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Linking Food Security, Urbanization, and Climate Change in Africa 

Cascade P. Tuholske 

ABSTRACT 

  Africa’s urban population will increase from 600 million people today to nearly 1.5 

billion in 2050. The vast majority of new urban residents will be poor and will face a host of 

challenges that are amplified by climate change. Chief among them is how to reduce urban 

poverty and ensure food security. Yet, due to a persistent lack of data, the feedbacks among 

food security, urbanization, and climate change in Africa have not been explored. This 

knowledge gap directly impedes progress to achieve the United Nations Sustainable 

Development Goals 1, 2, and 11—ending poverty, zero hunger, and ensuring sustainable and 

equitable cities. 

  This dissertation takes a step towards linking these themes. First, using original data 

collected in Accra, Ghana, I examine urban food security measurement. I find that while 

poverty is generally correlated with households’ experiences with food insecurity, traditional 

dietary-recall metrics may not be appropriate measures of household food security in African 

cities. Next, I integrate OpenStreetMap data and gridded population datasets to map the 

populations of 4,500 urban settlements in Africa. This approach fills a crucial void in our 

capacity to measure urban population dynamics across the continent. Finally, I document how 

urban exposure to extreme heat changed from 1983 - 2016 not just in Africa, but across 13,000 

towns and cities globally. This is the first fine-resolution, global synthesis of urban population 

exposure to extreme heat. I argue that mitigating exposure to extreme heat is key to reducing 

urban poverty and thus ensuring food security. But mitigation efforts must be tailored to local 
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contexts. In sum, the results of this dissertation call into question the sustainable and equitable 

development of Africa’s ever-expanding urban areas. 
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CHAPTER I – Introduction 

The confluence of climate change and urbanization pose significant and unique 

challenges for Africa’s development prospects. While urban populations are expected to 

increase from nearly 600 million in 2014 to nearly 1.5 billion by 2050 [1], much of Africa has 

urbanized without concurrent economic growth [2,3]. As a consequence, the majority of urban 

dwellers live in poverty today [4]. Climate change is intensifying water stress, decreasing crop 

productivity, increasing aridity and extreme heat, burdening livelihoods, amplifying rural-to-

urban migration, and elevating concerns of both rural and urban food security [5–12]. 

Troubling research from South Asia suggests that some African cities may become 

inhospitable as climate change produces more frequent extreme temperatures in mid-latitude 

regions [13]. Such rapid urban growth presents a host of challenges for the continent’s 

development prospects. Yet, because of a persistent lack of data, few empirical studies have 

examined food security, urbanization, and climate change in tandem and at fine-spatial scales. 

This body of work fills this crucial knowledge gap. 

First, using original household data from Accra, Ghana, I compare how different measures of 

household-level food security relate to urban poverty. I find that while poverty is generally 

correlated with households’ experiences with food insecurity, traditional dietary-recall metrics 

may not be appropriate measures of household-food security in large Africa cities. Rather, I 

advocate for a new food security paradigm that properly accounts for the growing food security 

needs of the urban poor. 

  Next, I use a new methodology to estimate the population of 4,750 individual urban 

settlements across Africa. By integrating data from OpenStreetMap and gridded population 

rasters, I measure and map the populations of more than 4,500 urban settlements across Africa. 
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My results reveal that 77%–85% of urban settlements in Africa have fewer than 100,000 people 

and that at least 50% of Africa's urban population live in urban settlements with fewer than 1 

million residents. Across almost all African countries, the distribution of urban population 

shifted towards larger cities between 2000 and 2015. However, in arid regions, small- and 

medium-sized urban settlements may be absorbing a greater share of urban population growth 

compared to large urban settlements. 

  Finally, I zoom out to the global scale to build the first global synthesis of urban 

exposure to extreme heat. Using new fine-resolution data, I find that urban population exposure 

to extreme heat more than doubled from 1983 – 2016 globally. Urban warming explains 26% 

of the annual exposure increase. In Africa, urban population exposure to extreme heat 

increased nearly 250% from 1983 - 2016, with urban warming contributing to more than 17% 

of the increase in exposure. Like much of the planet’s urban areas, urban population exposure 

to urban extreme heat in Africa is highly spatially heterogeneous. Accordingly, adaptation and 

mitigation strategies will require locally appropriate approaches framed within broader 

regional and global context. 

  Across all three themes, the results showcased here call into question the future 

sustainability and equitability for many of Africa’s ever-expanding urban areas. Ensuring 

urban food security depends on decreasing urban poverty; Poverty reduction in urban areas 

ultimately hinges on increasing labor productivity. Yet exposure to extreme heat not only 

harms human health and risks increased mortality [14], but it also crucially limits economic 

output and productivity [15] . Accordingly, the increased rates of urban exposure to extreme 

heat across Africa documented here may crucially limit the urban poor’s ability to realize the 

economic gains associated with urbanization. And, in turn, urban food security is threatened. 
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Given that climate change is increasing the frequency, duration, and magnitude of extreme 

heat across Africa [16–20], without targeted adaptation and mitigation strategies reducing 

poverty and ensuring urban food security remains a challenge. This has alarming implications 

for achieving the United Nations Sustainable Development Goals 1, 2 and 11—ending poverty, 

zero hunger, and ensuring sustainable and equitable cities. 
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CHAPTER II -  COMPARING MEASURES OF URBAN FOOD SECURITY IN 
ACCRA, GHANA1 
 
1. Introduction 

  The urban population in Sub-Saharan Africa (SSA) is projected to balloon from 376 

million in 2015 to over 1.25 billion people by 2050 [1]. How this rapid urban transition is 

affecting urban food security, and how it is reverberating into broader food systems, is unclear. 

Most food security studies across the region have concentrated on rural areas and the few case 

studies that have examined urban food security in SSA have depended on metrics designed to 

study rural food security  [21–26]. Achieving the United Nations (UN) Sustainable 

Development Goals (SDGs) 2 and 11—zero hunger and the development of sustainable cities–

–requires accurate and consistent tools that capture the multidimensionality of household-level 

food security in SSA’s rapidly growing cities [11]. But no studies have explored the 

relationship among established household-level food security metrics in the SSA urban context 

in a multivariate framework. As such, how urban household demographic, socioeconomic, 

environmental, and spatial characteristics may vary across established household-level food 

security metrics is unknown. 

Food security is a theoretical construct predicated on complex, multiscale 

spatiotemporal processes that encompass a broad range of human and environmental variables 

[24,27]. It cannot be measured by a single metric. While orthodox methodologies break food 

security into manageable components, household-level food security measurement remains 

rooted in rural-centric conceptualizations of food security [23,26]. Furthermore, some 

 
1 Citation: Tuholske, C., Andam, K., Blekking, J., Evans, T., & Caylor, K. (2020). Comparing measures of 
urban food security in Accra, Ghana. Food Security, 1-15. 
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development agencies still advocate for policies centered on rural food security, encouraging 

approaches that use the urban transition as a lynchpin to buttress rural producers. For example, 

in the 2017 State of Food and Agriculture Report, FAO advocates that growing demand from 

urban consumers can be a major force for rural inclusion and bolster rural food security but 

makes no mention of urban food security [28]. Such rural-centric paradigms not only fail to 

account for the food security needs among the growing number urban poor, but also ignore the 

fact that we currently lack tools specifically designed to measure food security in the urban 

context. 

Indeed, the nascent body of urban food security research from SSA illuminate how the 

region’s rapid urban transition is presenting new challenges for food systems and requires new, 

urban-oriented approaches to measure household-level food security [26]. For example, 

evidence indicates that the urban poor in SSA rely on purchased food for 90% of their calories 

and spend up to 70% of their income on food [21,29,30]. This suggests that local price stability 

is a key component to urban food security. Urban food prices face greater exposure to external 

market forces and commodity price shocks can increase food insecurity among urban 

households while at the same time boosting prices and increasing food security among rural 

producers. During the 2007/8 global commodity price shock urban households across SSA 

reported being less food secure, whereas food security among rural households improved [31]. 

With urban household’s food security dependent on price, food security metric designed to 

capture caloric intake or dietary diversity among rural households may not accurately measure 

food security among urban households [26]. 

 Food preferences and retailing options are also different for urban consumers compared 

to rural households across SAA. Changes in diet and lifestyle historically associated with 
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urbanization are burdening health systems by creating a dual burden of disease of both over- 

and undernourished poor households [32,33]. In some cases, shifting food preferences among 

urban consumers can transform rural production toward large-scale agribusiness in SSA 

countries, which can be detrimental to smallholders [28]. Finally, the urban transition is also 

transmogrifying food retail systems, specifically leading to an increase in the number of 

supermarket retail outlets [34,35]. It is unclear, however, how this shift in diets and food 

retailing affects food security among the urban poor, nor how if this shift is accurately captured 

by current food security metrics [11,26]. 

 In summation, understanding urban food security in SSA requires tools that measure 

economic access, nutrition, and urban food retailing, as well as municipal-level limitation such 

as water and sanitation, governance, and road infrastructure [26]. To this end, this paper has 

four aims: (i) we compare the food security status of households from nine low- and middle-

income residential areas in Accra across three established food security metrics; (ii) we identify 

where households source food; (iii) we explore the household-level demographic, 

socioeconomic, environmental, and spatial predictors of urban food security; and (iv) we 

examine how these predictors vary across three indicators of household food security. With an 

ever-increasing number of Africans poised to live in cities, and, given that many of these new 

residents will be poor, understanding who is food (in)secure in cities, where food (in)security 

exists, why diets may be changing, and how urban food security will affect broader food 

systems, is paramount for countries across SSA to accurately measure their progress toward 

achieving UN SDGs 2 and 11. 
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2. Measuring food security in urban households 

  The most direct measurement of household-level food security that captures caloric and 

nutritional intake are either anthropometry measurements or detailed, multi-visit household 

expenditure or dietary recall logs [24]. But acquiring accurate data through such methods is 

time-intensive, invasive, and expensive. Instead, household food security is generally assessed 

via proxy metrics derived from questions concerning one of three broad categories: (1) single-

visit dietary recalls; (2) coping strategies; and (3) psychosocial and physical experience-based 

[26]. All three categories stem from a historical rural-centric bias and, if used individually fail 

to capture the multidimensionality of household food security [22,24,26,36]. Indeed, aggregate 

pairwise comparison of 8,000 - 30,000 households from a wide range of developing countries 

showed that established dietary recall metrics have weak correlation with coping strategies and 

experience-based food security metrics [27]. As such, using a single metric focused on dietary 

diversity may show that a household is food secure in terms of diversity of food consumed, but 

does not capture a household’s ability to cope with food insecurity. What is more, unless 

collected over time, all these metrics fail to capture any temporal changes in household food 

security. 

  The few existing household-level urban food security assessments are largely from 

Southern African cities and have measured food security according to two interrelated 

experience-based metrics, the household food insecurity access scale (HFIAS) and household 

food insecurity access prevalence (HFIAP). The data were collected from sub-populations of 

urban dwellers and tend not to be representative of the city’s population. Nonetheless, all of 

these case studies suggest that low-income households regularly experience instances of food 

insecurity across a range of African cities. Surveys conducted by the African Food Security 
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Network (AFSUN) in low-income areas of 11 Southern African cities found that household-

level food insecurity measured by the HFIAP range from 56% to 98% of sampled households 

and that poverty significantly correlated with food insecurity [30]. A different survey from 

Tshwane, South Africa, found lower levels of food urban insecurity, with 61.3% of 507 

sampled households characterized as food secure by HFIAP [37]. In Nairobi, Kenya’s capital, 

85% of households in two major slums reported being food insecure according to HFIAP [38]. 

During the 2007/8 global commodity price spike, food insecurity measured among over 3,000 

randomly selected households in Ouagadougou, Burkina Faso, increased from 66.7% to 78.0% 

[39], indicating that rising global commodity prices can affect local prices and increase 

household-level food insecurity in SSA cities. Last, also using HFIAP, a recent survey of 

households in two medium-sized cities in Northern Ghana found over half of households were 

food insecure [40]. 

  The AFSUN dataset offers insights into dietary diversity, provisioning, socioeconomic, 

and demographic associations with levels of household food security characterized by HFIAP 

[30]. But AFSUN’s published data does not compare how dietary diversity correlates with food 

security measured by HFIAP, nor does it employ multivariate statistical models to assess 

demographic, socioeconomic, dwelling, and spatial predictors household-level food security. 

To date, only one case study from Sub-Saharan Africa has compared proxy measures of 

household food security in the urban context. A sample of over 3,000 households in 

Ouagadougou found that both HFIAS and the index-member's dietary diversity score (IDDS) 

were significantly associated with household-level dietary and nutritional intake calculated 

from multiple visit full dietary recalls that weighted and measured of food portions and 

ingredients [41]. However, the Ouagadougou study, like the AFSUN dataset, did not assess 
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how demographic, socioeconomic, environmental, and spatial characteristics relate across 

these measures of household-level food security. 

  In this study we employ three measures of household food security: HFIAS; HFIAP; 

and the food consumption score (FCS). The HFIAS was designed to produce a simple single 

statistical tool to monitor and evaluate food security that has been empirically validated for 

both population and individual level estimates of food security [24]. Adopted from a set of 

questions used to estimate prevalence of food insecurity in the United States, HFIAS produces 

a numeric score derived from nine subjective yes/no questions [42]. The subjective questions 

gauge respondents’ behaviors and attitudes related to household food security, including 

anxiety related to household food insecurity, perceptions of insufficient quality or variety of 

food, and reduction of food intake and subsequent physical consequences. If the respondent 

replies in the affirmative to any question, the enumerator asks about the frequency of 

occurrence. For example, if the respondent replies yes to “Did you or any household member 

go to sleep at night hungry because there was not enough food?”, the respondent is then asked 

the frequency to which this occurred: rarely (1-2 in the past four weeks) scored as 1, sometimes 

(3-10 times in the past for weeks) scored as 2, or often (>10 times in the past four weeks) 

scored as 3. The HFIAS score is the summation of the frequency of occurrence of each question 

with a range of 0-27. 

  The HFIAS can be used to calculate the HFIAP, a categorical variable that employs a 

logic tree from the frequency responses to HFIAS questions. Households are labeled food 

secure or mild, moderate, or severe food insecure. It is important to highlight that HFIAS and 

HFIAP are used to measure access to food as a dimension of food security. But they are not 
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intended to assess the causes of food insecurity, understanding coping strategies, cultural 

appropriateness, or nutritional knowledge or uptake. 

  The FCS is a composite score that uses a seven-day dietary recall that measures dietary 

diversity, food frequency and sourcing, and relative nutritional importance [43]. Respondents 

report the number of days out of the last seven days their respective household members have 

consumed locally appropriate food items. The items are grouped into overarching food groups, 

which are weighted based on the caloric values of those foods. The weighted values are then 

summed together to produce the FCS. A threshold is applied to determine if a household’s food 

security situation based on consumption is poor (FCS of 0-21), borderline (FCS between 21.5 

– 35), or acceptable (FCS greater than 35) food security. The FCS has been shown to correlate 

with per capita calorie consumption across divergent geographical and cultural contexts [44]. 

3. Materials and Methods 

3.1 Study Site 

  Ghana has experienced rapid urbanization seen in developing and emerging economies 

over the past few decades across Asia, Latin America, and now increasingly in SSA. In 

developing economies, the change from a rural agrarian economy to an economy less 

dependent on agriculture often includes migration out of rural areas into secondary and primary 

cities. Ghana has been no different. While the urban share of the population was 36 percent in 

1990, by 2014 the share had climbed to 54%, and is projected to reach 70% by 2050 [1]. This 

situation is somewhat unique among countries in SSA. According to the UN, the region is only 

38.8% urban [1]. However, cross-country comparisons of urbanization rates must account for 

the different definitions of what counts as urban in each country [45]. For example, in Ghana, 

towns with populations greater than 5,000 are considered urban (Ghana Statistical Service 
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2012). This threshold may account for at least part of the difference between Ghana and other 

African countries. 

  That notwithstanding, urbanization is still a clear manifestation of Ghana’s economic 

and demographic transition, especially when the populations of the largest cities are closely 

examined. Ghana’s labor has moved out of agriculture to an economy dominated by services 

[46], and this shift has been accompanied by rural-urban migration since Ghana’s 

independence. But this trend may be changing. Nationally representative data from 2014 shows 

that urban-to-rural migration and urban-to-urban migration exceeds rural-to-urban migration 

[47]. 

  In tandem with urbanization, Ghana is currently undergoing the nutritional transition 

[32], with under-nutrition rates dropping and over-nutrition increasing. Nationally, obesity 

rates are increasing across rural and urban populations [48]. Among women 14 – 49, nearly 

50% of urban women and 30% of rural women are obese, compared to 23% and 8% of urban 

and rural men, respectively [48]. Child undernutrition levels have decreased at the national 

level, though rural areas still have higher rates of stunting and wasting compared to urban 

areas. For example, in 2014, 22% of rural and 15% of urban children under were two standard 

deviations below recommended height-for-age ratio [48]. 

  Accra has been recognized as one of Africa’s emerging mega-cities. The capital is 

growing faster compared to the country as a whole––the national population growth rate 

between 2000 and 2010 was 2.5%, the Accra region, which includes Ghana’s capital, recorded 

a growth rate of 3.1% [49]. The city had an official population of 2.6 million in the last national 

census (2010). Over half of Accra’s residents are migrants [47], showing that much of this 

growth is not a result of natural increase within the city. Over 80% of migrants to Accra came 
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from other urban areas [47]. Although Ghana’s main industrial activities are clustered in Accra, 

the services sector employs the lion’s share of Accra’s labor force. This includes formal sector 

activities like education and health, but also many informal activities such as trading, catering, 

manual labor, and transportation. According to UN-Habitat, 38.4% Accra’s residents live in 

neighborhoods characterized as slums, where urban poverty might be expected to be endemic 

[47]. However, household-level socioeconomic conditions and health status in the city’s slums 

tend to be highly spatially heterogeneous [50–52] and the official poverty rate, determined by 

the consumption threshold of US$1.83 per day, is quite low at 2.2 percent in 2012/13. 

  Accra’s retail food system is diverse. Along with a myriad of roadside shops and 

individual street hawkers, over 30 open-air markets serve the city [53]. But like other major 

cities in SSA [11], food retailing is evolving in Accra. From a baseline of only three 

supermarkets before 2005, Accra now boasts 37 large-format supermarkets according to an 

unpublished 2017 survey by International Food Policy Research Institute [54]. If supermarkets 

capture part of the market share from local retailers, then this shift in food retailing may have 

negative consequences for the urban poor who may not be able to afford the larger unit sizes 

of staples at supermarkets or access supermarkets at often distant locations [11]. 

  A wide-variety of food products produced from Ghana’s rural areas are sold across all 

retail locations. Traditional staples such as cassava, plantains and maize, and dried and frozen 

fish, fruits and vegetables are readily available. Like most West African countries, imports of 

rice and other commodities play a major role in food consumption. Meat––especially chicken 

and fish––and processed foods, are increasingly consumed in Accra, and convenience meals 

away from home are a major food source [55]. 

3.2 Data and Analysis 
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  The 2017 Accra Urban Food Security Survey, collected over a three-week period in 

July/August, surveyed 677 households in 9 long-established, low- and middle-income 

residential areas throughout Accra. Structured-area sampling was employed [56]. Residential 

areas were chosen based on UN Habitat slum maps [57] and vernacular neighborhood maps 

that showcase finer-scale (census enumeration area) socioeconomic characteristics provided 

by San Diego State University [50,51]. We note that our sample should not be considered 

representative of all low- and middle-income households in Accra, as we did not survey 

informal or squatter low-income areas due to safety concerns. Local enumerators surveyed 

households at approximately even spatial intervals according to the density of houses to 

achieve complete spatial coverage of each residential area. The survey included question 

blocks related to household demographic, dwelling, labor, income, socioeconomic 

characteristics, food expenditures, and market preference as well as FCS, HFIAS, and HFIAP 

questions. Enumerators surveyed one consenting adult per household with knowledge of the 

household finances and food procurement. However, enumerators collected demographic 

information for the entire household, as well as labor characteristics for up to five household 

members. Data was collected using Qualtrics mobile data collection platform on iPad tablets. 

  Four models were generated using 668 complete cases to assess how household 

demographic, socioeconomic, environmental, and spatial characteristics relate to the three 

household food security metrics, as well as how such predictors may vary across the three food 

security metrics. While the FCS is a bounded integer variable that can only take on values 

between 0 and 112, here FCS distribution is normal and thus an ordinary least squares (OLS) 

regression was performed for the FCS. In OLS regression, the estimate effect size linearly 

correlates with the dependent variable. For example, if the household size effect is estimated 
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to be 1 and statistically significant, then an increase of one person in a household is associated 

with FCS increasing by 1, all else being equal. 

  The HFIAS is treated as a count variable because it is the summation of the frequency 

of occurrences in response to categorical questions. The number of zeros is inflated (Fig 2b). 

Households who answer no to all HFIAS questions are categorized as food secure and receive 

a score of zero. But because the zeros are not assumed to be a result of a different underlying 

process, a negative binomial model is appropriate rather than a zero-inflated poisson regression 

[58]. A second logistic regression was performed on a binary HFIAS variable that categorized 

households HFIAS scores as <0 or 0 [39]. In negative binomial model and logit models, 

statistically significant effects of an independent variable are associated with an increase in the 

log counts of the dependent variable. The larger the effect size, the greater the increase in log 

counts of the dependent variable. 

Marginal effects ordinal logistic regression was performed on HFIAP. Results from a marginal 

effects model indicate the probability of a household switching from a given HFIAP food 

security category given a change in predictor variable, holding all else held equal. For example, 

if the marginal effect for households with no school is -0.15, all else equal, household without 

any educated adult are 15% less likely to be in the secure category. All analysis and plots were 

performed in RStudio (version 1.1.143, RStudio Inc.). Maps were generated with QIS (version 

2.18.20, QGIS Development Team). 

  Both categorical and continuous independent variables were selected to account for the 

range of demographic, socioeconomic, environmental, and spatial characteristics pertinent to 

households in our sample. We controlled for the possibility of free meals consumed by 

household members at work or school, as well as meals given away to non-household 
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members, household language, and residential area of the household. We employed a slum 

index to characterize a wide-range of dwelling characteristics found in highly spatially 

heterogeneity low- and middle-income residential areas of Accra [51]. UN-Habitat designates 

a household as a slum if it lacks one or more of the five following characteristics: durable 

housing; sufficient living space; access to safe water; access to adequate sanitation; and secure 

land tenure [4]. The slum index is calculated by summing the number slum indicators a 

household is lacking and dividing it by five, whereby households with high slum index scores 

exhibit more slum-like conditions based on the household UN slum definition. 

  While the household survey attempted to gather monthly household income, we did not 

include this data in our models because of the high number of missing values and the known 

biases and unreliability of self-reported income. Alternatively, we constructed an asset index 

using similar procedures designed by the Demographic and Health Surveys Program to 

approximate household wealth [59]. After normalizing the raw data, principal components 

analysis (PCA) was performed on a list of common household assets [60]. To produce a 

continuous measurement of asset ownership by each individual household, PCA assigns each 

household a factor score by multiplying the first principle component of each asset by the 

household’s normalized count of that asset and then summing the total across all assets owned 

by a household. Missing values for total household monthly food expenditures and distance 

traveled to primary food purchase location were imputed by bootstrapping random values from 

a Monte Carlo simulation based on the cumulative density function related to the distribution 

of two variables, respectively. Finally, because only one household in our sample reported ever 

shopping at a modern supermarket, we did not include the primary locations of food purchases. 

All other sampled households sourced food from local markets, neighborhood shops and 
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kiosks, street vendors, or hawkers (Fig. 

1). Likewise, we did not include self-

production as independent variables 

because fewer than 3% of households 

reported gardening, fishing or farming 

from own consumption. 

3.3 Descriptive Statistics 

 Just over 50 percent of the 668 

households in our analytical sample 

were headed by a male (Table 1). The 

average household consisted of four 

members. The mean age of the 

household head was 47 years. On 

average, 56 percent of household members were employed. Self-employment was the most 

common form of employment––on average, households had at least one self-employed adult. 

Both regular and casual wage employment are considerably rarer––one member out of every 

three surveyed households has regular wage employment and one member out of every six 

surveyed households has casual employment. Although not reported in Table 1, from the 424 

households that provided complete income information, the average monthly income from 

employment was 890 Ghana cedis (~4 Ghana cedis equaled 1 US dollar at the time of the 

survey).2 

\ 

 
2 The exchange rate to the US dollar at the time of the survey was about 4 Ghana cedis. 

Figure 1 Primary, secondary, and tertiary sources where 
sampled households purchase food. Only one household 
reported ever going to a supermarket (tertiary source) and fewer 
than 3% of households reported sourcing food from gardening, 
fishing, or farming. Households that that reported ‘doesn’t 
cook’ purchase prepared meals from street venders, kiosks, and 
restaurants. 
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Table 1 Descriptive Statistics of Household Characteristics (n=668) 
 Mean or Count Standard Deviation or Percent Min Max 

Age of household head, years* 46.87 14.27 17 95 

Household size 4.01 2.03 1 13 

Male head of household, 0/1 361 54.0%   

Asset Index 0.00 1.61 -2.34 9.47 

Received remittances, 0/1 193 28.5%   
Slum Index 0.09 0.117 0 0.6 

No school, 0/1† 36 5.4%   

Primary school, 0/1† 223 33.4%   

Secondary school, 0/1† 253 37.9%   

Tertiary school, 0/1† 156 23.3%   

Household members employed, percent 56 0.27 0.11 1 

Self-employed, number 1.02 0.81 0 5 

Casually employed, number 0.16 0.43 0 4 

Regularly employed, number 0.33 0.60 0 3 

Travel time to market, minutes 15.0 15.9 0 180 

Free meals at school or work, 0/1 0.17 0.36 0 3 

Meals given to non-household members 1.61 5.35 0 70 

Daily Street food expenses, cedi 11.67 14.22 0 150 

Total monthly food expenses, cedi 555.01 376.69 2 3,000 

* Four households recorded an average age below 5 and were omitted from summary statistics but 
were retained for modeling. 
† The highest education attained by any working household member. 
Note: Asset index normalizes the count data for each asset. Thus, the counts are centered at a mean of zero. 
 

  One-third of all households had at least one adult who had attended or completed 

primary education. Nearly 40 percent of households had an adult that had attended or 

completed secondary education, and more than 20 percent of households had an adult who had 

received some form of post-secondary education. Only 5 percent of households had no adult 

with any formal education. 

Our sample reflected the ethnic diversity of Accra. Asante Twi, originating from central 

Ghana, was the dominant language for 30 percent of our sample, but languages originating 

from northern Ghana were predominantly spoken in about 21 percent of the households. Ewe, 

the main language for people from the Volta region east of Accra, was the main language in 9 
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percent of the households. The second most common language spoken was Ga (29 percent), 

the language for the Ga tribe which is indigenous to Accra. Only 2 percent of households spoke 

English as their primary language. 

  In terms of food consumption, expenditure on prepared food away from home was 

nearly 12 Ghana cedi per household per day (~3 USD).  This compares to an average monthly 

total household food expenditure of 555 Ghana cedi (~139 USD). Household members 

received on average 0.17 meals per capita at school or work per day. This may include public 

food assistance. For example, Ghana has a School Feeding Program that provides meals to 

children in selected public schools, and currently reaches a third of school children in Ghana 

[61]. 

4. Results 

4.1 Comparing measures of food security 

  Based on HFIAP, nearly 70 percent of households sampled are categorized as mildly 

to severely food insecure (Fig. 2a). Over the previous month, these households experienced 

anxiety related to food insecurity or were unable to access sufficient or preferred foods. But 

few households characterized as food insecure by HFIAP have high HFIAS scores (Fig. 2b). 

Those who answered “yes” to any of the nine HFIAS questions did not experience the problem 

frequently. Thus, our results indicate prevalent but low frequency of anxiety and experiences 

related to food insecurity among low- and middle-income households in Accra. In contrast, 

only 14 of the 668 households in the survey sample can be characterized as borderline or food 
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insecure (FCS < 35) according to the FCS (Fig 2c). This signals that households within our 

sample consumed sufficient calories over the previous seven days. 

  There is no correlation between FCS and HFIAS (Fig 3a) or between FCS and HFIAP 

(3b). In contrast, HFIAS and HFIAP are more closely correlated, with each being computed 

from the same information (3c). The increase in variance in HFIAS scores as HFIAP categories 

moves from secure to severe suggests that some sample households may not have answered 

“yes” to less serious HFIAS questions. For example, such households may have responded 

‘no’ to the question “Did you or any household member have to eat a smaller meal than you 

felt you needed because there was not enough food”, but responded ‘yes’ to the question about 

a more serious situation, “Did you or any household member go to sleep at night hungry 

Figure 2 Distribution of the FCS (a), HFIAS (b), and HFIAP counts (c). Households below the red dotted line 
dotted line in panel A are food insecure (FCS < 21.5) and below the orange line are borderline food insecure 
(FCS < 35). 
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because there was not enough food?” 

Affirmative responses to questions such as 

these would place the respondent in the 

severe HFIAP category. 

  Across all three food security 

metrics, we find high spatial heterogeneity 

(Fig. 4). While cluster analysis was not 

performed due to the spatially 

discontinuous sampling between 

residential areas, no clear spatial pattern is 

visually evident in the point maps of all 

three measures of household-level food 

security. Overall, residential areas can be 

characterized as having a wide range of 

household-level food security outcomes 

across all three household-level food 

security metrics. 

 

 

 

Figure 3 Household FCS plotted against HFIAS (a), as well 
as boxplots of FCS and HFIAP (b) and HFIAS and HFIAP 
(c). There is no correlation between the FCS and the HFIAS 
(a), nor HFIAP (b). There is greater variance in HFIAS 
scores among more food insecure HFIAP categories (c). 
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 4.2 Drivers of Food Insecurity in Accra 

 

Figure 4 Spatial distribution of food security measured by the HFIAP for all sampled households (a). Household 
food security measured by the HFIAS (b) and FCS (c) also exhibited spatial heterogeneity as evident from 
zoomed in areas around Nima residential area of Accra. For the HFIAS and FCS intervals are derived from 
sample quintiles. Five households are excluded due to inaccurate GPS coordinates. 
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  The estimates across the suite of linear models are largely consistent for HFIAS and 

HFIAP, but differ for FCS. Household demographic composition plays an important role in 

determining food security outcomes measured by HFIAS and HFIAP (Table 2, Table 3). 

Across HFIAP categories, smaller households have a greater likelihood of being food secure. 

But the size of the household has no significant effect on FCS. The HFIAS logit model suggests 

that larger households tend to have a greater likelihood of food insecurity. Though the effect 

size is near zero, households with an older head have a greater likelihood of being food secure 

according to HFAIP. The slum index has no significant effect across all four models, nor does 

the sex of the household head. The lack of a significant relationship between household 

demographics, household composition, and slum conditions with FCS suggests that household 

diet and food consumption is sufficient across all households no matter the composition or 

quality of housing. 

Table 2 Predictors of household Food Consumption Score (FCS) and Household Food 
Insecurity Access Scale (HFIAS). 

 Food Consumption Score 
(FCS) 

Household Food 
Insecurity Access Scale 
(HFIAS) 

Household Food 
Insecurity Access Scale 
(HFIAS) 

 ordinary least squares 
model 

negative binomial 
model 

logit model 

 Estimate Standard 
Error 

Estimate Standard 
Error 

Estimate Standard 
Error 

Age of household head, years -0.078 0.043 0.637 0.004 -0.014 0.007 
Household size -0.087 0.543 0.007 0.046 0.308** 0.100 
Male head of household, 0/1 1.876 1.260 0.100 0.106 -0.260 0.220 
Asset Index 0.637 0.408 0.000 0.037 -0.406*** 0.075 
Receives remittances, 0/1 4.289** 1.307 0.735 0.110 0.063 0.228 
Slum Index 2.704 5.200 0.228 0.438 1.054 0.935 
No school, 0/1† -0.835 2.962 0.006 0.244 1.153 0.594 
Primary school, 0/1† -1.305 1.759 0.594 0.149 0.583 0.298 
Secondary school, 0/1† -0.681 1.609 0.298 0.137 0.224 0.264 
Household members employed, 
percent 

0.816 0.747 0.220 0.063 -0.197 0.133 

Self-employed, number 0.960 1.018 0.264 0.086 -0.096 0.178 
Casually employed, number 0.752 1.512 0.178 0.125 0.310 0.299 
Regularly employed, number 0.676 1.227 0.299 0.104 -0.161 0.209 
Travel time to market, minutes 0.092* 0.036 0.935 0.003 -0.006 0.006 
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Free meals at school or work, 0/1 -1.056 1.620 0.209 0.135 -0.259 0.267 
Meals given to non-household 
members 

0.356*** 0.106 0.267 0.009 0.000 0.020 

Street food expenses, cedis 0.088* 0.041 0.020 0.003 0.031*** 0.009 
Total food expenses, cedis 0.005** 0.002 0.430 0.000 0.000 0.000 
Control for language Yes Yes Yes Yes Yes Yes 
Control for residential area Yes Yes Yes Yes Yes Yes 
Intercept 57.409**

* 
3.643 0 0.306 0.954 0.637 

Adjusted R-squared 0.181      

Note: * p < 0.05, ** p < 0.01, *** p < 0.001 †Tertiary education is the reference category 

  While the highest educational attainment of any member within a household is not a 

significant predictor of FCS, higher education significantly increases household food security 

measured by HFIAS and HFIAP (Table 2, Table 3). Households that have members who 

attended or completed tertiary education (23.3 percent of our sample) have a greater likelihood 

of being in the food secure HFIAP category. This is especially evident between households 

with no adult members who received schooling and those households with members who have 

some tertiary education, with the greatest effect size among severely food insecure households 

with no education in the HFIAP ordered logit marginal probabilities model. In contrast, 

educational attainment was not significantly correlated to a households’ FCS. 
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Table 3 Ordered logit marginal probabilities of a household being in a specific Household Food 
Insecurity Access Prevalence (HFIAP) food security category 

 Secure Mild Moderate Severe 
 Marginal 

Effect 
Standard 

Error 
Marginal 

Effect 
Standard 

Error 
Marginal 

Effect 
Standard 

Error 
Marginal 

Effect 
Standard 

Error 
Age of household head, yrs  0.003* 0.001 0.001* 0.000 -0.001* 0.000 -0.003* 0.001 
Household size -0.040** 0.015 -0.008* 0.003 0.010* 0.004 0.039** 0.014 
Male head of household, 0/1 0.060 0.033 0.013 0.007 -0.014 0.008 -0.059 0.033 
Asset Index 0.061*** 0.012 0.013*** 0.003 -0.015** 0.005 -0.059*** 0.012 
Receives remittances, 0/1 -0.033 0.034 -0.007 0.008 0.007 0.007 0.033 0.035 
Slum Index -0.213 0.137 -0.045 0.030 0.051 0.035 0.206 0.133 
No school, 0/1† -0.171*** 0.045 -0.058* 0.023 -0.025 0.037 0.254* 0.102 
Primary school, 0/1† -0.099* 0.043 -0.023* 0.012 0.018* 0.008 0.104* 0.049 
Secondary school, 0/1† -0.062 0.042 -0.014 0.010 0.013 0.009 0.063 0.043 
Household members 

employed, percent 
0.030 0.020 0.006 0.004 -0.007 0.005 -0.029 0.019 

Self-employed, number 0.013 0.027 0.003 0.006 -0.003 0.006 -0.012 0.026 
Casually employed, number -0.077 0.042 -0.016 0.009 0.018 0.011 0.075 0.041 
Regularly employed, number 0.032 0.032 0.007 0.007 -0.008 0.008 -0.031 0.031 
Travel time to market, mins 0.003** 0.001 0.001* 0.000 -0.001* 0.000 -0.003** 0.001 
Free meals at school or work, 

0/1 
0.039 0.043 0.008 0.009 -0.009 0.010 -0.038 0.041 

Meals given to non-household 
members 

-0.001 0.003 0.000 0.001 0.000 0.001 0.001 0.003 

Street food expenses, cedis -0.004*** 0.001 -0.001** 0.000 0.001** 0.000 0.004*** 0.001 
Total food expenses, cedis 0.000* 0.000 0.000* 0.000 0.000* 0.000 0.000* 0.000 
Control for language Yes Yes Yes Yes Yes Yes Yes Yes 
Control for residential area Yes Yes Yes Yes Yes Yes Yes Yes 
Note: * p < 0.05, ** p < 0.01, *** p < 0.001 †Tertiary education is the reference category 

 

  A greater household asset index increases the likelihood of a household being food 

secure based on HFIAS and HFIAP (Table 2, Table 3), suggesting that household wealth is 

associated with household food security. However, the asset index is not significantly 

associated with FCS. Furthermore, household labor does not appear to play a role in 

determining the level of household food security. Both the labor type and the share of the 

household engaged in employment does not significantly affect food security across all four 

models. 

  Annual remittances are significantly associated with a higher FCS. Receiving 

remittances, all else equal, increases the FCS for a household by four score points. This 
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highlights the potential for remittances and gifts as a mechanism to increase the quantity and 

diversity of a household’s diet by raising disposable income to purchase higher-calorie foods 

or more diverse food types. Higher total monthly food expenditures also are associated with a 

higher FCS and with improved food security outcomes based on HFIAP. But the effect size is 

nearly zero. Total monthly food expenditures are not significantly associated with HFIAS. 

  Giving free meals to non-household members are significantly associated with a higher 

FCS. However, these variables are not significant determinants of HFIAS or HFIAP (Table 2, 

Table 3). The ability to give away meals may imply that those households have excess food. 

Longer travel times to markets are significant predictors of a higher FCS, as well as better 

HFIAP outcomes. We reason that household wealth may be the underlying driver here, 

suggesting that some households have the luxury of time to travel to more distant locations and 

thus have better food security outcomes. But the effect size of market distance measured in 

minutes is nearly zero. Finally, increased daily expenditures on prepared food purchased away 

from home from street food vendors, fast food outlets, or restaurants is significantly correlated 

with higher FCS, but also a greater likelihood of food insecurity based on HFIAS and HFIAP 

models. However, the effect size is nearly zero across all models. 

5. Discussion and Conclusion 

  Low- and middle-income households in Accra may not suffer from insufficient calories 

according to dietary recalls such as FCS. The majority do, however, experience regular 

inability to access “sufficient, safe, and nutritious food to maintain a healthy and active life to 

access food to achieve”, per FAO’s definition of food security [62]. With 70% of our sample 

characterized by HFIAP as mildly to severely food insecure, it is clear that households 

regularly worry about having enough food and, at times, cannot access sufficient food to meet 
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their needs. By this measure, our results agree with the handful of similar case studies from 

cities in SSA that have also shown high levels of food insecurity among low-income residents 

measured with HFAIS and HFIAP [30,37–40]. 

  As previously stated, our sample is not representative of all low- and middle-income 

households in Accra. We did not survey households in informal settlements and less than five 

percent of sampled household heads had lived in Accra for fewer than five years. This in itself 

is striking. Even though these often-vulnerable groups—recent migrants and residents of 

informal settlements—were not included in the sample, the results show high levels of food 

insecurity. As such, severity of food insecurity measured by HFIAP is likely higher among 

Accra’s newest and poorest residents. Furthermore, the extreme spatial heterogeneity of 

household food security measured by all three indicators—FCS, HFIAS, and HFIAP—reveal 

that low- or middle-income residential areas have a broad underlying distribution of 

household-level food security outcomes (Fig. 4). Because cities like Accra are changing so 

rapidly, some households may be achieving economic and educational advancements ahead of 

their neighbors. As noted by studies of socioeconomic and health status in Accra [50,51] , 

blanket terms that characterize residential as slums can be misleading. Interventions should 

account for the distribution of food security situations within low- and middle-income 

residential areas. 

  The HFIAS and HFIAP model results show that educational attainment, household 

assets, and the demographics of a household all associate with how households perceive their 

ability to access food. As sampled households primarily rely on purchased food to meet their 

needs—fewer than 3% of households source food from farming, gardening, or fishing—the 

ability to afford food ultimately underpins household-level food security in our sample. And 
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while our results do not reveal the exact mechanisms in which these variables directly lead to 

higher or lower levels of experiences related to food security, higher educational levels, in case 

studies from around the world [63–65], have been shown to strongly correlate with decreased 

levels of poverty. Thus, vis-à-vis educational attainment, greater wealth increases a 

household’s economic access to food, decreases anxiety related to procuring food, and may 

increase resiliency should prices increase. 

  Due to the poor correlation and model agreement between the HFIAS/HFIAP and FCS, 

we echo recent calls to develop multifaceted metrics specifically designed to measure food 

security in the urban context of SSA [11,26]. This is the first study to empirically confirm a 

weak correlation between dietary recalls, such as FCS, and experience-based metrics like the 

HFIAS and HFIAP, in the urban African context. These results do, however, parallel the results 

of Vaitla et al. (2017) in their much larger aggregate study that do not separate urban from 

rural households. Given the association between educational attainment and household wealth 

and HFIAS and HFAIP outcomes, our results indicate that the HFAIS and HFIAP do 

accurately capture, at least in part, household-level urban food insecurity related to ability 

access food. Poorer, less educated households may meet baseline caloric requirements 

measured by the FCS. But such households regularly experience situations and anxieties 

related to the inability to access food. Should food prices increase, all else being equal, these 

households’ food security situation will likely worsen. 

  The HFIAS and HFIAP do have limitations when used alone. These metrics do not 

provide insights into how sourcing of food nor seasonality may play a role in decision making 

related to food security in cities. The HFIAS and HFIAP also do not explain the range of 

households’ dietary preferences. One possible approach would be to capture multiple metrics 



 28 
 
 

 

that cover different aspects of household food security—e.g. dietary diversity, experiences, 

coping, and poverty—for each household and combine them into a single food security index, 

such as the World Food Program’s Consolidated Approach to Reporting Indicators of Food 

Security  [66]. But even metrics designed to specifically measure household-level food security 

in urban areas may not shed light on the broader urban food system, including infrastructure 

challenges, travel, food safety, and market governance [26]. 

  Our results further buttress the need for a greater understanding of how the food 

security challenges of the urban growing poor will cascade into broader food systems and 

affect governance [22,25,26].  In spite of the growing importance of ensuring urban food 

security, development organizations are advocating for approaches geared toward enhancing 

rural livelihoods through off-farm employment as a means to stem the influx of migrants to 

cities while, at the same time, improving local agricultural output and sustainability[28]. This 

rural-centric focus neglects to fully account for the food security challenges of the growing 

urban poor [23]. Indeed, recent study conducted by the World Bank and FAO shows that on a 

global scale 50% of urban households can be characterized as food insecure while only 46% 

of rural households fit that criteria using an experience-based metric similar to the HFIAS and 

HFIAP [11]. 

  Local governments do have options to shore up household urban food security. Our 

results showcase that ensuring access to high-quality education opportunities for all urban 

dwellers may strengthen food security in the long-term, as the results from the HFIAP models 

show that higher level of education are associated with fewer experiences food insecurity. But 

proven overarching urban policies—such as transportation and water and sanitation 

infrastructure improvements—in the medium term can reduce poverty-levels and disease-risk 
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and may reduce vulnerability to food insecurity among low- and middle-income households. 

As our results suggest that household wealth correlates with higher levels of food security, 

local governments can also strengthen household food security directly by reducing the 

economic burden of procuring food. For example, expanding free school lunch programs for 

children may reduce the overall costs of purchasing food, especially for large households who 

have a greater likelihood of being food insecure based on our results. 

  Finally, governance plays an important role in the creation and structure of food 

systems within urban areas  [11]. Both informal and formal governance arrangements of food 

retailing influence household food purchases and food security [67]. Tackling the problems of 

diverse governance requires a nuanced approach that balances the modernization of food 

retailing with the needs of low-income consumers and local vendors. Only one household 

within our sample reported ever purchasing food from supermarkets, despite the substantial 

influx of modern grocery stores. Thus, local governments should support policies that do not 

limit a household’s access to traditional markets, street vendors and hawkers, and prepared 

street food to keep costs as low as possible for consumers [11]. This can include infrastructure 

improvements for local markets and vendors, as well as avoiding incentivization of 

multinational supermarkets over local retailers. 

  Ghana’s urban transition has outpaced its neighbors, and, despite economic growth, our 

results add to the growing body of research indicating that many low- and middle-income 

urban households regularly experience instances of food insecurity. Policymakers across SSA 

should heed notice. International policy resonates with national leaders and thus initiatives 

such as the sustainable development goals often set national policy objectives and donor 

funding. The SDGs, notably, do not interlink the Goals 1 and 2—zero hunger and zero 
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poverty—with the Goal 11, the development of sustainable cities [68]. This is despite the fact 

that the planet is now more urban than rural, and that urban poverty and economic inequality 

are at record highs. Our paper showcases that tracking SDGs 2 and 11 requires employing 

consistent and accurate tools to measure food security in urban areas. 

  Sustainable cities in SSA will depend on ensuring that the ever-expanding urban poor 

are food secure, at all times. Reports of widespread hunger stemming from the ongoing 

economic crisis in Venezuela, a country that is 88.2% urban, highlight the potential dire 

consequence of not ensuring stable economic access to food for all urban dwellers [1,69]. If 

the future of Sub-Saharan Africa lies primarily within cities, then to feed the future, policy and 

research agendas that focus on ensuring urban food security must be pursued. 
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CHAPTER II: VARIABILITY IN URBAN POPULATION DISTRIBUTIONS ACROSS 
AFRICA3 
 
1. Introduction 

  Africa is projected to add 1 billion urban residents over the next thirty years, ballooning 

from 491 million in 2015 to nearly 1.5 billion by 2050 [1]. Such rapid urban growth presents 

a host of challenges for the continent’s development prospects. Urbanization, the shift in the 

proportion of population from rural to urban areas, has not led to concurrent economic growth 

[2,3] nor equitable economic gain for the majority of Africa’s urban dwellers. UN-Habitat 

states that over 50% of urban Africans live in slums today [4]. The development of basic 

services within cities—including water and sanitation, education, infrastructure, and public 

health—has not kept pace with the rapid increase in urban population [70]. Urban food security 

is a chief concern [11,30]. Numerous case studies have shown that most poor urban Africans 

regularly experience food insecurity [71]. Troubling research from South Asia suggests that 

some African cities may become inhospitable as climate change produces more frequent 

extreme temperatures in mid-latitude regions [13]. Together these mounting challenges raise 

concerns for Africa’s ability to achieve United Nations Sustainable Development Goal 11 to 

“Make cities and human settlements inclusive, safe, resilient and sustainable” [72]. 

  Our ability to understand the drivers of urban population growth and develop 

sustainable solutions to tackle the challenges Africa’s urban settlements face is stymied by a 

lack of municipality-level population data for Africa. It is unclear how many people live in 

many of Africa’s cities and towns, especially those with fewer than 1 million residents [73–

75]. For many countries, censuses are infrequently conducted, can be unreliable [76], and most 

 
3 Citation Tuholske, C., Caylor, K., Evans, T., & Avery, R. (2019). Variability in urban population distributions 
across Africa. Environmental Research Letters, 14(8), 085009. 
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do not provide geo-located municipality-level population counts. At present, United Nations 

Population Division data is widely used to track urbanization across the continent. But UN 

urban growth projections often over-emphasize primary cities and have been shown to be 

previously incorrect [74,75,77–79]. UN data is only provided at the national-level and for 

select municipalities with populations greater than 300,000 residents [1], even though the UN 

estimated that in 2015 49% of Africans live in urban settlements with fewer than 300,000 

people. Similarly, alternative census databases do not provide municipality-level data [80] nor 

geographic information that can be incorporated with other geo-referenced datasets [81]. 

  Despite such data inadequacies, a diverse body of research has attempted to identify 

drivers of urban population growth in Africa [2,3,10,79,82–85]. Early work argued that Africa 

uniquely urbanized without concurrent economic growth [3], though this conclusion may be 

over generalized [2,82,83]. More recent research suggests that climate change may be 

amplifying urban population growth in drying regions across Africa [10,84,85]. While the 

drivers of urban growth are complex, climate change is already negatively affecting rural 

livelihoods [12,86–88], migration is a well-established response to environmental change [89], 

and rural-to-urban migration has been thought to be the predominate driver of urban population 

growth across the region [90]. Others suggests that, at least at the national-level, natural 

increase among urban populations may be contributing more to urban population growth than 

rural-to-urban migration [91]. Nonetheless, all of these studies either rely on UN national-level 

urban population estimates [2,82,83] or employ imprecise definitions of urban settlements 

[10]. Without geolocated population estimates for individual urban settlements delineated with 

contestant criteria in Africa, we cannot accurately assess the drivers of urban population 

growth, much less gauge how the distribution of Africa’s urban population is changing within 
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and between countries or across climatological zones. 

Since the 1990s, researchers have generated synthetic gridded population datasets to overcome 

the lack fine-scale population data across the planet. These data sets are available at the 

continental scale at 1-km spatial resolution and are produced using geospatial modeling 

techniques that assigns individual pixels a population value based on spatial covariates derived 

from remote sensed imagery and/or auxiliary GIS data [76]. It is not possible to directly 

estimate the population of individual urban settlements with these data sets alone. The data are 

available in raster format, providing a continuous plane of population counts that do not 

delineate political boundaries or labels. Furthermore, the methodologies and input data used to 

generate gridded population data sets vary. To date, no study has compared urban settlement 

population estimates across gridded population data sets using a consistent methodology. 

  Our objectives are twofold. First, we develop comparative measures of how the 

Africa’s urban population is currently distributed among over 4,750 individual labeled urban 

settlements across Africa. To accomplish this, we intersect volunteered geographic information 

(VGI) data from OpenStreetMap (OSM) with five gridded population datasets: WorldPop 

2015; LandScan 2015; Global Human Settlement Layer Population Grid (GHS-Pop) 2000 and 

2015; and the World Population Estimate (WPE) 2016. We delineate urban settlement extent 

with a standard population density threshold. Second, we assess how the distribution of 

Africa’s urban population among small and medium-sized urban settlements (those with fewer 

than 5 million people) is changing within and between countries and across climate gradients 

using GHS-Pop 2000 and 2015 datasets.  We employ two methods to evaluate changes in 

urban population distributions. First, we construct Lorenz curves and urban settlement Gini 

coefficients using GHS-Pop 2000 and 2015. Second, we examine urban settlement size 
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distributions using the more traditional city rank size power law distribution exhibited by 

Zipf’s law. This research showcases a novel methodology to measure individual urban 

settlement populations to highlight what urban growth trajectories may occur across Africa in 

light of broader environmental and economic challenges. 

2. Data 

2.1 Synthetic Gridded Population Data 

  The PopGrid Data Collaborative provides detailed information on publicly available 

gridded population datasets [92]. We use five datasets from four providers: WorldPop 2015 by 

the University of Southampton [93]; LandScan 2015 from Oak Ridge National Lab [94]; WPE 

2016 by Esri Inc. [95]; and GHS-Pop 2000 and 2015, produced by the European Union Joint 

Research Center [96]. All datasets are available at 1-km grid cell, but the methodologies and 

input data vary [76]. WorldPop establishes spatial weights between area features and census 

population estimates by applying a random forest algorithm to a suite of remote-sensed derived 

land cover classes and GIS layers, such as distance to roads, and environmental data, including 

elevation and mean temperature, to estimate population counts [97]. In this study we use 

WorldPop data that is adjusted to United Nations national population estimates. 

  WPE couples remote-sensed derived land cover classes and GIS data, to develop 

weights for individual grid cells based on the likelihood that a given cell contains a human 

settlement. Finest-scale census data are then divided and apportioned to individual grid cells 

based on the likelihood weights. WPE validates their data by ensuring that populations for all 

countries total to national population estimates [95]. LandScan uses a dasymetric spatial model 

that relies on smart interpolation [98]. This approach proportionally allocates finest-scale 

available census data to each cell within a given census unit with model weights derived from 
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remote sensed satellite imagery and GIS data [94]. 

  GHS-Pop integrates the Gridded Population of the World version 4 (GPWv4) with the 

Global Human Settlement Layer Built-Up Grid (GHS-Built). GWPv4 apportions the finest 

scale census data available equally across grid cells within a given census boundary and does 

not use auxiliary remote sensing or GIS. The GHSL-Built grid is derived from a supervised 

learning land cover classification of LandSat imagery at 38 m spatial resolution. To produce 

GHS-Pop, GWPv4 is proportionally allocated to GHS-Built cells based on built-area density 

[99]. While WorldPop provides gridded population at five-year intervals from 2000 to 2020, 

GHS-Pop datasets are independently produced for each time point. GHSL-Built is constructed 

using Landsat mosaics at each time step (e.g. the GHS-Built 2000 uses images from 2000, 

while GHS-Built 2015 uses images from 2015) and GWPv4 derives population counts for 

target years by using a simple growth rate equation between two censuses [100,101]. 

2.2 OpenStreetMap 

  OpenStreetMap is a global collaboration to map the planet with VGI from anonymous 

contributors curated by the OpenStreetMap Foundation. All data are free to download and is 

continuously updated. Within the OSM typology, ‘places’ are known population settlements 

from which an urban hierarchy labels individual point locations, or “nodes”, as either a ‘city’, 

‘town’, or ‘village. In this study, we use OSM point data for 950 cities and 8,863 towns in 

Africa. OSM defines cities as the largest urban settlement within a bounded political territory 

and towns as “An important urban centre, between a village and a city in size.” To our 

knowledge no study has combined OSM data with continental-scale gridded population 

datasets to identify individual urban settlements, though OSM roads are used as input data for 

WPE 2016 [95]. 
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2.3 Moisture Zones 

  To demonstrate how our mythology can be used to advance our knowledge of how 

urban population distributions are changing across climate zones in Africa [10,85,89], we 

group our estimates of urban settlements according to moisture zones identified in 

HarvestChoice’s 2009 agro-ecological zones (AEZ) map for Sub-Saharan Africa [102]. The 

AEZ map classifies moisture zones by using the length of growing period (LGP) based on 

moisture and temperature conducive to crop growth. LGP are estimated by the number of days 

where average temperature exceeds 5 degrees Celsius and precipitation plus soil moisture 

exceeds half the potential evapotranspiration. Arid zones have fewer than 70-day LGP, semi-

arid 70- to 180-day LGP, sub-humid 180- to 270-day LGP and humid have over 270-day LGP. 

The AEZ is produced at approximately 10-km grid cells, though the final product is available 

at 1-km spatial resolution. 

3. Methods 

 
3.1 Measuring Population of Individual Urban Settlements 

  We first clip gridded population datasets to an Africa continental GIS basemap 

available from Esri Inc. that was manually buffered to prevent coastal pixels from being 

dropped (Fig. 1a). Then we use a density threshold to identify urban vs. non-urban locations. 

Figure 1 Workflow of method to intersect urban settlement 1,500-300 persons per km2 density mask from gridded 
population raster dataset with associated labeled OSM urban point data to estimate the population of individual 
urban settlements in Africa. 
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Strict population density thresholds are not necessarily the only criteria that identify urban 

settlements versus rural, nor do settlements necessarily follow a strict urban-rural dichotomy 

[103,104]. However, few alternatives exist for delineating labeled urban settlements from 

raster data without GIS jurisdictional boundaries. We use the European Union degree of 

urbanization (DEGURBA) classification [105] for high-density urban areas (cities) and lower-

density urban clusters (towns and suburbs). First, we first mask pixels that contain at least 

1,500 persons per km2. Then we apply a second mask that includes pixels with at least 300 

persons per km2 that are connected to the urban cores identified with the first mask. We set all 

other pixels to zero, leaving the pixels containing the urban cores and extended suburban areas 

identified with the 1,500-300 persons per km2 double density masks, which we transform into 

vector polygons (Fig. 1b). We recognize population density thresholds have limitations for 

application in Africa [73,79], but provide a consistent basis to evaluate differences across the 

gridded population datasets evaluated in this analysis. 

  Next, we find the spatial intersection between the urban settlement polygons delineated 

in each gridded population raster with the OSM city and town points (Fig. 1c). OSM points are 

buffered by ~250m to ensure that individual points do not fall just outside the bounds of the 

polygons. At the time of download, OSM listed 950 cities and 8,863 towns in Africa. 

Intersecting OSM urbans settlement points with the polygons derived from the destiny masks 

in the gridded population data sets provides an independent method to cross validate the 

location of urban settlements. 
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Table 1 Spatial agreement/disagreement OSM urban settlement point locations with masked 1500-300 persons / 
km2 urban settlement polygons isolated in gridded population datasets. 

 GHS-Pop 
2000 

GHS-Pop 
2015 

WorldPop 
2015 

LandScan 
2015 

WPE 
2016 

Masked 1500-300 persons / km2 urban settlement 
polygons 

45,303 46,100 12,453 28,663 30,532 

OSM “towns” that do not intersect with masked 
1500-300 persons / km2 urban settlement polygons 
out of 8,863 total OSM “towns” 

3,441 
 
 

3,025 5,612 
 
 

3,704 
 

3,692 
 

OSM “cities” that do not intersect with masked 
1500-300 persons / km2 urban settlement polygons 
out of 950 total OSM “cities” 

119 104 197 45 92 

Masked 1500-300 persons / km2 urban settlement 
polygons that intersect with one or more OSM 
urban settlement points and have >5,000 people* 

4,486 
 
 

4,784 
 

2,536 
 

4,045 
 

4,167 

* Retained for our analysis 
 

  We retain all urban settlement polygons that spatially intersect with one or more OSM 

city or town point. All else are dropped (Table 1). The retained urban settlement polygons are 

then overlaid on the original raster. We calculate the total population for each labeled urban 

settlement polygon using zonal statistics (Fig. 1d). Then each urban settlement is assigned to 

a moisture zone based on AEZ classification and grouped by country. Settlements that span 

international borders are clipped and allocated to their respective countries. Finally, we remove 

urban settlements with fewer than 5,000 people per DEGURBA criteria. 

3.2 Estimating Change in the Distribution of Urban Population 2000 - 2015 

  We employ two approaches to estimate the change in the distribution of urban 

population for Africa, within and between select countries, and across moisture zones using 

GHS-Pop 2000 and 2015. First, we plot points along Lorenz curves and calculate urban 

settlement Gini coefficients. Lorenz curves and Gini coefficient can be used to quantify 

inequality, or size hierarchy, within a series [106,107]. Countries with Gini coefficients closer 
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to zero have a larger share of the total urban population distributed among smaller and medium 

sized cities. Third, we assess  the rank size distribution across all African countries following 

Zipf’s Law for city size distribution [108]. For urban hierarchies in agreement with Zipf’s Law, 

the second largest city has half the population of the largest, and the third largest city has a 

third of the population of the largest and so forth. This is expressed as: 

𝑅 = 𝐾𝑃!"    (1) 

where R is a given city’s rank, P is a city’s population and K and α are constants. Here we 

estimate α by fitting using ordinary least squares (OLS) loglinear models. 

  As a focus of this paper is to examine how urban populations are changing among 

small- and medium-sized urban settlements, we remove settlements with greater than 5 million 

people from our distribution change analysis (Table 2). So called mega-cities [109,110] have 

received a disproportionate amount of attention from urban scholars [111] and have long been 

tracked with UN data. Furthermore, several urban settlements in our analysis exceed the largest 

urban mega agglomerations on the planet [1] and overly skew our ability to identity changes 

in urban population distribution among small and medium-sized urban settlements. For 

example, two polygons from Egypt in 2000 contain 33.20 million and 11.81 million people, 

respectively. By 2015 they merge together to form a single continuous urban plain with 83.46 

million people that spans the entire Nile River Basin and houses nearly 90% of Egypt’s 

population (Table 2). 

Table 2 Urban Agglomerations with at least 5 million residents for GHS-Pop 2000 and 2015. 
Country(s) Agglomeration Name Pop. 2000 

(Millions) 
Pop. 2015 (Millions) 

Egypt Cairo (Northern Nile Basin) 33.20 83.46 
Nigeria Lagos 9.66 13.73 
Nigeria Onitsha (Niger Delta) 4.95 9.35 
South Africa Johannesburg 5.43 8.26 
Sudan Khartoum-Omdurman 4.70 7.64 
Angola Luanda 0.47 7.22 
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Algeria Algiers 3.87 6.55 
Nigeria Kano 2.88 5.95 
DRC Kinshasa 6.47 5.79 
Tanzania Dar es Salaam 2.26 5.78 
Kenya Nairobi 2.60 5.12 
Egypt Al-Minya (Southern Nile Basin) 11.815 Joined to Cairo Agglomeration 
 
4. Results 

4.1 Comparative Estimates of Africa’s Urban Population by Settlement Size 

  The total number of Africans estimated to be living in urban settlements ranges from 

479.15 for WorldPop 2015 to 608.89 million for WPE 2016. UN estimated that 491.53 million 

people lived in urban areas in 2015 [1]. Total urban population grouped by settlement size 

varies considerably by gridded population data sets (Fig. 2a), though across all data sets urban 

settlements with 1 to 5 million people encompass the greatest share of urban population by 

settlement size category (Fig. 2a) While UN data shows that 65% of urban Africans lived in 

urban areas with fewer than 1 million people in 2015 [1], our estimates range from 42% for 

LandScan 2015 to 50% for GHS-Pop 2015. However, unlike UN data, we provide population 

estimates for urban settlements with fewer than 300,000 inhabitants. For example, our results 

indicate that according to GHS-Pop 2015, 97 million people live in urban settlements with 

100-300 thousand people and 117 million people live in settlements with fewer than 100 

thousand people. 

  We estimate populations for between 2,536 individual labeled urban settlements with 

WorldPop 2015 and 4,784 with GHS-Pop 2015 (Fig. 3b). Our results show that 78% 

(WorldPop 2015) to 85% (LandScan 2015) of urban settlements contain fewer than 100,000 

people (Fig. 3b). For example, among the 4,045 individual urban settlements identified in 

LandScan 2015, only 604 have greater than 100,000 people. Accordingly, the median 

population of urban settlement ranges from 20,245 for LandScan 2015 to 32,184 for WPE 2016. 
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Urban settlements with greater than 1 million people skew the distribution, with the WorldPop 

2015 having the highest mean settlement population of nearly 190,000 people. 

  Intersecting OSM urban settlement location data with gridded population data sets to 

identify urban settlement populations significantly reduces noise produced by density 

thresholds alone and provides independent validation that an urban settlement exists at a given 

location within a gridded population data set (Table 1).  But the density thresholds we employ 

results in substantially divergent urban settlement boundaries across datasets, as well as 

differences in agglomeration connectivity. This is especially evident for heavily urban regions, 

such as the Nile River Basin. With WorldPop 2015, we identify over 50 disparate urban 

settlements in the Nile River Basin, still with one housing over 40 million people living in the 

Cairo agglomeration. But with GHS-Pop 2015, only 15 individual settlements are mapped and 

the largest contains over 80 million people. The divergences among the gridded population are 

also evident from the difference in the of distribution of urban settlement population (Fig. 3b), 

with LandScan 2015 capturing substantially more small urban settlements compared to the 

other datasets. 
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4.2 Change in Urban Population Distribution 2000 - 2015 by Country 

  Including agglomerations 

with greater than 5 million 

people, our analysis of GHS-Pop 

shows that Africa’s urban 

population expanded from 382.68 

million to 607.92 million from 

2000 to 2015, a 59% increase. 

This exceeds UN estimates 

stating that the continent had 286 

million urban residents in 2000 

and 491 million in 2015 [1]. 

Across the continent, the largest 

urban settlements absorbed the 

greatest share of urban population growth (Fig. 3). Urban areas with 5 - 10 million people 

expanded by 225%. However, as noted above with the example of the Nile River Basin, there 

is evidence that much of this growth among large settlements is a result of urban 

agglomerations growing together. For small- and medium- sized urban settlements, those with 

100 - 300 thousand people, 300 - 500 thousand, and 500 - 1 million inhabitants expanded 40%, 

44%, and 61% respectively. 

  Even with urban settlements with greater than five million people removed, the Lorenz 

curves and Gini coefficients indicate that the distribution of urban settlements in Africa is 

becoming more unequal, with larger cities absorbing a greater proportion of urban population 

Figure 3 Urban population group by settlement size for GHS-Pop 

2000 and GHS-Pop 2015. 

 

 

Figure 2 (a) Total urban population by settlement size and (b) 
distribution of individual urban settlement populations for WorldPop 
2015, LandScan 2016, GHS-Pop 2015 and WPE 2016. 
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growth. For most African 

countries, urban settlement Gini 

coefficients increased, signaling 

that the share of total urban 

population living in the largest 

urban settlement increased 

between 2000 and 2015 (Table 

3). Countries with larger changes 

in Gini coefficients tended to have 

relatively larger increase in median population. Nonetheless, substantial variation exists across 

countries (Table 3). Decreasing Gini coefficients for countries like Botswana indicate that 

smaller urban settlements may be growing faster than larger urban settlements. For countries 

like Ghana, a decrease in the number of urban settlements between 2000 and 2015 suggest that 

settlements grew together (Table 3). Additionally, the noticeable deviations in rank-size α 

values from 1 suggest that the rank-size distribution of African urban settlements does not 

follow Zipf’s law (Table 3), though this is not unexpected [108,112,113]. Visually this is quite 

apparent for countries like Nigeria and Ethiopia, where the log ranked size plotted against the 

log population is nonlinear (see supplement). 

  The Lorenz curves can be employed to examine differences in urban settlement 

distributions that are not apparent from the Gini coefficients alone. We see that both the shape 

and changes in Lorenz curves vary widely across African countries (Fig. 4 - see supplement 

for all countries). We can quantify these differences in the Lorenz curves with ranked 

settlements size quantile thresholds. For example, in Kenya in 2015, the bottom 90% of urban 

Figure 3 Urban population group by settlement size for GHS-Pop 

2000 and GHS-Pop 2015. 
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settlements had fewer than ~272,000 people and housed about 28.6% of Kenya’s urban 

population in 2015. In contrast, about 54% of Ethiopia’s urban population in 2015 lived in the 

bottom 90% of urban settlements, those with ~150,000 people or fewer, showing that urban 

Ethiopians tend to live in smaller urban settlements compared to urban Kenyans. 

  We can also assess how distributions are changing overtime. For instance, Ghana 

exhibited a large shift between 2000 and 2015, decreasing from 39% to 30% of its urban 

population living in the bottom 90% of urban settlements ranked by size. The 90% threshold 

increased in Ghana to about 100,000 in 2015 from about 80,000 in 2000. Africa-wide, 

excluding agglomerations with greater than five million people, about 36% of the total urban 

population lived in the bottom 90% of urban settlements in both 2015, down from 37% in 

2000. The 90th percentile threshold, however, increased from 124,000 to 173,000 residents 

from 2000 to 2015. Because United Nations population data is not provided for all individual 

urban settlements this type of analysis is not possible. 
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Figure 4 Urban settlement Lorenz curves using GHS-Pop 2000 and GHS-Pop 2015 data for Africa and select 
countries (see supplement for all countries). The vertical line delineates the 90th percentile of settlements ranked 
by size. Plots are arranged alphabetically. Botswana’s Lorenz curve shifted to the left, signifying that smaller 
urban settlements absorbed a greater share of urban population growth between 2000 and 2015. Note that 
agglomerations with greater than 5 million people have been removed. 
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Table 3 Changes in urban population distribution in Africa measured by GHS-Pop 2000 and 
GHS-Pop 2015 Countries where settlements with greater than five million people removed 
have been removed demarcated with (num.) (see Table 1). 
Country Count 

2000 
Count 
2015 

Median 
2000 

Median 
2015 

Gini 
2000 

Gini 
2015 

α 
2000 

α 
2015 

Algeria 426 400(1)          19,881           26,643  0.65 0.59 -1.01** -0.94* 

Angola 71 80(1)          40,950           44,901  0.64 0.64 -0.65* -0.69* 

Benin 75 81          20,390           24,659  0.67 0.77 -0.84* -0.73* 

Botswana 19 16          48,728           61,392  0.45 0.37 -0.62 -0.97 

Burkina Faso 73 82          26,733           30,689  0.62 0.71 -0.83* -0.82* 

Burundi 92 94          21,663           28,130  0.48 0.61 -1.09* -0.91* 

Cameroon 120 125          29,262           32,755  0.70 0.76 -0.77* -0.7* 

Cape Verde 8 10          16,800           17,383  0.32 0.37 -1.14 -1.05 

Central African Republic 63 74          14,224           14,654  0.61 0.63 -1.03* -1.01* 

Chad 38 45          68,704           88,544  0.55 0.59 -0.65 -0.55* 

Comoros 7 10            8,918           12,276  0.62 0.66 -0.44 -0.53 

Congo 17 32          16,825           14,572  0.82 0.81 -0.49* -0.6* 

Côte d'Ivoire 103 107          23,139           27,446  0.73 0.75 -0.88* -0.85* 

DRC 260 292(1)          22,471           30,868  0.68 0.72 -0.8* -0.72* 

Djibouti 1 2        431,331         261,159  0.00 0.48 0*** -0.18*** 

Egypt 34(2) 21(2)        130,921           84,871  0.72 0.55 -0.49* -0.56 

Equatorial Guinea 7 7          13,952           20,062  0.55 0.60 -0.53 -0.44 

Eritrea 4 5          78,033           58,831  0.58 0.67 -0.44 -0.35* 

Ethiopia 338 394          34,785           43,123  0.53 0.59 -0.96* -0.87* 

Gabon 14 14          19,455           20,018  0.66 0.68 -0.68 -0.62* 

Gambia 13 14          18,233           24,277  0.67 0.76 -0.67* -0.61 

Ghana 228 220          19,853           21,813  0.69 0.77 -0.89* -0.81* 

Guinea 92 96          16,859           20,073  0.67 0.72 -0.92* -0.84* 

Guinea-Bissau 19 20          19,313           25,216  0.58 0.66 -0.79* -0.68* 

Kenya 118 124          20,743           27,902  0.80 0.78 -0.72** -0.68* 

Lesotho 12 11          19,948           23,262  0.58 0.60 -0.73 -0.68 

Liberia 20 26          17,415           22,135  0.71 0.75 -0.74 -0.74 

Libya 52 58          15,736           16,102  0.76 0.79 -0.69* -0.67** 

Madagascar 57 68          14,951           22,193  0.70 0.75 -0.96* -0.91* 

Malawi 38 43          16,778           31,871  0.67 0.79 -0.86* -0.7* 

Mali 157 185          11,894           13,981  0.61 0.72 -1.16* -0.99* 

Mauritania 17 19          12,288           18,343  0.75 0.78 -0.67* -0.65* 

Mauritius 7 4          26,062           68,326  0.71 0.56 -0.47 -0.43 

Morocco 200 204          23,212           26,240  0.74 0.77 -0.79** -0.75** 
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Mozambique 131 140          31,225           38,357  0.62 0.65 -0.86* -0.79* 

Namibia 19 23          16,158           21,779  0.54 0.60 -0.89 -0.78* 

Niger 49 71          26,958           24,747  0.66 0.71 -0.7* -0.67* 

Nigeria 315(1) 312(3)          47,794           61,423  0.70 0.71 -0.72* -0.63* 

Rwanda 48 42          21,999           32,626  0.58 0.72 -0.97* -0.73* 

Reunion 10 6          47,740         144,870  0.43 0.30 -0.68 -0.73 

Senegal 78 86          22,702           30,342  0.72 0.75 -0.67* -0.66* 

Sierra Leone 35 39          13,246           15,998  0.69 0.76 -0.76* -0.71* 

Somalia 48 53          18,727           31,353  0.72 0.69 -0.76* -0.72* 

South Africa 303 329(1)          17,931           20,331  0.74 0.76 -0.84** -0.8** 

South Sudan 52 73 30,769                 38,124  0.52 0.56 -0.79* -0.77* 

Sudan 88 98(1)          47,260           54,186  0.71 0.61 -0.62* -0.62* 

Tanzania 156 163(1)          16,574           27,088  0.70 0.65 -0.93** -0.9* 

Togo 33 37          38,722           42,500  0.67 0.72 -0.68* -0.63* 

Tunisia 82 81          32,559           32,828  0.67 0.71 -0.84* -0.81* 

Uganda 134 139          21,075           31,447  0.64 0.67 -1* -0.91* 

Zambia 56 55          52,955           65,434  0.60 0.64 -0.73* -0.7* 

Zimbabwe 44 43          29,509           33,291  0.73 0.76 -0.77* -0.7* 

Africa 4481(3) 4773(11)          22,871           28,482  0.71 0.72 -0.85** -0.79** 
** p < 0.01, * p < 0.05 
 
4.2 Change in Urban Population Distribution 2000 - 2015 by Moisture Zone 

  The change between 2000 and 2015 in the share of urban Africans living in the largest 

urban settlements by size substantially varies across moisture zones. In arid regions, the share 

of total urban population living in larger urban areas, excluding settlements with greater than 

5 million people, decreased substantially between 2000 and 2015. This is evident from the 

Lorenz curve clear leftward shift (Fig. 5). The bottom 90% of urban settlements in arid regions 

increased from 30% of the total urban population in 2000 to 40% in 2015. The 90th percentile 

threshold increased from 64,000 in 2000 to 86,000 in 2015. This indicates that small and 

medium sized urban settlements are growing faster compared to larger urban settlements across 

Africa’s arid regions. We observe a similar, but considerably less pronounced, shift toward 

smaller and medium-sized urban settlements in sub-humid regions. About 35% of the total 

urban population in sub-humid regions lived in the bottom 90% of cities in 2000 increasing to 
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37% in 2015, with the threshold increasing to 145,000 from 115,000 people. 

 
  By comparison, in semi-arid and humid regions of Africa, larger cities are absorbing a 

greater share of urban population growth. In 2000, the bottom 90% of urban settlements––

132,000 people or less––encompassed 42% of total urban population in semi-arid regions, 

dropping to 37% in 2015. Urban population distribution remained more stable in humid regions 

from 2000 - 2015. About 40% of urban dwellers resided in the bottom 90% in both 2000 and 

2015, though the 90th percentile threshold increased from 137,000 to 254,000 people. 

5. Discussion and Conclusions 

  The conventional narrative on urban population growth in Africa centers on primary 

and capitals cities. Yet UN estimates state that 65% of urban Africans lived in cities containing 

1 million or fewer people in 2015 [1]. While our estimations are lower than UN numbers, 

showing that 50% of urban Africans live in urban settlements with 1 million or fewer in 2015, 

we confirm that small- and medium-sized urban areas contain a considerable portion of 

Africa’s urban population. This may not be unique to Africa. UN data states that 54% of urban 

South Americans live in urban areas with fewer than 1 million people, though South America 

Figure 5 Urban settlement Lorenz curves using GHS-Pop 2000 and GHS-Pop 2015 for moisture zones in Africa. 
The vertical line delineates the 90th percentile of settlements ranked by size. The noticeable left-shift of the arid 
curve between 2000 and 2015 indicates that smaller urban settlements are absorbing more urban population 
growth than larger urban settlements. Note that agglomerations with greater than 5 million people have been 
removed. 
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is 85% urban and Africa is only 41% [1]. But unlike UN data, our methodology provides an 

avenue to estimate the population of and the geographic distribution of these smaller urban 

settlements. We are able to detail how urban populations are distributed within and between 

countries, and across non-political geographies such as moisture zone. Indeed, this study offers 

the first assessment of urban population distribution in Africa using a consistent definition of 

urban settlement across countries. 

  Our results highlight that small- and medium-sized urban settlements in arid regions in 

Africa may be growing substantially faster than larger urban settlements. This finding 

complements recent research that shows climate change may be amplifying urban growth in 

drying regions of Africa [10]. Studies have shown that pastoralist and dryland farmers are 

facing heightened challenges in light of climate change [86,87]. We reason that, although 

decisions driving rural-to-urban migration are complex [89], these arid urban settlements may 

be growing in part because of ease of migration from rural communities to proximate market 

towns and regional hubs. These smaller towns may offer a greater chance at poverty alleviation 

compared to large urban centers as rural populations move to cities [114]. However, in the 

coming decades, an increasing number Africans will live in arid regions arid due to climate 

change [115] and, as these regions become hotter and drier, questions about the stability of 

these urban systems abound [10]. Unlike other urban population data sets for Africa, our results 

can readily be incorporated with raster datasets with continuous environmental variables, like 

precipitation and temperature, to gauge how pressure from climate change and climate shock 

may affect urban settlement populations at fine spatial scales and across non-political 

boundaries. 

  Pinpoint population measurement for among small and medium-sized urban 
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settlements is key to accurately measuring SDG targets and indicators for sustainable urban 

development, poverty reduction and food security [76,116]. As noted, market towns and 

regional hubs may provide the best avenues of poverty alleviation [114]. We can hypothesize 

that smaller urban settlements have stronger economic connectivity within local economics, 

with food systems that rely on agriculture sourced from proximate areas, and stronger labour 

ties between with rural areas [40]. The economies in large African cities, in contrast, have 

greater connectivity into trans-African and global economy and thus greater exposure to 

external market forces [34,117]. Additionally, urban-rural land use teleconnections and food 

system linkages may vary by urban settlement size across agro-ecological zones [25,103]. The 

disparate connectivity surely presents unique food security and economic challenges that 

cascade across the urban hierarchy. 

  Last, we show that the distribution of African urban settlements does not follow Zipf’s 

Law. This is not unexpected. Numerous studies have shown divergences from Zipf’s Law for 

city rank size distributions [108,113,118]. While other rank size power law estimators have 

been proposed, the use of Lorenz Curves and urban settlement Gini coefficients provides a 

clear method to compare inequality within and between urban hierarchies. 

  Our results reveal divergences between gridded population data sets in measuring urban 

populations with a consistent methodology and also provide a contrast to United Nations urban 

population estimates. Differences between our results with UN urban population data may be 

a result of the UN relying on individual countries’ definitions of urban areas, which can vary 

greatly [1]. We find variation among gridded population datasets, both in the number of 

settlements identified, the boundaries and populations of individual settlements defined by 

population density, and the aggregated number of urban Africans. But combining OSM urban 
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settlement location data with gridded population data significantly reduces noise produced by 

density thresholds alone and provides independent validation that an urban settlement exists at 

a given location within a gridded population data set (Table 1). This is a key finding in 

particular for GHS-Pop where 46,100 unique urban settlements are identified in 2015 without 

the OSM integration. As such, the producers of GHS-Pop offer a GHS Settlement Grid product 

based on the GHS-Pop that may over-estimate the number of urban settlements in Africa. 

  But our results are not without limitations. First, the gridded population datasets that 

we employed all use census data from some countries, like Nigeria, that have been shown to 

be unreliable [119] and from several countries that have not conducted a census in over a 

decade [24].  Second, there is variation between datasets, both in the number of settlements 

identified, the boundaries and populations for individual settlements, and the aggregated total 

number of urban Africans. Variation may be due to divergences between spatial-covariates 

derived from remote sensing imagery and auxiliary GIS datasets. (For example, WorldPop 

uses Nighttime Lights satellite imagery, while WPE 2016 and GHS-Pop 2015 do not). 

Additionally, because of the fluctuations in spatial boundaries for individual urban settlements, 

pairwise comparison of populations is not currently possible. As discussed with the case of 

Egypt, applying density thresholds in heavily urbanized regions can be problematic. Future 

research should address the discrepancies between datasets and develop best-estimates across 

gridded population datasets or pixel-level confidence intervals for individual data products. 

  Africa’s urban population is expanding rapidly. This paper offers insights into not only 

how to pinpoint urban population pressures, but also presents a methodology to evaluate how 

these pressures may be changing. Growth of small and medium-sized urban settlements has 

implications for how rural-to-urban migration may unfold in the coming decades and what 
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structures of urban governance can enhance the potential for desirable pathways of urban 

development. Our estimates indicate that small- and medium-sized urban settlements house 

the majority of urban Africans today and that these types of settlements may be growing fastest 

in arid regions––areas that are most vulnerable to climate change. 
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CHAPTER III – GLOBAL URBAN POPULUATION EXPOSURE TO EXTREME 

HEAT 

1. Main Text 

  More than half of humans live in urban settlements [1] that are increasingly exposed to 

extreme heat due to climate change [16–20]. As temperatures rise, these urban populations 

face serious threats to human health [14]; labor productivity, economic output, and poverty 

reduction [120–124]; and increases in mortality [17,18], violence, and political instability 

[125,126]. Despite the urgent implications, there has been no globally extensive, fine-scale 

synthesis of urban population exposure to extreme heat. As such, we have limited ability to 

implement targeted strategies to temper the harmful and inequitable impacts extreme heat 

places on urban populations [127–129]. 

 Recent coarse-grained (1.5° resolution) analysis showed that 31% of the world’s 

population is exposed to extreme heat conditions for at least 20 days each year [17]. But 

developing a longitudinal, fine-resolution global analysis of urban population exposure to 

extreme heat has been stymied by a lack of observational data. In-situ temperature reporting 

has declined over the past three decades [130], especially in rapidly urbanizing, low-latitude 

countries most susceptible to extreme heat [17]. From 1983 to 2016, station-based daily 

observations of temperature maxima declined globally from 5,900 to 1,000 [130]. 

Additionally, multi-temporal, fine-scale urban population estimates have also not existed 

[76,131]. Like temperature data, this data limitation is especially acute in Africa [131], which 

is expected to host nearly half of the planet’s 2.3 billion new urban residents by 2050 [1]. 

 Here we estimate daily urban population exposure to extreme heat for 13,115 cities 

from 1983 to 2016. We define urban population exposure to extreme heat––referred to 
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henceforth as exposure––in person-days, the number of days per year where the heat index 

exceeds 40.6 °C (≥ 105 °F) multiplied by the total urban population exposed [16]. To 

accomplish this, we harmonize a new quasi-global, fine-resolution (0.05° spatial resolution) 

daily temperature maxim estimates with the first globally uniform, geo-located urban 

population and spatial extent dataset. For each urban area, we calculated area-averaged daily 

heat index maximums (HImax) following the US National Oceanic Atmospheric and 

Administration’s procedure [132]. HImax is derived from the Climate Hazards center InfraRed 

Temperature with Stations daily temperature maximum  (CHIRTSdaily) and down-scaled daily 

humidity estimates from ERA5 climate reanalysis [133]. CHIRTSdaily has been shown to be 

the most accurate fine-resolution, global daily temperature maximum product in crucial data-

sparse regions such as Sub-Saharan Africa, the Middle East, and Southern Asia [134]. 

 We calculate the average annual rate of increase in exposure (person-days yr-1) at the 

global, regional, national, and municipality-level from 1983 - 2016. At each spatial-scale, we 

measure and map the relative contribution to the increase in exposure from population growth 

versus urban warming. This analysis does not decouple urban warming due to the urban heat 

island (UHI) effect––—an amplification of temperatures in urban areas relative to proximate 

rural areas due to the features of the urban environment [135]—from urban warming due to 

climate change. We do identify which urban areas have warmed the fastest by measuring the 

increase in the number of days per year where HImax > 40.6 °C. Finally, we examine 

anomalously warm years for select regions to showcase our data’s ability to identify previously 

un-documented heat waves in data-sparse regions. 
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 Globally, exposure increased almost 150%, from 118 billion total person-days in 1983 

to 291 billion person-days in 2016 (Fig. 1a). Exposure grew by 5.2 billion person-days yr-1, of 

which population growth contributed 3.9 billion person-days yr-1 (Fig. 1b). Urban warming 

represented the remaining 26% of the annual rate of increase in exposure, contributing 1.4 

billion person-days yr-1 (Fig. 1c).  

 Southern Asia experienced the greatest change in the amount of exposure, which 

increased by 1.9 billion person-days from 1983 to 2016, 36% of the global total. Southeastern 

Asia followed, increasing by 994 person-days yr-1. Urban warming contributed 28% of the 

annual rate of increase in exposure in Southern Asia and 26% in Southeastern Asia. In contrast, 

throughout Europe the annual rate of increase in exposure was substantially lower, but urban 

warming contributed a greater share of the trend. For example, urban warming contributed 

nearly 97% of the 8 million person-days yr-1 increase of the rate of exposure in Eastern Europe. 

 For Africa, exposure increased from 15 billion people-days in 1983 to 50 billion 

people-days in 2016. Of this five-fold increase, urban warming contributed 17% of the annual 

rate of increase in exposure from 1983 – 2016. Sub-Saharan increased by 887 million person-

days yr-1, with 16% of the annual rate of increase in exposure from urban warming. Of the 137 

Figure 1 (A) Total urban population exposure to extreme heat from 1993 - 2016, with the contribution from 
population growth (B) and urban warming (C) decoupled.  
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million per-days yr-1 added rate of exposure in Northern Africa, urban warming contributed 

23%. 
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Figure 2 (a) Municipality-level increase in the rate of  urban population exposure to extreme heat  from 1993 
- 2016 and (b) the rate of increase in the total number of days per year where the urban heat index exceeded 
40.6  °C. (c) The share of population versus urban warming in the rate of increase of total population exposure.  
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 At the municipality-level, the annual rate of increase in exposure from 1983 - 2016 was 

statistically significant (p < 0.05) for 62.7% of urban areas globally (Fig 2a). The rate of 

exposure increased in most low-latitude urban areas, across a range of climate zones. For 

example, the annual rate of increase in exposure was significant for nearly 90% of urban areas 

in India. In West Africa, person-days yr-1 increased in 82% of urban areas in Nigeria and 97% 

of cities in Senegal. Rapidly growing mega urban agglomerations in the Global South had the 

largest annual rate of increase in exposure, on the order of 107 - 108 person-days yr-1. Dhaka 

(110 million person-days yr-1), Bangkok (94 million person-days yr-1), Jakarta (93 million 

person-days yr-1), Guangzhou-Hong Kong (89 million person-days yr-1), and Manila (87 

million person-days yr-1) were the top five urban agglomerations, respectively. Nonetheless, 

many large European cities, like Rome and Athens, as well as several cities in the United 

States’ Sunbelt region, exposure increased by 106 - 107 person-days yr-1. 

 We estimate the increase in total number of days per year when the HImax exceeded 

40.6 °C to identify which urban areas are warming the fastest (Fig 2b). Over 4,100 urban areas, 

across a range of climatic zones, added at least one day per year where the heat index exceeded 

40.6 °C. In other words, these urban areas experienced an additional month of extreme heat by 

2016 compared to 1983. Strikingly, 150 urban areas across Central America, the Amazon 

Fig 3 The comparative contribution to the increase in the rate of urban exposure to extreme due to population 
growth versus urban warming varies considerably across select regions. Fourth degree polynomial OLS linear fits 
were estimated to visually highlight the differences in distributions. 
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Basin, Western and Easter Africa, and Southern Asia added three or more days per year of 

extreme heat. This includes major cities like San Salvador (3.84 yr-1) and Colombo (3.05 yr-1). 

 

Figure 4 Anomalously warm years can be used to identify heat waves in individual cities.  
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 Population growth was the primary contributing factor to annual rate of increase in 

exposure for the vast majority of cities across the planet (Fig. 2c). However, across Europe, 

inland China, coastal South Western India, and Java in Indonesia urban warming drove the 

increase in exposure. Surmised to the regional-level, the distribution of the contribution from 

urban warming versus population growth from 1983 - 2016 reinforces the stark geographic 

contrasts (Fig 3). The left skewed distribution for Europe (Fig. 3a) shows that urban warming 

drove the upward trajectory of person-days yr-1. In Eastern Asia (Fig. 3b), we find a mix of 

warming and population growth, trending toward population growth in Western Asia (Fig 3c.), 

and Sub-Saharan Africa (Fig 3d). 

 In addition to assessing large-scale patterns and regional trends in annual exposure, we 

examine the dynamics of localized urban heat waves over the past three decades (Fig 4). For 

example, in 1998 heat waves in India were purported to kill thousands of people [136]. 

Accordingly, we find 1998 to be an extreme anomaly in the numbers of days where the heat 

index exceeded 40.6 °C for urban areas across India (Fig. 4a). We can then identify the duration 

and magnitude of individual heat waves at the daily scale for individual urban areas. In 

Kolkata, for fourteen continuous days in May-June 1998 HImax exceeded 50° C (Fig 4b). 

During this period the average HImax exceeded the 34-year HImax average by 6.2 °C. 

 Similarly, we find extreme heat anomalies across Western European urban areas in 

2003 (Fig. 4c). This well-documented hot summer killed up to 70,000 people in Europe [137]. 

We pinpoint the peak heatwave during August 2003 in Paris (Fig. 4d), with a 9-day period 

where HImax was above 40.6 °C and exceeded longer-term daily averages by as much as 21.2 

°C. 
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 This approach can be used to pin-point poorly-documented heat waves in data-sparse 

regions as well. For instance, our dataset reveals that 2010 was anomalously hot across Middle 

Eastern urban areas (Fig. 4e). In Syria, this coincided with the final year of a 4-year drought. 

The occurrence of this drought was 2 to 3 times more likely because of climate change [138], 

which may have increased rural-to-urban migration and contributed to the political strife 

[138,139]. 

 During the final summer of the drought, in Aleppo, Syria, we document a 36-day period 

in July and August 2010 with HImax above 40.6 °C (Fig. 4f). Over this time, the average HImax 

exceeded the 34-year-daily average by 4.2 °C. We find that a peak heat wave rolled through 

Aleppo from July 29 to August 6, during which HImax exceeded 34-year daily averages by as 

much as 11.8 °C. This heat wave occurred just six months prior to the beginning of the Syrian 

uprising. While the likelihood of heat waves has increased for the Eastern Mediterranean since 

the 1960s [140], to our knowledge, urban heat waves during the summer of 2010 in Syria have 

not been documented nor quantified until now. 

 Our results call into question the future sustainability and equitability for many of the 

planet’s ever-expanding urban areas. Across spatial scales, elevated temperatures sharply 

limits economic output [121–123]. Yet poverty reduction in urban areas ultimately hinges on 

increasing labor productivity [120]. Accordingly, the increased urban exposure to extreme heat 

across regions like Sub-Saharan Africa and South Asia, which currently house hundreds of 

millions of poor urban [141], highlight that extreme heat may crucially limit the urban poor’s 

ability to realize the economic gains associated with urbanization [2,120,122]. Given that 

climate change is increasing the frequency, duration, and magnitude of extreme heat across the 

globe [16–20], our results have alarming implications for achieving the United Nations 
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Sustainable Development Goals 1 and 11—ending poverty and ensuring sustainable and 

equitable cities. 

2. Materials and Methods 

 All data harmonization and analysis is conducted in Python 3.6.7 and maps are 

produced using QGIS 3.4. 

2.1 Daily Temperature and Humidity Data 

The new Climate Hazards center InfraRed Temperature with Stations daily temperature 

maximum  (CHIRTSdaily) dataset provides a globally extensive, high-resolution (0.05°) daily 

maximum temperatures estimates from 1983 – 2016 [134]. By combining cloud-free 

harmonized geostationary satellite thermal infrared (TIR) observations with 15,000 in-situ 

station observations, the CHIRTS algorithm first estimates maximum temperatures 

(CHIRTSmonthly) monthly average estimates that are highly accurate  (R2 = 0.8 – 0.9) across the 

planet [130]. Next, daily temperature maximums values (e.g. CHIRTSdaily) are calculated by 

applying the difference between downscaled monthly average temperature maximums from 

European Centre for Medium-Range Weather Forecasts ERA5 Reanalysis (ERA5) [133] and 

CHIRTSmax  to daily ERA5 maximum temperature observations. This is expressed as:  

𝐶𝐻𝐼𝑅𝑇𝑆#$%&' =	𝐸𝑅𝐴5#$%&' + (𝐶𝐻𝐼𝑅𝑇𝑆()*+,&'00000000000000000000 −	𝐸𝑅𝐴5()*+,&'00000000000000000) (eq. 1) 

Preliminary validation of CHIRTSdaily  against Global Historical Climatology Network 

and Global Summary of the Day databases show that CHIRTSdaily consistently outperforms the 

commonly used Princeton University’s Global Meteorological Forcing Dataset for land surface 

modeling [142]. Daily humidity data is produced by down-scaling ERA5 humidity estimates 

following the same processes to down scale ERA5 temperature data. ERA5 tempature and 
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humidity data is downscaled from 0.67° longitude by 0.50° latitude to 0.05° by 0.05° using a 

bilinear interpolation. 

2.2 Population Data 

 We use population estimates and spatial boundaries for 13,115 cities from the Global 

Human Settlement Layer Urban Centers Database (GHS-UCDB) produced by the European 

Commission Joint Research Council [105]. Released in 2019, GHS-UCDB is the only well-

documented global, geo-located urban population and extent dataset. First a symbolic machine 

learning algorithm is applied to over 33,000 Landsat imagery from 1975 – 2014. The resulting 

product, GHS-Built, is a 1-km globally extensive raster dataset of total built surfaces across 

the planet in 1975, 1990, 2000, and 2015. Next, GHS-Built is spatially-intersected with un-

modeled, census derived gridded population dataset—the Gridded Population of the World 

version 4 (GPWv4)—which is constructed by equally apportioning of the finest scale census 

data available across grid cells within a given census boundary. Population from GPWv4 is 

reallocated to grid cells based on the percentage of built area from GHS-Built. This resulting 

gridded population raster is called GHS-Pop. 

 Finally, a spatial smoothing algorithm is applied to GHS-Pop to find contiguous 1-km 

grid cells that have >1,500 people in GHS-Pop 2015 or > 50% of the pixel is built environment, 

which is then used to isolate urban settlement polygons boundaries. These polygons are then 

overlaid on the GHS-Pop rasters from 1975, 1990, 2000, and 2015 to calculate total population 

inside each polygon. Those with fewer than 50,000 people are removed. The GHS-UCDB 

dataset also contains the built area estimates for each urban settlement for all time points using 

the Landsat-derived estimates in the GHS-Built rasters. To estimate populations for each GHS-
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UCDB polygon for each year from 1983 - 2016, we apply a stepwise linear interpolation to the 

1975, 1990, 2000, and 2015 GHS-UCDB population estimates for each urban-area. 

2.3 Data Harmonization 

 We convert the GHS-UCDB polygons to a raster dataset in the same coordinate 

reference system and spatial resolution as CHIRTSdaily (WGS 84). We then calculate the daily 

area-averaged CHIRTSdaily and ERA5 RH for each urban area from 1983 - 2016. We recognize 

the limitations of using an area-average to characterize the maximum daily 2-m air temperature 

and HR of an entire urban area, especially for large agglomerations that span multiple climatic 

zones [128]. However, widely-cited global and continental-scale urban heat studies report a 

single temperature for urban areas and it is unclear the spatial extent characterized by the 

temperatures employed in these studies [17,18,128]. We also note that CHIRTSdaily is available 

at a finer spatial resolution than the temperature datasets used in recent global retrospective 

and predictive extreme temperature studies [17,18] and urban heat island effect studies [128]. 

2.4 Daily Urban Heat Index Estimates 

 We calculate daily maximum heat index values (HImax) for each urban area following 

the National Ocean and Atmospheric Administration's guidelines (NOAA). The 

documentation is provided by the US National Weather Service (NWS) here:  

https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml. The final dataset contains 

~150 million area-averaged daily maximum HImax observations for more than 13,115 urban 

areas from 1983 - 2016. 

 First, area-averaged CHIRTSdaily (referred here to as 𝑇($- for simplicity) values are 

transformed from Celsius to Fahrenheit. Next, daily HImax values are calculated using 

Steadman’s equation and averaged (eq. 2): 
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𝐻𝐼	($- =
(/.1	×	(4	!"#5	67./	5	((4	!"#!68./)	×7.:)	5	(/./;<=>))	5	4	!"#		

:
	 (eq. 2) 

If the resulting value is greater than 80 F, then we calculate HImax for each city following 

Rothfusz equation (eq. 3): 

𝐻𝐼	($- 	= 	−42.379	 + 	2.04901523𝑇	($- 	+ 	10.14333127𝑅𝐻	 −

	0.22475541𝑇	($-	𝑅𝐻 − .00683783𝑇	($-: 	− 	0.05481717𝑅𝐻: +

	0	.00122874𝑇	($-:𝑅𝐻	 + 	0.00085282𝑇	($-𝑅𝐻: 	− 	0.00000199𝑇	($-:𝑅𝐻:	 (eq. 3) 

 We then adjust the Rothfusz heat index values per NOAA’s guidelines. For a given city 

on a given day, if T is between 80 and 112 degrees F and RH <13%, we subtract adjustment 1 

from HImax (eq. 4). If T is between 80 and 87 degrees F and RH > 85%, we add adjustment 2 

to HImax (eq. 5). We then convert all resulting maximum daily heat index values back to 

Celsius. 

𝐴𝐷𝐽1 = 	 /.:1	×	(7?	!	=>)	×	@(7A!BCD(4!"#	!;1)
7A

	  (eq. 4) 

𝐴𝐷𝐽2	 = =>!81
7/

× 8A!	4!"#
1

	 (eq. 5) 

2.5 Urban Population Exposure to Extreme Heat 

 We subset the data to include only daily area-averaged HImax greater than 40.6 °C, a 

commonly-used threshold to identify dangerous heat events [9,18,143]. By using a heat index 

(also referred to as apparent temperature), rather than 2m air temperature, we account for the 

nonlinear biophysical response to the relationship between humidity and air temperature [17]. 

Core body temperatures are almost universally maintained around 37 °C and skin temperatures 

around 35 °C [144]. Hyperthermia, elevated core body temperature, occurs when sustained 

elevated skin temperatures, resulting in death with core body temperatures around 42-43 °C 

[145]. While acclimatization can reduce the burden of heat [144], acclimatization only 
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improves sweating mechanisms and the cooling effects of acclimated people have limits. As 

relative humidity increases, the evaporative cooling effects of sweating decreases and once 

relative humidity reaches 100%, sweating continues but evaporative cooling stops. Even 

acclimated or healthy humans face mortality with prolonged skin temperatures of 37–38 °C 

[146,147]. Thus, it is reasonable that sustained periods of time with HI > 35 °C are intolerable 

[148]. Accordingly, our use of 40.6 °C HImax threshold is a conservative estimator of urban 

exposure to extreme heat. 

 We quantify urban exposure to extreme heat in person-days for each GHS-UCDB 

urban area from 1987 - 2016. Person-days is a widely-used metric to compare and contrast 

exposure to extreme heat across geographies and time periods [9,18,143]. For a given year (Yi) 

and for a given urban area (j), we multiply the urban area’s population (Nij) by the number of 

days for year i where the HImax > 40.6 °C (Daysij - eq. 6).  

  After summing exposure in person-days for each year at municipality, national, 

regional, and global scales, we evaluate annual rate of increase in exposure from 1983 – 2016 

(person-days yr-1) across spatial scales by fitting simple ordinary least squares linear 

regression models (OLS). For example, at the municipality-level, we estimate the rate of 

change (𝛽E-F) from 1983 - 2016 in person-days yr-1 as exposure (Expij) for year i from 1983 - 

2016 with equation 7. 

𝐸𝑥𝑝%G =	𝑁%G × 𝐷𝑎𝑦𝑠%G (eq. 6) 

𝐸𝑥𝑝%G =	𝛽/ 	+ 	𝛽E-F	𝑌% 	+ 	𝜀 (eq. 7) 

 Next, we fit simple OLS regression models to estimate the rate of change in the number 

of days per year where HImax > 40.6 °C for each urban area (eq. 8). For both the rates of increase 
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in exposure and days per year where HImax > 40.6 °C, we subset the data to include only urban 

areas with statistically significant trends (p < 0.05). 

𝑊𝑎𝑟𝑚𝑖𝑛𝑔%G =	𝛽/ 	+ 	𝛽G!#$'H	𝑌% 	+ 	𝜀 (eq. 8) 

2.6 Contribution to Exposure from Population Growth verses Warming 

 We quantify the share of exposure from population growth versus urban warming for 

each urban area. For a given year i and urban area j, the share of person-days yr-1 from urban 

warming (Heatij) is calculated by multiplying the urban area’s population constant at 1983 by 

the number of days per year HImax > 40.6 °C (eq. 9). 

𝐻𝑒𝑎𝑡%G =	𝑁8?G × 𝐷𝑎𝑦𝑠%G (eq. 9) 

The share of exposure from population is calculated by multiplying Daysij by the increase in 

population since 1983 (eq. 10). 

𝑃𝑜𝑝%G =	 (𝑁%G 	− 𝑁8?G) × 𝐷𝑎𝑦𝑠%G (eq. 10) 

 To measure the rate of change in 𝐻𝑒𝑎𝑡%Gand 𝑃𝑜𝑝%G, we apply simply OLS regressions 

to estimate the average rate of increase in person-days yr-1. The resulting coefficients, 𝛽F)F 

and 𝛽,E$+, are the average rate of change in person-days yr-1 from population growth and 

heating, respectively. We use these coefficients to generate a bounded index to measure the 

relative share in the increase of exposure from urban population growth versus urban warming 

from 1983 - 2016. To this end, for a given urban area j, we normalize the annual rate of increase 

in person by subtracting the rate of person-day increase from population-growth from the rate 

of person-day increase due to warming divided by the annual increase in total coefficient of 

total person-day (eq 11). We then plot the distribution of this index for across all regions. 

𝐼𝑛𝑑𝑒𝑥 = 	 (𝛽F)F 	− 	𝛽,E$+	) ÷	𝛽E-F(eq. 11) 

2.7 Extreme Heat Anomalies & Heat Waves 
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 At the municipality-level for each year i, we identify the degree to which the number 

of days where HImax > 40.6 °C varied from the average rate of change from 1983 - 2016. First, 

we use the OLS regression models for the number of days where HImax > 40.6 °C  (eq. 8) to 

predict values for 1983 - 2016. For each urban area for each year, we then subtract the observed 

numbers of days where HImax > 40.6 °C 

from the predicted number of days where 

HImax > 40.6 °C. To identify anomalously 

warm years at the municipality-level, we 

calculate the z-score of these residuals and 

then plot them for a given geography (Fig. 

5).  

 While no universal definition for 

heat waves exists [20], we can use the z-

score maps to identify spatial extreme heat 

anomalies. For example, [136], Figure X 

shows that across urban-areas in India, 

1998 was an anomalously warm year in 

terms of the days per year where the 

number of days where HImax > 40.6 °C, 

especially when the distribution of z-scores 

is plotted against the 34-year record (Fig. 6). We find a similar observation for France in 2003 

and in Syria in 2010. 

Figure 5 Municipality-level z-scores for the residual 
differences between the predicted number of days 
per and the observed number of days year where 
HImax > 40.6 °C 

Figure 6 Municipality-level z-scores for the residual 
differences between the predicted number of days 
per and the observed number of days year where 
HImax > 40.6 °C in 1998 and the entire 34-year record 
for India.  
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We then compare the daily HImax for major cities for the anomalous years––in this case 

Kolkata, Paris and Aleppo––to the 34-year daily average to identify the duration, intensity and 

population exposed to anomalous heat waves. 

CHAPTER IV – CONCLUSION 

  Food security, urbanization, and climate change are intractably linked. Yet, the results 

explored here reveal that these linkages are extremely complex. Detangling these processes to 

ensure the future equitability and sustainability of Africa requires fine-resolution and accurate 

data. While poverty may limit a household’s ability to secure sufficient food, household-level 

urban food security is highly spatially heterogeneous. A single metric may not suffice to 

describe food security in one Africa city, much less an entire continent. Similarly, without fine-

scale and reliable open access census data, measuring urban population dynamics will 

increasingly depend on novel geospatial and remote sensing analysis. These population 

estimates require analogous fine-scale climate data to understand how urban populations will 

be directly impacted by climate change. This is exemplified by the heterogeneous results of 

the global synthesis of urban population exposure to extreme heat explored in this dissertation. 

Across all three themes––food security, urbanization, and climate change––ensuring a 

sustainable and equitable future for Africa’s ever-growing urban settlements will require 

targeted approaches built on accurate fine-resolution data. This body of work takes the first 

crucial step towards building a foundation for holistic, yet fine-scale, analysis of these complex 

human-environmental dynamics. 
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