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Abstract: Thermal comfort is associated with clothing insulation, conveying a level of satisfaction with the
thermal surroundings.  Besides,  clothing insulation is commonly associated with indoor thermal comfort.
However, clothing classification in smart homes might save energy when the end-user wears appropriate
clothes to save energy and obtain thermal comfort. Furthermore, object detection and classification through
Convolutional Neural Networks have increased over the last decade. There are real-time clothing garment
classifiers, but these are oriented towards single garment recognition for texture,  fabric, shape,  or style.
Consequently, this paper proposes a CNN model classification for the implementation of these classifiers on
cameras.  First,  the  Fashion  MNIST  was  analyzed  and  compared  with  the  VGG16,  Inceptionvv4,
TinyYOLOv3, and ResNet18 classification algorithms to determine the best clo classifier. Then, for real-
time  analysis,  a  new  dataset  with  12,000  images  was  created  and  analyzed  with  the  YOLOv3  and
TinyYOLO. Finally, an Azure Kinect DT was employed to analyze the clo value in real-time. Moreover,
real-time analysis can be employed with any other webcam. The model recognizes at least three garments of
a clothing ensemble, proving that it identifies more than a single clothing garment. Besides, the model has at
least 90% accuracy in the test dataset, ensuring that it can be generalized and is not overfitting.

Keywords: clothing classifier; CNN models; thermal comfort; connected thermostat

1. Introduction
Clothing insulation is commonly associated with indoor thermal comfort. ASHRAE defines

clothing insulation as the resistance to sensible heat transfer provided by a clothing ensemble,
expressed in units of clo  [1]. There are predictive models of clothing insulation that consider
outdoor  temperature,  season,  climate,  indoor  air  temperature,  indoor  operative  temperature,
relative  humidity  [2–4].  Rupp  et  al.  [5] evaluated  the  clothing  insulation  collected  in  the
ASHRAE database  II  [6] to  predict  garment  insulation  from the  indoor  air  temperature,  the
season, and building ventilation type. Moreover, Wang et al. [7] proposed a predictive model of
clothing insulation for naturally ventilated buildings using the same ASHRAE database II. Gao et
al. [8] considered wind direction, posture, and the reduction of clothing insulation due to airspeed
to predict thermal comfort.

Alternatively, object detection and classification have been in rapid development for the last
10 years since the famous AlexNet  [9] algorithm won the 2012 ImageNet Large Scale Visual
Recognition Challenge and started a Convolutional Neural Networks revolution. Hence, Liu et al.
[10] used  a  Convolutional  Neural  Network  (CNN)  to  recognize  an  individual’s  clothes  and
activity type by capturing thermal videos as inputs. Kalantidis et al.  [11] implemented clothing
ensemble recognition from a photograph; however, that proposal was not suitable for a real-time
solution due to a slow segmentation classification.

There are real-time clothing garments or clothing characteristics classifiers such as the one
proposed by Yang and Yu [12]. They used edge detection to obtain information separate from the
background and then perform a technique similar to the model proposed by Chao et al.  [13],
which uses the Histogram of Oriented Objects (HOG) and Support Vector Machines (SVM) to
obtain  classifications.  Yamaguchi  et  al.  [14] focused  their  research  on  subjects  with  single
garments instead of a complete ensemble. Furthermore, some CNN approaches used a modified
version  of  the  VGG16.  Furthermore,  some CNN approaches  used  a  modified version  of  the



VGG16  [15] to orient the garment recognition towards texture, fabric, shape, or style  [16–19].
Nevertheless,  those  approaches  did  not  produce  a  complete  clothing  ensemble  classification;
hence, they only obtained a single clothing garment classification per image.

Due to the increase in dynamic models, adaptive methods that predict clothing properties
must  understand  how  an  individual  adapts  to  indoor  environments.  Matsumoto,  Iwai,  and
Ishiguro [20] used a computer vision system and a combination of HOG and SVM to recognize
clothing  garments.  Bouskill  and  Havenith  [21] used  a  thermal  manikin  to  determine  the
relationship between clothing insulation and clothing ventilation with different activities known
as metabolic rates. They concluded that clothing insulation has less of an effect than the design
and fabric  of the clothing garment;  thus,  they recommended analyzing the clothing garments
worn in specific places during specific activities to determine the best outfit that avoids colder or
warmer thermal sensations.

Moreover, in [20], the authors used an early piece of computer vision hardware from Omron
called OKAO Vision to classify objects  by proposing a limit  that  separated  two classes,  and
depending on where the features of new predictions lay, the SVM classified them. However, the
SVM  was  a  binary  classifier,  which  meant  it  only  chose  between  two  classes,  making  it
impossible  to  use  this  approach  as  a  real-time  clothing  insulation  calculation  method.
Additionally, the SVM calculated the gradient of each pixel together for every video frame with
each computational cost’s class. A real-time implementation of clothing recognition is useful for
this field to obtain a real-time clo value.

The idea of using computer vision to detect clothing seems expensive when thinking about
the implementation of the camera system and the computer needed to process the information and
run the solution. However, as cameras are being spread across different uses such as telecare [22–
24] or combined with personal assistants such as Alexa [25,26], the concept of cameras being part
of the smart home infrastructure needs to be considered. Thus, there would be no need to invest in
a camera system and only think about the processing part of the problem.

In  [25],  the  authors  proposed  using  Alexa  and  a  camera  to  track  seniors’  moods  and
emotions to prevent social isolation and depression. In  [26], the authors considered Alexa for
depression pre-diagnosis and suggested using cameras to track householders. Figure 1 displays
the smart home structure. Hence, cameras can track garments. For example, through a smart TV,
if possible, camera detection can monitor householder reactions or postures and profile end-users’
garments. Thus, this picture shows the integration of household appliances that can help to track
householders’ daily activities and moods. Moreover, in [26], the authors established for the first
time the concept  of a gamified smart  home to help end-users to save energy without feeling
compromised.  Besides,  previous  research  had  been  focused  on  reducing  energy  consumption
through gamified elements  [26–31]. A smart home uses socially connected products  [32–36] to
profile end-users based on their personality traits, types of gamified user, and energy users to
propose tailored interfaces that help them to understand the benefits of saving energy. Moreover,
during this research, the authors suggested considering thermal comfort  for energy reductions
[26,37].

Figure 1. Household devices integration in smart homes with cameras to classify householders’ garments.

Therefore,  a  computer  vision  system  integrated  into  camera  recognition  is  needed  to
implement  a  real-time clothing insulation recognition system to obtain real-time feedback  on



thermal comfort.  Integrating this clothing classifier within the thermostat  interface may allow
real-time feedback and monitoring to help the end-user to understand how their clothes affect
thermal comfort. Besides, increasing the setpoint by 1 °C could save electricity consumption by
6% [38].

Thus,  dynamic  interfaces  could  use  gamified  elements  to  engage  the  householder  in
enjoyable  activities  while saving energy.  There are  intrinsic and extrinsic  game elements  for
energy applications provided in the interfaces to help reduce energy [32,37,39]:
 Extrinsic elements: Offers, coupons, bill discounts, challenges, levels, dashboard, statistics,

degree of control, points, badges, leaderboard;
 Intrinsic elements: Notifications, messages, tips, energy community, collaboration, control

over peers, social comparison, and competition.

1.1. Object Classification Algorithms
A CNN handles multiple dimensions due to the convolutional layers [40]. Hence, there are

two types of approaches [41]:
 One-stage: The object detectors produce bounding boxes that contain the detected objects

without a region proposal;
 Two-stage:  The  object  detectors  carefully  review the  entire  image,  leading  to  a  slower

process than the one-stage approach but with better accuracy.
Table 1 describes the five CNNs that markedly contributed to the CNN architecture and

classifiers.

Table 1. CNN classification algorithms.

CNN Characteristics Author

AlexNet [9]

This CNN has eight layers: five convolutional layers connected by max-pooling layers,
followed by three fully connected layers. Then, the CNN is divided into two stages, with

the feature extraction part done by the convolutional layers and the classification part
performed by the fully connected layers. This became the basis for image classifiers.

Alex Krizhevsky

VGG16 [15]
VGG16 consists of convolutional layers stacked on each other. This architecture does

not change the size of the kernels in the convolutional layers and keeps it constant in a 3
× 3 value.

Researchers from
the Oxford
University

GoogleLeNet [42] or
Inception

The designers proposed a Convolutional Network with a kernel size of 1 × 1 to reduce
the image. Therefore, the CNN significantly reduced the number of parameters needed
for the training. This architecture produced better results than the existing algorithms at

that moment.

Google

ResNet [43]
This algorithm introduced the residual blocks, which are layers connected in which
some weights skipped those convolutional layers. Therefore, deeper networks are

implemented to get rid of the degradation problem.
Windows

YOLO [44,45]

YOLO stands for You Only Look Once and is a one-stage algorithm proposed in 2016.
This algorithm eliminated the region proposals method of two-stage detector algorithms
and instead produced bounding boxes. Thus, the probabilities of the object inside that
bounding box belonged to that class. Although this algorithm presents lower accuracy

than two-stage object detectors, it can be considered an accurate model.

Joseph Redmon

Tini YOLO [46]
Tiny YOLO is a modified version of YOLOv3 that keeps the algorithm’s speed while
making it computationally less expensive. Thus, the embedded systems can have the

trained model to produce predictions without expensive GPUs.
Joseph Redmon

TensorFlow  [47] is  an end-to-end open-source platform written in Python and C++ that
provides tools and libraries to allow easy implementation of a machine learning application since
it provides a tool for the necessary creation, training, deployment, and performance analysis [48].
In addition, it provides Application Programming Interfaces (APIs) which help to create a model
with  few  lines  of  code.  Therefore,  the  user  spends  more  time  focused  on  the  model
implementation and its parameters and less time on the coding part of the implementation.

TensorFlow uses data in the form of tensors or arrays of multiple dimensions, also called
matrices, and all the operations inside Tensorflow work with these tensors.

Another plus of the Tensorflow package is that it handles data more efficiently and tries to
avoid the Graphics  Processing Unit  (GPU) or  Tensor Processing Unit  (TPU) waiting for  the
Central Processing Unit (CPU) to deal with the input data by using its API, called tf.data, to



achieve  a  more  efficient  importation  of  the  dataset  and  all  the  treatment  needed  so  that  the
GPU/TPU does not suffer from data starvation.

One of the most important APIs contained within the Tensorflow package is Keras  [49].
Keras is an open-source deep learning library that was designed to quickly build and train neural
network models. It can build these models using the sequential method, which consists of adding
layers in turn with the indicated activation function and filter size [48].

Even  though  there  are  some  object  classification  models  directed  towards  clothing
recognition, most of the proposed algorithms are for fashion industry problems or produce single
clothing garment classifications and fail to generalize to other solutions and fail to be able to be
implemented  in  activity  recognition  or  other  areas  where  a  real-time  clothing  ensemble
classification  may  be  useful.  Hence,  this  paper  proposes  a  CNN  model  classification  for
implementation on real-time devices, such as cameras: the clothing ensemble classifier.

The concrete contributions of this paper are as follows:
 The model  recognizes  at  least  three  garments  of  the  clothing ensemble,  proving  that  it

recognizes more than a single clothing garment;
 The model had at least 90% accuracy in the test dataset, ensuring that it can generalize and it

is not overfitting.
Furthermore,  the VGG16,  Inception, TinyYOLOv3,  and ResNet  classification algorithms

were selected in this study because they are the most basic architectures for image classification.
Besides, the previous approaches found in the state of the art of clothing recognition models took
as a base architecture the VGG16 architecture  [14,18]. Therefore, the aim of this study was to
compare  the  basic  architectures  to  identify  which  was  the  best  real-time  clothing  classifier.
Furthermore, as the classifier will be used at home, TinyYOLOv3 has a small architecture that
can be implemented on embedded systems such as the Raspberry,  FPGA, or NVIDIA Jetson
Nano.

2. Materials and Methods
Figure 2 displays the methodology used during this research. First, Fashion MNIST was

analyzed  and  compared  with  the  VGG16,  Inception,  TinyYOLO,  and  ResNet  classification
algorithms to determine the object classifier that best suited the clo classification. Then, for the
real-time analysis, a new dataset with 12,000 images was created and analyzed with YOLOv3 and
TinyYOLO.  Since  most  real-time solutions  used  the  YOLO algorithm,  a  YOLO model  was
trained to obtain a real-time clothing garment classifier. Besides, a Tiny YOLO model was tested
for the intimacy of the users. Research suggested that Tiny YOLO can be implemented for real-
time image detections in constricted environments and implemented into an embedded system.
Furthermore, the Tiny YOLO was trained with the recommended weights from another large-
scale object detection, segmentation, and captioning dataset known as COCO  [50]. Finally, an
Azure  Kinect  DT was  employed to analyze  the  clo  values  in  real-time.  Moreover,  real-time
analysis can be employed with any other webcam.



Figure 2. Methodology.

All the tests were performed with a GeForce TX 2080 Ti GPU and an AMD Ryzen 3950 12
core 3.5 GHz processor to avoid any bias during the time measurements. In addition, a Huawei
P30 Lite  cellphone’s  camera  was  used  for  static  images  and  real-time  videos.  The  recorded
images show an individual in a living room walking off camera, changing a garment, walking,
and sitting down. The video lasted 24 s.

Furthermore, the current setting did not have more individuals to analyze at the same time;
hence, TV series scenes were used to compensate for that lack of individuals and visualize the
changes that the model had.

Figure 3 depicts the flowchart used during this research for the entire process for training a
neural network.



Figure 3. NN training flowchart.

2.1. Datasets
Two datasets were analyzed before training the CNN models.  The Deep Fashion dataset

provided different labeled images grouped into category, texture,  fabric,  shape, part, and style
[16]. The Fashion MNIST dataset [51] provided 70,000 images of clothing garments divided into
60,000 images  for  training  and  10,000 images  for  testing.  The Fashion  MNIST dataset  was
divided into 10 classes: T-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and
ankle boot.

A new dataset consisting of 12,000 images was proposed because of the dataset analysis.
Therefore, 2000 images were data augmented to obtain 10,000 additional images, resulting in a
total of 12,000 images. These images were divided into sets of 10,800 for training and 1200 for
testing. These images were randomly selected from the internet with different backgrounds and
different clothing garments worn. The classes were decided based on the premise of keeping the
training time at a minimum but having eight different classes to be recognized. Besides, due to
hardware and time constraints, only eight labels were selected. Hence, Table 2 presents the eight
different  classes  that  were considered.  Furthermore,  dresses  were labeled as skirts  due to the
similarity of the bottom part of the clothing garment. During the study, there was no access to a
computer  with  a  Linux  operating  system,  so  Google  Colab  was  used  instead  to  train  both
networks (YOLO and 
TinyYOLOv3) with a custom dataset. However, Google Colab limited the GPU access time, and
the 60+ hours needed to train the network translated into several weeks.

Table 2. New dataset labels.

Label Description
0 Highly insulating jacket
1 Highly insulating shoes
2 Jacket
3 Shirt
4 Trousers
5 Shoes
6 Hat
7 Skirt

The labelImg library was used to label the images because this library allows images and
texts  to  be  handled  to  classify  them  through  bounding  boxes.  Thus,  this  classification  is
compatible with the YOLO format. The advantage of YOLO is that it can detect and classify
various objects inside an image, which is perfect for a clothing ensemble classification problem;
therefore,  this  was  ideal  for  the  research  scope.  After  labeling  the  2000  images,  the  data
augmentation was performed using the clodsa library, as the train and test files were created in the
YOLO format. This library was used to perform image transformations on the labeled dataset by
keeping the bounding boxes in the correct place. Thus, the augmented dataset increased to 12,000
images.



2.2. CNN Algorithms
Figure  4  depicts  the  four  CNN algorithms  used  during  this  research.  The  VGG16 and

Inceptionv4 considered preloaded weights as the Keras application class [15,48]. The ResNet18
[43,48] was built from scratch, and the TinyYOLOv3  [46] had no preloaded weights and was
built from scratch. Thus, the ResNet18 allowed us to make a comparison with the Tiny YOLO
model.  Moreover,  the  Tiny  YOLO model  considered  preloaded  weights.  It  was  trained  with
Linux commands to perform a comparison with the independent images.

Furthermore, the validation and training accuracy and the confusion matrices were plotted to
compare each CNN. Besides, five images were tested to obtain the clo value in real-time. The
model detected the eight different classes and displayed the total clo value and the probability
percentage of belonging to the class they examined.

The Tiny YOLO considered pre-trained weights because the other CNN models used these
feature extractors as their method to obtain weights. Thus, the Tiny YOLO performed the same
tests  on the same images and compared  them with the other  CNN models.  Furthermore,  the
comparison made it possible to visualize any difference with the model created from scratch.
Finally, the last model was trained in Google Colab and operated with the new custom dataset of
12,000 images.  These  12,000 images  came  from the  original  image  dataset  of  2000 images
gathered from the internet with no particular size. These images were labeled with the YOLO
format;  then,  data  augmentation  techniques  were  used  to  add  rotation,  hue  changes,  contrast
changes, horizontal flip, Gaussian noise, and gamma color correction to enlarge the dataset and
cover  more  areas  where  the camera  and lighting settings may affect  the effectiveness  of  the
model.

The threshold refers to the models’ confidence percentage that a detected object belongs to a
class. For instance, a threshold value of 0.5 generated bounding boxes around objects that have
over 50% probability of belonging to the predicted  classes.  Thus, this project  used an initial
threshold of 0.4 and lowered it to 0.2 for the video test. For the images, the threshold was set to
0.1 to study all the classifications the model makes.

Figure 4. CNN model architecture for VGG16, Inceptionv4, TinyYolov3, and ResNet18.

2.3. Training the Models



The training was conducted using 100 epochs, a batch size of 128, the Adam optimizer, and
a constant learning rate of 0.01. A change to a test of 0.05 was tried with no significant change.
Besides,  due  to  time and hardware  constraints,  changing the  parameters  using Google  Colab
would take several  weeks.  Thus, no further  changes were performed for this hyperparameter.
However, these parameters could be tested in future work.

The compile method configured the network, whereas the fit method was used for the model
training. Therefore, the training dataset was the input parameter. Besides, the number of batches,
epochs, and callbacks were chosen. The batches were divisions of the dataset used to train on a
random portion instead of the whole dataset to avoid the failure of the computer due to not having
enough Random Access Memory (RAM) to produce the result.

Google Colab was used for the YOLO training because a Linux command was needed to
create the required environment and train the model. However, the main drawback was the time
limit. Google Colab allows access to its GPU for 4 h; then, it is necessary to wait for 18 h to gain
access again for another 4 h. Hence, the Tiny YOLO model training took 90 h, of which 60 h
corresponded to the training time.

Currently,  there  has  been  no  comparison  between  Tiny  YOLOS’s  feature  extraction
architecture  with  the  other  common  architectures.  Consequently,  during  this  research,  the
comparison was performed against the other image classifiers. Furthermore, neither YOLO nor
Tiny YOLO was previously implemented on Keras. Hence, the sequential method was built to
compare  the  different  CNN models  with Tiny  YOLO.  Moreover,  this  model  was  built  from
scratch using the same activation functions and the number of filters, sizes, and strides to keep the
model as close to the original as possible.

As for the VGG16, Inceptionv4, and ResNet18 models, Keras included a method to call on
these models and used them as feature extractors to add a few dense layers and differentiate the
classifications. Thus, this method was used to compare the models.

2.4. Comparing the Models
The accuracy results were obtained from the training models and were plotted against the

epochs to see how the models changed their performance along with the training and if there was
any overfitting present, as well as to recognize if early stopping should have been used to avoid
overfitting.  This  accuracy  corresponds  to  the  best  accuracy  of  the  validation  data  and  the
corresponding best accuracy on the training data for that same epoch.

Additionally, confusion matrices were built using the network’s predictions compared to the
actual values with the test dataset to analyze if the accuracy was true. A model that classified
everything as a negative except a few positive classifications correctly can have an accuracy value
of  over  90%;  nonetheless,  this  model  would be  useless.  Furthermore,  the  metrics  for  model
evaluation used during this study were the precision, recall, and F1 score.

2.5. Study Case: Clothing Insulation Real-Time Analysis Applied on Thermostats
Once  the  CNNs  were  trained,  a  real-time  clothing  recognition  approach  that  can  be

implemented at home was proposed. This real-time recognition was oriented to infer clothing
insulation based on the clo values presented in Table 3. Figure 5 depicts the flow chart considered
during the proposed solution to obtain a real-time implementation of clothing recognition.



Figure  5.  Flowchart  for  the  image  processing  and  Deep  Neural  Network  classification  for  real-time
implementation of clothing recognition.

Thus, the process used in this study was to select the dataset to be implemented in the model
training,  label  the  images  to  add  more  precision,  and  provide  information  about  the  people
wearing  the  clothes  and  background.  Clothing  affects  factors  that  involve  the  heat  transfer
between  the  human  body  and  the  ambient  environment;  besides,  clothing  insulation  affects
thermal comfort because the difference in the value of this factor can change the perception of the
ambient environment’s temperature.

For this reason, both human-centered and building-centered thermal comfort  calculations
consider clothing insulation as a factor for the overall thermal comfort range. However, a thermal
calculation method has been overlooked due to the difficulty of detecting and classifying every
clothing garment that a user is wearing.

Table 3. Clothing insulation values considered for the classes [52].

Label Garment (clo) 1 (m2 C/W)

0 Highly insulating jacket,
multicomponent 0.40 0.062

1 Highly insulating shoes, boots 0.10 0.016
2 Jacket, no buttons 0.26 0.040
3 T-Shirt 0.09 0.010
4 Trousers (straight, fitted) 0.19 0.029
5 Shoes [1] 0.04 0.006
6 Warm winter cap 0.03 0.00
7 A-Line, knee-length 0.15 0.023

1 1 clo = 0.155 m2 C/W.

Then, a home located at Concord, California, was energy simulated to measure the impact of
increasing or decreasing the temperature by 1 °C at the HVAC setpoint. A change of 1 °C can
save 6% of electricity  [38]. Other elements fed into the energy model were a weather file from
Concordia,  the  construction  materials,  the  home  schedule,  and  loads.  The  energy  model
simulation used LadybugTools v1.4.0 from Rhinoceros + Grasshopper. The living room zone was
analyzed  to  obtain  the  HVAC consumption  and  calculate  the  PMV/PPD to  determine  if  the
householder  was comfortable.  The parameters  considered were a metabolic rate of  1.0 and a
dynamic clo value based on Table 3.

Then, a dynamic interface was proposed based on the energy model results. This interface
was built in MATLAB/Simulink V.R2021a. This interface determined, in an interactive and ludic
manner,  how to  save  energy  by  modifying  the  setpoint  and  suggesting  appropriate  types  of
clothes.  Figure 6 displays the input values inside a green box (interface,  the month, day, and
hour);  the  output  values  were  the  hourly  consumption  in  Watts,  the  outdoor  and  indoor
temperature,  the  relative  humidity,  the  setpoint,  and  the  expected  savings.  In  the  “Did  you



know?” section, a message was displayed, and based on the possible energy savings and thermal
comfort, three actions were displayed:
1. Wear lightweight clothes;
2. Wear the same clothes;
3. Wear warmer clothes.

The  “Take  a  look”  button  showed  the  householder  the  potential  savings  achieved  by
performing those actions. The “Reward available” and “Community news” elements belong to a
gamification structure. These buttons are displayed this way because gamification theory suggests
that  promoting  intrinsic  motivations  and  extrinsic  motivations  in  real  activities  can  achieve
specific goals, such as energy reduction [28,32,37,39].

Figure 6. Thermostat interface proposal.

3. Results
Although the proposal was to use both datasets to compare results, only Fashion MNIST

was considered  because  the Deep Fashion dataset  was encrypted and required a password to
decompress the dataset files. Therefore, an e-mail was sent to the authors, but we never received a
response or the required password. Thus, a new dataset was created.

3.1. Datasets Treatments
Figure 7 depicts the dataset observation and the divisions considered for training validation

and testing stages with the Fashion MNIST dataset. The image shows that the dataset had 10
different classes with the grayscale format and was printed into the NHWC format.  Figure 8
shows that the distribution showed no significant difference for the training data and validation
data. That means that the model was not biased.



Figure 7. Fashion MNIST observation.

.

Figure 8. Fashion MNIST division.

In addition,  the data augmentation process  used the clodsa package.  Figure 9 shows an
example  of  these  transformations.  Therefore,  the  results  of  each  transformation  allowed  the
labeled bounding boxes to keep their place without affecting the training.

Figure 9a shows the flipping transformations. They cover different postures of the people;
the vertical flip considers some individuals that prefer to lay down with their feet up, for instance,
to  alleviate  feet  pain.  Figure  9b  displays  the  hue  and  the  contrast  transformations  to  cover
different lightning environments and possible impediments for a camera. Figure 9c represents the
blurring and histogram transformation. They were selected to cover the difference between the
image resolution taken from cameras with fewer megapixels or lower resolution than the ones
used for training.

There were some differences in the number of examples containing people wearing jackets,
shirts, and trousers because it was relevant to discern between a highly insulating jacket and a
regular  jacket.  Any  shoe  that  covered  the  ankle  was  labeled  as  a  highly  insulating  shoe.
Furthermore, no differentiation for sandals was made. Every dress was labeled as a skirt due to its
similarity with the skirt’s shape. Besides, the objective was to have fewer classes to have less
training time, and thus we prioritized recognizing several parts of a clothing ensemble such as
shirts,  jackets,  shoes,  and skirts that  are more common and have different  clothing insulation
values.

(a)



(b)

(c)

Figure 9.  Data augmentation process: (a) horizontal and vertical flip; (b) hue and contrast transformation;
(c) blur and histogram transformation.

3.2. Object Classifiers Comparison
The validation and  training  accuracy  graphs  for  all  models  are  shown in the  following

images, where Figure 10a is from the VGG16 network, Figure 10b is from the inception model,
Figure 10c is from the ResNet34 network, and Figure 10d is from the Tiny YOLO network.

Figure  10a shows that  the  reached  accuracy  was  below 0.8.  Although this  model  used
preloaded weights, it was not as accurate as the other models. This architecture was the basis for
some of the proposed solutions for clothing recognition found in the literature reviews. Therefore,
it was relevant to inspect the performance of this algorithm. Even though there was no difference
between the accuracy from training and the validation, it had a low score in the accuracy metric
compared with the other models.

The accuracy graph of the Inception model (Figure 10b) shows that the Inception model
fares better in the accuracy metrics when compared with the VGG16 model but failed to reach a
stable point within the 100 epochs. Therefore, this model required more epochs. Although, there
was  little  difference  between  the  validation  and  training  accuracy,  the  ResNet18  and  Tiny
YOLOv3 models had better scores in both datasets.

Figure 10c reveals that the ResNet algorithm reached a perfect training accuracy, but the
validation  accuracy  was  barely  above  90%.  Hence,  overfitting  needs  to  be  considered,  and
implementations of dropout can improve the model. Moreover, early stopping can be considered
because the best accuracy for the validation was in the first epochs.

Figure 10d shows that the Tiny YOLO made from scratch had a good accuracy but that
there  was  overfitting  since  the  top  accuracy  score  was  reached  in  the  first  epochs  and  the
difference between training and validation accuracy was greater than 5%. Therefore, a dropout
layer with a 50% drop rate was implemented at the middle of the hidden layers.



(a) (b)

(c) (d)

Figure 10. Validation and train accuracy graphs: (a) VGG16 accuracy; (b) Inception accuracy; (c) ResNet
accuracy; (d) Tiny YOLO accuracy.

Figure 11 presents the result of the dropout layer implementation, showing that there was no
discerning difference between the results obtained with and without dropout. Therefore, for this
implementation, the difference in accuracy scores was not enough to consider dropout, and the
test dataset results needed to be analyzed. Besides, this may also indicate the need for a bigger
dataset.

As the accuracy may be a misleading metric, a confusion matrix was employed to make a
more complete comparison.

Figure 11. Tiny YOLO with 50% dropout.

Figure 12 depicts the confusion matrices. The model seems to have problems detecting the
T-shirt/top, pullover, coat, and shirt classes. The shirt class had more errors because the model



misclassified clothing items as a shirt. Hence, this model was sensitive towards the shirt class.
Moreover,  all the models presented this problem, because it was difficult to separate the shirt
class from the T-shirt/top class and some of the coat class examples.

The confusion matrices show that even though ResNet and Tiny YOLO seemed to have
better  results for  the accuracy  metric than the Inception model,  Inception seemed to perform
better in the test dataset. So, to finish this comparison, we consider the numeric values side by
side to be able to have a better look at the differences between the models.

(a) (b)

(c) (d)

Figure 12. Validation and train accuracy graphs: (a) VGG16 accuracy; (b) Inception accuracy; (c) ResNet
accuracy; (d) Tiny YOLO accuracy.

Table  4  shows  that  Tiny  YOLO  and  ResNet18  performed  better  in  the  training  and
validation stages than the other models. The testing accuracy was below that of the Inception
model, but this model extracted better features, as confirmed by the recall value.

Therefore,  the  Inception  model  was  the  best  model  in  terms  of  recognizing  clothing
garments, but it used preloaded weights. Hence, for real-world implementation, a trained Tiny
YOLO  was  created  using  Linux  commands  and  used  preloaded  weights  to  make  a  fair
comparison. Nevertheless, these commands did not offer a way to see the accuracy in the different
datasets used for training, validation, and accuracy determination. Therefore, the testing images
were used to compare the models. These images were considered due to the complexity of the
postures or objects in front of the individuals. 

Table 4. Comparison of models.

Model Training
Accuracy (%)

Validation
Accuracy (%)

Test
Precision (%)

Test
Recall (%) F1 Score

VGG16 76.16 75.17 75.85 75.85 75.85
Inception 96.0 94.76 95.18 95.07 95.12
ResNet 99.9 92.71 95.46 92.85 94.14

TinyYOLOs 99.48 91.11 91.07 91.10 91.08



A test on five different images that were not part of the datasets was used to test the real
implementation of the CNN models since the objective was to train a CNN model with a high
accuracy  rate in a training dataset  and implement  it  in a real-world situation, where  external
factors such as noise or light could affect the models’ performance.

Figures 11 depicts five images with different postures and garments. Figure 13a shows an
individual  with  a  seated  posture  and  lighter  garments,  Figure  13b shows an  individual  with
reclined posture with a jacket, Figure 13c shows a reading posture with a highly insulated jacket.
Figure 13d shows a model in a standing posture with sandals and lighter garments. Figure 13e
shows an individual in a writing posture with lighter garments.

(a) (b)

(c) (d)

(e)

Figure 13. Test photos: (a) Test photo 1: seated posture; (b) Test photo 2: reclined posture; (c) Test photo 3:
reading posture; (d) Test photo 4: standing posture; (e) Test photo 5: writing posture.

Table 5 shows the predicted classes, separating between the top choice for the model and the
other possible classes, according to how close the probabilities for the top class were, considering
a threshold of  10%.  The final  column has the  time in milliseconds it  took for  the  model  to



produce the classification. Tiny YOLO from scratch (Tiny YOLOs),  Tiny YOLO from Linux
(Tiny YOLOl), and the Inception model produced more than one classification. Nonetheless, they
had problems differentiating between the T-shirt/top, shirt, coat, and pullover classes.

Moreover,  these three models managed with these images to produce multiple classes of
classification in most images. Unfortunately, none of them were consistent, possibly due to the
lack of additional information from the Fashion MNIST dataset. Besides, these models can be
used  for  clothing  ensemble  recognition.  Nevertheless,  they  had  problems making the  correct
classifications; thus, bounding boxes were required.

Furthermore,  real-time  detection  algorithms  considered  the  YOLO  or  Tiny  YOLO
architecture. The Inception algorithm could present problems for real-time implementation due to
the average recognition time. Therefore, the Tiny YOLO model was considered since it tested the
possibility of obtain a garment ensemble classifier by using a dataset with more information.

Table 5. Testing on independent images.

Model Top Class Probability Other Classes Time
Test photo 1

TinyYOLOs Bag Shirt, Pullover 53
VGG16 T-shirt/top 60

Inception Shirt Pullover, Trouser 32
ResNet Shirt 50

Test photo 2
TinyYOLOs Bag T-shirt/top, Shirt 57

VGG16 T-shirt/top 68
Inception Shirt Pullover 46
ResNet Shirt 47

Test photo 3
TinyYOLOs Shirt Bag, Pullover 48

VGG16 Bag 65
Inception Shirt Pullover 57
ResNet Shirt 48

TinyYOLOl Coat Pullover
Test photo 4

TinyYOLOs Bag Trouser, Shirt 53
VGG16 Ankle Boot 68

Inception Shirt Pullover 48
ResNet Shirt 47

TinyYOLOl Pullover
Test photo 5

TinyYOLOs Bag Shirt, Pullover 52
VGG16 T-shirt/top 72

Inception Shirt Pullover, Trouser 50
ResNet Shirt 40

TinyYOLOl Coat Pullover

3.3. Tiny YOLO and YOLO Using Transfer Learning
Figure 14 depicts the labeled dataset with bounding boxes for the YOLO and Tiny YOLO

models using a threshold of 0.1; then, the threshold was increased for the YOLO model to 0.4 and
0.5.

Figure 14a, shows that the sofa was misclassified as a skirt with a 51% probability. Figure
14b shows that the model only classified the shirt and jacket. As these figures show, we found
that a threshold of 0.1 was labeling the sofa and floor, and thus the threshold was increased to 0.4.
Hence,  Figure  14c  shows  that  the  model  recognized  the  jacket,  trousers,  and  shoes  but
misclassified the coach. Moreover, Figure 14d shows that the model recognized three garments;
thus, another test was made by increasing the threshold up to 0.5. Therefore, as shown in Figure
14e,f,  the  model  recognized  two clothing  garments.  This  threshold  was  needed  because  this
algorithm  proposes  the  classification  and  the  bounding  boxes  for  recognized  objects.
Furthermore,  this  threshold  value  was  considered  to  avoid  detected  objects  that  were  not
contained in any of the classes, such as the sofa or the floor.



The Tiny YOLO model classified the garments with a threshold of 0.1. Figure 14g shows
that the model properly classified all the clothes. Figure 14h shows that the model misclassified
the trousers. Figure 14i shows that the model failed in classifying the garments except for the
trousers. Figure 14j shows that the model misclassified the sofa as a skirt and trousers. Figure 14k
shows that the model wrongly classified the laptop as a shirt.

(a) (b)

(c) (d)

(e) (f)



(g) (h)

(i) (j)

(k)

Figure 14. Bounding boxes with a 0.1 threshold: (a) YOLO results for test photo 1; (b) YOLO results for
test photo 2. YOLO results: (c) test photo 3 with 0.4 threshold; (d) test photo 4 with 0.4 threshold; (e) test
photo 5 with 0.4 threshold; (f) test photo 4 with 0.5 threshold. Tiny YOLO results with 0.1 threshold: (g) test
photo 1; (h) test photo 2; (i) test photo 3; (j) test photo 4; (k) test photo 5.

Figure 15 depicts the best and worst video results for the YOLO and Tiny YOLO models
with 0.4 thresholds. Screenshots were taken to produce the results and show them in this paper.
Figure 15a,b show that the model misclassified the shirt as a skirt because the model understood
that  this  type of  shirt  seemed more  like  a  skirt.  However,  Figure  15a shows that  the model
reflected  the best  classification  for  the YOLO model.  In  Figure  15c,  the Tiny YOLO model
classified correctly the highly insulated jacket. Nevertheless, Figure 15d shows that the model
misclassified the sofa as trousers. Therefore, the threshold was decreased up to 0.2 to review if
there were more classifications that the model obtained for multiple garment detections. Since the
threshold  was  lower,  there  were  more  resulting  images.  Figures  15e–h  depict  the  worst
classifications, whereas Figures 15i–l show the best classifications.

Figure 15e shows that the model misclassified the sofa as trousers. Figure 15f shows that the
model misclassified half of the scene as a highly insulated jacket, some books as shoes, and the



shirt as a skirt. Figure 15g shows that the model did not recognize the individual’s garments and
misclassified the sofa as trousers and highly insulated shoes. Figure 15h shows that the model
misclassified the sofa as a shirt, the floor, the shirt, and the shoes as trousers.

Figure 15i shows that the model classified the garment as a highly insulated jacket and, due
to the shape, also as a skirt. Figure 15j shows that the model correctly classified the shows and the
shirt, and even suggested that it  could be a skirt; nevertheless,  it  misclassified the trousers as
highly insulated shoes or a skirt. Figure 15k shows that the model correctly classified the clothing
as a highly insulated jacket but misclassified it as a trouser. Figure 15l shows that the model
classified the shirt and trousers; however, the model considered the trousers to include the sofa.

(a) (b)

(c) (d)

(e) (f)

(g) (h)



(i) (j)

(k) (l)

Figure  15.  Video  results  with  0.4  thresholds:  (a)  YOLO’s  best  classification;  (b)  YOLO’s  worst
classification; (c) Tiny YOLO’s best classification; (d) TinyYOLO’s best classification. Worst video results
with 0.2 thresholds: (e) YOLO with  sofa view; (f) YOLO with a seated individual; (g) Tiny YOLO with
highly insulated jacket; (h) Tiny YOLO with a seated individual. Best video results with 0.2 thresholds: (i)
YOLO with highly insulated jacket; (j) YOLO with a shirt; (k) Tiny YOLO with highly insulated jacket; (l)
Tiny YOLO with a seated individual.

3.4. Study Case: Clothing Insulation Real-Time Analysis Applied on Thermostats
The clothing insulation values are shown in Table 3. Moreover, since the previous video

testing did not produce proper classifications, multiple users, garments, and posture were tested
on a TV show. Nevertheless, to avoid any copyright problems, these images are not displayed
here. Hence, the results were as follows:
 0.4 threshold:

o The YOLO model had problems detecting the garments with darker objects, but with
clearer objects, it produced a full clothing classification;

o The  Tiny  YOLO model  did  not  detect  multiple  clothing  garments  and  incorrectly
classified hair as a hat, and it did not detect darker objects.

 0.2 threshold:
o The YOLO model  showed incorrect  classifications or  multiple classifications for  a

single object. However,  the YOLO model classified multiple clothing garments and
produce more correct classifications than the Tiny YOLO model;

o The Tiny YOLO made multiple clothing garment classifications, but it misclassified
darker objects.

Hence, an Azure Kinect DT was employed to test the clo value in real-time. This test was
oriented  toward  clothing insulation classification.  Thus,  the bounding boxes had color  values
depending on the clo with this assumption:
 Warmer clothing garments were closer to the red color of the bounding box; colder clothing

garments were closer to the blue color.
However, the Tiny YOLO model did not provide noteworthy results for multiple clothing

garments  recognition.  Consequently,  Figure  16  depicts  the  YOLO model  results.  Figure  16a
shows that the model correctly classified the garments, giving a clo value of 0.32; nevertheless, it
did not recognize the highly insulated jacket. Figure 16b shows that the model considered the
highly insulating jacket, giving a clo value of 0.72. Figure 16c shows that the model accurately



classified the highly insulated jacket and the trousers, but it did not classify the shirt. Figure 16d
shows that the model correctly classified all the garments.

(a) (b)

(c) (d)

Figure 16.  YOLO classifier for clothing insulation values: (a) garments with 0.32 clo; (b) garments with
0.72 clo; (c) garments with 0.59 clo; (d) garments with 0.28 clo.

The total HVAC consumption for the living room zone was 3952 kWh. The cooling setpoint
was 24.4 °C, and the heating setpoint was 21.7 °C. After increasing by 1 °C the cooling setpoint
and decreasing by 1 °C the heating setpoint, the HVAC consumption was 2923.7 kWh. Figure 17
depicts the monthly chart of HVAC kWh consumption before and after increasing or decreasing
the setpoint. There were monthly reductions that went from 18% to 47%. Nevertheless, strategies
in the thermostat interface need to engage the householder to reduce energy consumption without
losing thermal comfort.

Figure 17. Monthly HVAC consumption in kWh.



Thus, Figure 18 displays the interface on three different dates and the required actions to
reduce energy consumption:
1. July 10 at 4:00 p.m. (Figure 18a): increase the setpoint by 1 °C and wear lightweight clothes

to reduce the HVAC consumption;
2. December 8 at 9:00 p.m. (Figure 18b): decrease the setpoint by 1 °C and wear the same

clothes;
3. February  8 at  8:00 p.m.  (Figure  18c):  decrease  the  setpoint  by  1  °C and wear  warmer

clothes.

(a) (b)

(c)

Figure 18. Thermostat interface actions depending on the date: (a) increase the thermostat temperature by 1
°C and wear lightweight clothes; (b) decrease the setpoint by 1 °C and stay with the same clothes: (c)
decrease the setpoint by 1 °C and wear warmer clothes.

4. Discussion
The Fashion MNIST dataset helped as a guideline for the new dataset images. Therefore, the

new dataset  fitted the models’ input parameters.  Figure 5 shows that the printed images were
correctly labeled and there was no clear bias towards a certain class after the dataset division.
Accordingly, the datasets were ready to train all the CNN models.



In terms of the overall behavior, the models presented problems with the shirt, T-shirt/top,
and  coat  classes  due  to  the  dataset  containing  dresses  labeled  as  skirts.  This  labeling  was
performed to have the minimum number of classes to make the training process as efficient as
possible  because  the  increment  of  one  class  relied  on  2000 more  iterations  for  the  training.
Consequently, more examples are needed to avoid this confusion and improve the classifier.

The real-time implementations were successful.  The real-time test  for the YOLO model
successfully recognized the clo values for each item of clothing and even managed to produce
results  in a  close-up.  However,  at  certain  times,  it  had difficulties  differentiating overlapping
garments. Thus, more examples with these considerations are required. The Tiny YOLO model
misclassified some garments; hence, more training images are required to make this model more
robust.

Another factor to consider is that the Tiny YOLO model seemed to have no problem with
computational power, but the YOLO model slowed down the real-time feed of the video. Hence,
the model requires certain hardware characteristics to be successfully implemented in real-time.

Besides,  real-time  feedback,  monitoring,  and  the  interaction  between  the  interface,  the
thermostat,  and  the  householder  allow  actions  to  promote  energy  reductions  without  losing
thermal  comfort.  Thus,  householders  can  receive  suggestions  to  increase  comfort  and  save
energy. Furthermore, to deeply understand thermal comfort and how it affects the environment
and householder  preferences,  it  is  relevant  to  understand  the  type  of  user  that  is  behind  the
interface, their preferences, and their location because their behavior will depend on other factors
such as gender, age, country, culture, and fashion style, among others.

5. Conclusions
The results from the model comparison showed that the feature extraction architecture of the

Tiny YOLO algorithm was on par with other image classifiers’ architectures and can be used as a
clothing ensemble classifier since it produced multiple clothing classifications, and it produced
accuracy percentages over 90% in all three datasets, which was the objective for this project.

However, it failed to obtain better results in the independent images because the Fashion
MNIST dataset had insufficient information to differentiate between the shirt class, the coat class,
and the T-shirt/top class. The Tiny YOLO model only achieved 73% of correct classifications on
that class, and of the remaining 27%, only 11% was misclassified as the T-shirt/top class. Thus,
more information on these classes is needed since this was observed for all models, not only Tiny
YOLO.

Hence, the Fashion MNIST dataset was not good enough for use as a clothing ensemble
classifier since the models trained with it failed to produce more than two correct classifications
in a single testing image or even obtain 90% accuracy in the independent image tests.

The YOLO model  classified  at  least  three  clothing  garments  in  real-time,  but  the  Tiny
YOLO model only produced one clothing classification 5% of the time. Hence, the YOLO model
improves upon the state of the art because it outperformed the other models, giving up to four
different clothing garment classifications, and consequently resulting in entire clothing ensemble
recognition.

For use as a real-time clothing classifier, the YOLO algorithm is ideal as it produced results
over 95% of the time in the real-time test with a threshold value of 0.5. This value was the highest
obtained in the literature review for real-time implementations. Nevertheless,  the Tiny YOLO
model required more training examples and a greater variety of images to achieve similar results
to the YOLO algorithm.

The results revealed that the new dataset  proved that the model was more effective and
accurate than the one trained with an existing dataset. In this new dataset, the images contained
different postures to try to cover all possibilities since it hinders the accuracy of the model when
the person is not in a standing posture.  Furthermore,  darker  environment pictures  need to be
considered to avoid incorrect detection and classification.

Alternatively, the transfer learning method exposed that it is not ideal if the weights come
from  a  model  that  is  trained  with  a  very  specific  dataset.  Finally,  the  image  classifier  was
implemented  for  the  clothing  insulation  classifier  during  the  thermal  comfort  calculations.
Currently, the clothing garments range from 0.04 clo to 0.74 (Table 3); however, these values can
be increased. Moreover, an initial assumption for underwear should be made.

The clothing  insulation  values  are  provided  in  the  entire  video;  therefore,  any  possible
changes that occur in front of the camera can be captured and considered for thermal comfort
calculation, but this still leaves a gap since the system is not able to recognize the underwear the
user is wearing along with any other clothing garment that the camera cannot see, making these
readings inaccurate but still better than a constant value.



Hence, the clo value can be calculated in real-time, and these moving values of clothing
insulation can be used in a human–machine interface, where changes in clothing garments are
proposed to keep a clothing insulation value constant and allow the user to stay inside the thermal
comfort  ranges,  but  these  can be  equally distributed along the  entire  body to avoid  the user
feeling warm or cold due to unbalanced clothing insulation distribution.

The  batch  normalization  eliminated  the  need  for  the  dropout  technique  since  the  Tiny
YOLO architecture with dropout implementation was the same as the one without it and there
was no change in the accuracy scores on the training and validation datasets.
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