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1 Description 

Figure 1: Our  system concept. 

Our  system concept is illustrated i n  Figure 1. The core idea is to  11ave video cameras mounted 
017 poles or other tall structures looking down at the traffic scene. \-ideo is captured. digitized. 
and processed by onsite computers. and then transnlitted in summary form to a Transportation 
hlanagement Center (TNC) for collation and computation of multi-site statistics such as link 
tra\.el times. 

Processing occurs i n  three stages: 

1 .  Segmentation of the scene into indi~idual  vehicles and tracking each individual vehicle to 
refine and update its position and velocit!. i n  3D world coordinates. until i t  leaves the 
tracking zone. 

2 .  Reasoning from the track data i n  order to compute local traffic flow parameters including 
\,el~icle counts per lane. average speeds. incidents. lane change frequencies. etc. These 
paran~eters.  together with track information (timestamp. vehicle type. color. shape. X-J’ 
position). are communicated to the TJIC at regular intervals. 

3. At the TJIC. local traffic parameters from each site are collated and displayed as desired. 
and/or used in controlling signals. message displays. and other traffc control devices. 
Computers at the TRlC also process the track information from neighboring camera sites 
to compute long-distance parameters such as link times and origin-destination counts. 

For reference, we include the functional specifications from the RFP  (Table 1 011 page 2 of 
R F P  Exhibit 111) as Table 1 below. 



Table 1: Table of recovered parameters. 

2 Tracking Approach 
Tracking moving objects i n  video streams has been a popular topic in the field of computer 
vision i n  the last few years; earlier contributions to  the areas of multi-target tracking and data  
association were made by control and aerospace engineers. Our application context ent.ails several 
stringent requirements for a proposed scheme: 

1 .  Automatic segmentation of a vehicle from the background and other vehicles so that there 
can be a unique track associated with each vehicle. 

2 .  Deal with \.ariety of vehicles - motorcycles. passenger cars, buses. const,ruction equipment. 
trucks. etc. 

3 .  Deal with range of traffic conditions - light midday traffic. rush-hour congestion. varying 
speeds i n  different lanes. 

4 .  Deal J v i t l l  \.ariety of lighting conditions - day. evening. night. sunny. overcast. rainy days. 

5 .  Real-time operation of the system. 

The different tracking approaches i n  video data that have been studied i n  computer vision 
can be classified as follows. 

2.1 3D Model based tracking 
Three-dimensional model-based vehicle tracking systems have previously been investigated by 
several research groups, t,he most prominent being the groups at Iiarlsruhe [9] and at the Univer- 
sity of Reading[l. 141. The emphasis is on recovering trajectories and nlodels with high accuracy 
for a small number of vehicles. The most serious weakness of this approach is the reliance on 
detailed geometric object models. It is unrealistic to  expect to  be able to  have detailed models 
for all vehicles that could be found on the roadway. 

2.2  Region based tracking 
T11e idca here is to identify a connected region i n  the  image - a "bloh" - associated with each 
vchiclr~ and then track i t  over time using a cross-correlation measure. Initialization of the process 
is 111ost easil!. done by the background subtraction techniqor. A lialman filter-baaed adaptivc 



ba.ckground model[i, 81 allows the background estimat<e to evolve as the weather and time of 
day affect lighting conditions. Foreground objects (vehicles) are detected by subtracting the 
incoming image from the current background estimate, looking for pixels where this difference 
image is above some threshold and then finding connected components. 

This approach works reasonably well in free-flowing traffic. Difficulties arise in two important 
situations. The first is that of long shadows that may result in connecting up blobs that should 
have been associated with separate vehicles. This can be dealt with to  some extent by making 
use of color information or by exploiting the fact that shadow regions t.end to  be devoid of 
t.exture. The more serious, and so far intractable, problem for video based traffic surveillance 
systems h a s  been that of congested traffic. Under these conditions, vehicles partially occlude 
one another instead of being spat,ially isolated, which makes the task of segmenting individua1 
vehicles difficult. Such vehicles will become grouped together as one large blob in the foreground 
image. This would obviously lead to undercounting vehicles. 

2.3 Active contour based tracking 
.4 dual to the region based approach is tracking based on active contour models, or snakes. 
The idea is to have a representation of the bounding contour of t,he object and keep dynamically 
updating i t .  The previous system for vehicle tracking developed in our group [G. 10. 111 was based 
on this approach. The advantage of having a contour based representation inst,ead of a region 
based representation is reduced computational complexity (though multi-resolution approaches 
can considerably reduce complexity of region matching). 

However, the problems stated previously arising from shadows linking different vehicles and 
t h e  inability to segment vehicles that are partially occluded remains. If somehow one could 
initialize a separate contour for each vehicle, then one could keep tracking even in the presence 
of partial occlusion[lO]. However i t  is the initialization that is the difficult part! 

2.4 Feature based tracking 
Finall!.. yet another approach to tracking abandons the idea of tracking objects as a whole but 
instead tracks sub-features such as distinguishable points or lines on the object (e.g. portion of 
rear Ilumper. lower corner of rear windshield). The advantage of this approach is that even i n  
tllc presence of partial occlusion. some of the sub-features of the moving object remain visible. 
The technolog!. of tracking points and line features i n  a Iialman filtering formalism is quite well 
de~eloped i n  the computer vision community. Since a vehicle could have multiple sub-features. 
t h e  new problem then is t h a t  of grouping - what  set of features belong to the same object. 



3 Motion-Based Grouping 
The grouping of vehicle sub-features will be based on a common motion constraint, a concept 
known to Gest.alt psychologists as common fate. Point feat,ures that are seen as moving rigidly 
t.ogether will be grouped toget,her into a single vehicle. But since there are many vehicles in 
traffic scenes. there is also an import,ant segmentation aspect to the problem. One does not 
want to link together sub-features from neighboring vehicles. The grouping process must be 
sensitive enough to  pick up a motion that distinguishes a vehicle from its neighbors, a motion 
such as a slight acceleration or lane drift. 

To make the grouping system robust enough to segment different vehicles, the spat,ial infor- 
mation guiding the grouper will be integrat,ed over a period of time, utilizing as many image 
frames as possible. Only the sub-features that are tracked from a detection region at the bottom 
of t h e  image to an exit region near the top will be allowed to participate in the final grouping. 
Thus. in order to fool the grouper, two vehicles would have to have identical motions during 
the entire time they were being tracked. In congested traffic, vehicles are constantly changing 
their velocity to adjust to nearby t.raffic, thus giving the grouper the information it needs to 
perform the segmentation. In free-flowing traffic, vehicles may be more likely to maintain con- 
stant spatial headways over time, thus making the grouping constraint less useful. But in this 
scenario. there is more space between vehicles. so a spatial proximity cue is added to aid the 
grouping/segmentation process. The spatial proximity cue also helps to  reduce the grouper's 
con~putational load by limiting the number of sub-feature pairs that are examined. 

Since most road surfaces are flat. the grouper exploits an assunlption that vehicle motion 
w i l l  be parallel to the road plane. To describe the road plane, the user simply specifies four or 
more line or point correspondences between the image road and a separate "world" road plane. 
as shown i n  Fig. 2.  Based on this off-line step, the system can compute a projective transform. 
or homography. between the image coordinates (x. y) and world coordinates ( S .  1 . ) .  By writing 
points i n  homogeneous coordinates, this is a simple linear transform 

T l r c  scaling of H is arbitrary. so H ( 3 .  3 )  is often chosen to be 1. 
The grouper considers sub-feature points i n  pairs. That is, the basic grouper computation 

is \vhether or not to group together the 2D point features p , ( f )  and p b ( f ) .  The dependence on 
time f is written to emphasize that the grouper is working w i t h  sub-feature tracks, and hence 
has access to the time history of points. The 3D coordinates of these points in the real world 
w i l l  be written in upper case p a ( f )  and P b ( f ) .  

Consider the simple case where Pa and Pb are at the same distance to the camera (e.g. both 
on the back face of a truck). In  this scenario, the grouper only needs to look at a simple function 
of the displacement vector p , ( f )  - p b ( f ) .  Since Pa and Pb are both at the same distance from the 
camera d.  p , ( f )  and p b ( f )  are both scaled by the same scale fact.or l /d .  Thus. for points on the 
same vehicle. p a ( f )  - p b ( l )  will be const,ant over time if we call simply compensate for the l / d  
scaling. Fortunately, the homography can be used for this compensation. Given a point ( r ,  y) 
i n  the image, we can estimate the scale factor s that transforms the region around that point to 
world coordinates. The difference vect.or p , ( f )  - p b ( l )  can then sinlply be scaled by s. 

Now consider the more general case where Pa and Pb are not at the same distance fron] the 
camera. \Ye call no longer compensate by using the  estimated scale factor s. However. consider 



H + 
Y 

t 
Figure 2 :  X projective transform H .  or homography. is used to  map from image coordinates 
(.r.y) to world coordinates (-Y,l-). 

0 

I’ig~~rc 3: II’hen a point P moves from P ( t , )  to P ( f 2 ) .  the distance the projection on the road 
surfarr Q m o v ~ s  is a scaled version of the t rue  distance. where the scaling factor is related to 
t 11c 11~igllt  h ,  above the road planc. 



plane defines PO and Qo. The distance from Po to P ( t 1 )  is denot,ed by d p ( f l )  and the distance 
from PO to  P(t2)  is denoted by d p ( f 2 ) ;  d q ( f l )  and d,(t?) are defined similarly. Using similar 
triangles. one can easily show 

and 
L-1 ,  H - h ,  --- 

L - H '  
Rearranging terms, one gets 

W 2 )  - dp(t1)  H - h, 
dq(t2)  - d , ( f l )  - H . 

This means that in  world coordinates, the actual distance traveled d p ( t 2 )  -dp(21)  is the measured 
distance (assuming zero height) d9(f2) - d q ( t l )  multiplied by a function of the true height 9. 
Thus. points on the same vehicle but, at different, heights will move at slightly different speeds in 
world coordinates. where higher points move faster than lower ones. For points projected onto 
the road surface, differences in height are now more import,ant than differences in depth. 

This suggests the following for the grouper. When comparing points Pa(t) and P b ( f ) ,  one 
should scale the lengths of the t.racks t,o equalize them in world coordinates, and then look 
at whether Q a ( f )  - Q b ( f )  is constant over time. Scaling the t.racks to give them equal length 
effectively places then at the same height. Adding t,his flexibility to t'he grouper may enable i t  
to group points at different heights. but' this comes at the cost of allowing some overgrouping. 
For instance. if one vehicle moves at a velocity v ( f )  and a nearby vehicle moves at exactly c v ( f ) .  
where c is any constant. then the track scaling will  group the vehicles together. But notice that 
t h e  constant c must not vary over time. 

Empirically. we have found that the first method of simply compensating for dept'h performs 
better than the track scaling method. nlost of the features that, survive from detection t.o exit 
regions are from the rear of the vehicle. and these features are from roughly the same depth. 
This does cause some oversegmentation of trucks. however. since features on trucks are usually 
tracked at a variety of depths. 
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Figure 4:  Block diagram of our vehicle tracking and grouping system. 

4 Tracking and grouping procedures: Detailed analysis 

4.1 Off-line camera definition 
Before running the tracking and grouping system. the user specifies some camera-specific pa- 
ranlet ers off-line. These parameters include: 

1 .  line correspondences for the homograph>. (Fig. 2 ) .  

2 .  a detection region ];ear the image bottom and an exit region near the image top. and 

3 .  a fiducial point for camera stabilization. 

4.2 On-line tracking and grouping 
.I\ block diagram for our vehicle tracking and grouping system is shown i n  Fig. 4 .  First, the 
raw camera video is st.abilized by tracking a manually chosen fiducial point to subpisel accuracy. 
S e s t ,  the st,abilized video is sent. t.o a detection module. which locates corner features in a 
detection zone near t,he bottom of t,he image. These corner features are then tracked over 
time i n  the tracking module, which employs Iialman filtering. Nest, sub-feature tracks are 
grouped into vehicle hypotheses in the grouping module. Finally, traffic paramet,ers such as flow 
rate. average speed, and average spatial headway are comput.ed from the vehicle t.racks. In the 
future. we intend to add a vehicle classificat,ion module that will ident.ify vehicles as automobiles. 
motorcycles. trucks. buses. etc. In this section. we describe the detection. tracking. and grouping 
n~odu1t.s. 



Figure 5 :  Example corner features located by the system. 

4.2.1 Sub-feature Detection 

\*chicle sub-features are detected and tracked in order to be insensitive to partial occlusion. 
Even if part of the vehicle is obscured due to congested traffic conditions. some of t.he vehicle's 
sub-features should still remain visible. 

Corner features are the chosen sub-features since they can be reliably tracked. Corners are 
typicall!, defined as regions in the intensity image I ( z .  y) where there is gradient energy in both 
the z and y directions. Our corner detector is based on the second moment mat& 

where .4 is computed at each pixel i n  the detection region and the derivatives I ,  and I ,  are 
averaged over small .?x5 neighborhoods. One can relate the rank of A at a point ( I ,  y) with the 
type of feature present a t  (2. y).  At corners, where there is gradient' energy in both directions. 
.4 has rank 2.  In edge regions, -4 has rank 1, and in featureless regions, -4 has rank 0. Thus, our 
corner measure is taken to  be the smaller eigenvalue of A - when the smaller eigenvalue is large, 
the matrix t.ends to  have rank 2. 

Fig. 5 shows some example corner features det'ect.ed by the syst.em. When a corner sub-feature 
is detected, a small 9x9 template of the grey level image is ext'racted and used for correlation 
i n  the tracking module. Also, while there are some undesirable corners present near the vehicle 
boundaries and background, these corners will be pruned away by the feature t,ests employed by 
the tracker. 

4.2.2 Feature Tracking 

The tracking module tracks corner sub-features from the detection region at the bottom of the 
image to t h e  esit region near the top. To address the problenl of noisy measurement's, we employ 
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the Iialman filt,er[5] formalism to provide most likely estimates of the state of a vehicle sub- 
feature based on accumulat,ed observations. In our system, the state vector contains sub-feature 
positions and velocities (X, l’, X ,  Y ) ;  vehicle acceleration is captured in the system dynamics 
noise process. Notice that, tracking is performed in the world coordinate system. The advantage 
of tracking in world coordinates is that physical constraints of a vehicles motion model can be 
used t.o guide tracking. For example, the knowledge that vehicles have finite acceleration will 
limit the range of motion a vehicle can have in the image from frame to  frame. 

The measurement process in the Kalman filter is based on normalized correlation. At each 
time frame, the Kalman filter predicts where to search for each corner feature. This prediction is 
mapped back to the image plane, and then the template extracted when the corner was originally 
detected is correlated in a window around the prediction. The template is scaled down over time‘ 
to reflect the fact that vehicles are getting smaller as they move down the road surface. We can 
use the position in world coordinates to predict the proper scale of the template. Once we have 
locat,ed the correlation peak, this measurement is mapped back onto the road plane. Finally, the 
standard Iialman filter equations for updabing the state and error variance are employed. 

Two tests are used to eliminate bad sub-feature tracks: 

1. h’alman f i l f c r  innovations. The distance between the Kalman filt.er prediction and the 
current measurement is computed and the track is rejected if the dist.ance is above a 
threshold. A high value for this distance is indicative of an unstable track. 

2.  Imyrccisc measurement test. If the correlation values form a broad. undefined peak around 
t h e  correlation maximum. then the measurement process is probably not localizing the 
sub-feature within the needed precision. To measure the peak’s curvature, we compute the 
number of pixels i n  the correlation peak that are within a cert,ain fraction of t.he peak. The 
track is rejected if the count is over a threshold. 

Fig. 6 shows the time evolution of some example tracks, plotted as position over time. The 
image sho\vn is the frame when the corners were originally detected. 

4.2.3 Grouping 

The purpose of the grouping module is to group together sub-features that come from the same 
\.chicle. The central cue used by the grouper - common motion - was described already in 
section 3 .  I n  this section. we discuss the details of how the common motion constraint is applied 
to the sub-feature tracks. 

The grouper organizes its t a s k  by constructing a graph over time. The vertices are sub-feature 
tracks. edges are grouping relationships between tracks. and connect,ed components correspond 
to vehicle hypotheses. When a new sub-feat’ure is det.ected and is added. to the grouping graph, 
i t  is initially connected to all neighboring tracks within a certain radius in the image plane. The 
attitude of the grouper is that nearby tracks are compatible until they prove otherwise through 
relative motion. For all pairs of tracks p , ( f )  and p b ( t )  joined by an edge, the grouper keeps track 
of the relative displacement d(f) = p,(f) - pb(i) as scaled by the depth-compensat,ing factor 
computed from the homography. Upon each t.ime frame, anot’her d value is computed for each 
edge, and the edge is broken if eit,her 

nlasd,(t) - mind,(f) > s threshold, or 

m:sdy(t) - m,ind,(f) > y threshold. 
t t 

This breaks the l i nk  between two tracks if t.llere is enough relative n~otion between the two. 
I n  tllr normal evolution of the graph, vehicles are overgrouped near the detection region since 

t11c graph is liberally connected at first. But as vehicles wove down the road, they are segnlentcd 
ah t h y  perform a distinguishing motion such as lane drift or an acceleration. \I’hen the last 



Figure 6: Example tracks of corner features. 
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Figure 7: Example groups of corner features. 
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track of a connected component enters the exit region, a new vehicle hypothesis is generated and 
the component is removed from the grouping graph. 

Fig. 7 shows the final groups computed for the vehicles in the tracking region (which is the 
middle part of the image). Corner features are indicated by circles, and there is an edge drawn 
between grouped corners. 

4.3 Preliminary analysis of parameter measurement errors 
The tracking process provides, at each processing cycle, the instantaneous positions and veloci- 
ties of all tracked vehicles. As indicated in the block diagram of Figure 4 under "coarse traffic 
parameters", this information can be used in a straightforward way to  compute the local traffic 
parameters listed in Table 1. The following provides a brief, preliminary analysis of the theoret- 
ical error in paramet.er measurement for the vision-based tracking system (required accuracies 
are enclosed in square brackets). Actual error rates are discussed in Section 9. 

1. l'ehicle pou-  rate: [i 2.5% @ 500 vehicles/lane/hour] The number of tracks initiated and 
confirmed per lane is integrated over a finite window.. The accuracy here depends largely 
on the track initialization error rate, discussed above. 

2.  . 4 ~ r a g 6  tlehiclc speed: ['tl mph] Estimated via a Kalman filter for each vehicle. Accuracy 
improves w i t h  the number of frames in which the vehicle is visible. Accuracy for a single 
vehicle is limited by pixel localizat,ion. If a vehicle track is followed for 100 pixels, naive 
methods have an average error of 1 pixel. Standard sub-pixel localization methods can 
reduce this to 0.2 pisels, so that 1% error is well within reach. Accuracy for t,he whole 
scene can be improved by averaging over n vehicles. This would improve the accuracy by 
a factor of f i .  since pixel errors are independent for each vehicle. 

3.  I'Ehicle classification: [ ' t  5%;] This is done using the technique explained in Section 5 .  

4 .  Lan f  Changfs:  [ ' t  5571 Can be estimated from current lane position. Errors should only 
arise from failure to detect and track vehicles. To date, our system has achieved 100% 
accuracy in lane change detection for those vehicles actually detected and tracked. 

3 .  QUEUE I c n g f h :  [ ' t  5%] Assuming track information is accurate. queue length is easily de- 
riyed. Errors here are anticipated to arise from uncertaint,y as to  the "end" of the queue 
and queue membership. 

6. Spntrnl hfadusay: [i 5%] Also easily deriyable from track information. Due t,o the nature 
of Kalman filtering. the accuracy of these paramet,ers is a function of time. 

i. \'Ehiclc accelrratlon: (-I 5'7c8] Acceleration is derived from velocity comparisons over time. 
A rough estimate of the accuracy for one vehicle can be obt,ained as follows: Break the t.rack 
into two equal time intervals. For each the speed can be est.imat.ed to about, 2% accuracy 
(51 pixel error over a track of 50 pisels length), giving us an accuracy of 2 4  2.8% for 
average acceleration measurement. 

5 Vehicle Classification 
The \.chicle classifier takes measurements of significant attributes for each vehicle's feature group 
and attempts to determine the class to which that vehicle belongs. 
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Cars, Vans, and Pickup Trucks 

4 Trucks and Recreational Vehicles 
5 Large Trucks (over 40 ft) 

Table 2: Vehicle Class Definitions. 

5.1 Vehicle Class Definitions 
The five defined vehicle classes are shown in Table 2. 

5.2 Significant Attribute Definitions 
Significant attributes of a vehicle are those attribut,es which can reasonably be expected to  
help the classifier discriminat,e among t'he defined classes. We chose the following five measured 
attributes to train our vehicle classifier: height, length, width, downstream velocity, and lateral 
position. Height was chosen because i t  separates vehicles between the first two and the last 
three classes: length separates class 4 from class 5 vehicles: width separates class 1 from class 
2: downstream velocity separates slower moving trucks from other vehicles; and lateral position 
separates buses from trucks, as trucks are often prohibited from traveling in t,he left-most lane 
while buses are not (especially if the left-most lane is a carpool lane, in which case buses are 
encouraged to travel there). 

5.3 Measurement of Significant Attributes 
The grouper takes a set of feature tracks and uses conln~on motion and other criteria to join those 
tracks together i n  a vehicle group. Each t,rack carries wi th  i t  a history of the track's position and 
velocity for each video frame i n  which that track is active. The grouping process links common 
tracks together but does not destroy individual track histories: these track histories are used to 
estimate measurements of the above significant attributes. 

5.3.1 Downstream Velocity and Lateral Position 

The history of each track in a given group is checked, and the common st.art frame (first frame 
i n  which all t,racks are simultaneously active) for that group is determined. The time index for 
t.his frame is stored, and the downstream velocities and lateral posit.ions (obtained from each 
track's Kalman Filter estimate) for all t,racks are averaged t.0 form an estimate of the vehicle's 
velocity and position. No att.empt is made at  this point. to  correct. for the non-zero height.s of 
features (see below). This causes the velocity est'imat,es to be reported to  the classifier with a 
slight positive bias. The overall effect of this bias will  be t,o cause an arbitra.ry shift in both 
the classifier's decision boundaries and the data it is classifying, therefore the bias causes no 
appreciable increase in classification error. 

5.3.2 Vehicle Height 
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Figure 8: Calculation of Height 

i n  tha t  group. the apparent downstream displacement ( d )  is mea.sured. Note that the apparent 
displacement is different from the actual displacement (D) for feat,ures wit.h non-zero height, To 
calculate the height of each feature, we exploit t.his difference in displacements, 

Figure 8 shows a typical sit.uation. A feature (in t,his case, t,he top back of a vehicle) has 
y-position g1 at time t 1 ,  but because t,his feat,ure has non-zero height h a camera mount.ed at 
point C projects this feature's y-position to ml on the ground plane. Similarly, at t,ime t ? ,  the 
actual y-position of the feat'ure is g? but the camera projects the y-position t.o m? on the ground 
plane. Thus, the actual y-displacement D is given by: 

while the measured y-displacement d is given by: 

' !YP a r r  abusing notation here by using the  s)mbols 7721 tn2 .g l .  ondg2 a s  both displacements and  point labels, 
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D 
h = H(1- 2 )  

Of course, t,o use Equation 3 we must know the actual displacement D. If there were a feature 
of zero height (say, a corner made between a tire and the road surface), its actual and measured 
y-disp1acement.s would be equal. Moreover, the measured y-displacement of the feature nearest 
the ground plane will be t.he smallest in any group. Thus, as an approximation to D we use 
dn,,,, , that is, t,he short.est y-displacement measured for a given feature group for the common 
frame interval (the number of frames between common frame start and common frame end). 

Notice that the calculation of vehicle height is independent of the choice of origin on the 
ground plane. If the origin is not. mounted directly over the origin then each term in both 
Equations 1 and 2 will  have an offset term added. As can be readily seen from these two 
equations, this offset term will be subtracted out, so the calculation of d and D will be unaffected, 
which means t.he calculation of h will also be unaffected. 

This approach suffers from one obvious source of error: if features of extreme height (either 
zero or maximum) are not tracked from the entry to exit zones, the estimate of height will 
be erroneous. However. if the error is such that the height of each vehicle is underestimated. 
but that the estimate is a monotonic function of the vehicle's actual height, the classifier can 
still distinguish between vehicles bx compressing its decision boundaries in the height dimension 
during its training phase. 

5.3.3 Vehicle Length and Width. Camera Position Known 

\Ye present here a method for estimating vehicle length. The procedure for calculating vehicle 
wid th  is analogous. substituting y-displacements and origin offsets with r-displacements and 
offsets. 

Using Equation 3 above. and t h e  approximation D 2: dm,,, we can obtain an estimate of the 
height of each feature. To estimate the vehicle's length. we make a few simplifying assumptions: 
first, that the y-asis i n  t h e  world coordinate system is parallel to the (downstream) direction of 
travel: second. that the vehicle we are trying to nleasure is aligned with this direction; and third, 
that the y-displacement between a point on t h e  ground plane directly beneath the camera and 
the origin i n  t h e  world coordinate system is kno~vn'. 

Figure 9 shows the situation. Two feature points of height h l  and h ?  from the same vehicle 
group are shown as arrows pointing up at  y-displacements g1 and g? respectively. The world 
origin 0 is shown displaced down the y-axis a distance Iiy from the point on the ground plane 
directly beneath the camera (which is mounted at point C). Again, it is assumed t.hat this 
displacement Iiy and the camera height H are known. 41so kno\vn are the camera's projections 
of the feature points onto the ground plane, measured with respect to point 0 at y-displacements 
m l  and m:, respectively. Using similar triangles, we can show for any feature i :  

Our length estimation algorithm makes use of Equation 4 by calculating the true y-displacement 
gi from the measured displacement m i  at the common start frame. then by choosing t'he mas- 
imum (gmar) and minimum (gmjn) from among these points. The estimate of vehicle length is 
then simply gmar -gmin. The common start frame is chosen because (assuming departing traffic) 
the quantization error in the image t,ranslates to the smallest error in  world coordinates when 
the features are closest t.o the camera. In addition t.o t'his error and the errors introduced by 
using calculated height (discussed above), this approach also suffers if features are not tracked at 

\Ye hope the meaning of these symbols will be clear from their contest. 
'The origin is normally chosen to be a point in the camera'sficld of view. L:nless the camera is pointed straight 

down. the point on the ground plane directly beneath the camera is not visible. so these t w o  points are almost 
always different from each other. 
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Figure 9: Correcting Downstream position using Height 



est.reme y-displacement,s, or if the vehicle being measured is sufficiently t.urned from the world 
y-axis (in which case the projection of the vehicle's length ont,o the world y-axis is estimated). 
Again, if t,he errors are systematic and sufficiently well-behaved, the classifier can compensate 
by adjust,ing it.s decision boundaries during its training phase. 

5.3.4 Vehicle Length and Width, Camera Position Unknown 

If the displacement Iiy (and its counterpart, Kt.) are not known, then we can still estimate vehicle 
length (and width) using pairs of features whose heights are approximately equal. Referring again 
to Figure 9, if we wish to  know the true distance g2 - g1 we can solve for this quantity using 
Equation 4 t.wice: 

Xow. if hl 2: hz 2 h ,  where h is usually chosen to be the arithmetic average of hl and 
h?. then for sufficiently small values of Iiy, the last term in Equation 5 is neglible and can 
be discarded. Setting the hi 's  in Equation 5 t,o h and fact,oring common terms, we obtain the 
following approsimation: 

Note that i t  is not necessary to know H (camera height) explicitly to use Equation 6; it 
suffices to know the ratio $, which can be estimated directly using measured track lengths. 
Combining Equations 6 and 3 with t.he approsimation D 2: &in and rearranging terms, we 
obtain an alternative form of the length estimate in  terms of measurable parameters: 

I f  we wish to be consistent with our choice of h as the arithmetic average of hl  and h z .  then 
i t  can be show1 t h a t  we should choose d to be the harmonic average of dl  and d?: 

This approach suffers from the same types of errors as t,he approach using known camera 
position. w i t h  the additional caveat that if the estreme feature points of lengt'h (or width) 
are detected but occur at substantially different heights. the length between them is never cal- 
culated because their heights are not close enough to each other. A human can adjust the 
11c.i~ht-difference threshold by balancing the tradeoff between the above problem (seen when the 
threshold is set too low). and the inaccuracies introduced when features at very different heights 
are compared (seen when the threshold is set too high). 

5.4 Classification Using Measured Data 
The classifier takes a set of training examples which have been labeled with ground trut,h by 
a human and searches for patterns that would help it classify new esamples. After some es- 
perimentation we chose to  use normal densit,y estimation [3]. The procedure begins with the 
assumption t,hat, given a class of vehicles (say, trucks) the dist.ribution of measured attribut.es will 
he approximately normal. The (unbiased) mean and variance are then calculated conditioned 
on that class. so t,hat given enough examples, we obtain an estimate of the mean lengt,h, width, 
height. velocity. and lateral position of each vehicle class. along w i t h  t.he covariance ma.tris for 
these classes. I t  is then possible t.0 guess which class a new instance belongs t'o by measuring 
the distance from the new inst.ance to the mean of each class. Here t.he distance is not the usual 
Euclidcan distance: i t  is one which t.akes into account the spread of values for each class (using 
t h p  covariance matrices) as well as the prior probabilities for each class. which can be set by the 
IIKT. '1.11~ results are given i n  Section 9.2.5. 
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Figure IO: The C40 network used for feature tracking. 

G Hardware Port 
\Ye ha\.e implemented the tracker on a network of 13 Texas Instruments C40 DSPs obtained from 
Traquair Data Systems. The decision was made early on to run the grouper on the host PC. 
running Linus. This was made for two reasons. Firstly the grouper has to  store the complete 
trajectories of all current features. and our C40 modules have limited memory capacity. so are 
not suitable for storing large and especially varying amounts of memory. The tracker only has 
to store the l a t c s f  s to f f  of each feature track. Secondly. the host PC is a quite powerful l5ORlHz 
Pentium (equi\.alent to  3 or 4 C-lOs) and would otherwise not be utilized except to  load the 
esecutahle code onto the C40 network. 

The C40 processor is well suited for the con\.olution/correlatioll operations common in low- 
level \.ision. 11 has two memory buses. and parallel read/write operations may be performed i n  
parallel on alternate busses. The computationally heavy operations i n  the tracking algorithm 
are convolution i n  the feature detector and correlation i n  feature tracker. so we are able to take 
ad \mtage  of the C40's performance i n  this area. The six 20hlByte/sec communication links 
allow each processor to communicate with its neighbours and/or the external host. 

6.1 Overall Architecture 
The network connectivity is shown in Figure 10. The network consists of:- 

0 A n  SCSC frame-grabber C44 module (C44s are cut-down C40s with only four communi- 
cation links). 

0 A quad C44 module (four processors) for corner feature det.ection. 

0 .4 large memory module (811 R.431) for maintaining the state of current feature tracks 
( 1  rack controller). 

0 Sis fast SRr l l l  n~odules for feature tracking. 

0 .1 \'(;.4 graphics module for displaying results 



The processors are arranged in t.wo loops, each of which is operated as a pipeline feeding back 
to it.s source. The two pipelines are controlled by the frame grabber and the track controller; 
they compute the corner features and the track updates respectively. Four C44 processors are 
assigned to corner detection. They each process one quarter of the user-defined det,ection region. 
The corners are fed back to  the frame-grabber, which passes them along with the original image 
t.o the t.rack controller. A simple efficiciency gain is achieved by sending the image first, since 
t.he track controller can then update the existing tracks while the corners are computed. 

6.2 Updating tracks 
The job of the t,rack controller is t.0 maint,ain the state of the complete list of current tracks. It 
does this by receiving updates for exist.ing tracks from its pipeline of six C40s, and creating new 
tracks at positions indicated by t,he corner detector. The main problem with parallelizing this 
t a sk  is load balancing. i.e. keeping each pipeline processor occupied for as much time as possible. 
I n  cont.rast, to the corner detector, which is a single large task which must be split, up into chunks, 
the task of feature tracking presents us with a large number of distinct and independent track 
updates, where the goal is the take the state of a t,rack at the previous image together with the 
new image data. and perform t,he correlation, sub-pisel localization and Iialman filter update. 
The most obvious architecture for achieving this would be the processor farm, in which each 
processor would have a separate link to the track controller, and upon completing the update of 
a given track. would immediately be sent another t.o update. 

This architecture achieves automatic load balancing. but the disadvantage is t,hat it requires 
a separate duples link for each tracker processor. This is impossible because three of the sis 
track controller links are taken by the connections to the frame-grabber, the display and the 
host PC. To reduce the l i nk  requirement we again arrange the tracker processors as a pipeline 
(Figure 10) .  The tracker C40s each update one sixth of the tracks. Since track updates are 
fairly homogeneous tasks, this achieves reasonably good load balancing. The steps involved i n  
updating tracks given a new image are as follows:- 

1. T h e  track controller passes the number of tracks around the pipeline 

2 .  Each track i n  t u r n  is passed into the pipeline 

3 .  Each tracker C30 keeps one sisth of the tracks and passes the rest 017 down the pipeline. 

1. The tracks are  updated (correlation. Iialman filter cycle). 

5 .  I'pdated tracks are passed out to track controller 

The track controller also eliminates tracks marked by trackers as completed, initialize new 
tracks around corner features, and passes all the new t'rack information to the grouper process 
running on the host PC via a socket interface. 

6.3 Software development 
A major problem with specialized real-time hardware is inflexible software. The typical devel- 
opment model is to implement algorithms first on standard workst.ation platforms, and then 
to transfer the implementation to the hardware, inhoducing whatever hardware-specific mod- 
ifications that are necessary. This leads to problems when furt.her development of the system 
is necessary, because the software development t.ools for transputer systems are usually quite 
rudimentary. O u r  solution to this problem has been to constantly maintain identical imple- 
1 1 3 ~ n t  at ions 011 bot11 the C40 system and workstations. Improvements are debugged first on thc 
workstation implementation and then transferred to C'4Os. Software rompatibility between thc 
two implcmentations is maintained at the highest possible level. by which we mean the level 
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above which the C40 links are involved. Thus the source code for the update of a single feature 
track, or corner det.ection in an image window, is almost identical, with only a few modifications 
necessary t.o take advant.age of the peculiar characteristics on the C40 processor. 

About 90%’ of the C source code is held in the vision library “Horatio”, which we have 
written for t’he purpose of developing real-time vision applications on transputer networks. Only 
t,he remaining 10% of source code is application specific. A on-line documentation system for 
Horatio is in progress. 

The performance of t.he tracker is 7.5Hz in uncongested traffic, dropping to  3Hz in congested 
traffic, where many more tracks are in progress at any given time. This reduction in speed does 
not of itself lead to a reduction in performace of the tracker, since vehicle speeds in congested 
t’raffic are reduced, and so t,he requirement for tracking rate is naturally reduced. Problems may 
occur in situations where one or more lanes are congested while other lanes are free-flowing, but 
this situation is relatively rare. 

6.4 Field Deployable system 
The computational system is placed in a weatherproof housing certified to operate within the 
environmental guidelines. The camera can be placed remotely in its own environmental casing. 
or esisting surveillance cameras already in operation can be used. The system to be placed in 
the field is diagramed in figure 11. 

Weatherproof Enclosure 

- 

Figure 11: Schematic of field deployed system. The camera and processing are separated in 
order to  place computing hardware i n  a more accessible and/or protected location. 



7 Parameters computed at the TMC 
Link travel times and origin-destination counts cannot be locally determined with data  from 
only one camera. Instead, one or more computers, typically located at the traffic management 
center? calculate t.hese parameters based on vehicle reports from multiple cameras. We will call 
this centralized system the "TMC." The TMC is also responsible for real-time collation and 
presentation of local and global traffic parameters. 

7.1 Overall design 
The TMC computes travel t.imes and O/D counts by matching individual vehicles appearing at 
two or more camera sites. As a vehicle is reidentified at a sequence of camera sites, the TMC 
builds up a "path." which records the route t,aken by t,he vehicle through the freeway network. 
The complete set of recorded paths can be queried to establish any desired O/D count. Figure 12 
summarizes the overall processing scheme of the implemented system. Figure 13(a) shows an 
example screen from the TMC display. The displayed information is computed in real time from 
incoming vehicle report,s and uses a customizable window size for averaging and a customizable 
update frequency. 

vehicle 
report 
stream 

DISPLAY 

Flow Drams 

Link travel limes 

OID counts 

Figure 12: Overall design of the TJIC subsystem. 

I n  additioll to the TJlC system, we also implenlented a complete microscopic freeway simu- 
lator capable of simulating several hundred vehicles i n  realistic traffic patterns. The simulator 
includes virtual cameras that can be placed anywhere on the freeway network and that transmit 
real-time streams of vehicle reports t.0 the TMC (see Figure 13(b)) .  The reported data can be 
corrupted by any desired level of noise. ]+'e have found the simulator to be an invaluable tool 
for designing and debugging the TMC algorit.hms. allowing development of the TMC in parallel 
w i t h  the development of t.he vehicle t,racking systems. 

The dat,a structures and algorithms implement.ed for collat.ion and presentation of traffic pa- 
rameters are not of technical interest and will not be discussed furt.her in this report, C,omputing 
reliable mat.ches is the central task and present.s a number of difficult technical problems. The 
approach described below achieves good performance even under difficult conditions. 

7.2 Vehicle matching 
The k q .  task of the TMC is to identify matching vehicles based 011 vehicle reports from up,- st ream 
and downstream camera pairs.3 This is closely related to the traditional "data association'* 

' 1 1 1  t hr. caw r d  frpeway splits and merges. any given .'downstream" camera may have more than one   up st re an^" 
ralnrra. and vim \*ersa. In this caw.  we merge the vehicle report sequences as appropriate. 
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(a)  (b) 

Figure 13: ( a )  TMC real-time display showing lane-by-lane speeds and flows at 10 sites together 
w i t h  l i n k  travel times and O/D counts. (b) Screen dump showing part of the simulated freeway 
system wi th  camera fields of view indicated. 

problem from the tracking literature. in wllich new "observations" (from the downstream cameraj 
nlust be associated with  already-established "tracks" (from t.he upstream camera). There are 
several issues specific to  vehicle matching t h a t  must be resolved: 

1. Sensor noise and bias are large. unkno\r.n. time-varying. site-dependent. and camera- 
dependent, 

2 .  Successive obs~rvations of a vehicle ma!' be widely separated i n  time and space. 

3 .  \-chicle trajectories are highly unpredictable and highly correlated 

4 .  The usefulness of various features (e.g.. color and speed) for matching varies enormously 
depending on conditions (e.g.. night-time and congested traffic). 

5 .  j'ehicles may appear downstream via unmonitored onramps, may disappear via unmoni- 
tored offramps, or mag simply fail to be det.ected at one or both cameras. 

6. The number of tracks and observations is pot,entially very large. leading t,o problems of 
computational complexit'y. 

To address these issues, we have undert.aken a first-principles analysis to compute the prob- 
ability of candidate matches, taking all relevant sensor information into account. \$'e use online 
re-estimation of our probabilistic sensor models and motion models, and efficient algorithms to 
compute most likely matches even in the presence of new and missing vehicles. An additional 
benefit of the probabilistic analysis is t.hat, the system can compute the reliability of each match 
and select those exceeding a threshold related to t,he performance target. 
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7.2.1 Computing most likely matches 

Our system receives as input a continuous stream of cl~ronologically ordered vehicle reports from 
the t.rackers that' operate at  each camera, and it outputs proposed matches that extend the paths 
for vehicles observed at one camera to observations at  adjacent downstream cameras. 

Each vehicle report corresponds to  a vehicle observed by one camera and consists of mea- 
surements of various features such as vehicle lane, size, and color. The matching algorithm is 
designed to be independent of the specific features used; new features of arbitrary complexity, in- 
formativeness, and noise level can be added without changing the algorithm. Adding informative 
features will typically improve performance. 

\!'e have divided our vehicle matching system into three major components. The first. com- 
ponent t'akes the stream of vehicle reports and comput,es for each candidate match, ;.e., each 
possible pairing of observed vehicles from adjacent cameras, the probability that the features 
recorded at  the downstream camera would appear given the features recorded at  the upstream 
camera and given that both vehicle reports were generated by the same vehicle. This probability 
is called the appearance probability and is computed based on empirically estimated models 
for predicted arrival time and for other measured features such as lane, size, and vehicle color. 

Formally. if f/' is the set of features observed by upstream camera u of vehicle v , ,  and if 
f; is the set of features observed by downstream camera d of vehicle t j j ,  t,hen the appearance 
probability for that candidat'e match is: 

which we wil l  write as P ( f d l f " )  where no confusion is possible. It is important t.o note that the 
appearance probability is not the probability that the candidate match of i and j is correct. The 
latter probability can only be computed by taking into account all other vehicle observations, as 
described i n  the following paragraphs. 

Given the appearance probabilities for each candidate match, the second component of our 
s\.stem computes the best assignment set, in which each observation a.t the upstream camera 
is either assigned to an observation at the do~vnstream camera or marked as having exited the 
freeway. and each observation at the downstream camera is either assigned to an observation at 
t h e  upstream camera or marked as having newly entered the freeway. 

The problem of determining the best assignment set, where some assignments are regarded 
as better than others. is known in graph theory as the weighted bipartite mat.ching problem. 
B\. organizing the appearance probability information into an "association matrix" in which 
the r0n .s  correspond to the observations at t h e  upstream camera. the colulnns correspond to t h e  
ohser\.ations at the downstream cameras. and the entries correspond t.o the negative logarithm of 
each pairing's appearance probability. the system can utilize any of several well-known weighted 
bipartite matching algorithms to obtain a minimum weight assignment set. which corresponds 
to the most likely set of candidate matches. (Additional columns and rows are added before 
matching to handle t.he cases where vehicles entered or exited t.he highway in between the two 
cameras.) 

The third component, of our syst.em decides which matches t.o accept. from the best assign- 
ment by comparing individual matches with a designated reliability threshold. This is done by 
"forbidding." in turn, each mat.ch contained in the best assignment set and t.11en measuring the 
reduction in likelihood for the new best assignment set under t,his restriction. hlatches whose 
forbidding results in significant reduction are deemed reliable, since this corresponds to a sit- 
uation where there appears to be no ot'l~er reasonable assignment for the upstream vehicle in 
quest ion. 

7.2.2 Measured vehicle feat.ures 

( 'urrent  I!.. the vehicle reports include the following features: 
1 .  time of observation 



r ,  lateral position across highway (reduced to lane, i.e., 1, 2,  3 ,  etc.) 
y, forward position in lane 
i, lat'eral ve1ocit.y 
y ,  forward velocit,y 
us, vehicle width 
I,  sum of vehicle length and height 
h ,  mean vehicle color hue 
s, mean vehicle color saturation 
t', mean vehicle color value 
C ,  histogram of color dist,ribution over vehicle pixels 

7.2.3 Sensor and motion models 

The appearance probability is currently computed as the product of separate models as follows: 

0 lane ( r ) :  discrete distribution P ( r d l r u ) :  

0 size ( 1 1 , .  I ) :  multivariate Gaussian 

P ( U . d . P ( U . " J " )  = *vpv , , ,su , , , (u~d  - U ' u , l d  - I " )  

0 color ( h .  s. 2 , ) :  multivariate Gaussian 

P ( h d ,  s d ,  lsdlhu.  s", t , ' )  = :Vp,,I ,,,, x, ,,,,. ( h d  - h" .  sd - s". t'd - 1:")  

0 arri\.aI time (1): univariate Gaussians conditioned on upstream and downstream lane 

P(fdlfu.  r d .  TU)  = . ~ p ~ d , z u , o ~ d , x u  ( f d  - 1") 

The arrival time model is particularly important. since i t  drastically reduces the number of vehicle 
pairs t h a t  are considered to be plausible matches. The parameters p; '= and u: represent 
the  mean and standard deviation of the predicted l i n k  travel time for cars t,hat start upstream 
i n  lane I" and end up downstream in lane r d .  This allows the system to accurately model, for 
example. the fact t h a t  the link travel time for cars i n  the HO\. lane is usually substantially less 
t h a n  the l i nk  travel time for cars i n  other lanes. 

Because traffic and lighting conditions change throughout the da!.. our system uses online 
(recursive) estimation for the appearance probability model parameters. As new mat.ches are 
identified by the vehicle mat,cher, the parameters are updated based on the observed feature 
values at the upstream and downstream sites. Figure 14 shows a sample set of z values for 
matched vehicles, from which P( rd l r u )  can be estimated. In order to t,rack changing condit.ions. 
we use online exponential forgetting. For example, if a new mat.ch is found for a vehicle in 
lane xu upstream and lane r d  downstream wi th  link travel time t ,  then the mean is updated as 

d u  d u  

The -, parameter. which ranges from 0.0 to 1.0, controls the effective "window size" over which 
previous readings are given significant weight. It can also be adjusted according to the probabilit!, 
t h a t  the new observed match is i n  fact correct. 



Figure 14: Diagram showing observed upstream and downstream r-position data for a sample of 
41 matched vehicles from the Mack Rd. and Florin Rd. cameras. The horizontal axis corresponds 
to upstream z-position and the vertical axis corresponds to downstream r-posit,ion. Each marked 
point corresponds t,o a single matched vehicle. Lane dividers are shown as horizontal and vertical 
lines. For example, 13 vehicles are observed in lane 4 (onramp, highest I values) upstream, of 
which 7 end up in lane 2 (middle lane) downstream. indicating that P(rd=21z"=4) z 0.54. 

7.3 Computation of travel times and O/D counts 
L i n k  travel times between each camera pair are currently calculat.ed by averaging the observed 
tra\.el times for matched vehicles. Averaging is done over all matched vehicles falling within the 
data window specified b!. the TNC display manager. 

O/D counts are extracted from the stored path information for matched vehicles simply by 
adding the appropriate entries corresponding to all possible routes from origin to destination 
and di\.iding b!. the fraction of vehicles matched on those routes. This procedure assumes that 
the matched vehicles are representative of the actual population. 

Results are given i n  Section 9.3. Preliminary indications are that l i nk  travel times and O/D 
counts for camera pairs can be estimated well within the required error bounds. O/D counts for 
paths involving three or more sites w i l l  be inaccurate at current detection and matching rates, 
as explained i n  Section 9.3. 

lf'e are continuing to improve the effectiveness of the ThlC. The main priorities include better 
handling of vehicles that. enter and exit the freeway between cameras, faster operation of the 
overall system. and more extensive t.esting on longer data sequences. 111 addition, we expect 
that more accurate size measurement and the addition of more advanced features will enhance 
matching performance considerably. 
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8 Testing methodology 

8.1 Introduction 
Our t8esting plan used both comparative tests against existing detection methods and human 
verification to validate the vehicle tracker. For human verification, we used the largest possible 
observation area, A ,  as outlined in Appendix D. Specifically, L was set to  the maximum possible 
detection area. For the automated comparison tests against loops, the observation area, A, is 
defined by the pre-existing det.ector. In other words, we set L equal to the loop detector or speed 
trap length. We are aware of the problems associated with loop detectors, but, feel the large 
quantities of available data  make this an attractive starting point. We checked all anomalies 
between the loop and t'racker dat8a and used a random sample to verify both measurement 
techniques. 

\Yhen testing against existing methods. we must verify that the tracker is not over- or under- 
sampling vehicles and quantify any problems with the existing detector. To t'his end, we hand 
calibrated several test sets under various conditions for high accuracy testing. Then. we ran 
large batch studies for a large sample size and investigated any anomalies. Note that many of 
the n~anual  tests also serve t.o verify vehicle detection. 

\Ye used the following procedures in development as well as testing. Note that the test.ing 
video tapes are separate from t.he development tapes. 

8.2 Individual parameter testing 

8.2.1 Vehicle flow 

To test vehicle flow. we collected concurrent video and loop data from five sites (see appendices). 
\Ve hand calibrated several test sets to verify t h e  accuracy of the tracker and the loop detectors. 
S e s t .  we compared the tracker output against the loop data over estended periods and investi- 
gated any discrepancy. Thus. we were able to verify the tracker over a large data set with our 
available n~anpower. The steps for our primary testing were as follows: 

1 .  Collect video of vehicles passing over a loop detector and the corresponding loop data at 
the highest possible sampling rate (1/60th of a second). 

2.  Calibrate loop and video data clocks. 

3 .  hlanually calibrate several test segments using a spatially long detection region (i.e., L set 
to maximum possible for the viewing angle). 

4 .  Create a virtual loop for the t.racker over the actual loop detect.or (a fixed rectangle i n  
the time space plane of length L equal to t,he real loop detect,or 1engt.h). hleasure Edie's 
generalized flow for the real and virtual loop detector data. 

5 .  Compare the results (error) and invest.igate any discrepancy. 

6. Compare virtual loop detection (short L) against our  normal methods (longest possible L) 
and investigate any discrepancy. 

Sote t h a t  the primary issue when testing flow is if t.he tracker is over/under sampling vehicles. 
Al t l~ougl~ i t  Is not explicitly stated. the other manual calibration tests provide further \.erificatio~l 
of sa111plI11g I)\, the tracker. 



8.2.2 Average speed 

Following t,he same logic as the vehicle flow testing, we examined concurrent video and loop data 
to t,est average speed measurements. The testing st,eps were as follows: 

1. Collect video of vehicles passing over a two loop speed trap and the corresponding loop 
data at t,he highest possible sampling rate (1/60t.h of a second). 

2. Calibrate loop and video data clocks. 

3. hfanually calibrat,e several test segments using a spatially long detection region (i.e., L set 
to maximum possible for the viewing angle). 

4 .  Create a virtual loop for the tracker over t,he actual speed t,rap (a fixed rectangle in the 
time space plane of width L equal to the length of the real speed trap) .  Measure Edie's 
generalized velocity for the real and virtual loop detector data. 

5 .  Compare the results (error) and investigate any discrepancy. 

6 .  Compare Iirtual loop detection (short L) against our normal methods (longest possible L )  
and investigate any discrepancy. 

8.2.3 Link travel time 

See O / D  tracking below. 

8.2.4 Vehicle classification 

1.  H u m a n  user classifies all vehicles i n  a given sequence: the results are stored to disk. 

2 .  I-sing a subset of the human-classified data. t rai i  the classifier 

3 .  [-sing the remainder of the human-classified data. test the output of the classifier against 
the hu~nan-derived classification. 

8.2.5 Lane changes 

As w i t h  vehicle classification, we relied on human judgment to answer simple questions about 
the tracker performance detecting lane changes. Specifically, "Does the detect,ed lane change 
correspond to an actual lane change?" "Are there any lane changes t,hat are undetected?" To 
prevent viewer overload! these parameters can be measured independently on separate runs. The 
testing steps were as follows: 

1. Film a 1ocat.ion wi th  a high density of lane changes (e.g., a weaving sectionj 

2.  Select the interface between two lanes and a specific vehicle to indicate the start of the 
observation period. 



4.  Using automated procedures, compare human results to  tracker results. 

8.2.6 Queue length (distance) 

Because of the variable location of t.he end of queue, it would be prohibitively expensive to 
automate this test. To simplify the observer's task, we calibrat.ed the video image before testing 
and superinlposed a dist.ance metric for validation. The observer verified that, the reported end 
of queue corresponded t.o t.he correct' distance mark. The testing steps were as follows: 

1. Manually calibrate the distance from t.he stop bar in 10 ft  increments. 

2.  Superimpose distance marks on video and have the tracker continually display its estimat.ed 
queue length. Repeat for each lane. 

3.  Observer presses a key corresponding to the calibration mark closest to  t'he end of queue 
whenever the tracker is in error. 

8.2.7 Queue length (number of vehicles) 

Again. this parameter required manual calibration. In this case. the observer simply kept track 
of the number of vehicles i n  the queue and compared it  to the tracker estimate. 

8.2.8 S p a t i a l  headway (inverse of time average density) 

Follo\ving the same logic as the vehicle flow and average speed testing. we examined concurrent 
video and loop data.  The testing steps were as follows: 

1 .  Collect video of vehicles passing over a two loop speed t rap  and the corresponding loop 
d a t a  at the Iligl~est possible sampling rate (l/(i@tll of a second). 

2.  Calibrate loop and \,ideo data clocks 

3. \lanuall!. calibrate several test segments using a spatiall!. long detection region (i.e.? L set 
to ~naximum possible for the viewing angle). 

4 .  Create a virtual loop for the tracker over the actual speed trap ( a  fixed rectangle i n  the 
time space plane of width L equal to  the length of the real speed t rap) .  Measure Edie's 
generalized density for the real and virtual loop detect.or data.  

. 5 .  Compare the results (error) and investigate any discrepancy. 

0;. Compare virtual loop detection (short L )  against our normal methods (longest possible L)  
and investigate an!. discrepancy. 

8.2.9 Acceleration 

As a coarse test of acceleration. using the derivatives of flow and density. we observed nave 
speeds as disturbances pass over the surveillance region. ]Ye then vcrified that the measured 
acmlrrations were compatible wit11 the disturbance speeds. I n  othcr words;. wt- cl1ecked the 
n.~icro.;copic ~neasurements against the macroscopic feat ures. 



8.2.10 O / D  tracking 

R'e hand-calibrat.ed vehicle matches for several sample periods using the human observer and 
frame grabbing for verification. Link travel times were comput.ed by averaging over all mat'ched 
vehicles. O/D count's could only be obtained for the two consecutive sites, as we were unable to  
film simultaneously at more than two wites in sufficiently close proximity. 

8.3 Test conditions 
\Ye have tested t.he widest range of environmental conditions available, including: day, night, 
twilight. congested, uncongested, and some adverse weather. 

8.4 Primary test sites 
For our stud!.. we used six primary t,est sites. The particular feat.ures for each site are outlined 
below: 
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8.4.1 Sacramento Test Site, Northbound 

\ \ 

Figure 15: Schematic diagram of the test site. 

Location: Highwa!. 90 northbound between Alack Rd and Florin Rd. Two camera locations 
approximately two miles apart. 
Features: 

1.  Color cameras. w i t h  similar angles relative to the traffic. 

2 .  Approximately two miles between the cameras. with no turns or other ramps not shown 
in the figure. 

3.  Approsimately even with the upstream camera, an HO\’ lane forms (main line goes from 
two lanes to three), so there is significant mixing between the two locations. but little 
congestion. 

4 .  There are t.wo on ramps at. the upstream location. one ramp enters within the surveillance 
area. the second ramp is visible within the surveillance area but enters downst,ream. The 
poor angle and short travel distance precludes tracking on the second ramp. 

5 .  The downstream site has two off ramps and one on ramp outside of the field of view, 

(5. Thc upstream loops are just beyond the surveillance area while the downstream loops are 
\{,it l l i n  t Ilc surveillance area. 
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8.4.2 Sacramento Test Site, Southbound 

Figure 17: Schematic diagram of the test site. 

Location: Highway 99 southbound between Mack Rd and Florin Rd. Two camera locations 
approximately two miles apart. 
Features: 

1. Color cameras, with similar angles relative t.0 the traffic. 

2. Approximately two miles between the cameras, with no turns or other ramps not shown 
i n  the figure. 

3. Approximately even with the do\vnstream camera: an HOY lane ends (main line goes from 
three lanes to two). so t.llere is significant CONGESTION: however. most of it is outside 
the field of view (i.e.> between the cameras). 

4 .  There is one 011 ramp at the upstream location, I believe it enters wit,hin the surveillance 
area. 

. 5 .  The downstream site 11% two off ramps outside of the field of view. 

6. S o  loop detector data for this segment. 

T .  I'pstream site has three lanes while the do~vnstream site only has two. 
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8.4.3 Walnut Creek Test Site 1, 1-680 Southbound 

Figure 18: Schematic diagram of the test site. 

(a )  

Figure 19: ( a )  Typical image from upstream camera. (b)  Typical image from downstream 
camera. 

Location: Just north of the I-GPO/Hwy 23 interchange. Two camera locations approximately 
one half mile apart.  
Features: 

black and wl1it.e cameras. 

Approximately one half mile between the cameras, a gentle curve bet,ween the two locations. 
no off ramps and the on ramps enter within the field of view. 

Only have loop data for just upstream of the upstream location. 

four lanes at both sites with a diverge downst'ream of t.he second camera. In the morning. 
we see congestion first in the two left lanes and then a shift t.o congestion in the two right 
lanes. During the period of surveillance, the morning peak coincided with the sun rise. so 
we have light/dark transition data from these locations. 
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8.4.4 Walnut Creek Test Site 2, H w y  24 Westbound 

Direction of Flow 

/1 Loops 

Figure 20: Schematic diagram of the test site. 

Location: Just west 
Features: 

Figure 21: Typical camera image. 

of the I-680/Hwy 24 interchange. 

1. black and whit,e camera on an overpass, direct.ly over the outside lane. 

2. No ramps at this location, however, i t  is at the crest of a h i l l ,  so t.here is no congestiol1 
here. This site was selected for t,he good camera angle and loop placement, 
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8.4.5 S a n  Jose In te rsec t ion  Test  S i tes  

Figure 22: Typical camera image. 

Locat ion:  Several intersect,ions in and around the San Jose CBD. 
Fea tures :  

1. Several sites wi th  color cameras and wide range of views, including approaching and de- 
parting traffic. 

2.  No secondary detector data (e.g., loop data)  
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Sequence Description Length N G 
Highway 55 heavy congest,ion 2:46 238 203 
Florin Road mix of free flow 2:46 244 260 

Mac Road mix of free flow 1:00 69 68 

Florin Road night 1:20 58 64 
San Jose urban intersection 1:45 34 34 

and congestion 

and congestion 

Table 3: Video sequences for laboratory testing. Length is in min:sec, N is the number of actual 
vehicles (countred by hand) and G is the number of reported vehicle groups. 

9 Results 
Testing and analysis has proceeded on three levels: vehicle level, single site level and multiple 
site level. .4t the vehicle level. we have analyzed the underlying vehicle detection algorithm and 
the  results are reported in terms of vehicles. At the single site level, we have generated and 
tested the traffic flow paramet.ers t.hat can be observed from a single camera (flow, velocit,y, etc.) 
and are reported by lane. Finally, at the multiple sit,e level we t,est. origin/destination matching 
and travel time estimation. 

9.1 Vehicle level results 
O u r  tracking and grouping system has been laboratory t.ested on a set of 5 videot.apes covering 

a range of scene conditions, including congestion, free-flow, night, and an urban intersect,ion (see 
Table 3 and Figure 23) .  Vehicle ground truth was manually defined for each sequence. For a 
particular vehicle, ground truth is a binary mask outlining the vehicle. and i t  is usually defined 
i n  a single “representative” frame for t,he vehicle. The number of ground truths is denot.ed as .Y 
i n  Tablc 3 .  and the number of reported groups is G. 

TaLlc 4 shows the performance of our system. as well as the distribution of errors. A separate 



f true false over- false over- 
Sequence match neg. seg pos. group 
Highway 55 75.2% 18.5% 2.9% 2.9% 1.9% 
Florin Road 89.7% 1.6% 5.7%) 1.5% 1.5% 
Mac Road 95.6% 1.5% 0.0% 1.4% 1.4% 
Florin Road 91.4% 6,9% 1.7% 14.0% 0.0% 

(night) 
San Jose' 85.3% 2.9% 5.9% 0.0% 2.9% 

Table 4: Performance of the trackinglgrouping system on the test sequences. 

automatic evaluation program compares the vehicle ground truths against the groups reported 
by the tracker/grouper and tallies the following events: 

1. True match. A one-to-one matching beheen a ground truth and a group. Rate measured 
as #matches/;Y. 

2. Falsc n e g a f i w .  ,411 unmatched ground truth. Rat.e measured as #false neg/N. 

3 .  Ot,cr.scgmentatton. A ground truth that matches more than one group. Rat.e measured as 
#oversegs/.Y, 

4 .  Falsc p o s t f t ~ , ~ .  A n  unmatched group. Rate measured as #false pos/G. 

. 5 .  Ot,wgrouping.  A group that matches more than one ground truth. Rat'e measured as 
#overgroups/G. 

I n  analyzing the results. i t  should be said t h a t  the Highway 55 sequence is a difficult one 
because of an unusually poor camera position (Figure 23(a))  and a number of large trucks that 
sometimes completely occlude automobiles. In  terms of trading off the different error conditions, 
\ve have noticed that oversegmentation and overgrouping can be traded off by a d j u d n g  the 
grouping thresholds. One slight warning about these results is that we have not used a uniform 
set of grouping thresholds for all sequences. j1.e are currently investigat,ing how to automatically 
chose the grouper thresholds. 

A s  the first three sequences have long shadows. the esperimental results show t,hat the system 
can handle shadows - shadow sub-features tend to be unstable over time, especially in congestion. 

9.2 Single site level results 
This section presents the testing results for the parameters that can be measured with a single 
camera. Specifically. flow, velocit,y. lane changes, queue length, spat.ia1 headway (or densit.y). 
classification, and acceleration. The analysis follows the testing methodology outlined above. 
The bulk of this section is devoted to the core traffic parametmen: flow, density, spacing and 
\.elocity. Since these paramet.ers are inter-related, t,hey are addressed together. CTnless otherwise 
noted. the use of "parameters" alone refers t.o t.he core t'raffic parameters. Finally, we address 
the secondary traffic paramet.ers of acceleration. lane changes, classification. and queue length 
detection. 

0.2.1 Resu l t s  for parameters wi th  automated ca l ibra t ion  

.\ggregatP traffic parameters are calculated after the tracker and grouper ha1.e identified vehicles 
i n  the t r a f i c  stream. A t  the parameter level. our testing plan calls for comparative tests against 
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Figure 24: Scatter plot of flow and density. 

existing detection methods and human verification to validate the vehicle tracker. By using 
existing detectors. we are able to process large quantities of data i n  automat'ed tests. The trade 
off for automation is the fact that the tracking region is limited to  the detection region of the 
existing loop detectors (approximately 20 f t  (G.1n1)). A t  the moment, there are no reliable 
area-wide vehicle detectors to  test the tracker against. To test the vehicle tracker under normal 
operating conditions. i t  is necessary to  manually calibrate video sequences. As a side benefit. 
manual tests also serve to  verify the performance of the loop detectors used i n  the automated 
test 5 .  

O u r  test set consists of 64 lane-hours of concurrent video and loop data.  The concurrent data 
came from two locations. each with one camera angle. The primary site. northbound Florin Rd.  
k Hwy 99 in Sacramento, C.4, had three lanes inbound t,o the CBD. Lane 1, on the left, is a 
carpool or HOY lane; i t  exhibited little if any congestion. Lane 3.  on the right,, exhibited some 
degree of congestion for approximat,ely 20% of the samples. Finally, the loops in lane 2 were bad 
and i t  was escluded from the final analysis. Figure 24 shows t.he observed traffic states on the 
flow density plane. The secondary sit.e on Hwy 24 in Walnut Creek, CA, had five lanes wit.11 ideal 
camera placement for lanes 3-5. Unfortunately. the site did not exhibit any congestion during 
the study period (see Appendix E for more information on the test sites). 

To complement the automated tests. over two lane-hours of video were manually calibrated. 
\:chicle trajectories were extracted with one second resolution. After correlating the data with the 
tracker output. ground truth parameter measurement proceeded according to  Edie's definitions. 
The data came from three cameras and five camera angles: Mack Rd northbound, Florin Rd two 
llorthbound \ i e w  and one southbound view. and I-GPO do~vnstream. Approximately half of the 
manual da ta  lvas collected i n  the field at Florin R d .  from real time video using post calibration. 



9% error 
samples samples samples samples less than 

9% vel % flo %dens 9% space 

0.95 0.31 0.33 0.34 5% 
0.86 0.18 0.19 0.19 2.5%) 

10% 1 .oo 0.60 0.59 0.60 
15% 1 .oo 0.79 0.79 0.81 
20% 1 .oo 0.91 0.90 0.89 
25% 1 .oo 0.96 0.96 0.94 

Table 5 :  Error distribut'ion for t.he aggregat,e traffic parameters for 44 lane-hours of data from 
Florin Road. The total for both lanes together is shown, comprising 514 5-minute samples. 

Aggregate traffic parameters Traditionally, traffic engineers have defined flow as the num- 
ber of vehicles passing a point in space over a fixed int'erval of t.ime. This approach is appr0priat.e 
for existing loop detectors t h a t  have a negligible spatial detection .region. The Roadwat.ch vehicle 
detector. however. has an effective tracking region in excess of 200 ft  (60 m )  and is a true area 
wide detector. 

Following the method first proposed by Edie [4], we extend the definition of flow, density 
(vehicles per unit distance) and average velocity to utilize the increased detection region and 
extract  all of the information available in the vehicle t.rajectories. To summarized Edie's method 
o\.er a given region -4 of the time space plane (i.e.. within a fixed distance along a single lane. 
observed for a fixed interval of time). flow ( q ) .  density (k) and velocity ( 1 9 )  are defined as follows: 

q( .4 )  = d(.4)/.4* k ( .4 )  = f( -4) / -4 .  r( .4)  = d(-4) / f ( -4)  (8) 
\\'here d(.4() is the sum of the distance tra\.eled b!. all vehicles i n  the region A and t ( A )  is the 
,sun1 of t h e  time spent by all vehicles i n  X .  The three parameters obey t h e  follon.ing relationship:- 

q = k l ,  ( 9 )  

By applying equation 8 to each lane independently. our parameter measurements are robust to 
lane changes. Furthermore. the fundamental equation of traffic engineering. equation 9.  is valid 
for each lane (See Appendix ZZZ for a more detailed discussion). 

Net results at northbound Florin Rd. .At the  aggregate parameter level. we tested q s  k .  
1 '  and a\'erage spacing ( I / k ) .  Figures 2 5 ,  26 .  2 i  and 28 compare 44 lane-hours of measured 
parameter data versus loop data. Each of these figures have 514 samples from a total of 40.000 
vehicles. The error distribution for all four traffic parameters are summarized in table 5 .  

As one would expect from a feat,ure based tracker. the measured velocity is very accurate. 
Even if the tracker over-groups or over-segments vehicles, the erroneous blobs still move at the 
prevailing speed. The errors in flow. density and spacing are due t,o missed or over counted 
\,chicles. Often, an error of two or three vehicles in one sample can be very significant, For 
example. one missed vehicle in a five minut.e sample at q=l,OOO veh/hr result,s in  a 2% error. At 
t h e  mean flow for t,he data,  910 veh/hr. the error per missed vehicle is slightly higher, at 2.2%. 

Out of these data,  we can extract all of the samples w i t h  average velocity below 40 mph as 
representative of congested operation. This thresholding yields 28 samples from lane 3 w i t h  4890 
vehicles. \Ve summarize the error distribution in table G .  

The tracker performance appears to have degraded slightly from the total data set. This 
p l ~ r ~ ~ o ~ n e n o n  m a y .  i n  part. be due to the small sample size. 

Individual sequence results at northbound Florin Rd. The preceding data included 
all o y m a t i ~ ~ g  conclitions: day. night. tu i l igh t .  long shadows and rain: congestion and free flow. 



Figure 2.5: Scatter plot of flow. 
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Figure 26: Scatter plot of velocity. 
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Figure 29: Two images from the start and end of a t'wo hour morninn run of the real time tracker 
(Fiorin Rd. t,ape #ii). 

- 

% error 

0.96 0.25 0.29 0.25 5% 
0.83 0.13 0.17 0.17 2.557 

samples samples samples samples less than 
% vel % flo % dens %# space 

10% 1 .oo 0.67 0.67 0.63 
15% 1 .oo 0.88 0.83 0.83 
20% 1 .oo 1 .oo 1 .oo 0.92 
25% 1 .oo 1 .oo 1 .oo 1 .oo 

Table 5 :  Error distribution for the aggregate traffic parameters for lane 1 of Florin Rd. tape 
# I T  data.  

It obscures the true power of t.he feature based tracker under difficult conditions, specifically: 
dramatic lighting changes, long shadows and partial occlusion. To illustrate this power we will 
examine two hours from the morning of 4/10/96. The sequence starts with night time conditions. 
progresses through sunrise and long shadows, ending with day time conditions. Figures 29a 
and 29b: taken from the start and end of the sequence, illustrate t8he dramatic change. Note t#hat 
the morning peak starts during the sequence and approximat.ely 30 minutes of data from lane 
three are under light congestion. Figure 30 shows the time series velocity and flow measured by 
the tracker and loop detectors. There are 48 samples with a tot.al of 4,600 vehicles. Because 
the fundamental equation (equation 9) is preserved with our parameter measurement, we only 
need t.o present two parameters graphically, q and u ,  with out^ a loss of informat.ion. The error 
distribution for all four traffic parameters are summarized in tables 7 and 8. \%'e then repeat 
this exercise for the tmen remaining sequences used in t.he net. parameter nleasurement ~ and also 
for two tapes from the Highway 24 site. 
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Figure 30: Florin Rd. tape # I T  time series flow and velocity. Solid lines: tracker ( w i t 1 1  circles 
for lane 1. crosses for lane 3 ) .  Dashed lines: ground truth (loop data) .  

'3 error 

0.71 0.25 0.17 0.17 2.5%) 
samples samples samples samples less than 
'% vel 7% flo ' i i '  dens 7" space 

5%) 0.88 0.33 0.29 0.29 
10% 1 .oo 0.65 0.G3 0.71 
15%; 1 .oo 0.88 0.88 1 .oo 
20% 

1 .oo 1 .oo 1 .oo 1 .oo 2 5 '7; 
1 .oo 1 .oo 1 .oo 1 .oo 

Tahlc 8: Error distribution for the aggregate traffic parameters for lane 3 of Florin Rd. tape 
# I 7  data .  
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error % vel % flo %dens  %space 
less than samples samples samples samples 

2.5% 

25% 
1 .oo 0.85 0.80 0.70 20% 
1 .oo 0.65 0.60 0.55 15% 
1 .oo 0.50 0.50 0.40 10% 
1 .oo 0.20 0.25 0.25 5% 
1 .oo 0.10 0.10 0.10 

1 .oo 0.90 0.90 0.80 

Table 9: Error distribution t.able for Florin Rd. tape #15, lane 1. Date: 4/9/96. Time: 14:30- 
1G:lO. Conditions: mid day. free flow. Total # of vehicles: 850. 

% error 

o.a5 0.10 0.15 0.15 2.5% 
samples samples samples samples less than 
(2 vel % flo (2 dens % space 

5% 0.95 0.20 0.30 ' 0.30 
10% 0.95 0.55 0.60 0.60 
15%, 1 .oo 0.75 0.75 0.80 
20%. 

1 .oo 0.90 0.90 0.95 25%) 
1 .oo 0.85 0.85 0.90 

Table 10: Error distribution table for Florin Rd.  tape #15, lane 3. Total # of vehicles: 2238. 
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Figure 31: Florin Rd. tape #15 time series flow and velocity. Solid lines: tracker (with circles 
for lane 1,  crosses for lane 3 ) .  Dashed lines: ground t r u t h  (loop data) .  



%I error 
samples samples samples samples less t.han 

5% vel % flo %dens %space 

0.52 0.09 0.17 0.17 2.5% 
5% 0.83 0.30 0.22 0.22 
10% 1 .oo 0.61 0.61 0.61 
15% 1 .oo 0.91 0.78 0.70 
20%' 

1 .oo 1 .oo 1 .oo 0.96 25% 
1 .oo 0.96 0.96 0.87 

Table 11:  Error distribution table for Florin Rd. tape #18, lane 1. Date: 4/10/96. Time: 
T : 3 0 - 8 : 0 0 .  9:00-9:30, 10:30-11:00. 12:OO-12:30. Conditions: congestion in first segment. midday 
free flow in remaining segments. Total # of vehicles: 1072. 

(A error 
samples samples samples samples less than 

% vel (A flo (A dens % space 

0.83 0.26 0.22 0.22 . 2.5%' 
5% 1 .oo 0.43 0.43 0.43 
10% 1 .oo 0.70 0.65 0.65 
15%) 1 .oo 0.87 0.91 0.87 
20'7;' 

1 .oo 1 .oo 1 .oo 1 .oo 25% 
1 .oo 1 .oo 1 .oo. 0.91 

Table 12: Error distribution table for Florin Rd. t.ape #18. lane 3.  Total # of vehicles: 2681. 
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Figure 32: Florin Rd. tape #18 time series flow and velocity. Solid lines: tracker (with circles 
for lane 1, crosses for lane 3 ) .  Dashed lines: ground truth (loop data) .  



I % error I % vel % flo %dens  '70 space I 
less than I samples samples samples samples 

2.5% I 0.91 0.09 0.13 0.13 

15% 0.87 0.83 
20%) 0.96 0.96 

0.96 0.96 

Tab]? 13: Error distribution table for Florin Rd. tape #19, lane 1. Date: 4/11/96. Time: 
5 : 3 O - i : 3 0 .  Conditions: night to day transition, ends at morning peak. Total # of vehicles: 1206. 

(A error 

1 .oo 0.13 0.13 0.13 2.5%, 
samples samples samples samples less t h a n  

'7; vel 7c flo 'i: dens '3 space 

5% 1 .oo 0.26 0.22 0.26 
10% 1 .oo 0.61 0.52 0.61 
15% 1 .oo 0.91 0.91 0.96 
20% 
25%. 

1 .oo 1 .oo 1 .oo 1 .oo 
1 .oo 1 .oo 1 .oo 1 .oo 

Table 14:  Error distribution table for Florin Rd. t.ape #19. lane 3. Total # of vehicles: 3080. 
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Figure 33: Florin Rd. tape #19 time series flow and velocity. Solid lines: tracker (wit11 circles 
for lane 1. crosses for lane 3) .  Dashed lines: ground t r u t h  (loop data) .  



’3 error 

1 .oo 0.35 0.35 0.35 5% 
0.87 0.22 0.13 0.09 2.5% 

samples samples samples samples less than 
% vel % flo % dens ‘70 space 

10% 1 .oo 0.61 0.57 0.57 
15% 1 .oo 0.74 0.65 0.70 
20% 1 .oo 0.87 0.83 0.78 
25% 1 .oo 0.96 0.91 0.83 

Table 15:  Error distribution t,able for Florin Rd. tape #20, lane 1. Date: 4/11/96. Time: 
i : 3 0 - 8 : 0 0 .  8:30-9:OO. 1O:OO-10:30, 11:30-12:OO. Conditions: congestion in first segment. midday 
free flow in remaining segments. Total # of vehicles: 1210. 

(x error 

0.91 0.30 0.30 0.30 2.5% 
salnples samples samples samples less than 
(X vel 54 flo ‘7; dens ‘7; space 

5% 1 .oo 0.48 0.48 0.48 
10% 1 .oo 0.87 0.83 0.83 
15% 1 .oo 1 .oo 1 .oo 1 .oo 
20% 

1 .oo 1 .oo 1 .oo 1 .oo 25% 
1 .oo 1 .oo 1 .oo 1 .oo 

Tahlc 16: Error distribution table for Florin Rd. t.ape #20, lane 3.  Total # of vehicles: 2802. 
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Figure 34: Florin Rd. tape #20 time series flow and velocity. Solid lines: tracker (with circles 
for lane 1. crosses for lane 3 ) .  Dashed lines: ground t ru th  (loop data) .  



% error 

1 .oo 0.04 0.04 0.04 2.5%) 
samples samples samples samples less t,han 

vel 2, Ao %# dens ?t space 

5%. 1 .oo 0.13 0.04 0.04 
10% 1 .oo 0.65 0.52 0.48 
15% 1 .oo 0.83 0.83 0.83 
20% 

1 .oo 0.96 0.96 0.83 25% 
1 .oo 0.83 0.83 0.83 

Table 1;: Error distribution table for Florin Rd. t.ape #23, lane 1. Date: 4/16/96. Time: 
15:0U-17:00. Conditions: mid day free flow with rain at end. Total # of vehicles: 860. 

(Z error 

1 .oo 0.26 0.26 0.26 237i 
samples samples samples samples less than 
(2 vel '7; flo (2 dens '7; space 

5% 1 .oo 0.5i 0.55 0 . 5 i  
10% 1 .oo 0.74 0.74 0.54 
15% 1 .oo 0.83 0.91 0.96 
20% 

1 .oo 1 .oo 1 .oo 0.96 2.5% 
1 .oo 0.96 0.96 0.96 

7'aGlr 18: Error distribution table for Florin Rd .  tape #23. lane 3. Total # of vehicles: 2476. 
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less than 
2.5Z 
5 %, 
1 O%, 

20%~ 
25% 

I %, error I '% vel o/c flo 7% dens 7% space 

7 
samples samples samples samples 

0.96 0.17 0.17 0.17 
1 .oo 0.17 0.22 0.22 
1.00 0.48 0.48 0.43 
1 .oo 0.65 0.70 0.61 
1 .oo 0.70 0.70 0.70 
1 .oo 0.78 0.78 0.70 

Tahle 19: Error distribution table for Florin Rd. tape #24. lane 1. Date: 4/16/96. Time: 
19:0@-21:0@. Conditions: evening light to dark transition. free flow. a little rain. Total # of 
vehicles: 4 4 i .  

% error 
samples samples samples samples less than 

% vel 'A flo % dens '2 space 

1 .oo 0.22 0.26 0.26 5% 
0.83 0.13 0.13 0.13 2.5% 

10% 1 .oo 0.43 0.39 0.39 
15Y 1 .oo 0.57 0.52 0.61 
20v 1 .oo 0.70 0.70 0.70 
25v 1 .oo 0.8T 0.78 0.78 
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Figurp 36: Florin Rd. tape #24 time series flow and velocity. Solid lines: tracker (with circles 
for lane 1. crosses for lane 3 ) .  Dashed lines: ground trut.11 (loop data).  



% error 

1 .oo 0.91 25% 
1 .oo 0.83 20% 
1 .oo 0.70 15% 
1 .oo 0.39 10%' 
1 .oo 0.17 5% 
0.91 0.13 2.5% 

samples samples less than 
'% vel ~% flo % dens 

samples 
0.09 
0.22 
0.35 
0.65 
0.83 
0.91 

% space 
samples 

0.09 
0.17 
0.26 
0.52 
0.74 
0.83 

Table 21: Error distribution table.for Florin Rd. tape #25. lane 1. Date: 4/17/96. Time: 
5:30-7:30. Conditions: night to day transition. ends a t  morning peak. Total # of vehicles: 1210. 

less than 
2.5% 
576 
10% 
15% 
20% 
25% 

samples samples samples samples 
1 .oo 0.39 0.39 0.39 
1 .oo 0.52 0.48 0.52 
1 .oo 0.74 0.70 0.74 
1 .oo 0.83 0.83 0.87 
1 .oo 0.91 0.91 0.87 
1 .oo 0.98 0.96 0.91 

Table 22: Error distribution table for Florin Rd. t,ape #25, lane 3. Total # of vehicles: 3065. 
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Figure 37: Florin Rd. t.ape #25 time series flow and velocity. Solid lines: tracker (with circles 
for lane 1. crosses for lane 3 ) .  Dashed lines: ground truth (loop data) .  
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% error 

1 .oo 0.30 0.26 0.26 5 %I 

0.78 0.17 0.17 0.17 2.5% 
samples samples samples samples less than 
% vel 9% flo 9% dens %space 

10% 1 .oo 0.57 0.57 0.48 
15% 1 .oo 0.74 0.70 0.61 
20% 1 .oo 0.96 0.96 0.83 
25% 1 .oo 1 .oo 1.00 0.96 

Table 23: Error distribution table for Florin Rd. tape #27. lane 1. Date: 4/18/96. Time: 
5:30-7:30. Conditions: night to  day transition. ends at morning peak. Total # of vehicles: 1193. 

% error 

1 .oo 0.15 0.26 0.26 5% 
0.91 0.04 0.09 0.09 2.5% 

samples samples samples samples less than 
% vel (X flo 'il dens % space 

10% 1 .oo 0.61 0.61 0.65 
15% 1 .oo 0.74 0.78 0.78 
20% 1 .oo 0.87 0.83 1 .oo I 25% 1 1.00 1 .oo 1 .oo 1 .oo 

Table 24: Error distribution table for Florin Rd. t.ape #27, lane 3. Date: 4/18/96, Time: 
.5:30-7:30. Conditions: night to day transition, ends at morning peak. Total # of vehicles: 2988. 
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Figure 38: Florin Rd. tape #2T time series flow and velocity. Solid lines: tracker (with circles 
for lane 1.  crosses for lane 3 ) .  Dashed lines: ground truth (loop da ta ) .  



I SI error 

1 .oo 1 .oo 1 .oo 0.83 25%' 
1 .oo 0.83 0.83 0.74 20%1 
1 .oo 0.70 0.70 0.65 15% 
1 .oo 0.65 0.52 0.48 10% 
1 .oo 0.26 0.22 0.22 5% 
1 .oo 0.09 0.09 0.09 2.5%) 

samples samples samples samples less than 
'3. vel %: flo '36 dens '7% space I 

Table 2.5: Error distribution table for Florin Rd. tape #28. lane 1. Date: 4/18/96. Time: 
1.5:00-17:00. Conditions: midday free flow. Total # of vehicles: 903. 

(X error 

5% 
1 .oo 0.04 0.00 0.00 2.5'7; 

samples samples samples samples less than 
'X vel '2 flo (X dens (X spare 

1 .oo 0.09 0.04 0.13 
1 og 1 .oo 0.17 0 . 1 i  0.26 
15% 1 .oo 0.57 0.48 0.74 
20% 1 .oo 0.87 0.87 0.96 
25% 1 .oo 0.9G 0.96 1 .oo 

Table 26: Error distribution table for Florin Rd. t.ape #28, lane 3.  Date: 4/18/96, Time: 
15:00-17:00. Conditions: midday free flow. Total # of vehicles: 2478. 
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Figure 39: Florin Rd. tape #28 time series flow and velocity. Solid lines: tracker ( w i t h  circles 
for lane 1 ,  crosses for lane 3 ) .  Dashed lines: ground truth (loop data) .  



%, error 
samples samples samples samples less than 

'% vel % flo %dens %space - 

1 .oo 0.52 0.48 0.48 10% 
0.96 0.32 0.24 0.24 5% 
0.56 0.20 0.04 0.04 2.5% 

1 .oo 0.84 0.80 0.64 
20% 1 .oo 0.92 0.92 0.88 
25% 1 .oo 0.92 0.92 0.92 

Table 2 7 :  Error distribution table for Florin Rd. tape #29. lane 1. Date: 4/18/96. Time: 
13:OO-13:OO. 21:OO-21:30,22:00-22:30. Conditions: midday free flow first segment, night free flow 
relnaining segments. Total # of vehicles: 507. 

error % vel % flo '7; dens % space 
less than samples samples samples samples 

2.5% 
0.52 0.36 0.64 0.68 5% 
0.48 0.20 0.48 0.48 

1 .oo 1 .oo 1 .oo 0.96 25% 
1 .oo 1 .oo 0.96 0.88 20% 
1 .oo 0.88 0.88 0.84 15% 
1 .oo 0.72 0.84 0.84 10% 

Table 28: Error distribution table for Florin Rd. t.ape #29. lane 3.  Date: 4/18/96. Time: 
13:OO-14:00, 21:OO-21:30. 22:OO-22:30. Conditions: midday free flow first segment, night free flow 
remaining segments. Total # of vehicles: 1872. 
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Figure 40: Florin Rd. tape #29 time series flow and velocity. Solid lines: tracker (with circles 
for lane 1. crosses for lane 3 ) .  Dashed lines: ground truth (loop data).  



%’ error 

0.59 0.35 0.29 0.24 5 %J 
0.53 0.35 0.24 0.24 2.5%’ 

samples samples samples samples less than 
% vel % flo 5% dens 9% space 

10% 0.94 0.35 0.35 0.41 
15% 1 .oo 0.35 0.41 0.41 
20% 1 .oo 0.47 0 . 4 i  0.59 
25%. 1 .oo 0.4T 0.59 0.65 

Table 29: Error distribution table for H’way 24 tape #6, lane 1. Date: 4/29/96. Time: 22:OO- 
23:45. Conditions: night .  free flow, low flow. Total # of vehicles: 50. 

(X error 

0.00 0.41 0.14 0.14 2.5% 
samples samples samples samples less than 

’7( vel 5% flo % dens % space 

5% 0.14 0.55 0.41 0.36 
10% 1 .oo 0.91 0 . i 3  0.68 
15% 1 .oo 1 .oo 1 .oo 0.86 
20% 

1 .oo 1 .oo 1 .oo 1 .oo 2.5% 
1 .oo 1 .oo 1 .oo 1 .oo 

Table 30: Error distribution table for H’way 24 tape # 6 ,  lane 2. Total # of vehicles: 568. 

(A error 

1 .oo 1 .oo 0.82 0.77 10% 
0.82 0.64 0.11 0.41 .5 (A 
0.18 0.41 0.14 0.14 2 .  .5(X 

samples samples samples samples less than 
(X vel % flo (X dens % space ’ 

15% 1 .oo 1 .oo 1 .oo 1 .oo 
20% I .oo 1 .oo I .oo I .oo 
2 :j (A 1 .oo 1 .oo 1 .oo 1 .oo 

Table 31: Error distribution table for H’way 24 tape # S .  lane 3.  Total # of vehicles: 740. 

(Z error 

0.82 0.41 0.41 0.36 2.5% 
samples samples samples samples less than 
Y vel flo ‘7; dens ’% space 

5%, 1 .oo 0.68 0.50 0.50 
1 0’7( 1 .oo 0.91 0.91 0.91 
15% 1 .oo 0.95 0.95 0.95 
20% 

I .ou 0.95 0.95 u .9 :j 2 5% 
1 .oo 0.95 0.95 0.95 



. 'I( error % vel % flo 57 dens 5% space 
less than samples samples samples samples 

2.5% 

1 .oo 0.95 0.93 0.9.5 2 5 (2 
1 .oo 0.90 0.95 0.90 20% 
1 .oo 0.90 0.86 0.81 15% 
1 .oo 0.81 0.76 0.76 10% 
0.90 0.76 0.67 0.Gi .j % 
0.43 0.76 0.24 0.24 



9.2.2 Resu l t s  for p a r a m e t e r s  w i th  manual ca l ibra t ion  

The aut,ornated tests against. loop detectors allowed us to verify the tracker performance over 
an extended period. To fully test, the tra.cker, it was necessary t.o go beyond the scope of the 
automated tests for three reasons: the automated tests were limited to the 20’ detection region 
of the two loop speed trap, we did not observe heavy congestion a.t the sites equipped with loop 
detectors and finally to verify the field t,est.ing. In the aut.omated tests, we selected the largest 
possible tracking region, in the range of 60-100 m. Vehicle trajectories were extracted by hand 
w i t h  one second resolution. After correlating the data wit,h the tracker output,  ground trut,h 
paramet,er measurement proceeded according to Edie’s definitions. Several stop waves from 1-680 
were manually reduced as well as 75 lane minut,es from the field tests. 

Due to the labor intensive nature of ground truthing, the manually calibrated sequences 
tended to be short duration. Many either 10 or 15 minutes long while the stop waves tended 
to be even shorter. on the order of one minute. With the short ground truth segments, it’ is 
unreasonable t.o calculate 5 minute averages. We would have two or three observations per 
segment. Instead. we calculated the 30 second averages for a larger sample size. In doing 
so. we trade off sensitivity to errors in flow and density. Missing a single car when the flow 
is a t  2000 vehicles per hour results i n  a 6% error for that sample. Instead of presenting the 
error distribution. we present t.he measured paramet.er values using the tracker and manual 
calculations. 

Shock waves To test the limits of the vehicle tracker. several stop waves were manually 
calibrated. In most cases the traffic comes to a complete stop as a backwards moving disturbance 
passes the tracking region. Figures 41, 42 ,  43,  4 4 ,  45 and 46 show vehicle position along the lane 
as a function of time. These figures illustrate the ability of the tracker to detect individual 
\.chicles and follow them even over a wide range of speeds. I n  several of the sequences, vehicle 
speeds go from 40 mph down to 0 and back to 30 n ~ p h  i n  less than a minute. hlore importantly. 
vehicles are tracked even when they stop for 10 seconds or longer (represented by horizontal 
trajectories). 

Pretaped sequences I n  the case of the pretaped sequences. the tracker was run  for the entire 
sequence length. not just the calibrated segment. Tables 39-41 and figures 47-49 present 30 lane 
minutes of free flow data during the night to day transition at the northbound Florin Rd. test 
site. Figures 3 7 .  48 and 49 plot the measured 30 second average versus the ground t r u t h  value. 



I 1 1  ci error o vel 
less t.han 

1 .oo 0.69 0.75 0.88 25% 
1 .oo 0.69 0.69 0.69 20% 
1 .oo 0.56 0.56 0.63 15% 
1 .oo 0.56 0.56 0.56 10% 
1 .oo 0.38 0.50 0.50 5%, 
0.75 0.19 0.25 0.25 2.5% 

samples samples samples samples 

Table 34: Error distribution table for H'way 24 tape #7, lane 1. Dat,e: 4/30/96. Time: 15:15- 
16:45. Conditions: midday free flow. Total # of vehicles: 293. 

% error 
samples samples samples samples less than 

% vel % flo % dens % space 

0.88 0.06 0.00 0.00 2.5% 
5% 1 .oo 0.06 0.06 0.06 
10%' ' 1.00 0.63 0.31 0.19 
15% 1 .oo 1 .oo 1 .oo 0.81 
20% 

1 .oo I .oo 1 .oo 1 .oo 2.5% 
1 .oo 1 .oo 1 .oo 1 .oo 

Table 3.5: Error distribution table for H'wa!, 24 tape # 7 .  lane 2 .  Total # of vehicles: 1901. 

% error 

I .oo 0.69 0.69 0.69 10% 
0.94 0.38 0.44 0.44 .5 ( i l  

0.94 0.13 0.19 0.19 2.5% 
samples samples samples samples less than 

'7; vel (2 flo $7 dens % space . 

15% 1 .oo 1 .oo 0.94 0.81 
20% 1 .oo 1 .oo 1 .oo 0.94 
2.5% 1 .oo 1 .oo 1 .oo 1 .oo 

Table 36: Error distribution t,able for H'way 24 tape #i ,  lane 3. Total # of vehicles: 1823 

% error 
less than 

2.5% 
5%; 
10%' 
15% 
20% 
25% 

%: vel %) flo % dens % space 
samples samples samples samples 

0.19 0.56 0.31 0.31 
1 .oo 0.88 0.81 0.81 
1 .oo 0.94 0.94 0.94 
1 .oo 1 .oo 1 .oo 1 .oo 
1 .oo 1 .oo 1 .oo 1 .oo 
1 .oo 1 .oo 1 .oo 1 .oo 



less t.han 
2.5%' 
5%' 
10%. 
15% 
20%. 
259% 

samples samples samples samples 
0.81 0.25 0.19 0.19 
1 .oo 0.56 0.44 0.44 
1 .oo 0.81 0.81 0.81 
1 .oo 0.94 1 .oo 1 .oo 
1 .oo 1 .oo 1 .oo 1-00 
1 .oo 1 .oo 1 .oo 1 .oo 

Table 38: Error distribution t.able for H'way 24 tape #i, lane 5 .  Total # of vehicles: 695 

1680 shock wave A (dashes=ground truth, solid=tracker) 
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Figure 42: Shock wave example. 



1680 shock wave C (dashes=ground truth, solid=tracker) 

Figure 43: Shock wave example 
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Figure 44:  Shock wave example. 
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Figure 45: Shock wave example. 
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1680 shock wave F (dashes=ground truth, solid=tracker) 
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Figure 46: Shock wave example. 
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Florin #17, 30 sec avg velocity, 3 lanes, 10 min, manual calibration 

Figure 48: Scatter plot of vision and manually computed velocity. Tape: Florin Rd. #17. Date: 
4/10/96. Time: 6:15-6:25. Conditions: night to day t,ransition. Manually calibrated 30 sec 
samples. 



Florin #17, 30 sec avg density, 3 lanes, 10 min, manual calibration 
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Figure 49:  Scatter plot of vision and manually computed density. Tape: Florin Rd. #17.  Date: 
1/10/96.  Time: 6:15-6:25. Conditions: night to day transition. Manually calibrated 30 sec 
samples. 



lane 1 flow 
true measured 

4 ,6567 5.0000 
2.2250 2.1492 
2.7750 0.8508 
4.0000 4 .0000 
1 .0000 1 .oooo 
7.6028 4.4728 
2.5133 2.5272 
3.24.52 2.2870 
4.7548 4.8416 
2.6137 2.0000 
3.3843 1.6552 
6.0000 4.9795 
4 ,0769 3.0883 
2.1364 1.0218 
4 .7867  3.9103 
1.1353 1 .0000 

10.0000 8.0000 
3 .0000 2.0000 
3.0000 3.0000 
4.4037 3.4137 

lane 2 flow 
true measured 

22.2098 24.9844 
20.7251 
19.4038 
1T.5962 
18.4397 
21.8394 
19.9976 
24.1316 
21.5642 
17.0695 
11.2648 
22.7129 
19.6387 
9.0920 

14.8808 
22.6702 
21.4896 
24.4929 
24.4721 
17.69.57 

19.8498 
19.1999 
16.8001 
16.6238 
20.6701 
19.5593 

19.4920 
17.1267 
12.5742 
23.6595 
16.7737 
9.0107 

16.61328 
22.7885 
19.1780 
25.7045 
24.6114 
19.2046 

22.0185 

lane 3 flow 
true measured 
7.7601 7.7991 

12.2399 
12.5692 
13.5747 
14.3221 
18.9777 
8 . 6 7 2  

16.8433 
11.3087 
9.4278 
9.2249 

12.6925 
13.0445 
10.9271 
9.0940 

13.7044 
15.5051 
18.7941 
14.5958 
7.8122 

14.2708 
14.5245 
15.5946 
14.2951 
19.6141 
12.4967 
19.6602 
11.2641 
9.2591 
7.6594 

12.5503 
15.4497 
11.4453 
8.5547 

13.5087 
17.4020 
19.0893 
17.3821 
8.5626 

Table 39: Flowq reported in number of vehicles per 30 sec sample: Florin Rd. tape #17. 
comparison of vision data with manually calibrated data. 



lane 1 dens 

16.5221 16.G296 4.5.4622 49.9369 8.8236 9.5818 
true measured true measured true measured 

lane 3 dens lane 2 dens 

4.0710 
1 ,6232 
7.2501 
1 .a874 
8.6.566 
4.8221 
4.0996 
9.2615 
3.7'089 
3.0919 
9.2277 
6.1014 
1.8350 
7.3.572 
1.0333 

1.5,:3307 
3 ,83 33 
.5.*564!1 
6.2987 

40.3500 
37.1660 
33.8815 
36.3098 
44.5819 
39.4171 
50.7503 
47.6914 
32.272.5 
20.9827 
43.8101 
37.1440 
17.5040 
29,1756 
36.7506 
43.8318 
.53.0801 
.50.9207 
35.30;(j 

29.1828 
28.2058 
28.8140 
29.8549 
4 1.9362 
20.0312 
38.8083 
2.5.0089 
18.887T 
1T.5930 
27.5070 
26.5651 
23.7818 
1 9.94 04 
29.4760 
2:<.0.5:3 1 
4:3.0;4; 
:34.09.5(i 
1 I t;(i(i 

32.31G2 
32.9896 
33.7341 
30.1 764 
43.8078 
28.6312 
45.4826 
2.5.0562 
19.0529 
14.885S 
27.3962 
31.4246 
2.5,1379 
20.0466 
29.2384 
37,1049 
44.942.5 
42.6947 
18.0199 

Table 40: Density. reported i n  ~ehicles per mile. Florin Rd. tape # 1 7 .  comparison of vision 
data with manually calibrated data. 



lane 1 vel 
true measured 

63.3304 62.6188 
66.6551 63.3507 
6.5.8272 62.8995 
67.2361 66.2062 
63.3533 63.5800 
63.3346 62.0025 
63.1868 62.8911 
63.2264 66.9425 
63.7462 62.7326 
66.7030 64.7086 
68.7321 64.2413 
64.7011 63.7550 
62..5662 60.7406 
68.2798 66.8233 
G5.2043 63.7796 
62.8392 62.0390 
61.0911 62.6192 
64.1193 62.4159 
66.4266 64.6912 
6.5.99.56 65.0363 

lane 2 vel 
true measured 

58.6241 60.0384 
61.6359 60.5356 
62.6501 61.4195 
62.3215 61.2575 
60.9412 59.7922 
58.7846 98.5881 
60.8799 .59.8378 
57.0496 55.7171 
54.2.558 j2.420.5 
63.4702 62.1279 
64.4234 63.5563 
62.2129 61.7350 
63.4444 62.1 143 
62.3309 60..53.5.5 
61.2421 60.7067 
56.1900 .5G.4013 
58.8288 -57.1 895 
55.3623 54.8766 
57.6712 56.9119 
60.1426 .59.5829 

lane 3 vel 
true measured 

56.3617 56.2790 
50.3304 52.9920 
53.4749 52.8329 
56.5337 55.4734 
57.5669 56.8462 
54.3046 53.7277 
51.9822 52.3765 
52.0815 51.8709 
54.2625 .53.9463 
59.8983 58.1504 
62.9220 61.7467 
55.3715 54.9727 
-58.9246 58.9971 
.5.5.1297 54.6361 
54.7273 51.2080 
5.5.7919 .5.5.4423 
56.201.5 56.2793 
52.3.578 50.9699 
51.3700 48.8550 
57.9162 57.0210 

Table 4 1 :  \'elocity. reported in miles per hour: Florin Rd. tape #17!  comparison of vision data 
w i t h  manually calibrated data.  



Field testing On the morning of October 23, 1996, the vehicle tracker was installed at. the 
Florin CCT\' camera. Aft,er slightly more than an hour of calibration, the tracker was run for 
approximately five hours with real time video. Two views were used, similar to t.he northbound 
and southbound views described in the appendix. Two hours of midday, free flow, northbound 
traffic were recorded and fift,een minutes were manually calibrated from the tape. Figures 50, 51 
and 5 2  plot the measured 30 second average versus the ground truth value. The raw data are 
summarized i n  tables 42. 43 and 44:  
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Figure 50: Scatter plot of vision and manuallgcon~puted flow. Tape: Kortllbound Florin Rd. real 
time. Date: 10/23/96. Time: 13:OO-13:lO. Conditions: midday. free flow. h!anually calibrated 
30 sec sa~nples.  



Field Test, 30 sec avg velocity, 3 lanes, 1,5 min, Free Flow 
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Figure 51: Scatter plot of vision and manually computed velocity. Tape: Northbound Florin 
Rd. real time. Date: 10/23/9G. Time: 13:OO-13:lO. Conditions: midday. free flow. hlanually 
calibrated 30 sec samples. 



Field Test, 30 sec avg density, 3 lanes, 15 min, Free Flow 
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Figure 52: Scatter plot of vision and manually computed density. Tape: Northbound Florin 
Rd. real time. Date: 10/23/96. Time: 13:OO-13:lO. Conditions: midday. free flow. llanually 
calibrated 30 sec samples. 



lane 1 flow lane 3 flow lane 2 flow 
I true measured I true measured I true measured I 

7.9360 4.2516 
4.0640 3.7484 
2.0000 2.0000 
2.0000 2.0000 
5.0000 5.0000 

0 '  0 
4.0000 4.0000 
4.7901 4.7587 
3.2099 2.2413 
4 5804 4.0000 
3.4196 3.0000 
2.0031 1 .oooo 
2.0000 2.0000 
6.0000 5.0000 
1 .oooo 0 
3.6735 2.9881 
3.326.5 3.0119 
2 .0000 2.0000 
2.0000 2.0000 
2.4123 2.3831 
0.5857 0.6169 
1 .0000 1 .0000 
2.4032 2.346; 
2.5968 2.6333 
3 .0000 3.0000 
2.0000 2.0000 
2.7223 2.7802 
1.27'77 1.2108 
6.0000 5.0000 
2.0000 2.0000 
1 .oooo 1 .oooo 
3.3010 3.2015 

18.6935 
13.7202 
11.6479 
17.9636 
21.0225 

5.6156 
11.3844 
14.5539 
14.8042 
8.2219 

14.4742 
12.8108 
3.2803 

19.5697 
15.1500 
19.8961 
1 i.035.5 
11 .6572 
8.7871 
9.8752 
7.7641 
8.0035 

17.1630 
9.0000 

12.1901 
13.0988 
14.137(j 
12.9870 
10.0000 
11.2856 
8.6525 

16.4299 

18.7521 
13.6462 
10.7444 
16.9661 
18.3080 
4.5813 
9.4582 

12.6355 
13.8493 
8.5144 

13.9196 
12.3171 
3.2323 

19.5496 
13.8606 
18.8687 
1.5.3087 
11 .7203 
8.4756 
9.9081 
6.7186 
6.2283 

1P.0000 
10.0000 
13.1788 
13.1450 
10.9600 
13.0434 
8.0000 

11.470.5 
7.7304 

15.4722 

17.1424 
10.9353 
7.9059 

11.3218 
13.4280 
4.6970 
9.5621 
9.2726 

11.2911 
10.4329 
11.0571 
9.0000 
7.2349 

10.7'333 
10.0318 
13.2463 
7.9405 
9.5336 
6.2621 
5.8339 
5.1682 
9.8158 
7.8982 

13.7393 
5.3803 

11 .TO92 
11.2700 
5.7688 
8.6317 
4.6969 
5.0000 
7.2168 

15.0875 
9.8791 
7.9265 

12.4085 
15.0421 
4.6974 
8.5296 
8.2116 
7.2733 
9.6838 

11.0034 
8.3618 
6.2323 
9.7677 
9.3575 

10.0000 
12.0000 
6.5503 
6.4275 
6.8746 
8.1476 
9.6297 
4.9320 

13.8404 
3.2907 

10.6601 
13.3399 
5 .8 i79  

11.0535 
3.5251 
2.0000 
8.0694 

T a b l ~  42: Flow, reported i n  number of vehicles per 30 sec sample. Northbound Florin Rd,  
comparison of vision data with manually calibrat'ed data.  



lane 1 dens 
true measured 

14.8122 8.1554 
7.7357 
3.7643 
3.7179 
8.8592 

0 
7.4006 
8.8706 
ti.o.5.57 
8.5804 
6.2955 
3.8394 
3.7146 

10.8374 
1.9101 
G.ti24ti 
6.1314 
3.5594 
3 .7843  
4.7290 
1 . @ 5 G ?  
1 ,7836 
4 ..5478 
4 ,8077 
5 .3322  
3.5018 
4.7308 
2.3176 

10.6012 
3.4059 
1.9579 
6.0848 

7.1860 
3.6930 
3.7357 
8.8722 

0 
7.3158 
8.7786 
4.2775 
7.4969 
5.3942 
1.8407 
3.7816 
9.0441 

0 
.5.27ti2 
5.5512 
3.4949 
3.6915 
4.4913 
1.1169 
1.7853 
4.4500 
4.8.598 
.j.4493 
3.4740 
4.7711 
2.2146 
8.7889 
3.3368 
1.9716 
5.8610 

lane 2 dens 
t.rue measured 

37.5002 38.1730 
26.7799 
21.4785 
35.4473 
42.0423 
10.3963 
21.4028 
28.6150 
28.3002 
15.5309 
28.6289 
26.7365 

6.5391 
38.7048 
32.4840 
39.2982 
33.0287 
23.2669 
17.19GT 
20.3817 
14.6T10 
15.8276 
35.0699 
17.5237 
23.6099 
25.4933 
28.6316 
24.8209 
18.2937 
21.4593 
17.0081 
31.5618 

27.01 11 
20.1920 
34.1044 
36.9929 

8.4636 
17.9140 
24.3963 
26.7971 
16.2457 
28.2938 
25.8028 

6.4355 
39.1302 
29.7564 
37.6351 
29.7297 
23.7411 
1 6.5984 
20.5056 
12.8699 
12.3'316 
36.9720 
19.4718 
25.7411 
26.2294 
2 1.0096 
25.1650 
14.7754 
22.2490 
15.3984 
29.8881 

lane 3 dens 
true measured 

41.8628 36.1300 
22.3806 
15.6111 
24.7378 
29.8817 
10.0821 
19.2325 
20.0414 
25.1952 
22.5686 
25.0234 
20.9867 
17.1382 
23.1679 
24.4874 
30.8538 
17.8735 
20.7586 
13.9804 
15,2575 
10.4302 
20.1204 
18.2104 
29.0110 
11 ,7626 
25.6006 
25.9531 

11.9017 12.7742 
16.8732 
9.4448 

13.7524 
15.2035 

19.4316 
15.5195 
26.0843 
32.0415 
9.4591 

17.3405 
17.8362 
15.7609 
21.1846 
24.6736 
20.0793 
14.3483 

23.4061 
23.3077 
26.1116 

14.4949 
17.4334 
12.3478 
19.6949 
11.1912 
29.3603 
6.9873 

22.9410 
30.1873 

21.2563 
7.1159 
5.1697 

16.9917 

20.8365 

i4.3850 

Table 43: Density. reported in  \~ehicles per mile. Northbound Florin Rd. conlparison of vision 
data w i t h  manually calibrated data. 



t.rue measured 
64.2930 62.5587 
63.0421 
63.7569 
64.5520 
67.7259 

0 
64.8598 
63. 7992 
63.6075 
64.0583 
65.1825 
62.6080 
64.6103 
66.4365 
62.6282 
66.5417 
65.1031 
67.4270 
63.4181 
61.2121 
66.732.5 
67.2810 
63.4119 
64.8137 
67.5137 
68.5371 
69.0539 
66.1553 
67.9169 
70.4249 
61.2903 
65.1585 

62.5956 
64.9887 
64.2456 
67.6271 

0 
65.6115 
65.0491 
62.8782 
64.0264 
66.7384 
65.1935 
63.464.5 
66.3413 

0 
67.9593 
65.1092 
68.6710 
65.01.51 
63.6739 
66.2745 
67.2160 
63.2829 
6.5..5l.i2 
66.0641 
69.0842 
70.1515 
65.6100 
68.2680 
71.9254 
60.8G43 
65.5492 

lane 1 vel lane 3 vel lane 2 vel 
t,rue measured 

49.1388 50.1106 59.8190 58.9488 
true measured 

61.4798 
65.0765 
60.8123 
60.0039 
64.8180 
63.8296 
6 1.0333 
62.7737 
63.5266 
60.6695 
57.4982 
GO. 1975 
(30.6737 
55.9660 
60.7544 
61.8934 
60.1226 
61.3176 
58.1'417 
63.5055 
60.6801 
58.7272 
61 ,6309 
61 .(3.577 
61 ,6578 
59.2531 
62.7875 
65.5965 
63.1085 
61.0478 
62.4674 

60.6250 
63.8535 
59.6972 
59.3886 
64.9562 
63.3571 
62.1513 
62.0185 
62.8917 
59.0360 
58.2126 
60.2703 
59.9526 
55.8963 
60.1630 
61.7913 
59.2405 
61.3203 
57.9829 
62.6150 
60.314.5 
58.4226 
61.6277 
61.4368 
60.1384 
62.6515 
62.1978 
64.9730 
61.8660 
60.2431 
62.1207 

58.6325 
60.7715 
54.9207 
53.9247 
55.9058 
59.6621 
55.5207 
53.7773 
55.4329 
53.0244 
51.4611 
50.6583 
55.5939 
49.1605 
51.5191 
53.3115 
.55.1113 
53.7500 
45.8837 
59.4607 
58.5424 
52.0459 
56.8307 
54.8885 
53.8728 
52.1131 
58.1648 
61.3877 
59.6757 
43.6288 

61.0083 
61.2890 
57.0850 
56.3346 
59.5923 
59.0266 
55.2468 
55.3776 
54.8537 
53.5152 
49.9723 
52.1228 
56.2533 
47.9746 
51.4851 
55.1478 
54.6423 
52.8164 
47.3202 
59.7449 
58.6734 
52.8847 
56.5680 
56.5153 
5.5.7612 
53.0284 
55.2160 
62.4010 
59.4451 
46.4242 

56.9602 56.9887 



Field Test, 30 sec avg flow, 3 lanes, 10 min, Congestion 
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Figure 3 3 :  Scatter plot of vision and manually computed flow.. Tape: Southbound Florin Rd. 
real t ime.  Date:  10/23/96. Time: 4:.50-5:00. Conditions: evening rush hour, long shadows. 
\lanuall\. calibrated 30 sec samples. 

Tn.0 hours of evening peak. southbound traffic were recorded and ten minutes were manuall!. 
calibrated from the tape. including some congestion. Figures 53, 54 and 5 5  plot the measured 
30 second average versus the ground truth value. The ran  data are summarized in tables 45 .  
46 and 47:  

9.2.3 Acceleration detection 

The primary goal of the acceleration detector is to find rapid decelerations. Our basic approach 
is to sub-sample average velocity over short periods and measure the difference between samples. 
Cnfortunately. there is a lot of noise between successive short samples, in t.his case 10 second 
samples as shown by the points in the top of Figure 5G. We use a 300 second moving average of 
all non-zero samples to smooth the data.  plotted as a solid line on the same graph. This induces 
a short time delay. but i t  also significant.ly reduces the probability of a false alarm. Nest ~ we take 
t h e  diffcrencr between the current smoothed sample and one GO seconds earlier. This is shown 
ax a solid lint, i n  the middle plot of Figure 5 6 .  Nest. we threshold this curve to find periods of 
r ; t~ ) i c l  dcrrlrration. ab indicated by "S"'s. Finally. we count the number of samples below t l ~ c  
t I ~ r c d ~ o l d  out of t Ilc previous 30 samplcs. a.s sl~own as "0"'s i n  t lie bot tom of the figurc. 'I'IIi> 



Field Test, 30 sec avg velocity, 3 lanes, 10 min, Congestion 
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Figure .54: Scatter plot of vision and manually computed velocity. Tape: Southbound Florin 
R d .  real time. Date: 10/23/9G. Time: 4:50-5:OO. Conditions: evening rush hour. long shadows. 
Xlanually calibrated 30 sec samples. 
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Figure .55: Scatter plot of vision and n~anually computed density. Tape: Southbound Florin 
R d .  real time. Date: 10/23/96. Time: 4:50-5:OO. Conditions: evening rush hour. long shadows. 
\lanually calibrated 30 sec samples. 
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Table 45:  F l o ~ .  reported in number of vehicles per 30 sec sample. Southbound Florin Rd. 
comparison of vision data with manually calibrated data.  
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Figure 56: Accelation detect,ion for Florin Rd. tape #17, lane 3.  Top graph: 10 second 
sampled velocity estimates from tracker (points) with 300 second moving average (line). Centre 
graph: Acceleration plot with threshold and marked rapid deceleration points. Bottom graph: 
Accumulated deceleration counts. 
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Table 47:  \‘elocity. reported i n  miles per hour. Southbound Florin Rd. comparison of vision 
data wit11 manuall!. calibrated data.  

final measurement provides a rapid response to decelerations and increases in magnitude relative 
to  the degree of deceleration. Thus. after an inmediate indication of congestion, we have a 
slower measure of severity or. “degree of certainty”. that takes an additional minute or two to 
calculate. but provides the user with important information. In sum.  we have a rapid indication 
of deceleration followed by a slower measure of magnitude. The measurement could easily be 
extended to  test multiple thresholds simultaneously and/or to  use multiple sample periods. 

Figure .57 is an example of the deceleration detector working properly when there are no 
decelerations. Figure 58 shows the detection of two shock waves. the first with a 40 second 
response time and the second with a 70 second response time. Figure 59 shows the detection of 
one shock wave with a 60 second delay. Figure 60 shows two shock waves t,hat are just below 
the threshold detection. This figure shows the t,rade off between detection sensitivity and risking 
false positives. If the traffic engineer were interested in the disturbances shown. a lower threshold 
or multiple thresholds could be used to detect t.hem. Figure 61 shows the detection of t,wo shock 
waves. the first with a 30 second response time and the second with a 50 second response time. 

9.2.4 Lane change detection 

Mack Rd sequence #I8 was selected t.o test’ lane change detection due to the heavy congest,iol1 
(including several stop waves) and high frequency of lane changes. 

I I #observed #not detected #false positive 1 I by human by tracker by t,racker 
heavy congestion: I 20 10 2 
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Figure 57:  Accelation det,ection for Florin Rd. tape # l 5 .  10 second sampled ve1ocit.g estimates 
from tracker are shown as points, with a 300 second moving average plotted as a thin line. No 
decelerations are detected, so the deceleration count plot (thick line) is zero everywhere. 
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Figure 58: Accelation detection for Florin Rd. tape #IS. lane 3. 10 second sampled velocity 
estimates from tracker are shown as points, with a 300 second moving average plotted as a thin 
line. Two shock waves are detected in the deceleration plot (thick line). 
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Figure .59: Accelation det.ection for Florin Rd. tape #19. lane 3. 10 second sampled velocity 
estimates from tracker are shown as points, with a 300 second moving average plotted as a thin 
line. One shock wave is detect'ed in t.he deceleration plot (t.hick line). 
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Figure G O :  Accelation detection for Florin Rd. tape #25.  lane 3.  10 second sampled velocity 
estimates from tracker are shown as points. with a 300 second moving average plotted as a thin 
line. No shock waves are detected i n  the deceleration plot (thick line). 
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Figure 61: Arcelation detection for Florin Rd.  tape #27.  lane 3.  10 second sampled velocit!. 
estimates from tracker are shown as points. wi th  a 300 second moving average plotted as a t l ~ i n  
linc. Two shock waves are detected i n  the deceleration plot (thick line). 
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Figure 62: Learning Curve for t,he Classifier 

The Alack Rd camera angle proved to be non-ideal and the tracker lost several vehicles under 
congestion. All of the undetected lane changes were due to tracks being dropped before reaching 
the exit region. while the false positives were due to over-segmentation. Thus! all of the errors 
came before the lane change detector. 

9.2.5 Classification results 

The effectiveness of the size-based approach was evaluated using learning curves. A set of 210 
vehicles was classified by a human. A supervisor routine then randomly chose a subset of these 
vehicles and provided their measurements to  t,he classifier’s training routine with the vehicle 
classes attached. The training routine t,hen used these measurements to learn the means and 
covariances for each class. Next, the supervisor routine submitted measurements without vehicle 
classes to the classifier‘s test routine and asked which class each vehicle belonged to, making sure 
that the sets of test and training vehicles were disjoint. This process was repeated for different 
size training sets and the results for each size were averaged over several iterations to  reduce 
noise. 

Figure 62 shows the results of running the learning curve evaluat,ion algorithm on the set of 
210 vehicle instances. The evaluat,ion was repeated 5 times for each training set size and the 
results were averaged. Note that there are slight, fluctuations in the learning curve caused by 
the random choice of training set,s, but that the fraction correct increases with training set size 
as espected. Appendix F shows t,he confusion mat,rix for the trained system. 

A number of problems remain to be resolved in our classifier. Estimates of camera position 
wrfb bawd on guesses provided by the person who collected the test videos. I t  is apparently 
dIf5cult to  obtain accurate measurements of distances from site drawings since those drawing:: 
oftt=n focus 011 features not visible to the camera! such as underground pipes and electrical 
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conduits. R'e are attempting to find drawings of the test sites which show measurements between 
visible surface landmarks. 

The classifier and color histogram generator currently works only with the off-line version of 
the tracker because we have not yet solved the logistic problems associated with storing past 
video frames in the on-line DSP network. It is necessary to  have some subset of past frames 
stored so we can obtain color information from the largest picture of a vehicle available. 

The data sets we tested with did not contain enough examples of buses or motorcycles to 
calculate an unbiased est.imate of the covariances for these classes. When a class is underrepre- 
sented like this the classifier is programmed to reject that class as a possible hypothesis for new 
data unt i l  it sees enough training data from that class to  from the unbiased estimate. 

9.2.6 Q u e u e  length de t ec t i on  

A t  the conclusion of the project. the queue length detector was still too noisy t,o test. Empirically. 
for about two thirds of the time the detector is within 10' of the correct end of queue location. 
The small error is due to the fact the tracker may only detect a portion of a car, rather than 
the entire vehicle. The remaining portion of the time, either the queue length detector has 
erroneously selected a noise feature upstream of the queue or the last vehicle in the queue is 
undetected. The noise features seem to be due to the frame grabber and most are filtered out 
by lialman filter. However. the queue detector and Kalman filter are operating in parallel on 
the features and any noise features are pot.entia1 candidates for the end of queue until they are 
eliminated. One possible solution for this error is to add a short time delay. say five seconds. to  
the queue detector. The viability of this option depends on the application. 

9.3 Multiple site level results 
\Ve tested the \~ehicle mat,cher w i t h  data generated by the region-based tracker on video sequences 
from adjacent cameras at Mack Road (upstream) and Florin Road (downstream) in Sacramento. 

On any given r u n .  the number of matches proposed by the vehicle matcher depends on the 
reliabilit!, threshold selected for that run. In  the results discussed below. coverage refers to the 
percent of vehicles that actually appear at both cameras for which matches were proposed, and 
accuracy  refers to the percent of proposed matches that were in fact correct. In  general, the 
coverage goes down as t h e  reliability threshold is increased. but the accuracy goes up. In other 
words. as the reliability threshold increases. the matcher returns only the vehicle matches for 
which i t  has the most confidence. The RFP requires achieving 90% accuracy with 10% coverage. 
Our results below show that wl~en the reliability thresl~old is set so as to achieve at least 9 0 2  
accuracy. the coverage is well above 109.  

To verify the accuracy of t h e  matcl~er, t h e  correct. or ground-truth. matches were deter- 
mined by a I~uman viewing the videotaped sequences themselves and the digit,ized sequences 
with the aid of a frame-based movie viewer. Since this method required about 3 hours of view- 
ing to match each minute's worth of video, it  was used only during the early st.ages of t,esting. 
In subsequent testing, we first ran the matcher on the vehicle report data and then used the 
frame-based movie viewer to verify whether or not t,he matches suggested by t.he vehicle matcher 
were in  fact correct. 

The first test results were carried out on a specially prepared sample in order to eliminate 
extraneous sources of error. From a pair of 60-second sequences from hlack Rd and Florin Rd, 
we extracted just those vehicles (41 in all) that appeared and were detect.ed at both cameras. 
discarding undetected vehicles and vehicles that exit,ed or ent'ered t,he freeway between the two 
cameras. Ground truth matches were used to estimate the required probability models. Fig- 
ure G 3 (  a )  shows the result.ing accuracy/coverage curve. 

Tlw becond set of results was obtained under more realistic conditions. \Ye used (iO-second 
w q u e ~ ~ c w  a1 thr same locations. containing 29 vehicles upstream and wit11 110 preproccssillg 
t o  rcn~o\.c% undet cct ed or entering/esiting vehicles. Furthern~ore. the probabilit!. 111oclels \\'crc 
~3ti111atw.l online from t h e  system's own proposed ~natches. Figure t i 3 ( 1 ) )  s l ~ o \ ~ s  the result jl1g 



accuracy/coverage curve. The syst,em achieved loo%, accuracy with a coverage of 15%, and 503; 
accuracj. wit.h a coverage of 80%). 
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Figure 63: ( a )  Results for **cleaned" sequences of 41 vehicles, showing accuracy achieved at 
different levels of coverage. (b )  Results for later, raw sequences with 29 upstream vehicles. 

I t  should he noted that due to the excessive costs of ground truth acquisition, our sample 
sizes are small. I t  should also be noted that the current level of vehicle matching performance is 
probably not sufficient to  sustain long-distance O/D counts where vehicles must be tracked over 
se\.eral camera sites: this capability would also require somewhat higher vehicle detection rates. 
\Ye can performa crude analysis as follows: if the coverage for the vehicle matcher is c, and the 
matching accuracy is a .  and the vehicle detection rate is p .  then the probability that a vehicle 
is correctly tracked across 77 sites is p"a"-lc"-l. Suppose now that n = 10. To achieve 90% 
accurac!. i n  O /D counts. we need a' = 0.9 or a =z 0.988 as well as a sufficiently high number of 
tracked \.chicles i n  order to keep sampling error low. The required percentage of vehicles to be 
tracked across the 10 sites will depend on flow rates and the length of the reporting period. To 
track. say. 10% of vehicles across 10 sites need p'Oc' = 0.1. Given p = 0.95. this means we 
need c z 0.82. Currently. simultaneous achievement of 98.8% accuracy and 82% coverage is not 
feasible. Howeyer. we anticipate that improved measurement of features such as width and height 
would provide dramatic improvement i n  coverage and accuracy. This as might be obtained by 
using edge tracking i n  addition to corner tracking. Other possibilities include selecting a subset 
of pixels from the rear plane of each vehicle to be used as a match feature. 

Link travel times computed from the matched pairs were accurate in both cases to withill 
1% over a distance of 2 miles, over a wide range of co\:erage/accuracy tradeoff points. This 
accuracy is maintained even when the matched pairs include some incorrect nlatches and despite 
the fact that only a fraction of all vehicles were matched. This suggests that matched vehicles 
are representative of the traffic flow. 
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Appendix A: Camera Calibration 
Camera calibration is required in order t,o extract real world parameters from image coordinates. 
Our system uses the projective transform which exists between the road plane and the image 
plane. This projection is a simple transformation between image features and locations on the 
road. A point on t'he road locat,ed physically at a distance (2, y) meters from the camera will be 
project'ed ont,o a point' ( i ,  j )  in the image via the relation in homogeneous coordinates: 

The inverse projection is found by using the inverse of the matrix A. 
The 3 x 3 matrix A can be determined from a simple calibration procedure. It  is found by 

placing four lines on the image corresponding to four known lines on t.he road. Using the fact 
that equation 10 implies a relat,ionship between lines in the image and road planes as well as 
points, t,he four line correspondences can be used to compute the elements of the matrix A .  Four 
points in the image could have been used to compute the calibration inst'ead of four lines, but 
lines are easier to register with one another than points and thus are less prone to calibration 
error. 

\I'hile the ideal system would be able to automatically calibrate itself using the lane markers 
or special calibration markers. a fallback position is to do the calibration manually. In the 
automatic case, the system aut~omatically detects line or point features and comput.es the matrix 
-4. In the manual case. a sample image is transmitted to the TMC and the operator manually 
labels the line features. In  an example of the manual case. Figure 64 shows a possible set of t,he 
lines needed for calibration. In  this example. the lines are the shoulder boundaries on the inner 
and outer most lanes plus lines which cross all visible lanes at two fixed distances. These lines 
are drawn on the screen using a mouse or light pen. The user then enters the known distances 
of these lines and calibration parameters are then computed and sent back to the remote sensor. 

Figure 64: Example lines needed for calibration of the system. These correspond to k n o ~ v ~  lines 
011 the road plane. Any four non-parallel lines can be used. 

If  t h e  camera has a fixed mount. calibration is performed only once and cat1 tjc donc u~ ldc r  
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good lighting conditions. If the camera is on a pan/tilt mount, then the calibration needs to be 
recomputed every time the camera is moved and one wants to  run the tracker. In  this case, the 
calibration procedure will have t,o be more robust to poor lighting conditions since there is no 
knowing when a TMC operator may wish to move a camera. 

The visual line calibration method results in small calibration error which can be estimated 
given knowledge of the camera installation (height. and inclination angle). This error results in 
a quantifiable posit.iona1 bias in the estimates of positions and velocities of vehicles. This effect 
is expected to be much smaller than the other sources of position and velocity error. 
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Figure 65: Interfaces between the major components. 

The main components in our prototype system are videocameras. remote sensors, and the 
TYC. and these components are connected as shown in Figure 65. In this section we describe 
the two types of interfaces, the video int,erface between t.he cameras and remote sensors and 
the control/data interface between remote sensors and the TMC. For each interface we will list 
its main function. its ph!.sical charact,eristics and protocols. and the data format of information 
passing through the interface. 

Video interface 
The video interface connects a surveillance videocamera to a remote sensor. In normal operation. 
the remote sensor would he located i n  a cabinet located nest to the camera or i n  a more accessible 
location on the side of the road. As mentioned previously, for demonstrating the prototype, the 
remote sensor may actually be located at the ThlC. In  this scenario, we would use a preexisting 
camera and video feed provided by our testing partner. Caltrans. Both scenarios for the location 
of t h e  remote sensor w i l l  be discussed. 

The function of the video interface is to transmit videocamera images to the remote sensor for 
processing. In describing the physical characteristics and data format of the interface. consider 
the two scenarios: 

1, Remotc sensor at remote s i te .  Since the camera and rem0t.e sensor are near to one another. 
they can be connected by a coaxial cable. The data format w i l l  be a simple analog NTSC 
signal. 

2.  R ~ m o f ~  sensor at TMC. In this case. the connection between the videocamera and remote 
sensor w i l l  use a a preexisting communications channel est,ablished by Caltrans. Possible 
example connect,ions include fiber optic cable or a microwave link. The signal could poten- 
tially be compressed, but we plan to seek an uncompressed video feed. The dat,a format 
will be determined by Calt.rans, but. it w i l l  likely be NTSC or JPEG or a similar format. 

Control/Data interface 
The control/data interface connects a remote sensor to the TIIC computer. The function of this 
commul~ications channel is to allow the TMC to issue commands to the remote sensor. and for 
t h r .  remot? sensor to report on traffic scene summaries. tracked vehicles. etc. 
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I 1 TMC command 1 remote sensor reply 1 
tracker messages scene report start tracker 

stop tracker acknowledge 
set reporting rates 

acknowledge calibrate ’ calibration 
acknowledge 

vehicle reports 

image messages 
diagnostic 

compressed image send image . 

future expansion 
diagnostic report self test 

camera position 

traffic alert interrupts 
acknowledge set position messages 
current position query position 

internal condition 
operat or messages login 

reboot acknowledge 

Table 48: List of messages passed between the TMC and remote sensor. 

As for the video interface. the physical characteristics of t,he control/data interface depends 
on the placement of the remote sensor. Again. consider the following scenarios: 

1.  R E I J J O ~ ~  sfnsor at rcmotc s i t<.  Communications will be handled using a modem link over 
a standard telephone line. using a standard modem protocol for 28.8 Iibps. 

2.  Rcmotf sfnsor  at T.1IC. In this simplified scenario. t h e  remote sensor and TMC computers 
w i l l  be sitting i n  the same room at the T!dC. X simple connection strategy - and one that 
is not too different from the modem connection - is to use a serial link between t,he serial 
ports of the ttvo machines. The protocol w i l l  be the RS 232 standard. and the serial line 
w i l l  be configured to 28.8 Iibps. 

The data format of the control/data interface w i l l  consist of messages sent back and forth 
bptwen the remote sensor and TI\IC. .Arranging the conmunications link around message pass- 
ing \sill f ad i t a t e  making our protocol comply w i t h  NTCIP i n  the future. which itself is object 
oriented and message-based. Most of our messages w i l l  fall into one of two broad message classes: 
con t ro l  messages issued by the ThlC to the remote sensor. and data messages that relay scene 
and vehicle information back to the ThlC. In Table 48, which lists the messages. one can see 
that most of the messages are paired into TMC commands and ren1ot.e sensor replies. In the 
remainder of this section we describe the messages from Table 48. 

s t a r t  t r a cke r  The remote sensor begins tracking vehicles and ret,urns scene and vehicle reports 
at regular intervals. Parameters included in t,his command message are the reporting rates 
for the scene and vehicle rep0rt.s. 

scene  report A summary set of traffic statistics t.hat are averaged over a user-definable t.ime 
period. The statistics include: 

1. Camera ID. The unique ID number of the remote sensor and camera 
2 .  Tzmfs tamp .  The time at which the measurements were taken. 
3 .  l ihrr . l c  pow ratc. The number of \.chicles that have passed a detection zone i l l  

the averaging ppriod. This is ~neasured separately for eacll lane i n  terms of vehi- 
clw/hour/lal1r. 



4 .  Arerage speed. The speed, measured at  a given point on the roadway for all vehicles. 
It  is calculated separately for each lane and is averaged over the averaging period. 

5. Classification counts. The number of vehicles of each class passing through the detec- 
t,ion zone for the averaging period. The classes are: l=motorcycle, 2=automobile/pick- 
up truck, 3=buses, 4=trucks up to 40 feet in length, 5=trucks greater than 40 feet in 
lengt 11. 

(3. Lane changes. This is the number of vehicles changing lanes over the averaging 
period, measured separately for vehicles switching to the right or left for each lane. 
For int,ersections the lane changes reflects the right and left turning vehicle counts. 

5 .  Queue length. For intersections, this parameter refers to the number of vehicles await- 
ing to be cleared by a green cycle, and is also known as Approach Queue Length. For 
freeways, this parameter measures the ramp queue lengths. 

8. Spatial headway. This is the distance between identical points on consecutive vehicles 
in a given time period and is averaged over the vehicles. It' is equal to the sum of the 
vehicle length and the gap bet.ween the vehicles. 

9. .4t,erogr accclemtton. This is the rate of change of vehicle speed and is averaged over 
all vehicles i n  the averaging period. 

vehicle r e p o r t s  \'chicle reports describe an individual vehicle tracked by the remote sensor. 
There are two types of vehicle reports: 

loca t ion  report Report on the vehicle's current position and speed. It contains the 
following parameters: 

1. Camcra ID. The unique ID number of the remote sensor and camera. 
2.  l i h l c l ~  ID. The unique ID number of the tracked vehicle. 
3.  T l m f s f a m p .  The time of the position/speed measurement. 
4 .  Posltzon. The position (x. y) of the vehicle. measured in feet, where z measures 

lateral position wi th in  the road lanes. and y is arclength along the road lanes. .4 
local coordinate system wi l l  be used. where measurements are made relative to 
an origin placed near the  camera. 

.5. I l o c i t y .  The velocit!. (i, i )  of the vehicle. measured in miles/hour. 
descr ip t ion  r e p o r t  Report on static. descriptive vehicle parameters that can be used for 

matching vehicles between cameras. 
1. C'amrro ID. The unique ID number of the remote sensor and camera, 
2.  I'chrclc ID. The unique ID number of the tracked vehicle. 
3.  Trmcstamp. The time of the parameter measurements. 
4 .  Color. The color of the vehicle. Format to be determined. 
5. Appearance. Appearance parameters of the vehicle. Format to be determined, 
6. Shape. The estimated width, height, and length of the vehicle, measured in feet. 
5 .  Classification. Vehicle class, a number from 1-5. (See classificat.ion counts above.) 

s t o p  t racker  The remote sensor halts the tracker. which results i n  a cessation of Scene and 
vehicle reports. 

s e t  r e p o r t i n g  r a t e s  Change the reporting rates for the scene and vehicle location reports. The 
paramet.ers for this command message are t,he new reporting rates, where t.lIe unit is the 
time period i n  seconds between rep0rt.s. 

c a l i b r a t e  The TMC instructs the remote sensor to perform the calibration procedllre. If t ] l C  

calil~ration procedure is completely automatic at t h e  remote sensor. the11 this 111Cssage ])as 
no argunwnts. I n  calibration is ~ n a n u a l l ~  Iwrformcd. thcn t I w  message as arg11111eI1ts 
t 1 1 ~ 3  c.alibration parameters estractcd/c.omputcd at the T31C. 



send image R.equest that. a compressed version of the current camera image be sent to the 
TMC computer. If the tracker is presently running, this may result in some scene and 
vehicle rep0rt.s being dropped in order to devote bandwidth to image transmission. 

compressed  i m a g e  A compressed version of the current, camera image that is sent from the 
remote sensor to the TMC. The format will be a JPEG encoded image. 

self t e s t  Instruct the re1not.e sensor to perform a self diagnostic check and report the results. 

d iagnos t ic  report A report from the remote sensor to the TMC relaying the results of a self 
t.est. Format to be det,ermined. 

The following messages are t.o be considered for future expansion. For instance, if the video- 
camera is on a pan/tilt mount., then additional commands are required to handle these rotation 
angles. In  addition, it may be useful t,o allow a remote sensor to interrupt the TMC to  inform % 

i t  of a rapid deterioration in traffic conditions or of an int.erna1 malfunction. 

q u e r y  pos i t ion  Command message from the ThlC to remote sensor t,o return the current 
camera parameters. such as pan, tilt. and zoom. 

cur ren t .  pos i t ion  Report message from the remote sensor to the ThlC 011 the current camera 
parameters. 

s e t  pos i t ion  Command message to set the current camera parameters. The parameters t.o this 
message include things like pan, t i l t .  and zoom. 

traffic a l e r t  The remote sensor interrupts the ThlC' to make a special traffic report (e.g. rapid 
slondown in traffic flow). Format of this message to be determined. 

i n t e rna l  condi t ion  The remote sensor interrupts the TJIC to report an internal n~alfunction 
t h a t  has been detected by the remote sensor. Format to  be determined. 

login The TJIC issues this command when i t  wants to chal~ge the mode of communicat,ion from 
normal message passing to a Cnis login shell. This allons operators at the TblC to log 
into t h e  computer at  the remote sensor. This ma1 be useful for performing a t,horough 
debugging job or dowdoading new remote sensor code. 

reboot A command message that a l low the T I l C  operators to reboot the PC at the remote 
sensor. 



Appendix C: Computation of 3-D Shape 
Determining the three dimensional shape of an object from image information is difficult because 
of t,he projection from three to  two dimensions which occurs during imaging. In fact, without 
model constraints the task is impossible from a single view because of the projection. In the 
surveillance domain we can use constraints from the geometry of the system to obtain three 
dimensional shape information from planar images. We make use of the fact, that vehicles are 
constrained t,o lie on the road surface. In addition, we assume a simple rectangular model of the 
\,chicle. This model consists of the size parameters we are interested in: the length I, width 2v 
and height h of the vehicle. Using these t,wo constraints there exists a linear mapping between 
image coordinates and the real world values. The mapping is a function of camera location which 
is assumed known. 

Figure 66 shows the generic vehicle model used. From the locations of the points defining the 
bounding box (points A,  B ,  C, D in the image). t,he size of the vehicle can be obtained. Since we 
know the camera calibrat,ion mat,rix '4, a linear relationship between image points (X,,  1;) and 
size parameters (\I** L. H )  exists: 

From the pseudo-inverse of the matrix ,\I. a least squares solution for the size parameters 
( I \ . ,  L .  H )  can be found. The matrix 6 3  is a function of camera calibration parameters and 
t h e  location of the vehicle i n  the image. 



Appendix D: Parameter Measurement 
Introduction 
This section outlines the parameter measurement strategies. In particular, we provide a brief 
review of Edie's t.raffic stream measurement definitions. Edie's definitions for measuring flow, 
density and velocity are ideally suited for the area wide detection of the vehicle tracker. Next, 
the working definitions for: link travel time, vehicle classification, lane changes, queue length, 
acceleration, and O/D tracking are presented. 

Parameter Definitions 
Flow. Dens i t y  (Spa t i a l  Headway)  and Velocity 

Traditionally. t,raffic engineers have defined flow as the number of vehicles passing a point in 
space over a fixed interval of t.ime (Figure 67) .  

Following the method first proposed in [4], the loop detector occupies a small finite length of 
roadway. d l .  \Ve extend the definition of flow t,o account for this dist.ance (Figure 68). 

Finally. we can generalize the definit'ion to an arbitrary region in the time-space plane by 
integrating several horizontal slices (Figure 69). 

I f  we define f (.4) as the time spent by all vehicles in region A .  we can start, with a vertical 
line ( i .e . .  trajectories over space at an instant in time) and repeat the analysis for density. The 
resulting equations are: 

Furthermore. for a given region in the time space plane. 

To calculate the traffic state i n  a given region. A .  of the time-space plane. we simply need t o  
calculate the initial coordinates, ( t s , . z s , ) <  when the j-th vehicle enters A and the final coor- 
dinates. ( t , f , .  ~ 1 ~ ) .  when j-th vehicle leaves ,4. This data w i l l  yield individual vehicle time and 
distance within  A .  \vhich can be summed to generate d(X) and t . (A) .  In practice, we will treat 
each lane individually. set equal to the masimum range of tracking and allow the user specify 
the sampling period. . Note that this methodology is robust for lane changes. e.g., the final 
coordinates in the originating lane for a vehicle making a lane change maneuver correspond to  
t h e  in i t ia l  coordinates in the destination lane. 

L ink  Travel  T i m e  

\Ye calculate individual link travel times for as many vehicles as possible between two consecut,ive 
detection locations. We report the average link travel time during t,he observation period across 
all lanes and by individual lanes (as detected at downst.ream location). \Ye also report. the sample 
size for each lane. 

Vehicle Classification 

For a given observation period. the total number of vehicles in each class is reported by lane. 
Classification relies on vehicle features and will utilize artificial intelligence. 

112 



I 1 2  3 ... rn 

Figure G i :  Time-space diagram showing m vehicles crossing detector in sample period T .  Flow 
is given by q = m / T .  

Figure 68: Time-space diagram with estended detector region of length d l .  Let -4 be the time- 
space area sampled by the detector i n  the sample period. Let d(.4) be the distance traveled in 
.4 b!. all vehicles in the sample period. Then q( -4 )  = m / T  = ( r n  . d l ) / ( ? -  d l )  = d(.4)/A. 

.t 



Queue Length 

At the end of a reporting cycle, we report b0t.h the current and last known queue length for 
each lane. These parameters will be provided in feet (or meters) and number of vehicles between 
t.he stop bar and bhe end of queue. To avoid problems when the queue starts to dissipate, the 
end of the queue will be defined as the largest of the following: (a) the last vehicle that stopped 
(b)  the last vehicle ever considered in the queue, even if the vehicle is moving, thus, making 
our measurernent,s robust to any gaps that. may form in a discharging queue (c) the last vehicle 
before density drops below a user specified threshold (i.e., a minimum gap flag), thus, allowing 
us t,o detect queued vehicles that slow, but, do not stop or have stopped beyond the end of the 
det,ection region. In the event a queue overruns the detection region, we will report the queue 
distance. “in excess of maximum detectable” while returning the actual number vehicles in the 
detect,ion region as the number of vehicles in the queue. 

Acceleration 

Acceleration is defined as the change in average speed over a short, “sub-sample” time period. 
The user w i l l  specify the observation period and number of sub-sample time periods (minimum 
of one). \Ye wi l l  report the average and maximum acceleration for a given observation period 
b!. lane. 

In particular, this definition includes rapid decreases in speed t,hat may be useful for detecting 
incidents. As such. i t  would be a simple extension to monitor the acceleration / deceleration 
rates and trigger an incident alarm when a pre-specified t,hreshold is exceeded. .4lthough other 
researchers have devoted considerable efforts to incident det,ection. it is still unclear what  an 
appropriate threshold should be. Because of this fact I we will not attempt to specify the threshold 
le1,el. we w i l l  only report the acceleration rate. 

Origin/Destination Tracking 

\Ve calculate individual origin destination pairs for as many vehicles as possible. These data 
could be used to construct a net O/D matrix for a large network.. Our studies. however. are 
limited to two nodes. 

\Vhile vehicles are between detectors. i t  w i l l  be impossible to tell if a vehicle has exited the 
network or is in transit unt i l  the link travel time has elapsed. To this end. we will maintain 
two O / D  tables. One that only includes final infornlation after vehicles have definitely left the 
netlvork. The other O/D table w i l l  include vehicles t h a t  may still be i n  the network and changes 
d>,namically as new information is collected. 



Appendix E: Data Sources 
\Ve have utilized six data sources for video and ground truth data. For each source, we list 
t,he locat,ion, our contact person, their facilities, highlight any important features, outline the 
parameters t,ested at  the site and the format of the collected data. 

San Jose Department of Streets and Traffic 
Contact person: Charles Felix (408) 277-3070 
Facilities: 17 color CCTV installations at urban intersections on line at TMC 
Status: 
Parameters to test: flow, travel time, queue length, acceleration; possibly: velocity, classifi- 
cat ion. 
Data format: video tapes, live video 
Testing plan: collect recorded data periodically throughout the end of the st,udy. Field test, at 
TMC i n  July. 
Notes: 

Caltrans District 3 - Sacramento - Hwy 99 
Contact person: Joe Palen (916) 654-8420 
Facilities: 11 color CCTY installations on line. two sit.es used for six different views (see ap- 
pendis B).  18 loop detector speed traps on line, 1/60th of a second sampling periods yielding 
vehicle arrival and departure times at the upstream and downstream loops 20 feet apart. 
Status: 
Parameters to test: flow, density. average speed. lane changes. travel time, O/D 
Data format: video tapes, loop data 
Testing plan: Collect recorded data periodically tl~rougl~out t.he end of the st.udy. 
Notes: A l l  three speed traps at Mack Rd and one at Florin Rd have noisy falling edges (i.e., 
+/- 1 / 1 2  seconds). one detector at Florin has noisy rising edges as \veil, one detector at Florin 
appears to  have good rising and falling edges. \Ye were able to apply Edie's principles using just 
the rising edges. and work around the loop detector problems. 

Caltrans District 4 - Walnut Creek - Hwy 24/1680 

Contact person: 3lichael Lee (510) 286-6142 
Facilities: 20 b/w CCTY installations. three sites used (see appendix B) ;  several loop detector 
speed traps on line, l / G O t h  of a second sampling periods yielding vehicle arrival and depart,ure 
times at the upstream and downstream loops 20 feet apart. 
Status: confirmed 
Parameters to test: flow, density, average speed, lane changes 
Data format: video t.apes, loop dat.a 
Testing plan: Collect recorded data periodically throughout the end of the study. 
Notes: All nine speed traps at the two loop det'ector stations have noisy falling edges (i.e.. +/- 
1/12 seconds). \Ye were able to apply Edie's principles using just the rising edges, and work 
around the loop detector problems. 

Caltrans H.Q. 
Contact person: Joe Palen (916) 654-8420 
Facilities: 1 color CCT\' instillation on line at ThlC 
Status: i n  negotiation 
Paramctors to test,: flow. averagc speed. vehicle classification. lane changes 
Data format: video tapes. live vidro 



Testing plan: if confirmed, field test. at TMC. 
Notes: 

Roadwatch tape library 
Contact person: Ben Coifman (510) 848-5121 
Facilities: a large selection of tapes collected over the past four years to test and develop the 
tracker 
Status: confirmed 
Parameters to  test: vehicle classification, lane changes, queue length, acceleration 
Data format: video t,apes 
Testing plan: test throughout the end of the study. 
Notes: 

Institute of Transportation Studies tape library 
Contact person: nlichael Cassidy (510) 642-7702 
Facilities: a large selection of tapes collected for various freeway flow and merging studies over 
the past several years. Some ground truth data available. 
Stat.us: confirmed 
Parameters to test: vehicle  classification^ lane changes 
Data format: video tapes 
Testing plan: test throughout the end of the study. 
Notes: 



Appendix F: Classification confusion matrix 
For convenience, the classification results can be broken down and displayed as a confusion 
matrix showing the probability that a vehicle of each type is classified as the same or another 
type. For our t.est sample of 210 vehicles, we tested two classifiers: one using five variables 
(height, width, length. 2 position, and speed; results shown in Table 49), and the other using 
height only (results shown in Table 50). The 210 vehicles consisted of 1 Motorcycle, 192 Cars, 0 
Buses. 8 Small Trucks, and 9 Big Trucks. Considering all variables gives a lower overall correct 
rate (197/210) but shows separation between small and big trucks. Considering height only gives 
perfect classification of cars and big trucks but fails on other categories. 

Mt.rcyc Car Bus S.Truck L.Truck 
hltrcyc 0.000000 1.000000 0.000000 0.000000 0.000000 
Car 

0.000000 0.444444 0.000000 0.222222 0.333333 L.Truck 
0.000000 0.625000 0.000000 0.375000 0.000000 S.Truck 
0.000000 0.000000 0.000000 0.000000 0.000000 Bus 
0.000000 0.994792 0.000000 0.005208 0.000000 

Table 40: Confusion matrix showing the probability that a vehicle of each type is classified as the 
salne or another type. Results for classification using height. length, width, I-position, speed. 

1 1 1  hltrcyc Car Bus S.Truck L.Truck ] 
I Mtrcyc II O.OOOOOO ~ . O O O O O O  O.OOOOOO O.OOOOOO O.OOOOOO I 

Car 
Bus 

0.000000 1.000000 0.000000 0.000000 0.000000 

L.Truck 
0.000000 0.750000 0.000000 0.000000 0.250000 S.Truck 
0.000000 0.000000 0.000000 0.000000 0.000000 

0.000000 0.000000 0.000000 0.000000 1.000000 

Table .50: Confusion matris showing the probability that a vehicle of each type is classified as 
the same or another type. Results for classification using height only. 
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