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Coordination and Incentive Contracts in Project

Management under Asymmetric Information

Murat Bayiz and Charles J. Corbett

murat.bayiz@marshall.usc.edu, charles.corbett@anderson.ucla.edu

December 15, 2005

Abstract

We study the problem of the manager of a project consisting of two sub-projects or tasks

which are outsourced to different subcontractors. The project manager earns more revenue

from the project if it is completed faster, but he cannot observe how hard subcontractors

work, only the stochastic duration of their tasks. We derive the optimal linear incentive

contracts to offer to the subcontractors when the tasks are conducted in series or in parallel.

We compare them to the fixed-price contracts often encountered in practice, and discuss

when incentive contracts lead to bigger performance improvement. We characterize how

the incentive contracts vary with the subcontractors’ risk aversion and cost of effort, the

marginal effect of subcontractor effort, and the variability of task durations. We find that

this dependence is sometimes counter-intuitive in nature. For instance, for parallel tasks,

if the first agent’s task is on the critical path and his variability increases, the project

manager should induce the first agent to work less hard and the second agent to work

harder.

Keywords: project management, inventive contracting, asymmetric information,

moral hazard.
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1 Introduction

Managing projects is increasingly becoming a critical activity for many companies. Moreover,

in many industries, the trend towards outsourcing means that projects often consist of sub-

projects, each performed by different subcontractors. In some sectors, such as construction,

motion pictures, and aerospace, this has long been the case; in others, this trend has recently

become more pronounced, as in pharmaceuticals, information systems, and toys as rapid change

has become essential on survival requirement for most organizations (Klastorin, 2004). Chemical

firms hire engineering firms to design their plants; these engineering firms, in turn, hire subcon-

tractors for the actual construction work. Aircraft manufacturers increasingly outsource design

of major subsystems (such as wings, engines and control systems) to suppliers. Boeing recently

outsourced key R&D and manufacturing activities for the wings of its new 7E7 aircraft to a

consortium of Japanese suppliers (The Economist, Oct. 9, 2004). Flavin et al. (2001) estimate

that by 2004, nearly 42% of spending on drug development by pharmaceutical firms will be on

outsourced activities, including early-stage discovery and clinical trials.

In many cases, a company can earn higher revenues if a project is completed faster, or pays a

penalty if it is delayed. Airbus faces a six-month delay in delivering the first A380s to Singapore

Airlines and the Air France-KLM Group, leading to penalties of over $1 million for each delayed

plane (Los Angeles Times, June 15, 2005). In the case of pharmaceuticals, each day of delay in

getting a new drug to market can cost $1 million or more in lost revenues (Squires 2002).

In all these examples, the project owner prefers earlier completion, but often cannot observe

how hard the subcontractors try to shorten the duration of their sub-projects. In practice,

project managers sometimes offer subcontractors a duration-based incentive contract, hence

passing part of the penalty for delayed completion on to the subcontractors. Surprisingly often,

though, contracts just specify a fixed price, regardless of duration.

As an example of the large potential benefits of incentive contracts that tie payments to

duration, consider the Northridge earthquake (January 17, 1994), which damaged two main
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elevated freeways in Los Angeles, the interstate 5 and 10, creating severe gridlock. The repair

contract was awarded to Clint C. Meyers, who promised to have the 10 freeway open for use

in a record time of six months, while other contractors had projected the repair would take at

least 18 months to 2 years. As the City of Los Angeles claimed losses in excess of $1 million

per day for every day that the freeway was out of commission, Meyers proposed a contract

with an incentive plan. For every day the freeway remained closed beyond the 6 month target,

he would pay the city $200,000. But for every day the freeway opened ahead of schedule, the

city would pay Meyers an additional $200,000. On several occasions, the contractor incurred

additional expenses to keep the project on schedule. For instance, he paid for inspectors to be

on-site constantly to monitor and approve each step rather than waiting until the end to do a

final inspection. He passed part of the time-related bonus and penalty on to the subcontractors.

When a shipment of material was delayed, Meyers paid for express shipment rather than incur

several weeks’ delay. As a results, the 5 freeway was reopened 33 days ahead of schedule,

earning the contractor a bonus of $4.95 million, while the 10 freeway was reopened 66 days

ahead of schedule, earning the contractor a bonus of $14.8 million (Boarnet, 1998). Just how

extraordinary this performance is becomes clear by comparing it to the aftermath of the Loma

Prieta earthquake near San Francisco on October 17, 1989: the viaducts took several years to

rebuild and some have still not been reconstructed (Chang and Nojima, 2001).

From this example, and many others, it is clear that subcontractors have significant discretion

in deciding how much effort and resources to spend to accelerate completion of their work or to

mitigate the consequences of unexpected problems. In this paper, we let the project manager

offer linear duration-based incentive contracts to two subcontractors, who work in series or in

parallel. We compare the case where the project manager cannot observe the subcontractors’

effort with the first-best case, and the optimal linear contract with the optimal fixed-price

contract. We also show how the optimal effort levels and contracts vary with key problem

parameters: the subcontractors’ cost of effort, the reduction in completion time per unit effort,

the variability in completion time, and the subcontractors’ risk aversion. Consider for instance,

a simplified case, the development of a new airplane, where the engines and wings are developed

3



by suppliers. We address the following research questions:

• If the duration of wing development is more uncertain than in previous projects, due to

lack of experience with the new wing material being used, should the project manager

induce the wing manufacturer to exert more or less effort to reduce the duration?

• If the wing manufacturer is less diversified and therefore more risk averse than the engine

manufacturer, should the project manager induce the wing manufacturer to exert more or

less effort?

• If it is more costly to accelerate wing development than engine development, should the

project manager induce the wing manufacturer to exert more or less effort?

Our results can be summarized as follows. First, we confirm that incentive contracts are

always at least (weakly) superior to fixed-price contracts, resulting in shorter expected project

duration and higher expected profits for the principal. If the agents have high costs of effort,

if sub-project durations are highly variable, if agents are highly risk averse or if the marginal

effect of effort is low, then the difference between the incentive and fixed-price contracts is

small. Second, we confirm that in the serial case the optimal contracts for the two agents are

independent of one another, while in the parallel case, the optimal contracts depend on the

characteristics of both agents and both sub-projects. Our third and main result shows that, in

some cases, the behavior of the optimal effort levels is counter-intuitive. For example, if the

variability of the duration of the first sub-project increases and the first sub-project is likely to

be on the critical path, the optimal contract will induce a switch of effort away from the first

agent to the second agent.

The contribution of this paper is to formally introduce decentralized decision making, asym-

metric information, and incentive contracts into a project management setting. We model this

situation as a principal-multi-agent problem. In our parallel sub-projects case, the interaction

between the agents’ tasks and the principal’s revenue is more complex than what is usually
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considered in the existing literature on principal-multi-agent problems. To ground this study in

practice, we conducted informal interviews with project managers from various industries. We

relate their anecdotal experiences to our analytical results in the conclusions.

This paper is organized as follows. In Section 2 we review relevant literature in project

management and in economics. Section 3 introduces the basic model and notation. Sections

4 and 5 analyze the cases with serial and parallel tasks, respectively. In Section 6 we report

some numerical experiments. Section 7 concludes the paper and suggests some areas for future

research.

2 Literature

Our paper draws on two bodies of literature: the operations management (OM) literature on

project management, and the economics literature on moral hazard problems.

Project management has been studied extensively by both academics and practitioners, often

with a focus on scheduling interdependent activities. This work started with the development of

two activity network techniques: the Critical Path Method (CPM) and the Project Evaluation

and Review Technique (PERT), both in the late 1950s. Both have since spawned substantial

bodies of work. Elmaghraby (1995), Brucker et al. (1999), Tavares (2002) and Williams (2003)

review this literature, most of which considers problems in deterministic environments. Recently,

Herroelen and Leus (2005) review project scheduling models under uncertainty.

The subfield of project scheduling closest to our work is the time-cost trade-off problem,

where activity durations can be shortened but at a cost. The planner can minimize project

completion time subject to a budget constraint. Kelley (1961) and Fulkerson (1961) indepen-

dently laid the foundations for this area. Since then, the literature has considered variations of

the problem where the time-cost relationships are continuous (see Moder et al. 1983 for refer-

ences) or discrete (see De et al. 1995 for references). We contribute to this literature by placing

it in a decentralized setting, adding information asymmetry and contracting issues.
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Our work is also related to the project contracting literature. Elmaghraby (1990) is the first

to analyze project bidding in a probabilistic framework. Paul and Gutierrez (2005) study three

commonly occurring forms contracts for projects consisting of a single task and assigned to a

single contractor: fixed price, cost plus percentage and menu contracts. They use stochastic

ordering to study which type of contract results in lower expected price with risk neutral or risk

averse contractors and with collusion between contractors. Gutierrez and Paul (2000) identify

cases when splitting subprojects among multiple subcontractors, or pooling, assigning them to

a single subcontractor, are preferred.

The economics literature on principal multi-agent models is vast, see e.g., Holmstrom (1982),

Demski and Sappington (1984), Mookherjee (1984), McAfee and McMillan (1991), Itoh (1991)

and Che and Yoo (2001). Our work builds on this literature and extends it by including the case

with parallel tasks, in which the output of the productive technology depends on the individual

agents’ outputs in a non-additive manner.

In recent years, many scholars have applied agency theory to problems in operations man-

agement. Cachon (2003) and Tsay (1999) review the contracting literature in supply chain

management, Baiman et al. (2005) use agency theory in an assembly system. Their weakest

link property is similar to our case with parallel sub-projects, but they focus on adverse selection

rather than moral hazard. Gibbons (2005) reviews incentive contracting models in economics

and relates them to supply chain problems. Iyer et al. (2005) use an agency model for setting

specifications in a collaborative product development context.

Applications of agency theory to project management are very few. Sommer and Loch

(2003) use agency theory to characterize an incomplete contracts in projects with trial and error

learning under ambiguity. Later in a separate paper, they derive adjustable contracts under a

similar setting (Sommer and Loch, 2004) and ask how the project manager should adjust the

contract as ambiguity is resolved in the project. In both papers, they consider project as a single

entity. Our focus, by contrast, is on coordinating two sub-projects.
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3 Model and notation

A project manager or principal (she) is in charge of a project that consists of two tasks (or sub-

projects). We will consider the case where these tasks must be performed in sequence (serial

case) or simultaneously (parallel case). In the serial case, we do not let the sub-projects overlap.

The project is completed when both tasks are completed. The principal hires two subcontractors

(agents) to work on the two tasks.

Both agents can exert effort to accelerate their respective tasks; task completion times depend

stochastically on the agent’s effort level. The principal cannot observe these effort levels, only

the resulting task completion times. The principal can offer the agents fixed-price contracts

or incentive contracts; in the latter case, the payment to the agent consists of a fixed part

and a variable part that depends on the task duration. The agents have outside options; if an

agent’s expected profit does not meet the corresponding reservation profit level, the agent will

not participate, the entire project does not take place, and all parties receive their reservation

profit levels. This leads to the standard individual rationality constraints below. The agents

will choose effort levels that are optimal from their perspective, given the incentive contract

offered. The principal incorporates this behavior into her contract design, from which the usual

incentive-compatibility constraints follow.

The duration of task i, di, depends on agent i’s effort level ei through di(ei) = gi(ei) + �i,

where �i is a random component. The constant component gi(ei) is decreasing in effort, so

g0i(ei) < 0. Agent i’s cost of effort Ci(ei) is convex increasing, so C 0
i(ei) > 0 and C

00
i (ei) > 0, and

his profit is Πi = Wi(di)− Ci(ei). The agents are risk-averse with exponential utility functions

Ui(xi) = −e−kixi , where ki is agent i’s coefficient of risk aversion. Let πi be the profit associated

with agent i’s outside opportunity, and ui = U(πi) the corresponding reservation utility level.

The principal is risk-neutral and maximizes her expected profit. Her revenue R(d) is decreas-

ing in the project duration, so R0(d) < 0. The total project duration is d = d1 + d2 if the tasks

are serial and d = max(d1, d2) if the tasks are parallel. The principal offers the agents duration-
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Principal offers 
a contract to 
each agent 

Agents choose 
effort levels 

Principal observes 
the activity durations

Principal makes 
the payments 

Agents work on the activities 

Agents accept or 
reject the contract

Figure 1: Contract time line

based contracts Wi(di). The principal’s profit is then given by P = R(d) −W1(d1) −W2(d2).

Below, we will use linear functions for the relationships between revenue, duration and efforts,

and we restrict ourselves to linear incentive contracts, soWi(di) = w0i−w1idi. In the absence of

risk aversion, linear contracts are optimal. From Mirrlees (1974) we know that linear contracts

are not optimal for the single agent version of this problem with risk aversion, but also that the

optimal contracts are very difficult to derive. For the parallel case, we were indeed unable to do

so. We have not encountered nonlinear contracts in practice, except threshold contracts, which

we defer for future work. The freeway case from the introduction is an example of the type of

linear contract that we consider here. Under fixed-price contracts, Wi(di) = w0i.

The sequence of events is given in Figure 1. At the beginning of the project, the principal

offers a take-it-or-leave-it contract to both agents simultaneously. Both agents accept or reject

their contract. If they both accept, they then choose their effort levels simultaneously. In the

serial case, the second agent could also choose his effort level after the first agent has completed

his task. This makes no difference, as the principal does not renegotiate the contract after

observing the first task duration. Task durations are realized and observed by the principal, who

receives her payoff from the project and pays the agents based on their realized task durations.

The parties have symmetric information at the time of contracting, there is no renegotiation,

and after the contract is written, only the agents take action.

To maximize the principal’s expected profit while satisfying the individual rationality and
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incentive-compatibility constraints, we solve:

max P = E[R(d(e1, e2))]−E[W1(d1(e1))]−E[W2(d2(e2))]

s.t. E[U(Wi(di(ei))− Ci(ei))] ≥ ui i = 1, 2 (IR)

E[U(Wi(di(ei))− Ci(ei))] ≥ E[U(Wi(di(e
0
i))− Ci(e

0
i))] for all e0i i = 1, 2 (IC)

We follow the usual modeling assumptions of the time-cost trade-off literature and assume that

the principal’s revenue depends linearly on duration, i.e., R(d) = r0− r1d. We also assume that

gi(ei) = d0i − d1iei, so agent i’s expected task duration is linear in effort. Realized duration is

di(ei) = d0i−d1iei+�i, where �i is normally distributed with mean 0 and variance σ2i , small enough

that we can ignore negative durations. Agent i’s cost of effort is quadratic, i.e., Ci(ei) =
1
2
cie

2
i ;

using the linear cost of effort functions common in the time-cost trade-off literature leads to

trivial extreme-point solutions.

Let µwi and σ2wi be the resulting mean and variance of the agents’ payments Wi(di). Then

the agents’ expected utility is given by:

E[Ui(Πi)] = E[U(Wi(di)−
1

2
cie

2
i )] = U(µwi −

1

2
cie

2
i −

1

2
ki(σwi)

2). (1)

This follows because whenever U(π) = −e−kπ with π normally distributed with parameters µπ

and σ2π, then E[U(π)] = U(µπ − 1
2
kσ2π). Since U(π) is monotone increasing, we can replace the

inequality E[U(π)] ≥ ui with µπ − 1
2
kσ2π ≥ πi. In (1), the term on the right-hand side within

the utility function is agent i’s certainty equivalent which has the following interpretation:

µwi −
1

2
cie

2
i −

1

2
ki(σwi)

2 = E[Wi(di)]−
1

2
cie

2
i −

1

2
kiVar(Wi(di))

= expected payment - cost of effort - risk premium

Given effort choice ei, a certain payment of µwi − 1
2
ki(σwi)

2 would yield the same utility to

agent i as accepting the uncertain payment Wi(di), which in expectation is equal to µwi.
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4 Serial tasks

We first start with the serial case where the two tasks are performed sequentially. This case

is straightforward and is included only as a contrast to the parallel case, which is considerably

more complex and discussed later. We derive the first-best solution and the optimal linear and

fixed-price contracts.

4.1 First-best contract

In the first-best case, the principal can observe effort levels and can contract directly on them.

The principal’s optimization problem is then formulated as:

max
Wi,ei

PFB = E[R(d1(e1) + d2(e2))]−E[W1(d1(e1))]− E[W2(d2(e2))]

s.t. E[Wi(di(ei))]−
1

2
cie

2
i −

1

2
ki(w1iσi)

2 ≥ πi i = 1, 2 (IR)

Since the principal’s revenues are linear in project duration, and total project duration is

the sum of the individual task durations, expected revenues can be expressed as E[R(d1(e1) +

d2(e2))] = E[R(d1(e1))] + E[R(d2(e2))] − r0. The problem can be decomposed into two single

agent problems:

max
Wi,ei

PFB,i = E[R(di(ei)]−E[Wi(di(ei))]

s.t. E[Wi(di(ei))]−
1

2
cie

2
i −

1

2
ki(w1iσi)

2 ≥ πi

and PFB = PFB,1+PFB,2−r0. To solve this problem we first show that the constraint is binding

and substitute the expected payment into the objective function.

Proposition 1 The first-best effort levels in the serial case are given by eFBi = r1d1i
ci

. The

corresponding contracts satisfy wFB
0i = πi +

1
2
ci(e

FB
i )2 = πi +

1
2
(r1d1i)

2

ci
and wFB

1i = 0 when agent
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i chooses the optimal effort level, and wFB
0i = −∞ otherwise.

All proofs are provided in the Appendix. When effort levels are contractible, it is optimal

for the project manager to offer a fixed-price contract in exchange for the optimal effort level,

hence insulating the agent from all risk.

4.2 Optimal linear contract under asymmetric information

Here, the principal can no longer observe the agents’ effort levels, only the task durations. The

principal now solves the following problem:

max
Wi,ei

PSB = E[R(d1(e1) + d2(e2))]−E[W1(d1(e1))]−E[W2(d2(e2))]

s.t. E[Wi(di(ei))]−
1

2
ciei

2 − 1
2
ki(w1iσi)

2 ≥ πi i = 1, 2 (IR)

E[Wi(di(ei))]−
1

2
cie

2
i −

1

2
ki(w1iσi)

2 ≥

E[Wi(di(e
0
i))]−

1

2
ci(e

0
i)
2 − 1

2
ki(w1iσi)

2 for all e0i i = 1, 2 (IC)

As above, this problem can be decomposed into two single-agent problems. To solve each sub-

problem we determine the effort level that satisfies the IC constraint and substitute it into the

IR constraint. The rest of the solution procedure is identical to that for the first-best contract.

Proposition 2 The principal’s optimal linear contract for the serial case is given by

w∗1i =
r1

1 + ciki(
σi
d1i
)2
,

w∗0i = πi + w∗1id0i −
(w∗1id1i)

2

2ci
+
1

2
ki(w

∗
1iσi)

2.

The corresponding effort levels in the serial case are given by e∗i =
w∗1id1i
ci
.

Substituting w∗1i into e∗i confirms that the effort levels are lower than the first-best effort

levels. We compare the results under full and asymmetric information in more detail below,
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after deriving the optimal fixed-price contract.

4.3 Fixed-price contract

Here we restrict w1i to be zero, so Wi(di) = w0i and hence µwi = w0i and σwi = 0. The agent’s

expected utility is now Ui(µwi − 1
2
cie

2
i − 1

2
ki(σwi)

2) = Ui(w0i − 1
2
cie

2
i ). It is easy to show that

eFPi = 0, so the agents do not exert any effort to accelerate their tasks and the principal only

pays the agents enough to satisfy their reservation utility level, Wi(di) = wFP
0i = πi. Such fixed-

price contracts are obviously simple to implement which presumably explains their widespread

use in practice.

4.4 Serial tasks: comparing first-best, optimal linear, and fixed-price

cases

first-best optimal linear fixed-price
(full info.) (asym. info.) (asym. info.)

ei
r1d1i
ci

r1di
ci(1+ciki(

σi
d1i
)2)

0

di d0i − (d1i)
2r1

ci
d0i − (d1i)

2r1
ci(1+ciki(

σi
d1i
)2)

d0i

w0i πi +
1
2
ci(

r1d1i
ci
)2 πi + w∗1id0i −

(w∗1id1i)
2

2ci
+ 1

2
ki(w

∗
1iσi)

2 πi
w1i 0 r1

1+ciki(
σi
d1i
)2

0

Wi πi +
(r1d1i)2

2ci
πi +

(r1d1i)2

2ci(1+ciki(
σi
d1i
)2)

πi

R r00 +
P
i=1,2

(r1d1i)2

ci
r00 +

P
i=1,2

(r1d1i)2

ci(1+ciki(
σi
d1i
)2)

r00

P r000 +
P
i=1,2

(r1d1i)2

2ci
r000 +

P
i=1,2

(r1d1i)2

2ci(1+ciki(
σi
d1i
)2)

r000

where r00 = r0 − r1(d01 + d02) and r000 = r00 − (π1 + π2)

Table 1: Summary of results for serial tasks.

Table 1 summarizes the results for the serial case. First, as expected, the first-best contract

results in higher effort levels and hence shorter expected project duration and higher expected

profit for the principal than the optimal linear contract under asymmetric information. This

difference is the smallest for projects with low task duration variability, when the marginal effect
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of effort is low, when the cost of effort is low, and when agents are less risk averse. In the extreme

cases where task durations are deterministic (σi = 0) or the agents are risk neutral (ki = 0),

then the first two columns are exactly the same. Second, expected project duration under the

optimal linear contract is always shorter than under a fixed-price contract and the principal’s

profits are correspondingly higher. But we also observe that in projects with higher task duration

variability, more risk-averse agents, or higher cost of effort, the difference between the fixed-price

and optimal linear contracts is smaller. Third, we observe that one agent’s payment does not

depend on the characteristics of the other agent or the other task, all as expected.

5 Parallel tasks

In the case with parallel tasks, project completion time depends on the longest task, so the

objective function now depends on the expected value of the maximum of the two (normally

distributed) task completion times. We will use the following result (Clark 1961):

Lemma 3 If X1, X2 are normally distributed with mean µ1 and µ2 and variance σ21 and σ22

respectively, and X = max(X1, X2), then E[X] = µ1Φ(α)+µ2Φ(−α)+βφ(α) where β = σ21+σ
2
2,

α = µ1−µ2
β
, φ(x) = 1√

2π
e−

x2

2 , and Φ(x) =
R x
−∞ φ(t)dt.

5.1 First-best contract

The principal solves the following problem:

max
Wi,ei

PFB = E[R(max(d1(e1), d2(e2)))]−E[W1(d1(e1))]−E[W2(d2(e2))]

s.t. E[Wi(di(ei))]−
1

2
cie

2
i −

1

2
kiVar(Wi(di(ei))) ≥ πi i = 1, 2 (IR)

We cannot decompose this problem into two single agent problems but the solution procedure

is similar to that for the single agent case.
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Proposition 4 The first-best effort levels in the parallel case satisfy:

r1d11Φ(θFB)− c1e
FB
1 = 0, (2)

r1d12Φ(−θFB)− c2e
FB
2 = 0.

where eFBi are the first-best effort levels, θFB =
d01−d11eFB1 −d02+d12eFB2

σ21+σ
2
2

and Φ(·) is the cumulative

probability function of the standard normal distribution. The corresponding contracts satisfy

wFB
0i = πi +

1
2
ci(e

FB
i )2 and wFB

11 = wFB
12 = 0 when agent i chooses the optimum effort level, and

wFB
0i = −∞ otherwise.

The first-order conditions depend on the cumulative probability function for the standard

normal distribution, Φ(·). Due to the complex structure of Φ(·) we cannot obtain closed-form

solutions for the optimal contract parameters, but we can obtain analytical results on how the

optimal effort levels change with σi, ki, ci, and d1i.

Proposition 5 The optimal effort levels under the first-best contract (full information) for

agents 1 and 2 obey the following comparative statics:

eFB1 eFB2 in

↓ if θFB > 0

↑ if θFB < 0

↑ if θFB > 0

↓ if θFB < 0
variability of duration of task 1, σ1

unchanged unchanged risk aversion of agent 1, k1

↓ ↓ cost of effort of agent 1, c1

undetermined ↑ marginal effect of agent 1’s effort, d11

where θFB =
d01−d11eFB1 −d02+d12eFB2

σ21+σ
2
2

The above results show that in the parallel case the effort levels and the contract parameters

for both agents depend, as expected, on characteristics of both agents and both tasks, unlike in

the serial case. The first row is intriguing. The condition θFB > 0 is that the expected duration

of task 1 must be greater than that of task 2, i.e., in expectation, task 1 is the critical path.
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We see that an increase in the variability of task 1 will lead to a shift of effort away from agent

1 to agent 2 if task 1 is already expected to be critical, and hence an increase in the expected

duration of task 1. The reason for this is that task 2 is cheaper to accelerate (otherwise task 1

would not be critical); higher variability for task 1 increases the probability that task 2 will in

fact become critical, making it worthwhile to spend more to further accelerate task 2. The rest

of the results are as expected and consistent with the results in the serial case.

5.2 Optimal linear contract under asymmetric information

The principal’s problem is now given by:

max
Wi,ei

PSB = E[R(max(d1(e1), d2(e2)))]−E[W1(d1(e1))]− E[W2(d2(e2))]

s.t. E[Wi(di(ei))]−
1

2
cie

2
i −

1

2
kiVar(Wi(di(ei))) ≥ πi i = 1, 2 (IR)

E[Wi(di(ei))]−
1

2
cie

2
i −

1

2
kiVar(Wi(di(ei))) ≥

E[Wi(di(e
0
i))]−

1

2
ci(e

0
i)
2 − 1

2
kiVar(Wi(di(e

0
i))) for all e

0
i i = 1, 2 (IC)

To solve this problem, we first find the Nash equilibrium defined by the IC constraints, substitute

the equilibrium effort level solutions in the IR constraints, and then follow the same steps as for

the first-best solution.

Proposition 6 The principal’s optimal linear contract and corresponding effort levels for the

parallel case satisfy

w∗0i = πi + w∗1id0i −
1

2

(w∗1id1i)
2

ci
+
1

2
ki(w

∗
1iσi)

2

w∗1i =
cie

∗
i

d1i

r1d11Φ(θOL)− e∗1c1 − k1e
∗
1(
c1σ1
d11

)2 = 0 (3)

r1d12Φ(−θOL)− e∗2c2 − k2e
∗
2(
c2σ2
d12

)2 = 0
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where θOL =
d01−d11e∗1−d02+d12e∗2

σ21+σ
2
2

.

The first-order conditions again depend on the cumulative probability function for the stan-

dard normal distribution, Φ(·). Since we again cannot obtain closed-form solutions for the op-

timal contract parameters, we derive analytical results on how the optimal effort levels change

with σi, ki, ci, and d1i.

Proposition 7 The optimal effort levels under the optimal linear contract (asymmetric infor-

mation) for agents 1 and 2 obey the following comparative statics:

e∗1 e∗2 in

↓ if θOL > Λ

↑ if θOL < Λ

↑ if θOL > Θ

↓ if θOL < Θ
variability of duration of task 1, σ1

↓ ↓ risk aversion of agent 1, k1

↓ ↓ cost of effort of agent 1, c1

undetermined ↑ marginal effect of agent 1’s effort, d11

where θOL =
d01−d11e∗1−d02+d12e∗2

σ21+σ
2
2

,Θ =
d11k1c1e∗1

(d11)2+k1c1σ21
,

Λ =
−2k1 c1

d11
e∗1(σ

2
1+σ

2
2)[r1

(d12)
3

c2(σ
2
1+σ

2
2)
φ(θOL)+(d12+k2σ

2
2
c2
d12

)]

(d12+k2σ22
c2
d12

)
r1(d11)

2

c1
φ(θOL)

The first row here shows a similar result as in the first best contract, although the degree to

which task 1’s expected duration must exceed that of task 2 is greater as Θ > 0. The rest of

the results are again as expected and similar to those for the first best contract.

If both agents do not suffer from uncertainty, either by being risk-neutral or by having

deterministic task duration, i.e., if k1σ1 = 0 and k2σ2 = 0, then the effort levels under asymmetric

information are the same as the first-best effort levels.
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5.3 Fixed-price contract

Here, we restrict w1i to be zero, soWi(di) = w0i and hence σwi = 0. The agents’ expected utility

is Ui(wi− 1
2
cie

2
i ), so their optimal effort level is zero, as before. Since the agents do not exert any

effort to accelerate their tasks, the principal only pays them enough to satisfy their reservation

utility level, so Wi(di) = wFP
0i = πi.

5.4 Special case: identical agents and identical tasks

We can obtain closed-form solutions for the special case where the agents and their tasks are

identical, i.e., d01 = d02 = d0, d11 = d12 = d1, σ
2
1 = σ22 = σ2, c1 = c2 = c, and θ =

(d1)2(w∗12−w∗11)
2cσ2

.

The propositions below give the optimal effort levels and contracts under full information and

under asymmetric information with linear and fixed-price contracts.

Corollary 8 With symmetric agents and tasks, the first-best effort levels are given by eFB1 =

eFB2 = r1d1
2c
. The optimal effort levels under asymmetric information are given by e∗1 = e∗2 =

r1d1
2c(1+ck( σ

d1
)2)
. The variable components of the optimal linear contract satisfy w∗11 = w∗12 =

r1
2(1+ck( σ

d1
)2)
.

first-best optimal linear fixed-price
(full info.) (asym. info.) (asym. info.)

ei
r1d1
2c

r1d1
2c(1+ck( σ

d1
)2)

0

di d0 − (d1)2r1
c

d0 − (d1)2r1
2c(1+ck( σ

d1
)2)

d0

w0i π + (r1d1)2

2c
π + w∗1id0 −

(w∗1id)
2

2c
+ 1

2
k(w∗1iσ)

2 π

w1i 0 (r1/2)
(1+ck( σ

d1
)2)

N/A

Wi π + (r1d1)2

2c
π + ((r1/2)d1)2

c(1+ck( σ
d1
)2)

π

R r00 +
(r1d1)2

c
r00 + 2

((r1/2)d1)2

c(1+ck( σ
d1
)2)

r00 − r1σ
2

P r000 +
(r1d1)2

2c
r000 +

(r1d1)2

2c(1+ck( σ
d1
)2)

r000 − r1σ
2

where r00 = r0 − r1d0 and r000 = r00 − 2π.

Table 2: Summary of results for parallel tasks with symmetric agents and tasks
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Table 2 summarizes the results for the parallel case with symmetric agents and tasks. The

expressions for this special case are highly similar in structure to those for the symmetric version

of the serial case. The term r1, the marginal revenue the principal gains when the project

duration is reduced by one time unit, in the payment and profit expressions in the serial case is

replaced by (r1/2). In the serial case the principal achieves a one-day earlier project completion

whenever either one of the tasks is finished a day early, so he only needs to share this marginal

revenue r1 with one agent. By contrast, in the parallel case, in order to finish the project a day

earlier both tasks have to be finished a day earlier, so the principal has to share the marginal

revenue r1 with two agents.

Note also that under the fixed-price contract the principal’s revenue R∗ and profit P ∗ are

now decreasing in task duration variability, unlike the serial case where they were constant. This

is because expected project completion time does not depend on the variability of the individual

task durations in the serial case, but increases in that variability in the parallel case.

6 Numerical experiments

To illustrate the performance of various contract types and the difference between them we

performed a set of numerical experiments based on a 34 factorial design, where four parameters

can each take any of three levels. We use the 3k instead of 2k factorial design to uncover the

non-linear relationships. We vary the same four key parameters as in the sensitivity analysis in

Propositions 5 and 7: d11, the marginal effect of effort on the duration of task 1; σ1, the standard

deviation of the duration of task 1; k1, the coefficient of risk aversion of agent 1; and c1, the cost

of effort for agent 1. The corresponding parameters for agent 2 and task 2 are kept constant at

their medium level. For each combination we calculate the optimal values for principal’s profit

P , the payments to the agents W1 and W2, and task durations d1 and d2 under the first-best,

optimal linear and fixed-price contracts in the serial and parallel cases.

In the serial case, we use the expressions in Table 1 to determine the optimal values for P ,
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W1,W2, d1 and d2. Since we do not have closed form solutions in the parallel case we use the non-

linear mathematical programing solver engine in XPRESS to find the optimal contracts directly

from the original problem formulation. Using the optimality conditions derived in Section 5

gives the same results.

The full results for each combination of parameter values in the serial and parallel cases are

tabulated in Tables 1 and 2 in the online Appendix. We focus on a subset of these combinations

to graphically illustrate the interactions between the factors and the principal’s profits and

payments. We set d11 and k1 at their medium levels and let σ1 and c1 each take three values.

Figure 2 shows the changes in profit and payments for the serial case. We observe that, as

expected, the principal’s profits decrease as the cost of effort for the first agent increases, and

this decrease is steeper when the first agent’s variability is low. This can be explained as

follows: when task duration variability is high, a risk-averse agent will not exert much effort,

so the impact of an increase in cost of effort on chosen effort level will be low. We also confirm

that the principal’s first-best profit does not depend on task duration variability in the serial

case. The first agent’s payment follows similar trends as the principal’s profit; the second agent

is not affected by changes in the first agent’s costs or variability.

The interactions in the parallel case are more intriguing and sometimes counter-intuitive, as

shown in Figure 3. We observe that the principal’s profit decreases in c1, as in the serial case.

However, the principal’s first-best profit is now also decreasing in σ1, because the variability

of the first task affects the expected project duration. If c1 is low, i.e., when agent 2’s task is

the critical path, then the principal responds to an increase in σ1 by increasing his payment

to agent 1, hence inducing higher effort and shorter expected duration of task 1. Conversely,

when c1 is high, so that agent 1’s task is the critical path, an increase in σ1 leads to a reduction

in payment to agent 1, hence lower effort and longer duration. In short, and surprisingly, the

principal seems more concerned about reducing expected duration in response to an increase in

uncertainty if the task is not on the critical path. This is consistent with the analytical results

in Propositions 5 and 7.
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Figure 2: Serial case: σ1 and c1 interaction graphs for principal’s profit and wages for both
agents.

We also explore when the optimal linear contract yields much higher profits than the fixed-

price contract, and when fixed-price contracts might be considered reasonable. We use a subset

of the full results to graphically illustrate the principal’s profits under the three contract types,

letting each of σ1, k1, d11 and c1 individually take either high or low values, while keeping

the others at their medium value. As seen in Figure 4 the principal’s expected profit under the

optimal linear contract is indeed always higher than under the fixed-price contract. However, the

difference is smaller for higher values of σ1, k1 and c1 and lower values of d11. These results were

also proven analytically in the serial case. Figure 4 shows that, in our numerical experiments,

the same trends occur in the parallel case, where we do not have analytical results. Interestingly,
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Figure 3: Parallel case: σ1 and c1 interaction graphs for principal’s profit and wages for both
agents.

the cost to the principal of information asymmetry is considerably smaller in the parallel case

than in the serial case. This is because in the serial case, the principal can afford to offer an

inefficient contract to one of the agents while focusing her resources on the critical agent; in

the parallel case, completion time of both agents always matters. While we do not explore this

issue further here, this indicates that information asymmetry provides another reason to favor

parallel rather than serial structures whenever possible.

Under the same scenarios, Figure 5 shows that the expected project duration is always

shorter under the incentive contract than under the fixed price contract. However, the difference

is smaller for lower values of σ1 and higher values of k1 and c1 and lower values of d11.
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Figure 4: Principal’s expected profit (P) under first-best (FB), optimal-linear (OL), and fixed-
price (FP) contracts
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Figure 5: Expected project duration (d) under first-best (FB), optimal-linear (OL), and fixed-
price (FP) contracts

Table 3 presents average percent differences in principal’s expected profit and expected

project duration for all 81 scenarios used in the numerical analysis. Clearly, the case with

symmetric information (first-best) results in superior performance compared to the other two

cases. Similarly, the optimal linear contract is more profitable than the fixed price contract.

The results again suggest that the cost of information asymmetry is greater in the serial case

than the parallel case.
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Average increase in the principal’s expected profit (P )
FB vs OL OL vs FP FB vs FP
PFB−POL

POL

POL−PFP
PFP

PFB−PFP
PFP

Serial Case 18.7% 13.9% 34.5%
Parallel Case 6.3% 4.0% 10.7%

Average increase in expected project duration (d)
FB vs OL OL vs FP FB vs FP
dFB−dOL

dOL

dOL−dFP
dFP

dFB−dFP
dFP

Serial Case −9.5% −6.1% −15.1%
Parallel Case −13.5% −4.6% −17.4%

Table 3: Average differences in expected profit and project duration between first-best (FB),
optimal linear (OL) and fixed price (FP) contracts across all 81 scenarios

7 Discussion, conclusions, and further research

In this paper we used a moral hazard model with a principal and two agents, working in sequence

or parallel, to study the value of incentive contracts in project management. We derived closed-

form solutions for the first-best contract under full information and the optimal linear and

fixed-price contracts under asymmetric information for the serial case, and confirm that the

incentive contract results in shorter expected project duration and higher expected profit for

the principal than the fixed-price contract does. However, if the agents have high costs of effort,

the task durations are highly variable, the agents are highly risk averse, or the duration reduction

per unit of effort is low, then the difference between the incentive and fixed-price contracts is

minimal.

For the parallel case, we derived optimality conditions for the first-best and the optimal

linear contracts, and show how the optimal effort levels vary with key problem parameters. We

found that the optimal contract in the parallel case sometimes behaves in unexpected ways.

We obtained closed-form solutions for the parallel case with symmetric agents and tasks, and

performed numerical experiments to illustrate the behavior of the various contracts in the serial

and the parallel cases.
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We discussed the basic findings of our paper with project managers working in software

development, aerospace, construction and engineering contracting firms. Some of the results

were consistent with their experience. One of the project managers mentioned that “...incentive

contracts help us to complete projects in shorter time...” consistent with our model. Another

project manager noted that “...if the project scope is not clear, incentive contracts are indeed

little or no better than fixed-price contracts...”. Our model suggests that when variability in

activity durations is high, incentive and fixed price contracts give similar results. In another case

we were told that “...we like to keep the risky projects in-house so we can have more control...”.

Our model suggests that when variability in the project duration is higher, the information

asymmetry becomes more costly to the project manager.

When we posed the research questions stated at the beginning of the paper to the practition-

ers, they mostly did not know what to do or would not do anything. With the results obtained

here, we can now answer them as follows:

• If the duration of wing development becomes more uncertain, then the project manager

should induce the wing manufacturer to exert less effort and the engine manufacturer to

exert more if wing development is expected to be the bottleneck. If engine development

is expected to be the bottleneck, then the opposite recommendation holds.

• If the wing manufacturer becomes more risk averse, then the project manager should

induce both wing and engine manufacturers to exert less effort.

• If it becomes more costly to accelerate wing development, then the project manager should

induce both wing and engine manufacturers to exert less effort.

This paper provides the beginning of a framework to integrate contracting and asymmetric

information into a project management context. The simple and highly stylized cases we study

here are first steps towards modeling more complicated incentive contracting issues in this area.

There are several natural extensions to the work presented here. For example, sometimes the
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principal can observe both duration and quality of tasks and contracts on both of them. Alter-

natively, the breakdown of the total project into sub-projects could be endogenous; the principal

would then determine how to split a project into pieces by considering the characteristics of the

available agents building on the work by Gutierrez and Paul (2000). Another possibility is to

let the principal decide the degree to crash when the tasks are performed in series or partly

in parallel, building on the stream of work starting from Krishnan et al. (1997) and Loch and

Terwiesch (1998). Other extensions are the case where the task durations are correlated, or

where the principal can re-negotiate the contract with other agents after observing the outcome

of the first task.

Appendix

Proof of Proposition 1

Substituting R(d), Wi(di), and Ci(ei), agent i’s problem can be expressed as:

max PFB,i = r0 − r1d0i + r1d1iei − (w0i − w1id0i + w1id1iei)

s.t. w0i − w1id0i + w1id1iei −
1

2
cie

2
i −

1

2
ki(w1iσi)

2 ≥ πi (IR)

At optimality, the IR condition is binding. If it were not, we could replace w0i with w00i < w0i.

Since the objective function is decreasing in w0i, w00i improves the objective function. After

substituting the expected payment into the objective function, the problem reduces to:

max
ei

PFB,i = r0 − πi − r1d0i + r1d1iei −
1

2
cie

2
i −

1

2
ki(w1iσi)

2.

This is concave in ei, so we can use first-order conditions:
∂PFB,i
∂ei

= r1d1 − ciei = 0, which

yields the first-best effort level, eFBi = r1d1i
ci
. Substituting this into the objective function and

maximizing with respect to w1i yields the desired contract. ¥
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Proof of Proposition 2

Agent i will choose e∗i to maximize his utility, which is the same as maximizing E[Wi(di(ei))]−
1
2
cie

2
i − 1

2
ki(w1iσi)

2 = w0i − w1id0i + w1id1iei − 1
2
cie

2
i − 1

2
ki(w1iσi)

2. This is concave in ei; the

first-order condition is w1id1i − cie
∗
i = 0 which gives e

∗
i =

w1id1i
ci
. After substituting e∗i into the

original problem we have:

max
w0i,w1i

POL,i = r0 − r1d0i + r1d1i
w1id1i
ci

)− w0i + w1id0i − w1id1i
w1id1i
ci

s.t. w0i − w1id0i + w1id1i
w1id1i
ci
− 1
2
ci(

w1id1i
ci

)2 − 1
2
ki(w1iσi)

2 ≥ πi

At optimality, the individual rationality constraint is again binding, and the objective is de-

creasing in w0i, so the problem is equivalent to

max
w1i

POL,i = r0 − r1d0i − πi + r1
w1i(d1i)

2

ci
− (w1id1i)

2

2ci
(1 + ciki(

σi
d1i
)2)

This is concave in w1i, so the first-order condition is necessary and sufficient. ¥

Proof of Proposition 4

The IR constraints are binding. Using Lemma 3 for the expected value of the maximum of two

normally distributed random variables, the problem becomes:

max
e1,e2

PFB =r − r1[(d01 − d11e1)Φ(θ) + (d02 − d12e2)Φ(−θ) + (σ21 + σ22)φ(θ)]

− π1 −
1

2
c1e

2
1 −

1

2
k1w

2
11σ

2
1 − π2 −

1

2
c2e

2
2 −

1

2
k2w

2
12σ

2
2

where θ = d01−d11e1−d02+d12e2
σ21+σ

2
2

. We first need to prove that PFB is concave in e1 and e2. After

simplification, the first-order derivatives are:

∂PFB

∂e1
= r1d11Φ(θ)− c1e1 and

∂PFB

∂e2
= r1d12Φ(−θ)− c2e2.
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After simplifications, the second-order derivatives are given by:

∂2PFB

∂(e1)2
= −r1(d11)

2

σ21 + σ22
φ(θ)− c1 < 0

∂2PFB

∂(e2)2
= −r1(d12)

2

σ21 + σ22
φ(θ)− c2 < 0

∂2PFB

∂e1∂e2
=

r1d11d12
σ21 + σ22

φ(θ) > 0

Let H(PFB) be the Hessian of PFB. The first principal minor of H(PFB) is negative and the

determinant of H(PFB) is positive. So H(PFB) is negative definite and PFB is jointly concave

in e1 and e2. The first order conditions in the Proposition are therefore sufficient.

eFB1 and eFB2 are not functions of w11 or w12. After substituting eFB1 and eFB2 in PFB, we

have:

max
w11,w12

PFB = Constant−
1

2
k1w

2
11σ

2
1 −

1

2
k2w

2
12σ

2
2

At optimum, therefore, wFB
11 = wFB

12 = 0; the IR constraint gives wFB
0i = πi +

1
2
ci(e

FB
i )2. ¥

Proof of Proposition 6

The principal’s problem is given by:

max POL = E[R(max(d1(e1), d2(e2)))]−E[W1(d1(e1))]− E[W2(d2(e2))]

s.t. E[Wi(di(ei))]−
1

2
cie

2
i −

1

2
kiVar(Wi(di(ei))) ≥ πi i = 1, 2

E[Wi(di(ei))]−
1

2
cie

2
i −

1

2
kiVar(Wi(di(ei))) ≥

E[Wi(di(e
0
i))]−

1

2
ci(e

0
i)
2 − 1

2
kiVar(Wi(di(e

0
i))) for all e0i i = 1, 2

To maximize their utility, the agents solve the same problem as in the serial case, so they will

choose e∗i =
w1id1i
ci
. At the optimal solution, the individual rationality constraints are binding:

E[Wi(di(e
∗
i ))]−

1

2
ci(e

∗
i )
2 − 1

2
kiVar(Wi(di(e

∗
i ))) = πi i = 1, 2
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As before, Wi(di(ei)) is normally distributed with mean w0i − w1id0i − w1id1iei and variance

(w1i)
2σ2i . From Lemma 3, the expected revenue is given by:

E[max(d1(e
∗
1), d2(e

∗
2))] = r0 − r1[(d01 − d11e1)Φ(θ) + (d02 − d12e2)Φ(−θ) + (σ21 + σ22)φ(θ)]

where θ = d01−e1d11−d02+e2d12
σ21+σ

2
2

. So the principal’s problem can be written as:

max POL =r0 − r1(d01 − e1d11)Φ(θ)− r1(d02 − e2d12)Φ(−θ)− r1(σ
2
1 + σ22)φ(θ)

− u1 −
1

2
c1e1

2 − 1
2
k1(

e1c1σ1
d11

)2 − u2 −
1

2
c2e2

2 − 1
2
k2(

e2c2σ2
d12

)2

We first prove that POL is jointly concave in w11 and w12. After simplifications, the first-order

derivatives are:

∂POL

∂e1
= r1d11Φ(θ)− e1c1 − k1e1(

c1σ1
d11

)2

∂POL

∂e2
= r1d12Φ(−θ)− e2c2 − k2e2(

c2σ2
d12

)2

After simplifications, the second-order derivatives are given by:

∂2POL

∂(e1)2
= − r1d11

2

σ21 + σ22
φ(θ)− c1 −

k1c
2
1σ
2
1

d112
< 0

∂2POL

∂(e2)2
= − r1d12

2

σ21 + σ22
φ(θ)− c2 −

k2c
2
2σ
2
2

d122
< 0

∂2POL

∂e1∂e2
=

r1d11d12
σ21 + σ22

φ(θ) > 0

where θ =
d01 − e1d11 − d02 + e2d12

σ21 + σ22

Let H(POL) be the Hessian of POL. The first principal minor of H(POL) is negative and the

determinant of H(POL) is positive. So H(POL) is negative definite. POL is jointly concave in e1

and e2. The first-order conditions in the Proposition are therefore sufficient. ¥
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Proof of Corollary 8

In this symmetric case, the first-best effort levels must satisfy: eFB1 =
r1d1Φ(

d1(e
FB
2 −eFB1 )

2σ2
)

c
and

eFB2 =
r1d1Φ(

d1(e
FB
1 −eFB2 )

2σ2
)

c
. We first show, by contradiction, that the effort levels must also be

symmetric. Assume that eFB1 6= eFB2 . So we should either have eFB1 > eFB2 or eFB1 < eFB2 .

Consider the case that eFB1 > eFB2 ; then θ < 0 which implies that Φ(θ) < 1/2. In this case

we have eFB1 < r1d1(1/2)
c

and eFB2 > r1d1(1/2)
c

, which implies eFB2 > eFB1 , in contradiction with

our assumption. The other case proceeds analogously. Hence, eFB1 = eFB2 ; the corollary now

follows immediately from the first-order conditions. The optimal linear contract parameters

must satisfy: w∗11 =
r1Φ(

(d1)
2(w∗12−w

∗
11)

2cσ2
)

(1+ck( σ
d1
)2)

and w∗12 =
r1Φ(

(d1)
2(w∗11−w

∗
12)

2cσ2
)

(1+ck( σ
d1
)2)

. The proof is analogous to that

for the first-best symmetric case. ¥

References

[1] Baiman, S., S. Netessine, and H. Kunreuther, 2005, “Procurement in Supply Chains When

the End-Product Exhibits the Weakest Link Property”, Working Paper, University of Penn-

sylvania.

[2] Boarnet, M. G., 1998, “Business losses, transportation damage and the Northridge earth-

quake”, Journal of Transportation and Statistics, 2, 49-63.

[3] Brucker, P., A. Drexl, R. Mohrin, K. Neumann, and E. Pesh, 1999, “Resource-constrained

Project Scheduling: Notation, Classification, Models, and Methods”, European Journal of

Operational Research, 112, p 3-41.

[4] Cachon, G., 2003, “Supply chain coordination with contracts”, Handbooks in Operations

Research and Management Science: Supply Chain Management, Edited by Steve Graves

and Ton de Kok. North Holland.

29



[5] Chang, S. E. and N. Nojima, 2001, “Measuring post-disaster transportation system perfor-

mance: the 1995 Kobe earthquake in comparative perspective”, Transportation Research

Part A, 35, 475-494.

[6] Che, Y. and S. Yoo, 2001, “Optimal incentives for teams”, The American Economic Review,

91, 3, 525-541.

[7] Clark, C. E., 1961, “Greatest of a Finite Set of Random Variables”, Operations Research,

9(2), p 145-162.

[8] De, P., E. J. Dunne, Ghosh, J. B., C. E. Wells, 1995, “The discrete time-cost trade off

problem revisited”, European Journal of Operational Research, 81, p 225-238.

[9] Demski, J. and D. Sappington, 1984, “Optimal Incentive Contracts with Multiple Agents”,

Journal of Economic Theory, 17, p 152-171.

[10] The Economist, 2004, “Business: America flies to war; Airbus and Boeing”, Vol 373, No

8396, p 75.

[11] Elmaghraby, S. E., 1990, “Project bidding under deterministic and probabilistic activity

durations”, European Journal of Operational Research, 49, p 14-34.

[12] Elmaghraby, S. E., 1995, “Activity nets: a guided tour through some recent developments”,

European Journal of Operational Research, 82, p 383-408.

[13] Flavin, J. L., C. S. Cassidy, S. Moran and B. Schilz, 2001, Outsourcing for the future:

Making the transition from a transitional model to a technology-based drug discovery ser-

vice partner, ContractPharma, accessed at http://www.contractpharma.com/mar012.htm

on November 21, 2004.

[14] Fulkerson, D. R., 1961, “A Network Flow Computation for Project Cost Curves”, Manage-

ment Science, 7(2), p 167-179.

30



[15] Gibbons, R., 2005, “Incentives Between Firms (and Within)”, Management Science, 51(1),

p 2-17.

[16] Gutierrez, G. and A. Paul, 2000, “Analysis of the effects of uncertainty, risk-pooling, and

subcontracting mechanisms on project performance”, Operations Research, Vol 48, No 6, p

927-938.

[17] Herroelen, W. and R. Leus, 2005, “Project scheduling under uncertainty: survey and re-

search potentials”, European Journal of Operational Research, 165, 289-306.

[18] Holmstrom, B., 1982, “Moral Hazard in Teams”, The Bell Journal of Economics, 13(2), p

324-340.

[19] Itoh, H., 1991, “Incentives to help in multi-agent situations”, Econometrica, 59, 3, 611-636.

[20] Iyer A., L. B. Schwarz, and S. A. Zenios, 2005, “A Principal-Agent Model for Product

Specification and Production”, Management Science, 51(1), p 2-17.

[21] Kelley, J. E., 1961, “Critical Path Planning and Scheduling: Mathematical Basis”, Opera-

tions Research, 9(3), p 296-320.

[22] Klastorin, T., 2004, Project Management: Tools and Trade-offs, John Wiley & Sons, Inc.

Somerset, NJ.

[23] Krishnan, V., S. D. Eppinger, and D. E. Whitney, 1997, “A Mode-Based Framework to

Overlap Production Development Activities”, Management Science, 43(4), p 437-451.

[24] Loch, C. H. and C. Terwiesch, 1998, “Communication and Uncertainty in Concurrent En-

gineering”, Management Science, 44(8), p 1032-1048.

[25] McAfee, R. P. and J. McMillan, 1991, “Optimal contracts for teams”, International Eco-

nomic Review, 32, 3, 561-577.

31



[26] Mirrlees, J., 1974, “Notes on welfare economics, information, and uncertainty”, M. Balch, D.

McFadden, S. Wu, Eds. Essays on Economic Behavior Under Uncertainty, North-Holland,

Amsterdam, The Netherlands.

[27] Moder, J. J., C. R. Phillips and E. W. Davis, 1983, “Project Management with CPM,

PERT and Precedence Diagraming”, Van Nostrand Reinhold, New York.

[28] Mookherjee, D., 1984, “Optimal Incentive Schemes with Many Agents”, Review of Eco-

nomic Studies, 51, p 433-446.

[29] Paul, A. and G. Gutierrez, 2005, “Simple Probability Models for Project Contracting”,

European Journal of Operational Research, 165, p 329-338.

[30] Sommer, S. C. and C. H. Loch, 2003, “Incomplete Incentive Contracts under Ambiguity

and Complexity”, Working paper.

[31] Sommer, S. C. and C. H. Loch, 2004, “Incentive Contracts for Projects with Unforeseeable

Uncertainty”, Working paper.

[32] Squires, D. J., 2002, Key considerations for outsourcing drug development, Contract-

Pharma, accessed at http://www.contractpharma.com/October021.htm on November 21,

2004.

[33] Tavares, L. V. 2002, “A review of the contribution of operational research to project man-

agement”, European Journal of Operational Research, 136, p 1-18.

[34] Tsay, A. A, S. Nahmias and N. Agrawal, 1999, “Modeling Supply Chain Contracts: A

Review”, Chapter 10 in Quantitative Models for Supply Chain Management, S. Tayur, M.

Magazine, T. Ganeshan (Eds.), Kluwer Academic Publishers, MA.

[35] Williams, T., 2003, “The contribution of mathematical modeling to the practice of project

management”, IMA Journal of Management Mathematics, 14, 3-30.

32




