41	0.06	250.0	130.0	247.9	7.4	251.0	14. 0	247.9	7.4
Output_1_158	4110	125	3.3	0.04	5.45	0.05	10.0 2	0.28	11.4 3	0.52	100.0	170.0	255.0	14. 0	254.0	27. 0	255.0	14.0
Output_1_278	26060	479	4.2	0.04	3.92	0.05	4.62	0.30	6.02	0.48	269.0	98.0	257.0	10. 0	265.0	14. 0	257.0	10.0
Output_1_18	8870	426	1.7	0.04	3.92	0.05	7.00	0.29	7.32	0.28	240.0	140.0	258.0	10. 0	255.0	16. 0	258.0	10.0
Output_1_217	21320	437	3.8	0.04	3.13	0.05	5.60	0.30	5.32	0.19	330.0	120.0	262.2	8.1	267.0	12. 0	262.2	8.1
Output_1_106	1950	49	0.5	0.04	6.34	0.05	14.8 9	0.32	13.6 6	0.07	280.0	270.0	269.0	16. 0	279.0	34. 0	269.0	16.0
Output_1_23	6490	266	1.0	0.04	3.63	0.05	8.59	0.32	9.35	0.28	290.0	180.0	277.9	9.8	280.0	23. 0	277.9	9.8
Output_1_19	81900	3830	4.7	0.04	2.95	0.06	3.59	0.34	4.17	0.61	425.0	81.0	278.4	7.9	294.0	10. 0	278.4	7.9
Output_1_64	10090	641	1.6	0.04	3.56	0.05	6.38	0.34	6.76	0.40	400.0	130.0	283.0	10. 0	296.0	17. 0	283.0	10.0
Output_1_186	21400	360	1.4	0.05	3.57	0.06	5.99	0.38	6.32	0.52	390.0	130.0	317.0	11. 0	326.0	18. 0	317.0	11.0
Output_1_151	9650	160	2.5	0.05	2.70	0.06	5.76	0.43	6.00	0.27	590.0	130.0	325.8	8.3	364.0	19. 0	325.8	8.3
Output_1_182	14200	294	1.4	0.05	3.63	0.05	7.82	0.37	7.95	0.34	190.0	160.0	328.0	12. 0	314.0	21. 0	328.0	12.0
Output_1_261	41200	1670	0.7	0.05	5.67	0.06	5.15	0.45	8.43	0.79	590.0	110.0	332.0	18. 0	374.0	27. 0	332.0	18.0
Output_1_180	26700	657	1.6	0.05	4.07	0.06	4.50	0.41	5.37	0.60	413.0	97.0	339.0	13. 0	348.0	16. 0	339.0	13.0
Output_1_187	7280	114	2.2	0.05	5.18	0.06	6.89	0.46	6.49	0.06	680.0	150.0	339.0	17. 0	384.0	21. 0	339.0	17.0
Output_1_299	19470	664	2.4	0.05	3.67	0.06	4.33	0.45	4.91	0.57	599.0	99.0	342.0	12. 0	375.0	15. 0	342.0	12.0
Output_1_298	48100	1541	1.9	0.06	5.23	0.06	7.12	0.42	5.25	0.33	440.0	160.0	347.0	18. 0	355.0	16. 0	347.0	18.0
Output_1_223	19210	508	0.9	0.06	4.85	0.05	5.39	0.42	5.06	0.47	350.0	120.0	349.0	17. 0	352.0	16. 0	349.0	17.0
Output_1_207	11450	117	1.7	0.06	5.20	0.05	6.39	0.42	7.57	0.45	400.0	140.0	350.0	18. 0	357.0	23. 0	350.0	18.0
Output_1_271	28880	516	1.4	0.06	4.63	0.06	6.18	0.43	5.76	0.40	400.0	140.0	352.0	16. 0	368.0	18. 0	352.0	16.0
Output_1_181	36400	733	2.6	0.06	4.42	0.05	4.29	0.41	4.62	0.65	352.0	98.0	354.0	15. 0	348.0	14. 0	354.0	15.0
Output_1_281	53800	686	1.6	0.06	3.00	0.06	4.00	0.46	4.17	0.39	491.0	91.0	355.0	10. 0	381.0	14. 0	355.0	10.0
Output_1_170	38260	1379	2.0	0.06	3.35	0.06	2.75	0.46	3.91	0.74	533.0	64.0	356.0	12. 0	383.0	12. 0	356.0	12.0
Output_1_148	27320	343	2.1	0.06	4.04	0.05	2.97	0.43	3.98	0.71	350.0	67.0	357.0	14. 0	360.0	12. 0	357.0	14.0
Output_1_177	49300	1438	1.3	0.06	5.37	0.06	4.86	0.43	4.44	0.54	430.0	110.0	361.0	19. 0	361.0	14. 0	361.0	19.0
Output_1_304	9370	257	2.3	0.06	3.46	0.05	7.12	0.43	6.81	0.15	330.0	150.0	362.0	12. 0	362.0	20. 0	362.0	12.0
Output_1_118	22830	595	2.3	0.06	7.68	0.06	6.34	0.48	5.42	0.54	730.0	140.0	367.0	27. 0	397.0	18. 0	367.0	27.0
Output_1_212	31640	371	4.7	0.06	4.27	0.06	4.16	0.46	5.05	0.56	443.0	92.0	369.0	16. 0	380.0	16. 0	369.0	16.0
Output_1_208	14870	134	2.2	0.06	4.17	0.05	6.22	0.49	7.13	0.56	410.0	140.0	405.0	16. 0	403.0	24. 0	405.0	16.0
Output_1_290	58800	846	1.7	0.07	3.05	0.06	3.65	0.53	3.99	0.46	495.0	81.0	410.0	12. 0	428.0	14. 0	410.0	12.0
Output_1_43	28230	276	1.2	0.07	3.25	0.06	3.79	0.54	4.06	0.45	530.0	88.0	422.0	13. 0	439.0	15. 0	422.0	13.0
Output_1_256	27860	1075	1.7	0.07	4.41	0.06	4.60	0.54	5.55	0.59	530.0	110.0	425.0	18. 0	438.0	20. 0	425.0	18.0
Output_1_176	56200	1367	2.6	0.07	3.13	0.06	3.89	0.56	3.60	0.36	558.0	89.0	437.0	14. 0	448.0	13. 0	437.0	14.0
Output_1_47	9270	93	1.2	0.08	2.74	0.06	7.16	0.61	7.00	0.11	530.0	150.0	477.0	12. 0	483.0	27. 0	477.0	12.0
Output_1_269	15460	224	2.5	0.08	4.13	0.06	7.15	0.63	7.28	0.29	550.0	150.0	481.0	19. 0	494.0	28. 0	481.0	19.0

Output_1_61	3040	77	3.9	0.08	4.89	0.06	11.4 1	0.62	13.3 3	0.30	460.0	240.0	494.0	23. 0	485.0	49. 0	494.0	23.0
Output_1_58	27490	433	5.2	0.10	3.99	0.06	5.12	0.80	5.23	0.35	610.0	110.0	616.0	23. 0	605.0	23. 0	616.0	23.0
Output 1 251	13440	353	2.7	0.10	7.54	0.08	6.99	1.09	10.0 9	0.72	1100.0	140.0	618.0	45. 0	745.0	56. 0	618.0	45.0
Output 1 246	7520	167	1.4	0.10	5.90	0.06	9.06	0.84	8.89	0.41	510.0	190.0	623.0	35. 0	621.0	44. 0	623.0	35.0
Output 1 159	18960	253	1.3	0.10	6.11	0.08	5.53	1.09	10.0 9	0.87	1121.0	93.0	623.0	36. 0	746.0	56. 0	623.0	36.0
Output 1 247	10800	237	3.1	0.10	6.65	0.06	7.42	0.92	9.11	0.55	680.0	160.0	627.0	40. 0	659.0	44. 0	627.0	40.0
Output 1 288	7540	63	0.7	0.10	4.57	0.06	7.50	0.92	7.96	0.24	730.0	170.0	631.0	28. 0	661.0	38. 0	631.0	28.0
Output 1 33	18400	121	0.7	0.11	3.20	0.06	4.44	0.92	4.90	0.43	719.0	99.0	649.0	20. 0	673.0	23. 0	649.0	20.0
Output 1 152	47800	364	9,9	0.12	3.21	0.07	4.14	1.10	4.18	0.39	852.0	82.0	721.0	22.	751.0	23.	721.0	22.0
Output 1 77	17390	268	6.8	0.12	3.91	0.10	3.56	1.63	3.94	0.58	1581.0	68.0	746.0	28. 0	983.0	26. 0	746.0	28.0
Output 1 128	89800	669	4.0	0.14	4.80	0.11	4 84	2.05	6 34	0.64	1818.0	89.0	831.0	38.		50.	831.0	38.0
Output 1 137	21750	109	1.4	0.15	4 74	0.07	5.12	1 47	5.43	0.46	980.0	100.0	878.0	35.	915.0	33. 0	878.0	35.0
Output 1 155	80500	526	1.7	0.15	2.85	0.07	2.60	1.60	3 37	0.40	1027.0	48.0	944.0	25.	969.0	21.	1027.0	48.0
Output 1 127	26630	176	2.9	0.16	3 23	0.07	3.88	1.63	4 4 2	0.59	1065.0	74.0	962.0	29.	979.0	28.	1065.0	74.0
Output 1 7	12160	76	0.7	0.16	4 37	0.08	4 93	1 71	5 37	0.46	1080.0	100.0	983.0	40.		36. 0	1080.0	100.
Output 1 50	12950	58	2.2	0.19	3.85	0.08	4.52	2.05	4.88	0.48	1108.0	92.0	1118.0	40.	######	33. 0	1108.0	92.0
Output 1 284	93500	351	16	0.20	5 13	0.08	2.68	2 10	5 24	0.83	1147.0	54.0	1166.0	50.		38.	1147.0	54.0
Output 1 191	68200	231	1.0	0.20	4 30	0.08	5.26	2 21	2.04	0.05	1152.0	99.0	1187.0	46.		21.	1152.0	99.0
Output 1 150	24300	103	18.3	0.19	4.04	0.08	4 31	2 14	5 14	0.00	1291.0	89.0	1109.0	41.		35. 0	1291.0	89.0
Output 1 184	46100	216	17	0.21	3 55	0.09	3.60	2 40	3 71	0.55	1325.0	70.0	1203.0	39. 0		27.	1325.0	70.0
Output 1 194	42920	118	2.2	0.23	2 10	0.09	2 70	2.10	3.02	0.39	1406.0	54.0	1322.0	26.		23.	1406.0	54.0
Output 1 39	41900	117	1.1	0.23	3.64	0.09	2.67	2.85	3.86	0.76	1414.0	52.0	1336.0	44. 0	######	29. 0	1414.0	52.0
Output 1 255	31810	355	2.8	0.24	3.46	0.09	3.39	2.95	3.15	0.53	1467.0	69.0	1392.0	45. 0	######	24. 0	1467.0	69.0
Output 1 5	72400	316	2.9	0.25	3.30	0.09	3.02	3.26	3.68	0.72	1479.0	56.0	1446.0	43. 0	######	29. 0	1479.0	56.0
Output 1 29	38660	134	1.2	0.28	3.43	0.10	3.40	3.85	4.16	0.56	1644.0	61.0	1602.0	49. 0	######	31. 0	1644.0	61.0
Output 1 296	70600	467	2.1	0.24	5.88	0.10	2.88	3.46	5.20	0.86	1710.0	57.0	1372.0	72. 0	######	41. 0	1710.0	57.0
Output 1 100	33840	92	1.5	0.31	4.23	0.11	4.34	4.68	4.06	0.45	1752.0	79.0	1721.0	66. 0	######	34. 0	1752.0	79.0
Output_1_48	48300	120	2.8	0.32	4.02	0.11	4.90	4.88	4.10	0.48	1798.0	92.0	1800.0	63. 0	######	34. 0	1798.0	92.0
Output_1_117	16460 0	766	62.1	0.30	2.15	0.12	1.70	4.95	2.63	0.79	1920.0	31.0	1700.0	32. 0	######	23. 0	1920.0	31.0
Output_1_86	12700 0	361	3.9	0.35	4.00	0.12	3.14	5.79	3.63	0.65	1965.0	56.0	1930.0	68. 0	#####	32. 0	1965.0	56.0
Output_1_89	28010 0	680	1.2	0.36	2.31	0.13	2.27	6.10	2.62	0.70	2073.0	39.0	1960.0	39. 0	######	22. 0	2073.0	39.0
Output_1_272	68200	189	1.9	0.34	3.22	0.13	3.11	6.29	4.45	0.73	2115.0	55.0	1896.0	54. 0	#####	40. 0	2115.0	55.0
Output_1_229	10890 0	452	1.7	0.34	3.85	0.14	3.70	6.37	3.77	0.78	2191.0	66.0	1874.0	64. 0	######	37. 0	2191.0	66.0
Output_1_92	96700	225	1.1	0.33	2.79	0.14	2.35	6.38	2.35	0.57	2231.0	40.0	1851.0	45. 0	#####	22. 0	2231.0	40.0
Output_1_88	32700 0	679	30.8	0.42	3.79	0.15	2.72	9.19	3.70	0.68	2398.0	50.0	2267.0	72. 0	######	33. 0	2398.0	50.0
Output_1_283	55800	81	3.4	0.51	4.33	0.19	3.07	13.59	3.53	0.76	2695.0	51.0	2642.0	92. 0	#####	35. 0	2695.0	51.0
Output_1_139	48310	69	0.6	0.49	2.25	0.19	2.06	12.56	2.47	0.56	2740.0	33.0	2559.0	46. 0	#####	23. 0	2740.0	33.0
Output_1_167	91100	362	0.9	0.50	4.41	0.19	2.93	13.86	3.75	0.72	2793.0	53.0	2603.0	95. 0	######	36. 0	2793.0	53.0

Sample 19ATW04

								1			1					l		
Output_1_115	5650	485	7.3	0.01	2.84	0.05	7.95	0.05	7.10	0.05	52.9	150.0	54.3	1.5	20.0	3.6	54.3	1.9
Output_1_20	5660	1141	36.0	0.01	4.16	0.05	16.7 7	0.06	16.2 3	0.18	60.0	320.0	55.5	2.3	200.0	9.5	55.5	2.5
Output_1_76	4050	225	7.3	0.01	6.95	0.06	17.5 4	0.07	16.6 7	0.06	71.0	410.0	61.0	4.2	510.0	12. 0	61.0	4.4
Output_1_211	3400	497	3.2	0.01	4.52	0.06	15.2 6	0.07	18.5 7	0.33	68.0	310.0	61.1	2.8	380.0	12. 0	61.1	3.0
Output_1_77	5780	304	1.7	0.01	4.30	0.05	10.4 5	0.06	10.3 3	0.16	61.7	200.0	61.2	2.6	120.0	6.2	61.2	2.9
Output_1_183	1592	367	3.5	0.01	5.64	0.05	12.2 7	0.07	12.7 5	0.14	63.8	220.0	62.5	3.5	80.0	7.8	62.5	3.8
Output_1_232	4930	372	9.3	0.01	7.68	0.05	11.5 7	0.07	12.2 8	0.41	67.8	220.0	62.6	4.8	190.0	8.0	62.6	4.9
Output_1_184	17740	4860	66.5	0.01	2.74	0.05	7.05	0.07	7.45	0.49	64.7	140.0	63.3	1.7	110.0	4.7	63.3	2.2
Output_1_29	6820	848	5.2	0.01	3.13	0.05	7.96	0.07	7.82	0.37	65.3	160.0	63.4	2.0	170.0	4.9	63.4	2.3
Output_1_119	5740	494	1.2	0.01	3.54	0.05	10.3 4	0.07	8.62	0.14	64.8	190.0	63.5	2.3	100.0	5.4	63.5	2.6
Output_1_185	6520	1993	7.2	0.01	3.68	0.05	11.3 0	0.07	11.4 8	0.13	68.5	220.0	64.4	2.4	150.0	7.7	64.4	2.7
Output_1_133	6820	564	4.0	0.01	4.27	0.05	10.3 4	0.07	10.3 3	0.09	67.3	190.0	64.5	2.8	140.0	6.8	64.5	3.1
Output_1_156	3110	281	0.8	0.01	3.44	0.05	16.7 0	0.07	14.2 4	0.28	65.9	300.0	65.2	2.2	150.0	9.1	65.2	2.6
Output_1_90	33200	2016	94.6	0.01	3.81	0.05	7.23	0.07	7.57	0.30	66.1	140.0	65.6	2.5	60.0	4.9	65.6	2.8
Output_1_46	5500	545	6.5	0.01	5.36	0.06	16.6 4	0.08	16.0 0	0.44	74.0	340.0	65.9	3.5	340.0	11. 0	65.9	3.8
Output_1_18	4170	754	7.5	0.01	3.46	0.05	10.9 3	0.08	12.3 4	0.13	76.6	230.0	66.7	2.3	420.0	8.6	66.7	2.7
Output_1_61	3860	321	2.0	0.01	6.15	0.05	10.7 6	0.07	11.0 4	0.37	71.7	210.0	66.7	4.1	300.0	7.6	66.7	4.3
Output_1_84	3660	184	1.8	0.01	3.93	0.05	12.6 3	0.07	12.4 8	0.01	72.7	260.0	66.9	2.6	220.0	8.8	66.9	2.9
Output_1_88	4770	258	3.4	0.01	7.52	0.05	11.3 2	0.07	11.8 2	0.43	66.4	220.0	67.3	5.0	60.0	7.6	67.3	5.2
Output_1_12	6900	1030	13.2	0.01	7.39	0.06	18.9 7	0.08	15.0 0	0.33	78.0	400.0	67.7	4.9	450.0	11. 0	67.7	5.1
Output_1_245	7170	353	6.5	0.01	3.58	0.05	11.5 8	0.07	11.4 8	0.28	69.8	220.0	68.1	2.5	170.0	7.8	68.1	2.8
Output_1_92	2850	176	1.7	0.01	4.80	0.05	16.1 5	0.08	15.1 9	0.19	76.0	290.0	68.2	3.3	190.0	12. 0	68.2	3.6
Output_1_196	5120	389	4.2	0.01	3.93	0.05	10.3 9	0.07	9.48	0.11	71.2	200.0	68.4	2.7	210.0	6.6	68.4	3.0
Output_1_5	4120	302	1.9	0.01	4.57	0.05	13.1 8	0.07	13.0 0	0.19	70.6	240.0	68.8	3.1	120.0	8.9	68.8	3.4
Output_1_95	2238	143	1.5	0.01	5.84	0.05	14.6 1	0.08	14.1 0	0.08	76.0	270.0	69.1	4.0	300.0	10. 0	69.1	4.3
Output_1_207	6700	747	9.7	0.01	2.97	0.05	9.77	0.07	9.30	0.09	68.4	190.0	69.2	2.0	120.0	6.2	69.2	2.5
Output_1_147	3200	178	1.3	0.01	4.81	0.05	14.0 6	0.08	12.8 7	0.04	74.8	240.0	69.3	3.3	260.0	9.3	69.3	3.6
Output_1_190	5180	7470	1.0	0.01	4.16	0.05	9.50	0.07	9.67	0.29	70.8	190.0	69.3	2.9	220.0	6.7	69.3	3.2
Output_1_158	2940	341	1.5	0.01	5.27	0.05	18.6 0	0.07	18.3 1	0.13	69.0	330.0	69.4	3.6	50.0	13. 0	69.4	3.9
Output_1_78	5610	261	1.5	0.01	4.99	0.05	9.56	0.07	8.17	0.19	71.8	180.0	69.4	3.4	170.0	5.7	69.4	3.7
Output_1_142	2490	208	1.6	0.01	5.81	0.06	22.8 1	0.08	23.8 1	0.04	81.0	450.0	69.5	4.0	360.0	19. 0	69.5	4.2
Output_1_204	3970	392	2.0	0.01	3.96	0.05	11.7 5	0.08	11.0 5	0.09	74.1	220.0	69.7	2.7	270.0	7.9	69.7	3.0
Output_1_240	14090	652	2.2	0.01	3.22	0.05	7.02	0.07	6.11	0.02	70.5	140.0	69.8	2.2	120.0	4.2	69.8	2.6
Output_1_174	4880	462	1.2	0.01	4.95	0.05	9.90	0.08	10.3	0.37	77.1	210.0	69.9	3.5	320.0	7.8	69.9	3.7
Output_1_243	3570	164	2.6	0.01	4.95	0.05	11.8 1	0.07	12.6 1	0.37	69.0	230.0	69.9	3.4	140.0	8.4	69.9	3.7
Output_1_1	4890	396	2.0	0.01	4.12	0.05	10.6 0	0.07	11.5 2	0.27	68.7	190.0	70.0	2.8	-10.0	7.7	70.0	3.2
Output_1_161	8260	1665	2.5	0.01	3.21	0.05	6.63	0.07	5.91	0.18	72.8	130.0	70.0	2.2	120.0	4.2	70.0	2.6
Output_1_80	5090	234	5.5	0.01	3.57	0.05	12.5 5	0.08	10.8	0.15	74.6	250.0	70.1	2.5	150.0	7.8	70.1	2.9
Output_1_260	2280	160	2.0	0.01	5.39	0.05	12.1 7	0.07	12.6 8	0.06	66.3	220.0	70.2	3.8	70.0	8.2	70.2	4.0
Output_1_72	5760	274	1.3	0.01	3.38	0.05	9.55	0.07	8.91	0.09	70.2	180.0	70.2	2.3	60.0	6.1	70.2	2.7

											1					1		
Output_1_106	5380	322	1.0	0.01	6.47	0.05	13.5 3	0.08	12.6 6	0.31	77.3	270.0	70.3	4.5	310.0	9.4	70.3	4.8
Output_1_24	23530	3074	10.6	0.01	2.64	0.05	5.44	0.07	4.31	0.06	70.6	110.0	70.4	1.9	100.0	3.0	70.4	2.3
Output_1_113	5850	358	1.7	0.01	3.73	0.05	7.93	0.07	7.53	0.21	72.8	150.0	70.5	2.6	170.0	5.3	70.5	2.9
Output_1_159	1175	153	2.3	0.01	6.73	0.04	22.7 3	0.07	20.0 0	0.14	71.0	370.0	70.5	4.7	50.0	14. 0	70.5	4.9
Output_1_180	2340	298	1.7	0.01	5.45	0.06	18.9 7	0.08	17.8 6	0.07	82.0	330.0	70.5	3.8	460.0	14. 0	70.5	4.1
Output_1_214	13220	1741	1.0	0.01	3.55	0.05	6.67	0.07	7.74	0.44	70.5	130.0	70.5	2.5	40.0	5.0	70.5	2.8
Output_1_128	5280	391	0.6	0.01	5.27	0.05	12.1 3	0.08	11.6 4	0.06	76.1	220.0	70.6	3.7	240.0	8.6	70.6	4.0
Output_1_14	3450	548	1.5	0.01	4.90	0.05	12.7 4	0.08	12.0 9	0.08	77.9	250.0	70.7	3.4	280.0	9.1	70.7	3.7
Output_1_197	2640	202	1.8	0.01	5.17	0.05	13.3 1	0.08	11.7 4	0.05	75.4	250.0	70.7	3.7	270.0	8.6	70.7	3.9
Output_1_137	11710	1027	3.7	0.01	4.07	0.05	6.60	0.07	7.67	0.44	72.6	130.0	70.9	2.9	60.0	5.4	70.9	3.2
Output_1_157	8770	849	2.1	0.01	3.62	0.05	8.47	0.07	9.24	0.40	73.0	170.0	70.9	2.5	120.0	6.5	70.9	2.9
Output_1_218	6720	876	34.9	0.01	5.61	0.05	9.76	0.07	8.83	0.20	68.7	190.0	70.9	4.0	130.0	5.9	70.9	4.2
Output_1_222	3840	436	2.4	0.01	4.96	0.05	12.2 7	0.07	9.94	0.18	69.8	240.0	71.1	3.5	170.0	6.8	71.1	3.8
Output_1_251	6760	384	2.7	0.01	4.33	0.05	7.91	0.07	6.08	0.35	70.9	160.0	71.1	3.1	160.0	4.2	71.1	3.4
Output_1_107	3990	245	1.6	0.01	4.50	0.05	11.2 7	0.08	11.2 4	0.30	73.7	210.0	71.2	3.2	160.0	8.0	71.2	3.5
Output_1_189	4860	3520	1.2	0.01	5.49	0.05	13.1 5	0.07	10.2 4	0.08	68.8	230.0	71.3	3.9	60.0	6.9	71.3	4.2
Output_1_27	3100	362	1.7	0.01	5.85	0.05	12.9 5	0.08	13.4 1	0.27	79.6	250.0	71.3	4.1	260.0	9.9	71.3	4.4
Output_1_172	3136	278	1.4	0.01	4.40	0.05	12.9 7	0.07	12.8 3	0.16	70.7	240.0	71.4	3.1	110.0	8.7	71.4	3.4
Output_1_134	5530	437	0.9	0.01	5.11	0.05	9.86	0.08	9.51	0.23	73.9	190.0	71.5	3.6	190.0	6.8	71.5	3.9
Output_1_164	1561	268	1.5	0.01	4.93	0.05	20.7 5	0.08	18.7 5	0.20	80.0	360.0	71.5	3.5	240.0	15. 0	71.5	3.8
Output_1_163	3110	601	1.4	0.01	4.61	0.05	14.2 6	0.08	13.4 1	0.05	80.0	270.0	72.2	3.3	220.0	11. 0	72.2	3.6
Output_1_104	3750	236	1.7	0.01	4.32	0.05	13.7 3	0.08	12.9 9	0.26	75.3	260.0	72.7	3.1	160.0	9.4	72.7	3.5
Output_1_200	2076	173	1.8	0.01	5.64	0.05	15.1 5	0.08	14.4 6	0.03	81.0	270.0	72.7	4.1	400.0	12. 0	72.7	4.3
Output_1_265	2358	186	2.6	0.01	5.62	0.05	18.4 8	0.07	16.9 0	0.22	70.0	340.0	72.9	4.1	150.0	12. 0	72.9	4.3
Output_1_4	5290	358	2.0	0.01	3.86	0.05	7.55	0.08	8.08	0.29	74.9	150.0	73.1	2.8	140.0	5.9	73.1	3.2
Output_1_89	3200	168	1.9	0.01	3.33	0.05	13.4 0	0.08	11.1 7	0.34	75.1	240.0	73.1	2.5	80.0	8.1	73.1	2.9
Output_1_94	1870	115	0.9	0.01	6.57	0.06	22.5 8	0.09	22.4 7	0.22	86.0	440.0	73.2	4.8	440.0	19. 0	73.2	5.0
Output_1_247	1460	66	1.3	0.01	6.11	0.05	17.3 2	0.08	17.1 1	0.41	74.0	290.0	73.4	4.5	280.0	12. 0	73.4	4.7
Output_1_15	5150	813	2.7	0.01	3.49	0.05	9.28	0.08	8.67	0.12	74.3	180.0	73.5	2.5	120.0	6.2	73.5	2.9
Output_1_237	2760	134	1.5	0.01	6.63	0.06	21.8 2	0.08	20.0 0	0.18	78.0	400.0	73.5	4.8	280.0	15. 0	73.5	5.1
Output_1_257	3530	215	3.5	0.01	7.14	0.05	13.1 5	0.07	11.0 7	0.20	71.6	240.0	73.6	5.2	30.0	7.7	73.6	5.4
Output_1_116	57800	3770	0.6	0.01	3.48	0.05	3.60	0.08	4.47	0.53	74.3	73.0	73.7	2.6	70.0	3.2	73.7	3.0
Output_1_216	3470	441	1.7	0.01	4.52	0.05	8.84	0.08	10.6 3	0.34	80.2	190.0	73.7	3.3	230.0	8.3	73.7	3.6
Output_1_231	18210	1258	19.8	0.01	3.55	0.05	5.14	0.07	6.54	0.43	72.7	100.0	74.1	2.6	50.0	4.3	74.1	3.0
Output_1_169	4040	403	1.7	0.01	4.40	0.05	10.8 2	0.08	11.1 5	0.13	78.6	210.0	74.4	3.2	180.0	8.4	74.4	3.6
Output_1_233	2092	124	2.0	0.01	5.00	0.04	17.1 7	0.07	17.3 9	0.03	68.0	280.0	74.4	3.7	-110.0	11. 0	74.4	4.0
Output_1_215	4250	526	1.0	0.01	4.20	0.05	13.6 9	0.08	12.3 5	0.21	78.2	250.0	74.7	3.1	150.0	9.4	74.7	3.5
Output_1_7	6440	493	2.0	0.01	5.05	0.05	7.35	0.08	8.47	0.26	74.8	150.0	74.8	3.7	150.0	6.1	74.8	4.0
Output_1_221	4360	505	3.8	0.01	4.62	0.05	11.6 6	0.08	11.4 8	0.25	77.1	220.0	74.9	3.5	150.0	8.6	74.9	3.8
Output_1_230	3570	266	5.3	0.01	4.94	0.05	13.1 9	0.08	12.1 6	0.19	79.0	250.0	75.1	3.7	210.0	9.3	75.1	4.0

								l			I							
Output_1_28	4460	491	2.1	0.01	5.28	0.05	8.14	0.08	8.41	0.32	82.1	170.0	75.2	4.0	280.0	6.6	75.2	4.2
Output_1_69	12990	642	7.6	0.01	4.06	0.05	10.4 7	0.08	8.45	0.17	78.6	220.0	75.7	3.0	250.0	6.4	75.7	3.4
Output_1_149	14190 0	6610	6.2	0.01	5.40	0.05	4.99	0.08	4.96	0.59	76.8	110.0	75.9	4.1	190.0	3.7	75.9	4.3
Output_1_210	4090	452	5.2	0.01	6.05	0.05	18.8 6	0.09	17.5 8	0.10	88.0	370.0	76.3	4.6	310.0	15. 0	76.3	4.9
Output_1_108	8280	443	3.7	0.01	3.68	0.05	9.13	0.08	9.00	0.01	79.0	180.0	76.7	2.8	140.0	6.8	76.7	3.2
Output_1_228	1820	146	2.8	0.01	6.85	0.05	12.7 8	0.09	15.2 9	0.41	82.0	280.0	76.7	5.2	400.0	12. 0	76.7	5.4
Output_1_239	3140	132	1.7	0.01	4.65	0.05	9.69	0.08	9.56	0.13	80.3	180.0	77.1	3.6	120.0	7.4	77.1	3.9
Output_1_235	828	39	2.3	0.01	5.51	0.05	22.6 4	0.09	21.1 1	0.02	86.0	400.0	77.9	4.2	220.0	17. 0	77.9	4.5
Output_1_39	3350	296	2.4	0.01	3.61	0.05	12.0 4	0.08	10.7 3	0.18	78.9	230.0	78.1	2.8	280.0	8.2	78.1	3.2
Output_1_176	16270	1417	4.1	0.01	3.32	0.05	4.16	0.08	4.49	0.46	80.4	86.0	79.1	2.6	107.0	3.5	79.1	3.0
Output_1_97	10300	608	3.3	0.01	3.61	0.05	5.60	0.08	6.13	0.18	79.5	110.0	80.0	2.9	40.0	4.7	80.0	3.3
Output_1_34	5010	464	9.0	0.01	4.56	0.05	9.15	0.09	8.90	0.28	84.0	180.0	81.5	3.7	180.0	7.2	81.5	4.0
Output_1_70	20610	924	1.1	0.01	3.46	0.05	4.71	0.08	5.52	0.40	81.2	91.0	81.5	2.8	48.0	4.3	81.5	3.3
Output_1_126	8340	577	1.7	0.01	2.65	0.05	7.27	0.09	7.04	0.21	84.3	140.0	82.0	2.1	160.0	5.7	82.0	2.7
Output_1_208	6010	581	5.2	0.01	3.90	0.05	7.55	0.09	6.60	0.06	83.9	150.0	82.2	3.2	110.0	5.4	82.2	3.6
Output_1_32	17840	1555	1.1	0.01	3.35	0.05	4.31	0.09	4.57	0.34	85.1	88.0	82.3	2.7	131.0	3.7	82.3	3.2
Output_1_50	23900	1900	1.8	0.01	6.53	0.05	9.79	0.09	10.8 2	0.65	88.8	210.0	82.4	5.3	320.0	9.2	82.4	5.6
Output_1_114	2950	153	2.0	0.01	4.49	0.05	16.1 1	0.09	13.9 5	0.08	83.0	270.0	82.7	3.7	70.0	11. 0	82.7	4.1
Output_1_52	7980	626	1.1	0.01	3.48	0.05	8.71	0.08	9.93	0.48	79.4	160.0	82.8	2.8	10.0	7.6	82.8	3.3
Output_1_144	6630	396	1.4	0.01	5.79	0.07	7.81	0.12	8.20	0.38	116.2	170.0	82.9	4.8	920.0	9.2	82.9	5.0
Output_1_217	16320	1809	1.9	0.01	2.01	0.05	5.50	0.09	5.34	0.15	83.9	110.0	82.9	1.7	150.0	4.3	82.9	2.3
Output_1_132	8070	524	2.7	0.01	4.06	0.05	9.62	0.09	10.7 1	0.22	84.3	180.0	83.7	3.4	90.0	8.7	83.7	3.8
Output_1_170	13930	1158	2.8	0.01	3.41	0.05	7.68	0.08	7.47	0.26	82.1	140.0	84.6	2.9	60.0	5.9	84.6	3.3
Output_1_229	18640	1284	5.1	0.01	3.98	0.05	5.05	0.09	5.15	0.56	86.7	100.0	86.8	3.4	90.0	4.3	86.8	3.9
Output_1_112	2140	109	2.0	0.01	6.57	0.05	31.4 8	0.11	37.1 4	0.25	113.0	650.0	86.8	5.7	430.0	41. 0	86.8	5.9
Output_1_67	18530	835	4.2	0.01	3.30	0.05	5.58	0.09	5.82	0.24	88.4	110.0	87.2	2.9	120.0	4.9	87.2	3.3
Output_1_150	13430	522	1.2	0.01	4.05	0.05	8.35	0.09	9.06	0.43	89.9	170.0	88.6	3.6	150.0	7.8	88.6	4.0
Output_1_11	3510	379	1.9	0.01	4.02	0.05	11.0 3	0.10	11.2 2	0.02	94.8	220.0	89.1	3.5	260.0	9.8	89.1	4.0
Output_1_148	17730	725	1.3	0.01	4.92	0.05	6.67	0.10	5.73	0.22	94.5	140.0	89.8	4.4	220.0	5.2	89.8	4.7
Output_1_173	11550	811	1.3	0.01	3.12	0.05	7.48	0.10	7.86	0.08	99.8	180.0	90.4	2.8	280.0	8.5	90.4	3.3
Output_1_127	2500	152	1.7	0.01	5.50	0.05	13.0 3	0.10	13.2 7	0.33	94.0	240.0	90.8	5.0	220.0	12. 0	90.8	5.3
Output_1_58	17430	1116	3.1	0.01	3.14	0.05	8.29	0.10	7.01	0.14	96.6	170.0	91.8	2.9	340.0	6.5	91.8	3.4
Output_1_131	1960	112	3.6	0.01	6.99	0.05	21.5 7	0.10	19.8 0	0.23	97.0	360.0	92.5	6.7	150.0	18. 0	92.5	7.0
Output_1_146	8180	354	1.5	0.01	3.99	0.05	7.77	0.10	8.34	0.24	97.1	150.0	93.1	3.7	190.0	7.7	93.1	4.1
Output_1_266	4120	262	1.3	0.01	3.72	0.05	9.15	0.09	8.65	0.13	89.6	170.0	94.7	3.5	10.0	7.5	94.7	4.0
Output_1_68	1700	73	2.0	0.01	8.72	0.06	20.6 9	0.11	17.8 6	0.02	106.0	410.0	95.2	8.0	410.0	18. 0	95.2	8.3
Output_1_65	6680	327	4.3	0.01	5.56	0.05	9.66	0.10	9.84	0.10	96.1	180.0	95.6	5.2	150.0	9.0	95.6	5.6
Output_1_49	22690	1518	0.8	0.02	4.30	0.05	8.69	0.11	7.65	0.03	103.2	180.0	96.7	4.1	250.0	7.5	96.7	4.6
Output_1_248	4010	145	1.1	0.02	4.52	0.05	11.1 5	0.11	10.9 1	0.15	106.0	230.0	97.6	4.4	350.0	11. 0	97.6	4.8
Output_1_21	7800	830	2.1	0.02	3.99	0.05	11.2 8	0.11	10.9 1	0.23	106.0	230.0	97.7	3.9	320.0	11. 0	97.7	4.3

			1	1				I			I							
Output_1_223	6660	536	4.9	0.02	3.40	0.05	8.23	0.10	8.82	0.39	98.3	160.0	97.8	3.3	200.0	8.2	97.8	3.8
Output_1_179	2160	181	2.8	0.02	6.22	0.05	17.5 0	0.12	16.5 2	0.05	109.0	330.0	98.7	6.1	290.0	17. 0	98.7	6.4
Output_1_59	17140	1001	3.6	0.02	4.72	0.05	5.06	0.10	5.43	0.30	101.2	110.0	99.0	4.6	170.0	5.3	99.0	5.0
Output_1_62	8600	442	2.2	0.02	4.10	0.05	8.23	0.10	8.37	0.24	99.1	170.0	99.8	4.1	160.0	7.9	99.8	4.5
Output_1_136	7320	445	1.6	0.02	3.83	0.05	11.2 0	0.11	10.6 2	0.14	108.0	230.0	100.1	3.8	280.0	11. 0	100.1	4.3
Output_1_102	9490	450	2.4	0.02	5.48	0.05	10.1 2	0.11	11.3 2	0.44	104.0	200.0	100.4	5.5	110.0	12. 0	100.4	5.8
Output_1_155	60400	3024	1.1	0.02	3.56	0.05	4.62	0.11	5.41	0.50	101.7	99.0	100.5	3.6	177.0	5.2	100.5	4.1
Output_1_56	4430	270	2.4	0.02	4.61	0.05	11.6 2	0.11	12.8 4	0.50	108.0	230.0	101.2	4.7	220.0	14. 0	101.2	5.1
Output_1_206	8420	621	2.5	0.02	4.18	0.05	8.48	0.11	8.01	0.21	108.0	170.0	102.4	4.3	330.0	8.2	102.4	4.7
Output_1_263	7350	395	7.9	0.02	5.49	0.05	9.28	0.11	9.65	0.39	109.3	180.0	102.5	5.6	270.0	9.6	102.5	6.0
Output_1_13	2190	234	5.5	0.02	7.45	0.05	16.5 4	0.13	18.4 0	0.45	118.0	330.0	102.6	7.8	420.0	20. 0	102.6	8.0
Output_1_138	18690	1218	1.5	0.02	3.80	0.05	6.67	0.11	6.19	0.13	105.6	140.0	102.8	3.8	160.0	6.2	102.8	4.3
Output_1_178	43300	3240	1.2	0.02	3.47	0.05	6.58	0.11	7.15	0.28	107.6	140.0	103.2	3.5	130.0	7.3	103.2	4.1
Output_1_209	13620	1049	2.4	0.02	3.44	0.05	8.11	0.11	6.68	0.12	105.1	160.0	104.0	3.6	140.0	6.7	104.0	4.1
Output_1_19	13920	1513	1.2	0.02	2.32	0.05	6.32	0.11	6.65	0.14	104.2	120.0	104.6	2.4	80.0	6.6	104.6	3.2
Output_1_199	9510	531	2.9	0.02	4.03	0.05	9.66	0.11	9.91	0.08	106.0	180.0	104.7	4.2	40.0	11. 0	104.7	4.7
Output_1_205	2661	182	1.4	0.02	4.80	0.05	18.3 6	0.10	16.3 3	0.10	96.0	310.0	106.5	5.0	-10.0	16. 0	106.5	5.5
Output_1_195	28760	1351	1.9	0.02	3.27	0.05	6.37	0.12	5.69	0.18	111.3	130.0	107.5	3.5	130.0	6.0	107.5	4.1
Output_1_220	7610	624	2.5	0.02	5.19	0.05	14.6 5	0.12	14.5 2	0.00	118.0	290.0	108.4	5.6	240.0	16. 0	108.4	6.0
Output_1_177	4250	287	1.1	0.02	5.83	0.05	11.5 6	0.12	13.7 1	0.57	118.0	220.0	108.5	6.3	220.0	15. 0	108.5	6.7
Output_1_130	18410	846	2.7	0.02	3.99	0.05	5.59	0.12	6.04	0.35	111.1	110.0	108.9	4.3	120.0	6.4	108.9	4.8
Output_1_166	5860	560	6.1	0.02	6.43	0.06	9.34	0.15	10.2 0	0.42	141.0	190.0	109.1	7.1	660.0	13. 0	109.1	7.5
Output_1_33	3760	248	3.7	0.02	4.88	0.05	11.0 4	0.11	10.0 9	0.10	104.0	210.0	111.3	5.4	90.0	10. 0	111.3	5.8
Output_1_252	9760	360	0.9	0.02	3.38	0.05	7.28	0.12	6.78	0.03	110.4	140.0	111.6	3.8	110.0	7.1	111.6	4.4
Output_1_60	5010	250	3.0	0.02	3.55	0.05	8.71	0.13	8.66	0.11	121.0	180.0	117.0	4.1	280.0	10. 0	117.0	4.7
Output_1_234	8310	264	2.8	0.02	4.63	0.05	8.51	0.15	9.59	0.36	138.0	180.0	129.5	5.9	390.0	12. 0	129.5	6.5
Output_1_124	3960	178	1.8	0.02	5.37	0.05	10.9 2	0.15	9.59	0.24	138.0	210.0	131.0	6.7	210.0	13. 0	131.0	7.2
Output_1_47	7790	399	0.8	0.02	3.40	0.05	7.83	0.14	9.15	0.30	134.0	160.0	131.3	4.4	220.0	11. 0	131.3	5.1
Output_1_43	22830	1102	2.0	0.02	3.27	0.05	4.93	0.15	5.21	0.39	138.0	100.0	136.6	4.4	220.0	6.7	136.6	5.2
Output_1_101	18530	655	4.1	0.02	3.24	0.05	6.29	0.15	7.14	0.43	145.4	140.0	139.6	4.5	270.0	9.3	139.6	5.3
Output_1_83	9340	220	1.8	0.02	3.48	0.05	7.48	0.16	7.69	0.23	147.0	150.0	142.9	4.9	240.0	10. 0	142.9	5.7
Output_1_201	12460	542	2.5	0.02	3.38	0.05	6.88	0.16	8.13	0.45	150.0	160.0	143.4	4.8	320.0	0	143.4	5.6
Output_1_110	2810	79	2.6	0.02	8.41	0.05	9.46	0.15	15.5	0.81	140.0	180.0	144.0	12. 0	40.0	20. 0	144.0	12.0
Output_1_105	2350	72	1.8	0.02	6.17	0.05	10.2	0.18	11.8 6	0.38	167.0	210.0	144.5	8.6	370.0	18. 0	144.5	9.1
Output_1_256	6240	187	2.2	0.02	4.72	0.05	9.56	0.16	8.86	0.11	148.0	190.0	148.3	7.2	130.0	0	148.3	7.8
Output_1_191	21710	//10 0	3.2	0.02	5.98	0.05	12.6 0	0.16	12.9	0.21	152.0	250.0	148.8	8.5	150.0	19. 0	148.8	9.0
Output_1_91	5240	139	2.8	0.02	4.70	0.05	9.51	0.16	10.5	0.45	151.0	180.0	148.9	6.9	180.0	14. 0	148.9	7.5
Output_1_16	5140	400	2.6	0.02	5.86	0.05	8.81	0.17	8.28	0.38	157.0	170.0	152.3	9.0	250.0	12. 0 27	152.3	9.5
Output_1_86	4600	106	3.1	0.02	5.00	0.06	0 19.3	0.19	10.7	0.18	171.0	380.0	152.9	7.9	490.0	27. 0	152.9	8.4
Output_1_244	7290	150	3.0	0.02	3.82	0.05	8.22	0.16	8.59	0.38	153.0	160.0	155.1	5.8	220.0	12. 0	155.1	6.6

			I					I			I					j		
Output_1_167	37420	2205	2.3	0.02	3.57	0.05	5.05	0.17	5.59	0.28	160.7	110.0	157.0	5.6	250.0	8.3	157.0	6.4
Output_1_3	3090	97	2.4	0.02	4.44	0.05	11.3 7	0.17	11.4 9	0.31	161.0	220.0	158.0	6.7	260.0	17. 0	158.0	7.4
Output_1_238	12880	266	0.8	0.03	3.58	0.05	8.62	0.18	8.84	0.16	171.0	180.0	160.2	5.7	290.0	13. 0	160.2	6.5
Output_1_117	7230	227	1.9	0.03	3.81	0.05	9.09	0.18	7.26	0.13	166.0	180.0	160.3	6.0	180.0	11. 0	160.3	6.8
Output_1_53	4810	176	2.2	0.03	7.11	0.05	7.14	0.17	13.2 9	0.40	162.0	150.0	161.0	11. 0	90.0	20. 0	161.0	12.0
Output_1_145	12310	322	3.3	0.03	6.30	0.05	10.8 5	0.16	10.9 8	0.01	153.0	210.0	161.5	9.9	70.0	16. 0	161.5	10.0
Output_1_85	35000	765	12.2	0.03	5.51	0.06	3.66	0.22	6.70	0.80	204.0	74.0	161.8	8.9	719.0	13. 0	161.8	9.5
Output_1_187	9030	1613	1.3	0.03	4.28	0.05	7.77	0.18	7.07	0.22	174.0	160.0	163.6	6.9	290.0	12. 0	163.6	7.6
Output_1_203	11080	448	1.8	0.03	3.34	0.05	6.50	0.18	8.00	0.45	163.0	120.0	163.7	5.4	90.0	12. 0	163.7	6.3
Output_1_259	12330	358	4.9	0.03	3.42	0.05	5.87	0.17	6.36	0.40	163.0	120.0	165.5	5.6	160.0	9.8	165.5	6.5
Output_1_241	3800	70	1.4	0.03	4.55	0.05	11.7 4	0.17	11.6 3	0.21	159.0	220.0	168.1	7.7	100.0	17. 0	168.1	8.4
Output_1_213	15000	807	1.3	0.03	3.14	0.05	5.35	0.18	6.52	0.46	171.4	110.0	168.3	5.2	200.0	9.9	168.3	6.2
Output_1_250	7120	155	2.7	0.03	4.43	0.05	8.16	0.19	9.28	0.28	182.0	180.0	172.5	7.2	360.0	14. 0	172.5	8.0
Output_1_154	7670	197	2.6	0.03	4.00	0.05	7.07	0.18	7.26	0.26	167.0	130.0	174.6	7.0	50.0	11. 0	174.6	7.8
Output_1_64	8870	242	4.1	0.03	4.33	0.05	7.27	0.20	7.14	0.11	181.0	160.0	175.8	7.8	320.0	12. 0	175.8	8.5
Output_1_168	8770	406	1.8	0.03	3.51	0.05	7.74	0.20	8.54	0.35	184.0	160.0	177.3	6.1	240.0	14. 0	177.3	7.1
Output_1_261	9520	268	2.0	0.03	3.91	0.05	8.71	0.18	8.20	0.03	170.0	160.0	178.5	6.6	110.0	13. 0	178.5	7.5
Output_1_212	12550	621	1.7	0.03	3.45	0.05	6.09	0.20	6.57	0.44	182.0	130.0	178.7	6.1	180.0	11. 0	178.7	7.0
Output_1_123	14740	476	2.0	0.03	4.26	0.05	7.04	0.19	6.25	0.07	179.0	140.0	179.2	7.5	140.0	10. 0	179.2	8.3
Output_1_30	13370	559	2.2	0.03	3.55	0.05	6.18	0.20	5.61	0.08	181.2	140.0	179.5	6.6	240.0	9.6	179.5	7.5
Output_1_81	15090	265	2.4	0.03	3.35	0.05	4.93	0.20	5.47	0.36	185.4	110.0	181.5	5.7	230.0	9.3	181.5	6.7
Output_1_23	24700	1250	6.8	0.03	3.50	0.05	5.82	0.21	5.29	0.30	193.0	120.0	181.8	6.5	310.0	10. 0	181.8	7.4
Output_1_42	32200	1110	5.0	0.03	4.88	0.05	5.35	0.22	8.18	0.66	201.0	120.0	182.1	8.6	350.0	15. 0	182.1	9.3
Output_1_226	3770	141	2.5	0.03	3.83	0.05	13.1 0	0.18	11.0 5	0.11	171.0	220.0	182.6	6.9	50.0	18. 0	182.6	7.8
Output_1_103	10390	257	2.0	0.03	4.14	0.05	5.63	0.22	5.50	0.33	199.5	130.0	184.4	7.8	330.0	9.9	184.4	8.6
Output_1_188	7450	1500	2.1	0.03	3.40	0.05	8.59	0.20	7.58	0.16	183.0	170.0	186.7	6.4	160.0	12. 0	186.7	7.4
Output_1_96	6880	171	2.2	0.03	3.72	0.05	7.39	0.22	6.76	0.02	203.0	160.0	187.7	6.6	360.0	12. 0	187.7	7.6
Output_1_111	11590	249	2.9	0.03	4.05	0.05	5.12	0.21	5.66	0.27	194.8	110.0	187.9	7.2	250.0	9.9	187.9	8.1
Output_1_122	7680	236	1.4	0.03	4.05	0.05	7.68	0.21	7.98	0.30	195.0	160.0	188.0	7.6	290.0	14. 0	188.0	8.4
Output_1_192	5210	127	1.8	0.03	3.72	0.05	9.50	0.21	8.21	0.11	190.0	190.0	188.1	7.0	310.0	15. 0	188.1	7.9
Output_1_31	23620	909	1.7	0.03	3.67	0.05	5.47	0.21	5.14	0.40	196.5	120.0	190.7	6.9	250.0	9.4	190.7	7.9
Output_1_118	13040	356	1.1	0.03	2.53	0.05	6.50	0.21	5.63	0.02	197.0	130.0	191.1	4.7	210.0	11. 0	191.1	6.1
Output_1_54	12150	410	1.4	0.03	4.97	0.05	6.60	0.20	5.03	0.28	183.7	130.0	191.7	9.2	130.0	8.9	191.7	10.0
Output_1_160	1989	113	4.1	0.03	4.92	0.05	17.2 5	0.22	17.5 7	0.26	204.0	290.0	193.8	9.2	180.0	31. 0	193.8	10.0
Output_1_109	13030	266	2.6	0.03	4.58	0.05	6.22	0.21	7.25	0.57	190.0	130.0	194.5	8.6	110.0	13. 0	194.5	9.4
Output_1_219	14170	649	1.2	0.03	3.24	0.05	5.65	0.21	6.25	0.19	191.0	120.0	196.5	6.4	170.0	11. 0	196.5	7.5
Output_1_198	8890	252	2.3	0.03	4.19	0.05	6.65	0.22	7.76	0.53	200.0	140.0	196.9	7.9	240.0	14. 0	196.9	8.8
Output_1_25	6990	301	2.5	0.03	4.76	0.05	8.33	0.24	8.47	0.20	214.0	170.0	200.0	9.5	330.0	16. 0	200.0	10.0
Output_1_139	32920	1102	2.0	0.03	2.61	0.05	4.41	0.22	4.33	0.40	205.1	95.0	201.4	5.2	202.0	8.0	201.4	6.5
Output_1_55	8530	262	2.3	0.03	3.73	0.05	6.83	0.23	6.93	0.29	211.0	140.0	204.5	7.8	310.0	13. 0	204.5	8.8

								1			l					i		
Output_1_57	19420	625	1.0	0.03	7.72	0.05	4.66	0.24	8.82	0.12	215.0	100.0	205.0	16. 0	350.0	17. 0	205.0	16.0
Output_1_17	17670	1002	1.5	0.03	4.26	0.06	6.07	0.25	7.29	0.58	224.0	130.0	208.9	8.9	420.0	15. 0	208.9	9.8
Output_1_151	46980	770	1.2	0.03	3.31	0.05	2.78	0.23	3.52	0.48	212.2	66.0	210.5	6.7	220.0	6.8	210.5	7.9
Output_1_253	19950	390	2.1	0.03	4.73	0.05	6.10	0.24	5.06	0.40	220.0	130.0	214.0	10. 0	280.0	11. 0	214.0	11.0
Output_1_153	8620	157	2.9	0.03	3.54	0.05	6.93	0.25	7.35	0.21	224.0	140.0	215.1	7.5	200.0	14. 0	215.1	8.6
Output_1_22	9190	421	3.5	0.03	3.82	0.05	6.05	0.25	5.98	0.18	227.0	140.0	215.5	8.0	350.0	12. 0	215.5	9.1
Output_1_121	2990	81	3.0	0.03	4.99	0.05	11.8 6	0.26	12.6 4	0.30	237.0	240.0	216.0	10. 0	330.0	28. 0	216.0	11.0
Output_1_236	12710	206	1.9	0.04	3.99	0.06	5.25	0.29	5.15	0.29	261.0	110.0	222.3	8.4	620.0	11. 0	222.3	9.5
Output_1_225	5690	181	2.1	0.04	5.54	0.05	6.64	0.25	7.17	0.67	227.0	140.0	228.0	13. 0	250.0	15. 0	228.0	13.0
Output_1_75	50700	676	4.2	0.04	3.09	0.05	3.75	0.28	3.56	0.13	251.6	85.0	245.4	7.6	333.0	8.0	245.4	9.0
Output_1_246	5200	62	1.0	0.04	5.14	0.05	8.86	0.30	8.55	0.29	271.0	180.0	270.0	14. 0	280.0	21. 0	270.0	15.0
Output_1_255	15560	247	3.4	0.04	3.17	0.06	5.75	0.34	6.45	0.50	297.0	140.0	278.5	8.4	460.0	17. 0	278.5	10.0
Output_1_63	15230	256	1.9	0.05	2.59	0.05	5.40	0.34	5.28	0.33	297.0	110.0	292.0	7.6	360.0	13. 0	292.0	9.5
Output_1_38	37610	844	1.7	0.05	2.75	0.05	3.16	0.34	4.39	0.62	298.0	72.0	297.4	8.1	349.0	12. 0	297.4	9.9
Output_1_26	39600	1058	2.4	0.05	6.42	0.05	8.33	0.38	6.53	0.27	329.0	180.0	323.0	20. 0	340.0	19. 0	323.0	21.0
Output_1_186	8460	589	2.0	0.05	3.99	0.05	6.18	0.39	7.99	0.48	339.0	130.0	330.0	13. 0	320.0	20. 0	330.0	14.0
Output_1_93	12810	171	2.6	0.05	5.52	0.06	8.81	0.40	8.02	0.34	340.0	170.0	330.0	18. 0	520.0	23. 0	330.0	19.0
Output_1_182	6450	249	1.5	0.05	4.34	0.06	10.6 6	0.40	10.6 4	0.26	347.0	210.0	333.0	14. 0	380.0	32. 0	333.0	16.0
Output_1_175	22100	418	1.5	0.05	3.75	0.05	5.11	0.39	6.65	0.50	342.0	110.0	335.0	12. 0	310.0	19. 0	335.0	14.0
Output_1_82	78800	759	1.0	0.05	3.72	0.05	3.55	0.41	4.15	0.49	348.0	87.0	337.0	12. 0	364.0	12. 0	337.0	14.0
Output_1_264	14780	229	1.3	0.06	3.82	0.05	7.06	0.42	6.18	0.12	356.0	170.0	345.0	13. 0	380.0	19. 0	345.0	15.0
Output_1_79	21900	196	1.9	0.06	2.71	0.05	4.37	0.42	5.23	0.28	355.0	100.0	346.9	9.3	400.0	16. 0	346.9	12.0
Output_1_152	40200	433	1.5	0.06	3.62	0.06	4.17	0.42	4.96	0.56	358.0	93.0	347.0	12. 0	400.0	15. 0	347.0	14.0
Output_1_45	12350	235	2.8	0.06	5.38	0.06	9.87	0.45	8.48	0.09	380.0	220.0	350.0	18. 0	570.0	25. 0	350.0	19.0
Output_1_194	5940	80	1.4	0.06	4.23	0.06	7.50	0.44	7.47	0.16	369.0	170.0	356.0	14. 0	550.0	23. 0	356.0	16.0
Output_1_140	26440	483	10.5	0.06	3.29	0.06	4.02	0.46	4.18	0.36	380.0	90.0	362.0	12. 0	490.0	13. 0	362.0	14.0
Output_1_74	26160	240	1.7	0.06	6.56	0.06	8.87	0.47	11.2 1	0.77	392.0	200.0	363.0	23. 0	530.0	36. 0	363.0	24.0
Output_1_37	32160	601	3.3	0.06	3.61	0.06	6.14	0.45	6.29	0.50	373.0	140.0	365.0	13. 0	460.0	20. 0	365.0	15.0
Output_1_9	22380	414	2.0	0.06	4.09	0.05	5.85	0.45	5.38	0.42	373.0	130.0	367.0	14. 0	370.0	17. 0	367.0	16.0
Output_1_6	31080	439	2.0	0.06	3.88	0.06	4.00	0.44	3.65	0.20	368.0	89.0	371.0	14. 0	392.0	12. 0	371.0	16.0
Output_1_262	25870	344	0.6	0.06	2.91	0.06	4.29	0.47	5.15	0.51	387.0	90.0	387.0	11. 0	439.0	17. 0	387.0	13.0
Output_1_258	32600	364	2.9	0.07	3.84	0.06	4.96	0.52	4.80	0.45	425.0	110.0	406.0	15. 0	560.0	16. 0	406.0	17.0
Output_1_181	71700	1970	1.0	0.07	3.52	0.06	3.04	0.52	4.23	0.66	429.0	68.0	408.0	14. 0	438.0	14. 0	408.0	16.0
Output_1_242	54300	392	0.9	0.07	2.86	0.06	4.09	0.54	5.34	0.63	444.0	91.0	436.0	12. 0	543.0	20. 0	436.0	15.0
Output_1_120	39850	429	1.7	0.08	3.72	0.06	4.08	0.68	5.60	0.51	531.0	92.0	500.0	18. 0	555.0	22. 0	500.0	20.0
Output_1_193	72400	648	1.6	0.08	3.02	0.07	4.59	0.73	5.31	0.49	557.0	99.0	514.0	15. 0	828.0	23. 0	514.0	18.0
Output_1_35	25570	309	6.4	0.09	5.72	0.10	5.24	1.18	6.72	0.60	787.0	95.0	551.0	30. 0	#####	36. 0	551.0	32.0
Output_1_162	19310	478	3.8	0.09	8.17	0.16	3.51	2.17	9.22	0.40	1153.0	56.0	579.0	45. 0	#####	63. 0	579.0	46.0
Output_1_99	12560	90	1.0	0.11	4.25	0.14	3.61	2.05	4.88	0.71	1139.0	61.0	662.0	27. 0	#####	34. 0	662.0	30.0
Output_1_48	18790	164	1.6	0.12	3.08	0.11	3.16	1.85	4.34	0.53	1063.0	62.0	732.0	21. 0	#####	28. 0	732.0	25.0

			1	l				1		l	l						l I	
Output_1_141	87100	679	8.5	0.12	6.90	0.10	3.15	1.82	6.04	0.84	1048.0	60.0	757.0	49. 0	######	40. 0	757.0	51.0
Output_1_165	12320	170	1.2	0.13	6.24	0.07	5.38	1.31	8.40	0.25	841.0	110.0	803.0	47. 0	910.0	45. 0	803.0	49.0
Output_1_44	38910	284	3.3	0.14	3.95	0.09	3.08	1.82	4.95	0.82	1058.0	58.0	854.0	31. 0	#####	35. 0	854.0	35.0
Output_1_227	38560	241	5.7	0.17	3.82	0.08	3.81	1.79	3.74	0.43	1040.0	81.0	997.0	36. 0	#####	24. 0	997.0	40.0
Output_1_125	11220 0	513	3.4	0.20	4.70	0.09	4.43	2.67	3.40	0.52	1320.0	91.0	1162.0	50. 0	#####	25. 0	1040.0	92.0
Output_1_10	67100	380	2.1	0.21	3.67	0.10	3.18	2.86	3.22	0.51	1374.0	58.0	1226.0	41. 0	#####	25. 0	1320.0	100. 0
Output_1_143	91200	327	1.7	0.23	2.66	0.14	2.43	4.51	3.99	0.67	1728.0	42.0	1332.0	32. 0	######	34. 0	1374.0	70.0
Output_1_8	55200	227	1.7	0.24	4.06	0.12	2.60	3.95	4.05	0.64	1622.0	47.0	1381.0	50. 0	######	33. 0	1433.0	66.0
Output_1_36	50800	205	2.2	0.27	3.41	0.12	2.93	4.44	4.95	0.73	1719.0	54.0	1523.0	46. 0	#####	44. 0	1562.0	76.0
Output_1_98	60700	173	1.6	0.27	4.14	0.10	3.44	3.62	4.14	0.60	1562.0	66.0	1516.0	54. 0	######	33. 0	1563.0	66.0
Output_1_202	52600	187	1.0	0.29	3.86	0.11	3.05	4.46	4.04	0.59	1730.0	51.0	1622.0	54. 0	######	34. 0	1591.0	62.0
Output_1_129	12250 0	367	1.7	0.27	3.43	0.14	2.77	5.46	3.30	0.53	1891.0	48.0	1558.0	47. 0	#####	29. 0	1602.0	58.0
Output_1_2	47200	140	0.8	0.28	2.50	0.10	2.99	3.81	3.41	0.31	1591.0	51.0	1569.0	35. 0	#####	28. 0	1604.0	55.0
Output_1_87	76500	165	0.9	0.26	3.45	0.10	2.43	3.67	4.36	0.73	1563.0	50.0	1465.0	45. 0	#####	36. 0	1622.0	60.0
Output_1_40	41120	155	3.1	0.27	3.24	0.10	2.33	3.86	3.37	0.72	1602.0	43.0	1548.0	45. 0	#####	26. 0	1719.0	67.0
Output_1_71	42200	73	1.3	0.32	5.70	0.13	3.71	5.47	6.58	0.77	1904.0	66.0	1766.0	91. 0	#####	52. 0	1730.0	62.0
Output_1_224	35600 0	1321	15.0	0.33	4.82	0.12	4.45	5.29	4.73	0.50	1862.0	75.0	1866.0	69. 0	#####	40. 0	1844.0	72.0
Output_1_249	43500 0	716	39.4	0.34	3.51	0.12	2.68	5.72	2.62	0.55	1936.0	45.0	1892.0	58. 0	#####	23. 0	1862.0	83.0
Output_1_66	90000	215	1.0	0.27	3.13	0.10	2.21	3.85	3.12	0.64	1604.0	40.0	1562.0	43. 0	#####	25. 0	1891.0	60.0
Output_1_135	51900	151	2.0	0.32	3.48	0.12	3.59	5.17	3.48	0.66	1844.0	62.0	1770.0	54. 0	#####	30. 0	1904.0	75.0
Output_1_41	60600	134	4.1	0.48	4.20	0.20	3.48	13.07	3.67	0.65	2680.0	57.0	2503.0	86. 0	#####	35. 0	1936.0	57.0
Sample 19ATW06																		
Output_1_292	10800	759	45.8	0.01	4.51	0.05	7.79	0.07	7.78	0.37	160.0	150.0	66.8	3.0	69.2	5.2	66.8	3.0
Output_1_100	2920	203	5.6	0.01	7.58	0.05	16.7 6	0.08	19.5 1	0.23	300.0	330.0	68.6	5.2	80.0	15. 0	68.6	5.2
Output_1_63	18330	1620	173.0	0.01	2.49	0.05	10.3 3	0.07	9.75	0.07	130.0	210.0	69.6	1.7	73.3	6.9	69.6	1.8
Output_1_130	13790	4800	49.0	0.01	3.02	0.05	7.48	0.07	6.69	0.08	90.0	160.0	70.0	2.1	70.2	4.5	70.0	2.1
Output_1_178	11430	950	59.9	0.01	2.81	0.05	14.8 0	0.07	15.0 7	0.24	70.0	280.0	70.7	2.0	71.0	11. 0	70.7	2.0
Output_1_303	8310	630	38.6	0.01	2.89	0.05	6.48	0.08	7.28	0.51	190.0	140.0	71.1	2.0	73.9	5.2	71.1	2.1
Output_1_201	4510	436	2.4	0.01	4.02	0.05	7.85	0.07	10.3 6	0.06	280.0	170.0	71.8	2.9	70.9	7.2	71.8	2.9
Output_1_183	1586	148	3.0	0.01	6.41	0.05	16.7 0	0.08	19.0 5	0.36	270.0	340.0	72.0	4.6	82.0	15. 0	72.0	4.6
Output_1_277	8680	628	31.1	0.01	4.48	0.05	12.6 0	0.08	11.5 3	0.34	250.0	250.0	73.0	3.2	74.6	8.3	73.0	3.3
Output_1_1	6630	703	14.9	0.01	4.56	0.05	13.1 0	0.08	11.4 1	0.37	330.0	270.0	73.1	3.3	80.3	8.8	73.1	3.3
Output_1_72	25830	2095	7.0	0.01	2.80	0.05	4.25	0.08	4.93	0.51	54.0	88.0	73.3	2.0	73.4	3.5	73.3	2.1
Output_1_172	3730	270	3.2	0.01	7.64	0.05	27.4 5	0.09	24.4 2	0.21	170.0	510.0	73.9	5.6	84.0	20. 0	73.9	5.7
Output_1_117	4710	943	1.2	0.01	5.88	0.05	16.5 3	0.09	17.0 5	0.01	300.0	350.0	75.2	4.4	85.0	14. 0	75.2	4.5
Output_1_132	3800	1152	1.2	0.01	3.81	0.05	12.2 1	0.08	12.3 6	0.26	110.0	230.0	75.7	2.9	76.3	9.1	75.7	2.9
Output_1_146	4200	443	3.4	0.01	4.49	0.05	10.2 5	0.08	10.0 4	0.20	270.0	190.0	75.7	3.4	80.4	7.8	75.7	3.4
Output_1_8	6290	1008	2.7	0.01	2.78	0.05	9.38	0.08	9.25	0.02	90.0	170.0	76.0	2.1	76.9	6.8	76.0	2.2
Output_1_239	3080	1070	5.8	0.01	5.39	0.05	12.7 8	0.08	10.7 7	0.01	180.0	230.0	76.1	4.1	78.6	8.2	76.1	4.1
`			-	-													-	

								1			1							
Output_1_52	1810	129	4.5	0.01	5.47	0.06	14.8 6	0.09	13.4 8	0.00	350.0	280.0	76.2	4.1	86.0	11. 0	76.2	4.2
Output_1_112	10730	1252	8.8	0.01	4.69	0.05	7.59	0.08	9.21	0.41	290.0	160.0	76.4	3.5	81.4	7.2	76.4	3.6
Output_1_99	6600	419	4.7	0.01	3.18	0.05	8.17	0.08	7.60	0.10	190.0	160.0	76.5	2.4	79.4	5.8	76.5	2.4
Output_1_166	4990	392	2.0	0.01	6.77	0.05	16.7 6	0.09	16.2 8	0.05	310.0	330.0	76.6	5.2	83.0	13. 0	76.6	5.2
Output_1_202	2160	188	1.7	0.01	5.77	0.05	14.1 5	0.09	12.6 4	0.04	320.0	260.0	76.6	4.4	86.0	11. 0	76.6	4.4
Output_1_103	12690	853	18.7	0.01	3.76	0.05	6.81	0.08	7.02	0.34	180.0	140.0	76.8	2.8	80.5	5.4	76.8	2.9
Output_1_21	11800	1830	1.5	0.01	2.59	0.05	7.30	0.08	7.46	0.09	180.0	150.0	76.8	2.0	78.4	5.6	76.8	2.0
Output_1_218	6290	537	3.6	0.01	3.66	0.05	10.3 3	0.09	9.27	0.33	320.0	180.0	77.0	2.8	82.9	7.4	77.0	2.9
Output_1_87	13490	828	0.8	0.01	3.90	0.05	6.59	0.08	6.47	0.34	210.0	140.0	77.2	3.0	79.8	5.0	77.2	3.0
Output_1_114	4880	674	4.3	0.01	6.35	0.05	13.1 2	0.09	11.2 4	0.04	310.0	270.0	77.6	4.9	86.3	9.3	77.6	4.9
Output_1_219	7960	745	2.5	0.01	3.47	0.05	7.27	0.08	6.87	0.17	160.0	140.0	77.6	2.7	79.4	5.2	77.6	2.7
Output_1_265	4930	908	27.4	0.01	6.03	0.04	11.2 9	0.08	11.3 8	0.19	-50.0	200.0	77.6	4.7	77.2	8.5	77.6	4.7
Output_1_248	2740	1010	7.1	0.01	5.69	0.05	18.6 7	0.08	18.1 8	0.01	60.0	330.0	77.7	4.4	75.0	13. 0	77.7	4.4
Output_1_111	1219	134	2.0	0.01	7.81	0.05	16.2 7	0.09	16.1 3	0.08	340.0	270.0	77.9	6.1	92.0	13. 0	77.9	6.1
Output_1_91	8670	491	0.9	0.01	5.59	0.05	17.3 1	0.09	17.2 4	0.10	240.0	340.0	78.0	4.3	85.0	14. 0	78.0	4.4
Output_1_148	6110	611	1.5	0.01	3.77	0.05	8.43	0.09	7.06	0.05	240.0	170.0	78.1	2.9	83.8	5.3	78.1	3.0
Output_1_81	1572	107	1.9	0.01	6.48	0.05	18.7 4	0.09	17.2 4	0.04	200.0	300.0	78.1	5.0	84.0	14. 0	78.1	5.1
Output_1_167	4620	336	1.0	0.01	4.58	0.05	10.3 4	0.09	10.2 2	0.23	140.0	200.0	78.3	3.5	83.6	8.2	78.3	3.6
Output_1_247	2600	944	1.1	0.01	5.55	0.05	14.2 3	0.09	12.6 4	0.14	250.0	270.0	78.5	4.3	84.0	10. 0	78.5	4.4
Output_1_104	2990	197	1.4	0.01	4.15	0.05	12.9 1	0.08	12.3 5	0.15	120.0	240.0	78.7	3.3	78.3	9.8	78.7	3.3
Output_1_131	23000	7080	9.0	0.01	3.91	0.05	11.9 4	0.09	10.9 8	0.11	230.0	250.0	78.7	3.0	84.2	8.8	78.7	3.1
Output_1_160	2020	175	1.6	0.01	5.13	0.06	17.5 4	0.10	18.7 5	0.42	470.0	290.0	78.7	4.0	95.0	16. 0	78.7	4.0
Output_1_173	3980	262	1.9	0.01	6.18	0.05	11.7 2	0.09	11.3 8	0.51	220.0	240.0	78.8	4.8	84.5	9.3	78.8	4.9
Output_1_144	8360	866	28.0	0.01	2.68	0.05	7.28	0.08	7.34	0.23	210.0	150.0	78.9	2.1	78.4	5.6	78.9	2.1
Output_1_200	2122	194	2.4	0.01	4.78	0.06	16.6 4	0.09	16.1 3	0.23	330.0	320.0	79.1	3.8	90.0	14. 0	79.1	3.8
Output_1_27	4260	462	2.3	0.01	3.88	0.05	11.2 6	0.09	10.5 8	0.13	250.0	230.0	79.2	3.1	83.9	8.7	79.2	3.1
Output_1_66	945	75	2.1	0.01	6.99	0.05	22.6 4	0.09	21.5 1	0.08	270.0	410.0	79.7	5.6	89.0	18. 0	79.7	5.6
Output_1_177	1970	140	1.8	0.01	7.69	0.04	18.3 1	0.08	18.7 5	0.36	-90.0	300.0	80.0	6.1	77.0	14. 0	80.0	6.1
Output_1_82	12660	808	7.2	0.01	4.64	0.05	7.94	0.09	7.03	0.15	200.0	160.0	80.2	3.7	84.4	5.7	80.2	3.8
Output_1_17	55700	9680	48.1	0.01	5.90	0.06	8.11	0.09	6.11	0.63	410.0	170.0	80.3	4.7	82.9	4.9	80.3	4.8
Output_1_168	20670	1474	0.8	0.01	2.93	0.05	4.01	0.09	4.04	0.31	94.0	86.0	80.8	2.3	84.4	3.2	80.8	2.4
Output_1_135	4540	536	2.8	0.01	3.40	0.05	10.6 1	0.09	10.7 5	0.15	330.0	220.0	81.1	2.7	90.3	9.5	81.1	2.8
Output 1 236	1337	382	2.8	0.01	6.24	0.04	20.2 7	0.08	21.2 5	0.37	0.0	340.0	81.1	5.0	77.0	16. 0	81.1	5.0
Output 1 282	1870	114	1.4	0.01	7.56	0.05	23.4 0	0.09	28.0 9	0.39	160.0	470.0	81.4	6.1	86.0	23. 0	81.4	6.1
Output 1 296	2670	153	2.9	0.01	3.70	0.06	14.7	0.09	13.9 8	0.04	300.0	280.0	81.4	3.0	90.0	12.	81.4	3.1
Output 1 4	9470	1078	1.6	0.01	4.01	0.05	8 96	0.09	9 38	0.50	250.0	160.0	81 5	3.3	83.0	75	81.5	3.3
Output 1 112	5470	1070	14.1	0.01	2 74	0.05	10.3 0	0.09	9.50	0.02	230.0	210.0	81 7	23	88 N	,.J R J	81 7	3.3 7 2
Output 1 122	4170	1767	14.1	0.01	£./4	0.05	11.6	0.05	10.8	0.05	220.0	220.0	01.7	2.3	00.0	0.2	01.7	2.3
Output_1_122	41/0	1207	1.0	0.01	5.55	0.05	9 13.4	0.09	ь 13.4	0.05	250.0	250.0	01.7	4.3	00.0	9.2 10.	81.7	4.3
Output_1_305	2000	139	2.0	0.01	5.41	0.05	6 13.1	0.08	1 10.3	0.06	80.0	230.0	81.7	4.4	80.0	0	81.7	4.4
Output_1_254	4000	1108	2.7	0.01	4.38	0.05	2	0.09	2	0.37	200.0	230.0	81.9	3.6	87.2	8.7	81.9	3.6

								I			l						l .	
Output_1_279	6010	360	2.9	0.01	4.98	0.05	9.35	0.09	9.01	0.23	140.0	180.0	82.3	4.1	83.1	7.2	82.3	4.1
Output_1_234	3760	934	1.3	0.01	3.11	0.05	9.03	0.09	9.09	0.11	120.0	170.0	82.4	2.5	83.4	7.3	82.4	2.6
Output_1_41	25100	1710	9.3	0.01	3.03	0.05	4.18	0.08	4.97	0.41	100.0	87.0	82.4	2.5	82.3	3.9	82.4	2.5
Output_1_241	10810	3780	14.4	0.01	5.28	0.05	11.2 8	0.09	9.39	0.17	310.0	230.0	82.5	4.3	87.8	7.9	82.5	4.4
Output_1_126	3780	1245	1.1	0.01	5.97	0.05	11.8 3	0.09	11.9 6	0.15	300.0	240.0	82.6	4.9	93.0	11. 0	82.6	4.9
Output_1_16	3360	578	3.9	0.01	3.95	0.05	11.1 3	0.08	10.9 4	0.17	110.0	200.0	82.7	3.3	83.4	9.2	82.7	3.3
Output_1_15	2760	493	2.4	0.01	5.77	0.06	11.8 2	0.09	10.7 5	0.02	410.0	260.0	83.2	4.8	89.7	9.2	83.2	4.8
Output_1_61	5240	387	1.1	0.01	4.45	0.05	9.78	0.09	12.0 9	0.49	140.0	190.0	83.4	3.7	88.1	9.9	83.4	3.7
Output_1_101	3050	177	2.2	0.01	4.45	0.05	12.8 6	0.08	11.6 9	0.14	140.0	240.0	83.5	3.7	81.3	9.2	83.5	3.7
Output_1_266	3260	265	1.5	0.01	4.68	0.05	13.6 9	0.09	13.0 4	0.04	240.0	270.0	83.5	3.9	91.0	12. 0	83.5	3.9
Output_1_285	7770	429	2.5	0.01	6.58	0.05	12.5 0	0.09	13.3 3	0.28	200.0	250.0	83.6	5.5	90.0	12. 0	83.6	5.5
Output_1_306	7920	558	2.9	0.01	3.67	0.05	9.11	0.09	9.07	0.43	150.0	180.0	83.7	3.1	86.6	7.5	83.7	3.1
Output_1_139	1670	173	3.0	0.01	5.65	0.06	16.9 9	0.10	17.0 0	0.14	420.0	320.0	83.8	4.7	96.0	16. 0	83.8	4.7
Output_1_46	2708	166	2.1	0.01	4.51	0.05	9.54	0.09	10.0 6	0.18	180.0	190.0	83.8	3.7	90.3	8.7	83.8	3.8
Output_1_143	9020	876	1.6	0.01	2.80	0.05	7.35	0.08	5.90	0.14	90.0	140.0	84.5	2.4	82.6	4.7	84.5	2.4
Output_1_252	6760	1970	35.0	0.01	5.37	0.05	8.15	0.09	10.0 1	0.18	150.0	160.0	84.6	4.5	86.2	8.3	84.6	4.6
Output_1_212	2380	143	2.1	0.01	6.41	0.05	12.3 6	0.10	12.6 3	0.25	390.0	240.0	85.0	5.4	92.0	11. 0	85.0	5.5
Output_1_137	2890	308	1.7	0.01	5.27	0.05	13.7 2	0.09	13.0 4	0.21	270.0	260.0	85.1	4.5	88.0	11. 0	85.1	4.5
Output_1_301	2130	129	2.4	0.01	5.55	0.05	13.8 4	0.08	11.9 0	0.05	110.0	250.0	85.3	4.7	81.2	9.5	85.3	4.7
Output_1_2	8290	787	8.1	0.01	5.37	0.05	12.1 5	0.09	10.7 1	0.12	160.0	250.0	85.8	4.6	87.0	9.0	85.8	4.6
Output_1_86	7360	405	1.6	0.01	4.02	0.05	8.25	0.09	8.43	0.22	250.0	170.0	86.0	3.4	90.7	7.4	86.0	3.5
Output_1_29	3860	355	1.8	0.01	6.09	0.05	16.3 5	0.10	14.7 4	0.09	140.0	250.0	86.2	5.2	92.0	13. 0	86.2	5.3
Output_1_238	2130	642	2.3	0.01	6.09	0.05	17.8 7	0.10	17.3 5	0.19	320.0	340.0	86.2	5.2	94.0	16. 0	86.2	5.2
Output_1_79	26830	1674	3.6	0.01	3.04	0.05	4.39	0.09	4.29	0.34	191.0	90.0	86.3	2.6	90.5	3.7	86.3	2.7
Output_1_300	4660	271	4.8	0.01	3.55	0.05	9.52	0.10	9.42	0.06	190.0	190.0	86.5	3.1	92.3	8.3	86.5	3.1
Output_1_85	677	40	2.4	0.01	8.15	0.06	28.0 7	0.10	27.4 5	0.11	250.0	480.0	86.6	7.2	95.0	25. 0	86.6	7.2
Output_1_260	13360	2760	3.0	0.01	3.39	0.05	6.67	0.09	6.98	0.10	210.0	130.0	86.8	2.9	91.7	6.1	86.8	3.0
Output_1_153	12260	1050	1.6	0.01	2.95	0.05	10.4 7	0.10	9.70	0.25	290.0	220.0	86.9	2.5	94.6	8.9	86.9	2.6
Output_1_199	9030	794	2.0	0.01	4.27	0.05	8.30	0.09	8.99	0.12	240.0	160.0	86.9	3.7	91.5	8.0	86.9	3.7
Output_1_13	6800	1158	1.1	0.01	6.17	0.05	10.2 9	0.09	7.64	0.26	230.0	210.0	87.2	5.3	86.5	6.4	87.2	5.4
Output_1_113	8030	908	1.1	0.01	3.29	0.05	7.87	0.09	7.08	0.26	120.0	150.0	87.4	2.9	87.7	5.9	87.4	2.9
Output_1_253	16030	4280	2.1	0.01	2.75	0.05	6.07	0.09	5.30	0.18	110.0	120.0	88.3	2.4	87.9	4.4	88.3	2.5
Output_1_293	1291	65	2.6	0.01	6.44	0.05	19.2 3	0.10	17.8 2	0.17	310.0	380.0	88.4	5.7	97.0	17. 0	88.4	5.7
Output_1_262	3590	669	1.2	0.01	4.41	0.05	14.0 7	0.10	14.4 2	0.08	310.0	280.0	88.5	3.9	100.0	13. 0	88.5	3.9
Output_1_302	5200	293	8.8	0.01	3.72	0.05	8.28	0.09	8.70	0.23	150.0	170.0	89.6	3.3	93.0	8.0	89.6	3.3
Output_1_33	8520	665	5.8	0.01	4.00	0.05	6.84	0.09	7.62	0.22	220.0	150.0	89.7	3.6	91.6	6.7	89.7	3.6
Output_1_203	12610	880	1.9	0.01	2.56	0.05	7.75	0.10	7.72	0.09	240.0	180.0	90.1	2.3	95.3	7.0	90.1	2.4
Output_1_278	3820	222	1.3	0.01	4.90	0.05	12.6 2	0.10	11.3 4	0.15	170.0	240.0	90.2	4.4	93.4	9.9	90.2	4.4
Output_1_59	16400	1081	1.2	0.01	3.56	0.05	5.76	0.10	5.00	0.06	130.0	120.0	91.6	3.3	96.8	4.6	91.6	3.3
Output_1_233	5430	1157	1.1	0.01	4.94	0.05	11.3 2	0.10	12.2 4	0.23	170.0	220.0	93.3	4.6	95.0	11. 0	93.3	4.6

			1	1				1			1						1	
Output_1_229	8250	1430	1.6	0.01	4.45	0.05	7.57	0.10	6.71	0.18	170.0	150.0	93.5	4.2	93.8	6.0	93.5	4.2
Output_1_154	6360	495	1.6	0.01	4.02	0.05	7.03	0.10	7.61	0.39	200.0	150.0	93.8	3.7	97.7	7.0	93.8	3.8
Output_1_31	4200	333	1.5	0.01	5.51	0.05	9.16	0.10	10.1 0	0.36	180.0	180.0	94.0	5.1	97.7	9.7	94.0	5.2
Output_1_45	9110	498	1.4	0.01	3.42	0.05	7.61	0.10	6.19	0.16	70.0	150.0	95.5	3.2	95.3	5.6	95.5	3.3
Output_1_209	12820	689	10.2	0.02	4.71	0.05	5.47	0.11	5.23	0.41	200.0	120.0	96.4	4.5	101.5	5.1	96.4	4.5
Output_1_165	4550	283	1.9	0.02	7.95	0.05	15.9 3	0.12	20.1 7	0.41	330.0	320.0	96.4	7.3	113.0	21. 0	96.4	7.3
Output_1_54	4410	256	1.3	0.02	4.93	0.05	13.4 6	0.11	12.5 0	0.08	290.0	270.0	97.2	4.8	107.0	12. 0	97.2	4.8
Output_1_214	48500	2530	1.1	0.02	2.15	0.05	3.64	0.10	4.39	0.32	160.0	77.0	98.0	2.1	101.2	4.3	98.0	2.2
Output_1_55	12140	722	0.5	0.02	3.07	0.05	6.53	0.11	6.03	0.08	130.0	140.0	98.0	3.0	102.3	5.8	98.0	3.0
Output_1_97	3013	140	1.2	0.02	3.36	0.05	9.94	0.11	11.7 1	0.44	290.0	200.0	98.9	3.3	106.0	12. 0	98.9	3.4
Output_1_23	13400	1371	2.6	0.02	2.96	0.05	5.93	0.11	6.04	0.28	270.0	120.0	99.3	2.9	106.1	6.2	99.3	3.0
Output_1_264	3090	480	2.2	0.02	3.84	0.05	11.1 3	0.11	12.7 3	0.43	300.0	220.0	99.9	3.8	105.0	13. 0	99.9	3.9
Output_1_5	8260	890	12.5	0.02	8.23	0.05	9.94	0.11	10.0 9	0.53	270.0	200.0	101.0	8.0	105.0	10. 0	101.0	8.0
Output_1_192	36970	3154	3.6	0.02	2.05	0.05	3.75	0.11	3.79	0.30	230.0	83.0	103.0	2.1	109.1	3.9	103.0	2.2
Output_1_92	4290	185	1.9	0.02	3.63	0.05	12.4 5	0.12	13.0 4	0.19	290.0	260.0	103.8	3.7	110.0	14. 0	103.8	3.8
Output_1_56	5620	309	1.8	0.02	4.66	0.05	8.28	0.12	9.57	0.37	110.0	160.0	104.3	4.8	110.0	10. 0	104.3	4.8
Output_1_210	1380	69	2.5	0.02	5.62	0.05	17.2 8	0.11	16.0 4	0.14	40.0	300.0	104.6	5.8	101.0	16. 0	104.6	5.8
Output_1_213	1980	94	2.2	0.02	6.67	0.06	14.3 1	0.13	13.6 0	0.14	410.0	290.0	105.3	6.9	119.0	15. 0	105.3	7.0
Output_1_259	42100	7350	1.4	0.02	3.92	0.05	4.82	0.11	4.60	0.45	94.0	97.0	106.0	4.1	104.6	4.6	106.0	4.2
Output_1_40	10230	538	1.3	0.02	3.00	0.05	7.98	0.11	6.85	0.04	130.0	150.0	106.4	3.2	106.6	7.0	106.4	3.3
Output_1_304	2750	143	7.4	0.02	4.98	0.05	10.3 2	0.12	10.8 3	0.26	220.0	210.0	106.4	5.3	114.0	12. 0	106.4	5.3
Output_1_298	5030	234	11.6	0.02	8.43	0.05	15.2 8	0.11	11.1 1	0.27	360.0	320.0	106.4	9.0	104.0	11. 0	106.4	9.1
Output_1_228	13840	1881	1.6	0.02	4.20	0.05	5.00	0.11	5.96	0.50	110.0	100.0	106.6	4.5	108.0	6.1	106.6	4.5
Output_1_272	7380	409	5.1	0.02	6.59	0.05	11.5 4	0.11	9.73	0.49	250.0	240.0	106.6	6.8	108.0	11. 0	106.6	6.8
Output_1_64	12580	695	6.7	0.02	5.36	0.05	8.25	0.13	9.77	0.26	270.0	180.0	107.3	5.7	127.0	11. 0	107.3	5.7
Output_1_120	12400	2530	2.1	0.02	4.62	0.05	9.73	0.12	9.40	0.52	110.0	190.0	107.8	4.9	112.1	9.7	107.8	5.0
Output_1_246	1696	489	3.0	0.02	6.25	0.05	20.7 5	0.13	20.4 5	0.31	230.0	370.0	112.2	6.8	123.0	24. 0	112.2	6.9
Output_1_60	1489	77	3.4	0.02	7.34	0.05	20.0 0	0.12	21.6 7	0.24	30.0	330.0	113.3	8.3	112.0	23. 0	113.3	8.4
Output_1_251	3250	734	5.8	0.02	4.09	0.05	12.1 6	0.12	12.3 0	0.18	130.0	230.0	114.1	4.6	116.0	14. 0	114.1	4.7
Output_1_280	15470	672	1.6	0.02	2.09	0.05	6.27	0.13	6.47	0.04	220.0	130.0	116.0	2.4	120.9	7.4	116.0	2.6
Output_1_128	6420	1400	7.1	0.02	6.01	0.05	8.16	0.14	10.1 4	0.92	340.0	170.0	116.8	6.8	131.0	12. 0	116.8	6.8
Output_1_161	11350	625	1.2	0.02	3.88	0.05	6.19	0.13	6.25	0.43	270.0	120.0	116.9	4.5	124.8	7.3	116.9	4.5
Output_1_65	6820	362	4.1	0.02	5.11	0.05	12.3 6	0.13	10.4 5	0.41	340.0	270.0	117.4	6.0	127.0	13. 0	117.4	6.0
Output_1_189	2900	209	4.2	0.02	7.07	0.05	19.6 1	0.14	20.8 6	0.35	220.0	390.0	117.6	8.0	131.0	26. 0	117.6	8.1
Output_1_25	21200	1663	2.8	0.02	3.30	0.05	6.05	0.13	6.13	0.33	230.0	120.0	121.8	4.0	124.4	7.2	121.8	4.0
Output_1_187	16860	1108	1.0	0.02	4.60	0.05	8.41	0.14	8.09	0.27	230.0	170.0	124.8	5.7	128.9	9.7	124.8	5.7
Output_1_185	7600	452	4.3	0.02	6.63	0.05	9.02	0.13	9.02	0.39	260.0	190.0	125.3	8.5	127.0	11. 0	125.3	8.6
Output_1_107	12810	642	1.8	0.02	3.96	0.05	5.60	0.13	5.83	0.35	190.0	120.0	127.3	5.0	127.2	7.0	127.3	5.1
Output_1_89	1640	58	4.1	0.02	8.46	0.06	17.8 2	0.15	19.1 8	0.36	300.0	330.0	128.0	11. 0	141.0	24. 0	128.0	11.0
Output_1_18	3410	352	2.4	0.02	3.60	0.06	12.9 6	0.15	12.0 8	0.07	370.0	250.0	131.0	4.7	140.0	16. 0	131.0	4.8

								1			l						1	
Output_1_181	7960	387	2.0	0.02	3.41	0.05	8.56	0.15	8.55	0.26	270.0	170.0	131.1	4.4	143.0	12. 0	131.1	4.5
Output_1_51	4140	168	2.6	0.02	3.86	0.06	12.7 9	0.17	9.58	0.00	380.0	240.0	132.1	5.1	156.0	14. 0	132.1	5.1
Output_1_98	1071	36	2.3	0.02	7.14	0.05	28.0 0	0.14	26.7 6	0.08	100.0	460.0	134.1	9.5	136.0	34. 0	134.1	9.5
Output_1_136	8430	581	2.4	0.02	4.34	0.05	9.29	0.15	7.89	0.16	340.0	190.0	135.1	5.8	143.0	11. 0	135.1	5.9
Output_1_11	9420	982	0.8	0.02	2.99	0.05	6.15	0.14	6.29	0.14	200.0	120.0	136.6	4.0	135.4	8.0	136.6	4.1
Output_1_133	20880	3270	9.6	0.02	3.61	0.05	8.65	0.16	6.45	0.07	310.0	190.0	137.8	4.9	146.3	8.9	137.8	5.0
Output_1_119	20020	2984	1.3	0.02	2.28	0.05	4.10	0.15	5.00	0.69	138.0	83.0	139.9	3.1	144.6	6.4	139.9	3.3
Output_1_156	57400	2797	1.0	0.02	3.57	0.05	5.15	0.16	4.51	0.67	290.0	110.0	141.1	5.0	152.3	6.4	141.1	5.1
Output_1_273	4460	183	2.7	0.02	5.88	0.06	14.6 9	0.17	12.7 9	0.11	430.0	310.0	141.1	8.3	161.0	19. 0	141.1	8.3
Output_1_240	17390	3408	1.8	0.02	3.02	0.05	5.22	0.16	5.30	0.32	270.0	110.0	141.3	4.2	149.2	7.3	141.3	4.3
Output_1_190	2100	131	2.2	0.02	5.78	0.06	18.1 8	0.16	15.9 2	0.05	420.0	290.0	143.6	7.9	147.0	22. 0	143.6	8.0
Output_1_216	9980	384	2.2	0.02	4.85	0.05	8.37	0.16	7.10	0.16	260.0	170.0	144.7	7.1	145.7	9.7	144.7	7.2
Output_1_196	16200	886	3.8	0.02	4.70	0.05	7.75	0.17	7.14	0.57	340.0	170.0	148.9	7.0	157.0	11. 0	148.9	7.0
Output_1_134	15700	2010	23.9	0.02	5.83	0.05	7.28	0.16	10.4 3	0.09	250.0	220.0	153.1	8.8	158.0	11. 0	153.1	8.8
Output_1_90	4380	127	2.7	0.02	4.53	0.05	20.3 7	0.18	20.7 7	0.32	310.0	390.0	154.5	7.2	169.0	33. 0	154.5	7.3
Output_1_6	3650	239	3.4	0.02	5.31	0.05	25.9 3	0.21	33.0 1	0.64	420.0	550.0	156.2	8.4	189.0	57. 0	156.2	8.4
Output_1_176	2040	78	1.8	0.02	7.02	0.05	17.9 5	0.18	17.9 8	0.10	280.0	350.0	157.0	12. 0	165.0	27. 0	157.0	12.0
Output_1_129	7120	1197	4.1	0.02	6.05	0.06	8.26	0.19	9.52	0.57	450.0	170.0	157.7	9.7	179.0	15. 0	157.7	9.8
Output_1_62	6670	265	2.1	0.02	3.43	0.05	9.34	0.18	10.7 3	0.45	210.0	190.0	157.8	5.3	167.0	17. 0	157.8	5.4
Output_1_57	11750	440	5.7	0.02	5.24	0.05	11.4 5	0.18	8.70	0.13	270.0	240.0	157.8	8.4	171.0	14. 0	157.8	8.4
Output_1_287	9350	276	12.0	0.02	5.62	0.05	9.44	0.17	11.5 6	0.39	180.0	190.0	158.6	8.8	161.0	17. 0	158.6	8.8
Output_1_73	33300	1206	1.9	0.03	3.70	0.05	4.79	0.18	5.12	0.35	300.0	110.0	160.0	5.9	170.5	7.7	160.0	6.0
Output_1_74	13080	471	4.4	0.03	3.17	0.05	5.17	0.18	6.56	0.45	290.0	110.0	160.6	5.0	171.0	10. 0	160.6	5.1
Output_1_58	15920	573	6.0	0.03	3.92	0.05	5.75	0.18	6.21	0.42	130.0	120.0	162.5	6.4	165.3	9.5	162.5	6.4
Output_1_295	30570	885	1.3	0.03	2.98	0.05	3.69	0.18	3.88	0.35	253.0	80.0	162.6	4.8	168.3	6.0	162.6	4.9
Output_1_109	5810	266	1.6	0.03	3.91	0.05	8.30	0.18	9.29	0.22	290.0	170.0	163.1	6.5	172.0	14. 0	163.1	6.6
Output_1_244	1450	268	3.1	0.03	6.61	0.06	21.6 7	0.22	20.3 7	0.20	390.0	390.0	164.0	11. 0	193.0	36. 0	164.0	11.0
Output_1_294	2319	65	1.7	0.03	5.02	0.05	16.9 5	0.16	15.5 3	0.30	0.0	280.0	165.0	8.0	149.0	22. 0	165.0	8.1
Output_1_70	11790	425	1.6	0.03	2.96	0.05	8.00	0.18	7.87	0.36	170.0	160.0	165.7	4.8	168.0	13. 0	165.7	5.0
Output_1_7	50920	3207	2.0	0.03	2.33	0.05	3.81	0.19	3.96	0.38	290.0	85.0	166.7	3.8	178.2	6.5	166.7	4.0
Output_1_48	8390	262	1.4	0.03	3.51	0.05	7.74	0.19	7.49	0.38	250.0	160.0	166.8	5.8	173.0	12. 0	166.8	5.9
Output_1_235	6780	895	2.5	0.03	4.58	0.05	11.9 0	0.19	11.6 4	0.27	330.0	240.0	166.9	7.5	175.0	19. 0	166.9	7.6
Output_1_67	4770	172	2.1	0.03	4.15	0.06	15.4 6	0.20	15.8 4	0.13	480.0	310.0	168.5	6.9	183.0	27. 0	168.5	7.0
Output_1_14	8910	784	2.9	0.03	4.87	0.05	7.81	0.19	10.0 0	0.51	360.0	170.0	169.7	8.1	176.0	16. 0	169.7	8.2
Output_1_299	5360	150	2.9	0.03	5.62	0.05	12.4 5	0.18	10.5 6	0.52	210.0	260.0	169.9	9.7	168.0	16. 0	169.9	9.8
Output_1_69	6400	232	2.9	0.03	3.01	0.05	9.02	0.20	9.69	0.39	300.0	190.0	170.9	5.1	184.0	17. 0	170.9	5.2
Output_1_102	3680	108	2.8	0.03	4.46	0.06	12.7 8	0.20	11.0 6	0.08	450.0	240.0	171.3	7.3	190.0	17. 0	171.3	7.4
Output_1_22	9790	645	3.8	0.03	5.19	0.05	7.62	0.18	8.15	0.29	200.0	150.0	171.8	9.0	173.0	12. 0	171.8	9.1
Output_1_84	1443	41	2.9	0.03	5.13	0.05	17.9 5	0.18	17.4 9	0.20	90.0	310.0	173.4	8.5	167.0	28. 0	173.4	8.6
Output_1_276	6060	187	1.6	0.03	5.45	0.05	11.7 0	0.19	9.33	0.13	280.0	240.0	174.7	9.5	178.0	15. 0	174.7	9.6

				l				1			l						1	
Output_1_223	1923	104	2.5	0.03	7.25	0.05	13.0 4	0.21	14.2 2	0.26	480.0	270.0	175.0	12. 0	198.0	27. 0	175.0	12.0
Output_1_138	30000	1487	1.1	0.03	3.58	0.05	4.37	0.19	4.64	0.55	200.0	94.0	177.2	6.3	177.8	6.9	177.2	6.5
Output_1_124	17000	2610	1.8	0.03	3.10	0.05	4.31	0.19	4.84	0.72	118.0	90.0	178.6	5.4	178.0	7.9	178.6	5.6
Output_1_256	22760	2730	1.8	0.03	4.27	0.05	4.56	0.20	5.64	0.40	199.0	96.0	178.7	7.4	180.1	9.2	178.7	7.5
Output_1_83	5230	143	2.3	0.03	3.34	0.05	8.78	0.18	8.33	0.04	40.0	160.0	178.9	5.9	170.0	14. 0	178.9	6.0
Output_1_195	12390	594	2.1	0.03	5.69	0.05	7.01	0.20	7.58	0.35	190.0	160.0	179.0	10. 0	183.0	13. 0	179.0	10.0
Output_1_140	10080	467	2.0	0.03	2.80	0.05	7.06	0.20	6.97	0.34	270.0	140.0	179.4	5.0	186.0	12. 0	179.4	5.1
Output_1_175	15070	456	2.5	0.03	3.87	0.05	6.94	0.21	6.70	0.21	180.0	150.0	180.2	7.1	192.0	11. 0	180.2	7.2
Output_1_207	15790	457	1.1	0.03	2.93	0.05	4.93	0.20	6.47	0.52	300.0	110.0	180.3	5.2	188.0	11. 0	180.3	5.3
Output_1_96	8070	203	1.8	0.03	2.92	0.05	7.98	0.21	8.29	0.18	300.0	170.0	180.7	5.2	188.0	14. 0	180.7	5.4
Output_1_281	8540	232	5.4	0.03	5.26	0.05	8.97	0.21	8.61	0.22	360.0	190.0	181.3	9.2	192.0	15. 0	181.3	9.3
Output_1_157	63400	2380	1.0	0.03	7.29	0.05	5.79	0.21	8.29	0.48	260.0	120.0	183.0	13. 0	189.0	14. 0	183.0	13.0
Output_1_150	16000	642	1.8	0.03	4.84	0.05	10.3 7	0.21	9.05	0.02	330.0	220.0	183.6	8.9	193.0	16. 0	183.6	9.0
Output_1_78	5300	152	3.5	0.03	4.48	0.05	7.07	0.21	7.14	0.42	270.0	140.0	184.0	8.4	193.0	13. 0	184.0	8.5
Output_1_145	9100	385	1.5	0.03	2.10	0.05	7.10	0.20	8.54	0.39	210.0	150.0	184.2	3.8	185.0	14. 0	184.2	4.0
Output_1_211	5840	156	1.3	0.03	5.52	0.05	12.1 0	0.21	11.4 8	0.10	350.0	260.0	184.5	9.9	192.0	20. 0	184.5	10.0
Output_1_208	9280	255	1.2	0.03	3.28	0.05	8.32	0.21	7.69	0.01	280.0	170.0	185.7	6.0	195.0	13. 0	185.7	6.1
Output_1_286	7410	186	26.3	0.03	4.11	0.05	8.30	0.20	9.41	0.35	190.0	170.0	185.7	7.6	186.0	16. 0	185.7	7.7
Output_1_77	7190	209	4.8	0.03	5.46	0.06	11.9 9	0.21	10.2 8	0.00	380.0	240.0	185.9	9.8	196.0	18. 0	185.9	9.9
Output_1_194	14990	700	1.7	0.03	3.41	0.05	6.48	0.20	6.90	0.33	180.0	130.0	186.1	6.4	187.0	12. 0	186.1	6.5
Output_1_125	10990	1619	2.3	0.03	3.73	0.05	8.67	0.21	9.52	0.33	190.0	170.0	187.5	6.7	193.0	17. 0	187.5	6.8
Output_1_206	4100	114	2.4	0.03	3.70	0.05	11.6 1	0.22	12.1 1	0.12	330.0	240.0	188.3	7.1	202.0	22. 0	188.3	7.3
Output_1_307	14090	456	1.6	0.03	4.71	0.05	8.09	0.20	7.84	0.36	200.0	160.0	188.5	8.5	190.0	13. 0	188.5	8.6
Output_1_204	23120	728	2.1	0.03	3.69	0.05	4.90	0.22	5.53	0.43	300.0	110.0	189.2	7.0	199.1	9.9	189.2	7.2
Output_1_50	9040	249	2.6	0.03	4.35	0.05	8.43	0.22	7.37	0.17	210.0	170.0	189.8	8.1	201.0	14. 0	189.8	8.2
Output_1_297	19070	476	2.5	0.03	3.21	0.05	4.89	0.20	4.65	0.39	142.0	99.0	190.0	6.0	184.9	7.8	190.0	6.2
Output_1_71	21330	669	1.4	0.03	5.67	0.05	5.63	0.21	7.01	0.66	250.0	120.0	190.0	11. 0	196.0	13. 0	190.0	11.0
Output_1_152	15120	578	1.3	0.03	4.67	0.05	6.86	0.22	6.48	0.39	220.0	140.0	190.4	9.0	198.0	12. 0	190.4	9.1
Output_1_217	7530	235	4.3	0.03	7.97	0.06	12.6 1	0.22	11.2 6	0.21	450.0	270.0	191.0	15. 0	202.0	21. 0	191.0	15.0
Output_1_68	12800	399	2.2	0.03	3.97	0.05	5.84	0.21	5.19	0.43	180.0	120.0	191.6	7.7	194.6	9.6	191.6	7.8
Output_1_170	11500	318	2.4	0.03	3.62	0.05	7.80	0.22	8.18	0.18	210.0	150.0	192.9	7.0	201.0	15. 0	192.9	7.1
Output_1_47	15840	414	1.0	0.03	3.61	0.05	5.99	0.21	6.07	0.51	190.0	120.0	193.5	6.9	196.0	11. 0	193.5	7.0
Output_1_93	18200	422	3.0	0.03	3.91	0.05	7.16	0.23	7.05	0.13	390.0	160.0	195.0	7.2	207.0	13. 0	195.0	7.4
Output_1_205	5590	168	1.6	0.03	3.25	0.05	7.55	0.23	7.39	0.19	360.0	160.0	195.3	6.4	210.0	14. 0	195.3	6.5
Output_1_226	32100	2050	1.9	0.03	2.96	0.05	4.80	0.22	4.45	0.35	180.0	100.0	197.4	5.7	198.2	8.0	197.4	5.9
Output_1_32	13640	490	2.7	0.03	3.45	0.05	4.42	0.23	5.33	0.56	310.0	100.0	202.6	6.7	205.5	9.8	202.6	6.8
Output_1_19	9650	594	1.6	0.03	3.02	0.05	6.86	0.22	6.28	0.10	280.0	140.0	203.6	6.1	206.0	10. 0	203.6	6.2
Output_1_30	14370	541	2.8	0.03	4.28	0.05	5.75	0.23	6.64	0.42	200.0	120.0	207.6	8.8	209.0	13. 0	207.6	9.0
Output_1_271	4830	134	2.9	0.03	3.24	0.05	10.3 4	0.23	10.4 3	0.26	210.0	200.0	214.9	6.9	209.0	20. 0	214.9	7.0
Output_1_163	4860	137	1.3	0.03	5.44	0.05	19.0 5	0.24	18.1 8	0.25	270.0	300.0	221.0	12. 0	216.0	37. 0	221.0	12.0

			1	1				I			1					1		
Output_1_290	30800	665	10.6	0.03	5.44	0.06	5.09	0.26	5.75	0.70	470.0	110.0	221.0	12. 0	235.0	12. 0	221.0	12.0
Output_1_9	6010	345	1.8	0.04	3.13	0.05	7.09	0.25	8.50	0.32	370.0	160.0	222.8	7.1	223.0	18. 0	222.8	7.3
Output_1_44	13480	316	1.4	0.04	5.34	0.06	9.67	0.27	8.24	0.16	420.0	200.0	226.0	12. 0	240.0	17. 0	226.0	12.0
Output_1_115	47900	2670	1.0	0.04	3.90	0.05	4.59	0.26	5.36	0.32	301.0	93.0	227.3	8.9	235.0	11. 0	227.3	9.1
Output_1_53	21630	508	2.8	0.04	6.28	0.05	8.91	0.27	9.89	0.44	370.0	180.0	231.0	15. 0	243.0	21. 0	231.0	15.0
Output_1_188	3820	132	0.8	0.04	4.56	0.05	12.1 6	0.28	12.6 4	0.29	260.0	240.0	236.0	11. 0	246.0	28. 0	236.0	11.0
Output_1_149	21350 0	6700	2.0	0.04	3.62	0.05	2.25	0.27	3.61	0.60	338.0	53.0	244.8	8.6	245.7	7.9	244.8	8.8
Output_1_193	72600	2540	3.1	0.04	4.34	0.06	3.43	0.31	4.22	0.64	440.0	78.0	248.0	10. 0	272.0	10. 0	248.0	11.0
Output_1_198	13260	366	1.4	0.04	4.49	0.05	7.40	0.32	6.25	0.12	310.0	160.0	280.0	12. 0	281.0	15. 0	280.0	12.0
Output_1_180	48920	1036	1.6	0.05	2.03	0.06	3.19	0.37	3.80	0.36	454.0	74.0	286.4	5.7	318.0	10. 0	286.4	6.0
Output_1_243	29740	3016	1.6	0.05	3.57	0.06	5.18	0.37	5.91	0.43	430.0	120.0	300.0	11. 0	320.0	16. 0	300.0	11.0
Output_1_197	10900	262	1.5	0.05	9.90	0.06	14.0 1	0.37	13.2 1	0.41	420.0	300.0	305.0	30. 0	319.0	36. 0	305.0	30.0
Output_1_179	3250	64	1.1	0.05	4.10	0.06	11.8 5	0.41	9.95	0.22	580.0	250.0	307.0	12. 0	347.0	29. 0	307.0	12.0
Output_1_20	59500	2333	5.7	0.05	4.37	0.07	4.46	0.44	6.82	0.67	833.0	97.0	317.0	13. 0	370.0	21. 0	317.0	14.0
Output_1_28	76800	1875	1.0	0.05	3.79	0.05	4.45	0.39	3.11	0.55	350.0	100.0	332.0	12. 0	334.0	10. 0	332.0	12.0
Output_1_142	10510	257	1.4	0.05	2.64	0.06	6.09	0.40	6.68	0.46	490.0	140.0	332.7	8.7	350.0	20. 0	332.7	9.0
Output_1_249	10420 0	8460	9.7	0.05	3.00	0.05	3.00	0.40	3.79	0.68	328.0	69.0	335.0	10. 0	338.0	11. 0	335.0	10.0
Output_1_267	17830	344	1.0	0.05	3.18	0.05	6.23	0.38	6.51	0.25	300.0	130.0	335.0	11. 0	329.0	18. 0	335.0	11.0
Output_1_88	26790	364	1.7	0.05	2.99	0.06	3.81	0.42	3.10	0.22	498.0	83.0	335.6	9.6	355.2	9.2	335.6	9.9
Output_1_258	14490	828	5.0	0.05	3.35	0.06	7.64	0.41	7.06	0.09	370.0	160.0	337.0	11. 0	348.0	20. 0	337.0	11.0
Output_1_289	29660	401	1.5	0.05	4.44	0.05	5.35	0.39	4.85	0.24	340.0	130.0	339.0	15. 0	335.0	14. 0	339.0	15.0
Output_1_155	30900	644	3.0	0.05	6.65	0.06	8.59	0.40	8.93	0.42	420.0	190.0	339.0	22. 0	343.0	25. 0	339.0	22.0
Output_1_158	14710	287	1.8	0.05	4.06	0.06	7.07	0.49	6.53	0.18	680.0	140.0	340.0	14. 0	404.0	22. 0	340.0	14.0
Output_1_24	22740	645	2.3	0.06	3.26	0.06	4.09	0.43	4.21	0.34	538.0	90.0	346.0	11. 0	361.0	12. 0	346.0	11.0
Output_1_257	27010	1565	1.5	0.06	3.07	0.05	4.75	0.41	5.13	0.36	310.0	110.0	347.0	10. 0	350.0	14. 0	347.0	11.0
Output_1_288	9180	121	1.6	0.06	4.13	0.06	5.03	0.44	5.63	0.58	560.0	110.0	349.0	14. 0	372.0	18. 0	349.0	14.0
Output_1_110	81200	1847	0.5	0.06	3.74	0.06	3.83	0.43	3.03	0.27	496.0	86.0	352.0	13. 0	362.1	9.5	352.0	13.0
Output_1_95	20800	257	2.1	0.06	3.51	0.06	6.26	0.46	6.93	0.42	500.0	140.0	357.0	12. 0	388.0	23. 0	357.0	13.0
Output_1_164	22060	370	1.5	0.06	3.67	0.06	3.80	0.46	4.15	0.37	521.0	88.0	358.0	13. 0	382.0	13. 0	358.0	13.0
Output_1_275	6830	89	1.2	0.07	4.43	0.06	5.38	0.50	5.81	0.44	410.0	110.0	408.0	17. 0	409.0	20. 0	408.0	17.0
Output_1_49	44800	471	15.3	0.08	5.17	0.07	4.66	0.76	7.62	0.78	879.0	91.0	480.0	24. 0	570.0	33. 0	480.0	24.0
Output_1_116	17940	488	1.4	0.08	3.86	0.06	5.22	0.64	5.92	0.46	500.0	110.0	498.0	19. 0	501.0	23. 0	498.0	19.0
Output_1_10	45000	908	0.9	0.10	2.06	0.06	3.18	0.86	3.62	0.47	702.0	66.0	626.0	13. 0	627.0	17. 0	626.0	13.0
Output_1_184	71100	750	0.9	0.11	3.75	0.11	3.58	1.57	4.91	0.57	1777.0	68.0	654.0	23. 0	957.0	31. 0	654.0	24.0
Output_1_106	15620 0	1310	3.0	0.11	3.09	0.06	3.30	0.96	2.92	0.32	730.0	75.0	674.0	20. 0	682.0	15. 0	674.0	20.0
Output_1_245	25570	1038	1.5	0.12	4.90	0.07	4.15	1.21	6.11	0.61	978.0	82.0	732.0	34. 0	807.0	33. 0	732.0	34.0
Output_1_108	40610	335	3.0	0.13	3.37	0.08	3.55	1.43	3.44	0.57	1091.0	68.0	807.0	26. 0	898.0	21. 0	807.0	26.0
Output_1_105	64300	420	2.9	0.14	3.80	0.09	3.25	1.73	3.40	0.43	1474.0	59.0	830.0	28. 0	#####	22. 0	830.0	29.0
Output_1_227	36400	558	2.2	0.14	4.40	0.08	3.60	1.61	4.79	0.64	1302.0	72.0	836.0	34. 0	968.0	31. 0	836.0	35.0
Output_1_221	79300	629	0.8	0.16	4.41	0.08	3.29	1.71	4.20	0.63	1162.0	63.0	961.0	40. 0	######	27. 0	1162.0	71.0

				1				I.			I						1	
Output_1_263	51540	507	1.0	0.25	2.79	0.09	2.86	3.25	4.00	0.70	1506.0	55.0	1422.0	35. 0	######	31. 0	1506.0	63.0
Output_1_123	35720	513	0.9	0.28	3.42	0.10	3.59	3.95	4.05	0.42	1593.0	75.0	1609.0	49. 0	######	33. 0	1593.0	82.0
Output_1_220	27420 0	1243	236.0	0.26	3.06	0.10	1.96	3.66	2.73	0.82	1656.0	37.0	1495.0	41. 0	######	23. 0	1656.0	48.0
Output_1_225	19580	112	2.3	0.30	4.35	0.11	4.10	4.64	6.03	0.71	1817.0	74.0	1683.0	65. 0	######	46. 0	1817.0	80.0
Output_1_269	69000	208	2.3	0.32	2.64	0.11	2.42	4.80	2.71	0.57	1824.0	43.0	1782.0	41. 0	****	23. 0	1824.0	52.0
Output_1_75	15450 0	504	1.9	0.27	3.35	0.11	2.09	4.24	3.54	0.74	1882.0	40.0	1532.0	46. 0	#####	27. 0	1882.0	50.0
Output_1_274	11550 0	380	2.1	0.27	4.06	0.12	2.39	4.34	4.15	0.70	1912.0	44.0	1544.0	58. 0	######	34. 0	1912.0	52.0
Output_1_270	65100	188	0.4	0.33	3.66	0.12	2.36	5.22	3.45	0.71	1936.0	39.0	1828.0	56. 0	######	27. 0	1936.0	47.0
Output_1_34	48910	144	2.0	0.36	2.64	0.13	2.28	6.23	3.05	0.62	2059.0	41.0	1961.0	45. 0	######	27. 0	2059.0	51.0
Output_1_141	13740 0	508	2.8	0.36	3.31	0.14	2.67	6.66	2.55	0.64	2202.0	46.0	1991.0	57. 0	****	22. 0	2202.0	54.0
Sample 19ATW39				l				1									l	
Output_1_122	2100	91	1.9	0.03	5.00	0.05	13.2 6	0.17	14.1 2	0.20	50.0	240.0	165.3	8.1	158.0	21. 0	165.3	8.7
Output_1_125	3030	169	1.3	0.02	3.73	0.05	11.9 1	0.16	12.4 2	0.13	50.0	210.0	158.7	5.9	150.0	18. 0	158.7	6.6
Output_1_121	1310	55	2.2	0.03	8.00	0.04	20.5 7	0.16	22.6 4	0.24	60.0	400.0	159.0	12. 0	155.0	33. 0	159.0	13.0
Output_1_113	29710	1061	1.6	0.02	2.00	0.05	3.71	0.17	3.56	0.47	127.0	78.0	159.1	3.1	158.2	5.3	159.1	4.4
Output_1_104	5430	338	2.5	0.03	4.28	0.05	10.5 3	0.18	10.8 6	0.34	140.0	210.0	163.7	6.9	162.0	17. 0	163.7	7.6
Output_1_112	3400	124	1.9	0.02	4.84	0.05	12.7 2	0.17	10.9 8	0.11	150.0	240.0	158.0	7.5	161.0	17. 0	158.0	8.1
Output_1_117	8250	303	1.7	0.03	3.88	0.05	7.09	0.18	7.18	0.36	160.0	140.0	162.2	6.2	168.0	11. 0	162.2	7.0
Output_1_118	12560	477	2.0	0.03	3.17	0.05	6.95	0.17	6.43	0.51	160.0	140.0	160.8	5.1	161.6	8.8	160.8	6.0
Output_1_110	9920	387	1.5	0.03	3.55	0.05	5.98	0.17	6.36	0.11	170.0	140.0	161.4	5.6	165.0	11. 0	161.4	6.5
Output_1_108	7500	331	2.3	0.03	3.33	0.05	7.30	0.17	7.51	0.32	180.0	150.0	160.6	5.3	162.0	11. 0	160.6	6.1
Output_1_115	2444	84	1.6	0.03	4.30	0.05	18.9 1	0.18	18.5 8	0.11	200.0	340.0	162.7	7.1	167.0	30. 0	162.7	7.8
Output_1_107	5620	270	1.3	0.02	4.44	0.05	11.0 0	0.17	10.0 0	0.03	200.0	210.0	157.6	7.1	159.0	15. 0	157.6	7.8
Output_1_126	3180	189	1.4	0.02	5.44	0.05	16.6 3	0.16	14.0 2	0.61	210.0	330.0	152.2	7.9	153.0	21. 0	152.2	8.5
Output_1_105	2830	164	1.2	0.03	6.72	0.05	16.2 4	0.18	15.7 3	0.14	230.0	310.0	161.0	11. 0	175.0	24. 0	161.0	11.0
Output_1_120	8850	363	1.8	0.03	3.19	0.05	5.10	0.18	5.31	0.30	240.0	110.0	163.5	5.2	168.4	8.2	163.5	6.1
Output_1_106	4520	231	1.7	0.03	4.71	0.05	12.4 5	0.18	11.4 1	0.00	240.0	240.0	162.1	7.3	174.0	19. 0	162.1	8.0
Output_1_116	12680	448	1.4	0.03	3.61	0.05	7.24	0.17	7.56	0.41	290.0	150.0	162.0	5.8	161.0	11. 0	162.0	6.6
Output_1_114	2890	101	1.9	0.02	5.62	0.05	13.6 4	0.18	12.2 9	0.09	350.0	250.0	158.8	8.7	170.0	18. 0	158.8	9.2
Output_1_119	10910	417	2.3	0.03	3.88	0.05	6.15	0.18	6.70	0.38	370.0	120.0	163.9	6.4	167.0	10. 0	163.9	7.2
Output_1_109	4060	174	2.6	0.03	4.72	0.05	14.1 3	0.18	12.7 8	0.39	370.0	280.0	161.8	7.5	167.0	19. 0	161.8	8.1
Output_1_111	1760	70	1.7	0.02	4.10	0.05	13.2 2	0.18	13.1 1	0.02	370.0	270.0	155.5	6.5	169.0	20. 0	155.5	7.2
Output_1_124	1926	93	1.9	0.03	3.98	0.06	14.2 9	0.19	13.8 3	0.12	430.0	290.0	159.6	6.6	173.0	22. 0	159.6	7.3
Sample 19ATW46				l				I									l	
Output_1_32	3220	156	2.1	0.02	4.25	0.05	11.7 2	0.15	10.6 0	0.03	140.0	240.0	139.5	5.8	142.0	14. 0	139.5	7.9
Output_1_68	2320	86	1.8	0.02	6.36	0.05	19.5 2	0.16	20.5 1	0.30	70.0	350.0	139.9	8.7	145.0	28. 0	139.9	10.0
Output_1_70	11840	434	1.0	0.02	4.48	0.05	7.16	0.15	7.38	0.34	170.0	150.0	142.4	6.6	140.6	9.9	142.4	8.5
Output_1_61	6890	239	0.8	0.02	5.38	0.05	9.46	0.15	7.79	0.12	140.0	200.0	142.4	7.3	145.0	10. 0	142.4	9.0

			I					1			l					i		
Output_1_197	1172	62	2.3	0.02	7.59	0.05	18.9 0	0.15	17.7 6	0.09	50.0	350.0	143.0	11. 0	141.0	23. 0	143.0	12.0
Output_1_93	1323	85	2.1	0.02	7.59	0.05	20.3 7	0.17	20.3 6	0.22	320.0	390.0	143.0	10. 0	166.0	29. 0	143.0	12.0
Output_1_3	2640	184	2.3	0.02	5.33	0.05	14.4 0	0.16	14.7 4	0.19	240.0	300.0	143.2	7.3	145.0	20. 0	143.2	9.1
Output_1_227	1343	66	2.0	0.02	7.08	0.05	20.3 7	0.17	21.2 1	0.30	350.0	400.0	144.0	10. 0	152.0	31. 0	144.0	12.0
Output_1_263	3850	276	2.6	0.02	4.82	0.05	12.7 9	0.16	12.3 5	0.15	250.0	250.0	145.5	6.8	151.0	17. 0	145.5	8.7
Output_1_241	1990	139	2.7	0.02	4.80	0.06	14.5 4	0.17	13.4 5	0.12	370.0	270.0	145.7	6.7	167.0	20. 0	145.7	8.7
Output_1_204	1560	58	2.4	0.02	6.55	0.06	21.4 3	0.17	21.9 7	0.37	240.0	410.0	145.9	9.8	158.0	32. 0	145.9	11.0
Output_1_259	6530	435	2.5	0.02	5.22	0.05	9.46	0.16	11.5 9	0.81	200.0	190.0	146.4	7.7	147.0	15. 0	146.4	9.5
Output_1_206	1103	40	2.4	0.02	6.52	0.05	15.9 9	0.17	17.4 4	0.39	470.0	310.0	146.5	9.7	158.0	26. 0	146.5	11.0
Output_1_47	1330	51	2.7	0.02	8.66	0.05	17.6 5	0.16	17.1 8	0.22	200.0	310.0	147.0	12. 0	161.0	22. 0	147.0	14.0
Output_1_161	3360	132	1.9	0.02	4.07	0.05	14.8 1	0.17	14.9 7	0.21	250.0	310.0	147.2	6.0	155.0	22. 0	147.2	8.1
Output_1_98	3130	230	2.4	0.02	4.33	0.05	16.1 0	0.16	16.8 8	0.13	20.0	300.0	147.4	6.4	148.0	23. 0	147.4	8.5
Output_1_231	1707	97	4.3	0.02	6.90	0.05	14.9 2	0.16	14.3 8	0.10	290.0	310.0	147.7	9.8	149.0	20. 0	147.7	11.0
Output_1_95	2010	134	2.4	0.02	4.74	0.06	14.0 8	0.17	12.0 7	0.12	480.0	300.0	147.8	6.6	162.0	19. 0	147.8	8.7
Output_1_15	4890	213	4.0	0.02	5.17	0.05	9.53	0.16	9.62	0.24	110.0	190.0	147.9	7.3	149.0	14. 0	147.9	9.2
Output_1_189	3790	408	2.0	0.02	4.31	0.05	11.3 1	0.16	11.6 6	0.02	220.0	230.0	148.1	6.4	152.0	17. 0	148.1	8.5
Output_1_87	3020	148	1.9	0.02	4.72	0.05	14.0 6	0.16	12.5 8	0.19	200.0	290.0	148.2	6.6	149.0	17. 0	148.2	8.7
Output_1_235	1643	107	2.1	0.02	6.01	0.06	20.6 9	0.18	20.3 4	0.25	330.0	410.0	148.3	8.9	162.0	30. 0	148.3	11.0
Output_1_19	3910	167	1.8	0.02	3.95	0.05	9.68	0.16	9.55	0.23	150.0	200.0	148.5	5.8	147.0	13. 0	148.5	8.1
Output_1_60	3330	115	2.1	0.02	4.72	0.05	12.8 8	0.16	12.9 6	0.11	100.0	250.0	148.7	6.9	154.0	19. 0	148.7	8.9
Output_1_45	1800	66	1.8	0.02	5.15	0.07	18.4 6	0.19	15.9 8	0.14	620.0	400.0	148.7	7.3	188.0	30. 0	148.7	9.2
Output_1_240	7100	497	2.4	0.02	3.77	0.05	12.2 0	0.16	12.3 5	0.01	230.0	240.0	148.9	5.5	151.0	17. 0	148.9	7.9
Output_1_130	652	38	3.8	0.02	8.94	0.06	21.0 5	0.17	21.7 6	0.06	360.0	410.0	149.0	13. 0	166.0	32. 0	149.0	15.0
Output_1_63	2980	100	1.0	0.02	3.88	0.05	12.2 3	0.17	12.0 5	0.04	230.0	260.0	149.4	5.7	155.0	18. 0	149.4	8.0
Output_1_36	1258	53	1.9	0.02	6.38	0.04	21.9 2	0.16	21.2 5	0.16	0.0	400.0	149.5	9.4	147.0	30. 0	149.5	11.0
Output_1_222	2310	96	2.7	0.02	6.38	0.06	20.6 9	0.18	18.3 3	0.09	350.0	400.0	149.5	9.3	165.0	28. 0	149.5	11.0
Output_1_50	2540	94	2.2	0.02	5.53	0.05	10.9 8	0.16	9.88	0.06	240.0	230.0	149.6	8.4	152.0	14. 0	149.6	10.0
Output_1_35	13230	587	1.2	0.02	2.89	0.05	6.90	0.16	6.75	0.22	250.0	150.0	149.7	4.3	152.7	9.3	149.7	7.1
Output_1_125	2020	143	5.3	0.02	7.23	0.05	13.3 0	0.17	12.2 1	0.23	350.0	280.0	150.0	11. 0	164.0	20. 0	150.0	12.0
Output_1_219	1850	74	4.0	0.02	5.93	0.05	16.1 1	0.18	13.8 9	0.28	310.0	310.0	150.1	9.1	166.0	21. 0	150.1	11.0
Output_1_131	1192	62	2.6	0.02	6.36	0.06	23.6 4	0.17	23.8 4	0.10	90.0	450.0	150.2	9.6	156.0	35. 0	150.2	11.0
Output_1_85	4450	207	15.2	0.02	4.66	0.05	10.5 0	0.16	11.6 1	0.28	0.0	220.0	150.3	6.9	145.0	16. 0	150.3	8.9
Output_1_218	1740	68	2.5	0.02	5.51	0.06	11.6 0	0.19	13.3 0	0.14	450.0	260.0	150.5	8.3	174.0	21. 0	150.5	10.0
Output_1_20	6830	292	1.8	0.02	3.38	0.05	9.71	0.17	10.4 7	0.37	280.0	210.0	150.7	5.1	163.0	16. 0	150.7	7.6
Output_1_24	3510	158	3.2	0.02	5.49	0.06	13.5 3	0.19	13.0 9	0.24	550.0	280.0	150.7	8.2	176.0	21. 0	150.7	10.0
Output_1_132	3420	175	3.2	0.02	6.33	0.06	13.1 3	0.17	14.6 2	0.15	310.0	280.0	150.8	9.4	158.0	22. 0	150.8	11.0
Output_1_243	1781	116	2.6	0.02	5.06	0.05	18.3 5	0.15	18.3 0	0.35	120.0	360.0	150.9	7.4	148.0	27. 0	150.9	9.3
Output_1_59	1650	54	2.2	0.02	8.02	0.05	19.4 3	0.17	18.0 7	0.02	260.0	370.0	151.0	12. 0	160.0	25. 0	151.0	13.0
Output_1_250	2202	131	2.9	0.02	4.22	0.04	15.4 4	0.15	16.2 2	0.38	-20.0	300.0	151.1	6.4	138.0	21. 0	151.1	8.5
Output_1_11	4490	217	1.2	0.02	2.90	0.05	16.2 8	0.17	16.0 7	0.35	280.0	290.0	151.5	4.4	156.0	23. 0	151.5	7.2

										1	1						1	
Output_1_136	3650	155	1.9	0.02	3.99	0.05	15.3 3	0.15	14.6 7	0.00	-10.0	290.0	151.5	6.0	140.0	19. 0	151.5	8.3
Output_1_78	2861	115	1.8	0.02	4.62	0.05	10.5 5	0.16	9.68	0.12	160.0	220.0	151.7	6.9	145.0	13. 0	151.7	8.9
Output_1_246	1400	91	4.1	0.02	7.14	0.06	15.3 7	0.18	16.5 7	0.35	410.0	310.0	152.0	11. 0	166.0	25. 0	152.0	12.0
Output_1_258	1160	77	3.0	0.02	8.37	0.05	16.1 2	0.18	17.6 8	0.24	220.0	310.0	152.0	13. 0	165.0	27. 0	152.0	14.0
Output_1_251	1284	78	2.9	0.02	9.21	0.07	30.3 0	0.21	26.5 7	0.08	410.0	630.0	152.0	14. 0	186.0	47. 0	152.0	15.0
Output_1_166	2026	84	2.0	0.02	6.28	0.05	14.2 6	0.18	15.1 7	0.12	360.0	270.0	152.1	9.2	164.0	22. 0	152.1	11.0
Output_1_100	3170	238	1.6	0.02	4.60	0.05	11.9 2	0.16	12.8 0	0.27	190.0	240.0	152.5	7.2	158.0	19. 0	152.5	9.2
Output_1_168	1400	64	2.2	0.02	6.67	0.06	20.3 4	0.20	20.3 0	0.09	370.0	400.0	153.0	10. 0	185.0	32. 0	153.0	12.0
Output_1_139	2066	80	1.9	0.02	4.15	0.05	13.7 5	0.19	13.5 1	0.30	360.0	300.0	153.4	6.4	170.0	21. 0	153.4	8.6
Output_1_186	2930	355	1.4	0.02	6.64	0.04	13.4 8	0.15	14.0 9	0.38	-90.0	260.0	153.6	9.9	140.0	19. 0	153.6	11.0
Output_1_55	3780	123	2.1	0.02	3.40	0.05	10.7 7	0.17	10.2 4	0.09	170.0	230.0	153.7	5.2	158.0	15. 0	153.7	7.8
Output_1_56	3350	111	1.4	0.02	4.55	0.06	9.68	0.18	9.66	0.16	400.0	190.0	153.9	7.1	166.0	13. 0	153.9	9.2
Output_1_57	1860	59	1.6	0.02	6.20	0.05	13.4 9	0.16	14.1 1	0.11	270.0	270.0	154.0	9.6	156.0	22. 0	154.0	11.0
Output_1_262	3730	238	1.9	0.02	7.47	0.05	20.3 7	0.18	21.7 1	0.72	290.0	410.0	154.0	11. 0	162.0	33. 0	154.0	12.0
Output_1_179	3330	281	1.6	0.02	4.13	0.06	11.4 9	0.19	10.7 5	0.05	410.0	240.0	154.2	6.5	175.0	18. 0	154.2	8.7
Output_1_65	2660	88	0.9	0.02	6.20	0.05	14.3 7	0.17	14.0 4	0.27	250.0	270.0	154.2	9.2	166.0	19. 0	154.2	11.0
Output_1_214	2090	72	3.0	0.02	5.79	0.05	16.2 9	0.17	16.7 6	0.08	330.0	310.0	154.3	8.9	163.0	27. 0	154.3	11.0
Output_1_221	2070	80	2.7	0.02	6.20	0.05	17.7 5	0.16	17.3 9	0.08	240.0	310.0	154.4	9.2	149.0	25. 0	154.4	11.0
Output_1_49	6350	219	2.4	0.02	3.83	0.06	8.45	0.18	11.2 4	0.14	390.0	190.0	154.5	5.8	169.0	16. 0	154.5	8.2
Output_1_133	1487	69	1.8	0.02	6.17	0.05	23.0 8	0.16	20.1 3	0.24	40.0	400.0	154.9	9.2	153.0	29. 0	154.9	11.0
Output_1_143	1110	42	2.4	0.02	7.00	0.06	22.5 8	0.20	20.4 0	0.30	480.0	430.0	155.0	11. 0	182.0	35. 0	155.0	12.0
Output_1_196	1183	63	2.3	0.02	7.79	0.05	21.7 4	0.15	20.5 3	0.19	-20.0	410.0	155.0	12. 0	140.0	27. 0	155.0	13.0
Output_1_58	8900	286	2.1	0.02	2.83	0.05	7.96	0.17	8.28	0.08	120.0	160.0	155.2	4.3	158.0	12. 0	155.2	7.3
Output_1_111	7760	682	2.1	0.02	4.51	0.05	10.1 0	0.18	11.4 3	0.24	250.0	240.0	155.6	7.0	163.0	17. 0	155.6	9.1
Output_1_126	2460	158	3.7	0.02	5.26	0.05	14.7 4	0.17	12.7 9	0.04	190.0	290.0	157.2	7.9	163.0	19. 0	157.2	9.9
Output_1_104	16460	1301	3.5	0.02	4.44	0.05	5.15	0.17	5.53	0.57	200.0	110.0	157.9	6.8	162.3	8.3	157.9	9.0
Output_1_245	1860	121	4.1	0.02	7.66	0.05	18.8 2	0.17	17.4 4	0.33	40.0	350.0	158.0	12. 0	157.0	26. 0	158.0	13.0
Output_1_110	11360	970	2.7	0.02	2.78	0.05	5.61	0.18	6.25	0.44	240.0	120.0	158.1	4.4	164.6	9.7	158.1	7.4
Output_1_190	7260	641	2.0	0.02	4.03	0.05	8.70	0.18	7.91	0.27	290.0	180.0	158.1	6.4	165.0	12. 0	158.1	8.7
Output_1_265	3540	241	3.7	0.02	4.84	0.05	10.2 0	0.18	10.6 1	0.39	280.0	210.0	158.1	7.3	166.0	17. 0	158.1	9.4
Output_1_194	2978	186	1.6	0.02	5.22	0.05	12.6 6	0.18	13.4 1	0.39	290.0	260.0	158.4	8.1	166.0	21. 0	158.4	10.0
Output_1_107	1758	143	1.6	0.02	5.62	0.06	20.0 0	0.20	19.7 0	0.09	320.0	410.0	158.7	8.5	184.0	34. 0	158.7	10.0
Output_1_119	27800	2870	1.1	0.02	2.92	0.05	4.36	0.17	4.81	0.27	130.0	100.0	158.9	4.6	158.0	7.0	158.9	7.5
Output_1_17	9770	395	6.4	0.02	3.44	0.05	7.68	0.17	7.60	0.27	190.0	160.0	159.0	5.4	159.0	12. 0	159.0	8.1
Output_1_207	5890	199	4.8	0.03	4.80	0.05	8.65	0.17	7.74	0.12	80.0	180.0	159.0	7.3	157.0	12. 0	159.0	9.4
Output_1_256	1710	101	1.6	0.02	6.83	0.06	20.3 4	0.20	20.2 0	0.07	420.0	420.0	159.0	10. 0	179.0	34. 0	159.0	12.0
Output_1_71	2052	67	1.8	0.03	4.78	0.05	18.6 9	0.17	17.0 6	0.21	170.0	370.0	159.5	7.5	157.0	25. 0	159.5	9.6
Output_1_266	3620	251	6.6	0.03	5.18	0.05	14.0 2	0.19	13.2 3	0.06	340.0	290.0	159.6	7.9	174.0	21. 0	159.6	9.9
Output_1_232	2650	141	2.2	0.03	4.38	0.05	12.3 0	0.18	10.6 7	0.12	220.0	240.0	159.7	6.8	165.0	16. 0	159.7	9.1
Output_1_4	29900	1710	2.9	0.03	5.18	0.06	9.26	0.18	7.14	0.57	390.0	220.0	159.7	7.9	170.0	12. 0	159.7	10.0

								I		1	I							
Output_1_217	1227	43	2.2	0.03	8.37	0.05	19.2 3	0.18	19.7 7	0.31	160.0	400.0	160.0	13. 0	167.0	32. 0	160.0	14.0
Output_1_228	1220	60	3.9	0.03	9.16	0.07	25.7 6	0.24	24.6 8	0.26	770.0	510.0	160.0	14. 0	207.0	48. 0	160.0	16.0
Output_1_180	3330	321	1.4	0.03	5.56	0.05	14.5 5	0.16	13.8 4	0.15	60.0	280.0	160.1	8.8	151.0	20. 0	160.1	11.0
Output_1_102	1600	119	2.2	0.03	7.87	0.06	17.2 4	0.20	15.9 0	0.19	450.0	370.0	161.0	13. 0	178.0	26. 0	161.0	14.0
Output_1_43	13130	474	3.6	0.03	3.48	0.05	6.75	0.17	7.06	0.55	180.0	140.0	161.1	5.5	159.0	10. 0	161.1	8.2
Output_1_257	1661	97	3.3	0.03	5.51	0.06	21.0 5	0.20	18.5 0	0.03	420.0	430.0	161.4	9.1	183.0	31. 0	161.4	11.0
Output_1_99	4400	295	1.9	0.03	4.33	0.05	9.19	0.17	9.94	0.34	10.0	180.0	161.9	6.9	159.0	14. 0	161.9	9.2
Output_1_67	2020	61	1.4	0.03	7.87	0.06	17.0 5	0.19	19.9 0	0.53	410.0	350.0	162.0	12. 0	184.0	28. 0	162.0	14.0
Output_1_80	1354	51	2.4	0.03	8.63	0.05	20.0 0	0.19	21.3 9	0.14	20.0	360.0	162.0	14. 0	174.0	34. 0	162.0	15.0
Output_1_209	4910	156	3.3	0.03	4.71	0.05	8.51	0.19	9.57	0.26	360.0	190.0	162.2	7.4	174.0	15. 0	162.2	9.6
Output_1_121	5340	588	2.9	0.03	3.92	0.05	10.7 2	0.18	7.65	0.21	220.0	210.0	162.4	6.5	170.0	12. 0	162.4	8.9
Output_1_113	4010	351	2.6	0.03	3.76	0.05	13.2 2	0.19	11.4 6	0.05	410.0	270.0	162.6	6.0	178.0	19. 0	162.6	8.6
Output_1_103	10910	801	3.3	0.03	4.30	0.05	5.86	0.18	6.67	0.45	220.0	130.0	162.7	6.7	167.0	11. 0	162.7	9.0
Output_1_188	2230	230	2.2	0.03	6.64	0.05	22.0 0	0.17	20.4 7	0.42	320.0	400.0	163.0	11. 0	168.0	27. 0	163.0	12.0
Output_1_144	5790	205	2.3	0.03	3.28	0.05	9.11	0.18	10.1 7	0.34	160.0	200.0	163.2	5.3	168.0	16. 0	163.2	8.1
Output_1_94	3530	197	2.5	0.03	4.67	0.05	10.0 8	0.18	9.89	0.06	160.0	200.0	163.4	7.8	172.0	17. 0	163.4	9.9
Output_1_13	1840	79	4.6	0.03	6.23	0.05	19.2 5	0.17	16.7 6	0.19	130.0	360.0	163.5	9.8	159.0	25. 0	163.5	12.0
Output_1_14	2910	120	3.0	0.03	3.04	0.06	12.4 5	0.19	12.5 0	0.02	360.0	270.0	163.6	4.9	176.0	20. 0	163.6	7.9
Output_1_178	3330	247	2.2	0.03	5.04	0.06	12.3 2	0.19	11.3 4	0.22	410.0	250.0	164.2	8.1	178.0	19. 0	164.2	10.0
Output_1_21	3520	140	3.1	0.03	4.63	0.05	10.0 0	0.18	8.33	0.08	290.0	190.0	164.6	7.7	167.0	13. 0	164.6	9.9
Output_1_134	10230	436	2.6	0.03	3.07	0.05	7.30	0.18	6.59	0.07	380.0	160.0	164.7	5.2	170.0	10. 0	164.7	8.3
Output_1_160	2440	89	2.1	0.03	5.41	0.06	15.6 4	0.20	11.5 6	0.33	530.0	310.0	164.9	8.9	183.0	20. 0	164.9	11.0
Output_1_225	1382	57	3.1	0.03	6.18	0.06	22.4 1	0.19	20.8 3	0.03	260.0	420.0	165.0	10. 0	183.0	36. 0	165.0	12.0
Output_1_116	1433	130	2.1	0.03	7.31	0.05	22.0 0	0.18	22.5 3	0.19	60.0	400.0	165.0	12. 0	165.0	35. 0	165.0	13.0
Output 1 150	2680	94	2.5	0.03	4.63	0.06	13.1 1	0.19	12.9 5	0.16	340.0	260.0	165.1	7.4	181.0	22. 0	165.1	9.7
Output_1_210	3050	98	3.5	0.03	5.38	0.05	13.3 7	0.19	13.9 2	0.19	340.0	260.0	165.2	8.7	178.0	23. 0	165.2	11.0
Output_1_10	6600	289	2.1	0.03	4.23	0.05	11.2 0	0.19	11.8 3	0.21	280.0	250.0	165.4	6.9	173.0	18. 0	165.4	9.3
Output_1_1	1700	105	1.9	0.03	5.00	0.06	16.5 3	0.19	16.2 3	0.06	510.0	340.0	165.5	8.0	186.0	27. 0	165.5	10.0
Output_1_157	4730	165	2.4	0.03	4.60	0.05	13.1 4	0.18	13.0 7	0.15	140.0	260.0	165.9	7.2	166.0	20. 0	165.9	9.6
Output_1_120	9940	990	2.0	0.03	6.51	0.05	9.05	0.17	6.90	0.54	60.0	190.0	166.0	11. 0	163.0	10. 0	166.0	13.0
Output_1_12	992	43	3.4	0.03	8.46	0.07	25.7 1	0.22	21.4 6	0.36	550.0	500.0	166.0	14. 0	197.0	39. 0	166.0	15.0
Output_1_192	5310	367	2.4	0.03	3.29	0.06	7.03	0.20	8.04	0.41	410.0	160.0	166.2	5.4	183.0	14. 0	166.2	8.3
Output_1_145	2480	83	3.9	0.03	6.13	0.06	14.6 4	0.21	17.4 8	0.52	620.0	320.0	166.2	9.8	188.0	30. 0	166.2	12.0
Output_1_198	1716	73	2.3	0.03	3.75	0.06	16.3 2	0.20	15.5 8	0.18	500.0	320.0	166.3	6.2	196.0	25. 0	166.3	8.8
Output_1_89	7300	353	2.6	0.03	4.20	0.05	8.69	0.17	8.77	0.23	40.0	170.0	166.5	6.6	159.0	13. 0	166.5	9.1
Output_1_41	2093	75	1.5	0.03	4.58	0.06	19.6 4	0.21	20.5 7	0.16	450.0	420.0	166.5	7.6	190.0	35. 0	166.5	9.8
 Output_1_106	4710	363	2.1	0.03	4.96	0.05	10.3 2	0.17	12.0 7	0.40	30.0	210.0	166.8	7.8	164.0	18. 0	166.8	10.0
- Output_1_153	3450	120	2.1	0.03	4.20	0.05	11.5 8	0.20	11.2 2	0.13	350.0	230.0	166.9	7.0	184.0	17. 0	166.9	9.4
Output_1 129	2060	107	2.8	0.03	6.84	0.05	20.4 3	0.17	19.3 0	0.05	40.0	380.0	167.0	11. 0	157.0	28. 0	167.0	13.0
Output_1 141	6440	225	2.3	0.03	3.01	0.05	9.30	0.19	9.63	0.31	240.0	200.0	167.1	5.0	173.0	15. 0	167.1	8.0
		-									•					- 1		

								1			I							
Output_1_77	2550	87	2.2	0.03	5.70	0.05	12.3 0	0.18	12.2 2	0.18	260.0	250.0	167.3	9.1	166.0	19. 0	167.3	11.0
Output_1_75	1980	67	2.9	0.03	5.70	0.05	16.6 7	0.20	17.3 5	0.31	180.0	330.0	167.4	9.4	178.0	29. 0	167.4	11.0
Output_1_64	2720	82	2.0	0.03	3.79	0.05	15.7 4	0.20	14.8 0	0.02	190.0	310.0	168.0	6.3	179.0	25. 0	168.0	8.9
Output_1_90	2180	106	2.7	0.03	6.82	0.04	14.6 4	0.18	13.5 6	0.11	100.0	290.0	168.0	11. 0	167.0	22. 0	168.0	13.0
Output_1_23	2130	87	3.3	0.03	5.64	0.05	15.1 0	0.19	15.8 7	0.18	300.0	310.0	169.3	9.6	173.0	26. 0	169.3	12.0
Output_1_28	16160	663	1.1	0.03	3.60	0.05	8.38	0.19	8.33	0.13	270.0	180.0	169.7	6.0	178.0	13. 0	169.7	8.8
Output_1_48	2870	93	2.0	0.03	6.37	0.05	13.0 8	0.19	12.3 7	0.27	220.0	260.0	170.0	11. 0	171.0	19. 0	170.0	13.0
Output_1_83	3330	129	1.3	0.03	4.09	0.05	10.8 4	0.18	10.5 6	0.19	130.0	230.0	171.1	6.6	170.0	17. 0	171.1	9.2
Output_1_9	8120	355	1.2	0.03	3.70	0.05	13.1 2	0.19	13.0 2	0.19	290.0	280.0	172.0	6.4	177.0	21. 0	172.0	9.1
Output_1_159	3580	123	1.2	0.03	4.43	0.05	10.0 2	0.20	9.90	0.02	460.0	230.0	172.2	7.7	186.0	17. 0	172.2	10.0
Output_1_195	2200	113	3.0	0.03	5.54	0.05	21.2 8	0.18	21.2 3	0.03	0.0	400.0	172.4	9.2	162.0	33. 0	172.4	11.0
Output_1_88	4360	193	1.5	0.03	4.41	0.05	9.16	0.19	8.42	0.03	150.0	190.0	172.8	7.8	176.0	14. 0	172.8	10.0
Output_1_128	3360	178	2.7	0.03	6.57	0.06	14.9 4	0.21	12.3 8	0.09	460.0	310.0	174.0	11. 0	192.0	22. 0	174.0	13.0
Output_1_16	37420	1366	3.7	0.03	1.85	0.05	4.20	0.19	4.00	0.02	179.0	93.0	175.4	3.2	176.3	6.5	175.4	7.3
Output_1_92	4520	220	3.0	0.03	3.99	0.05	12.6 3	0.19	13.2 3	0.27	80.0	250.0	175.7	7.1	174.0	21. 0	175.7	9.7
Output_1_185	2600	276	2.1	0.03	7.58	0.05	16.5 6	0.17	14.7 1	0.18	40.0	320.0	176.0	13. 0	158.0	22. 0	176.0	15.0
Output_1_261	6990	407	3.9	0.03	4.32	0.06	8.87	0.21	8.49	0.23	400.0	190.0	176.4	7.5	194.0	15. 0	176.4	10.0
Output_1_193	5780	342	2.3	0.03	4.69	0.05	8.50	0.19	8.95	0.35	130.0	170.0	177.4	8.6	176.0	14. 0	177.4	11.0
Output_1_154	27900	900	3.8	0.03	1.99	0.05	5.16	0.19	4.70	0.03	290.0	110.0	178.6	3.5	179.4	7.7	178.6	7.6
Output_1_220	5830	188	2.1	0.03	3.90	0.06	8.84	0.22	9.46	0.36	400.0	180.0	179.2	7.1	202.0	18. 0	179.2	9.8
Output_1_33	6490	243	0.9	0.03	4.26	0.05	8.05	0.19	8.76	0.26	260.0	170.0	179.5	7.2	183.0	13. 0	179.5	9.9
Output_1_148	4640	147	2.6	0.03	5.30	0.06	11.1 1	0.21	12.8 6	0.32	480.0	240.0	179.9	9.2	192.0	23. 0	179.9	11.0
Output_1_264	16470	989	4.1	0.03	3.53	0.05	5.49	0.20	6.44	0.50	210.0	120.0	180.0	6.4	186.0	11. 0	180.0	9.3
Output 1 177	1460	93	1.9	0.03	6.71	0.06	27.2 7	0.22	25.2 3	0.04	350.0	490.0	180.0	12. 0	198.0	45. 0	180.0	14.0
Output_1_167	18900	710	1.4	0.03	3.89	0.05	6.26	0.20	5.53	0.46	300.0	140.0	180.1	7.1	183.9	9.5	180.1	9.8
Output 1 174	4190	233	2.0	0.03	5.30	0.06	11.9 5	0.22	10.0 0	0.07	480.0	240.0	180.1	9.5	201.0	18. 0	180.1	12.0
Output 1 165	11930	422	1.7	0.03	4.95	0.06	8.00	0.20	8.33	0.10	350.0	180.0	180.2	8.6	191.0	14. 0	180.2	11.0
Output 1 200	3120	108	2.5	0.03	4.93	0.05	13.0 5	0.19	11.6 4	0.09	220.0	260.0	180.4	8.9	174.0	19. 0	180.4	11.0
Output 1 72	36920	1074	1.9	0.03	5.28	0.05	4.73	0.19	4.53	0.36	210.0	110.0	180.5	9.1	180.1	7.4	180.5	11.0
Output 1 109	12300	901	1.8	0.03	3.24	0.05	5.37	0.20	5.94	0.45	290.0	110.0	180.7	5.8	189.0	11. 0	180.7	8.9
Output 1 226	3550	134	3.0	0.03	4.58	0.06	14.6 3	0.22	13.4 3	0.02	480.0	300.0	180.7	7.9	196.0	25. 0	180.7	10.0
Output 1 155	7920	258	19	0.03	4 91	0.05	7 99	0.20	7 54	0.18	300.0	170.0	180.8	85	183.0	13.	180.8	11.0
Output 1 223	5020	181	19	0.03	5.94	0.05	12.3	0.21	10.0	0.06	280.0	230.0	181.0	11.	191.0	17.	181.0	13.0
Output 1 138	36930	1236	1.0	0.03	2.63	0.05	3 20	0.20	3 17	0.30	323.0	73.0	181.2	47	186.7	5.4	181.2	83
Output_1_130	32900	2250	1.0	0.03	2.05	0.05	5.20 E 14	0.20	1.55	0.30	323.0	110.0	101.2	 E 2	102.6	0.7	101.2	0.5
Output 1 228	12020	707	1.7	0.03	2.50	0.05	6.12	0.10	6 10	0.35	210.0	140.0	101.2	4.7	190.0	11.	101.2	0.7
Output_1_258	13920	797 E12	1.7	0.03	2.05	0.05	0.45	0.19	0.19	0.22	210.0	200.0	101.4	4.7	187.0	16.	101.4	0.0
Output 1 212	10400	212	4.0	0.05	3.29	0.05	5.49	0.20	7.50	0.04	420.0	200.0	101.4	3.9	107.0	14.	101.4	9.0
Output_1_213	28130	833	2.6	0.03	3.51	0.05	0.43 11.1	0.21	7.48	0.54	430.0	140.0	181.4	0.5	199.0	U 18.	181.4	9.5
Output_1_101	4960	313	2.3	0.03	4.55	0.05	1	0.21	9.95	0.06	270.0	230.0	181.7	8.2	193.0	0	181.7	11.0
Output_1_249	28200	1392	4.8	0.03	2.66	0.05	3.78	0.20	4.80	0.92	211.0	91.0	181.9	4.8	186.3	7.0	181.9	8.3

								I			1							
Output_1_152	3110	99	1.8	0.03	5.57	0.06	16.1 7	0.22	13.8 4	0.25	370.0	320.0	182.0	10. 0	204.0	25. 0	182.0	12.0
Output_1_247	2760	151	4.6	0.03	6.27	0.05	24.5 3	0.20	24.6 3	0.28	230.0	490.0	182.0	11. 0	186.0	42. 0	182.0	13.0
Output_1_253	5150	255	2.8	0.03	3.41	0.06	10.9 7	0.21	9.35	0.15	340.0	230.0	182.6	6.2	199.0	18. 0	182.6	9.2
Output_1_37	7420	261	1.5	0.03	3.10	0.05	8.75	0.20	8.72	0.23	230.0	190.0	182.7	5.6	183.0	14. 0	182.7	8.8
Output_1_51	3860	110	2.1	0.03	4.84	0.05	13.7 6	0.19	12.8 9	0.19	170.0	270.0	183.5	8.8	178.0	21. 0	183.5	11.0
Output_1_25	10770	388	2.1	0.03	3.35	0.05	7.07	0.19	7.29	0.26	110.0	150.0	184.0	6.1	178.0	12. 0	184.0	9.2
Output_1_2	8090	431	2.6	0.03	4.14	0.05	7.19	0.20	7.50	0.28	200.0	140.0	184.0	7.8	184.0	13. 0	184.0	10.0
Output_1_182	5020	461	1.4	0.03	5.86	0.05	8.29	0.20	8.00	0.57	270.0	170.0	184.0	11. 0	185.0	14. 0	184.0	13.0
Output_1_248	2500	125	3.3	0.03	6.23	0.06	12.1 7	0.22	11.4 7	0.01	430.0	270.0	184.0	12. 0	198.0	21. 0	184.0	13.0
Output_1_229	4420	190	2.4	0.03	4.83	0.05	11.5 0	0.21	11.5 9	0.15	290.0	240.0	184.2	8.5	190.0	20. 0	184.2	11.0
Output_1_81	5210	180	1.3	0.03	3.79	0.05	9.40	0.20	9.74	0.18	40.0	190.0	184.6	6.8	180.0	16. 0	184.6	9.7
Output_1_172	24580 0	1107 0	0.9	0.03	2.84	0.05	2.37	0.21	2.78	0.76	239.0	54.0	185.5	5.2	189.6	4.8	185.5	8.7
Output_1_147	9150	277	2.0	0.03	3.42	0.05	7.51	0.20	7.11	0.10	190.0	160.0	185.6	6.4	182.0	12. 0	185.6	9.5
Output 1 76	10850	328	1.8	0.03	3.75	0.05	6.20	0.20	6.47	0.03	200.0	120.0	186.1	7.0	185.0	11. 0	186.1	9.9
Output 1 208	11670	324	2.0	0.03	4.10	0.05	6.08	0.21	6.19	0.43	320.0	130.0	186.1	7.3	193.0	11. 0	186.1	10.0
Output 1 5	11800	586	2.7	0.03	3.74	0.05	7.07	0.21	7.62	0.31	340.0	160.0	186.8	6.8	195.0	13. 0	186.8	9.8
Output 1 216	14300	433	2.7	0.03	3.74	0.05	6.22	0.20	7.84	0.46	170.0	130.0	186.8	6.9	188.0	13. 0	186.8	9.9
Output 1 96	11840	641	2.7	0.03	3.40	0.05	8 37	0.20	7.44	0.02	300.0	170.0	186.9	6.5	197.0	14.	186.9	9.6
Output 1 158	5340	166	1.0	0.03	6.12	0.05	8 70	0.22	8.84	0.02	280.0	180.0	187.0	11.	197.0	16.	187.0	13.0
Output_1_138	2770	100	1.5	0.03	6.44	0.05	13.1	0.22	14.4	0.20	230.0	280.0	107.0	12.	205.0	27.	187.0	14.0
Output_1_149	2770	60	2.5	0.03	0.44	0.06	19.1	0.22	18.5	0.48	320.0	280.0	107.0	13.	205.0	30.	187.0	14.0
Output_1_64	15000	50	2.5	0.03	2.08	0.05	5 02	0.19	5 59	0.12	40.0	110.0	107.0	5.7	107.0	10.	107.0	15.0
Output_1_162	15000	481	2.7	0.03	3.08	0.05	5.03	0.22	5.58	0.43	330.0	110.0	187.4	5.7	197.0	13.	187.4	9.1
Output_1_123	12390	1295	2.4	0.03	3.28	0.05	7.18	0.21	8.10	0.39	260.0	150.0	187.7	6.1	196.0	0	187.7	9.3
Output_1_38	38300	1317	1.0	0.03	2.94	0.05	4.44 13.5	0.20	4.83 13.3	0.41	155.0	95.0	187.8	5.4 10.	185.5	8.2 25.	187.8	8.9
Output_1_156	3430	107	2.0	0.03	5.41	0.06	4	0.22	6	0.20	420.0	270.0	188.0	0	211.0	0 13.	188.0	12.0
Output_1_74	15400	453	1.0	0.03	2.70	0.05	7.39 10.3	0.22	7.41 10.2	0.37	340.0	160.0	188.4	5.0	198.0	0 17.	188.4	8.7
Output_1_242	5860	314	2.5	0.03	4.04	0.05	3 11.0	0.20	0	0.19	60.0	200.0	188.7	7.5	181.0	0 16.	188.7	10.0
Output_1_151	8500	264	1.1	0.03	2.52	0.06	3	0.22	8.29	0.02	510.0	280.0	188.8	4.7	199.0	0 10.	188.8	8.5
Output_1_18	16560	570	1.7	0.03	2.96	0.05	6.05	0.22	5.58	0.12	320.0	140.0	188.8	5.5	197.0	0	188.8	9.0
Output_1_82	20590	711	3.1	0.03	3.69	0.05	5.72 19.6	0.21	4.88 19.6	0.32	220.0	120.0	189.0	6.6 13.	189.4	8.7 39.	189.0	9.7
Output_1_254	3160	154	2.6	0.03	7.07	0.06	7 18.3	0.24	7 18.7	0.18	450.0	430.0	189.0	0 14.	215.0	0 35.	189.0	15.0
Output_1_108	5230	353	3.3	0.03	7.38	0.05	0	0.23	0	0.09	450.0	300.0	189.0	0	209.0	0	189.0	16.0
Output_1_127	91100	4550	1.6	0.03	3.26	0.05	2.61	0.20	3.37	0.63	178.0	59.0	189.1	6.1	190.2	5.6 15.	189.1	9.4
Output_1_42	7280	219	1.1	0.03	4.03	0.05	8.25	0.21	8.70	0.13	220.0	180.0	189.4	7.7	190.0	0	189.4	10.0
Output_1_122	17740	1733	1.6	0.03	4.03	0.05	5.65 11 3	0.21	5.14 11.0	0.25	310.0	130.0	189.4	7.8	196.9	9.5 21	189.4	11.0
Output_1_69	5310	142	1.5	0.03	3.26	0.05	13.2	0.22	11.0	0.22	350.0	240.0	191.0	6.2	204.0	0	191.0	9.5
Output_1_146	3320	101	2.5	0.03	5.98	0.06	10 E	0.22	2	0.07	390.0	290.0	191.0	0	200.0	22. 0 19	191.0	13.0
Output_1_203	4660	137	1.9	0.03	4.32	0.05	4	0.22	9.17	0.01	330.0	220.0	191.2	8.1	203.0	0	191.2	11.0
Output_1_187	35500	3250	2.7	0.03	2.62	0.06	3.39	0.24	2.71	0.17	456.0	79.0	191.6	4.9	215.0	5.2	191.6	8.7
Output_1_237	7280	378	1.4	0.03	3.29	0.05	8.95	0.22	8.76	0.08	280.0	200.0	193.2	6.3	198.0	16. 0	193.2	9.6

			ĺ					I		ĺ	1							
Output_1_53	20670	553	3.1	0.03	4.59	0.05	5.98	0.20	5.88	0.43	180.0	130.0	193.5	8.5	188.0	11. 0	193.5	11.0
Output_1_40	7900	254	1.7	0.03	4.58	0.05	6.36	0.21	7.04	0.29	220.0	150.0	194.1	8.9	196.0	12. 0	194.1	11.0
Output_1_22	6900	230	2.5	0.03	4.55	0.05	10.8 8	0.23	10.2 2	0.18	350.0	250.0	195.2	8.7	205.0	20. 0	195.2	11.0
Output_1_205	13940	381	4.2	0.03	2.98	0.05	6.71	0.22	6.48	0.29	190.0	140.0	196.1	5.8	198.0	11. 0	196.1	9.4
Output_1_252	15620	728	9.5	0.03	1.97	0.06	5.44	0.25	5.65	0.06	520.0	120.0	196.6	3.8	225.0	12. 0	196.6	8.3
Output_1_169	10440	381	1.3	0.03	3.54	0.06	5.81	0.25	6.30	0.23	450.0	130.0	197.2	7.0	229.0	13. 0	197.2	10.0
Output_1_201	6120	184	2.6	0.03	5.13	0.05	8.41	0.22	9.05	0.28	330.0	160.0	198.0	10. 0	202.0	17. 0	198.0	13.0
Output_1_239	13670	730	3.9	0.03	2.14	0.05	8.58	0.23	8.37	0.08	310.0	180.0	198.8	4.2	207.0	16. 0	198.8	8.6
Output_1_54	4820	121	1.6	0.03	4.13	0.06	15.1 0	0.24	13.9 3	0.00	420.0	320.0	199.7	7.9	220.0	28. 0	199.7	11.0
Output_1_86	7170	267	1.7	0.03	4.13	0.05	7.93	0.22	8.33	0.38	130.0	170.0	200.1	8.3	200.0	16. 0	200.1	11.0
Output_1_199	4080	133	2.1	0.03	5.06	0.06	11.4 5	0.25	10.8 4	0.27	550.0	220.0	201.0	10. 0	225.0	22. 0	201.0	13.0
Output_1_34	4890	162	2.4	0.03	3.43	0.05	9.21	0.23	9.05	0.09	260.0	200.0	203.4	6.9	211.0	17. 0	203.4	10.0
Output_1_29	4440	149	1.2	0.03	3.70	0.06	9.71	0.24	9.09	0.28	380.0	210.0	205.7	7.3	219.0	18. 0	205.7	11.0
Output_1_142	93900	2280	31.5	0.04	4.39	0.06	2.91	0.32	3.79	0.79	536.0	63.0	244.0	10. 0	279.4	9.6	244.0	14.0
Output_1_202	13600	248	1.4	0.05	4.43	0.06	8.71	0.38	8.78	0.29	370.0	190.0	313.0	13. 0	323.0	25. 0	313.0	18.0
Output_1_97	10900	207	2.7	0.09	2.89	0.06	5.56	0.73	6.19	0.46	640.0	110.0	534.0	15. 0	552.0	27. 0	534.0	24.0
Output_1_31	23100	287	1.6	0.09	2.77	0.06	3.87	0.73	5.23	0.64	578.0	83.0	536.0	14. 0	552.0	22. 0	536.0	24.0
Output_1_191	17500	402	11.2	0.09	3.51	0.07	4.37	0.88	3.98	0.52	1014.0	85.0	545.0	18. 0	640.0	19. 0	545.0	27.0
Output_1_118	4520	126	2.7	0.09	4.95	0.06	10.9 2	0.75	10.7	0.04	560.0	230.0	548.0	26. 0	556.0	47. 0	548.0	33.0
Output_1_105	5010	106	2.4	0.09	4.77	0.06	13.2	0.74	11.8 2	0.04	430.0	270.0	556.0	26. 0	551.0	51. 0	556.0	33.0
Output_1_260	42300	493	4.5	0.14	9.09	0.13	3.04	2.56	10.1	0.92	2067.0	53.0	858.0	75. 0	#####	73. 0	858.0	81.0
Output_1_73	23100	126	0.6	0.15	2.92	0.07	2.84	1.48	3.50	0.67	938.0	60.0	924.0	25. 0	922.0	21. 0	938.0	60.0
Output_1_164	43300	284	3.1	0.15	4.17	0.08	4.26	1.56	4.55	0.61	1078.0	87.0	907.0	35. 0	956.0	28.	1078.0	87.0
Output_1_91	38800	267	1.2	0.19	3.99	0.08	4.00	2.12	4.25	0.52	1193.0	82.0	1123.0	41. 0	#####	28. 0	1193.0	82.0
Output_1_52	43400	177	0.9	0.20	3.30	0.08	2.90	2.30	3.04	0.64	1255.0	57.0	1192.0	36. 0	#####	20.	1255.0	58.0
Output_1_255	72200	498	2.0	0.21	2.89	0.08	3.19	2.50	3.44	0.74	1302.0	62.0	1252.0	55. 0	#####	25.	1302.0	62.0
Output_1_6	45100	297	2.3	0.22	4.15	0.09	2.68	2.56	3.60	0.67	1340.0	47.0	1265.0	48. 0	#####	20.	1340.0	47.0
Output_1_212	11830	40	1.5	0.26	4.69	0.09	6.17	3.29	9.42	0.74	1470.0	120.0	1468.0	61. 0	#####	74. 0	1470.0	120.
Output_1_175	52300	352	1.7	0.23	5.60	0.10	3.10	3.14	5.73	0.83	1570.0	62.0	1344.0	0 0	#####	43. 0	1570.0	62.0
Output_1_66	91300	276	2.3	0.27	3.77	0.10	2.41	3.58	2.79	0.79	1607.0	45.0	1514.0	0	#####	24. 0	1607.0	45.0
Output_1_114	40400	281	1.6	0.31	2.61	0.10	3.18	4.46	3.36	0.58	1685.0	58.0	1724.0	59. 0 21	#####	27. 0	1685.0	58.0
Output_1_170	74000	329	1.8	0.26	2.36	0.10	2.40	3.75	2.26	0.42	1711.0	44.0	1481.0	0	#####	0	1711.0	44.0
Output_1_176	43200	283	1.3	0.26	7.39	0.11	3.78	3.58	7.26	0.67	1723.0	71.0	1474.0	95. 0	#####	57. 0	1723.0	71.0
Output_1_224	32200	106	5.7	0.31	3.86	0.11	4.21	4.54	3.96	0.52	1724.0	77.0	1743.0	58. 0	#####	31. 0 25	1724.0	77.0
Output_1_46	28400	84	0.9	0.30	2.92	0.11	3.37	4.23	4.26	0.57	1732.0	63.0	1679.0	43. 0	#####	35. 0	1732.0	63.0
Output_1_112	24400	164	1.4	0.33	3.89	0.11	5.00	5.27	4.74	0.55	1888.0	86.0	1855.0	ь4. 0	#####	40. 0	1888.0	86.0
Output_1_44	21970	65	0.4	0.31	3.07	0.12	3.32	5.05	3.96	0.60	1964.0	57.0	1723.0	46. 0	#####	32. 0	1964.0	57.0
Output_1_173	21500	65	0.9	0.48	5.04	0.17	3.75	11.31	6.01	0.72	2567.0	67.0	2500.0	###	#####	58. 0	2567.0	67.0
Output_1_171	94700	286	1.0	0.42	3.12	0.17	2.86	9.95	4.22	0.76	2572.0	46.0	2245.0	61. 0	#####	38. 0	2572.0	47.0
Output_1_30	4730	12	0.6	0.43	4.19	0.18	5.46	11.00	6.18	0.46	2665.0	99.0	2300.0	79. 0	#####	54. 0	2665.0	99.0

Output_1_181	19500 0	986	0.8	0.49	3.70	0.19	2.17	13.07	2.68	0.74	2768.0	36.0	2549.0	80. 0	*****	25. 0	2768.0	36.0
Sample 19ATW79				I.														
Output_1_55	4290	540	11.6	0.01	3.88	0.04	12.5 3	0.05	12.5 2	0.06	-60.0	220.0	54.7	2.1	51.2	6.3	54.7	2.4
Output_1_98	17230	2033	4.6	0.01	5.73	0.04	10.3 4	0.05	5.93	0.15	-40.0	190.0	50.5	2.8	51.7	3.0	50.5	3.0
Output_1_101	3420	457	8.8	0.01	4.25	0.04	11.6 2	0.05	11.2 9	0.05	-40.0	200.0	51.4	2.2	49.9	5.5	51.4	2.4
Output_1_76	8330	878	7.4	0.01	3.10	0.05	7.33	0.05	7.66	0.34	10.0	140.0	51.8	1.6	51.6	3.9	51.8	1.9
Output_1_65	2980	361	7.7	0.01	3.72	0.05	13.8 6	0.05	13.9 0	0.07	40.0	250.0	50.1	1.8	51.1	6.9	50.1	2.1
Output_1_93	6850	637	9.5	0.01	3.49	0.05	9.55	0.05	9.18	0.06	60.0	180.0	51.6	1.8	52.7	4.8	51.6	2.1
Output_1_103	15060	2455	11.7	0.01	2.78	0.05	7.01	0.05	6.19	0.17	60.0	130.0	50.9	1.4	52.6	3.2	50.9	1.7
Output_1_54	23800	3240	7.9	0.01	2.97	0.05	5.08	0.06	4.80	0.34	69.0	99.0	54.1	1.6	55.5	2.6	54.1	1.9
Output_1_95	7700	690	7.1	0.01	3.76	0.05	10.9 2	0.06	10.1 9	0.05	70.0	200.0	54.6	2.0	57.0	5.6	54.6	2.3
Output_1_77	4450	443	9.8	0.01	4.48	0.05	12.5 3	0.05	13.1 1	0.13	70.0	230.0	50.2	2.2	52.7	6.7	50.2	2.4
Output_1_87	4000	306	7.2	0.01	4.49	0.05	14.4 7	0.06	14.0 8	0.10	80.0	260.0	54.3	2.4	55.2	7.6	54.3	2.6
Output_1_85	9980	806	8.7	0.01	3.37	0.05	8.39	0.05	7.85	0.17	80.0	160.0	51.5	1.7	52.9	4.0	51.5	2.0
Output_1_78	4940	474	7.7	0.01	3.23	0.05	13.8 9	0.05	14.1 8	0.24	80.0	250.0	49.7	1.6	52.1	7.2	49.7	1.9
Output_1_63	17960	1959	12.1	0.01	2.70	0.05	5.72	0.06	6.18	0.44	90.0	110.0	54.7	1.5	55.8	3.4	54.7	1.8
Output_1_57	13040	1615	9.4	0.01	2.99	0.05	6.51	0.05	6.94	0.25	90.0	130.0	51.5	1.5	52.7	3.6	51.5	1.8
Output_1_83	2850	226	7.4	0.01	5.26	0.05	13.3 1	0.06	13.9 3	0.11	90.0	250.0	51.3	2.7	55.1	7.5	51.3	2.8
Output_1_82	13900	1161	7.9	0.01	3.03	0.05	6.51	0.05	7.12	0.20	90.0	130.0	50.9	1.5	52.1	3.3	50.9	1.8
Output_1_71	6540	847	11.6	0.01	3.75	0.05	10.7 8	0.05	8.98	0.16	90.0	200.0	49.7	1.8	50.7	4.5	49.7	2.1
Output_1_90	9770	830	8.4	0.01	3.06	0.05	5.64	0.06	6.17	0.42	100.0	110.0	52.5	1.6	54.4	3.3	52.5	1.9
Output_1_70	3570	422	6.6	0.01	5.25	0.05	17.2 3	0.06	15.5 1	0.40	110.0	320.0	56.3	2.9	55.2	8.4	56.3	3.1
Output_1_72	12500	1505	6.0	0.01	2.12	0.05	5.82	0.05	6.31	0.15	110.0	110.0	51.5	1.1	53.2	3.3	51.5	1.5
Output_1_102	5700	815	8.0	0.01	2.94	0.05	11.5 5	0.05	12.3 1	0.17	110.0	220.0	50.2	1.5	52.9	6.3	50.2	1.8
Output_1_84	5910	494	5.8	0.01	3.73	0.05	10.3 2	0.05	10.8 5	0.33	110.0	210.0	49.9	1.8	51.0	5.4	49.9	2.1
Output_1_60	3540	400	8.1	0.01	3.77	0.05	12.7 1	0.05	13.0 4	0.39	120.0	240.0	52.8	2.0	52.9	6.8	52.8	2.3
Output_1_94	11520	1125	8.0	0.01	2.85	0.05	8.21	0.05	8.26	0.23	130.0	160.0	51.8	1.5	53.8	4.4	51.8	1.8
Output_1_81	19000	1660	9.6	0.01	3.71	0.05	8.23	0.05	6.53	0.04	130.0	160.0	50.2	1.8	52.9	3.4	50.2	2.1
Output_1_80	21900	1880	14.6	0.01	3.41	0.05	6.35	0.06	6.72	0.59	140.0	130.0	52.8	1.8	54.4	3.6	52.8	2.1
Output_1_66	2210	286	7.4	0.01	6.46	0.05	21.5 7	0.05	22.2 2	0.36	130.0	370.0	48.7	3.1	53.0	11. 0	48.7	3.3
Output_1_99	2315	296	4.0	0.01	4.76	0.05	15.2 2	0.05	15.3 8	0.12	130.0	280.0	48.6	2.3	51.2	7.7	48.6	2.5
Output_1_53	7750	1099	10.8	0.01	3.14	0.05	7.69	0.05	7.32	0.19	140.0	160.0	51.1	1.6	52.7	3.8	51.1	1.9
Output_1_89	4230	338	8.1	0.01	4.18	0.05	10.6 4	0.06	11.4 7	0.46	150.0	200.0	53.7	2.3	58.8	6.7	53.7	2.5
Output_1_88	10520	867	13.0	0.01	4.17	0.05	8.23	0.06	9.14	0.42	160.0	160.0	53.9	2.3	55.0	4.9	53.9	2.5
Output_1_91	25100	2181	7.7	0.01	2.85	0.05	6.06	0.05	6.77	0.45	160.0	130.0	51.8	1.5	52.6	3.5	51.8	1.8
Output_1_100	5820	658	5.9	0.01	4.37	0.05	8.35	0.06	11.5 6	0.35	190.0	160.0	55.8	2.5	57.9	6.5	55.8	2.7
Output_1_86	29160	2306	13.8	0.01	2.93	0.05	6.22	0.06	5.40	0.13	180.0	130.0	52.6	1.5	54.9	2.9	52.6	1.9
Output_1_64	6140	681	10.1	0.01	4.18	0.05	9.37	0.06	9.29	0.15	200.0	200.0	55.4	2.3	58.4	5.2	55.4	2.6
Output_1_58	2270	272	12.9	0.01	4.60	0.05	14.2 9	0.06	14.5 3	0.15	200.0	260.0	51.6	2.4	56.7	8.1	51.6	2.6

Output_1_69	4140	502	9.0	0.01	5.15	0.05	13.6 2	0.06	12.8 4	0.07	220.0	250.0	52.4	2.7	55.9	6.5	52.4	2.9
Output_1_73	2550	302	9.1	0.01	4.02	0.05	14.1 1	0.06	13.5 1	0.01	220.0	280.0	51.2	2.0	54.6	7.3	51.2	2.3
Output_1_52	4740	724	6.3	0.01	4.28	0.05	12.8 2	0.05	13.3 6	0.14	220.0	250.0	49.5	2.1	50.3	6.6	49.5	2.4
Output_1_56	6260	812	5.9	0.01	5.13	0.05	11.2 9	0.06	11.0 3	0.15	240.0	230.0	53.8	2.8	55.4	6.0	53.8	3.0
Output_1_59	3630	416	6.5	0.01	3.99	0.05	12.9 5	0.06	11.2 5	0.01	270.0	240.0	53.2	2.1	57.7	6.8	53.2	2.4
Output_1_68	4090	524	8.2	0.01	4.36	0.05	18.8 7	0.06	20.6 9	0.02	320.0	380.0	51.6	2.2	60.0	12. 0	51.6	2.5
Output_1_79	3800	305	10.7	0.01	5.38	0.05	16.5 4	0.06	14.2 4	0.04	380.0	340.0	56.0	3.0	62.0	8.6	56.0	3.2
Output_1_75	2460	262	7.0	0.01	5.75	0.06	15.6 3	0.06	14.0 0	0.01	410.0	320.0	52.5	3.0	59.0	8.1	52.5	3.2

Supplemental Information S3: ⁴⁰Ar/³⁹Ar data

12JB12HODO Biotite

Weighted average of J from standards = 1.151e-04 +/- 5.842e-07

Laser Power	Cumulative	40Ar/ 39Ar	+/-	37Ar/ 39Ar	+/-	36Ar/ 39Ar	+/-	% Atm.	+/-	Ca/K	+/-	Cl/K	+/-	40*/ 39K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40Ar								(Ma)	(Ma)
500	0.0018	549.57	38.18	0.425	0.178	1.302	0.130	70.023	5.099	0.781	0.326	0.030	0.014	164.784	30.463	33.85	6.2
1000	0.0087	440.52	13.45	0.339	0.084	0.748	0.041	50.172	2.330	0.622	0.154	0.016	0.004	219.542	12.436	44.96	2.52
1500	0.017	332.24	6.08	0.160	0.044	0.276	0.022	24.528	1.952	0.294	0.080	0.016	0.004	250.755	8.015	51.26	1.62
2000	0.0285	320.07	4.54	0.095	0.025	0.220	0.019	20.356	1.786	0.175	0.045	0.018	0.002	254.908	6.861	52.1	1.38
2500	0.0487	320.54	4.49	0.132	0.017	0.211	0.013	19.458	1.226	0.242	0.032	0.021	0.001	258.165	5.550	52.76	1.12
3000	0.0822	289.46	3.78	0.076	0.008	0.076	0.007	7.769	0.718	0.140	0.015	0.020	0.001	266.954	4.183	54.52	0.84
3500	0.1449	272.89	3.57	0.061	0.007	0.032	0.003	3.472	0.283	0.111	0.013	0.021	0.001	263.394	3.621	53.81	0.73
4000	0.2366	265.26	2.64	0.069	0.008	0.020	0.002	2.202	0.260	0.127	0.014	0.020	0.000	259.398	2.678	53	0.54
4500	0.3557	259.37	2.16	0.068	0.004	0.018	0.002	1.992	0.247	0.125	0.008	0.020	0.000	254.184	2.218	51.95	0.45
5000	0.6084	258.53	2.15	0.066	0.003	0.010	0.001	1.087	0.097	0.122	0.006	0.020	0.000	255.704	2.148	52.26	0.43
6000	0.9274	257.35	2.46	0.078	0.003	0.009	0.001	1.072	0.109	0.142	0.005	0.020	0.000	254.571	2.448	52.03	0.49
9000	1	256.30	2.97	0.113	0.006	0.018	0.003	2.085	0.290	0.208	0.011	0.020	0.000	250.947	3.047	51.3	0.61
Integrated		264.99	1.10	0.079	0.002	0.032	0.001	3.538	0.087	0.144	0.003	0.020	0.000	255.601	1.092	52.24	0.34

46GUNN Whole rock

Integrated

10.41 0.02

0.432 0.001

Weighted av	erage of J from s	tandards = 4.044	4e-03 +/- 1.	101e-05													
Laser Power	Cumulative	40Ar/39Ar	+/-	37Ar/39Ar	+/-	36Ar/39Ar	+/-	% Atm.	+/-	Ca/K	+/-	Cl/K	+/-	40*/39K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40Ar								(Ma)	(Ma)
500	0.0088	7.71	0.04	0.117	0.002	0.016	0.001	59.963	3.474	0.216	0.003	0.002	0.000	3.077	0.268	22.28	1.93
1000	0.0422	7.24	0.02	0.051	0.001	0.006	0.000	24.201	0.719	0.094	0.001	0.001	0.000	5.466	0.054	39.4	0.39
1500	0.1089	6.80	0.02	0.026	0.000	0.002	0.000	10.210	0.361	0.048	0.001	0.000	0.000	6.083	0.030	43.79	0.22
2000	0.1962	6.78	0.02	0.060	0.000	0.002	0.000	7.705	0.287	0.109	0.001	0.000	0.000	6.234	0.028	44.87	0.2
2500	0.2805	6.64	0.02	0.166	0.001	0.001	0.000	5.120	0.377	0.305	0.002	0.000	0.000	6.271	0.033	45.13	0.24
3000	0.4158	6.56	0.01	0.148	0.001	0.001	0.000	3.156	0.227	0.272	0.001	0.000	0.000	6.322	0.021	45.49	0.15
4000	0.6934	6.45	0.01	0.013	0.000	0.000	0.000	1.297	0.102	0.024	0.000	0.000	0.000	6.334	0.014	45.57	0.1
9000	1	6.51	0.01	0.013	0.000	0.000	0.000	1.102	0.097	0.025	0.000	0.000	0.000	6.409	0.015	46.11	0.1
Integrated		6.59	0.01	0.052	0.000	0.001	0.000	4.451	0.083	0.095	0.000	0.000	0.000	6.267	0.008	45.1	0.13
15BG209 W	/hole rock																
Weighted av	erage of J from s	tandards = 4.044	4e-03 +/- 1.	101e-05													
Laser Power	Cumulative	40Ar/39Ar	+/-	37Ar/39Ar	+/-	36Ar/39Ar	+/-	% Atm.	+/-	Ca/K	+/-	Cl/K	+/-	40*/39K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40Ar								(Ma)	(Ma)
500	0.0098	9.43	0.05	0.040	0.002	0.026	0.001	80.305	3.436	0.073	0.004	0.004	0.000	1.852	0.323	13.45	2.34
1000	0.0422	8.34	0.03	0.040	0.001	0.008	0.000	28.529	1.073	0.073	0.001	0.002	0.000	5.941	0.093	42.78	0.67
1500	0.0982	8.58	0.02	0.035	0.000	0.004	0.000	13.974	0.818	0.065	0.001	0.002	0.000	7.353	0.073	52.8	0.52
2000	0.1679	8.28	0.03	0.039	0.001	0.003	0.000	11.043	0.513	0.072	0.001	0.001	0.000	7.339	0.049	52.7	0.35
2500	0.2839	7.67	0.02	0.065	0.000	0.002	0.000	7.313	0.346	0.119	0.001	0.001	0.000	7.083	0.034	50.89	0.24
3000	0.4007	7.37	0.02	0.091	0.000	0.001	0.000	4.790	0.421	0.166	0.001	0.001	0.000	6.988	0.038	50.22	0.27
4000	0.7923	7.13	0.01	0.075	0.000	0.001	0.000	2.589	0.147	0.138	0.000	0.000	0.000	6.915	0.017	49.7	0.12
9000	1	7.09	0.01	0.054	0.000	0.001	0.000	3.509	0.242	0.100	0.001	0.001	0.000	6.811	0.021	48.96	0.15
Integrated		7.43	0.01	0.065	0.000	0.002	0.000	6.896	0.131	0.120	0.000	0.001	0.000	6.894	0.012	49.55	0.16
15BG216 W	hole rock																
Weighted av	erage of J from s	tandards = 4.044	4e-03 +/- 1.	101e-05													
Laser Power	Cumulative	40Ar/39Ar	+/-	37Ar/39Ar	+/-	36Ar/39Ar	+/-	% Atm.	+/-	Ca/K	+/-	Cl/K	+/-	40*/39K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40Ar								(Ma)	(Ma)
500	0.0603	33.55	0.19	0.260	0.003	0.094	0.002	83.136	1.546	0.476	0.006	0.009	0.000	5.654	0.521	40.74	3.71
1000	0.1711	11.36	0.04	0.232	0.002	0.016	0.001	41.710	1.751	0.426	0.003	0.001	0.000	6.605	0.201	47.5	1.42
1500	0.276	11.42	0.05	0.311	0.002	0.015	0.001	37.934	1.536	0.570	0.004	0.000	0.000	7.071	0.179	50.8	1.27
2000	0.4507	9.93	0.04	0.335	0.002	0.009	0.000	27.811	1.273	0.615	0.004	0.000	0.000	7.148	0.130	51.35	0.92
2500	0.5161	8.90	0.04	0.362	0.002	0.006	0.001	20.018	2.022	0.664	0.004	0.001	0.000	7.100	0.183	51.01	1.29
3000	0.6069	7.75	0.03	0.387	0.002	0.003	0.001	11.801	2.085	0.709	0.004	0.000	0.000	6.814	0.164	48.98	1.16
4000	0.9577	7.47	0.03	0.574	0.003	0.003	0.000	9.610	0.477	1.054	0.005	0.000	0.000	6.727	0.043	48.36	0.3
9000	1	6.78	0.05	0.923	0.009	0.000	0.001	0.493	4 600	1 695	0.016	0.001	0.000	6 726	0 314	48 36	2.23

0.012 0.000 34.587 0.524 0.792 0.002 0.001 0.000

6.790 0.056 48.82 0.42

Supplemental Information S4: U-Pb age plots

Supplemental Information 4

Supplemental Figure 4.1: Weighted mean U-Pb plots of Cenozoic and Mesozoic igneous zircon samples. Weighted mean ages are interpreted as crystalization ages. The horizontal line represented the weighted mean age. Black bars are used in age claculation and grey bars were rejected by Isoplot. MSWD: Mean Square Weighted Deviation; POF: Probability of Fit. Rejected analyses met our filtering criteria, but were rejected by Isoplot.

Supplemental Information 4

Supplemental Information 4

Supplemental Figure 4.3: ⁴⁰Ar/³⁹Ar age spectra. Prefered ages aare indicated with an asterisk*. Only filled steps are used to calculate plateau or weighted mean ages. MSWD: Mean Square Weighted Deviation. N= number of steps used in age calculation.

Ch. 3: The role of upper plate strike-slip faults during long-lived oblique flat slab subduction, southern Alaska

T. S. Waldien¹, R. O. Lease², S. M. Roeske¹, J. A. Benowitz³, P.B. O'Sullivan⁴

¹Department of Earth and Planetary Sciences, University of California, Davis, 1 Shields Ave. Davis, California 95616, USA

² U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508
³Geophysical Institute, University of Alaska, Fairbanks, 900 Yukon Drive Fairbanks, Alaska
99775, USA

⁴GeoSep Services, 1521 Pine Cone Road, Moscow, ID 83843

ABSTRACT

Upper plates of subduction zones commonly respond to flat slab subduction by structural reactivation, magmatic arc disruption, and foreland basin inversion. However, the role of preexisting strike-slip faults in focusing deformation and magmatism in response to oblique flat slab subduction remains less clear. Here we present new detrital apatite fission-track (dAFT) ages from twelve modern catchments in the eastern Alaska Range, Alaska, USA, to reveal how the dextral Denali fault system has facilitated bedrock exhumation and topographic growth during ca. 30 Mato-Present oblique flat slab subduction of the Yakutat oceanic plateau. Additionally, a 940 ka (⁴⁰Ar/³⁹Ar whole rock) basalt flow is spatially associated with Cenozoic structures and provides the first evidence for Quaternary volcanism along the southern flank of the eastern Alaska Range. We integrate our new data with other thermochronologic, geochronologic, and regional geologic datasets to show that: 1) most high topography regions in southern Alaska have undergone rapid bedrock cooling and exhumation since ca. 30 Ma, 2) elevated topography and young cooling are spatially associated with long-lived active strike-slip fault systems, 3) topographic growth associated with strike-slip fault systems led to local inversion and compartmentalization of a previously interconnected foreland basin system, 4) the onset of oblique flat slab subduction is coeval with a southward shift in arc magmatism from one region of active strike-slip faulting to another above the edge of the flat slab, and 5) Quaternary volcanism marks the revival of magmatism in the eastern Alaska Range above the geophysically-imaged northeastern edge of the flat slab. Our analysis of the post-30 Ma geologic evolution of southern Alaska demonstrates that strike-slip fault systems that were active at the time of slab flattening evolved into transpression zones that focused bedrock cooling, rock exhumation, and topographic growth.

INTRODUCTION

Active deformation at plate boundaries involving continental lithosphere commonly deviates from plate-like behavior (e.g. Freymueller, 2010; Kreemer et al., 2014). Spatially distributed deformation is clearly evident in flat slab subduction environments where increased coupling along the plate boundary interface associated with slab flattening can drive widespread upper plate deformation hundreds of kilometers inboard of the trench (e.g. Ramos and Folguera, 2009). Distributed fault reactivation, basin inversion, and inboard migration of the magmatic arc are considered hallmarks of upper plate tectonic evolution in both modern flat slab regions of South America (Ramos et al., 2002) and inferred ancient flat slab regions of North America (Saleeby, 2003). The down-dip extent of increased plate boundary coupling (Espurt et al., 2008) and locations of inherited major crustal structures (Marshak et al., 2000) are thought to primarily control the degree to which upper plate shortening is localized or distributed. Minor strike-slip structures have been shown to form perpendicular to the plate boundary as part of the upper plate shortening regime in response to the subduction of buoyant crust (e.g. Gardner et al. 2013). However, the role of pervasive, large-magnitude strike-slip faulting in oblique flat slab environments has received relatively little attention to date. Here we investigate how pre-existing continental strike-slip fault systems influence the distribution of upper plate deformation and magmatism in the long-lived oblique flat slab subduction setting of southern Alaska.

Crustal deformation during oblique flat slab subduction in southern Alaska

Subduction of the Yakutat oceanic plateau (Plafker, 1987; Christeson et al., 2010) beneath southern Alaska is a long-lived, and still active, example of a flat slab environment wherein the upper plate is dissected by numerous crustal scale pre-existing strike-slip faults (Finzel et al., 2011a; Allam et al., 2017; Ziwu et al., 2020). Flat slab subduction is inferred to have begun by ca. 30 Ma based on modification of the upper plate thermal structure, migration of arc magmatism, and topographic growth at that time (Enkelmann et al., 2008; 2010; Benowitz et al., 2014; Trop et al., 2019; Brueseke et al., 2019). Long lived and still active upper plate dextral strike-slip faults in southern Alaska include the Denali, Castle Mountain-Lake Clark, eastern Contact, Totschunda, and Fairweather fault systems (Figure 1) (e.g. Wyld et al., 2006).

Geophysical models of southern Alaska deformation yield variable importance of strikeslip fault systems in regional deformation above the flat slab. Despite generally sparse coverage of GPS stations in southern Alaska (e.g. Freymueller et al., 2008), the geodetic velocity field and distribution of crustal seismicity together highlight the strike-slip fault systems as zones of focused deformation (Ruppert, 2008). Inverse numerical simulations of the geodetic velocity field suggest a somewhat different view wherein the strike-slip fault systems occupy high strain rate zones embedded into regionally diffuse deformation above the flat slab (Finzel et al., 2011b). Alternatively, forward geodynamic modeling favors high coupling between the subducted flat slab and base of the upper plate, which would act to increase the strength of the upper plate by refrigeration and mechanical thickening (Jadamec et al., 2013). In the forward simulations, lateral rheological contrasts in the upper plate (e.g. lithospheric scale strike-slip faults) are crucial for focusing upper plate deformation (e.g. Haynie and Jadamec, 2017). More recent block-modeling of geodetic data suggests an intermediate scenario wherein the size of the blocks, and thus the localization of regional deformation, increases with distance from the plate boundary (Elliott and Freymueller, 2020). A potential implication of the block modeling is that the importance of preexisting strike-slip fault systems increases with distance from the plate boundary fault system.

In this contribution, we assess the role of pre-existing upper plate strike-slip faults in the oblique flat slab environment of southern Alaska by evaluating regional exhumation patterns through the lens of detrital thermochronology. Studies using detrital mineral chronometers from modern sediment and Neogene-Quaternary stratigraphic sections have proven foundational for understanding long-term patterns of bedrock cooling, erosion, and magmatism in largely inaccessible regions of southern Alaska (e.g. Enkelmann et al., 2009; 2019). Detrital thermochronology data are particularly well suited to capture regional exhumation responses to changes in plate boundary forcing due to the spatial-temporal sensitivity of the technique to tectonic events affecting broad regions (e.g. Carrapa et al., 2019). We present modern river detrital apatite fission-track (dAFT) data from twelve catchments in the eastern Alaska Range (yellow circles in figure 1). We compare the new dAFT data to published dAFT and detrital zircon fissiontrack (dZFT) datasets sampled from modern catchments in other mountainous regions across southern Alaska (red, blue, and white circles in figure 1) to evaluate if deformation is diffuse across the upper plate of the flat slab region or primarily focused along pre-existing strike-slip fault systems. Additionally, we present the first field observations and ⁴⁰Ar/³⁹Ar date documenting a newly recognized Quaternary volcanic field in the eastern Alaska Range. Our integration of new and published data reveal loci of Oligocene to Neogene upper plate deformation and topographic growth, which inform a comprehensive model describing the tectono-magmatic response to oblique flat slab subduction of the Yakutat oceanic plateau beneath southern Alaska.

REGIONAL GEOLOGY OF SOUTHERN ALASKA:

Much of the geology of the northern North American Cordillera formed by accretion of allochthonous terranes during the Mesozoic (Nelson and Colpron, 2007). From north to south,

important tectonostratigraphic terranes in southern Alaska include peri-continental North American metamorphic rocks north of the Denali fault, the Wrangellia composite island arc terrane south of the Denali fault, and the Chugach accretionary complex south of the Border Ranges fault system (Figure 1B). The boundaries between these terranes are in most places occupied by dextral strike-slip faults that are interpreted to penetrate the lithosphere based on receiver function seismology (e.g. O'Driscoll and Miller, 2015; Miller et al., 2018) and seismic anisotropy studies (e.g. Rasendra et al., 2014; Audet et al., 2016; Estéve et al., 2020). The Denali fault system juxtaposes the accreted Wrangellia arc terrane in the south against continental North Americanaffinity terranes to the north. A region underlain by imbricated Mesozoic marginal marine basin strata, plutonic rocks, oceanic fragments, and disparate continental terranes known as the Alaska Range suture zone (Ridgway et al., 2002) is intersected by the Denali fault and appears to focus post-suturing deformation (Fitzgerald et al., 2014), which has facilitated rapid Neogene exhumation of the Alaska Range (Benowitz et al., 2011, 2019; Lease et al., 2016). South of the Wrangellia terrane, the Chugach accretionary complex represents the forearc to Mesozoic arcs that were built upon the Wrangellia composite terrane, although the accretionary complex has been translated hundreds of kilometers from the associated arc rocks by dextral slip along the Border Ranges fault system (e.g. Roeske et al., 2003; Garver and Davidson, 2015). Oligocene to present exhumation of the accretionary complex is largely associated with underplating of the Yakutat slab and is mainly focused along the Contact fault system in the western Chugach Range and the Bagley Fault in the eastern Chugach Range (Bruhn et al., 2012; Arkle et al., 2013).

METHODS

Apatite fission-track thermochronology

New dAFT data reveal the ≤110°C (Green et al., 1986) cooling history of twelve catchments spanning 330 km of the eastern Alaska Range (Figure 2). Samples comprise several sub-samples of medium-coarse sand collected from gravel bars along a 10-100 m river length to ensure a representative, well-mixed sample. In 2019, sample collection involved heavy mineral concentration in the field using a miner's gold pan and further concentration at UC Davis using standard magnetic and density techniques. Apatite concentration from samples collected prior to 2019 took place at GeoSeps Services using standard magnetic and density separation techniques. Fission-track dating at GeoSeps Services involved counting spontaneous fission tracks on 70-110 grains per sample and parent isotope ratio measurement using the laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) method (Donelick et al., 2005) at Washington State University (detailed methods in DR1 and data in DR2). We filtered the dAFT data and rejected analyzed grains if they exhibited a Uranium concentration less than 0.5 ppm and an AFT age that is not within uncertainty of the oldest known bedrock crystallization age in the catchment (<2% of the total dataset). We deconvolved the dAFT datasets into constituent age populations for each catchment (Figure 2; Table 1) using the mixture modeling methods of Galbraith and Green (1990) and Galbraith (2005) as implemented in DensityPlotter v. 8.4 (Vermeesch, 2012).

We compared the new and existing modern river dAFT and dZFT datasets from across southern Alaska based on the abundance and proportions of constituent age populations in different regions (Figure 3). We compiled the resolved age components for each detrital fission-track sample analyzed within a region and generated probability density plots of the age population data for each region. Because the age population plots do not account for the proportion of dated grains that constitute each age population, we augment the probability density plots with pie charts that show the data binned into regionally important time intervals (<4, 4-30, and >30 Ma) and weighted by the proportion of dated grains in those time bins.

⁴⁰Ar/³⁹Ar geochronology

⁴⁰Ar/³⁹Ar analysis performed on one basalt sample at the Geochronology laboratory at the University of Alaska, Fairbanks involved crushing the sample, sieving for the 500-1000 um fraction, washing dust from the fraction, and hand-picking for a pure phase of phenocryst-free groundmass. Monitoring of the neutron flux and calculation of the irradiation parameter (J) were based on the monitor mineral TCR-2 with an age of 28.619 Ma (Renne et al, 2010). See DR3 for detailed ⁴⁰Ar/³⁹Ar methods and data.

RESULTS: NEW AND COMPILED DATA

New Detrital fission-track data

Individual catchments in the eastern Alaska Range predominantly yield AFT age populations of ca. 8-15 Ma, 20-30 Ma, and 50-65 Ma (Figure 2; Table 1). The middle and west forks of the Maclaren River contain small (~5%) populations centered at ca. 1.6-1.9 Ma, and several catchments also yield older (>90 Ma) age populations.

The combined dAFT dataset (n=1210 single-grain dates) for catchments in the eastern Alaska Range presented herein records widespread Cenozoic cooling (Figure 3A). Of the dated grains, ~69% document cooling between 4-30 Ma and resolved age populations are present at ca. 8-12 Ma and 22-28 Ma. Approximately 30% of the grains record cooling between 30-197 Ma, and the remaining ~1% record cooling since 4 Ma.

Compiled Detrital fission-track data

Modern river detrital fission-track data from the western and central Alaska Range compiled here from Lease et al. (2016) and Enkelmann et al. (2019) display multiple phases of Cenozoic cooling (Figure 3B). The combined dAFT dataset predominantly records cooling from 4-30 Ma, wherein ~46% of the dated grains fall into age populations at ca. 20-25 Ma and 6-10 Ma. Approximately 17% of the dated apatite grains record cooling younger than 4 Ma, which is linked to enhanced glacial erosion in the mid-late Pliocene (Benowitz et al, 2011; Lease, 2018). Detrital zircon fission-track data from the same catchments do not contain age populations younger than 4 Ma, yet ~37% of the dZFT cooling ages form an age population at ca. 15-30 Ma. Both the combined dAFT and dZFT datasets record significant (dAFT~37% and dZFT~63%) bedrock cooling older than 30 Ma, which can be correlated with regional magmatic/thermal events (Lease et al., 2016; Terhune et al., 2019; Regan et al., 2020).

Modern river and pro-glacial dZFT data from the northern Chugach Mountains (Arkle et al., 2013) and southern Talkeetna Mountains (Enkelmann et al., 2019) display a spectrum of mid-Cenozoic cooling ages (Figure 3C). The majority (~82%) of the dated grains record cooling at ca. 45 Ma and 65 Ma, which can be correlated to magmatic/thermal events at those times (Terhune et al., 2019). Post-30 Ma cooling is recorded in the remaining ~37% of the dated grains, which primarily compose a ca. 22-29 Ma age population.

Modern river detrital fission-track data from catchments draining the northern flank of the St. Elias Mountains published by Enkelmann et al. (2008, 2015) and Falkowski and Enkelmann (2016) record cooling that spans the Cretaceous and Cenozoic (Figure 3D). The majority (~53% dAFT and ~80% dZFT) of the dated grains record bedrock cooling older than 30 Ma, which is interpreted to reflect cooling during terrane accretion and multiple pulses of regional magmatism
(Falkowski and Enkelmann 2016). Cooling from 4-30 Ma is recorded by ~39% of the compiled dAFT data and ~20% of the dZFT data and likely records development of the St. Elias orogen in response to flat slab subduction of the Yakutat slab. Cooling younger than 4 Ma is mainly recorded in the dAFT data (8% of the dated grains) and likely records enhanced glacial erosion in the region of Mt. Logan (Enkelmann et al., 2009).

Modern river and proglacial detrital fission-track data from catchments draining the southern flank of the St. Elias Range compiled by Enkelmann et al. (2015) record profound late Cenozoic cooling in the upper plate proximal to the Yakutat collision zone (Figure 3E). The comparable proportions of <4 Ma (46%) and 4-30 Ma (45%) grains in the compiled dAFT data indicate that enhanced glacial erosion and tectonically driven exhumation work in tandem to generate the high relief of the St. Elias Mountains (e.g. Enkelmann et al., 2008, 2009, 2010; Berger and Spotila, 2008; Gulick et al., 2015). The remaining ~9% of dAFT grains fall into a distributed age range as old as ca. 128 Ma. Detrital ZFT data from the same catchments predominantly record cooling older than 30 Ma (65% of the dated grains), yet those grains largely do not cluster into discrete age populations. Younger, discrete dZFT age populations are present at ca. 25 Ma, 18 Ma, and younger than 10 Ma, which together comprise ~23% of the analyzed grains. Cooling younger than 4 Ma is recorded by ~12% of the dated zircon grains, which suggests that the combined tectonic forcing and glacial erosion was locally significant enough to exhume rocks from below the ZFT closure temperature (~240°C- Bernet, [2009]) since 4 Ma.

Quaternary volcanism in the eastern Alaska Range

We present the first description of Quaternary volcanic rocks along the south flank of the eastern Alaska Range. Stout (1976) mapped isolated exposures of "Tertiary basalt flows" that

unconformably overlie older structures in the area. Based on the recent recognition that many of the structures beneath the basalt flows have post-Oligocene slip (Waldien et al., 2021; Twelker et al., 2020), the field relationships alone suggest that the basalt flows are Neogene or younger. We dated one outcrop of olivine basalt near the southern flank of the Alaska Range (red star on figure 1), which yielded an 40 Ar/³⁹Ar whole rock plateau age of 940.4 ± 27.1 ka (Figure 4A). In addition to the dated locale, our reconnaissance fieldwork has revealed additional outcrops of similar, potentially younger lavas wherein delicate flow features and rock types including brecciated flow tops and scoria are locally preserved. Owing to their low preservation potential, the presence of scoria, cinder, and volcanic landforms implies that portions of the newly documented volcanic field along the southern flank of the Alaska Range may be younger than the regional Pleistocene glaciations (e.g. Kaufman et al., 2011). Table 2 and figure 4 contain locations and photos of features in the Quaternary volcanic field.

DISCUSSION

Regional integration of thermochronology datasets

The new dAFT data from the eastern Alaska Range augment existing bedrock and detrital thermochronology datasets from southern Alaska indicating a major shift in the regional tectonic framework at ca. 30 Ma (Benowitz et al., 2011, 2014, 2019; Riccio et al., 2014; Lease et al., 2016; Waldien et al., 2021). Assessing the dAFT data from the entire Alaska Range reveals that >60% of detrital apatite grains record cooling since 30 Ma and tectonic-related cooling in that timeframe may be further split into populations at ca. 28, 20-22, and 8-12 Ma (Figure 3A-B). Quaternary cooling ages in the eastern Alaska Range dataset are ca. 1.5 Myr younger than cooling attributed to enhanced glacial erosion in the central-western Alaska Range (Figures 2 and 3A-B) and are

limited to two catchments that contain relatively unweathered basalt clasts near our newly identified Quaternary volcanic province (Figure 1). On the basis of the above observations, we attribute the Quaternary AFT dates in the eastern Alaska Range to reflect volcanic provenance, annealing of apatite fission tracks from interaction with volcanic fluids, and/or the thermal effects associated with the newly identified Quaternary volcanism in the region.

Detrital ZFT data from the western and central Alaska Range mimic the cooling pattern shown by the dAFT data from that region with the addition of relatively persistent cooling throughout the Miocene (Figure 3B). Post-30 Ma events in the Alaska Range that may have facilitated cooling include: exhumation related to thrust reactivation of terrane accretionary structures (Waldien et al., 2021), waning magmatism along the Denali fault (Trop et al., 2019; Regan et al., 2019), and rock uplift focused within restraining bends along the Denali fault (Fitzgerald et al., 1995; Benowitz et al., 2011, 2014: Burkett et al., 2016; Lease et al., 2016). Heterogeneity in the major cooling age populations among catchments (Figures 2 and 3; Table 1) suggests that cooling, exhumation, and related topographic growth in the Alaska Range was likely not uniform across the entire range. Instead, variation in the location, rate, and episodicity of rock uplift/exhumation are more probable (e.g. Bill et al., 2018; Otiniano et al., 2020), and may be related to a spatially variable structural and kinematic evolution of the Denali fault system (cf. Fitzgerald et al., 1995; Benowitz et al., 2014; Riccio et al., 2014; Waldien et al., 2018).

Both bedrock and detrital thermochronology datasets display abundant post-30 Ma cooling and exhumation in mountainous regions across southern Alaska (Figures 3 and 5). The dZFT data compiled herein indicate that most high-elevation regions of southern Alaska have, at least locally, experienced bedrock exhumation from depths of \geq 8 km depth (assuming a geothermal gradient of ~30 °C/km and ZFT closure temperature of 240°C [Bernet, 2009]). Additionally, bedrock cooling ages suggest Oligocene-to-present exhumation depths of ≥ 11 km north of the Denali fault in the eastern Alaska Range (Benowitz et al., 2011), ≤ 10 km south of the Denali fault in the eastern Alaska Range (Waldien et al., 2018, 2021), ≤ 6 km south of the Denali fault in the Kluane Ranges (McDermott et al., 2019), ≥ 8.5 km in the Denali massif (Fitzgerald et al., 1995), ≥ 5 km in the central Chugach mountains (Arkle et al., 2013), ≤ 4 km in the Talkeetna Mountains (Terhune et al., 2019), and ≤ 10 km depth in the St. Elias Mountains (Enkelmann et al., 2010). The bedrock and detrital cooling age data together suggest that, aside from elements of paleo-topography in the Talkeetna Mountains (Terhune et al., 2019; Figure 5) and in the western Alaska Range (Benowitz et al., 2012), the topographic signature of southern Alaska has largely taken form since ca. 30 Ma.

Oligocene-to-Present arc magmatism in southern Alaska

The Oligocene marks a fundamental shift in the loci of arc magmatism in southern Alaska. U-Pb zircon dating from exhumed batholithic rocks and modern river sands indicate that prior to ca. 32 Ma, the Alaska Range was the locus of Cenozoic subduction-related magmatism (Lease et al. 2016; Regan et al., 2019; Jones et al., 2020). From ca. 32-25 Ma, arc magmatism waned in the Alaska Range (Trop et al., 2019) and re-focused in the region of the present-day Wrangell Mountains, which contain calc-alkaline igneous rocks as old as ca. 30 Ma (Berkelhammer et al., 2019; Brueseke et al., 2019). The migration of arc magmatism developed a magmatic gap throughout the eastern and central Alaska Range between the eastern Aleutian and Wrangell Mountains arcs, which broadly aligns with the present-day subducted extent of the Yakutat slab (Figure 1).

Although ca. 2-to-25 Ma igneous rocks are absent from the eastern and central Alaska Range, the presence of Quaternary volcanic fields along the southern (940.4 \pm 27.1 ka lava flow;

Figure 4) and northern (Jumbo Dome -1.026 ± 0.057 Ma; Athey et al., 2006, and Buzzard Maar– ca.10 ka; Andronikov, and Mukasa, 2010) flanks of the Alaska Range demonstrate that active magmatism has recently resumed in the region. Preliminary geochemical data from Jumbo Dome lavas suggest adakite-like characteristics (Cameron et al., 2015). Similarly, adakite-like geochemical signatures are relatively common in Wrangell Arc lavas of all ages and have been attributed to melting along the edge of the Yakutat slab (Brueseke et al., 2019). Considering the northeastern extent of subducted Yakutat slab from recent geophysical studies (Bauer et al., 2014; Wech, 2016; Ward and Lin, 2018), it is clear that the Quaternary lava flows along the southern flank of the eastern Alaska Range are located above the edge of the slab (Figure 1) and thus their petrogenesis is likely also influenced by the slab edge. Due to the observation that the yet unsubducted portion of the Yakutat slab is thicker than the imaged subducted section (~30 km vs. ~17 km; Worthington et al., 2012), Gulick et al. (2013) postulated that an enhanced stage of collision between the Yakutat microplate and southern Alaska began at ca. 1 Ma, which may lead to accretion of a Pacific plate sliver. We further hypothesize that the increased plate coupling in the Quaternary may have facilitated tearing of the Yakutat slab (Fuis et al., 2008), a lull in Wrangell arc magmatism after 200,000 ka (Richter et al., 1990), and the revival of Alaska Range magmatism. Albeit cursory, our preliminary documentation provides a foundation for ongoing detailed petrologic and geochemical studies to address the origin of the Quaternary lavas in the eastern Alaska Range.

Upper plate response to oblique flat slab subduction of the Yakutat oceanic plateau in southern Alaska

The compiled regional thermochronology dataset from southern Alaska summarized herein reflects widespread, yet heterogeneously distributed, ca. 30 Ma-to-Present cooling and associated bedrock exhumation and topographic growth focused along pre-existing active strike-slip fault systems (Figure 6). In the proximal hanging wall of the flat slab collision zone, deep and rapid exhumation in the St. Elias Mountains is mainly focused in the syntaxis region (Figure 1A), where localized motion on the dextral transpressional Fairweather fault transitions to convergence across the thrust belt, and residual motion is bifurcated northward on the Connector fault and westward on the Chugach-St. Elias fault and eastern end of the Contact fault, which was renamed as the Bagley fault (McAleer et al., 2009; Bruhn et al., 2012; Enkelmann et al., 2015, 2017). These structures accommodated margin-parallel translation of the Yakutat terrane throughout the Cenozoic (Pavlis et al., 2019; Lease et al., 2021) and were thus active throughout the onset of Yakutat flat slab subduction. Rock uplift and exhumation in the Alaska Range has been focused along the dextral transpressional Denali fault system since ca. 30 Ma (Lease et al., 2016). Prior to ca. 30 Ma, the Denali fault accommodated mainly lateral motion of outboard terranes, which transitioned to transpression upon introduction of the Yakutat flat slab at ca. 30 Ma (e.g. Finzel et al., 2015). Localized recent exhumation in the high peak regions of the northern Chugach Mountains (Mt. Marcus Baker) and southern Talkeetna Mountains (Hatcher Pass) has been attributed to Oligocene-Neogene slip on the Castle Mountain fault, Contact fault, and subsidiary structures in the Matanuska Valley, which likely were active during initial subduction of the Yakutat oceanic plateau (Little and Naeser, 1989; Parry et al., 2001; Arkle et al., 2013; Terhune et al., 2019).

One peculiar aspect of the upper plate structural configuration is that major inactive structures, despite their importance as significant geologic-geophysical boundaries, appear to have experienced limited reactivation upon the transition to the flat slab setting. For example, the Talkeetna and Border Ranges faults are the two most profound geophysical features in southern Alaska and likely penetrate the crust (Saltus et al., 2007; Miller et al., 2018), yet the only sections of these faults with demonstrable Cenozoic slip are the sections near the aforementioned active strike-slip fault systems (Pavlis and Roeske, 2007; Waldien et al., 2021). Cooling age profiles that span the inherited active and inactive structures clearly show that bedrock cooling ages increase with distance away from the currently active transpressional fault systems toward unreactivated inherited structures and sedimentary basins (Figure 5).

Four long-lived and still active sedimentary basin systems (Copper River, Tanana, Susitna, Cook Inlet–Figure 1A) were active prior to, and during, flat slab subduction of the Yakutat oceanic plateau (Trop and Ridgway, 2007). Flexural subsidence in response to tectonic drivers likely controls depocenter locations and stability (Ridgway et al., 2007, 2011). Additionally, subsidence in the Cook Inlet area has been correlated with dynamic subsidence related to the geometry of the subducted slab (Jadamec et al., 2013). In the the Copper River basin, sparse geodetic data (Freymueller et al., 2008) suggest that a small amount of regional shortening may accompany flexural subsidence between the St. Elias Mountains and Alaska Range where active shortening structures have not been identified. Whereas protracted subsidence has created accommodation space near relatively stable basin axes throughout the Cenozoic, evidence for basin inversion is abundant along the boundaries of the high topography regions (e.g. Finzel et al., 2011a; Ridgway et al., 2011). Inversion of Oligocene-Neogene strata at the basin margins is linked to outward growth of the topography in response to slip on range-front shortening structures (e.g. Bernis and

Wallace, 2007; Haeussler et al., 2017; Allen, 2016; Waldien et al., 2018; Bender et al., 2019). The shortening and associated topographic growth led to widespread drainage reorganization throughout southern Alaska (Brennan and Ridgway, 2015; Finzel et al., 2015; Benowitz et al. 2019), which eventually compartmentalized the formerly connected basin system, resulting in isolated basins separated by high relief regions centered on the active transpression zones (Figures 1A and 6).

Oblique flat slab subduction of the Yakutat oceanic plateau resulted in a wholesale refocusing of arc magmatism in southern Alaska (Figure 6). Yakutat flat slab subduction synchronously resulted in the birth of the Wrangell Arc at ca. 30 Ma (Brueseke et al., 2019) and a decline in Alaska Range arc magmatism from ca. 30 Ma to 25 Ma (Trop et al., 2019; Jones et al., 2020). The compiled regional data indicate that arc magmatism prior to Yakutat subduction was focused along the Denali fault ~200-500 km inboard (north) of the plate boundary (inferred to be the Chugach-St. Elias fault–Figure 1). Upon introduction of the Yakutat oceanic plateau, arc magmatism was refocused laterally to a region of precursor strike-slip faulting (the Totschunda fault) above the slab edge and has persisted in that location for ca. 30 Myr (Brueseke et al., 2019; Trop et al., 2020). The newly recognized Quaternary volcanic field in the eastern Alaska Range (Figures 1A and 4) also coincides with the imaged edge of the subducted Yakutat slab and magma ascent may have been facilitated by deep-seated structures associated with the Denali fault system. These observations together suggest that the geometry of the Yakutat slab has remained relatively stable with respect to the upper plate south of the Denali fault from ca. 30-to-1 Ma.

The salient features of upper plate geologic evolution in response to oblique subduction of the Yakutat oceanic plateau in southern Alaska are portrayed in figure 6 and include: 1) bedrock exhumation and topographic development are focused along strike-slip fault systems that were active at the time of slab flattening; 2) foreland basin inversion is restricted to the periphery of regions of growing topographic relief; and 3) arc magmatism refocuses into the region above the slab edge and loci of volcanism is generally spatially associated with active strike-slip fault systems.

The role of pre-existing upper plate strike-slip faults in the tectono-magmatic response to oblique subduction of oceanic plateaus

The geophysical and geological datasets summarized herein indicate that the post-30 Ma geologic evolution of southern Alaska provides an archive of oblique subduction of an oceanic plateau. Yet, owing to the oblique nature of the subduction system and pre-existing upper plate strike-slip fault systems, the Oligocene-to-present tectono-magmatic evolution of southern Alaska displays a noteworthy departure from the upper plate evolution in orthogonal flat slab regions (e.g. Mexico–Arce et al., 2020; Costa Rica–Gardner et al. 2013; Peru–Bishop et al, 2017) and in oblique flat slab environments without active pre-existing continental scale strike-slip faults (e.g. Ontong Java–Mann and Taira, 2004, central Argentina–Siame et al., 2005; Allmendinger and Judge, 2014).

In light of the observations discussed herein, we propose that oblique convergent margins with pre-existing upper plate strike-slip structures experiencing oblique flat slab subduction will undergo focused bedrock exhumation and associated topographic growth along major strike-slip structures that were active prior to, and during, the slab flattening process. Increased upper plate convergence would likely have the effect of transitioning the active fault systems from transcurrent to transpressional kinematics rather than wholesale reactivation of inactive structures. Magmatism will not necessarily migrate inboard as has been documented along other oblique flat slab convergent margins (e.g. central Chile-Argentina–Capaldi et al., 2020), but instead melting may be focused along the edge of the down-going slab and magma ascent through the upper plate may be facilitated by lithospheric-scale strike-slip fault systems. A key finding from our analysis is that upper plate strike-slip faults systems are loci of bedrock cooling, magmatism, and topographic growth, which does not support diffuse deformation models for oblique flat slab subduction regions (e.g. Finzel et al., 2011b).

Modern and ancient examples of oblique subduction of oceanic plateaus share similarities with our documentation of the Oligocene-to-Present setting of southern Alaska. Active oblique subduction of the Samoan and Louisville Ridges into the Tonga trench has led to loci of upper plate convergence, strike-slip faulting, and focusing of magmatism into upper plate structures, which sets these sections of the margin apart from the otherwise extensional upper plate (Pelletier et al., 1998). In the northern Andes of Ecuador and Columbia, protracted slip histories alternating between transpressional and transtensional deformation within upper plate strike-slip fault systems appear to record changes in the obliquity, thickness and dip (inferred from upper plate convergence) of subducting slabs throughout the Cenozoic (Flinch, 2003; Mora et al., 2017). Multiple angular unconformities and changes in sediment provenance areas in sedimentary basins adjacent to the strike-slip fault systems suggest that basin compartmentalization and magma focusing along pre-existing lithospheric-scale structures were coeval with the changes in upper plate deformation regime (Litherland and Aspden 1992; Mora et al., 2017). Lastly, the late Cretaceous upper plate tectonic setting of western North America at the latitude of the contiguous United States involved a regional intra-arc strike-slip fault system that accommodated oblique convergence (Tikoff and de Saint Blanquat, 1997) and aided in magma ascent (e.g. Tikoff and Teyssier, 1992, among several others). The kinematics of the intra-arc shear system evolved with changes in the convergence angle and rate (Nadin et al., 2016) until inferred slab flattening related to oblique subduction of a hypothesized oceanic plateau exhumed the batholith as deformation and magmatism migrated inboard (e.g. Gilmer et al., 2003; Saleeby, 2003; Liu et al., 2010; Fan and Carrapa, 2014). Shortening and focused cooling of the upper plate took place along pre-existing structures, some of which were strike-slip faults that were active at the onset of plateau oblique subduction (e.g. Bartley et al., 2007; Nadin et al., 2016; Fan and Carrapa, 2014).

Given the abundance of oceanic plateaus on the modern seafloor (e.g. Mann and Taira, 2004), the correlation between oceanic plateau subduction and shallow slab dip (e.g. Gutscher et al., 2000), and the observation that nearly all plate boundaries have some amount of obliquity (e.g. Philippon and Corti, 2016), it follows that oblique flat slab subduction of oceanic plateaus is a fundamental, yet often overlooked, geologic process. In addition to our synthesis of oblique flat slab subduction in southern Alaska, the active and ancient examples discussed above demonstrate the importance of upper plate strike-slip fault systems in focusing deformation and magmatism during oblique flat slab subduction. Although common themes regarding fault system kinematic evolution, topographic-basin evolution, and magma routing have become apparent from our analysis, it is also clear that the details of upper plate geologic evolution are in part controlled by the geologic history endemic to each margin.

CONCLUSIONS

We have demonstrated herein that the post-30 Ma tectono-magmatic evolution of southern Alaska should be viewed as an archetypical example of oblique flat slab subduction of an oceanic plateau. Key conclusions from our study include:

- Post-30 Ma bedrock cooling and exhumation are widespread in the eastern Alaska Range. Most
 of the post-30 Ma bedrock cooling and interpreted topographic growth are associated with
 transpression in the Denali fault system. Quaternary cooling in the eastern Alaska Range is best
 explained by thermal effects related to ca. 1 Ma volcanism.
- 2) The youngest cooling ages across southern Alaska are spatially associated with regions of high topographic relief adjacent to major strike-slip fault systems. Increased upper plate convergence related to the Yakutat slab is focused on strike-slip fault systems that were active at the time of slab flattening. The shift to oblique flat slab subduction had the effect of changing the bulk deformation regime within the strike-slip fault systems from transcurrent to transpressional. There is no evidence for wholesale reactivation of inherited structures with distance away from the active transpressional fault systems.
- 3) A regionally integrated basin system across southern Alaska became compartmentalized upon subduction of the Yakutat flat slab. The basins were isolated by inversion along their margins where topography developed in response to transpressional deformation, but the basin axes remain active depocenters.
- 4) Introduction of the Yakutat oceanic plateau led to the demise of subduction-related magmatism along the Denali fault at ca. 32-25 Ma and the refocusing of arc magmatism above the northeastern edge of the slab after ca. 30 Ma. Arc magmatism was spatially associated with active strike-slip fault systems during both time intervals.

- 5) Quaternary volcanism in the eastern Alaska Range records the resumption of magmatism in central Alaska after a ca. 24 Myr hiatus and is focused above the Yakutat slab edge. We infer the revival of Alaska Range magmatism is related to a recent (ca. 1 Ma) increase in subduction resistance of the Yakutat oceanic plateau.
- 6) The angle of convergence and precursor structural configuration of the upper plate play firstorder roles in how deformation is manifest and magmatism is focused during flat slab subduction.

FIGURES

Figure 1 (Previous page): A) Shaded relief map of southern Alaska showing new and compiled modern river detrital fission-track sample locations (colored circles) and locations of Alaska Range Quaternary (Quat.) volcanic fields relative to major structures (black lines) and basins (blue shaded regions). The exposed Yakutat terrane (transparent-black shaded region) and flat-slab subducted extent (broken bold black line compiled from Bauer et al., [2014], Wech [2016], and Ward and Lin [2018]) is inferred to drive upper plate deformation in southern Alaska. EAR–Eastern Alaska Range; WAR–Western Alaska Range; CAR–Central Alaska Range; Talk–Talkeetna Mountains; Chug–Chugach Mountains. Faults in inset: T-K–Tintina-Kaltag; D–Denali; C-LC–Castle Mountain-Lake Clark; BR–Border Ranges. **B)** Hillshade map of the same extent as Figure 1A overlain by terrane geology (see text for details). Colored domains are labelled generically on the map and represent generalized southern Alaska terranes in the legend.

Figure 2 (Previous page): Equal-area probability density plots (PDPs) of detrital apatite fissiontrack data from individual catchments in the eastern Alaska Range. Filled PDPs represent the entire unmixed dataset, whereas unfilled black PDPs represent unmixed age populations. The inset map in the upper right shows the locations of the catchments. N–total number of analyzed grains; n–number of grains used in the unmixing analysis; PA1-5–Apatite fission track age populations defined in table 1. Abbreviated catchment names: WM– West fork Maclaren river; MM–Middle fork Maclaren River; MG–Maclaren glacier.

Figure 3 (Previous page): Equal-area probability density plots of compiled modern river detrital apatite and zircon fission-track age populations from (A) the eastern Alaska Range (this study), (B) central-western Alaska Range, (C) Chugach and Talkeetna Mountains, and (D and E) St. Elias Mountains (see text for references). Pie charts summarize the age populations normalized by their proportions of the entire single grain dataset and binned into <4 Ma, 4-30 Ma, and <30 Ma time intervals. Grey shaded time intervals represent times of known magmatism in each region and yellow shaded time intervals represent known times of regional cooling events. dAFT–detrital apatite fission-track; dZFT-detrital zircon fission-track.

Figure 4 (Previous page): Features of Quaternary volcanic rocks in the eastern Alaska Range. **A)** ⁴⁰Ar/³⁹Ar age spectrum for sample 15ET166. Grey-filled gas release steps are used to calculate the age of the sample. N–number of gas release steps used to calculate the age; MSWD– Mean Square Weighted Deviation. **B)** 15ET166 hand sample. **C)** Outcrop photo of 15ET166. The platy outcrop pattern pictured here is common among outcrops of young volcanic rocks in the eastern Alaska Range. The hammer for scale is ~40 cm long. **D)** Geomorphic features indicative of young volcanism are preserved in the landscape. Here, a semi-conic feature composed of oxidized basalt is preserved. *Inset*: Google Earth image showing that the cone appears to have breached out of the southeast flank. **E)** Zoomed-in image of the cone flank illustrating the along-strike relationship with the Wrangell arc (Mt. Sanford). **F)** A late Pleistocene, potentially post-glacial Holocene, age for some volcanic features is suggested by the presence of unaltered cinder ejecta (pictured here) among oxidized basalt, scoria and the preserved landforms.

Distance along profile (km) V.E.= 20:1

Figure 5 (Previous page): Topographic profiles showing that the youngest bedrock apatite fission-track (AFT) and apatite (U-Th)/He cooling ages are spatially associated with major Cenozoic strike-slip fault systems in southern Alaska. Profile A-A' is modified from Terhune et al. (2019). Data are compiled from Terhune et al. (2019), Arkle et al. (2013), Berger and Spotila (2008), Berger et al., (2008), Enkelmann et al. (2010), O'Sullivan and Currie (1995), Meigs et al. (2008), Spotila et al. (2004).

Figure 6: Schematic diagrams showing the ca. 32-0 Ma southern Alaska tectonic evolution as it displays salient features of "normal" (left) and flat slab (right) subduction in obliquely convergent environments. Key features of the tectonic evolution upon the onset of oblique flat slab subduction include: 1) active strike-slip fault systems transition into transpressional deformation zones with bedrock cooling/exhumation/uplift focused along the fault systems; 2) topographic growth associated with transpression zones causes the through-going basin system to become compartmentalized into isolated depocenters; and 3) magmatism is focused above the slab edge and active strike-slip fault systems play a role in facilitating magma ascent. Paleo-drainage directions are inferred from Finzel et al. (2015) and Trop and Ridgway (2007).

Sample	Sample collection year	PA1 (1.6-7 Ma)	PA2 (8-17 Ma)	PA3 (20-33 Ma)	PA4 (38-77 Ma)	PA5 (96- 134 Ma)	PA6 (≥145 Ma)	n ¹ (N) ²
Ann Creek	2019		10.9±2.7 (35%)	25.7±4.8 (47%)		96±19 (18%)		103(105)
Eureka Glacier	2019		11.1±1.7 (36%)	25.2±2.5 (64%)				105(105)
Maclaren Glacier	2019		11.9±1 (35%)	21.4±1.1 (62%)		99±31 (3%)		105(105)
M. Fork Maclaren River	2019	1.9±0.6 (5%)	16.6±0.8 (61%)	28.1±1.6 (31%)	63.9±7.7 (3%)			104(105)
W. Fork Maclaren River	2019	1.6±0.4 (4%)	14.9±0.9 (60%)	26.6±2.6 (21%)	55.9±8.5 (9%)		145±28 (6%)	105(105)
Maclaren Bridge	2019		12±1.2 (26%)	21.3±1.4 (57)	38.5±4.8 (17%)			103(105)
Little Tok River	2016			30.6±2.1 (29%)	57.9±3.4 (23%)	125.3±5.2 (26%)	197±12 (21%)	69(70)
Robertson River	2012				49.8±2.3 (84%)	133±14 (16%)		109(110)
Delta River	2014		11.1±1.3 (41%)	27.6±1.9 (54%)	66.1±7.7 (5%)			105(110)
Upper Susitna River	2014		8.6±1.3 (30%)	32±2 (56%)	76.3±7.5 (11%)	134±15 (3%)		109(110)
Tok River	2016			20±4.5 (18%)		119±14 (82%)		60(70)
Nenana River	2014		7.8±0.6 (73%)		65.5±6.9 (27%)			108(110)

TABLE 1: Eastern Alaska Range detrital apatite fission-track age populations

1- n- number of analyzed grains used in unmixing

2- N-total number of analyzed grains

	LAT.	LONG.
Feature	(N)	(W)
Scoria	63.1358	146.3252
Blocky lava flow	63.1371	146.3217
Possible tuff interbedded with lava	63.0553	146.3132
Platey lava	63.0547	146.3110
Oxidized lavas- possible vent	63.0569	146.3125
15ET166- Platey lava	63.2357	146.1944
Cinder	63.1364	146.3199

TABLE 2: Quaternary volcanic features in the eastern Alaska Range

REFERENCES CITED

- Allen, W.K., 2016, Miocene-Pliocene strike-slip basin development along the Denali fault system in the eastern Alaska Range: Chronostratigraphy and provenance of the McCallum formation and implications for displacement [M.S. Thesis]: Purdue University, 160 p.
- Allmendinger, R. W., & Judge, P. A. (2014). The Argentine Precordillera: A foreland thrust belt proximal to the subducted plate. *Geosphere*, *10*(6), 1203-1218.
- Andronikov, A.V. and Mukasa, S.B., 2010. 40Ar/39Ar eruption ages and geochemical characteristics of Late Tertiary to Quaternary intraplate and arc-related lavas in interior Alaska. *Lithos*, *115*(1-4), pp.1-14.
- Arce, J.L., Ferrari, L., Morales-Casique, E., Vasquez-Serrano, A., Arroyo, S.M., Layer, P.W., Benowitz, J. and López-Martínez, M., 2020. Early Miocene arc volcanism in the Mexico City Basin: Inception of the Trans-Mexican Volcanic Belt. *Journal of Volcanology and Geothermal Research*, 408, p.107104.
- Arkle, J. C., Armstrong, P. A., Haeussler, P. J., Prior, M. G., Hartman, S., Sendziak, K. L., & Brush, J. A. (2013). Focused exhumation in the syntaxis of the western Chugach Mountains and Prince William Sound, Alaska. *Bulletin*, 125(5-6), 776-793.
- Athey, J.E., Newberry, R.J., Werdon, M.B., Freeman, L.K., Smith, R.L., and Szumigala, D.J., 2006, Bedrock geologic map of the Liberty Bell area, Fairbanks A-4 Quadrangle, Bonnifield mining district, Alaska: Alaska Division of Geological & Geophysical Surveys Report of Investigation 2006-2 v. 1.0.1, 98 p., 1 sheet, scale 1:50,000. https://doi.org/10.14509/15026
- Audet, P., Sole, C., & Schaeffer, A. J. (2016). Control of lithospheric inheritance on neotectonic activity in northwestern Canada?. *Geology*, 44(10), 807-810.
- Bartley, J. M., Glazner, A. F., Coleman, D. S., Kylander-Clark, A., Mapes, R., Friedrich, A. M.,
 ... & Foster, D. A. (2007). Large Laramide dextral offset across Owens Valley,
 California, and its possible relation to tectonic unroofing of the southern Sierra
 Nevada. SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA, 434, 129.
- Bauer, M. A., Pavlis, G. L., & Landes, M. (2014). Subduction geometry of the Yakutat terrane, southeastern Alaska. *Geosphere*, *10*(6), 1161-1176.
- Bemis, S. P., & Wallace, W. K. (2007). Neotectonic framework of the north-central Alaska Range foothills. In Ridgway, K.D., Trop, J.M., Glen, J.M.G., O'Neill, J.M. (Eds.). Special Paper 431: Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska (Vol. 431, pp. 549–572). Boulder, Colorado: Geological Society of America. <u>https://doi.org/10.1130/2007.2431(21)</u>
- Bender, A. M., Lease, R. O., Haeussler, P. J., Rittenour, T., Corbett, L. B., Bierman, P. R., & Caffee, M. W. (2019). Pace and process of active folding and fluvial incision across the Kantishna Hills anticline, central Alaska. *Geophysical Research Letters*, 46(6), 3235-3244.
- Benowitz, J. A., Davis, K., & Roeske, S. (2019). A river runs through it both ways across time: 40Ar/39Ar detrital and bedrock muscovite geochronology constraints on the Neogene paleodrainage history of the Nenana River system, Alaska Range. *Geosphere*, 15(3), 682-701.
- Benowitz, J. A., Haeussler, P. J., Layer, P. W., O'Sullivan, P. B., Wallace, W. K., & Gillis, R. J. (2012). Cenozoic tectono-thermal history of the Tordrillo Mountains, Alaska: Paleocene-

Eocene ridge subduction, decreasing relief, and late Neogene faulting. *Geochemistry*, *Geophysics*, *Geosystems*, 13(4).

- Benowitz, J. A., Layer, P. W., & Vanlaningham, S. (2014). Persistent long-term (c. 24 Ma) exhumation in the Eastern Alaska Range constrained by stacked thermochronology. *Geological Society, London, Special Publications*, 378(1), 225-243.
- Benowitz, J. A., Layer, P. W., Armstrong, P., Perry, S. E., Haeussler, P. J., Fitzgerald, P. G., & VanLaningham, S. (2011). Spatial variations in focused exhumation along a continentalscale strike-slip fault: The Denali fault of the eastern Alaska Range. *Geosphere*, 7(2), 455-467.
- Berger, A. L., & Spotila, J. A. (2008). Denudation and deformation in a glaciated orogenic wedge: The St. Elias orogen, Alaska. *Geology*, *36*(7), 523-526.
- Berger, A. L., Spotila, J. A., Chapman, J. B., Pavlis, T. L., Enkelmann, E., Ruppert, N. A., & Buscher, J. T. (2008). Architecture, kinematics, and exhumation of a convergent orogenic wedge: A thermochronological investigation of tectonic–climatic interactions within the central St. Elias orogen, Alaska. *Earth and Planetary Science Letters*, 270(1-2), 13-24.
- Berkelhammer, S. E., Brueseke, M. E., Benowitz, J. A., Trop, J. M., Davis, K., Layer, P. W., & Weber, M. (2019). Geochemical and geochronological records of tectonic changes along a flat-slab arc-transform junction: Circa 30 Ma to ca. 19 Ma Sonya Creek volcanic field, Wrangell Arc, Alaska. *Geosphere*, 15(5), 1508-1538.
- Bernet, M. (2009). A field-based estimate of the zircon fission-track closure temperature. *Chemical Geology*, 259(3-4), 181-189.
- Bill, N. S., Mix, H. T., Clark, P. U., Reilly, S. P., Jensen, B. J., & Benowitz, J. A. (2018). A stable isotope record of late Cenozoic surface uplift of southern Alaska. *Earth and Planetary Science Letters*, 482, 300-311.
- Bishop, B.T., Beck, S.L., Zandt, G., Wagner, L., Long, M., Antonijevic, S.K., Kumar, A. and Tavera, H., 2017. Causes and consequences of flat-slab subduction in southern Peru. *Geosphere*, 13(5), pp.1392-1407.
- Brennan, P. R., & Ridgway, K. D. (2015). Detrital zircon record of Neogene exhumation of the central Alaska Range: A far-field upper plate response to flat-slab subduction. *Bulletin*, *127*(7-8), 945-961.
- Brueseke, M. E., Benowitz, J. A., Trop, J. M., Davis, K. N., Berkelhammer, S. E., Layer, P. W., & Morter, B. K. (2019). The Alaska Wrangell Arc:~ 30 Ma of subduction-related magmatism along a still active arc-transform junction. *Terra Nova*, 31(1), 59-66.
- Burkett, C. A., Bemis, S. P., & Benowitz, J. A. (2016). Along-fault migration of the Mount McKinley restraining bend of the Denali fault defined by late Quaternary fault patterns and seismicity, Denali National Park & Preserve, Alaska. *Tectonophysics*, 693, 489-506.
- Cameron, C.E., Nye, C.J., Bull, K.F., and Woods, Rebecca-Ellen, 2015, Jumbo Dome, interior Alaska: Whole-rock, major- and trace-element analyses: Alaska Division of Geological & Geophysical Surveys Raw Data File 2015-14, 3 p. https://doi.org/10.14509/29520
- Capaldi, T.N., Horton, B.K., McKenzie, N.R., Mackaman-Lofland, C., Stockli, D.F., Ortiz, G. and Alvarado, P., 2020. Neogene retroarc foreland basin evolution, sediment provenance, and magmatism in response to flat slab subduction, western Argentina. *Tectonics*, *39*(7), p.e2019TC005958.
- Carrapa, B., DeCelles, P.G. and Romero, M., 2019. Early inception of the Laramide orogeny in southwestern Montana and northern Wyoming: Implications for models of flat-slab subduction. *Journal of Geophysical Research: Solid Earth*, *124*(2), pp.2102-2123.

Donelick, R. A., O'Sullivan, P. B., & Ketcham, R. A. (2005). Apatite fission-track analysis. *Reviews in Mineralogy and Geochemistry*, 58(1), 49-94.

- Elliott, J., & Freymueller, J. T. (2020). A block model of present-day kinematics of Alaska and western Canada. *Journal of Geophysical Research: Solid Earth*, *125*(7), e2019JB018378.
- Enkelmann, E., Garver, J. I., & Pavlis, T. L. (2008). Rapid exhumation of ice-covered rocks of the Chugach–St. Elias orogen, Southeast Alaska. *Geology*, *36*(12), 915-918.
- Enkelmann, E., Koons, P. O., Pavlis, T. L., Hallet, B., Barker, A., Elliott, J., ... & Van Avendonk, H. J. (2015). Cooperation among tectonic and surface processes in the St. Elias Range, Earth's highest coastal mountains. *Geophysical Research Letters*, 42(14), 5838-5846.
- Enkelmann, E., Piestrzeniewicz, A., Falkowski, S., Stübner, K., & Ehlers, T. A. (2017).
 Thermochronology in southeast Alaska and southwest Yukon: Implications for North American Plate response to terrane accretion. *Earth and Planetary Science Letters*, 457, 348-358.
- Enkelmann, E., Sanchez Lohff, S. K., & Finzel, E. S. (2019). Detrital zircon double-dating of forearc basin strata reveals magmatic, exhumational, and thermal history of sediment source areas. *Bulletin*, *131*(7-8), 1364-1384.
- Enkelmann, E., Zeitler, P. K., Garver, J. I., Pavlis, T. L., & Hooks, B. P. (2010). The thermochronological record of tectonic and surface process interaction at the Yakutat– North American collision zone in southeast Alaska. *American Journal of Science*, 310(4), 231-260.
- Enkelmann, E., Zeitler, P. K., Pavlis, T. L., Garver, J. I., & Ridgway, K. D. (2009). Intense localized rock uplift and erosion in the St Elias orogen of Alaska. *Nature Geoscience*, 2(5), 360-363.
- Espurt, N., Funiciello, F., Martinod, J., Guillaume, B., Regard, V., Faccenna, C., & Brusset, S. (2008). Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling. *Tectonics*, 27(3).
- Estève, C., Audet, P., Schaeffer, A. J., Schutt, D., Aster, R. C., & Cubley, J. (2020). The upper mantle structure of northwestern Canada from teleseismic body wave tomography. *Journal of Geophysical Research: Solid Earth*, *125*(2), e2019JB018837.
- Falkowski, S., Enkelmann, E., Drost, K., Pfänder, J. A., Stübner, K., & Ehlers, T. A. (2016). Cooling history of the St. Elias syntaxis, southeast Alaska, revealed by geochronology and thermochronology of cobble-sized glacial detritus. *Tectonics*, 35(2), 447-468.
- Fan, M., & Carrapa, B. (2014). Late Cretaceous–early Eocene Laramide uplift, exhumation, and basin subsidence in Wyoming: Crustal responses to flat slab subduction. *Tectonics*, 33(4), 509-529.
- Finzel, E. S., Flesch, L. M., Ridgway, K. D., Holt, W. E., & Ghosh, A. (2015). Surface motions and intraplate continental deformation in Alaska driven by mantle flow. *Geophysical Research Letters*, 42(11), 4350-4358.
- Finzel, E. S., Trop, J. M., Ridgway, K. D., & Enkelmann, E. (2011). Upper plate proxies for flatslab subduction processes in southern Alaska. *Earth and Planetary Science Letters*, 303(3-4), 348-360.
- Fitzgerald, P. G., Roeske, S. M., Benowitz, J. A., Riccio, S. J., Perry, S. E., & Armstrong, P. A. (2014). Alternating asymmetric topography of the Alaska range along the strike-slip Denali fault: Strain partitioning and lithospheric control across a terrane suture zone. *Tectonics*, 33(8), 1519-1533.

- Fitzgerald, P. G., Sorkhabi, R. B., Redfield, T. F., & Stump, E. (1995). Uplift and denudation of the central Alaska Range: A case study in the use of apatite fission track thermochronology to determine absolute uplift parameters. *Journal of Geophysical Research: Solid Earth*, 100(B10), 20175-20191.
- Flinch, J. F. (2003). Structural evolution of the Sinu-Lower Magdalena area (northern Colombia).
- Freymueller, J. T. (2010). Active tectonics of plate boundary zones and the continuity of plate boundary deformation from Asia to North America. *Current Science*, 1719-1732.
- Freymueller, J. T., Woodard, H., Cohen, S. C., Cross, R., Elliott, J., Larsen, C. F., ... & Ekström, G. (2008). Active deformation processes in Alaska, based on 15 years of GPS measurements. *Active tectonics and seismic potential of Alaska*, 179, 1-42.
- Fuis, G. S., Moore, T. E., Plafker, G., Brocher, T. M., Fisher, M. A., Mooney, W. D., ... & Ruppert, N. A. (2008). Trans-Alaska Crustal Transect and continental evolution involving subduction underplating and synchronous foreland thrusting. *Geology*, 36(3), 267-270.
- Galbraith, R. (2005), *Statistics for Fission Track Analysis*, Chapman & Hall / CRC, Boca Raton, FL.
- Galbraith, R. F., and P.F. Green (1990), Estimating the component ages in a finite mixture, *Nuclear Tracks and Radiation Measurements*, 17, 197-206.
- Gardner, T. W., Fisher, D. M., Morell, K. D., & Cupper, M. L. (2013). Upper-plate deformation in response to flat slab subduction inboard of the aseismic Cocos Ridge, Osa Peninsula, Costa Rica. *Lithosphere*, 5(3), 247-264.
- Garver, J. I., & Davidson, C. M. (2015). Southwestern Laurentian zircons in upper Cretaceous flysch of the Chugach-Prince William terrane in Alaska. *American Journal of Science*, *315*(6), 537-556.
- Gilmer, A. K., Kyle, J. R., Connelly, J. N., Mathur, R. D., & Henry, C. D. (2003). Extension of Laramide magmatism in southwestern North America into Trans-Pecos Texas. *Geology*, 31(5), 447-450.
- GREEN, P.F., DUDDY, I.R., GLEADOW, A.J.W., TINGATE, P.R. & LASLETT, G.M. (1986): Thermal annealing of fission tracks in apatite.1. A qualitative description. Chem. Geol. 59, 237-253
- Gulick, S.P., Jaeger, J.M., Mix, A.C., Asahi, H., Bahlburg, H., Belanger, C.L., Berbel, G.B., Childress, L., Cowan, E., Drab, L. and Forwick, M., 2015. Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska. *Proceedings of the National Academy of Sciences*, 112(49), pp.15042-15047.
- Gutscher, M. A., Spakman, W., Bijwaard, H., & Engdahl, E. R. (2000). Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. *Tectonics*, 19(5), 814-833.
- Haeussler, P. J., Saltus, R. W., Stanley, R. G., Ruppert, N., Lewis, K., Karl, S. M., & Bender, A. (2017). The Peters Hills basin, a Neogene wedge-top basin on the Broad Pass thrust fault, south-central Alaska. *Geosphere*, 13(5), 1464-1488.
- Haynie, K. L., & Jadamec, M. A. (2017). Tectonic drivers of the Wrangell block: Insights on fore-arc sliver processes from 3-D geodynamic models of Alaska. *Tectonics*, 36(7), 1180-1206.

- Jadamec, M. A., Billen, M. I., & Roeske, S. M. (2013). Three-dimensional numerical models of flat slab subduction and the Denali fault driving deformation in south-central Alaska. *Earth and Planetary Science Letters*, *376*, 29-42.
- Jones III, J. V., Todd, E., Box, S. E., Haeussler, P. J., Holm-Denoma, C. S., Karl, S. M., ... & Layer, P. W. (2021). Cretaceous to Oligocene magmatic and tectonic evolution of the western Alaska Range: Insights from U-Pb and 40Ar/39Ar geochronology. *Geosphere*, 17(1), 118-153.
- Kaufman, D.S., Young, N.E., Briner, J.P. and Manley, W.F., 2011. Alaska palaeo-glacier atlas (version 2). In *Developments in Quaternary Sciences* (Vol. 15, pp. 427-445). Elsevier.
- Kreemer, C., Blewitt, G., & Klein, E. C. (2014). A geodetic plate motion and Global Strain Rate Model. *Geochemistry, Geophysics, Geosystems*, 15(10), 3849-3889.
- Lease, R. O., Haeussler, P. J., & O'Sullivan, P. (2016). Changing exhumation patterns during Cenozoic growth and glaciation of the Alaska Range: Insights from detrital thermochronology and geochronology. *Tectonics*, *35*(4), 934-955.
- Lease, R. O. (2018). Pliocene erosional pulse and glacier-landscape feedbacks in the western Alaska Range. *Earth and Planetary Science Letters*, **497**, 62–68. https://doi.org/10.1016/j.epsl.2018.06.009
- Lease, R.O., et al., 2021, Extreme Quaternary plate boundary exhumation and strike slip localized along the southern Fairweather fault, Alaska, USA: Geology, v. 49, p. XXX– XXX, https://doi.org/10.1130/G48464.1
- Litherland, M., & Aspden, J. A. (1992). Terrane-boundary reactivation: a control on the evolution of the Northern Andes. *Journal of South American Earth Sciences*, 5(1), 71-76.
- Little, T. A., & Naeser, C. W. (1989). Tertiary tectonics of the Border Ranges fault system, Chugach Mountains, Alaska: Deformation and uplift in a forearc setting. *Journal of Geophysical Research: Solid Earth*, 94(B4), 4333-4359.
- Liu, L., Gurnis, M., Seton, M., Saleeby, J., Müller, R. D., & Jackson, J. M. (2010). The role of oceanic plateau subduction in the Laramide orogeny. *Nature Geoscience*, *3*(5), 353-357.
- Mann, P. and Taira, A., 2004. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone. *Tectonophysics*, *389*(3-4), pp.137-190.
- Marshak, S., Karlstrom, K., & Timmons, J. M. (2000). Inversion of Proterozoic extensional faults: An explanation for the pattern of Laramide and Ancestral Rockies intracratonic deformation, United States. *Geology*, *28*(8), 735-738.
- McAleer, R. J., Spotila, J. A., Enkelmann, E., & Berger, A. L. (2009). Exhumation along the Fairweather fault, southeastern Alaska, based on low-temperature thermochronometry. *Tectonics*, 28(1).
- McDermott, R. G., Ault, A. K., Caine, J. S., & Thomson, S. N. (2019). Thermotectonic history of the Kluane Ranges and evolution of the eastern Denali fault zone in southwestern Yukon, Canada. *Tectonics*, *38*(8), 2983-3010.
- Miller, M. S., O'Driscoll, L. J., Porritt, R. W., & Roeske, S. M. (2018). Multiscale crustal architecture of Alaska inferred from P receiver functions. *Lithosphere*, *10*(2), 267-278.
- Mora, J. A., Oncken, O., Le Breton, E., Ibánez-Mejia, M., Faccenna, C., Veloza, G., ... & Mesa, A. (2017). Linking Late Cretaceous to Eocene tectonostratigraphy of the San Jacinto fold belt of NW Colombia with Caribbean Plateau collision and flat subduction. *Tectonics*, 36(11), 2599-2629.
- Nadin, E. S., Saleeby, J., & Wong, M. (2016). Thermal evolution of the Sierra Nevada batholith, California, and implications for strain localization. *Geosphere*, *12*(2), 377-399.

- Nelson, J. & Colpron, M. (2007). Tectonics and metallogeny of the British Columbia, Yukon and Alaskan Cordillera, 1.8 Ga to the present. *Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication, 5*, 755-791.
- O'Driscoll, L. J., & Miller, M. S. (2015). Lithospheric discontinuity structure in Alaska, thickness variations determined by Sp receiver functions. *Tectonics*, *34*(4), 694-714.
- Otiniano, G. A., Porter, T. J., Benowitz, J. A., Bindeman, I. N., Froese, D. G., Jensen, B. J., ... & Phillips, M. A. (2020). A late Miocene to late Pleistocene reconstruction of precipitation isotopes and climate from hydrated volcanic glass shards and biomarkers in central Alaska and Yukon. *Paleoceanography and Paleoclimatology*, 35(7), e2019PA003791.
- Parry, W. T., Bunds, M. P., Bruhn, R. L., Hall, C. M., & Murphy, J. M. (2001). Mineralogy, 40Ar/39Ar dating and apatite fission track dating of rocks along the Castle Mountain fault, Alaska. *Tectonophysics*, 337(3-4), 149-172.
- Pavlis, G. L., Bauer, M. A., Elliott, J. L., Koons, P., Pavlis, T. L., Ruppert, N., ... & Worthington, L. L. (2019). A unified three-dimensional model of the lithospheric structure at the subduction corner in southeast Alaska: Summary results from STEEP. *Geosphere*, 15(2), 382-406.
- Pavlis, T. L., Roeske, S. M., Ridgway, K. D., Trop, J. M., Glen, J. M. G., & O'Neill, J. M. (2007). The Border Ranges fault system, southern Alaska. SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA, 431, 95.
- Pelletier, B., Calmant, S. and Pillet, R., 1998. Current tectonics of the Tonga–New Hebrides region. *Earth and Planetary Science Letters*, *164*(1-2), pp.263-276.
- Philippon, M., & Corti, G. (2016). Obliquity along plate boundaries. *Tectonophysics*, 693, 171-182.
- Plafker, G. (1987). Regional geology and petroleum potential of the northern Gulf of Alaska continental margin.
- Ramos, V. A., & Folguera, A. (2009). Andean flat-slab subduction through time. *Geological Society, London, Special Publications*, 327(1), 31-54.
- Ramos, V. A., Cristallini, E. O., & Pérez, D. J. (2002). The Pampean flat-slab of the Central Andes. *Journal of South American earth sciences*, 15(1), 59-78.
- Rasendra, N., Bonnin, M., Mazzotti, S., & Tiberi, C. (2014). Crustal and upper-mantle anisotropy related to fossilized transpression fabric along the Denali fault, northern Canadian Cordillera. *Bulletin of the Seismological Society of America*, 104(4), 1964-1975.
- Regan, S. P., Benowitz, J. A., & Holland, M. E. (2020). A plutonic brother from another magma mother: Disproving the Eocene Foraker-McGonagall pluton piercing point and implications for long-term slip on the Denali Fault. *Terra Nova*, 32(1), 66-74.
- Renne, P.R., Mundil, R., Balco, G., Min, K., and Ludwig, K.R., 2010, Joint determination of ⁴⁰K decay constants and ⁴⁰Ar/⁴⁰K for the Fish Canyon sanidine standard, and improved accuracy for ⁴⁰Ar/³⁹Ar geochronology: Geochimica et Cosmochimica Acta, v. 74, p. 5349.
- Riccio, S.J., Fitzgerald, P.G., Benowitz, J.A. and Roeske, S.M., 2014. The role of thrust faulting in the formation of the eastern Alaska Range: Thermochronological constraints from the Susitna Glacier thrust fault region of the intracontinental strike-slip Denali fault system. *Tectonics*, *33*(11), pp.2195-2217.

- Richter, D. H., Smith, J. G., Lanphere, M. A., Dalrymple, G. B., Reed, B. L., & Shew, N. (1990). Age and progression of volcanism, Wrangell volcanic field, Alaska. *Bulletin of Volcanology*, 53(1), 29-44.
- Ridgway, K. D., Thoms, E. E., Layer, P. W., Lesh, M. E., White, J. M., & Smith, S. V. (2007). Neogene transpressional foreland basin development on the north side of the central Alaska Range, Usibelli Group and Nenana Gravel, Tanana basin. Special Paper of the Geological Society of America, (431), 507-547.
- Ridgway, K. D., Trop, J. M., & Finzel, E. S. (2011). Modification of continental forearc basins by flat-slab subduction processes: A case study from southern Alaska. *Tectonics of Sedimentary Basins: Recent Advances*, 327-346.
- Ridgway, K. D., Trop, J. M., Nokleberg, W. J., Davidson, C. M., & Eastham, K. R. (2002). Mesozoic and Cenozoic tectonics of the eastern and central Alaska Range: Progressive basin development and deformation in a suture zone. *Geological Society of America Bulletin*, 114(12), 1480-1504.
- Roeske, S. M., Snee, L. W., Pavlis, T. L., & Sisson, V. B. (2003). Dextral-slip reactivation of an arc-forearc boundary during Late Cretaceous-early Eocene oblique convergence in the northern Cordillera. SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA, 141-170.
- Ruppert, N. A., Ridgway, K. D., Freymueller, J. T., Cross, R. S., & Hansen, R. A. (2008). Active tectonics of interior Alaska: Seismicity, GPS geodesy, and local geomorphology. *Washington DC American Geophysical Union Geophysical Monograph Series*, 179, 109-133.
- Saleeby, J. (2003). Segmentation of the Laramide slab—Evidence from the southern Sierra Nevada region. *Geological Society of America Bulletin*, 115(6), 655-668.
- Saltus, R. W., Hudson, T. L., Wilson, F. H., Ridgway, K. D., Trop, J. M., Glen, J. M. G., & O'Neill, J. M. (2007). The geophysical character of southern Alaska-Implications for crustal evolution. SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA, 431, 1.
- Siame, L. L., Bellier, O., Sébrier, M., & Araujo, M. (2005). Deformation partitioning in flat subduction setting: Case of the Andean foreland of western Argentina (28 S–33 S). *Tectonics*, 24(5).
- Stout, J.H., 1976, Geology of the Eureka Creek area, east-central Alaska Range, State of Alaska, Department of Natural Resources, Division of Geological & Geophysical Surveys Geologic Report 46, 32 p., 1 sheet, scale 1:63,360.
- Terhune, P.J., Benowitz, J.A., Trop, J.M., O'Sullivan, P.B., Gillis, R.J. and Freymueller, J.T., 2019. Cenozoic tectono-thermal history of the southern Talkeetna Mountains, Alaska: Insights into a potentially alternating convergent and transform plate margin. *Geosphere*, 15(5), pp.1539-1576.
- Tikoff, B., & de Saint Blanquat, M. (1997). Transpressional shearing and strike-slip partitioning in the Late Cretaceous Sierra Nevada magmatic arc, California. *Tectonics*, *16*(3), 442-459.
- Tikoff, B., & Teyssier, C. (1992). Crustal-scale, en echelon" P-shear" tensional bridges: A possible solution to the batholithic room problem. *Geology*, 20(10), 927-930.
- Trop, J.M., Benowitz, J.A., Koepp, D.Q., Sunderlin, D., Brueseke, M.E., Layer, P.W. and Fitzgerald, P.G. (2020). Stitch in the ditch: Nutzotin Mountains (Alaska) fluvial strata and a dike record ca. 117–114 Ma accretion of Wrangellia with western North America and initiation of the Totschunda fault. *Geosphere*, 16(1), pp.82-110.

- Trop, J. M., Benowitz, J., Cole, R. B., & O'Sullivan, P. (2019). Cretaceous to Miocene magmatism, sedimentation, and exhumation within the Alaska Range suture zone: A polyphase reactivated terrane boundary. *Geosphere*, 15(4), 1066-1101.
- Trop, J. M., Ridgway, K. D., Glen, J. M. G., & O'Neill, J. M. (2007). Mesozoic and Cenozoic tectonic growth of southern Alaska: A sedimentary basin perspective. Special Papers-Geological Society of America, 431, 55.
- Twelker, E., Waldien, T.S., Newberry, R.J., Freeman, L.K., Sicard, K.R., Lande, L.L., Wypych, A., Reioux, D.A., and Bachmann, E.N. (2020). Bedrock geologic map of the eastern Denali Highway area, Mount Hayes, Healy, and Talkeetna Mountains quadrangles, Alaska. *Alaska Division of Geological & Geophysical Surveys Report of Investigation* 2020-7: 1 sheet, 1:100,000 scale. http://doi.org/10.14509/30469
- Vermeesch, P. (2012). On the visualisation of detrital age distributions. *Chemical Geology*, *312*, 190-194.
- Waldien, T. S., Roeske, S. M., Benowitz, J. A., Twelker, E., & Miller, M. S. (2020). Oligocene-Neogene lithospheric-scale reactivation of Mesozoic terrane accretionary structures in the Alaska Range suture zone, southern Alaska, USA. GSA Bulletin.
- Waldien, T.S., Roeske, S.M., Benowitz, J.A., Allen, W.K., Ridgway, K.D. and O'Sullivan, P.B., 2018. Late Miocene to Quaternary evolution of the McCallum Creek thrust system, Alaska: Insights for range-boundary thrusts in transpressional orogens. *Geosphere*, 14(6), pp.2379-2406.
- Ward, K. M., & Lin, F. C. (2018). Lithospheric structure across the Alaskan cordillera from the joint inversion of surface waves and receiver functions. *Journal of Geophysical Research: Solid Earth*, 123(10), 8780-8797.
- Wech, A. G. (2016). Extending Alaska's plate boundary: Tectonic tremor generated by Yakutat subduction. *Geology*, 44(7), 587-590.
- Worthington, L.L., Van Avendonk, H.J.A., Gu- lick, S.P.S., Christeson, G.L., and Pavlis, T.L., 2012, Crustal structure of the Yakutat terrane and the evolution of subduction and collision in southern Alaska: Journal of Geophysical Research, v. 117, B01102, https://doi. org/10.1029/2011JB008493.
- Wyld, S. J., Umhoefer, P. J., Wright, J. E., Haggart, J. W., Enkin, R. J., & Monger, J. W. H. (2006). Reconstructing northern Cordilleran terranes along known Cretaceous and Cenozoic strike-slip faults: Implications for the Baja British Columbia hypothesis and other models. *Paleogeography of the North American cordillera: Evidence for and against large-scale displacements: Geological Association of Canada Special Paper*, 46, 277-298.
- Ziwu, F.D., Doser, D.I. and Schinagel, S.M. (2020). A geophysical study of the Castle Mountain Fault, southcentral Alaska. *Tectonophysics*, 789, p.228567.

SUPPLEMENTS

SUPPLEMENT S1: AFT laboratory procedures at Geosep Services

Apatite separates for all samples were obtained from crushed and separated material using standard gravimetric and magnetic mineral separation techniques. Apatite grain mounts were prepared by Paul O'Sullivan at the GeoSep Services (GSS) facilities in Moscow, Idaho. Spontaneous track counts and confined track length measurements were performed by Paul O'Sullivan using nonpolarized light at 2000x magnification. Laser ablation–inductively coupled plasma–mass spectrometer (LA-ICP-MS) analyses of samples used in age determinations were performed using the Element2 mass spectrometer located at the Washington State University School of Earth and Environmental Sciences GeoAnalytical Laboratory in Pullman, Washington.

A general discussion of the methods undertaken to process and analyze samples by GSS is presented below; see Donelick et al. (2005) for a complete and detailed discussion of these methods and their justification. For each sample subjected to apatite fission-track analysis (AFT), at least one 1 cm^2 grain mount, consisting of apatite grains immersed in epoxy resin, was prepared, cured at 90°C for 1 hour, and polished to expose internal surfaces of the apatite grains. After polishing, mounts were immersed in 5.5N HNO₃ for 20.0 seconds (± 0.5 seconds) at 21°C (± 1°C) to reveal all natural fission tracks that intersected the polished grain surfaces.

The feasibility of measurement of apatite fission-track grain ages was assessed by scanning the polished and etched grain mount to determine if any dateable apatite grains were present. Measurement of fission-track parameters was considered feasible if more than one dateable grain was observed.

Representative kinetic parameters (*D*par—the maximum diameter of fission track etch pits at their intersection with the polished and etched, c-axis-parallel apatite surface, which is used as a

proxy for the solubility of fission tracks in their host apatite grains) were measured and spontaneous (natural) fission-track densities were counted for each grain considered suitable for dating. Between one and four etch pit diameters were measured and an arithmetic mean *D*par value was calculated for each datable grain.

LA-ICP-MS Analysis

Grains were then revisited using the LA-ICP-MS to make spot analyses to determine U, Th, and Sm concentrations of each grain for which natural fission-track densities had been previously determined. A single stationary spot of 16 µm diameter was used for each grain, centered in the approximate center of the area where tracks had been counted. Note that if optical examination suggested that natural track densities were even moderately inconsistent within a grain, which is evidence of U zoning, that grain was not dated.

For apatite, the fundamental assumption is made that Ca occurs in stoichiometric amounts in all grains analyzed. The isotope ⁴³Ca is used as the indicator of the volume of apatite ablated. Samples were ablated in a helium atmosphere to reduce condensation and elemental fractionation. A total of 30 scans for ²³⁸U, ²³²Th, ¹⁴⁷Sm, and ⁴³Ca were performed for each spot analyzed. Of these scans, approximately 10 were performed while the laser was warming up and blocked from contacting the grain surface, during which time background counts were collected. Once the laser was permitted to hit the grain surface, a cylindrical pit was excavated to a depth beyond which uranium did not contribute fission tracks to the etched grain surface. Between 15 and 20 scans performed during pit excavation were required to reach this depth. The depths of a representative number of laser pits were measured and the ²³⁸U/⁴³Ca value for each pit as a whole was determined based on the weighted mean of the ²³⁸U/⁴³Ca value for individual scans relative
to the depths from which the ablated material was derived (see Hasebe et al. 2004; Donelick et al. 2005).

Fission-Track Age Measurement

Fission-track ages and errors were calculated using: (a) the ratio of the density of natural fission tracks present in the grain to the amount of 238 U present and (b) a modified version of the radioactive decay equation that includes a LA-ICP-MS zeta calibration factor (see equations 1b for age equation and 2b for error calculation in Donelick et al. 2005). The zeta calibration factor is determined for each sample analyzed during each LA-ICP-MS session by analyzing the U:Ca ratio of apatite calibration standards with known ages at the beginning and end of each LA-ICP-MS session. The standard used are Durango apatite, 30.6 ± 0.3 Ma.

Calculation of a single pooled AFT age for each sample takes into account the distribution of all of the individual grain ages and their uncertainties, which are a function of the number of spontaneous tracks counted over a known area, the U content determined by LA-ICP-MS, and thermal history. Only pooled ages are reported as these incorporate original track counts and isotopic values for each grain, and therefore are most representative of the original data generated for each sample, even when multiple grain-age populations might be present as suggested by the Chi² value.

SUPPLEMENT 2: Apatite fission track data

Catchment	Lat [°N]	Long [°E]
Robertson River	63.4964	-143.8366
Upper Susitna River	63.1045	-147.5173
Delta River	63.6727	-145.9079
Nenana River	63.7510	-148.9080
Little Tok River	63.0447	-143.3675
Tok River	63.0787	-143.4033
Ann Creek	63.3357	-145.7671
Eureka Glacier	63.2986	-146.3554
Maclaren Glacier	63.2732	-146.5182
Mid Maclaren River	63.2958	-146.7487
East Maclaren River	63.2703	-146.7781
Maclaren Bridge	63.1176	-146.5326

Table S2-1 dAFT sample locations

Table S2-2: Detrital Apatite fission-track data

Ann Creek

Spot Name	FT Age (Ma)	1sig (Ma)	UPb Age (Ma)	2 sig (Ma)	Ns	Area cm^2	U/Ca	1sig	Etch Figs.	Dpar (um)	Dper (um)	[U] (ppm)	[Th] (ppm)	[Sm] (ppm)
4391A_26	0.0	18725.5	0.0	0	0	0.0000 1	0.00	0.0 0	1	1.64	0.30	0.0	0.0	0.1
4391A_79	0.0	9.6	0.0	0	0	0.0000 3	0.02	0.0 0	1	1.93	0.30	0.0	0.0	0.1
4391A_42	0.0	18.1	0.0	0	0	0.0000 2	0.02	0.0 0	1	1.81	0.37	0.0	0.0	0.0
4391A_37	0.0	44.4	0.0	0	0	0.0000 2	0.01	0.0 0	1	1.40	0.41	0.0	0.3	0.2
4391A 22	0.0	61.8	0.0	0	0	0.0000 2	0.00	0.0 0	1	1.64	0.23	0.0	4.3	28.8
- 4391A 11	0.0	4.2	0.0	0	0	0.0000 3	0.04	0.0 0	2	1.56	0.35	0.1	0.1	8.9
4391A 89	0.0	530.6	0.0	0	0	0.0000	0.00	0.0 0	-	1 84	0.43	0.1	0.5	79
43914 17	0.0	49.9	0.0	0	0	0.0000	0.00	0.0	1	1.81	0.35	0.1	0.0	3.7
12010 12	0.0	175.0	0.0	0	0	0.0000	0.00	0.0	1	1.01	0.35	0.1	0.0	6.2
4391A_43	0.0	102.6	0.0	0	0	0.0000 2	0.00	0.0	1	1.05	0.25	0.1	12.0	10.4
4391A_03	0.0	192.0	0.0	0	0	0.0000	0.00	0.0	1	1.50	0.50	0.2	15.5	10.4
4391A_2	0.0	128.7	0.0	0	0	0.0000	0.00	0.0	1	1.65	0.28	0.2	0.1	7.8
4391A_66	0.0	116.6	0.0	0	0	0.0000	0.00	0.0	2	1.68	0.28	0.4	1.2	37.2
4391A_68	0.0	43.5	0.0	0	0	4 0.0000	0.00	0 0.0	1	1.55	0.23	0.4	0.2	39.0
4391A_1	0.0	84.3	356.4	501	0	3 0.0000	0.00	0 0.0	1	1.26	0.30	0.5	3.3	32.9
4391A_15	0.0	12.1	0.0	0	0	2 0.0000	0.03	0 0.0	1	1.76	0.30	0.6	1.2	2.7
4391A_87	0.0	14.2	0.0	0	0	2 0.0000	0.02	0 0.0	1	1.72	0.35	0.7	18.6	8.6
4391A_82	0.0	71.6	0.0	0	0	2 0.0000	0.00	0 0.0	1	1.70	0.59	0.7	6.3	9.3
4391A_86	0.0	53.2	146.4	451	0	2	0.01	0	1	1.68	0.25	1.0	5.8	61.2

						0.0000		0.0						
4391A_13	0.0	29.6	286.9	570	0	3	0.01	0	3	1.67	0.32	1.4	4.5	36.8
4391A_64	0.0	70.5	0.0	0	0	3	0.00	0.0	1	1.80	0.22	1.7	5.6	10.5
4391A_90	0.0	31.6	217.7	262	0	2	0.01	0.0	1	1.83	0.32	1.8	1.6	27.3
4391A_39	0.0	18.1	0.0	0	0	2	0.01	0.0	1	1.69	0.27	2.1	61.9	19.4
4391A_67	0.0	15.4	498.9	284	0	0.0000	0.01	0.0	1	1.64	0.39	2.7	10.4	194.0
4391A_28	0.0	11.6	0.0	0	0	0.0000	0.01	0.0	1	2.06	0.31	2.9	12.0	59.5
4391A_35	0.0	0.7	0.0	0	0	2	0.38	0.0	1	1.71	0.36	3.0	43.9	8.4
4391A_62	0.0	21.4	245.4	245	0	0.0000	0.02	0.0	1	2.01	0.36	3.2	9.5	71.6
4391A_33	0.0	9.8	0.0	0	0	2	0.03	0.0	1	1.52	0.26	3.6	14.1	6.1
4391A_24	0.0	3.9	0.0	0	0	0.0000	0.06	0.0	1	1.58	0.20	4.1	10.5	196.2
4391A_21	0.0	23.4	168.4	166	0	0.0000	0.03	0.0	2	1.77	0.32	5.4	6.2	34.8
4391A_72	0.0	2.4	0.0	0	0	0.0000	0.12	0.0	1	1.83	0.30	16.2	27.7	26.3
4391A_36	0.0	3.1	0.0	0	0	0.0000	0.10	0.0	1	1.74	0.35	20.7	144.1	9.1
4391A_97	4.0	4.0	100.5	114	1	0.0000	0.05	0.0	2	1.85	0.30	9.7	30.1	82.4
4391A_7	4.1	4.1	0.0	0	1	0.0000	0.04	0.0	1	1.89	0.23	0.2	0.8	3.8
4391A_104	4.4	2.2	0.0	0	4	3	0.22	0.0	2	1.71	0.32	40.5	412.2	159.5
4391A_85	5.4	5.4	107.6	345	1	0.0000 3	0.05	0.0	1	1.72	0.46	8.4	28.0	53.5
4391A_103	6.0	4.2	61.1	61	2	0.0000	0.23	0.0	1	1.74	0.23	45.4	4.3	52.2
4391A_105	6.3	6.3	109.7	64	1	2	0.06	0.0	2	1.81	0.53	13.3	36.0	97.4
4391A_54	6.6	4.6	179.1	161	2	2	0.14	0.0	2	1.98	0.42	30.2	25.1	71.1
4391A_92	6.7	6.7	194.0	404	1	3	0.04	0.0	1	1.91	0.33	8.2	36.6	87.1
4391A_32	7.8	7.8	0.0	0	1	2	0.06	0.0	2	1.47	0.23	8.4	38.3	17.9
4391A_30	8.3	8.3	122.0	100	1	2	0.04	0.0	2	1.88	0.25	8.2	20.7	37.3
4391A_96	9.2	4.1	0.0	0	5	2	0.22	0.0	2	1.60	0.22	142.6	4.8	65.1
4391A_73	9.2	6.5	0.0	0	2	2	0.09	0.0	1	1.70	0.30	3.5	6.0	25.6
4391A_58	10.4	10.4	0.0	0	1	0.0000 5	0.02	0.0	2	1.44	0.30	0.0	0.0	0.2
4391A_76	10.6	5.3	116.3	44	4	2	0.13	0.0	3	1.53	0.29	27.1	54.8	40.8
4391A_29	10.8	7.6	131.7	89	2	0.0000	0.11	0.0	1	1.65	0.30	20.9	27.9	72.0
4391A_48	11.0	5.5	195.2	550	4	2	0.15	0	3	1.56	0.31	30.5	123.0	100.5
4391A_57	11.5	8.1	354.5	281	2	0.0000 4 0.0000	0.04	0.0	2	1.80	0.59	7.2	15.5	22.6
4391A_8	11.5	11.5	249.1	304	1	2	0.04	0.0	2	1.98	0.34	8.4	19.7	121.2
4391A_83	12.4	3.5	0.0	0	13	4	0.22	1	4	1.90	0.41	276.6	850.6	496.8
4391A_47	13.3	13.3	77.4	918	1	2	0.03	0.0	2	1.71	0.34	6.7	19.8	59.5
4391A_46	13.4	13.4	490.2	380	1	2	0.03	0	1	1.24	0.35	4.7	53.7	118.6
4391A_84	14.7	14.7	181.3	219	1	0.0000	0.05	0.0	1	1.48	0.25	9.6	40.5	98.3
4391A_102	14.7	8.5	0.0	0	3	2	0.09	0.0 1 0.0	2	1.76	0.37	11.8	168.7	371.2
4391A_19	15.3	10.8	376.0	152	2	3	0.04	0	2	1.85	0.37	6.7	10.9	87.1

						0.0000		0.0						
4391A_69	15.5	11.0	426.7	595	2	5 0 0000	0.02	0	1	1.70	0.29	4.5	10.3	63.0
4391A_44	15.7	11.1	124.5	71	2	2	0.05	0	2	1.68	0.46	10.8	25.2	60.8
4391A_49	16.8	11.9	334.2	188	2	2	0.04	0.0	2	1.44	0.40	8.6	28.2	49.2
4391A_12	16.9	9.8	164.4	186	3	3	0.04	0.0	2	2.20	0.46	8.3	26.8	73.3
4391A_60	17.3	17.3	0.0	0	1	0.0000	0.02	0.0	1	1.52	0.21	0.0	0.2	3.0
4391A_45	17.4	12.3	134.0	95	2	0.0000	0.04	0.0	1	1.47	0.38	8.2	29.4	69.4
4391A_88	17.8	12.6	99.1	103	2	0.0000	0.04	0.0	2	1.72	0.30	8.4	31.7	42.5
4391A_9	18.7	8.5	0.0	0	5	0.0000	0.11	0.0	3	1.84	0.34	15.1	67.5	108.7
4391A_59	18.8	10.9	0.0	0	3	0.0000	0.09	0.0	2	1.21	0.29	18.4	27.9	38.9
4391A_53	20.5	11.8	131.2	184	3	0.0000	0.03	0.0	2	1.82	0.39	6.2	11.7	63.4
4391A_93	23.0	13.6	0.0	0	3	0.0000	0.05	0.0	2	2.25	0.41	11.3	206.5	223.8
4391A_14	23.2	16.5	140.1	548	2	0.0000	0.06	0.0	3	1.32	0.28	500.3	##### #	105.6
4391A_78	23.5	6.9	241.0	274	12	0.0000	0.12	0.0	3	1.94	0.35	6.3	31.4	53.3
4391A_10	23.7	13.7	409.2	496	3	0.0000	0.03	0.0	2	1.68	0.46	6.1	20.6	37.2
4391A_71	23.9	16.9	0.0	0	2	0.0000	0.02	0.0	2	1.58	0.24	4.5	14.8	73.3
4391A_94	24.3	9.9	296.4	80	6	0.0000	0.12	0.0	4	2.21	0.55	25.4	110.7	157.4
4391A_51	24.5	24.5	681.6	978	1	0.0000	0.02	0.0	1	1.94	0.28	3.3	19.7	60.8
4391A_77	25.4	14.7	274.4	325	3	0.0000	0.03	0.0	3	1.99	0.32	5.9	19.4	27.9
4391A_18	25.8	18.2	233.5	247	2	0.0000	0.03	0.0	1	1.66	0.24	6.5	18.6	48.3
4391A_61	26.7	12.0	377.8	229	5	0.0000	0.06	0.0	4	2.01	0.52	12.9	63.3	217.3
4391A_55	31.0	21.9	0.0	0	2	0.0000	0.03	0.0	3	1.21	0.32	1.7	32.0	21.9
4391A_56	31.8	15.9	175.5	155	4	0.0000	0.04	0.0	3	1.59	0.41	8.8	11.5	94.4
4391A_100	31.9	18.4	163.6	188	3	0.0000	0.02	0.0	4	2.01	0.60	3.7	12.4	37.7
4391A_38	32.5	23.0	272.4	135	2	0.0000	0.03	0.0	1	1.76	0.29	5.7	23.6	218.2
4391A_31	33.1	23.4	189.1	144	2	0.0000	0.01	0.0	1	1.72	0.22	2.5	14.1	251.4
4391A_75	34.9	24.7	202.8	335	2	0.0000	0.02	0.0	1	1.80	0.53	3.3	0.5	11.9
4391A_95	34.9	24.9	0.0	0	2	0.0000	0.02	0.0	2	1.71	0.40	0.1	0.2	0.6
4391A_52	38.3	27.1	400.7	189	2	0.0000	0.04	0.0	1	2.12	0.38	7.3	49.3	269.5
4391A_74	40.4	28.7	0.0	0	2	0.0000	0.02	0.0	1	1.99	0.25	1.5	6.8	40.9
4391A_3	41.1	10.8	0.0	0	15	0.0000	0.13	0.0	4	2.18	0.41	17.4	117.8	114.7
4391A_16	42.3	42.3	0.0	0	1	0.0000	0.00	0.0	1	2.33	0.43	0.0	0.1	9.3
4391A_25	48.0	48.1	0.0	0	1	0.0000	0.01	0.0	1	1.72	0.34	1.9	14.0	93.6
4391A_98	52.0	36.8	144.4	314	2	0.0000	0.02	0.0	2	2.20	0.31	4.3	12.1	63.0
4391A_63	57.0	40.4	297.9	414	2	0.0000	0.01	0.0	2	1.94	0.37	1.5	6.4	38.0
4391A_40	58.8	58.8	47.8	535	1	0.0000	0.00	0.0	1	1.31	0.30	0.9	5.8	41.3
4391A_5	78.0	39.1	426.9	290	4	0.0000	0.02	0.0	3	2.08	0.41	4.2	26.7	200.9
4391A_20	79.8	56.4	242.5	234	2	0.0000	0.03	0.0 0	2	1.81	0.25	4.7	7.5	75.0

						0.0000		0.0						
4391A_4	83.8	83.9	417.4	828	1	2	0.00	0	1	1.81	0.55	0.8	8.0	106.1
						0.0000		0.0						
4391A_81	92.0	53.2	0.0	0	3	4	0.01	0	3	1.97	0.35	1.5	6.0	40.8
						0.0000		0.0						
4391A_70	96.5	68.3	0.0	0	2	2	0.01	0	1	2.01	0.49	1.5	3.4	37.0
						0.0000		0.0						
4391A_101	97.0	68.8	0.0	0	2	2	0.01	0	2	1.82	0.29	1.7	6.6	52.6
						0.0000		0.0						
4391A_50	98.5	37.3	371.2	598	7	2	0.02	0	3	2.58	0.57	4.9	19.9	247.5
						0.0000		0.0						
4391A_23	101.3	50.7	893.3	####	4	2	0.01	0	2	1.47	0.30	2.7	11.1	34.1
						0.0000		0.0						
4391A_6	104.7	60.5	542.0	550	3	2	0.01	0	2	1.65	0.44	2.9	14.7	90.1
						0.0000		0.0						
4391A_34	123.9	62.1	120.2	229	4	3	0.01	0	2	2.21	0.79	1.6	6.5	41.1
_						0.0000		0.0						
4391A_41	131.3	93.0	0.0	0	2	2	0.01	0	2	1.71	0.38	0.9	5.2	3.6
						0.0000		0.0						
4391A_91	162.1	79.9	0.0	0	5	2	0.01	0	3	2.12	0.46	1.9	166.2	164.7
-						0.0000		0.0						
4391A_80	214.9	215.2	0.0	0	1	1	0.00	0	1	1.82	0.24	0.5	0.6	135.0
_						0.0000		0.0						
4391A_99	344.0	345.5	0.0	0	1	2	0.00	0	2	1.48	0.28	0.1	0.2	1.8
_						0.0000		0.0						
4391A 27	1179.9	1183.2	0.0	0	1	1	0.00	0	1	1.50	0.31	0.1	5.0	7.5
_														

Delta River

Benta haver												r		
Spot Name	FT Age (Ma)	1s Symm (Ma)	UPb Age (Ma)	2 sigma (Ma)	Ns	Area cm^2	U/Catio n	+/- 1sig	Etch Figs.	Dpar (um)	Dper (um)	[U] (ppm)	[Th] (ppm)	[Sm] (ppm)
03917A_2	0.0	488.0	0.0	0	0	0.0000	0.00	0.0	1	2.13	0.29	0.0	0.0	7.0
03917A_5	0.0	281.0	0.0	0	1	0.0000 5	0.00	0.0 0	1	2.31	0.58	0.0	0.0	4.0
03917A_7	0.0	3.6	29.5	53	0	0.0000 3	0.08	0.0 0	1	1.99	0.48	20.0	83.0	182.0
03917A 18	0.0	2.4	0.0	0	0	0.0000 1	0.26	0.0 8	1	1.78	0.33	1.0	46.0	36.0
- 03917A 22	0.0	23.0	0.0	0	3	0.0000 1	0.07	0.0 1	2	2 28	0 46	19.0	54 0	26.0
020174 22	0.0	14.6	0.0	0	0	0.0000	0.04	0.0	1	2.20	0.20	2.0	248.0	104.0
03917A_23	0.0	14.0	0.0	U	0	0.0000	0.04	0.0	1	2.12	0.38	2.0	248.0	194.0
03917A_27	0.0	351.1	0.0	0	0	2 0.0000	0.00	0 0.0	1	2.46	0.50	0.0	8.0	8.0
03917A_51	0.0	2267.1	0.0	0	0	2 0.0000	0.00	0 0.0	1	2.40	0.51	0.0	1.0	86.0
03917A_56	0.0	886.2	0.0	0	0	2 0.0000	0.00	0 0.0	1	1.67	0.26	0.0	0.0	3.0
03917A_60	0.0	746.2	0.0	0	0	2	0.00	0	1	1.72	0.41	0.0	0.0	5.0
03917A_61	0.0	133.3	0.0	0	0	2	0.00	0.0	1	1.63	0.41	1.0	49.0	103.0
03917A_63	0.0	751.6	0.0	0	0	1	0.00	0.0	1	1.70	0.30	0.0	0.0	5.0
03917A_73	0.0	199.7	696.0	####	0	0.0000 1	0.01	0.0 0	1	1.57	0.28	1.0	6.0	163.0
03917A_74	0.0	29.0	0.0	0	0	0.0000 2	0.01	0.0 0	1	2.46	0.57	3.0	161.0	126.0
03917A_75	0.0	249.4	0.0	0	0	0.0000 3	0.00	0.0 0	1	2.15	0.31	0.0	1.0	6.0
03917A 78	0.0	676.7	0.0	0	0	0.0000 2	0.00	0.0 0	1	1.85	0.57	0.0	0.0	6.0
039174 80	0.0	1846.6	0.0	0	0	0.0000	0.00	0.0	1	1 92	0.45	0.0	0.0	1.0
020170 84	0.0	67	75.0	08	0	0.0000	0.00	0.0	1	2.12	0.43	10.0	4.0	82.0
03917A_84	0.0	0.7	/5.2	98	0	0.0000	0.09	0.0	1	2.13	0.41	19.0	4.0	82.0
03917A_86	0.0	7.1	85.4	167	0	3 0.0000	0.04	0 0.0	1	2.18	0.53	7.0	27.0	166.0
03917A_87	0.0	588.8	0.0	0	0	3	0.00	0	1	2.31	0.50	0.0	1.0	4.0

						0.0000		0.0						
03917A_88	0.0	605.4	0.0	0	0	5	0.00	0	1	2.07	0.51	0.0	0.0	50.0
03917A_91	0.0	18.0	72.4	112	0	1	0.05	0	1	1.39	0.41	11.0	42.0	194.0
03917A_96	0.0	11.8	56.0	112	0	2	0.03	0.0	1	2.07	0.27	7.0	25.0	121.0
03917A_10 1	0.0	308.4	0.0	0	0	0.0000	0.00	0.0	1	2.04	0.32	0.0	0.0	5.0
03917A_10 4	0.0	751.2	0.0	0	0	0.0000 3	0.00	0.0 0	1	1.89	0.33	0.0	0.0	1.0
03917A_10 5	0.0	110.0	0.0	0	0	0.0000 2	0.00	0.0 0	1	2.04	0.50	1.0	0.0	39.0
03917A 85	0.8	0.8	26.7	21	1	0.0000 3	0.53	0.0 1	2	2.46	0.52	111.0	25.0	228.0
 03917A_34	29	29	46.4	73	1	0.0000 2	0.22	0.0 0	1	2.06	0.68	41 0	12 0	267.0
039174 53	1.8	3.4	194 7	59	-	0.0000	0.18	0.0	-	1 97	0.40	35.0	30.0	110.0
030174_33	4.0 F F	5.4	194.7		2	0.0000	0.10	0.0	2	2.22	0.40	11.0	40.0	117.0
03917A_32	5.5	5.5	48.6	88	1	3 0.0000	0.07	0.0	2	2.23	0.49	11.0	40.0	117.0
03917A_29	6.5	4.6	82.0	131	2	3 0.0000	0.11	0 0.0	2	2.04	0.53	23.0	0.0	103.0
03917A_55	6.5	6.5	65.6	58	1	1 0.0000	0.20	1 0.0	1	1.86	0.30	44.0	2.0	150.0
03917A_59	6.8	3.0	55.3	40	5	3 0.0000	0.27	0 0.0	2	2.05	0.52	57.0	37.0	60.0
03917A_15	6.9	6.9	79.1	97	1	4 0.0000	0.05	0 0.0	1	2.02	0.38	8.0	31.0	171.0
03917A_26	7.0	7.0	132.4	96	1	2	0.07	0	1	1.76	0.42	14.0	57.0	74.0
03917A_40	7.3	5.1	70.7	84	2	3	0.11	0	2	1.70	0.46	21.0	0.0	252.0
03917A_48	7.8	7.8	0.0	0	1	2	0.07	0.0	1	2.32	0.30	0.0	0.0	2.0
03917A_62	8.0	3.0	115.1	46	7	0.0000	0.40	0.0	3	2.12	0.46	85.0	113.0	271.0
03917A_20	8.0	5.7	63.8	89	2	0.0000 4	0.08	0.0 0	2	1.93	0.38	16.0	3.0	216.0
03917A_10 0	8.3	5.9	73.2	89	2	0.0000 3	0.10	0.0 0	3	2.55	0.49	20.0	33.0	93.0
03917A_93	8.4	6.0	38.4	49	2	0.0000 2	0.15	0.0 0	2	2.37	0.48	33.0	138.0	125.0
03917A 81	8.8	5.1	52.4	74	3	0.0000 3	0.12	0.0 0	2	2.25	0.45	26.0	78.0	119.0
03917A 82	95	9.5	90.7	137	1	0.0000	0.05	0.0	1	1 74	0 41	13.0	2.0	182.0
03017A 14	0.0	0.0	54.2	65	-	0.0000	0.04	0.0	-	1 95	0.72	12.0	12.0	204.0
03917A_10	10.0	5.5	121.0	160	1	0.0000	0.04	0.0	2	1.00	0.73	20.0	43.0	122.0
2	10.0	5.0	131.0	102	4	0.0000	0.10	0.0	2	1.90	0.62	20.0	1.0	123.0
0391/A_38	10.1	5.1	42.0	23	4	2 0.0000	0.21	1 0.0	3	1.97	0.41	147.0	12.0	67.0
03917A_77	10.2	10.2	0.0	0	1	2 0.0000	0.05	0 0.0	1	2.17	0.46	11.0	46.0	217.0
03917A_8 03917A_10	11.0	4.2	32.5	37	7	3 0.0000	0.27	1 0.0	3	2.17	0.39	55.0	7.0	285.0
6	11.0	5.5	47.2	51	4	2 0.0000	0.23	0 0.0	2	2.02	0.48	47.0	3.0	197.0
03917A_83	11.2	11.2	85.2	112	1	2 0.0000	0.05	0 0.0	1	1.94	0.46	8.0	31.0	203.0
03917A_52	12.0	12.0	103.3	130	1	4	0.03	0	1	2.13	0.51	6.0	23.0	140.0
03917A_99	12.5	3.5	46.0	52	13	5	0.26	1	4	2.10	0.47	58.0	35.0	329.0
03917A_72	12.5	5.6	46.2	48	5	0.0000	0.34	0.0	2	1.96	0.37	75.0	3.0	81.0
03917A_25	12.6	8.9	45.4	98	2	4	0.05	0.0	2	2.23	0.41	10.0	1.0	228.0
03917A_9	12.9	3.1	42.0	31	18	0.0000 3	0.59	0.0 2	3	1.97	0.33	128.0	21.0	253.0
03917A_31	13.9	5.7	41.3	54	6	0.0000 4	0.14	0.0 0	3	2.23	0.45	34.0	1.0	117.0
03917A_36	14.2	5.0	62.5	40	8	0.0000 2	0.29	0.0 1	2	1.66	0.35	59.0	1.0	161.0

						0.0000		0.0						
03917A_33	15.3	4.8	50.3	56	10	3	0.24	1	4	2.06	0.39	49.0	6.0	195.0
03917A_1	16.0	8.0	146.2	55	4	0.0000	0.21	1	2	1.97	0.34	41.0	88.0	39.0
03917A_47	16.4	7.3	35.4	39	5	0.0000	0.32	0.0	4	2.04	0.39	62.0	26.0	143.0
03917A_4	16.7	5.1	56.7	132	11	0.0000 5	0.17	0.0 1	2	2.23	0.63	31.0	0.0	155.0
03917A_30	16.8	11.9	27.8	77	2	0.0000 3	0.05	0.0 0	2	2.32	0.45	11.0	49.0	209.0
03917A_39	17.6	12.4	58.7	120	2	0.0000 1	0.12	0.0 0	3	2.04	0.41	24.0	1.0	120.0
03917A_41	18.3	10.5	62.7	80	3	0.0000 4	0.05	0.0 0	2	1.96	0.49	11.0	44.0	90.0
03917A_28	18.9	13.3	104.2	151	2	0.0000 4	0.03	0.0 0	2	2.34	0.39	7.0	21.0	148.0
03917A_10 7	19.3	9.7	114.8	191	4	0.0000 3	0.09	0.0 0	3	1.98	0.47	18.0	0.0	113.0
03917A_69	19.4	11.2	50.1	48	3	0.0000 1	0.16	0.0 0	3	2.56	0.51	37.0	120.0	81.0
03917A_90	19.6	19.6	61.0	190	1	0.0000 1	0.06	0.0 0	1	2.25	0.63	14.0	0.0	128.0
03917A_46	19.7	13.9	151.7	124	2	0.0000 2	0.07	0.0 0	2	2.28	0.62	15.0	0.0	191.0
03917A_70	20.7	12.0	100.0	126	3	0.0000 2	0.10	0.0 0	2	1.69	0.46	23.0	0.0	132.0
03917A_3	21.3	3.9	51.3	50	31	0.0000 5	0.37	0.0 1	3	2.32	0.47	68.0	1.0	183.0
03917A_37	21.4	4.9	55.6	35	19	0.0000 3	0.38	0.0 1	2	1.82	0.37	77.0	38.0	225.0
03917A_19	21.6	6.0	63.6	91	13	0.0000 4	0.19	0.0 1	2	2.04	0.48	48.0	1.0	171.0
03917A_44	21.8	12.6	53.1	88	3	0.0000 2	0.09	0.0 0	2	2.23	0.50	19.0	12.0	162.0
03917A_17	22.7	6.6	113.7	125	12	0.0000 5	0.13	0.0 0	4	1.84	0.64	27.0	0.0	114.0
03917A 57	24.4	6.6	61.1	37	14	0.0000 3	0.21	0.0 0	3	2.04	0.45	43.0	1.0	199.0
_ 03917A 6	25.2	11.3	128.5	165	5	0.0000 3	0.08	0.0 0	2	1.46	0.33	18.0	0.0	145.0
_ 03917A 66	25.7	14.9	0.0	0	3	0.0000 4	0.03	0.0 0	2	2.18	0.53	7.0	20.0	140.0
_ 03917A 68	27.2	11.1	89.0	159	6	0.0000 3	0.09	0.0 0	2	2.27	0.60	19.0	1.0	160.0
03917A_10 3	27.3	9.7	39.6	55	8	0.0000 2	0.19	0.0 0	3	2.01	0.41	38.0	7.0	241.0
03917A_10 8	27.6	9.8	34.8	53	8	0.0000 3	0.11	0.0 0	2	2.04	0.42	20.0	13.0	58.0
03917A 64	28.1	8.9	50.1	62	10	0.0000 3	0.15	0.0 1	2	2.22	0.32	26.0	4.0	164.0
03917A 58	28.1	10.7	59.4	84		0.0000	0.08	0.0 0	2	2.37	0.55	16.0	23.0	76.0
039174 42	28.5	28.6	131.9	165	1	0.0000	0.04	0.0	-	2.68	0.49	9.0	56.0	107.0
039174 71	20.5	29.3	192.7	358	1	0.0000	0.04	0.0	1	1.80	0.45	5.0	21.0	141 0
039174 67	29.5	8.6	0.0	0	12	0.0000	0.02	0.0	2	2.05	0.34	21.0	4.0	116.0
03917A 54	20.0	7.1	40.1	26	12	0.0000	0.10	0.0	2	1.65	0.41	128.0	2.0	220.0
03917A_54	29.9	7.1	40.1	170	10	0.0000	0.04	0.0	3	1.00	0.41	128.0	2.0	529.0
03917A_10	21.2	7.1	104.9	170	30	0.0000	0.07	0.0	2	2.05	0.42	13.0	2.0	104.0
9	31.3	7.1	85.9	80	20	4 0.0000	0.20	0.0	4	2.05	0.40	43.0	1.0	194.0
03917A_94	31.5	7.3	50.6	45	19	0.0000	0.37	0.0	3	2.16	0.44	76.0	2.0	234.0
020174_92	31./	18.3	64.U	90	3	1 0.0000	0.12	0.0	2	1.//	0.44	21.0	3.0	251.0
03917A_16	32.2	18.6	257.6	419	3	3 0.0000	0.04	0 0.0	3	1./8	0.34	8.0	0.0	100.0
U391/A_97	35.6	9.6	136.5	54	14	3 0.0000	0.17	0 0.0	3	2.83	0.53	33.0	/5.0	44.0
03917A_10	36.6	16.4	195.7	255	5	3	0.06	0	4	2.14	0.57	11.0	1.0	48.0

						0.0000		0.0						
03917A_89	37.8	11.4	54.9	113	11	4	0.09	0	3	2.20	0.31	19.0	2.0	94.0
						0.0000		0.0						
03917A_95	39.2	16.1	141.2	161	6	2	0.09	0	3	1.97	0.44	20.0	0.0	127.0
						0.0000		0.0						
03917A_21	39.6	22.9	27.1	168	3	3	0.03	0	2	1.90	0.42	8.0	1.0	101.0
_						0.0000		0.0						
03917A 12	39.8	6.0	42.0	17	47	4	0.38	1	4	2.03	0.46	217.0	2.0	253.0
-						0.0000		0.0						
03917A 79	41.6	10.2	80.2	97	17	5	0.10	0	4	2.38	0.60	23.0	23.0	86.0
						0.0000		0.0						
03917A 50	45 1	31.9	129.0	96	2	1	0.07	0	2	1 82	0 44	15.0	71.0	53.0
039174 11					_	0 0000		0.0	_					
0	58 7	10.4	18 5	56	34	3	0.27	1	4	2 02	0 40	51.0	13.0	299.0
0	50.7	10.4	10.5	50	34	0 0000	0.27	00	-	2.02	0.40	51.0	15.0	255.0
020174 08	69.7	21.2	11 5	125	5	0.0000	0.06	0.0	2	2 26	0.46	12.0	0.0	120.0
03917A_98	09.7	51.5	41.5	125	J	0 0000	0.00	00	5	2.30	0.40	13.0	0.0	129.0
020174 24	74.0	26.2	152.0	102	0	0.0000	0.09	0.0	2	2 20	0 56	16.0	67.0	02.0
03917A_24	74.0	20.2	155.6	102	0	0.0000	0.08	0	5	2.50	0.50	10.0	07.0	92.0
020174 12	74.4	11.0	FO 2	21	40	0.0000	0 17	0.0	4	1.05	0.25	164.0	1.0	220.0
03917A_13	74.4	11.0	50.3	31	49	5	0.17	1	4	1.95	0.35	164.0	1.0	238.0
000474 05	05.0	CO O		4.95	2	0.0000	0.00	0.0		2.07	0.42	6.0	2.0	
03917A_35	85.9	60.8	80.9	135	2	1	0.03	0	1	2.07	0.43	6.0	2.0	111.0
					_	0.0000		0.0						
0391/A_65	330.0	125.6	29.4	182	/	1	0.02	0	2	2.26	0.41	7.0	4.0	1/3.0
						0.0000		0.0						
03917A_49	464.7	468.1	0.0	0	1	3	0.00	0	1	1.89	0.47	0.0	0.0	5.0
						0.0000		0.0						
03917A_45	466.8	468.5	0.0	0	1	2	0.00	0	1	2.68	0.52	0.0	1.0	9.0
						0.0000		0.0						
03917A_43	552.2	556.6	0.0	0	1	4	0.00	0	1	2.17	0.49	0.0	0.0	6.0
						0.0000		0.0						
03917A_76	616.9	444.4	0.0	0	2	5	0.00	0	2	1.81	0.35	0.0	3.0	15.0

Eureka Glacier

												r. 11		
Spot Name	FT Age (Ma)	sigma sym (Ma)	UPb Age (Ma)	2 sigma (Ma)	Ns	Area cm^2 0.0000	U/Catio n	+/- 1sig 0.0	Etch Figs.	Dpar (um)	Dper (um)	[0] (ppm)	[Th] (ppm)	[Sm] (ppm)
4393A_5	0.0	727.8	0.0	0	0	4	0.00	0	1	1.48	0.41	0.0	0.0	6.3
4393A_4	0.0	633.9	0.0	0	0	5	0.00	0	1	1.82	0.28	0.0	0.0	3.2
4393A_49	0.0	700.6	0.0	0	0	2	0.00	0.0	1	1.60	0.38	0.1	0.1	6.8
4393A_68	0.0	3.8	0.0	0	0	5	0.03	0.0	1	1.57	0.27	0.1	0.0	17.0
4393A_45	0.0	298.7	0.0	0	0	0.0000	0.00	0.0	1	1.61	0.21	0.2	0.0	7.2
4393A_95	0.0	1.7	0.0	0	0	0.0000	0.09	0.0	1	1.34	0.25	0.4	0.5	4.4
4393A_61	0.0	48.9	0.0	0	0	0.0000	0.00	0.0	1	1.64	0.35	0.6	0.1	27.9
4393A_56	0.0	17.2	0.0	0	0	0.0000	0.01	0.0	1	1.46	0.33	1.1	2.6	33.5
4393A_83	0.0	14.4	0.0	0	0	0.0000	0.01	0.0	1	1.83	0.27	1.4	9.1	6.2
4393A_71	0.0	16.4	0.0	0	0	0.0000	0.02	0.0 1	1	1.72	0.44	1.4	2.5	105.2
4393A_33	0.0	41.3	0.0	0	0	0.0000	0.01	0.0	1	1.74	0.22	1.7	22.4	82.8
4393A_50	0.0	4.9	0.0	0	0	0.0000	0.03	0.0	1	1.72	0.28	2.7	13.4	10.8
4393A_79	0.0	1.8	0.0	0	0	0.0000	0.21	0.0	1	2.03	0.30	4.4	9.1	1.8
4393A_103	0.0	4.0	0.0	0	0	0.0000	0.06	0.0	1	1.60	0.30	4.6	13.1	16.4
4393A_9	0.0	17.6	0.0	0	0	0.0000	0.01	0.0 0	1	1.50	0.27	4.8	5.7	27.3
4393A_6	0.0	2.2	0.0	0	0	0.0000	0.06	0.0 0	1	1.57	0.35	4.9	3.2	19.9
4393A_2	0.0	11.9	207.8	179	0	0.0000 2	0.02	0.0 0	1	1.33	0.27	5.2	13.4	68.1
4393A_28	0.0	2.1	0.0	0	0	0.0000 2	0.12	0.0 1	1	1.38	0.30	6.2	16.1	20.5

						0.0000		0.0						
4393A_44	0.0	5.7	0.0	0	0	2	0.04	0	1	1.77	0.39	7.0	1.5	83.8
4393A_12	0.0	5.1	0.0	0	0	3	0.04	0.0	1	1.51	0.31	8.7	7.3	20.4
4393A_69	0.0	59.4	276.1	182	0	0.0000	0.01	0.0	1	2.14	0.30	11.2	0.5	77.2
4393A_55	0.9	0.9	0.0	0	1	4	0.23	5	1	1.62	0.27	7.8	11.8	20.8
4393A_90	2.4	2.4	793.3	849	1	0.0000	0.10	0.0	1	1.61	0.36	0.8	0.9	53.5
4393A_53	2.9	2.9	0.0	0	1	0.0000	0.10	0.0	1	1.72	0.36	9.0	46.1	122.9
4393A_89	3.8	3.8	0.0	0	1	2	0.13	0.0	2	1.57	0.32	12.9	8.1	31.5
4393A_20	3.8	3.8	0.0	0	1	0.0000	0.04	0.0	1	1.53	0.25	0.1	0.1	25.5
4393A_13	4.5	4.5	0.0	0	1	0.0000	0.13	0.0	1	1.92	0.29	21.9	14.3	63.8
4393A_60	4.8	4.8	0.0	0	1	2	0.07	0.0	1	1.72	0.33	7.3	4.7	44.8
4393A_59	6.9	2.3	######	####	10	0.0000	0.31	0.0	4	1.66	0.30	26.5	10.2	115.6
4393A_73	7.9	5.6	0.0	0	2	0.0000	0.17	0.0	1	1.72	0.25	25.0	19.2	86.2
4393A_58	8.1	2.2	815.2	####	15	0.0000 3	0.53	0.0 5	2	1.59	0.41	39.7	18.1	114.7
4393A_81	8.7	6.2	136.6	124	2	0.0000 3	0.06	0.0	1	1.59	0.33	13.2	0.4	80.6
4393A_32	8.8	6.3	0.0	0	2	0.0000	0.16	0.0 2	2	1.62	0.24	44.7	11.9	79.3
4393A_47	8.9	3.6	66.3	151	6	2	0.23	0.0	2	1.39	0.30	20.6	0.5	145.8
4393A_18	9.9	5.0	97.7	133	4	0.0000 5	0.07	0.0	3	1.60	0.35	14.9	0.5	105.6
4393A_26	9.9	5.7	72.7	98	3	3	0.09	0.0	2	1.33	0.31	18.0	0.4	119.4
4393A_39	10.4	4.6	78.3	115	5	5	0.08	0.0	2	1.52	0.34	15.0	0.6	72.4
4393A_10	10.4	4.2	126.8	70	6	5	0.10	0.0	3	1.78	0.38	20.3	0.4	104.3
4393A_65	10.4	4.3	86.0	82	6	5	0.10	0.0	4	1.89	0.26	20.7	0.7	94.0
4393A_91	10.6	5.1	0.0	0	5	5	0.08	0.0 1 0.0	2	2.03	0.34	16.4	6.5	82.4
4393A_74	11.8	11.8	751.0	####	1	5	0.01	0.0	2	1.44	0.41	3.0	0.3	26.7
4393A_72	11.8	5.9	120.0	101	4	3	0.10	0.0	2	1.58	0.41	19.7	0.7	106.9
4393A_7	12.5	6.3	90.7	123	4	4	0.07	0.0	3	1.78	0.36	14.4	0.3	104.8
4393A_22	12.8	6.4	175.6	170	4	4	0.07	0.0	3	1.50	0.27	13.7	0.2	97.4
4393A_30	13.3	9.4	118.8	126	2	2	0.05	0.0	2	1.64	0.32	10.7	0.3	98.7
4393A_27	13.9	13.9	752.5	839	1	4	0.01	0	1	1.38	0.24	2.8	0.3	41.5
4393A_93	14.0	2.6	94.2	64	29	5	0.35	1	4	1.85	0.42	77.2	40.5	35.9
4393A_23	14.5	14.6	0.0	0	1	5	0.01	0.0	2	1.44	0.32	1.7	4.3	17.0
4393A_16	14.5	6.5	0.0	0	5	5	0.06	0.0	3	1.83	0.30	6.0	1.3	29.1
4393A_67	14.7	8.5	112.7	133	3	3	0.06	0	1	1.59	0.27	12.2	0.5	83.6
4393A_31	14.8	14.8	195.3	203	1	1	0.05	0	1	1.90	0.47	9.8	0.4	80.8
4393A_94	15.0	8.7	134.6	153	3	3	0.06	0	2	1.62	0.32	11.9	16.3	11.8
4393A_85	16.3	5.2	78.5	71	10	4	0.13	0.0	3	1.38	0.30	27.0	0.3	115.1
4393A_76	16.4	8.2	146.9	148	4	4	0.05	0.0	3	1.55	0.41	10.9	0.4	92.7
4393A_14	16.5	6.7	92.5	98	6	3	0.10	0	3	1.49	0.34	21.4	0.3	117.3

						0.0000		0.0						
4393A_84	17.2	5.5	106.0	71	10	3 0 0000	0.14	0	3	1.72	0.46	29.7	0.9	108.7
4393A_41	18.6	6.6	90.2	73	8	4	0.09	0	4	1.66	0.35	18.4	0.2	90.6
4393A_25	19.2	6.8	109.7	153	8	5	0.07	0.0	4	1.56	0.29	15.1	0.8	40.3
4393A_11	19.5	8.0	138.1	132	6	0.0000 3	0.09	0.0 0	4	1.42	0.39	18.3	0.5	84.9
4393A_105	20.2	8.3	0.0	0	6	0.0000 3	0.08	0.0 0	3	1.58	0.34	18.2	3.8	97.4
4393A_21	20.9	20.9	0.0	0	1	0.0000 5	0.01	0.0 0	1	1.31	0.35	10.2	10.5	6.2
4393A 35	21.1	10.5	176.8	158	4	0.0000 3	0.05	0.0 0	3	1.59	0.25	9.9	0.3	86.7
- 4393A 17	21 5	15 2	163 1	189	2	0.0000 1	0.05	0.0 0	2	1 55	0.30	11 1	13	95 3
13934 62	21.0	8 2	67.1	145	-	0.0000	0.09	0.0	3	1 50	0.33	19.6	1 1	128 5
43338_02	21.7	11.2	100.0	145	,	0.0000	0.09	0.0	5	1.50	0.55	19.0	1.1	120.5
4393A_46	22.3	11.2	109.0	67	4	0.0000	0.10	0.0	2	1.51	0.37	22.6	0.5	125.1
4393A_40	22.4	15.8	218.0	210	2	4 0.0000	0.02	0 0.0	2	1.55	0.47	4.3	0.3	80.2
4393A_43	22.4	13.0	304.3	382	3	5 0.0000	0.02	0 0.0	2	1.63	0.36	4.6	0.8	75.5
4393A_34	22.5	22.5	137.8	263	1	2 0.0000	0.02	0 0.0	1	1.80	0.31	3.9	0.2	59.9
4393A_24	22.6	7.5	66.5	76	9	5	0.07	0	3	1.48	0.37	13.8	5.0	22.2
4393A_80	22.6	13.1	109.8	154	3	1	0.09	0.0	2	1.59	0.35	15.8	2.2	99.6
4393A_102	23.2	8.8	141.1	422	7	3	0.07	0.0	4	1.62	0.30	15.6	1.1	121.6
4393A_52	23.4	7.0	0.0	0	14	0.0000 4	0.11	0.0 1	3	1.51	0.41	30.8	22.8	86.2
4393A_100	23.8	9.7	90.1	101	6	0.0000 4	0.05	0.0 0	3	1.52	0.22	11.1	0.7	93.6
4393A_63	24.2	9.2	81.7	98	7	0.0000 3	0.08	0.0 0	3	1.78	0.30	17.1	0.4	98.3
- 4393A 88	24.6	9.3	146.8	183	7	0.0000 4	0.06	0.0 0	3	1.76	0.41	12.0	3.1	50.4
13934 97	25.0	25.0	0.0	0	1	0.0000	0.01	0.0	1	1 67	0.49	1 /	0.7	22.1
43030 104	25.0	12.0	101.1	222	1	0.0000	0.01	0.0	-	1.07	0.45	1.7	0.7	22.1
4393A_104	25.1	12.6	191.1	232	4	4 0.0000	0.03	0.0	3	1.61	0.39	7.2	0.5	88.4
4393A_48	25.1	12.6	76.2	108	4	2 0.0000	0.06	0 0.0	2	1.53	0.41	13.6	0.2	100.0
4393A_57	25.5	8.1	56.8	107	10	5 0.0000	0.07	0 0.0	4	1.45	0.38	14.6	0.7	96.2
4393A_86	26.3	11.8	173.0	218	5	3 0.0000	0.05	0 0.0	3	1.55	0.32	10.0	1.4	104.3
4393A_82	26.6	13.3	233.4	153	4	2	0.05	0	3	1.83	0.29	10.4	0.3	97.4
4393A_78	26.9	13.5	81.0	112	4	1	0.10	0	3	1.78	0.30	20.7	0.6	118.6
4393A_66	26.9	12.0	119.6	137	5	3	0.06	0.0	4	1.62	0.40	12.2	0.2	99.0
4393A_42	27.6	19.5	427.8	338	2	0.0000	0.02	0.0	1	2.02	0.49	3.6	0.7	87.5
4393A_54	28.1	8.5	123.2	134	11	0.0000 5	0.07	0.0 0	3	1.48	0.30	14.3	0.3	96.6
4393A_3	28.7	28.7	338.2	487	1	0.0000 5	0.01	0.0 0	1	1.70	0.31	1.2	0.0	7.7
4393A 19	29.0	29.0	0.0	0	1	0.0000 5	0.01	0.0 0	1	1.33	0.30	0.1	0.2	2.6
13934 99	29.5	20.8	232.6	28/	2	0.0000	0.02	0.0	1	1 77	0.25	5.0	23.7	170 7
42024 27	23.5	20.0	152.0	170	2	0.0000	0.02	0.0	2	1.77	0.25	0.0	23.7	21.7
+JJJJK_3/	52.0	22.1	152.0	1/0		0.0000	0.04	0.0	2	1.23	0.41	9.0	2.7	31./
4393A_70	32.3	12.2	67.1	76	7	2 0.0000	0.07	0 0.0	3	1.68	0.36	16.5	0.3	91.8
4393A_101	33.6	8.0	63.3	63	18	3 0.0000	0.14	0 0.0	2	1.48	0.41	30.2	3.5	120.3
4393A_29	35.1	35.1	0.0	0	1	2	0.01	0	1	1.82	0.26	2.3	2.5	61.6

						0.0000		0.0						
4393A_38	37.0	26.2	128.4	217	2	2	0.02	0	1	1.64	0.42	4.6	0.2	72.5
						0.0000		0.0						
4393A_64	45.6	26.3	233.9	251	3	2	0.03	0	2	1.57	0.33	6.0	0.8	67.1
						0.0000		0.0						
4393A_77	47.2	11.9	562.8	462	16	5	0.06	0	4	2.00	0.48	10.9	1.1	55.2
						0.0000		0.0						
4393A_75	50.4	29.2	0.0	0	3	2	0.03	0	2	2.28	0.34	1.4	0.7	48.3
						0.0000		0.0						
4393A_1	51.6	36.5	0.0	0	2	4	0.01	0	2	1.66	0.35	1.5	0.4	29.3
						0.0000		0.0						
4393A_92	52.8	37.6	0.0	0	2	2	0.02	0	1	1.51	0.28	4.0	15.6	18.4
						0.0000		0.0						
4393A_87	60.3	34.9	253.4	495	3	3	0.01	0	2	1.63	0.40	3.0	0.6	74.6
						0.0000		0.0						
4393A_36	61.5	43.5	846.4	####	2	1	0.02	0	1	1.31	0.23	1.9	3.6	56.1
						0.0000		0.0						
4393A_15	77.1	54.5	241.2	269	2	2	0.01	0	1	1.57	0.38	2.1	9.0	114.3
						0.0000		0.0						
4393A_51	77.3	34.7	308.9	403	5	2	0.02	0	2	1.51	0.31	4.8	0.4	75.0
						0.0000		0.0						
4393A_96	81.9	47.3	315.6	404	3	3	0.01	0	2	1.96	0.55	1.9	7.4	82.8
						0.0000		0.0						
4393A_98	99.9	100.0	851.4	####	1	2	0.00	0	1	1.32	0.25	0.9	0.2	28.8
						0.0000		0.0						
4393A_8	133.4	133.6	0.0	0	1	2	0.00	0	1	1.50	0.25	0.7	0.5	34.7

Little Tok														
Spot Name	FT Age (Ma)	symm err (Ma)	UPb Age (Ma)	2 sigma (Ma)	Ns	Area cm^2	U/Catio n	+/- 1sig	Etch Figs.	Dpar (um)	Dper (um)	[U] (ppm)	[Th] (ppm)	[Sm] (ppm)
1422A_15	0.0	5.6	0.0	0	0	5	0.03	0.0	1	1.77	0.37	7.0	40.0	142.0
1422A_16	0.0	15.3	93.1	245	0	0.0000	0.01	0.0	1	1.73	0.23	3.0	11.0	59.0
1422A_34	0.0	12.6	17.2	121	0	4	0.02	0.0	1	1.36	0.34	3.0	14.0	64.0
1422A_63	0.0	25.5	94.0	190	0	0.0000 3	0.01	0.0	1	2.14	0.35	3.0	11.0	57.0
1422A_58	8.9	7.3	201.7	110	1	3	0.05	0.0	1	2.25	0.25	10.0	46.0	118.0
1422A_7	11.1	5.2	177.0	107	4	5	0.09	0.0	4	1.91	0.36	20.0	112.0	238.0
1422A_37	18.2	4.3	135.2	38	18	5	0.25	0.0 1 0.0	4	1.59	0.29	52.0	186.0	274.0
1422A_54	23.7	5.6	120.6	38	18	0.0000	0.19	0.0	3	1.75	0.27	40.0	208.0	301.0
1422A_11	25.0	6.6	127.4	65	14	0.0000	0.14	0.0	4	2.07	0.46	31.0	87.0	379.0
1422A_49	26.0	4.4	98.1	25	35	0.0000	0.43	0.0	4	1.92	0.25	102.0	239.0	183.0
1422A_55	27.3	4.9	111.3	23	31	0.0000	0.41	0.0	4	1.87	0.33	90.0	144.0	144.0
1422A_43	27.6	6.6	107.4	24	17	2	0.43	0.0	4	1.47	0.30	93.0	279.0	284.0
1422A_4	28.6	5.7	91.0	49	26	0.0000	0.26	0.0	3	1.49	0.37	52.0	158.0	139.0
1422A_44	29.1	6.9	136.2	84	18	0.0000	0.16	0.0	4	1.73	0.33	33.0	165.0	113.0
1422A_17	32.0	4.7	109.4	43	49	0.0000	0.39	0.0	4	1.92	0.27	83.0	131.0	246.0
1422A_3	32.1	4.3	115.3	25	61	0.0000	0.48	0.0	4	2.02	0.38	96.0	162.0	217.0
1422A_65	33.4	6.7	117.0	26	25	0.0000	0.32	0.0	3	1.76	0.33	68.0	148.0	128.0
1422A_36	33.9	7.7	119.2	43	19	0.0000 3	0.20	0.0 0	3	1.75	0.37	44.0	226.0	302.0
1422A_1	34.0	13.4	120.2	144	6	0.0000 5	0.04	0.0 0	2	1.74	0.27	10.0	19.0	300.0
1422A_41	35.6	8.3	137.7	42	18	0.0000 3	0.18	0.0 0	4	2.06	0.41	39.0	175.0	200.0

						0.0000		0.0						
1422A_51	39.9	6.4	117.8	26	40	3 0.0000	0.42	1	4	1.87	0.46	83.0	59.0	195.0
1422A_30	40.8	13.3	160.9	60	9	3	0.09	0	4	1.84	0.35	19.0	122.0	151.0
1422A_64	42.0	8.9	113.1	29	22	0.0000	0.22	0.0	4	1.56	0.34	48.0	160.0	212.0
1422A_69	45.3	7.5	105.1	28	37	0.0000 4	0.26	0.0 1	3	1.83	0.31	54.0	279.0	324.0
1422A_14	45.5	10.4	138.8	52	19	0.0000 3	0.17	0.0 0	3	1.73	0.37	36.0	163.0	143.0
1422A_52	46.4	6.6	81.4	28	51	0.0000 4	0.35	0.0 1	4	1.96	0.40	74.0	36.0	194.0
1422A_29	48.1	9.4	118.0	33	26	0.0000 2	0.29	0.0 1	4	1.80	0.32	60.0	130.0	124.0
 1422A_24	49.6	8.0	104.3	39	39	0.0000 4	0.25	0.0 1	4	1.59	0.34	55.0	254.0	435.0
- 1422A 12	51.4	14.1	134.5	92	13	0.0000 3	0.10	0.0 0	4	2.02	0.31	20.0	63.0	190.0
1/220 53	53.4	13.2	110 1	38	16	0.0000	0.11	0.0	3	1 75	0.29	22.0	61.0	59.0
14220_55	55.4	13.2	141.0	64	10	0.0000	0.02	0.0	3	1.75	0.25	19.0	96.0	414.0
1422A_47	50.1	13.1	141.0	04	10	0.0000	0.08	0.0	4	1.75	0.50	18.0	112.0	414.0
1422A_60	59.1	9.3	111.5	45	41	3 0.0000	0.25	1 0.0	4	1.72	0.29	55.0	112.0	146.0
1422A_2	61.7	16.3	361.5	106	14	2 0.0000	0.14	0 0.0	3	1.88	0.38	31.0	329.0	531.0
1422A_28	62.1	15.4	99.0	94	16	3 0.0000	0.11	0 0.0	4	1.55	0.44	23.0	77.0	175.0
1422A_42	63.5	8.1	122.0	36	64	4 0.0000	0.28	1 0.0	4	1.98	0.32	60.0	100.0	120.0
1422A_22	67.5	55.2	143.1	543	1 11	4 0.0000	0.00	0 0.0	1	2.02	0.31	1.0	5.0	189.0
1422A_38	72.8	7.0	118.6	27	4	5	0.40	1	4	1.99	0.33	84.0	106.0	137.0
1422A_35	77.8	13.5	523.0	693	48	3	0.26	3	4	1.91	0.36	53.0	115.0	742.0
1422A_70	88.7	24.2	188.6	125	13	5	0.04	0.0	4	2.97	0.50	8.0	56.0	113.0
1422A_19	91.7	9.2	120.6	35	7	0.0000	0.37	0.0	4	2.14	0.36	78.0	146.0	238.0
1422A_40	109.3	15.0	147.7	48	55	0.0000 4	0.16	0.0	4	2.91	0.38	33.0	221.0	351.0
1422A_20	109.4	16.8	109.0	67	43	0.0000 3	0.14	0.0 0	4	1.81	0.33	26.0	131.0	493.0
1422A_31	113.4	14.5	230.4	49	64	0.0000 5	0.14	0.0 0	4	2.41	0.69	31.0	91.0	53.0
1422A_59	113.6	9.9	105.7	26	14 3	0.0000 4	0.40	0.0 1	4	2.16	0.70	184.0	196.0	157.0
1422A_39	120.1	34.1	161.7	135	12	0.0000 2	0.05	0.0 0	4	1.68	0.32	11.0	30.0	259.0
_ 1422A 13	123.1	18.2	218.2	59	49	0.0000 3	0.17	0.0 1	4	1.88	0.41	37.0	4.0	316.0
14224 8	126.0	15.7	110.2	19	69	0.0000	0.14	0.0	4	2 01	0.35	117.0	180.0	281.0
14220_0	120.0	12.6	228.9	29	10	0.0000	0.14	0.0	4	1 75	0.35	82.0	225.0	466.0
14228_23	132.8	16.2	320.0	10	1	0.0000	0.38	0.0	4	1.75	0.55	20.0	223.0	400.0
1422A_56	135.2	10.3	215.5	40	72	0.0000	0.13	0.0	4	1.95	0.35	29.0	8.0	50.0
1422A_6	139.9	48.2	154.8	251	8	5 0.0000	0.01	0 0.0	4	2.61	0.63	3.0	11.0	67.0
1422A_21	141.1	22.8	265.4	120	39 16	5 0.0000	0.07	0 0.0	4	1.78	0.33	14.0	0.0	135.0
1422A_50	145.1	11.9	140.6	21	7	3 0.0000	0.48	1 0.0	4	2.02	0.39	103.0	153.0	101.0
1422A_18	148.2	21.2	226.1	44	50	3 0.0000	0.14	0 0.0	4	1.88	0.43	30.0	7.0	233.0
1422A_62	151.8	33.1	363.2	236	21	3 0.0000	0.06	0 0.0	3	1.55	0.30	13.0	1.0	132.0
1422A_68	156.0	17.0	155.4	69	96	5	0.15	1	4	2.43	0.62	33.0	284.0	645.0
1422A_25	163.7	18.9	106.7	81	81	4	0.14	0	4	1.57	0.27	31.0	145.0	108.0
1422A_57	178.8	23.3	0.0	0	61	3	0.14	0.0	4	1.97	0.40	0.0	0.0	0.0

						0.0000		0.0						
1422A_9	190.1	52.1	191.9	264	13	5	0.02	0	3	2.61	0.42	4.0	12.0	68.0
						0.0000		0.0						
1422A_67	192.4	59.7	149.7	255	10	5	0.01	0	4	3.47	0.78	3.0	12.0	67.0
						0.0000		0.0						
1422A_45	193.8	28.9	204.1	129	47	5	0.06	0	4	1.73	0.30	13.0	76.0	203.0
						0.0000		0.0						
1422A_61	198.2	21.6	226.1	43	90	4	0.14	0	4	2.08	0.30	29.0	140.0	216.0
						0.0000		0.0						
1422A_48	212.2	22.0	148.2	42	99	3	0.19	0	4	2.25	0.56	42.0	155.0	116.0
						0.0000		0.0						
1422A_66	214.1	24.5	63.2	13	83	3	0.14	0	4	2.02	0.51	166.0	37.0	206.0
						0.0000		0.0						
1422A_5	219.0	80.6	144.6	325	7	4	0.01	0	3	2.28	0.69	2.0	5.0	43.0
						0.0000		0.0						
1422A_46	224.6	38.3	259.8	104	35	4	0.04	0	4	1.91	0.39	10.0	9.0	258.0
						0.0000		0.0						
1422A_33	235.8	62.3	173.9	184	14	4	0.02	0	4	2.57	0.41	4.0	38.0	86.0
						0.0000		0.0						
1422A_10	247.8	61.6	318.4	199	16	2	0.03	0	2	1.51	0.29	7.0	4.0	110.0
						0.0000		0.0						
1422A_32	319.9	77.1	248.9	265	17	3	0.02	0	4	2.81	0.66	4.0	19.0	42.0
						0.0000		0.0						
1422A_26	375.2	307.4	0.0	0	1	3	0.00	0	1	2.59	0.47	0.0	2.0	54.0
						0.0000		0.0						
1422A 27	524.1	737.2	0.0	0	7	2	0.01	1	4	1.75	0.30	7.0	13.0	215.0
_														

Maclaren Bridge

	FT Age	sigma sym	UPb Age	2 sigma		Area	U/Catio	+/-	Etch	Dpar	Dper	[U] (ppm	[Th]	[Sm]
Spot Name	(Ma)	(Ma)	(Ma)	(Ma)	Ns	cm^2 0.0000	n	1sig 0.0	Figs.	(um)	(um))	(ppm)	(ppm)
4396A_4	0.0	38.0	0.0	0	0	5 0.0000	0.00	0 0.0	1	1.58	0.26	0.1	0.0	1.4
4396A_55	0.0	141.2	0.0	0	0	2 0.0000	0.00	0 0.0	1	1.28	0.24	0.3	0.1	5.0
4396A_80	0.0	3.9	0.0	0	0	4 0.0000	0.04	0 0.0	1	1.79	0.28	2.6	17.8	12.3
4396A_82	0.0	115.0	0.0	0	0	2	0.00	0	1	1.34	0.25	0.3	0.7	22.5
4396A_102	0.0	2.0	0.0	0	0	5	0.06	1 0.0	1	1.83	0.29	1.5	2.0	24.1
4396A_54	3.7	1.5	0.0	0	7	2 0.0000	0.76	9 0.0	2	1.68	0.36	45.9	205.6	56.5
4396A_35	5.0	1.8	0.0	0	8	2	0.57	6	4	1.60	0.37	42.7	40.6	203.5
4396A_73	5.4	3.1	0.0	0	3	2	0.27	2 0.0	2	1.61	0.30	48.6	76.7	49.6
4396A_6	6.5	2.5	81.4	76	7	5 0.0000	0.18	1 0.0	3	1.93	0.30	36.2	2.9	115.6
4396A_76	6.9	6.9	0.0	0	1	2	0.06	1 0.0	1	1.58	0.49	7.0	16.6	80.6
4396A_42	7.6	3.5	0.0	0	5	1 0.0000	0.37	4 0.0	4	1.70	0.40	38.1	105.5	67.7
4396A_28	7.9	5.8	0.0	0	2	1	0.17	3 0.0	2	1.84	0.40	17.6	70.8	85.4
4396A_44	8.2	4.7	180.1	144	3	3	0.09	0	2	1.95	0.43	16.4	34.6	120.3
4396A_18	8.4	3.2	0.0	0	10	2	0.48	0	3	1.71	0.30	26.3	375.3	48.8
4396A_68	8.7	3.2	0.0	0	15	3	0.46	2	4	1.86	0.29	13.0	66.5	34.8
4396A_50	9.2	3.5	54.5	73	7	3	0.22	1	4	1.94	0.47	37.5	116.9	75.5
4396A_101	9.3	4.7	0.0	0	4	4	0.09	1	1	1.76	0.39	8.9	21.3	8.1
4396A_77	9.8	2.9	0.0	0	13	3	0.40	4	3	1.66	0.51	39.2	11.5	110.0
4396A_30	10.1	3.5	0.0	0	9	2	0.30	2	3	1.43	0.36	46.1	19.7	77.2
4396A_40	10.4	7.4	0.0	0	2	2	0.09	1	2	1.62	0.46	18.8	6.4	21.4

						0.0000		0.0						
4396A_90	12.4	1.9	57.1	13	47	2	1.80	5	4	1.77	0.39	249.8	6.0	199.6
4396A_104	13.0	4.6	101.8	83	8	3	0.17	1	4	1.80	0.31	19.2	18.7	90.5
4396A_105	13.0	3.2	0.0	0	17	2	0.45	2	4	1.73	0.36	0.1	4.8	5.9
4396A_86	13.5	3.6	272.3	424	14	3	0.32	0.0	4	1.94	0.46	39.9	134.5	68.6
4396A_27	13.6	4.0	######	####	41	2	1.03	0.2	4	1.94	0.49	55.4	30.2	97.0
4396A_67	13.7	5.6	143.2	119	6	0.0000	0.12	0.0	3	1.56	0.38	16.8	35.2	132.4
4396A_11	13.8	3.4	######	####	17	0.0000	0.42	0.0	4	1.87	0.30	80.4	9.8	125.1
4396A_7	14.1	2.0	60.3	20	51	0.0000	0.70	0.0	4	1.90	0.41	131.7	3.2	220.8
4396A_41	15.1	4.6	85.2	60	11	2	0.26	0.0	3	1.66	0.37	44.7	18.1	53.0
4396A_46	15.1	6.8	0.0	0	5	0.0000	0.22	0.0	4	1.71	0.33	31.4	49.9	143.6
4396A_3	15.2	4.6	0.0	0	11	0.0000	0.25	0.0	4	2.18	0.48	43.1	200.4	104.3
4396A_43	15.2	4.1	72.4	30	14	0.0000	0.39	0.0	3	1.67	0.29	79.0	21.5	172.5
4396A_16	15.2	6.2	74.7	62	6	2	0.16	0.0	2	1.61	0.28	34.6	57.6	88.0
4396A_92	15.6	4.5	46.3	59	12	0.0000	0.21	0.0	4	1.91	0.45	35.3	27.2	236.3
4396A_57	15.8	9.1	112.3	160	3	0.0000	0.08	0.0	2	1.53	0.28	14.2	10.9	18.0
4396A_15	16.4	5.8	79.2	61	8	2	0.21	0.0	4	1.64	0.34	37.7	0.3	70.7
4396A_74	16.5	3.8	57.1	33	20	0.0000	0.26	0.0	3	2.08	0.33	49.1	203.0	81.9
4396A_17	16.9	17.0	0.0	0	1	2	0.03	0.0	1	1.68	0.31	6.1	12.5	31.6
4396A_2	17.0	7.6	0.0	0	5	0.0000	0.20	0.0	3	1.80	0.40	38.6	103.7	156.6
4396A_81	17.1	6.1	95.6	62	8	0.0000	0.20	0.0	2	1.46	0.40	34.3	63.0	119.0
4396A_89	17.3	6.6	135.8	180	7	0.0000	0.11	0.0	4	1.63	0.31	17.8	1.4	103.5
4396A_45	17.8	9.1	0.0	0	4	0.0000	0.08	0.0	4	1.77	0.32	8.9	24.3	51.3
4396A_29	17.9	6.8	0.0	0	7	0.0000	0.16	0.0	4	1.61	0.41	169.4	44.5	102.6
4396A_49	18.3	3.6	66.5	32	27	0.0000	0.70	0.0	4	1.90	0.31	116.3	25.7	272.5
4396A_1	18.5	18.5	471.7	472	1	0.0000	0.02	0.0	1	1.78	0.19	3.8	0.3	60.8
4396A_84	18.5	4.4	62.7	31	18	0.0000	0.46	0.0	4	1.62	0.38	92.7	4.9	194.0
4396A_22	19.0	4.2	56.8	21	21	0.0000	0.39	0.0	2	1.67	0.36	77.2	283.0	127.6
4396A_103	19.1	6.1	85.8	59	10	0.0000	0.19	0.0	4	1.82	0.41	32.8	35.0	81.9
4396A_100	19.1	3.4	60.3	13	33	2	0.61	0.0	4	1.61	0.31	123.1	100.2	301.3
4396A_31	19.4	4.5	58.8	41	19	0.0000	0.42	0.0	2	1.48	0.31	74.9	26.3	218.2
4396A_34	20.0	4.0	60.7	23	26	0.0000	0.46	0.0	4	1.93	0.37	78.1	203.9	143.2
4396A_88	20.0	3.5	56.5	23	35	2	0.62	0.0	4	1.83	0.32	117.2	89.6	72.9
4396A_10	20.1	5.3	66.3	71	15	0.0000	0.13	0.0	4	1.85	0.58	24.5	43.1	83.2
4396A_75	20.1	8.9	0.0	0	6	0.0000 3	0.08	0.0	3	1.71	0.33	15.6	578.3	74.0
4396A_87	20.3	20.3	0.0	0	1	0.0000	0.02	0.0	1	1.86	0.30	0.3	2.0	5.1
4396A_21	20.7	5.2	62.3	35	16	0.0000	0.19	0.0	4	2.05	0.39	38.3	38.7	113.0
4396A_98	20.9	8.6	92.0	95	6	0.0000	0.10	0.0	4	1.78	0.38	16.9	0.1	99.2

						0.0000		0.0						
4396A_23	21.1	5.5	70.6	59	15	3	0.19	1	4	1.69	0.31	43.8	131.8	92.7
4396A_93	21.2	8.8	0.0	0	6	2	0.10	0.0	2	1.98	0.30	8.2	16.2	53.5
4396A_39	21.2	7.2	0.0	0	11	0.0000	0.18	0.0	4	2.01	0.38	41.6	35.0	56.9
4396A_95	21.4	6.2	0.0	0	12	0.0000	0.24	0.0	3	1.68	0.35	41.1	19.3	140.6
4396A_38	22.0	7.9	0.0	0	17	0.0000	0.47	0.1	4	1.98	0.38	80.4	129.2	50.4
4396A_33	22.2	4.0	66.7	40	31	0.0000	0.34	0.0	4	2.03	0.41	67.2	135.3	102.6
4396A_99	22.2	10.4	0.0	0	20	0.0000	0.24	0.1	4	2.10	0.40	7.8	13.2	7.7
4396A_26	22.2	6.5	97.7	82	12	0.0000	0.14	0.0	4	1.96	0.44	27.2	6.1	23.5
4396A_13	22.3	9.5	0.0	0	6	0.0000	0.20	0.0	3	1.99	0.40	39.9	37.9	50.5
4396A_36	22.4	6.3	0.0	0	17	0.0000	0.26	0.0	4	2.01	0.61	30.6	262.8	87.7
4396A_19	22.8	6.7	125.6	144	12	0.0000	0.11	0.0	4	1.89	0.35	18.8	18.5	241.5
4396A_9	23.6	7.1	0.0	0	11	0.0000	0.19	0.0	4	1.74	0.32	39.9	93.2	73.3
4396A_48	24.0	11.0	0.0	0	7	0.0000	0.14	0.0	3	1.74	0.35	22.2	412.2	109.5
4396A_32	24.8	8.3	78.9	93	9	0.0000	0.10	0.0	4	1.63	0.29	16.4	17.7	137.5
4396A_62	24.8	6.3	44.8	50	16	0.0000	0.24	0.0	4	1.84	0.29	41.5	71.7	135.0
4396A_66	25.2	5.1	69.6	58	25	0.0000	0.21	0.0	4	2.10	0.61	36.3	32.5	235.0
4396A_79	25.6	11.8	0.0	0	26	0.0000	0.25	0.1	4	1.70	0.37	17.0	67.6	75.8
4396A_71	25.7	10.5	80.8	90	6	0.0000	0.08	0.0	4	1.95	0.41	15.9	28.7	94.4
4396A_59	27.2	10.5	0.0	0	7	0.0000	0.07	0.0	4	1.77	0.51	8.2	27.0	45.3
4396A_94	27.8	3.0	54.4	11	92	0.0000	1.17	0.0	4	1.68	0.35	220.8	265.7	86.7
4396A_72	28.5	28.5	0.0	0	1	0.0000	0.02	0.0	1	1.65	0.33	2.8	17.7	25.4
4396A_60	29.0	16.2	50.6	13	8	0.0000	0.12	0.0	4	2.12	0.51	434.3	##### #	732.7
4396A_64	29.5	29.5	314.9	499	1	0.0000	0.01	0.0	1	1.51	0.37	4.1	9.3	63.3
4396A_96	29.7	6.7	91.2	79	20	0.0000	0.19	0.0	3	1.64	0.30	25.6	52.5	78.0
4396A_69	30.1	17.5	297.8	780	3	0.0000	0.02	0.0	3	2.40	0.56	2.9	10.6	94.4
4396A_14	30.4	31.1	0.0	0	6	0.0000	0.09	0.0 9	4	1.75	0.34	7.3	75.8	34.9
4396A_56	31.8	13.0	0.0	0	6	0.0000	0.09	0.0	3	1.80	0.38	0.2	0.4	8.0
4396A_52	34.5	9.0	84.8	88	15	0.0000	0.12	0.0	4	2.02	0.59	17.8	29.1	87.1
4396A_78	34.7	17.2	0.0	0	9	2	0.09	0.0 3	4	2.29	0.41	18.6	252.2	26.0
4396A_47	36.5	24.6	0.0	0	5	0.0000	0.07	0.0	3	1.69	0.31	16.1	103.7	114.3
4396A_37	36.5	7.7	0.0	0	23	0.0000	0.21	0.0	4	1.61	0.30	28.6	7.4	75.9
4396A_97	38.4	5.3	69.5	48	55	0.0000	0.30	0.0	4	1.76	0.45	53.3	18.4	235.0
4396A_70	38.4	14.6	101.9	116	7	0.0000	0.05	0.0	2	2.09	0.57	8.0	24.9	84.5
4396A_8	39.4	15.7	0.0	0	7	0.0000	0.05	0.0	3	1.78	0.35	6.3	239.9	69.9
4396A_20	40.4	9.3	62.2	49	19	3	0.11	0.0	4	1.81	0.38	22.6	82.1	90.1
4396A_51	41.2	10.3	0.0	0	21	0.0000	0.10	0.0	4	1.73	0.31	9.3	53.5	45.3
4396A_65	41.3	25.4	0.0	0	3	0.0000	0.03	0.0	4	1.59	0.48	3.5	15.6	83.2

						0.0000		0.0						
4396A_58	41.6	15.8	0.0	0	7	2	0.07	0	4	1.74	0.27	10.0	54.8	19.2
						0.0000		0.0						
4396A_63	46.3	25.1	0.0	0	5	2	0.06	2	3	1.77	0.23	5.2	17.6	35.0
						0.0000		0.0						
4396A_85	47.2	16.9	388.7	506	8	4	0.04	0	4	1.92	0.40	10.4	1.5	65.5
						0.0000		0.0						
4396A_12	48.0	21.8	0.0	0	5	2	0.04	0	2	1.78	0.39	8.8	15.6	41.0
						0.0000		0.0						
4396A_61	48.1	17.6	93.4	127	8	1	0.09	1	3	1.81	0.29	14.7	25.0	100.5
						0.0000		0.0						
4396A_25	49.7	13.9	110.4	90	13	3	0.07	0	4	2.19	0.40	10.3	6.1	50.0
						0.0000		0.0						
4396A_5	66.5	47.2	359.0	464	2	2	0.01	0	2	1.71	0.25	2.1	8.3	79.4
						0.0000		0.0						
4396A_83	73.2	34.8	0.0	0	25	2	0.12	5	4	1.76	0.33	26.8	384.0	72.4
						0.0000		0.0						
4396A_53	90.0	36.9	121.9	349	6	2	0.02	0	3	2.00	0.44	4.5	19.9	188.9
						0.0000		0.0						
4396A_91	152.7	46.6	0.0	0	17	2	0.04	1	4	1.66	0.24	7.8	34.7	39.6
42064 24	275.0	72.0	102 5	170	00	0.0000	0.05	0.0		1.00	0.22	10.0	2.5	76 7
4390A_24	3/5.0	72.9	102.5	1/2	90	4	0.05	1	4	1.60	0.32	18.0	2.5	/6./

Maclaren Glacier

												[11]		
Spot Name	FT Age (Ma)	sigma sym (Ma)	UPb Age (Ma)	2 sigma (Ma)	Ns	Area cm^2 0.0000	U/Catio n	+/- 1sig 0.0	Etch Figs.	Dpar (um)	Dper (um)	(ppm)	[Th] (ppm)	[Sm] (ppm)
4392A_35	0.0	348.0	0.0	0	0	3 0.0000	0.00	0	1	1.34	0.26	0.1	0.0	2.2
4392A_13	0.0	228.9	0.0	0	0	2	0.00	0	1	1.61	0.43	0.2	0.0	3.7
4392A_47	0.0	79.0	0.0	0	0	4 0.0000	0.00	0 0.0	1	1.30	0.19	0.3	0.1	26.3
4392A_70	0.0	64.3	0.0	0	0	1 0.0000	0.01	0 0.0	1	1.52	0.24	0.4	0.0	18.0
4392A_40	0.0	5.4	0.0	0	0	2 0.0000	0.04	0 0.0	1	2.10	0.38	0.6	4.2	9.1
4392A_95	0.0	20.4	0.0	0	0	5 0.0000	0.01	0 0.0	1	1.40	0.31	0.6	1.7	62.0
4392A_83	0.0	30.1	0.0	0	0	5 0.0000	0.00	0 0.0	1	1.46	0.33	0.9	11.7	7.5
4392A_24	0.0	43.1	0.0	0	0	2 0.0000	0.01	0 0.0	1	1.66	0.39	0.9	5.2	67.7
4392A_71	0.0	42.6	0.0	0	0	3 0.0000	0.00	0 0.0	1	1.27	0.26	0.9	0.5	54.3
4392A_22	0.0	34.8	0.0	0	0	3 0.0000	0.01	0 0.0	1	1.90	0.35	1.0	0.2	17.2
4392A_16	0.0	36.1	563.4	948	0	3 0.0000	0.01	0 0.0	1	2.02	0.27	1.1	1.6	36.9
4392A_73	0.0	32.1	0.0	0	0	3 0.0000	0.01	0 0.0	1	1.96	0.34	1.1	0.2	44.4
4392A_75	0.0	46.0	867.2	####	0	2 0.0000	0.01	0 0.0	1	1.94	0.38	1.4	0.5	36.4
4392A_17	0.0	21.0	0.0	0	0	3 0.0000	0.01	0 0.0	1	1.36	0.25	1.5	1.9	78.0
4392A_38	0.0	22.8	429.8	589	0	3 0.0000	0.01	0 0.0	1	1.79	0.31	1.7	2.0	35.2
4392A_42	0.0	5.9	0.0	0	0	2 0.0000	0.05	1 0.0	1	1.65	0.21	4.3	66.6	75.9
4392A_77	6.0	2.3	455.7	####	7	2 0.0000	0.55	4 0.0	4	1.90	0.35	114.5	155.6	200.5
4392A_50	7.6	7.6	0.0	0	1	2 0.0000	0.04	0 0.0	1	1.97	0.69	7.4	28.6	211.7
4392A_78	7.7	2.8	0.0	0	8	3 0.0000	0.28	2 0.0	4	1.91	0.33	47.9	48.1	127.2
4392A_29	8.1	8.1	52.6	8	1	3 0.0000	0.04	0 0.1	1	1.71	0.45	166.8	214.9	174.2
4392A_74	8.8	4.6	0.0	0	13	3 0.0000	0.39	8 0.0	4	1.62	0.33	23.3	10.8	42.4
4392A_102	8.8	3.1	0.0	0	9	2 0.0000	0.35	3 0.0	4	1.80	0.38	95.4	9.0	207.4
4392A_11	8.8	2.7	59.3	43	11	4	0.27	1	4	1.88	0.53	52.7	127.2	103.1

						0.0000		0.0						
4392A_41	8.9	2.8	56.8	50	10	3	0.27	1	4	1.97	0.31	49.1	59.5	113.4
4392A_4	9.0	2.8	0.0	0	11	3	0.35	2	4	1.81	0.39	54.5	23.6	79.1
4392A_1	9.1	2.1	81.7	52	19	0.0000	0.44	0.0	4	2.06	0.40	82.7	23.6	300.1
4392A_33	9.7	4.9	53.7	47	4	2	0.19	0.0	3	1.72	0.35	36.3	48.7	125.5
4392A_87	9.8	9.8	636.5	####	1	0.0000 2	0.04	0.0 0	2	1.91	0.30	5.6	11.6	31.2
4392A_12	9.9	2.4	50.4	39	17	0.0000 4	0.33	0.0 1	4	2.14	0.35	55.9	77.7	186.7
4392A_52	9.9	4.9	27.9	52	4	0.0000 2	0.14	0.0 0	2	1.84	0.35	26.4	10.5	216.5
4392A_31	10.0	7.1	70.9	63	2	0.0000 1	0.11	0.0 0	2	1.76	0.32	20.7	15.5	147.9
4392A_86	10.4	1.8	45.7	16	33	0.0000 4	0.60	0.0 1	3	1.65	0.41	125.4	10.7	289.5
4392A_5	10.5	7.4	191.8	175	2	0.0000 3	0.05	0.0 0	2	1.63	0.23	7.9	17.8	216.0
4392A 44	10.6	10.6	0.0	0	1	0.0000 3	0.03	0.0 0	1	1.90	0.39	4.2	37.1	47.0
- 4392A 84	11.2	3.7	0.0	0	10	0.0000 1	0.61	0.0 6	4	1.77	0.35	189.9	399.0	64.7
43924 93	11 3	2.5	48 1	30	20	0.0000	0.50	0.0	4	1 95	0.32	84 5	123.0	121.2
13924 89	11.5	3.0	56.5	31	20	0.0000	0.50	0.0	3	1.33	0.32	58.1	109.0	52.6
43924_05	12.1	6.0	70.5	51	1	0.0000	0.10	0.0	2	1.77	0.37	27.6	22.1	12/ 0
43924_07	12.1	5.0	73.5	74	4	0.0000	0.13	0.0	2	1.04	0.31	27.0	14.1	250.1
4392A_37	12.2	5.0	/2.6	74	0	0.0000	0.17	0.0	3	1.79	0.34	29.3	14.1	250.1
4392A_66	12.3	3.1	41.0	15	16	0.0000	0.44	1 0.0	4	1.82	0.46	85.4	82.4	112.5
4392A_46	12.6	4.5	545.3	####	8	2 0.0000	0.26	1 0.0	3	1.68	0.41	38.3	162.6	77.6
4392A_20	12.6	4.5	71.8	43	8	2 0.0000	0.26	0 0.0	4	1.52	0.26	51.3	28.4	274.2
4392A_98	12.7	7.3	206.6	231	3	3 0.0000	0.07	0 0.0	2	1.70	0.24	12.0	23.2	426.9
4392A_28	13.3	6.0	0.0	0	5	2 0.0000	0.15	0 0.0	2	1.71	0.43	12.5	8.1	100.4
4392A_18	13.4	3.6	64.9	44	14	4 0.0000	0.22	0 0.0	3	1.96	0.32	49.1	55.8	370.8
4392A_25	13.5	13.5	265.7	313	1	2 0.0000	0.04	0 0.0	1	2.03	0.47	5.5	12.7	181.5
4392A_91	13.5	3.9	74.3	73	12	3	0.25	1	4	1.58	0.30	39.0	78.6	154.4
4392A_34	13.7	4.0	59.8	30	12	2	0.31	0.0 1 0.0	4	1.82	0.37	60.0	56.7	135.4
4392A_36	14.1	3.4	60.3	27	18	3	0.36	2	4	1.90	0.42	71.8	81.7	125.9
4392A_62	14.6	5.6	81.0	87	7	2	0.26	0.0	4	1.43	0.38	38.0	57.4	213.0
4392A_69	14.6	4.0	76.1	79	14	3	0.27	0.0	4	1.81	0.33	34.2	23.2	344.1
4392A_51	14.7	2.8	38.2	22	29	0.0000	0.53	0.0	4	1.81	0.39	100.6	8.9	200.1
4392A_81	14.7	4.5	873.6	####	11	0.0000 3	0.21	0.0 1	4	1.71	0.42	2.6	2.1	74.2
4392A_39	14.9	4.5	75.1	79	11	0.0000 3	0.18	0.0 0	2	1.52	0.33	32.8	46.8	113.0
4392A_30	14.9	5.3	63.7	36	8	0.0000 2	0.25	0.0 0	4	1.59	0.36	49.5	42.4	250.5
4392A_58	15.0	2.8	47.9	16	30	0.0000 3	0.52	0.0 1	4	1.65	0.46	151.3	53.9	414.4
4392A_53	15.4	4.9	66.3	52	10	0.0000 2	0.22	0.0 0	3	1.35	0.41	37.2	66.3	185.0
4392A_49	15.9	5.5	0.0	0	11	0.0000 3	0.22	0.0 4	3	1.89	0.41	47.2	100.4	71.6
4392A_15	16.1	3.8	56.9	40	18	0.0000 3	0.27	0.0 1	4	2.09	0.32	59.5	1.3	169.9
4392A 48	16.4	5.0	55.6	61	11	0.0000 4	0.15	0.0 0	3	1.44	0.34	29.3	0.1	143.2
_														

						0.0000		0.0						
4392A_8	16.5	4.6	61.6	35	13	2	0.32	1	4	1.60	0.33	60.0	16.6	231.5
4392A_2	17.6	2.6	54.1	15	50	2	1.34	4	4	1.96	0.46	309.3	22.4	285.4
4392A_97	17.9	3.9	54.6	14	22	2	0.58	0.0	4	1.93	0.41	125.4	148.5	119.9
4392A_85	18.3	2.8	51.4	28	45	0.0000 4	0.47	0.0 1	4	1.61	0.30	78.1	0.3	178.1
4392A_96	18.4	6.2	100.6	88	9	0.0000 3	0.14	0.0 0	2	2.05	0.26	25.9	47.5	178.9
4392A_14	18.6	3.2	58.7	18	35	0.0000 3	0.53	0.0 1	4	1.75	0.36	104.0	97.5	153.1
4392A_21	18.7	7.8	0.0	0	13	0.0000 2	0.24	0.0 7	4	2.18	0.48	68.1	65.6	75.9
4392A_65	18.8	18.8	0.0	0	1	0.0000 3	0.01	0.0 0	1	1.70	0.33	2.1	1.0	46.3
4392A_56	19.1	3.1	53.9	24	40	0.0000 3	0.51	0.0 1	4	2.16	0.33	90.4	191.4	113.4
4392A_63	19.2	3.7	49.5	32	29	0.0000 4	0.32	0.0 2	4	2.08	0.41	53.1	102.8	124.6
4392A_43	19.2	6.4	0.0	0	9	0.0000 2	0.17	0.0 0	4	1.50	0.30	189.7	53.0	339.3
4392A_88	19.8	4.4	56.7	28	20	0.0000 3	0.29	0.0 0	4	1.81	0.36	59.1	36.1	329.9
4392A 9	20.0	5.4	92.6	103	14	0.0000 4	0.15	0.0 0	4	2.06	0.35	25.0	38.1	80.6
4392A 6	20.1	6.4	73.1		10	0.0000	0.15	0.0 0	4	1.70	0.34	25.6	43.5	145.7
4392A 92	20.7	4 9	83.5	85	18	0.0000	0.21	0.0	4	2.09	0.48	35.7	47 9	175 1
/3924 19	20.8	4.0	47.7	26	28	0.0000	0.33	0.0		1.85	0.31	72.2	46.1	291.0
42024 105	20.0	0		20	20	0.0000 2	0.55	0.0	4	1.05	0.31	, 2.2 EEQ 7	70.1	152.2
4392A_105	21.2	5.5	72.0	10	30	0.0000 2	0.51	0.0	4	1.50	0.40	41.4	255.0	132.2
4392A_55	22.3	5.1	72.9	49	19	0.0000	0.29	0.0	4	1.65	0.34	41.4	/0./	132.8
4392A_7	22.4	5.0	46.2	18	20	0.0000	0.30	1 0.0	4	2.20	0.45	65.4	117.8	126.3
4392A_60	22.4	5.0	55.5	38	20	2 0.0000	0.30	1 0.0	4	1.91	0.42	55.0	103.7	116.8
4392A_82	22.4	6.6	0.0	0	13	3 0.0000	0.16	2 0.0	3	2.08	0.33	35.3	13.3	52.3
4392A_61	23.1	4.3	46.0	43	30	3 0.0000	0.32	0 0.0	4	1.67	0.30	60.6	27.4	257.0
4392A_76	23.2	5.0	0.0	0	23	4 0.0000	0.19	1 0.0	3	1.54	0.46	36.7	19.2	153.9
4392A_72	24.0	6.7	67.8	67	13	3 0.0000	0.16	0 0.0	4	1.70	0.37	29.5	53.3	145.7
4392A_68	24.8	8.3	94.8	149	9	3 0.0000	0.10	0 0.0	4	1.18	0.70	13.7	25.5	247.9
4392A_3	25.4	7.7	61.6	114	11	3 0.0000	0.11	0 0.0	4	1.88	0.40	21.2	35.9	160.8
4392A_27	27.5	9.2	115.9	104	9	3	0.08	0	2	1.83	0.34	15.1	22.1	269.9
4392A_64	28.0	4.2	46.0	24	48	3	0.46	2	4	2.18	0.42	89.9	123.0	69.9
4392A_54	30.0	13.5	158.1	198	5	3	0.05	0	3	1.45	0.30	8.4	17.9	124.2
4392A_94	30.4	5.5	31.3	11	32	2	0.45	2	4	1.74	0.34	263.0	2.7	59.1
4392A_90	30.8	10.3	61.8	76	9	3	0.08	0.0	3	1.72	0.33	16.9	18.8	30.6
4392A_100	30.8	8.9	75.0	78	12	0.0000	0.11	0.0	3	1.67	0.32	17.9	33.8	223.8
4392A_23	32.3	9.8	79.9	88	11	2	0.12	0.0	4	1.70	0.33	22.3	19.1	254.0
4392A_99	34.0	9.5	104.7	107	13	0.0000	0.13	0.0	3	1.91	0.35	22.7	30.4	357.0
4392A_32	34.5	8.9	79.9	61	15	0.0000	0.15	U.O 0	4	1.66	0.38	32.8	27.9	358.7
4392A_26	35.3	9.8	99.0	72	13	0.0000	0.10	0.0 0	4	1.79	0.41	17.0	20.5	110.4
4392A_59	36.2	12.1	89.1	114	9	0.0000 2	0.10	0.0 0	3	1.87	0.34	19.3	34.7	130.2

						0.0000		0.0						
4392A_80	37.8	14.3	56.2	181	7	5	0.03	0	2	1.35	0.34	6.5	6.2	49.2
						0.0000		0.0						
4392A_45	39.4	19.7	96.7	175	4	2	0.04	0	2	1.79	0.42	7.2	15.5	123.3
						0.0000		0.0						
4392A_79	40.3	11.7	95.1	93	12	3	0.08	0	4	1.44	0.43	17.5	33.5	370.0
						0.0000		0.0						
4392A_57	42.7	11.9	94.3	147	13	4	0.07	0	3	1.65	0.35	14.4	30.0	221.2
						0.0000		0.0						
4392A_101	64.9	37.5	254.4	334	3	3	0.01	0	3	1.36	0.29	2.5	4.0	39.0
						0.0000		0.0						
4392A_103	88.5	28.1	305.8	366	10	3	0.03	0	4	1.75	0.44	6.3	2.2	59.9
						0.0000		0.0						
4392A_10	142.1	100.7	0.0	0	2	4	0.00	0	2	1.74	0.34	0.3	0.2	11.6
						0.0000		0.0						
4392A_104	226.8	163.7	0.0	0	3	2	0.00	0	3	1.35	0.35	0.8	7.4	10.7

Middle fork Maclaren River

Spot Name	FT Age (Ma)	signma sym (Ma)	UPb Age (Ma)	2 sigma (Ma)	Ns	Area cm^2	U/Catio n	+/- 1sig	Etch Figs.	Dpar (um)	Dper (um)	[U] (ppm)	[Th] (ppm)	[Sm] (ppm)
4395A_4	0.0	25.7	0.0	0	0	0.0000	0.01	0.0	1	1.87	0.24	1.5	7.3	5.6
4395A_8	0.0	2.1	0.0	0	0	0.0000	0.07	0.0	1	1.78	0.41	6.0	8.2	24.1
4395A_13	0.0	5.8	0.0	0	0	0.0000 4 0.0000	0.03	0.0	1	1.69	0.42	0.7	17.8	9.4
4395A_34	0.0	1.4	0.0	0	0	3 0.0000	0.12	1 0.0	1	1.70	0.31	24.6	51.1	29.8
4395A_57	0.0	220.9	0.0	0	0	3 0.0000	0.00	0 0.0	1	1.58	0.42	0.2	0.2	0.6
4395A_72	0.0	1.3	0.0	0	0	3 0.0000	0.15	1 0.0	1	1.50	0.33	12.4	3.0	20.4
4395A_75	0.7	0.5	0.0	0	2	4 0.0000	0.60	3 0.0	1	1.86	0.38	106.7	47.3	168.2
4395A_20	1.2	0.6	0.0	0	4	3 0.0000	0.82	5 0.0	2	1.63	0.26	141.3	981.0	221.6
4395A_86	2.0	2.0	46.9	96	1	5 0.0000	0.08	0 0.0	1	1.76	0.46	17.3	28.6	25.8
4395A_65	3.8	1.4	0.0	0	8	4 0.0000	0.40	3 0.0	4	1.93	0.37	31.6	37.4	111.7
4395A_41	5.3	2.0	0.0	0	8	3 0.0000	0.36	4 0.0	4	1.82	0.27	41.0	11.9	29.8
4395A_3	0.0	2.4	0.0	0	10	4 0.0000 2	0.32	о 0.0 2	4	1.81	0.46	49.1	145.0	99.2
4395A_21	7.8	3.7 8.0	68.7	99	5	د 0.0000 ع	0.18	0.0	2	1.77	0.31	40.8	145.9	37.1
4395A 6	8.0	8.2	89.3	119	1	0.0000 3	0.03	0.0 0.0	1	1.55	0.30	5.4	5.7	41 7
4395A 105	8.3	3.4	0.0	0	-	0.0000 3	0.18	0.0 0	4	1.94	0.28	15.0	44.1	27.4
– 4395A 17	9.2	2.9	58.6	29	10	0.0000 4	0.23	0.0 1	4	1.79	0.31	44.9	303.2	159.5
_ 4395A_90	9.5	5.1	0.0	0	5	0.0000 5	0.09	0.0 3	3	1.47	0.38	18.6	34.0	83.6
4395A_69	9.6	6.8	80.2	132	2	0.0000 5	0.04	0.0 0	1	1.34	0.28	6.9	23.2	67.7
4395A_67	9.7	2.4	0.0	0	18	0.0000 3	0.45	0.0 4	4	1.91	0.31	84.5	5.1	85.8
4395A_15	11.5	4.8	0.0	0	6	0.0000	0.11	0.0 1	4	2.27	0.27	14.2	2.9	60.8
4395A_47	11.5	3.1	######	####	29	0.0000	0.54	0.1	4	1.66	0.43	71.3	224.1	165.6
4395A_25	12.4	4.1	0.0	0	13	0.0000	0.32	0.0	4	2.14	0.44	2.1	8.5	1.7
4395A_31	12.6	2.1	57.9	42	36	0.0000 4 0.0000	0.54	0.0 2 0.0	4	1.79	0.41	98.1	12.5	317.8
4395A_62	13.1	5.0	0.0	0	7	3	0.15	1 0.0	4	1.71	0.38	24.6	38.3	128.1
4395A_74	13.3	2.0	61.4	18	48	5.0000	0.62	2	4	1.80	0.31	119.9	7.2	157.8

						0.0000		0.0						
4395A_87	13.3	6.7	168.0	145	4	5 0.0000	0.05	0	4	1.52	0.41	10.0	19.2	141.4
4395A_27	13.4	7.7	119.1	145	3	5	0.04	0	2	1.95	0.28	6.8	32.3	148.3
4395A_10	13.5	9.5	57.4	38	2	2	0.06	0.0	2	1.66	0.38	12.1	43.0	82.8
4395A_52	13.6	3.7	57.4	41	14	0.0000 5	0.18	0.0 0	4	2.07	0.35	34.4	18.6	223.4
4395A_96	14.0	4.1	66.4	27	12	0.0000 3	0.21	0.0 1	4	2.04	0.36	49.5	47.6	66.0
4395A_9	14.2	6.4	93.9	108	5	0.0000 3	0.09	0.0 0	4	1.42	0.25	16.1	13.4	39.3
4395A 33	14.3	6.5	0.0	0	5	0.0000 3	0.08	0.0 1	3	1.46	0.25	11.8	56.9	25.2
- 43954 85	14.4	3.0	0.0	0	28	0.0000 3	0.47	0.0 4	4	1 76	0 39	78.6	64.8	50.9
43954 104	14.4	2.7	91 7	22	20	0.0000	0.24	0.0		1 77	0.42	65.4	0.0	172.5
43957_104	14.4	2.7	110 7	52	25	0.0000	0.54	0.0	4	1.77	0.42	11.0	22.2	172.5
4395A_93	14.5	8.4	110.7	81	3	3 0.0000	0.05	0.0	2	1.96	0.24	11.0	32.3	86.9
4395A_30	15.0	6.2	69.5	75	6	4 0.0000	0.08	0 0.0	3	1.62	0.24	15.0	9.9	51.3
4395A_12	15.0	7.5	101.1	92	4	3 0.0000	0.06	0 0.0	3	1.94	0.34	12.4	36.6	260.9
4395A_102	15.3	4.3	0.0	0	13	5 0.0000	0.14	0 0.0	4	1.64	0.33	0.0	0.0	1.7
4395A_46	15.4	4.9	59.2	30	10	3	0.17	0	4	1.74	0.28	33.1	38.0	102.2
4395A_14	15.4	3.7	53.0	25	18	3	0.28	1	4	1.76	0.28	55.0	10.2	104.3
4395A_101	15.5	4.0	62.1	43	15	5	0.16	0.0	4	1.79	0.47	33.0	13.8	188.9
4395A_84	15.6	5.9	88.2	96	7	0.0000 4	0.08	0.0 0	4	1.91	0.30	16.6	25.7	80.2
4395A_42	15.8	3.9	0.0	0	17	0.0000 4	0.23	0.0 1	4	1.91	0.44	82.7	6.7	10.4
4395A_63	15.8	6.0	88.1	76	7	0.0000 4	0.09	0.0 0	4	1.66	0.28	19.2	0.0	192.3
4395A 55	15.8	5.7	0.0	0	8	0.0000 3	0.16	0.0 1	3	1.88	0.31	31.7	29.4	32.8
- 4395A 61	16.2	6.6	0.0	0	6	0.0000 4	0.08	0.0 0	4	2.05	0.44	9.8	13.4	69.4
12050 27	16.2	2.4	64.3	24	22	0.0000	0.27	0.0		2.00	0.25	51.9	210.9	215.2
43558_37	10.5	5.4	04.5	102	25	0.0000	0.27	0.0	4	2.00	0.55	14.4	210.9	215.2
4395A_71	10.4	0.7	91.1	102	0	4 0.0000	0.07	0.0	3	2.00	0.35	14.1	20.0	37.3
4395A_88	16.5	4.8	91.4	136	12	4 0.0000	0.15	1 0.0	4	1.55	0.27	9.0	29.0	148.3
4395A_43	16.8	4.2	0.0	0	16	3 0.0000	0.27	1 0.0	4	2.13	0.35	50.4	49.1	202.7
4395A_92	16.9	7.6	78.7	60	5	4 0.0000	0.06	0 0.0	4	1.65	0.34	12.2	30.1	78.7
4395A_40	17.3	2.3	53.5	11	61	4 0.0000	0.75	2 0.0	4	2.23	0.46	149.0	209.2	59.5
4395A_99	17.7	2.5	55.3	16	52	2	1.00	3	4	1.85	0.30	218.0	18.3	235.4
4395A_18	17.9	6.3	75.6	60	8	4	0.10	0	4	2.15	0.41	15.8	40.9	159.5
4395A_49	17.9	5.0	0.0	0	21	3	0.33	0.0 6	4	2.10	0.47	39.8	106.3	71.6
4395A_94	18.5	4.7	114.2	84	16	0.0000 5	0.15	0.0	4	1.44	0.38	27.1	13.9	125.0
4395A_22	18.5	2.0	59.7	11	91	0.0000 4	1.05	0.0 3	4	1.71	0.31	194.9	1.9	217.3
4395A_83	18.6	4.7	127.5	78	16	0.0000 5	0.15	0.0 0	4	1.84	0.32	28.8	0.7	186.3
4395A 23	18.7	3.0	66.9	16	40	0.0000 3	0.52	0.0 1	4	2.07	0.34	101.8	1.2	191.3
4395A 32	18 8	76	0.0	0	7	0.0000	0 15	0.0 2	٦	1 67	0.29	27 4	56 1	113.8
13954 99	10.6	65	80 E	67	, 0	0.0000 2	0.15	0.0	л	1 79	0.44	30.0	10.0	111 7
4205A 25	13.0	0.5	70.0	02	3	0.0000	0.10	0.0	4	1.70	0.44	30.0	45.0	201.0
4395A_35	20.1	2.7	/8.1	20	57	3	0.69	2	4	1.83	0.35	128.6	48.4	291.9

						0.0000		0.0						
4395A_76	20.5	2.9	61.3	11	52	2 0.0000	0.90	2	4	1.75	0.35	168.5	4.3	268.6
4395A_100	20.5	7.8	64.8	62	7	5	0.06	0	2	1.63	0.23	11.6	21.8	72.4
4395A_56	20.6	4.7	0.0	0	20	5	0.16	0.0	4	1.80	0.28	30.8	0.2	153.5
4395A_1	20.7	4.0	58.5	31	28	0.0000	0.23	0.0	4	1.77	0.45	44.2	72.2	125.9
4395A_5	21.4	8.8	71.6	115	6	0.0000 3	0.07	0.0 0	4	1.83	0.30	13.4	28.4	294.5
4395A_38	21.5	5.8	63.8	22	14	0.0000 2	0.23	0.0 1	4	1.67	0.47	40.3	71.6	102.6
4395A_103	21.6	4.0	70.8	22	30	0.0000 3	0.34	0.0 1	4	1.97	0.37	65.0	213.7	101.8
4395A 70	21.7	7.7	162.4	173	8	0.0000 3	0.09	0.0 0	4	1.83	0.44	16.6	29.4	169.5
4395A 16	22.9	3.4	57.4	12	48	0.0000 3	0.57	0.0 2	4	2.29	0.41	107.7	189.8	211.3
- 4395A 54	23.0	5.3	66.8	21	19	0.0000 2	0.39	0.0 1	4	1.79	0.36	78.3	5.8	174.6
4395A 81	23.2	3.3	65.4	21	51	0.0000 5	0.37	0.0 1	4	1.78	0.36	71.8	30.4	178.5
43954 77	23.6	4 1	60.2		34	0.0000	0.24	0.0	4	1.89	0.32	46.3	9.7	163.8
43054_01	24.2	4.0	62.5	20	20	0.0000	0.24	0.0	4	2.04	0.32		27.0	100.5
4395A_91	24.3	4.0	63.5	28	39	4 0.0000	0.30	0.0	4	2.04	0.39	56.8	37.0	100.5
4395A_36	26.2	10.4	0.0	0	7	4 0.0000	0.06	1 0.0	2	1.47	0.35	7.4	2.7	17.5
4395A_2	26.4	3.5	63.5	17	61	2 0.0000	0.82	2 0.0	4	1.70	0.42	155.8	14.8	183.7
4395A_95	26.5	8.9	124.3	140	9	4 0.0000	0.06	0 0.0	3	1.87	0.28	12.9	21.2	113.0
4395A_64	27.2	11.1	58.5	78	6	4 0.0000	0.05	0 0.0	3	1.88	0.34	8.5	27.4	107.4
4395A_51	27.4	4.6	65.1	32	37	5	0.23	1	4	1.76	0.33	44.2	0.0	134.5
4395A_7	27.6	9.2	114.4	80	9	3	0.08	0	4	1.41	0.27	14.4	6.9	47.4
4395A_45	27.7	13.9	108.7	109	4	2	0.05	0.0	2	2.04	0.54	9.7	29.0	197.5
4395A_44	28.0	3.4	62.7	14	71	4	0.54	0.0	4	1.96	0.62	108.1	351.5	110.4
4395A_19	28.2	9.5	61.8	124	9	0.0000	0.05	0.0	4	1.83	0.29	9.9	9.6	211.3
4395A_26	28.4	3.7	67.3	18	62	0.0000 4	0.46	0.0 1	4	1.95	0.35	89.9	43.9	365.6
4395A_24	28.7	5.1	62.7	49	32	0.0000 4	0.24	0.0 1	4	1.97	0.25	43.3	38.1	366.5
4395A_89	28.8	7.5	118.0	85	15	0.0000 2	0.18	0.0 0	4	1.73	0.38	34.8	30.1	253.1
4395A_66	30.0	12.3	92.9	107	6	0.0000 4	0.04	0.0 0	4	1.75	0.32	8.4	5.4	135.0
4395A_59	30.1	12.2	0.0	0	17	0.0000 3	0.14	0.0 4	4	1.77	0.51	12.6	65.2	100.5
4395A_60	32.5	8.2	48.0	66	16	0.0000 5	0.08	0.0 0	4	1.95	0.46	15.8	15.6	260.9
4395A_82	33.3	5.2	84.7	33	43	0.0000 5	0.22	0.0 1	4	1.88	0.29	41.1	16.5	369.5
4395A 58	33.6	6.7	61.6	32	26	0.0000 2	0.37	0.0 1	4	1.93	0.42	63.1	105.1	110.4
- 4395A 80	34.4	7.9	0.0	0	32	0.0000 3	0.23	0.0 3	4	1.73	0.31	52.7	110.7	48.3
- 4395A 50	37 7	5.0	0.0	0	61	0.0000 3	0 46	0.0 1	4	2 15	0 50	280.8	10.2	121 2
43954 11	29.1	10 1	140.6	150	4	0.0000	0.04	0.0	2	1 90	0.37	7 9	12.7	100.9
43054_11	20.6	10.2	140.0	150	7	0.0000	0.04	0.0	2	1.05	0.57	12.2	20.9	20.7
43954_97	53.0	10.5	0.0	U	25	د 0.0000	0.15	د 0.0	3	1.82	0.40	12.2	33.0	30.7
4395A_29	40.3	30.4	0.0	0	2	5 0.0000	0.01	0.0	1	2.00	0.26	1.5	1/.3	25.6
4395A_39	42.2	12.4	0.0	0	13	3 0.0000	0.09	1 0.0	4	1.97	0.25	21.6	111.6	39.7
4395A_79	43.5	12.6	175.1	175	12	3	0.08	0	4	1.90	0.32	14.5	22.7	155.2

						0.0000		0.0						
4395A_78	45.2	13.7	101.9	59	11	2	0.13	0	4	2.06	0.44	23.5	65.8	78.5
						0.0000		0.0						
4395A_68	52.3	15.3	0.0	0	27	4	0.10	2	4	1.97	0.34	17.9	24.5	29.1
						0.0000		0.0						
4395A_48	64.1	7.9	80.7	74	72	3	0.27	1	4	1.85	0.49	55.0	54.3	83.6
						0.0000		0.0						
4395A_53	85.9	27.2	0.0	0	14	5	0.03	0	4	2.30	0.32	8.8	25.7	18.0
						0.0000		0.0						
4395A_73	798.8	802.3	0.0	0	1	5	0.00	0	1	1.81	0.36	0.1	0.0	1.9

West fork Maclaren River [U] FT Age sigma Sym UPb Age 2 sigma Area U/Catio +/-Etch Dpar Dper (ppm [Th] [Sm] Spot Name (Ma) (Ma) (Ma) (Ma) Ns cm^2 1sig Figs. (um) (um) (ppm) n (ppm)) 0.0000 0.0 4394A 12 0.0 471.1 ###### #### 0 0.00 0.2 2 0 1 1.11 0.20 0.1 3.6 0.0000 0.0 4394A_91 0.0 326.1 432.1 #### 0 0.00 0 1 1.83 0.33 0.2 1.0 1.7 0.0000 0.0 4394A_42 0.0 31.3 751.6 949 0 0.01 1.99 0.45 24.0 0 1 1.1 5.1 3 0.0000 0.0 4394A_81 0.0 38.7 271.3 310 0 0.01 0 1 1.93 0.21 1.1 5.9 6.3 2 0.0000 0.0 4394A_95 0.0 3.8 0.0 0 0 0.03 1 1.61 0.31 6.8 1.2 5.1 1 5 0.0000 0.0 4394A_93 0.0 6.4 0.0 0 0 3 0.03 0 1 1.97 0.25 2.0 6.0 11.0 0.0000 0.0 4394A_39 0 0 0.0 18.0 0.0 0.01 1 1.84 0.30 2.0 12.9 17.5 0 3 0.0000 0.0 4394A_52 0.0 24.2 297.1 390 0 0.01 0 1 1.81 0.35 2.7 0.7 9.0 2 0.0000 0.0 4394A_28 0.0 24.9 514.6 689 0 0.02 0 0.28 65.1 1.33 2.8 17.7 2 1 0.0000 0.0 4394A_51 0.0 12.2 176.2 237 0 0.02 0 1 1.41 0.24 3.9 21.2 12.8 2 0.0000 0.0 4394A_31 0.0 8.6 256.2 0 0.02 2.29 0.46 10.3 334 0 1 4.4 31.5 3 0.0000 0.0 4394A_16 0.0 9.5 256.7 277 0 2 0.03 0 1 1.51 0.29 4.8 6.4 12.0 0.0000 0.0 4394A_34 0.0 10.2 365.8 336 0 0.03 0 1 1.81 0.36 5.7 20.8 94.0 2 0.0000 0.0 4394A_50 0.0 14 0.0 0 0 0.20 2 1 47 0.28 22.0 2 1 6.0 11.3 0.0000 0.0 4394A_56 0.0 1.7 0.0 0 0 0.10 1.61 0.26 7.0 12.1 7.4 1 1 3 0.0000 0.0 4394A_82 0.0 0 0 0.08 44.8 2.6 0.0 3 0 1 1.62 0.34 7.8 22.8 0.0000 0.0 4394A_66 0.0 2.4 0.0 0 0 4 0.06 2 1 1.63 0.40 9.7 24.2 86.2 0.0000 0.0 0 4394A_58 0.7 0.7 0.0 0.39 1.92 0.49 267.6 615.2 114.3 1 3 1 1 0.0000 0.4 4394A_45 1.7 0.4 337.1 900 20 5.74 6 4 1.74 0.40 80.9 45.2 123.3 2 0.0000 0.0 4394A_59 0 2.8 2.8 0.0 1 2 0.12 2 1 2.10 0.54 9.0 14.0 16.7 0.0000 0.0 4394A_13 4.0 4.0 0.0 0 1 0.14 1 2 1.90 0.35 5.0 34.4 27.3 1 0.0000 0.0 4394A_5 2.9 0.0 0 2 0.17 2 2 1.68 0.56 7.8 9.6 4.1 2 1.7 0.0000 0.0 4394A_46 4.3 3.0 0.0 0 2 0.19 2 2 1.94 0.28 10.6 3.5 23.0 0.0000 0.0 4394A_69 4.5 4.5 0.0 0 1 0.08 1 1.48 0.37 2.1 11.2 1 10.1 2 0.0000 0.0 4394A_54 4.8 4.8 99.1 137 1 0.06 0 1 1.57 0.36 11.8 97.5 57.3 3 0.0000 0.0 4394A_47 5.2 216.9 542 1 0.05 0 2 1.74 0.25 27.0 5.2 6.5 26.8 3 0.0000 0.0 4394A_22 6.5 6.5 94.5 112 1 0.03 0 1 2.18 0.32 7.4 11.5 20.4 Δ 0.0000 0.0 4394A_63 6.6 6.7 0.0 0 1 0.04 1 1 1.57 0.49 0.9 3.4 8.3 3 0.0000 0.0

2

0.15

4

2

1.99

0.46

6.1

16.5

148.8

3

0

4394A_19

6.7

4.3

0.0

						0.0000		0.0						
4394A_8	7.0	7.0	180.2	137	1	2	0.05	0	2	2.03	0.30	9.4	7.3	11.9
4394A_1	8.0	4.0	134.5	143	4	3	0.12	0.0	3	1.84	0.30	24.0	17.9	11.4
4394A_55	8.0	4.0	71.7	78	4	0.0000	0.09	0.0	4	1.87	0.31	16.4	3.9	11.6
4394A_61	8.5	6.0	229.3	259	2	5	0.04	0.0	2	1.87	0.36	18.4	17.1	26.8
4394A_74	9.0	9.0	273.8	243	1	0.0000 3	0.03	0.0 0	1	2.11	0.30	6.4	24.6	25.7
4394A_40	9.3	6.6	0.0	0	2	0.0000 3	0.06	0.0 1	2	1.73	0.33	6.7	13.3	25.1
4394A_29	9.8	1.8	75.3	13	29	0.0000 3	0.84	0.0 2	4	1.94	0.46	146.7	181.0	314.8
4394A_27	9.8	4.1	0.0	0	6	0.0000 3	0.19	0.0 2	4	1.66	0.32	15.9	9.1	88.4
4394A_77	10.1	4.1	86.0	41	6	0.0000 3	0.16	0.0 0	3	1.71	0.36	29.4	25.0	114.3
4394A_9	11.2	11.2	212.4	385	1	0.0000 5	0.02	0.0 0	2	1.90	0.38	2.9	5.8	15.4
4394A_83	11.3	11.3	103.3	163	1	0.0000 3	0.02	0.0 0	1	1.92	0.49	3.8	5.2	36.2
4394A 76	11.4	8.0	175.5	194	2	0.0000 4	0.04	0.0 0	1	2.04	0.52	6.9	20.1	11.1
- 4394A 11	11 5	82	293.6	294	2	0.0000 4	0.03	0.0 0	1	2.26	0 34	57	19.0	84
43944 73	12.0	5.6	74.4	31	5	0.0000	0.16	0.0	-	1.88	0.41	31.4	5.6	19.3
139/14 102	12.4	9.0	#######	####	2	0.0000	0.10	0.0	1	1.00	0.35	1 1	1/15 9	99.7
4394A_102	12.7	3.0	""""""		2	0.0000	0.04	0.0	1	1.50	0.55	4.1	145.5	152.6
4394A_72	13.1	2.4	/3.2	21	31	3 0.0000	0.57	0.0	4	1.//	0.56	98.6	106.3	152.6
4394A_105	13.6	2.7	65.3	21	27	3 0.0000	0.53	0.0	4	1.72	0.40	103.6	187.2	219.5
4394A_25	14.1	6.3	0.0	0	5	2 0.0000	0.12	0 0.0	4	2.22	0.51	12.5	26.4	43.0
4394A_98	14.3	3.2	73.2	27	20	4 0.0000	0.26	1 0.0	4	1.69	0.29	48.1	13.1	26.7
4394A_14	15.0	15.8	0.0	0	1	1 0.0000	0.05	2 0.0	1	1.70	0.34	2.1	55.9	11.9
4394A_101	15.0	3.9	71.4	14	15	2 0.0000	0.47	1 0.0	4	1.78	0.37	97.7	14.9	102.2
4394A_44	15.1	4.6	70.4	49	11	3 0.0000	0.21	1 0.0	4	1.63	0.37	42.4	14.6	53.9
4394A_35	15.4	5.8	135.6	119	7	5 0.0000	0.08	0 0.0	3	1.83	0.35	14.3	15.3	46.6
4394A_49	15.5	10.9	121.7	177	2	3	0.03	0	2	1.61	0.32	5.8	21.0	40.2
4394A_53	15.6	9.0	134.9	122	3	3	0.05	0	2	1.50	0.38	8.9	18.0	15.0
4394A_4	15.8	15.8	192.0	164	1	2	0.03	0	1	2.25	0.37	5.6	11.9	21.0
4394A_80	16.0	2.6	73.8	20	39	3	0.69	2	4	1.94	0.57	116.7	136.2	164.7
4394A_36	16.0	3.2	73.9	15	26	4	0.35	1	4	1.83	0.49	65.6	72.5	131.5
4394A_48	16.1	5.7	88.3	81	8	5	0.08	0.0	4	1.88	0.31	15.2	6.5	55.2
4394A_67	17.8	5.6	82.9	66	10	0.0000	0.10	0.0	4	2.05	0.52	18.1	27.5	106.1
4394A_7	18.0	12.7	164.9	193	2	0.0000	0.03	0.0	2	2.01	0.37	6.1	13.1	20.1
4394A_3	18.0	2.8	73.3	17	42	0.0000 3	0.57	0.0 2	4	2.15	0.35	104.0	130.9	237.2
4394A_96	18.1	5.8	67.4	67	10	0.0000 2	0.26	0.0 1	4	1.80	0.42	46.8	14.3	222.5
4394A_97	18.1	12.9	0.0	0	2	0.0000 2	0.04	0.0 0	2	1.90	0.51	0.4	1.1	3.5
4394A_100	18.5	3.1	0.0	0	37	0.0000 3	0.57	0.0 2	4	1.81	0.40	0.7	4.1	58.2
4394A_88	20.2	14.3	167.0	150	2	0.0000 2	0.04	0.0 0	2	2.05	0.44	7.6	4.4	35.5
4394A_23	20.5	5.2	91.6	56	16	0.0000 4	0.17	0.0 0	4	2.02	0.53	32.1	42.3	101.3

						0.0000		0.0						
4394A_32	20.8	9.3	220.5	186	5	5	0.04	0	3	2.07	0.35	7.8	3.3	29.8
4394A_43	21.1	15.0	374.3	282	2	3	0.02	0.0	2	1.79	0.41	4.4	22.8	18.9
4394A_71	21.7	15.4	115.2	161	2	5	0.02	0.0	2	1.59	0.37	3.1	8.5	6.6
4394A_90	21.9	21.9	0.0	0	1	2	0.02	0.0	1	1.87	0.38	1.1	13.0	20.8
4394A_79	22.7	13.2	0.0	0	3	2	0.05	0.0	2	2.22	0.54	11.6	4.3	3.9
4394A_62	23.5	7.1	82.8	31	11	0.0000	0.16	0.0	2	1.38	0.41	32.4	0.0	4.9
4394A_41	24.5	17.4	221.6	251	2	0.0000	0.02	0.0	2	2.10	0.42	4.3	8.2	9.4
4394A_30	25.3	8.0	76.9	31	10	0.0000	0.16	0.0	3	1.49	0.35	30.3	7.2	38.0
4394A_17	25.5	4.1	76.5	22	41	0.0000	0.46	0.0	4	2.08	0.34	91.3	297.9	239.3
4394A_20	26.4	8.7	0.0	0	26	0.0000	0.47	0.1	4	1.75	0.29	112.8	67.8	218.2
4394A_37	27.0	13.5	88.4	101	4	0.0000	0.05	0.0	3	1.57	0.34	9.5	5.9	16.7
4394A_68	27.3	27.3	164.0	211	1	0.0000	0.02	0.0	1	2.18	0.35	4.9	16.6	11.8
4394A_64	27.4	19.9	0.0	0	2	0.0000	0.02	0.0	2	1.60	0.37	1.6	7.8	6.8
4394A_92	27.4	3.5	65.9	14	66	0.0000	0.64	0.0	4	1.99	0.46	129.0	230.3	234.1
4394A_33	28.0	16.2	266.0	292	3	0.0000	0.05	0.0	2	1.64	0.26	10.0	4.0	14.8
4394A_15	28.5	5.6	0.0	0	32	0.0000	0.19	0.0	4	1.95	0.36	35.8	17.7	131.5
4394A_38	30.5	17.6	135.3	229	3	0.0000	0.03	0.0	3	1.37	0.36	5.0	24.0	54.3
4394A_60	30.6	30.6	302.8	400	1	0.0000	0.01	0.0	1	1.55	0.41	2.4	10.7	12.7
4394A_85	31.5	10.6	0.0	0	10	0.0000	0.13	0.0	4	2.09	0.41	26.6	4.4	30.0
4394A_99	32.0	22.6	410.5	679	2	0.0000	0.02	0.0	3	1.95	0.41	2.8	8.8	23.9
4394A_70	33.3	23.5	167.9	269	2	0.0000	0.02	0.0	1	1.86	0.25	3.1	0.4	3.6
4394A_94	35.8	20.7	147.1	187	3	0.0000	0.03	0.0 0	1	1.70	0.44	10.6	1.7	40.4
4394A_2	37.3	11.5	0.0	0	13	0.0000	0.11	0.0	4	1.93	0.32	17.6	24.0	94.4
4394A_104	42.3	15.0	123.4	117	8	0.0000	0.04	0.0	3	1.72	0.31	8.4	1.0	2.9
4394A_26	47.1	17.0	0.0	0	8	0.0000	0.03	0.0	4	2.06	0.51	3.5	7.8	24.3
4394A_65	52.5	9.7	110.7	94	30	0.0000	0.23	0.0	4	2.04	0.36	43.7	46.6	71.6
4394A_78	61.6	43.6	506.5	583	2	0.0000	0.01	0.0	2	1.80	0.28	1.6	0.1	6.0
4394A_87	62.8	31.5	0.0	0	4	0.0000	0.02	0.0	2	1.96	0.38	6.6	1.8	11.9
4394A_18	67.1	15.9	0.0	0	49	0.0000	0.12	0.0	4	1.98	0.38	12.4	27.8	69.0
4394A_6	87.3	45.1	0.0	0	6	0.0000	0.01	0.0	4	2.03	0.33	0.6	2.5	16.9
4394A_84	87.8	64.3	0.0	0	2	0.0000	0.01	0.0	1	2.08	0.40	1.0	2.2	28.5
4394A_21	91.5	73.6	0.0	0	2	0.0000	0.01	0.0	2	1.70	0.20	1.3	14.3	42.2
4394A_103	105.4	52.9	277.2	433	4	0.0000	0.01	0.0	2	1.80	0.31	3.0	12.9	23.5
4394A_10	121.7	40.8	143.6	213	9	0.0000	0.01	0.0	4	1.91	0.50	2.3	3.6	22.0
4394A_24	130.2	92.3	0.0	0	2	0.0000	0.01	0.0	3	2.03	0.41	0.9	1.3	7.6
4394A_57	141.9	40.0	0.0	0	17	0.0000	0.03	0.0 0	4	1.71	0.51	3.3	8.9	13.5
4394A_89	174.5	174.8	0.0	0	1	0.0000 1	0.00	0.0 0	1	1.73	0.39	0.2	0.3	2.3

4394A_75 219.5 220.4 0.0 0 1 2 0.00 0 1 1.41 0.30	0.1	0.5	1.2
4394A_86 256.2 95.3 0.0 0 8 3 0.01 0 4 1.84 0.41	. 0.4	0.8	4.4
Nenana River			
	[U]	((a.)
FT Age Sigma UPb Age 2 sigma Area U/Catio +/- Etch Dpar Dper Spot Name (Ma) Symm (Ma) (Ma) (Ma) Ns cm^2 n 1 sig Figs. (um) (um)	(ppm)	[Th] (ppm)	[Sm] (ppm)
0.0000 0.0	,	urr 7	
03918A_2 0.0 51105.0 0.0 0 1 2 0.00 0 1 2.34 0.30 0.0000 0.0	0.0	272.0	721.0
03918A_11 0.0 1.3 95.2 66 0 2 0.29 1 1 2.33 0.51	. 56.0	104.0	224.0
03918A_41 0.0 2.3 136.4 116 0 3 0.13 0 1 2.40 0.42	25.0	76.0	309.0
0.0000 0.0 03918A_65 0.0 9.0 156.8 153 0 1 0.11 0 1 1.66 0.39	23.0	60.0	220.0
0.0000 0.0 039184 87 0.0 62.8 302.5 638 0 1 0.01 0 1 2.34 0.42	, 20	9.0	372 0
0.0000 0.0	2.0	5.0	572.0
03918A_90 0.0 16.1 0.0 0 0 1 0.06 0 1 2.45 0.41 0.0000 0.0	11.0	30.0	131.0
03918A_92 0.0 21.6 102.2 168 0 1 0.06 0 1 2.43 0.50	10.0	25.0	323.0
1 0.0 20.6 225.5 341 0 2 0.02 0 1 2.63 0.5	4.0	19.0	374.0
0.0000 0.0	118.0	95.0	115.0
0.0000 0.0	110.0	55.0	115.0
03918A_45 1.7 1.7 73.7 49 1 2 0.31 1 1 2.52 0.54	63.0	104.0	288.0
03918A_60 1.8 1.8 66.8 82 1 3 0.23 1 1 2.43 0.58	40.0	104.0	326.0
0.0000 0.0 03918A_13 1.8 1.8 96.9 86 1 3 0.22 1 1 2.26 0.4{	42.0	120.0	313.0
0.0000 0.0 039188 35 2.0 2.0 102.8 54 1 1 0.52 1 2 2.12 0.35	y 82.0	142 0	305.0
03918A_10 0.0000 0.0	02.0	142.0	505.0
2 2.3 2.3 111.5 54 1 1 0.37 1 1 1.91 0.35 0.0000 0.0	73.0	190.0	277.0
03918A_44 2.4 2.4 123.1 95 1 2 0.21 1 1 2.32 0.37	43.0	122.0	355.0
0.0000 0.0 03918A_53 2.8 2.8 0.0 0 1 1 0.31 1 1 2.09 0.4() 2.0	14.0	174.0
0.0000 0.0 03918A_55 3.0 3.0 84.2 88 1 2 0.21 1 2 2.30 0.59	43.0	65.0	101.0
		104.0	140.0
03918A_12 3.3 2.3 31.9 41 2 2 0.43 1 2 1.92 0.3t 0.0000 0.0	84.0	184.0	148.0
03918A_64 3.3 1.9 108.3 80 3 4 0.29 1 2 1.96 0.64	50.0	129.0	370.0
03918A_26 3.4 5.1 0.0 0 1 4 0.08 9 1 2.55 0.35	16.0	136.0	419.0
0.0000 0.0 039184 79 35 35 64 3 48 1 1 0.30 1 1 2.35 0.4(59.0	141 0	209.0
0.0000 0.0	55.0	141.0	205.0
03918A_71 3.5 2.5 97.0 44 2 2 0.37 1 2 2.27 0.49 0.0000 0.0	76.0	136.0	240.0
03918A_96 3.5 2.5 95.0 48 2 3 0.21 0 2 2.02 0.46	44.0	134.0	215.0
0.0000 0.00 03918A_70 3.5 2.5 79.9 54 2 2 0.36 1 2 1.60 0.35	74.0	194.0	63.0
0.0000 0.0 03918A 67 3.7 3.7 104.7 76 1 1 0.28 1 3 2.31 0.57	53.0	112.0	212.0
0.0000 0.0			
03918A_14 3.7 3.7 92.7 91 1 2 0.17 0 1 2.32 0.51 0.0000 0.0	. 37.0	80.0	269.0
	35.0	103.0	307.0
03918A_25 3.9 3.9 0.0 0 1 2 0.21 1 2 1.99 0.46			102.0
03918A_25 3.9 3.9 0.0 0 1 2 0.21 1 2 1.99 0.46 0.0000 0.0 03918A_69 4.3 2.5 52.4 62 3 2 0.36 1 2 2.06 0.39	76.0	4.0	105.0
03918A_25 3.9 3.9 0.0 0 1 2 0.21 1 2 1.99 0.4(0.0000 0.0 03918A_69 4.3 2.5 52.4 62 3 2 0.36 1 2 2.06 0.35 03918A_10 0.000 0.0 4 4.5 4.5 115.7 75 1 2 0.18 0 2 2.23 0.41	76.0 34.0	4.0 52 0	246.0
03918A_25 3.9 3.9 0.0 0 1 2 0.21 1 2 1.99 0.44 0.0000 0.0 03918A_69 4.3 2.5 52.4 62 3 2 0.36 1 2 2.06 0.39 03918A_10 0.000 0.0 4 4.5 4.5 115.7 75 1 2 0.18 0 2 2.23 0.41 0.0000 0.0	76.0 34.0	4.0 52.0	246.0
03918A_25 3.9 3.9 0.0 0 1 2 0.21 1 2 1.99 0.44 0.0000 0.0 0.000 0.0 0.0	9 76.0 34.0 89.0	4.0 52.0 133.0	246.0 379.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 76.0 34.0 89.0 68.0 	4.0 52.0 133.0 166.0	246.0 379.0 147.0

						0.0000		0.0						
03918A_75	5.3	3.1	121.4	46	3	1	0.48	1	2	2.18	0.42	86.0	217.0	214.0
03918A_91	5.4	5.4	102.8	85	1	0.0000	0.22	0.0 1 0.0	2	2.31	0.54	44.0	124.0	363.0
03918A_88	5.7	5.7	129.6	118	1	0.0000	0.15	0.0	1	2.03	0.43	31.0	85.0	294.0
03918A_38	6.0	4.2	105.2	83	2	2	0.24	0.0	2	2.19	0.42	49.0	127.0	206.0
03918A_43	6.0	3.5	110.5	49	3	0.0000	0.42	0.0	3	2.19	0.49	84.0	228.0	210.0
03918A_49	6.4	4.5	104.0	50	2	0.0000	0.38	0.0	1	2.27	0.48	90.0	228.0	337.0
03918A_47	6.5	6.5	104.4	100	1	0.0000	0.19	0.0	1	2.42	0.41	36.0	93.0	288.0
03918A_68	6.5	6.5	119.5	65	1	0.0000	0.33	0.0	1	2.33	0.30	62.0	149.0	354.0
6	6.5	4.6	111.7	64	2	2	0.24	0.0	2	2.63	0.44	49.0	86.0	126.0
03918A_19	6.6	2.5	0.0	0	7	3	0.39	0.0 1 0.0	2	2.09	0.38	73.0	178.0	180.0
03918A_23	6.9	4.0	0.0	0	3	0.0000 2	0.23	2	2	2.28	0.57	43.0	128.0	243.0
03918A_17	7.1	7.1	0.0	0	1	0.0000	0.15	0.0	1	2.53	0.54	32.0	126.0	176.0
03918A_31	7.1	7.1	0.0	0	1	2	0.09	0.0	1	2.62	0.61	21.0	25.0	78.0
03918A_89	7.3	7.3	104.4	137	1	0.0000	0.12	0.0	1	2.32	0.54	24.0	49.0	165.0
03918A_7	7.8	5.5	0.0	0	2	2	0.16	0.0	2	2.29	0.51	40.0	105.0	344.0
03918A_27	7.8	4.5	0.0	0	3	3	0.14	0.0	2	2.10	0.56	28.0	66.0	337.0
7 039184 11	8.5	6.0	141.2	55	2	1	0.20	0.0 1 0.0	2	2.63	0.51	41.0	92.0	315.0
0	8.8	3.9	117.4	55	5	2	0.30	1	3	2.23	0.51	64.0	157.0	241.0
03918A_50	9.0	6.4	0.0	0	2	2	0.16	1	1	2.26	0.48	31.0	84.0	279.0
03918A_18	9.0	9.0	0.0	0	1	2	0.08	0.0	1	2.18	0.33	12.0	28.0	150.0
03918A_34	9.1	6.5	123.0	83	2	1	0.22	1	2	1.96	0.44	44.0	103.0	240.0
03918A_77	9.4	9.4	139.5	99	1	1	0.14	0	1	2.13	0.31	29.0	70.0	270.0
03918A_99	9.5	6.7	147.8	136	2	2	0.13	0.0	2	2.18	0.41	28.0	73.0	215.0
03918A_93	9.9	9.9	0.0	0	1	1	0.09	0.0	1	1.78	0.22	20.0	73.0	503.0
03918A_24 03918A 10	10.0	5.9	0.0	0	3	2	0.15	2 0.0	2	2.31	0.38	33.0	83.0	315.0
3	10.2	5.9	99.2	96	3	1 0.0000	0.31	1 0.0	2	2.54	0.62	64.0	146.0	177.0
03918A_97	10.3	10.3	94.7	100	1	1 0.0000	0.12	0 0.0	1	2.41	0.46	25.0	77.0	262.0
03918A_80	10.8	4.8	154.6	103	5	4 0.0000	0.13	0 0.0	3	2.20	0.41	25.0	79.0	300.0
03918A_57	10.9	10.9	0.0	0	1	2 0.0000	0.06	0 0.0	1	2.04	0.35	11.0	118.0	483.0
03918A_22	10.9	5.5	134.5	165	4	3 0.0000	0.16	1 0.0	2	2.28	0.46	27.0	89.0	396.0
03918A_54	11.3	8.0	113.4	143	2	2 0.0000	0.13	0 0.0	2	2.32	0.49	27.0	55.0	165.0
03918A_73	12.1	12.1	245.8	342	1	2 0.0000	0.06	0 0.0	1	2.44	0.46	11.0	36.0	203.0
03918A_82	12.9	7.5	124.2	220	3	5 0.0000	0.06	0 0.0	3	2.24	0.41	11.0	33.0	178.0
03918A_5	13.4	9.5	0.0	0	2	2 0.0000	0.08	0 0.0	1	2.00	0.40	18.0	14.0	117.0
03918A_6	13.8	9.8	0.0	0	2	2 0.0000	0.12	0 0.0	2	2.29	0.50	23.0	98.0	179.0
03918A_72	13.9	6.9	105.1	77	4	1 0.0000	0.25	1 0.0	2	2.14	0.38	50.0	133.0	228.0
03918A_76	13.9	7.0	169.5	163	4	4	0.08	0	3	2.33	0.46	18.0	74.0	188.0

						0.0000		0.0						
03918A_84 03918A 10	14.1	9.9	138.7	123	2	2 0.0000	0.09	0 0.0	4	2.51	0.56	18.0	33.0	81.0
5	14.2	8.2	122.5	65	3	1	0.18	0	1	2.31	0.39	38.0	96.0	209.0
03918A_83	14.3	4.0	43.5	21	13	2	0.58	1	3	2.57	0.50	105.0	30.0	245.0
03918A_36	14.3	10.2	175.2	194	2	3	0.06	0.0	2	2.14	0.32	13.0	5.0	43.0
03918A_48	14.6	10.3	0.0	0	2	0.0000 1	0.23	0.0 1	2	2.17	0.41	45.0	108.0	287.0
03918A_10 8	15.5	8.9	104.0	121	3	0.0000 2	0.12	0.0 0	2	2.17	0.41	22.0	62.0	301.0
03918A_10 0	16.4	9.5	164.5	156	3	0.0000 1	0.16	0.0 0	2	2.43	0.33	31.0	85.0	188.0
03918A 3	18.5	10.8	107.3	209	3	0.0000 3	0.07	0.0 1	3	2.25	0.51	6.0	32.0	238.0
039184 1	19 5	11 3	0.0	0	3	0.0000	0.04	0.0	3	2 02	0.36	7.0	17.0	141 0
020184 51	20.0	10.0	0.0	04	3	0.0000	0.04	0.0	2	1.02	0.30	14.0	120.0	221.0
03918A_51	20.0	10.0	92.4	94	4	0.0000	0.20	0.0	2	1.98	0.47	44.0	139.0	331.0
03918A_4	21.5	15.2	149.8	225	2	1 0.0000	0.10	0 0.0	2	2.11	0.48	25.0	62.0	201.0
03918A_42	22.2	22.2	76.1	131	1	1 0.0000	0.06	0 0.0	1	2.44	0.57	13.0	84.0	141.0
03918A_28	30.8	11.7	106.9	71	7	1 0.0000	0.24	1 0.0	2	1.96	0.51	50.0	142.0	316.0
03918A_10	31.2	22.1	0.0	0	2	2	0.04	0	2	2.21	0.56	8.0	19.0	248.0
03918A_95	33.6	23.8	129.9	301	2	4	0.02	0	1	1.93	0.34	4.0	19.0	223.0
03918A_86	33.7	23.8	178.0	393	2	3	0.02	0.0	2	2.41	0.48	5.0	22.0	280.0
03918A_39	38.7	38.7	182.4	355	1	0.0000 2	0.02	0.0 0	1	2.01	0.70	4.0	23.0	215.0
03918A_46	40.3	18.1	18.8	78	5	0.0000 1	0.11	0.0 0	4	1.88	0.42	22.0	81.0	273.0
03918A_98	43.1	24.9	54.4	54	3	0.0000 1	0.06	0.0 0	2	1.76	0.51	126.0	0.0	200.0
- 03918A 21	45.6	45.6	0.0	0	1	0.0000 2	0.01	0.0 0	1	2.09	0.60	2.0	11.0	313.0
039184 66	49.4	34.9	295.4	361	2	0.0000	0.02	0.0	2	2 44	0.61	5.0	22.0	233.0
030184_00	40.8	20.0	233.4	105	2	0.0000	0.02	0.0	2	2.44	0.01	5.0	22.0	202.0
03918A_16	49.8	28.8	64.1	185	3	3 0.0000	0.03	0.0	3	2.05	0.51	5.0	24.0	298.0
03918A_59	53.7	53.7	460.4	737	1	1 0.0000	0.02	0 0.0	1	2.40	0.45	4.0	35.0	451.0
03918A_81	54.9	13.4	122.6	103	17	3 0.0000	0.13	0 0.0	4	2.83	0.68	28.0	147.0	115.0
03918A_8	59.9	22.7	0.0	0	7	2 0.0000	0.07	0 0.0	4	2.86	0.77	15.0	68.0	113.0
03918A_32	64.3	37.2	0.0	0	3	2 0.0000	0.03	0	3	2.60	0.46	6.0	44.0	56.0
03918A_62	70.7	50.1	107.0	303	2	1	0.04	0	1	2.05	0.40	7.0	46.0	296.0
03918A_20	71.4	21.6	0.0	0	11	2	0.10	0.0	2	2.53	0.44	19.0	84.0	349.0
03918A_52	76.0	38.2	0.0	0	4	0.0000	0.02	0.0	2	2.56	0.53	3.0	16.0	279.0
03918A_9	77.2	34.7	0.0	0	5	0.0000 3	0.03	0.0 0	3	2.31	0.47	4.0	18.0	312.0
03918A_74	80.7	57.1	568.6	662	2	0.0000 2	0.02	0.0 0	2	2.75	0.53	3.0	37.0	392.0
03918A 37	80.7	46.7	207.3	555	3	0.0000 2	0.03	0.0 0	3	2.08	0.33	5.0	24.0	384.0
- 039184 15	90.5	52.4	95 O	415	з	0.0000 4	0.01	0.0	2	1 79	0.47	2.0	12.0	166.0
02018A 20	06.4	49.2	53.0	261	1	0.0000	0.02	0.0	2	2.75	0.44	E.0	28.0	207.0
03910A_50	30.4	40.3	100.0	201	4	0.0000	0.03	0.0	5	2.51	0.44	5.0	20.0	207.0
03918A_85	116.5	52.2	188.3	222	5	1 0.0000	0.04	0 0.0	2	2.53	0.53	8.0	20.0	50.0
03918A_94	120.1	85.1	554.1	911	2	1 0.0000	0.01	0 0.0	1	1.93	0.24	3.0	15.0	229.0
03918A_56	123.8	62.5	371.9	590	4	2	0.02	0	4	2.14	0.47	3.0	17.0	238.0

						0.0000		0.0						
03918A_63	130.4	75.5	176.3	359	3	1	0.02	0	2	2.02	0.37	4.0	25.0	355.0
						0.0000		0.0						
03918A_78	143.7	64.4	352.2	423	5	1	0.03	0	3	2.32	0.68	6.0	32.0	382.0
						0.0000		0.0						
03918A_40	169.7	98.2	75.2	231	3	1	0.02	0	2	2.60	0.51	4.0	21.0	213.0
						0.0000		0.0						
03918A_33	7809.7	7813.2	0.0	0	1	1	0.00	0	1	2.12	0.73	0.0	0.0	2.0

Robertson Ri	ver													
Spot Name	FT Age (Ma)	sigma Symm (Ma)	UPb Age (Ma)	2 sigma (Ma)	Ns	Area cm^2	U/Catio n	+/- 1sig	Etch Figs.	Dpar (um)	Dper (um)	[U] (ppm)	[Th] (ppm)	[Sm] (ppm)
03915A_5	0.0	591.9	0.0	0	0	2	0.00	0	1	2.43	0.55	0.0	0.0	8.0
03915A_11	0.0	1072.4	0.0	0	0	0.0000	0.00	0.0	1	1.96	0.43	0.0	1.0	1.0
03915A_13	0.0	83.7	383.9	497	0	0.0000 1	0.01	0.0 0	1	1.62	0.37	1.0	8.0	220.0
03915A_20	0.0	308.4	0.0	0	0	0.0000 2	0.00	0.0 0	1	2.14	0.37	0.0	1.0	10.0
03915A 26	0.0	10.5	0.0	0	0	0.0000 1	0.09	0.0 2	1	1.55	0.44	8.0	63.0	144.0
02015A 28	0.0	1002.7	0.0	0	0	0.0000	0.00	0.0	-	2 4 2	0.50	0.0	21.0	5.0
03913A_28	0.0	1002.7	0.0	0	0	0.0000	0.00	0.0	1	2.42	0.50	0.0	21.0	5.0
03915A_33	0.0	23330.9	0.0	0	16	1 0.0000	0.00	0 0.0	3	1.96	0.46	0.0	0.0	0.0
03915A_35	0.0	121.6	0.0	0	0	2 0.0000	0.00	0 0.0	1	1.86	0.40	1.0	6.0	16.0
03915A_37	0.0	279.0	0.0	0	0	4	0.00	0	1	1.88	0.41	0.0	0.0	11.0
03915A_40	0.0	579.5	0.0	0	0	1	0.00	0	1	2.05	0.41	0.0	0.0	18.0
03915A_43	0.0	837.5	0.0	0	0	0.0000	0.00	0.0	1	1.81	0.40	0.0	1.0	8.0
03915A_46	0.0	25.8	600.1	412	0	0.0000 2	0.02	0.0 1	1	2.34	0.45	3.0	25.0	210.0
03915A 48	0.0	514.3	0.0	0	0	0.0000 2	0.00	0.0 0	1	1.66	0.36	0.0	9.0	20.0
03915A 53	0.0	161.6	0.0	0	3	0.0000 1	0.01	0.0 0	3	2.12	0.41	3.0	25.0	110.0
039154 57	0.0	3315.2	0.0	0	0	0.0000	0.00	0.0	1	1 9/	0.25	0.0	0.0	5.0
03913A_37	0.0	2257.0	0.0	0	0	0.0000	0.00	0.0	1	2.47	0.25	0.0	0.0	5.0
03915A_63	0.0	2357.6	0.0	0	0	1 0.0000	0.00	0.0	1	2.17	0.22	0.0	1.0	64.0
03915A_66	0.0	426.3	663.8	####	0	2 0.0000	0.00	0 1.1	1	1.50	0.31	0.0	0.0	3.0
03915A_67	0.0	11.8	62.6	####	0	1 0.0000	0.24	1 0.0	1	2.13	0.36	25.0	73.0	5.0
03915A_70	0.0	169.2	0.0	0	0	1	0.01	0	1	1.90	0.43	2.0	15.0	79.0
03915A_77	0.0	44.9	134.1	266	0	2	0.01	0.0	1	2.06	0.45	2.0	12.0	326.0
03915A_80	0.0	6749.8	0.0	0	0	0.0000	0.00	0.0	1	2.56	0.81	0.0	0.0	0.0
03915A_87	0.0	173.5	0.0	0	0	0.0000 1	0.01	0.0 0	1	1.66	0.53	1.0	2.0	31.0
03915A_90	0.0	188.2	0.0	0	0	0.0000 2	0.00	0.0 0	1	1.78	0.41	1.0	2.0	2.0
03915A 93	0.0	59 5	0.0	0	0	0.0000 1	0.01	0.0 0	1	2 12	0 34	2.0	42.0	36.0
020154 05	0.0	1043.4	0.0	0	11	0.0000	0.01	0.0	-	1.62	0.24	0.0	2.0	12.0
03915A_93 03915A_10	0.0	1043.4	0.0	U	11	0.0000	0.01	0.0	Z	1.05	0.54	0.0	2.0	15.0
/	0.0	203.9	0.0	0	0	1 0.0000	0.00	0 0.0	1	1.48	0.24	1.0	104.0	106.0
03915A_19	8.7	8.7	147.2	404	1	1 0.0000	0.12	1 0.0	1	1.73	0.41	3.0	17.0 #####	159.0
03915A_18	10.5	7.4	302.7	####	2	1 0.0000	0.20	1 0.0	1	2.13	0.32	40.0	#	141.0
03915A_86	14.3	10.9	0.0	0	2	1	0.18	5	2	2.21	0.47	0.0	0.0	1.0
03915A_25	14.5	8.4	144.5	68	3	0.0000	0.26	0.0	4	2.07	0.50	54.0	210.0	239.0

						0.0000		0.0						
03915A_21	21.0	21.0	106.0	179	1	2	0.02	0	2	1.93	0.39	5.0	20.0	188.0
03915A_9	22.8	13.2	137.2	77	3	1	0.17	1	3	2.33	0.38	31.0	151.0	173.0
03915A_52	29.2	29.2	314.2	352	1	0.0000	0.03	0.0	2	1.85	0.40	5.0	62.0	133.0
03915A_2	31.2	18.0	0.0	0	3	0.0000 5	0.02	0.0 0	2	2.22	0.30	5.0	1.0	169.0
03915A_45	31.3	9.1	111.1	99	12	0.0000 2	0.27	0.0 1	4	2.32	0.49	55.0	152.0	175.0
03915A_10 8	31.5	18.2	0.0	0	3	0.0000 1	0.10	0.0 0	2	2.22	0.43	20.0	176.0	526.0
03915A_36	31.6	31.7	486.8	634	1	0.0000 5	0.01	0.0 0	2	1.78	0.52	2.0	16.0	160.0
03915A_24	31.7	13.0	148.4	81	6	0.0000 1	0.17	0.0 0	3	1.86	0.44	35.0	114.0	211.0
03915A_58	33.2	19.2	114.3	63	3	0.0000 0	0.26	0.0 1	2	2.01	0.53	53.0	169.0	246.0
03915A 8	33.4	12.7	108.0	51	7	0.0000 1	0.27	0.0 1	4	2.06	0.38	55.0	32.0	52.0
03915A_10 6	37.3	9.7	92.4	101	15	0.0000 3	0.17	0.0 1	2	2.05	0.40	36.0	135.0	205.0
03915A 99	37.4	10.5	98.6	45	13	0.0000 1	0.29	0.0 1	4	2.26	0.39	59.0	157.0	312.0
039154 82	37.8	18.9	170 1	135	4	0.0000 1	0 17	0.0 1	3	1 84	0.37	34.0	198.0	233.0
039154 83	38.6	13.7	151 1	121	۰ ۶	0.0000	0.19	0.0	2	1.04	0.53	38.0	178.0	283.0
03015A_04	20 6	13.7	101 1	50	17	0.0000	0.19	0.0	2	1.55	0.55	20.0	152.0	203.0
03913A_94	20.7	9.4	101.1	50	- 17	0.0000	0.45	0.0	5	1.79	0.41	89.0 101.0	205.0	224.0
03915A_62	38.7	14.7	100.8	40	/	0.0000	0.51	1 0.0	3	2.00	0.53	101.0	205.0	242.0
03915A_59	39.1	7.8	133.6	49	26	2 0.0000	0.40	1 0.0	4	1.74	0.36	83.0	163.0	91.0
03915A_39	40.7	40.7	288.2	498	1	1 0.0000	0.03	0 0.0	1	1.66	0.37	5.0	37.0	119.0
03915A_60	40.9	15.5	187.3	108	7	1 0.0000	0.24	1 0.0	3	2.15	0.48	41.0	141.0	257.0
03915A_61	41.6	41.6	0.0	0	1	1 0.0000	0.02	0 0.0	1	2.03	0.41	5.0	22.0	53.0
03915A_74	43.7	14.6	126.0	69	9	1 0.0000	0.35	1 0.0	3	2.13	0.28	72.0	105.0	133.0
03915A_12	44.1	11.5	148.8	147	15	3 0.0000	0.14	0 0.0	4	2.21	0.41	25.0	57.0	142.0
03915A_6	44.4	10.9	121.6	117	17	3 0.0000	0.14	0 0.0	4	2.13	0.34	28.0	88.0	217.0
03915A_10	44.8	17.0	133.6	117	7	1	0.13	0	3	2.02	0.32	28.0	102.0	172.0
03915A_23	45.2	11.8	0.0	0	15	2	0.23	0.0 1 0.0	4	1.93	0.46	51.0	604.0	294.0
03915A_97	45.2	11.1	108.7	59	17	1	0.60	2	4	1.94	0.54	114.0	156.0	328.0
0 0	46.4	8.0	0.0	0	36	0.0000	0.66	3	4	2.14	0.57	122.0	69.0	255.0
03915A_76	46.5	13.5	0.0	0	12	0.0000	0.33	0.0	3	1.94	0.49	79.0	707.0	447.0
03915A_55	46.9	17.8	159.5	88	7	0.0000	0.27	0.0	3	2.34	0.47	52.0	198.0	279.0
03915A_7	47.3	47.3	2.6	404	1	0.0000	0.02	0.0	1	2.01	0.41	4.0	21.0	173.0
03915A_73	47.3	36.2	0.0	0	2	0.0000 0	0.18	0.0 5	2	2.21	0.39	38.0	112.0	442.0
03915A_79	48.1	8.2	121.6	34	35	0.0000 2	0.39	0.0 1	4	2.72	0.57	79.0	317.0	173.0
03915A_1	49.3	49.4	188.7	348	1	0.0000 3	0.01	0.0 0	2	1.89	0.37	2.0	20.0	176.0
03915A_89	49.6	17.6	132.9	148	8	0.0000 1	0.14	0.0 0	4	2.34	0.48	26.0	83.0	189.0
03915A_54	49.7	16.6	140.1	78	9	0.0000 1	0.19	0.0 0	2	2.00	0.31	40.0	120.0	189.0
03915A_10 0	50.0	20.5	162.9	185	6	0.0000 2	0.08	0.0 0	3	2.19	0.35	15.0	72.0	232.0
03915A 56	50.1	14.0	155.8	64	13	0.0000 1	0.27	0.0 1	3	2.19	0.29	53.0	215.0	354.0
—														

						0.0000		0.0						
03915A_41	50.4	25.2	144.9	206	4	2 0.0000	0.06	0 0.0	3	1.74	0.38	12.0	95.0	336.0
03915A_75	50.5	13.2	133.3	87	15	1	0.25	1	4	2.25	0.44	50.0	176.0	289.0
03915A_10 2	51.9	11.7	122.6	67	20	2	0.27	0.0	3	2.07	0.50	56.0	176.0	197.0
03915A_71	54.6	13.3	115.9	38	17	0.0000 1	0.49	0.0 1	3	2.08	0.39	148.0	174.0	282.0
03915A_81	54.9	55.0	602.9	679	1	0.0000 1	0.02	0.0 0	1	2.05	0.31	3.0	9.0	116.0
03915A_10 5	54.9	13.1	98.8	110	18	0.0000 2	0.17	0.0 1	4	2.03	0.53	33.0	116.0	191.0
03915A_85	55.0	55.0	0.0	0	1	0.0000 1	0.03	0.0 0	2	2.15	0.35	0.0	1.0	16.0
03915A_17	55.7	55.8	207.5	488	1	0.0000 4	0.01	0.0 0	1	2.20	0.40	1.0	7.0	196.0
03915A_88	59.5	26.7	169.1	149	5	0.0000 1	0.09	0.0 0	3	2.34	0.57	18.0	86.0	123.0
03915A 92	64.2	22.8	128.5	52	8	0.0000 0	0.35	0.0 1	4	2.09	0.45	68.0	170.0	218.0
- 03915A 50	65.4	20.8	204.2	130	10	0.0000 1	0.26	0.0 0	4	2.30	0.35	42.0	22.0	177.0
03915A_10 9	66.3	9.4	104 5	44	55	0.0000	0.58	0.0	4	2 17	0.51	118.0	125.0	144 0
020154 47	66.7	20.2	128 5	77	11	0.0000	0.21	0.0		2.17	0.40	20.0	124.0	202.0
03915A_47	66.9	20.2	254.5	240	11	0.0000	0.21	0.0	4	1.01	0.40	35.0	61.0	202.0
03915A_84 03915A_10	00.8	33.4	254.5	349	4	0.0000	0.05	0.0	2	1.81	0.41	8.0	160.0	298.0
4	66.9	22.4	110.5	106	9	0.0000	0.17	0.0	2	2.55	0.63	35.0	169.0	113.0
03915A_91	69.8	26.5	97.3	102	7	0 0.0000	0.25	0 0.0	2	2.04	0.39	52.0	153.0	256.0
03915A_98	70.0	18.9	210.8	204	14	2 0.0000	0.10	0 0.0	4	2.04	0.46	22.0	61.0	190.0
03915A_15	70.0	70.0	202.0	296	1	1 0.0000	0.01	0 0.0	1	1.85	0.49	2.0	14.0	322.0
03915A_27	72.4	72.5	0.0	0	1	1 0.0000	0.03	0 0.0	1	2.40	0.56	0.0	0.0	3.0
03915A_32 03915A 10	80.0	80.1	379.0	407	1	1 0.0000	0.01	0 0.0	1	1.50	0.50	3.0	30.0	207.0
3	83.3	20.9	103.5	82	16	1 0.0000	0.24	0 0.0	4	2.32	0.50	50.0	163.0	262.0
03915A_65	86.4	21.8	98.8	98	16	1	0.23	1	2	1.90	0.41	46.0	104.0	298.0
03915A_16	87.2	61.7	353.8	405	2	1	0.02	0	2	1.95	0.40	4.0	123.0	193.0
03915A_44	88.0	62.4	######	####	2	2	0.01	0.0	4	2.14	0.33	2.0	328.0	435.0
03915A_69	90.0	90.2	340.6	475	1	0.0000	0.01	0.0	2	2.39	0.47	2.0	21.0	196.0
03915A_4	90.9	90.9	506.3	397	1	0.0000	0.01	0.0	1	1.95	0.42	2.0	18.0	157.0
03915A_29	97.7	26.3	115.0	40	14	0.0000	0.18	0.0	4	2.28	0.57	120.0	295.0	214.0
03915A_3	105.4	43.2	152.4	286	6	0.0000	0.05	0.0	3	2.33	0.51	9.0	86.0	222.0
03915A_42	112.4	25.4	245.4	607	20	0.0000 1	0.28	0.0 1	3	2.26	0.51	6.0	67.0	135.0
03915A_96	112.6	112.7	0.0	0	1	0.0000 2	0.01	0.0 0	1	2.17	0.44	0.0	0.0	0.0
03915A_14	124.4	34.7	123.1	81	13	0.0000 0	0.29	0.0 1	4	1.94	0.41	60.0	28.0	389.0
03915A_30	129.1	91.4	######	999	2	0.0000 1	0.03	0.0 0	2	2.09	0.39	7.0	266.0	57.0
03915A 68	131.8	131.9	827.1	####	1	0.0000 1	0.01	0.0 0	1	2.25	0.57	2.0	16.0	156.0
- 03915A 78	136.3	69.1	0.0	0	4	0.0000 1	0.04	0.0 0	3	2.05	0.45	0.0	16.0	91.0
03915A 34	145.9	24.6	121.7	35	36	0.0000 1	0.39	0.0 1	3	2,35	0.41	115.0	229.0	163.0
03915A_10 1	147.6	38.6	94.4	22	15	0.0000	0 17	0.0 1	3	1.99	0.55	199.0	296.0	85.0
-	176.0	50.0	114.0	22 ΕΛ	15	0.0000	0.17	0.0	л	2.00	0.55	144.0	121 0	206.0
03313A_04	170.0	54.0	114.3	54	20	Ŧ	0.23	U	4	2.04	0.55	144.0	101.0	200.0

						0.0000		0.0						
03915A_72	189.0	189.1	492.9	597	1	0	0.01	0	1	2.18	0.23	3.0	48.0	281.0
						0.0000		0.0						
03915A_22	334.5	342.3	0.0	0	1	1	0.00	0	1	2.09	0.34	0.0	91.0	373.0
						0.0000		0.0						
03915A_38	457.5	459.9	0.0	0	1	2	0.00	0	2	1.89	0.41	0.0	0.0	10.0
						0.0000		0.0						
03915A_49	460.6	464.5	623.7	651	1	1	0.00	0	1	1.92	0.39	5.0	112.0	81.0
						0.0000		0.0						
03915A_51	600.6	602.7	0.0	0	1	2	0.00	0	2	1.93	0.44	0.0	0.0	9.0
						0.0000		0.0						
03915A_31	1035.5	1040.0	0.0	0	1	1	0.00	0	1	2.24	0.39	0.0	1.0	27.0

Tok River

Spot Name	FT Age (Ma)	sigma sym	UPb Age (Ma)	2 sigma (Ma)	Ns	Area cm^2	U/Catio n	+/- 1sig	Etch Figs.	Dpar (um)	Dper (um)	[U] (ppm)	[Th] (ppm)	[Sm] (ppm) #####
1421A_23	0.0	#DIV/0!	0.0	0	2	3	0.00	0.0	2	1.81	0.26	0.0	84.0	#
1421A_44	0.0	13773.7	0.0	0	0	3	0.00	0.0	1	1.44	0.23	0.0	0.0	0.0
1421A_64	0.0	8617.0	0.0	0	0	3	0.00	0.0	1	1.97	0.22	0.0	0.0	0.0
1421A_28	0.0	7425.8	0.0	0	0	0.0000	0.00	0.0	1	1.63	0.31	0.0	0.0	1.0
1421A_17	0.0	5856.3	0.0	0	0	2	0.00	0.0	1	1.69	0.38	0.0	0.0	1.0
1421A_18	0.0	5705.0	0.0	0	1	0.0000	0.00	0.0	1	1.71	0.25	0.0	0.0	1.0
1421A_14	0.0	4949.8	0.0	0	0	0.0000	0.00	0.0	1	1.34	0.35	0.0	0.0	0.0
1421A_20	0.0	4767.8	0.0	0	0	0.0000 2	0.00	0.0 0	1	1.89	0.31	0.0	3.0	233.0
1421A_27	0.0	1904.5	0.0	0	0	0.0000 3	0.00	0.0 0	1	1.73	0.40	0.0	0.0	2.0
1421A_45	0.0	1878.8	0.0	0	0	0.0000 4	0.00	0.0 0	1	1.82	0.39	0.0	0.0	3.0
1421A_5	0.0	1615.7	0.0	0	0	0.0000 3	0.00	0.0 0	1	1.73	0.38	0.0	0.0	1.0
1421A_70	0.0	1538.5	0.0	0	0	0.0000 3	0.00	0.0 0	1	1.56	0.30	0.0	0.0	2.0
1421A_2	0.0	1268.7	0.0	0	0	0.0000 3	0.00	0.0 0	1	1.68	0.28	0.0	0.0	3.0
1421A_16	0.0	1100.0	0.0	0	0	0.0000 2	0.00	0.0 0	1	1.62	0.35	0.0	0.0	9.0
1421A_24	0.0	897.1	0.0	0	0	0.0000 2	0.00	0.0 0	1	1.07	0.43	0.0	0.0	52.0
1421A_43	0.0	886.0	0.0	0	0	0.0000 2	0.00	0.0 0	1	1.30	0.33	0.0	0.0	6.0
1421A_13	0.0	857.1	0.0	0	0	0.0000 4	0.00	0.0 0	1	1.56	0.35	0.0	0.0	4.0
1421A_59	0.0	776.3	0.0	0	0	0.0000 2	0.00	0.0 0	1	1.68	0.21	0.0	0.0	11.0
1421A_62	0.0	757.0	0.0	0	1	0.0000 2	0.00	0.0 0	1	2.04	0.21	0.0	1.0	14.0
1421A_47	0.0	693.3	0.0	0	0	0.0000 2	0.00	0.0 0	1	1.55	0.32	0.0	3.0	63.0
1421A_42	0.0	581.4	0.0	0	0	0.0000 1	0.00	0.0 0	1	1.42	0.25	0.0	0.0	41.0
1421A_51	0.0	501.6	0.0	0	0	0.0000 2	0.00	0.0 0	1	1.59	0.27	0.0	5.0	107.0
1421A_7	0.0	496.2	0.0	0	0	0.0000 4	0.00	0.0 0	1	1.60	0.28	0.0	1.0	7.0
1421A_53	0.0	320.6	0.0	0	0	0.0000 2	0.00	0.0 0	1	1.54	0.26	0.0	0.0	8.0
1421A_35	0.0	306.8	0.0	0	0	0.0000 4	0.00	0.0 0	1	1.64	0.46	0.0	0.0	7.0
1421A_8	0.0	272.6	0.0	0	0	0.0000 3	0.00	0.0 0	1	1.79	0.46	0.0	0.0	6.0
1421A_66	0.0	246.3	0.0	0	0	0.0000 3	0.00	0.0 0	1	1.75	0.36	0.0	0.0	140.0
1421A_26	0.0	181.9	0.0	0	0	0.0000 4	0.00	0.0 0	1	1.65	0.25	0.0	1.0	34.0

						0.0000		0.0						
1421A_39	0.0	89.2	######	####	0	3	0.00	0	1	1.86	0.52	1.0	123.0	91.0
1421A_22	0.0	88.6	0.0	0	0	4	0.00	0.0	1	1.91	0.65	0.0	36.0	244.0
1421A_48	0.0	44.2	426.3	460	0	3	0.01	0.0	1	1.45	0.27	1.0	7.0	376.0
1421A_41	0.0	42.9	364.3	337	0	0.0000	0.01	0.0	1	1.58	0.47	1.0	12.0	131.0
1421A_68	0.0	27.0	331.2	313	0	0.0000	0.01	0.0	1	1.43	0.22	2.0	9.0	248.0
1421A_9	0.0	21.2	243.3	285	0	0.0000 4	0.01	0.0 0	1	1.40	0.42	2.0	10.0	285.0
1421A_49	0.0	11.7	361.2	218	0	0.0000 4	0.02	0.0 0	1	1.57	0.53	5.0	63.0	78.0
1421A_54	16.3	4.9	48.3	26	11	0.0000 3	0.29	0.0 0	4	1.69	0.38	50.0	181.0	243.0
1421A_1	19.5	6.2	######	853	11	0.0000 4	0.18	0.0 2	2	1.57	0.26	38.0	18.0	810.0
1421A_57	27.5	27.5	562.9	314	1	0.0000 2	0.02	0.0 0	1	1.46	0.32	5.0	60.0	263.0
1421A_60	29.6	29.6	373.6	341	1	0.0000 4	0.01	0.0 0	2	1.79	0.36	2.0	11.0	254.0
1421A_46	29.7	21.1	517.0	490	2	0.0000 3	0.02	0.0 0	2	2.01	0.24	6.0	44.0	227.0
1421A_4	35.2	35.2	285.3	313	1	0.0000 4	0.01	0.0 0	1	1.66	0.35	2.0	10.0	338.0
1421A 56	41.6	24.1	436.8	224	3	0.0000 4	0.02	0.0 0	3	2.01	0.29	5.0	39.0	165.0
_ 1421A 58	59.7	42.2	436.4	203	2	0.0000 3	0.01	0.0 0	1	2.35	0.30	3.0	20.0	196.0
_ 1421A 32	69.9	69.9	435.7	546	1	0.0000 2	0.01	0.0 0	1	1.74	0.30	2.0	16.0	140.0
 1421A_55	73.0	73.0	631 5	377	1	0.0000	0.01	0.0	1	1 77	0 39	2.0	14 0	177 0
14214 31	82.5	58.4	271 7	349	2	0.0000	0.01	0.0	2	1 32	0.34	2.0	9.0	266.0
1/210 63	92.5	65.6	528.7	373	2	0.0000	0.01	0.0	2	1.92	0.34	2.0	14.0	158.0
14217_03	96.8	56.4	126.0	408	2	0.0000	0.01	0.0	2	1.50	0.30	2.0	15.0	164.0
14217_33	112.7	70.9	430.5	400	2	0.0000	0.01	0.0	2	1.74	0.20	1.0	13.0 6.0	195.0
1421A_50	112.7	79.0	257.2	407	2	0.0000	0.01	0.0	2	1.25	0.50	1.0	0.0	277.0
1421A_10	114.9	81.3	357.3	351	2	0.0000	0.01	0.0	1	1.72	0.34	2.0	8.0	277.0
1421A_67	115.4	115.5	0.0	0	1	4 0.0000	0.00	0.0	1	1.60	0.42	1.0	0.0	/2.0
1421A_3	122.1	18.3	217.3	338	48	3 0.0000	0.17	1 0.0	3	1.68	0.35	166.0	96.0	521.0
1421A_6	131.6	140.6	0.0	0	1	2 0.0000	0.00	0 0.0	1	1.38	0.27	1.0	12.0	101.0
1421A_25	134.0	67.5	343.0	407	4	5 0.0000	0.01	0 0.0	4	1.45	0.41	2.0	8.0	213.0
1421A_61	137.2	97.1	579.1	299	2	2 0.0000	0.01	0 0.0	2	2.03	0.37	2.0	13.0	163.0
1421A_19	175.6	175.6	392.3	336	1	1 0.0000	0.01	0 0.0	1	1.73	0.25	2.0	12.0	144.0
1421A_30	196.1	98.2	389.5	359	4	3 0.0000	0.01	0 0.0	2	1.36	0.33	2.0	15.0	182.0
1421A_34	204.4	119.4	101.3	398	3	3 0.0000	0.01	0 0.0	2	1.65	0.35	1.0	4.0	269.0
1421A_15	207.9	148.2	268.1	548	2	3 0.0000	0.00	0 0.0	1	1.55	0.28	1.0	4.0	145.0
1421A_37	347.1	205.1	113.2	834	3	3 0.0000	0.00	0 0.0	2	1.74	0.38	1.0	4.0	204.0
1421A_12	466.2	466.8	0.0	0	1	4 0.0000	0.00	0 0.0	1	1.74	0.35	0.0	0.0	8.0
1421A_40	795.1	565.3	0.0	0	2	3 0.0000	0.00	0 0.0	1	1.67	0.39	1.0	46.0	121.0
1421A_69	1349.8	1356.2	0.0	0	1	2	0.00	0 0.0	2	1.67	0.22	0.0	0.0	8.0
1421A_21	1542.9	1094.4	0.0	0	2	2	0.00	0	2	1.48	0.46	0.0	0.0	66.0
1421A_11	1752.5	884.5	0.0	0	4	3	0.00	0	2	1.59	0.38	0.0	0.0	4.0

						0.0000		0.0						
1421A_38	1789.2	1792.7	0.0	0	1	2	0.00	0	2	1.76	0.25	0.0	1.0	65.0
						0.0000		0.0						
1421A_36	1977.7	2028.1	0.0	0	1	4	0.00	0	1	1.65	0.30	0.0	0.0	5.0
						0.0000		0.0						
1421A_65	3362.9	3442.7	0.0	0	1	4	0.00	0	1	1.90	0.26	0.0	0.0	1.0
						0.0000		0.0						
1421A_29	3672.1	3771.1	0.0	0	1	4	0.00	0	1	1.46	0.20	0.0	0.0	1.0
						0.0000		0.0						
1421A_52	4261.6	3036.1	0.0	0	2	2	0.00	0	2	1.49	0.34	0.0	0.0	39.0

upper Susitna River

Spot Name	FT Age (Ma)	Sigma Symm (Ma)	UPb Age (Ma)	2 sigma (Ma)	Ns	Area cm^2 0 0000	U/Catio n	+/- 1sig 0 0	Etch Figs.	Dpar (um)	Dper (um)	[U] (ppm)	[Th] (ppm)	[Sm] (ppm)
03916A_7	0.0	4.3	0.0	0	0	4	0.05	0	1	2.15	0.32	10.0	28.0	140.0
03916A_19	0.0	2.6	122.1	152	0	3	0.12	0.0	1	1.91	0.34	24.0	0.0	222.0
03916A_24	0.0	4.5	15.7	49	0	2	0.11	0.0	1	1.86	0.46	25.0	91.0	244.0
03916A_65	0.0	5.2	45.1	153	0	0.0000	0.06	0.0	1	1.67	0.35	11.0	0.0	47.0
03916A_71	0.0	6.8	0.0	0	0	0.0000	0.07	0.0	1	2.01	0.53	11.0	37.0	137.0
03916A_86	0.0	6.8	11.6	146	0	0.0000	0.04	0.0	1	2.07	0.41	9.0	4.0	38.0
03916A_90	0.0	11.7	0.0	0	0	0.0000	0.06	0.0	1	2.18	0.49	13.0	1.0	107.0
03916A_39	2.2	2.2	0.0	0	1	0.0000 2	0.29	0.0 1	1	1.67	0.46	54.0	21.0	127.0
03916A_76	3.1	2.2	0.0	0	2	0.0000 1	0.56	0.0 1	2	2.30	0.42	106.0	265.0	206.0
03916A_98	3.2	1.8	43.2	34	3	0.0000 2	0.48	0.0 1	2	1.87	0.38	95.0	197.0	144.0
03916A_5	3.3	2.3	0.0	0	2	0.0000 2	0.39	0.0 1	2	2.12	0.31	74.0	39.0	73.0
03916A_61	3.7	2.1	60.5	40	3	0.0000 3	0.30	0.0 1	3	1.97	0.56	60.0	138.0	149.0
03916A_46	4.0	4.0	42.4	55	1	0.0000 3	0.11	0.0 0	1	2.03	0.46	22.0	88.0	135.0
03916A_82	5.2	5.2	0.0	0	1	0.0000 2	0.14	0.0 0	1	1.99	0.42	27.0	49.0	48.0
03916A_10	5.6	5.6	0.0	0	1	0.0000 2	0.10	0.0 0	2	1.91	0.36	18.0	83.0	185.0
03916A_72	6.1	6.1	54.5	80	1	0.0000 1	0.15	0.0 1	1	1.72	0.35	35.0	73.0	231.0
03916A_50	6.4	4.5	83.6	34	2	0.0000 1	0.44	0.0 1	2	1.92	0.48	74.0	122.0	208.0
03916A_48	6.7	6.7	89.6	54	1	0.0000 1	0.21	0.0 0	1	2.15	0.45	43.0	19.0	180.0
03916A_17	6.7	6.7	0.0	0	1	0.0000 2	0.11	0.0 0	2	2.15	0.53	224.0	778.0	##### #
03916A_41	6.9	4.9	0.0	0	2	0.0000 1	0.25	0.0 1	2	2.46	0.55	40.0	127.0	270.0
03916A_28	6.9	6.9	0.0	0	1	0.0000 2	0.09	0.0 0	1	1.88	0.22	24.0	49.0	84.0
03916A_79	6.9	3.5	0.0	0	4	0.0000 3	0.25	0.0 1	2	2.01	0.37	50.0	121.0	226.0
03916A_73	7.2	5.1	0.0	0	2	0.0000 1	0.44	0.0 1	1	2.07	0.40	151.0	286.0	229.0
03916A_88	7.3	4.2	0.0	0	3	0.0000 2	0.21	0.0 1	3	2.04	0.46	43.0	11.0	183.0
03916A_77	7.4	4.3	0.0	0	3	0.0000 2	0.29	0.0 1	2	2.07	0.46	56.0	121.0	166.0
03916A_10 9	7.7	5.5	30.8	22	2	0.0000 3	0.09	0.0 0	2	2.10	0.50	149.0	22.0	302.0
03916A_10 0	8.2	4.1	81.8	35	4	0.0000 2	0.39	0.0 1	2	1.94	0.37	77.0	158.0	373.0
03916A_59	8.3	8.3	27.8	32	1	0.0000 1	0.15	0.0 1	2	2.14	0.35	28.0	143.0	178.0
03916A_52	8.9	6.3	6.9	55	2	0.0000 3	0.10	0.0 0	1	2.09	0.24	19.0	48.0	162.0

						0.0000		0.0						
03916A_69	9.3	4.7	82.6	42	4	1 0.0000	0.45	1 0.0	2	2.07	0.45	99.0	197.0	247.0
03916A_44	10.2	5.9	53.6	34	3	1	0.42	1	2	2.21	0.35	81.0	185.0	197.0
03916A_32	10.4	6.0	19.7	68	3	5	0.07	0.0	2	2.23	0.46	14.0	61.0	114.0
03916A_70	10.6	3.7	33.5	14	8	2	0.48	0.0	2	2.25	0.47	227.0	195.0	136.0
03916A_57	11.2	4.0	79.6	28	8	0.0000	0.57	2	3	2.34	0.51	118.0	396.0	205.0
03916A_10 6	11.8	4.2	88.6	53	8	0.0000	0.48	0.0	2	2.23	0.41	92.0	110.0	270.0
03916A_18	12.2	7.1	29.3	42	3	0.0000	0.16	0.0	3	2.13	0.51	30.0	6.0	49.0
03916A_92	12.9	7.5	0.0	0	3	0.0000	0.20	0.0	2	2.38	0.46	40.0	29.0	156.0
03916A_10 7	13.1	9.2	4.5	73	2	0.0000 2	0.08	0.0 0	1	1.83	0.31	17.0	61.0	113.0
03916A_23	14.4	14.4	51.6	101	1	0.0000 1	0.07	0.0 0	1	2.39	0.49	14.0	62.0	150.0
03916A_21	14.6	10.4	43.4	62	2	0.0000	0.05	0.0 0	1	1.70	0.22	9.0	31.0	155.0
03916A_75	14.8	10.5	0.0	0	2	0.0000	0.09	0.0	1	2.33	0.44	14.0	26.0	84.0
03916A_45	15.9	6.0	38.5	34	7	0.0000	0.28	0.0	3	1.99	0.48	56.0	142.0	94.0
03916A_10 2	17.2	10.0	60.6	96	3	0.0000 3	0.06	0.0 0	2	2.15	0.46	14.0	1.0	76.0
03916A_10 1	17.6	6.6	94.7	94	7	0.0000 5	0.10	0.0 0	3	2.16	0.48	20.0	38.0	120.0
03916A_10 5	18.3	4.9	65.7	38	14	0.0000 2	0.49	0.0 1	4	2.21	0.50	78.0	152.0	173.0
03916A_30	18.6	10.8	0.0	0	3	0.0000 3	0.06	0.0 0	2	2.26	0.46	12.0	72.0	199.0
03916A_64	18.8	7.1	32.3	26	7	0.0000 3	0.14	0.0 0	2	2.17	0.35	98.0	126.0	219.0
03916A_53	19.3	11.2	56.3	80	3	0.0000 2	0.10	0.0 0	2	1.99	0.42	21.0	38.0	163.0
03916A_67	19.9	4.1	65.2	33	24	0.0000 3	0.51	0.0 1	4	2.39	0.56	104.0	86.0	179.0
03916A_4	20.0	5.4	0.0	0	14	0.0000 5	0.18	0.0 1	3	1.98	0.34	33.0	19.0	92.0
03916A_63	20.2	9.1	104.4	84	5	0.0000 2	0.13	0.0 0	3	2.10	0.51	21.0	5.0	170.0
03916A_14	21.3	7.6	56.7	21	8	0.0000 3	0.16	0.0 1	3	2.27	0.42	130.0	237.0	200.0
03916A_36	22.3	10.0	0.0	0	5	0.0000 3	0.09	0.0 0	2	1.92	0.43	18.0	1.0	177.0
03916A_97	22.7	10.2	66.0	79	5	0.0000 1	0.23	0.0 1	3	1.96	0.35	51.0	151.0	233.0
03916A_1	22.9	4.9	0.0	0	22	0.0000 4	0.27	0.0 1	3	1.86	0.35	0.0	20.0	130.0
03916A_13	23.1	5.2	41.6	42	20	0.0000 4	0.28	0.0 1	3	2.09	0.45	59.0	61.0	187.0
03916A_60	24.4	24.5	0.0	0	1	0.0000	0.03	0.0 0	1	2.56	0.31	6.0	24.0	134.0
03916A_56	24.7	12.4	21.0	19	4	0.0000 1	0.17	0.0 0	2	2.08	0.41	174.0	406.0	168.0
03916A_96	24.9	5.9	83.2	41	18	0.0000 4	0.20	0.0 0	4	2.58	0.66	137.0	282.0	141.0
03916A_55	25.4	7.1	33.2	39	13	0.0000 3	0.22	0.0 1	3	2.09	0.46	43.0	57.0	132.0
03916A_31	27.3	5.3	0.0	0	29	0.0000 4	0.34	0.0 2	4	1.91	0.41	68.0	273.0	101.0
03916A_99	27.4	15.8	50.1	135	3	0.0000 3	0.05	0.0 0	2	2.03	0.43	10.0	49.0	81.0
03916A_2	27.7	16.1	0.0	0	3	0.0000 3	0.05	0.0 0	2	2.11	0.36	9.0	17.0	48.0
03916A_49	28.0	10.9	0.0	0	7	0.0000 2	0.16	0.0 1	3	2.25	0.46	19.0	38.0	70.0
03916A_12	28.2	5.7	0.0	0	25	0.0000 3	0.38	0.0 1	4	1.98	0.49	81.0	134.0	390.0
03916A_81	28.7	12.9	0.0	0	5	0.0000 2	0.09	0.0 0	2	2.19	0.46	123.0	456.0	145.0

						0.0000		0.0						
03916A_38 03916A 11	29.0	11.9	0.0	0	6	3 0.0000	0.08	0 0.0	2	2.55	0.46	179.0	971.0	229.0
0	29.6	17.1	86.8	194	3	3	0.04	0	2	2.05	0.33	7.0	30.0	324.0
03916A_26	30.0	5.8	59.7	62	27	5	0.23	0.0	4	2.07	0.46	42.0	12.0	92.0
03916A_93	30.6	30.6	101.3	211	1	0.0000	0.03	0.0	1	2.12	0.46	8.0	35.0	246.0
03916A_94	31.4	10.0	65.3	83	10	0.0000 2	0.16	0.0 1	3	2.17	0.46	33.0	96.0	97.0
03916A_35	32.0	11.4	0.0	0	8	0.0000 2	0.16	0.0 1	2	1.92	0.34	22.0	58.0	81.0
03916A_47	32.1	10.2	68.5	66	10	0.0000 1	0.33	0.0 1	2	2.31	0.55	71.0	1.0	168.0
03916A_95	32.2	9.0	78.7	37	13	0.0000 1	0.34	0.0 1	4	2.18	0.38	87.0	152.0	223.0
03916A_66	32.8	8.1	65.9	28	17	0.0000 1	0.53	0.0 2	4	2.12	0.53	109.0	206.0	426.0
03916A 87	32.9	32.9	0.0	0	1	0.0000 2	0.02	0.0 0	1	2.22	0.81	4.0	14.0	183.0
- 03916A 3	34.4	20.0	0.0	0	3	0.0000 1	0.07	0.0 0	3	1.84	0.33	147.0	321.0	132.0
03916A 68	34 5	97	63.0	40	13	0.0000 1	0 32	0.0	2	2 04	0.52	63.0	111.0	272 0
020164 6	24 5		0.0		11	0.0000	0.20	0.0	_	2.0.	0.52	72.0	20.0	204.0
039104_0	25.2	3.5	0.0	0	41	0.0000	0.56	0.0	4	2.57	0.55	13.0	50.0	126.0
03910A_78	35.2	17.7	0.0	17	4	0.0000	0.07	0.0	2	2.20	0.57	13.0	53.0	120.0
03916A_51	35.7	8.7	46.2	17	17	0.0000	0.48	0.0	4	2.34	0.52	95.0	324.0	115.0
03916A_84	36.3	4.9	59.4	40	62	4 0.0000	0.54	2 0.0	4	2.49	0.67	107.0	19.0	135.0
03916A_85	43.1	9.0	0.0	0	24	3 0.0000	0.24	1 0.0	2	2.09	0.46	54.0	5.0	94.0
03916A_83	43.7	6.3	0.0	0	52	4 0.0000	0.38	1 0.0	3	2.21	0.56	79.0	1.0	241.0
03916A_22	44.3	18.9	0.0	0	6	2 0.0000	0.09	1 0.0	2	1.91	0.36	11.0	31.0	73.0
03916A_91 03916A 10	44.8	7.9	0.0	0	33	2 0.0000	0.37	1 0.0	4	2.46	0.51	145.0	54.0	213.0
3 03916A 10	45.8	10.9	72.4	51	18	2 0.0000	0.20	0 0.0	4	2.06	0.33	42.0	78.0	356.0
4	46.5	10.2	83.2	68	21	2	0.29	1	4	2.29	0.46	56.0	37.0	166.0
03916A_43	47.0	14.2	0.0	0	11	1	0.21	0	3	2.21	0.34	35.0	18.0	217.0
03916A_74	50.9	10.9	60.6	24	22	1	0.55	1	3	2.44	0.51	159.0	178.0	351.0
03916A_27	52.6	8.5	0.0	0	40	3	0.32	0.0	4	2.08	0.73	63.0	7.0	159.0
03916A_33	53.7	31.1	133.7	163	3	0.0000	0.06	0.0	2	2.15	0.50	11.0	31.0	71.0
03916A_9	55.5	12.2	81.3	108	21	0.0000	0.10	0.0	2	1.61	0.51	18.0	1.0	117.0
03916A_15	59.9	30.0	49.6	23	4	0.0000	0.05	0.0	2	2.12	0.48	142.0	76.0	197.0
03916A_80	61.6	31.0	0.0	0	4	0.0000 2	0.04	0.0 0	2	2.15	0.39	9.0	40.0	47.0
03916A_42	61.8	43.8	0.0	0	2	0.0000 1	0.03	0.0 0	2	2.16	0.45	5.0	17.0	185.0
03916A_25	61.8	21.9	76.5	108	8	0.0000 1	0.14	0.0 0	3	2.40	0.42	16.0	4.0	63.0
03916A_16	69.7	12.9	57.1	40	30	0.0000 1	0.36	0.0 1	4	1.91	0.42	76.0	105.0	318.0
03916A 58	73.0	12.2	45.8	47	37	0.0000 3	0.21	0.0 1	4	2.36	0.51	40.0	37.0	272.0
03916A_10 8	76.3	34.2	171.7	319	5	0.0000 3	0.03	0.0 0	4	2.65	0.66	5.0	19.0	160.0
03916A 37	79.5	13.8	0.0	0	35	0.0000	0.56	0.0 2	3	2,35	0.41	111.0	70.0	282.0
03916A 54	86 5	61 3	57.2	122	2	0.0000	0.03	0.0 0	2	2.25	0.56	7.0	4.0	54.0
020164 90	86.0	20.0	0.0	122	0	0.0000.0 c	0.03	0.0	2	1 77	0.46	7.0	26.0	120.0
00010H_00	00.9	50.5	0.0	0	0	5	0.03	U	2	1.//	0.40	7.0	50.0	130.0

						0.0000		0.0						
03916A_29	87.1	20.8	0.0	0	19	5	0.06	0	3	2.32	0.61	38.0	9.0	91.0
						0.0000		0.0						
03916A_11	89.7	40.3	0.0	0	5	4	0.02	0	3	1.63	0.30	3.0	14.0	158.0
					11	0.0000		0.0						
03916A_34	92.6	9.1	48.7	22	7	3	0.53	2	4	2.48	0.57	296.0	838.0	660.0
						0.0000		0.0						
03916A_20	133.1	17.7	0.0	0	59	2	0.28	1	3	1.82	0.49	227.0	156.0	311.0
						0.0000		0.0						
03916A_62	141.2	23.7	12.7	95	37	5	0.07	0	3	2.25	0.41	14.0	17.0	136.0
						0.0000		0.0						
03916A_8	198.6	200.3	0.0	0	1	3	0.00	0	1	1.77	0.35	0.0	0.0	6.0
						0.0000		0.0						
03916A_40	470.1	221.7	0.0	0	19	3	0.02	1	4	2.12	0.48	41.0	2.0	213.0

Supplement S3- ⁴⁰Ar/³⁹Ar data

15ET166 WR#L1

Weighted average of J from standards = $1.338\text{e-}04 \pm 1.605\text{e-}06$ (1-sigma error)

Days since irradiation = 73

Laser Power	Cumulat ive	40Ar	±	39A r	±	38 Ar	±	37 Ar	±	36 Ar	±	% At m.	±	Ca/ K	±	Cl/ K	±	40Ar */ 39Ar K	±	Ag e	±
			m		m		m		m		m	40A								(M	(M
(mW)	39Ar	mV	V	mV	V	mV	V	mV	V	mV	V	r								a)	a)
		186.2	0.6		0.0	0.3	##	0.0	0.1	0.6	0.0	98.8	3.2	1.7	0.0	0.0	0.0		1.4	0.1	0.3
500	0.02	5	1	4.15	6	1	#	0	7	2	2	4	3	5	8	1	0	0.52	5	3	5
		245.2	0.9	24.0	0.1	0.7	##	0.0	0.4	0.5	0.0	66.9	2.9	2.7	0.0	0.0	0.0		0.3	0.8	0.0
1000	0.13	2	0	6	0	3	#	4	1	6	2	2	7	4	3	0	0	3.37	0	1	7
		321.3	0.8	48.8	0.1	1.6	##	0.0	0.3	0.4	0.0	36.2	2.5	2.0	0.0	0.0	0.0		0.1	1.0	0.0
1500	0.35	6	1	0	7	2	#	5	2	1	3	4	6	6	1	0	0	4.18	7	1	4
		275 5	0.7	47.5	0.2	14	##	0.0	0.2	0.2	0.0	29.1	23	15	0.0	0.0	0.0		0.1	0.9	0.0
2000	0.57	6	5	9	0.2	5	#	4	3	8	2	3	4	0	1	0.0	0.0	4 08	4	8	3
2000	0.07	228 5	0.4	25 9	0.1	11	##	0.0	0.2	0.2	0.0	25.2	2.2	14	0.0	0.0	00		0.2	0.0	0.0
2500	0.74	220.5	0.4	55.8	0.1	1.1	#	0.0	0.2	0.2	0.0	35.2	3.5	1.4	0.0	0.0	0.0	4.11	0.2	0.9	0.0
2500	0.74	150 1	0.4	20.9	0.0	07	т 1111	0.0	- T	0.0	0.0	44.6	-	1.4	0.0	0.0	0.0	4.11	0.4		0.1
2000	0.03	150.1	0.4	20.8	0.0	0.7	##	0.0	0.1	0.2	0.0	44.0	0.0	1.4	0.0	0.0	0.0	2 00	0.4	0.9	0.1
3000	0.83	5	9	1	6	8	#	2	9	3	3		3	6	2	1	0	3.98	8	6	2
		310.2	0.8	26.1	0.1	1.6	##	0.0	0.1	0.7	0.0	71.5	3.0	2.6	0.0	0.0	0.0		0.3	0.8	0.0
5000	0.95	0	1	6	4	4	#	4	6	6	3	8	7	3	2	1	0	3.37	6	1	9
		215.4	0.6	10.6	0.0	0.9	##	0.0	0.2	0.6	0.0	82.8	3.7	7.8	0.0	0.0	0.0		0.7	0.8	0.1
9000	1.00	3	6	8	9	4	#	5	7	2	3	4	6	1	8	1	0	3.47	6	4	8
Integrat		1932.	1.9	####	0.3	8.6	##	0.2	0.7	3.7	0.0	56.5	1.1	2.1	0.0	0.0	0.0		0.1	0.9	0.0
ed		73	9	#	6	0	#	6	3	6	8	8	7	9	1	1	0	3.84	0	2	3

 $Irradiations \ done \ at \ McMaster \ Nuuclear \ Reactor: \ (39 Ar/37 Ar) Ca = 0.000706, (36 Ar/37 Ar) Ca = 0.000279, (40 Ar/39 Ar) K = 0.02976, (40 Ar) K = 0.0297$

Standard: TCR 28.619 with an age of (Renne et al., 2010)

All errors quoted at 1-sigma

Laser (mW): Laser power for each step of the step-heating experiment

40Ar, 39Ar, and 37Ar: Isotopic measurements corrected for system blank and decay of 37Ar and 39Ar

Ca/K: Calcium to potassium ratio as determined from 37Ar produced from 40Ca and 39Ar produced from 39K

Cl/K: chlorine to potassium ratio as determined from 38Ar produced from 37Cl and 39Ar produced from 39K

40Ar*/39ArK: ratio of radiogenic argon 40 to reactor-produced 39Ar from potassium, corrected for reactor interferences