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Decades prior to the advent of deep learning, filter-based recognition and synthesis tech-

niques functioned competently on patches of homogeneous texture (“Stuff”), as opposed to

object-centric patches (“Things”). Since this competence gap was so obvious, requiring the

revolutionary invention of new models to handle Things and scenes at all, the gap has largely

eluded quantification. Using a subset of images from the Caltech256 and USPTex databases,

this dissertation develops methodology to quantify a probable “Things vs. Stuff” processing

dichotomy, examining the separability of these two metacategories in performance, similarity,

and quality disparities they produce in both primitive, random-noise filterbank recognizers

as well as a parameter-intensive ensemble of WGAN-GP discriminators. In the primitive

recognizers, Stuff is shown to be categorically easier to recognize than Things, and the filter

kernel size is shown to matter much less than the choice of filterbank histogram statistic.

A “subordinal” statistic, the signchain, is introduced, and it is shown to be comparably

effective to retaining the bins themselves. As a separate emphasis, the discriminators of

the “GANsemble” are shown jointly to retain the ability to perform ordinary classification,

even though they are trained only to spot fakes and are trained only on one class, provided

each network’s activation in the ensemble undergoes a form of subtractive normalization. To

visualize discriminability lost with GAN loss, an identical-architecture ensemble with cross-

xvi



entropy loss, the NONGANsemble, is created as a comparison. The pairwise firing affinity on

real and fake images and pairwise model space distance (i.e. MSE, p-norm, Jensen-Shannon,

signchain, SSIM of the weights) matrices are inspected for both, showing the Stuff detectors

to be more promiscuous, and the Thing vs. Stuff distinction to visibly emerge “early or late”

in terms of network layers depending on the choice of loss function. NONGANs are shown to

generalize better to unseen classes (permitting an effective omnibus classifier for objectness),

but at a cost of not being able to control synthesis and being potentially less compressible.

Performance is at ceiling in the deep recognizers for Things and Stuff, but the competent

synthesis of Stuff happens systematically before Things, even when using transfer learning

to retrain Thing GANs. The popular Inception Score used for GAN quality assessment is

shown to be unusably biased against Stuff because Inceptionv3 was trained on Things, and

Fréchet Inception Distance is recommended in its place. Late in VGG16, Stuff classes oc-

cupy fewer filter channels but occupy them more fully. In the final chapter, Things and Stuff

classes and networks are studied in terms of the separability of their MDS embeddings, and

an algorithm and taxonomy was created that facilitates the conjecture that Stuff behaves

more like a single Thing than all Things like a single kind of Stuff. Using interleaved rounds

of MDS and Procrustes superimposition, the “embedding of embeddings” or metaembedding

is introduced, visually reinforcing the main results found in earlier chapters (such as the fact

that signchain distance resembles the Jensen-Shannon distance). Finally, the rankings pro-

duced by primitive and deep recognizers are combined in a higher-level embedding and also

via the Borda Count method to produce a composite recognition difficulty ranking that sup-

ports Things being often harder to recognize than Stuff. The synthesis quality as estimated

by FID is moderately correlated to ease of recognition, suggesting a “computational dis-

fluency” account of image complexity as composite processing difficulty under fundamental

operations (retrieval, segmentation, restoration, and destruction) is possible. This suggests

Things and Stuff classes should not be näıvely combined in artificial vision systems, and

should potentially be suspected to not be fully combined in natural vision systems.
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Introduction

In a counterfactual visual world where there is no notion of time, and thus no need to analyze

what’s in front of us for potential uses or afforded actions, or at all then the ability of tracking

coherently moving parts of the visual field, would things such as “objects” themselves need

to exist? That is, in visual processing circuits, could everything instead safely be treated

as fully egalitarian texture patches without pause, feeding all input blithely to communal

neural networks?

In this dissertation, I argue that the answer to the second, better-defined question is No,

because homogeneous material patches of texture are not only obviously different than in-

dividuated object-centric texture patches – they also can be expected to behave differently

in subtle ways that, through a variety of methods and throughout a number of fundamental

visual processes, you will be able to see.

We start by examining the history of convolutionally-founded visual recognizers and demon-

strating the wide-ranging importance of reaching fair thresholds and extracting nuance from

graded Same/Different judgments under uncertainty. Then we see that a homogeneous vs.

heterogeneous texture divide along these lines exists in the very simplest and uninformed

recognizers (linear classification on random noise filter features) as well as one of the most

complex classes of recognizers known, an ensemble of deep neural networks actually designed

for the much harder task of synthesis. Homogeneous textures are shown to be both easier
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to recognize and synthesize, although the recognizers for homogeneous textures are seen to

be in some senses more promiscuous and brittle. This difference is pronounced enough to

regularly survive projection of this data into low-dimensional representations. Satisfying a

secondary objective, the potential for synthesis-controlling recognizers to emulate ordinary

recognizers is substantiated and qualified. Along the way, new algorithms and visualization

methods are proposed that touch on this homogeneity distinction but are for the most part

generally applicable to the study of any gross behavioral dichotomy in visual recognizers.

To begin: An apex predator we contrive is combing its way through the tall grasses of an

African savannah in search of an unaware or disabled prey animal. The predator should

have the clear advantage: straight-ahead eyes, a faster top speed, a superior brain, and,

perhaps more potentially, surprise. But if this hunter suddenly had to consciously enact the

operations of the historically very fruitful token-based approach to perceptual organization

conspicuously championed and developed by Marr (e.g. [114] [113] [116] [115]) – to extract

all of the lines in the scenes and join them into contours, and fill those contours into surfaces,

and parse those surfaces into objects, and segregate those objects into parts, and aggregate

those objects into gestalts, would it not starve because of its inability to select, let alone

track, a viable target in time? Even if these operations were carried out unconsciously

instead by incredibly efficient, parallel circuitry exercising neurons, if not to the point of

excitotoxicity at least to the edge of their practical neural speed limits induced by refractory

periods, the number of potential tokens and candidate interpretations in a clearly viewable

but complicated and densely populated panorama is sometimes so vast, or conversely so small

under dimly detailed conditions, that the problem seems insurmountable – these operations

must bear some cost. Costs can always be adjusted in a simulation-based argument to

make a point. However, when you develop the abstruse edifice of all of visual processing on

the foundation of edge detection, it seems that you will eventually be running up against an

independently menacing feast-or-famine scenario that will eventually topple it: when looking

for interesting regions in a sea of material, a surfeit of irrelevant edges could stop you, and
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so could a dearth of relevant edges.

Figure 1: The feast-or-famine problem of edge-token-based vision. On the left, it is difficult
but possible to see the two unripe lemons (center-top, center-bottom) using texture informa-
tion. In the edge map induced by a Canny [25] edge detector, it is impossible. Edgels often
either give too little information about important contours or too much information about
irrelevant ones to depend upon to develop closed regions, surfaces, and objects by joining
them, even if the method used for linking and denoising is an effective one. Often, we are
interested in edgels from Things (objects) and not edgels contributed from Stuff (material).

Today, a vision researcher who adhered closely to the Marr philosophy might also starve, at

least for funding. Modernly, the alternative view (emblematic of the outgrowths of the work

of researchers like Malik and Perona in 1990 [111]) that the cells studied by Hubel and Wiesel

[81] and explored at the computational level (and lower in Marr’s hierarchy, see the quadri-

partite iteration in [116] that separates algorithms and mechanisms) by Marr likely carried

out direct texture perception and not edge detection for more symbolic processing has won

out on grounds of explicit technological proof, with the proliferation of the highly successful

and yet still somewhat simplistic circuits known as convolutional neural networks (CNNs)

[53] which in the course of effecting direct discrimination of input to categories induce sets

of primitive “edge” detectors but do not use them to develop intermediate representations
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called edges.

In the generative rather than discriminative domain, parametric texture synthesis as a field

(a la Heeger and Bergen [74]) has undergone a period of transformation and then a move-

ment toward obsolescence. Careful research into which features of an engineered model are

important for reproducing textures from a small set of statistical parameters (e.g. [132])

has been replaced by work that has shown that texture synthesis models based on CNNs

can be largely based on coherencies within a model initialized with random noise filters (i.e.

[163]). The generative adversarial networks of Goodfellow [63] have been expanded and

combined to produce compelling models [185] of text-to-image translation. The ability to

synthesize photorealistic scenes from text descriptions is intuitively a capability significantly

more advanced than the ability to synthesize organic patches of mostly homogeneous visual

material.

In 1991, Adelson and Bergen [2] described this tension as one between “things and stuff”.

Initially, this distinction referred to a belief that a focus on texture measurements (his-

togram statistics of filter response maps, such as means, variances, and kurtosis) would be

more fruitful and naturalistic than an investigation into the token construction process (e.g.

the inference of edge, blob, and bar primitives and their interrelations). A decade later

the things vs. stuff distinction (Adelson 2001 [1]) emphasized investigation specifically into

which techniques worked for perceiving object-like visual input vs. material-like visual in-

put. In this body of research, work on the perception of homogeneous texture patches is

motivated by practical concerns. Understanding domain-specific material perception facili-

tates intelligent robotic systems (Adelson et al. 2009 [88] describes a tactile approach) that

not only know where an object to be manipulated is, but also how much force can safely

be applied to the object. Combining texture classification techniques with human insight

into the general behavior of materials based on their specularity, regularity, and lacunarity

allows important automated predictions as to the behavior and quality of candidate cosmet-
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ics, foods, and art objects (paintings, computer renderings and photography are the explicit

examples enumerated).

A great deal of texture research has been focused on naturalistic textures, to the point

where the field has its own specialized textbooks and a prodigious number of journal articles

dating back at least to the 1970s. The label of “machine vision” is often more associated with

automated inspection systems that assess agricultural or industrial products as they leave

an assembly line, applying various ad-hoc anomaly-detection techniques (for example, the

general textbook of Davies [35] includes an amusing section on the specific case of detecting

rat feces in cereal on a production line). Texture research has tended to be application-

centric, whereas research into scene processing and object recognition has not retained this

strict grounding. For example, the Kylberg texture dataset [102] contains classes such as rice

and linseeds, and the CuReT dataset [34] focuses on characterizing the BRDFs (bidirectional

reflectance distribution functions) of sample materials under differing illumination.

We all strongly tend to feel that there are clear differences between things and stuff – for one,

objects are often segregated into parts at deep concavities (Hoffman & Richards 1984 [78])

whereas patches of regular texture often comprise large regions of these parts – but we still

do not confidently know how strictly necessary these theoretical and intuitive differences are

for visual processing in the computer and in the brain, especially for static images with no

need to observe temporal coherencies (after all, a CNN recognizes “objects” just fine with

no specific concept of objects in general). Attention has recently been given in the literature

(Geirhos et al. 2019 [57]) to how texture-based vs. shape-based these direct neural-network

approaches are. The aim of the proposed research program is to revisit and investigate the

“things vs. stuff” distinction within computational vision in terms of the question: “What

is the level of computational resources needed to process homogeneous texture (material)

patches as opposed to object-containing patches?”.

To summarize as well as to preview the remainder of this dissertation, the “things vs. stuff”
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distinction was important in the theoretical conflict between the token-based or symbolic

account (edges → contours → regions → surfaces → objects → groups etc.) of perceptual

organization developed by Marr and the direct texture-based or statistical approach which

the success of simply discriminative neural network models has vindicated. In fact, much

prior work in human and computer vision has indirectly addressed the question: histogram

statistics and simple classifiers paired together have long sufficed to produce decent classi-

fication results on material patches, but only with the recent popularity of large-scale con-

volutional neural networks (CNNs) has object recognition been considered close to a solved

problem; parametric image synthesis models in general have long produced good resynthesis

of naturalistic visual texture patches (driving an essentially defunct field of texture synthesis),

but it has taken the emergence of many deep convolutional generative adversarial networks

(GANs) to generate plausible object exemplars and scenes.

Deep convolutional advancements in image segmentation have begun to revisit the “things vs.

stuff” distinction in the specific research area of “panoptic segmentation” (Kirillov et al. 2019

[99]), wherein models are used to decompose a scene into object-like and material-like parts to

build upon “semantic segmentation”, the more intensive approach of labeling each pixel in the

scene (using a CNN) as belonging to a class, as well as instance segmentation, the classical

kind of segmentation. The Inception score (Salimans et al. 2016, [140]) quality measure

critical to the development of convincing GAN output (believable rather than muddied

hallucinations of new examples from a training set) and the evasion of artifacts associated

with underfitting and the “mode collapse” problem is based on taking synthesized output

and running it through a well-established classifier not used to train the GAN, and then

examining the entropy of the label distribution. This approach can be generalized to work

somewhat with classes out-of-vocabulary of the discriminative model by observing that high-

entropy, low confidence label distributions are likely to be associated with the visual qualities

of blurred “stuff” when the model has been widely and repeatedly trained on “things”.
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With performance of convolutional networks on mere discrimination of object sets in the

thousands approaching a ceiling, it is now important to consider how many resources are

minimally necessary in terms of training time or model capacity to achieve a desired level

of performance, and the notion of textural complexity or, at the least, “objectness” (Alexe

et al. 2012 [5]), the quality of patch that makes it seem like a “thing”, may be a helpful

predictor.

In addition, if discriminators for Stuff require less capacity or optimization, then a quick

pass to carve the region into Stuff and Things could allow a sort of visual triage, letting the

more sophisticated recognizer systems be brought to bear on windows of a scene that are

not Stuff like. Given the much slower speed of neurotransmitters and neurons as physically-

instantiated information processing units as compared to MOSFETs and microprocessors,

and the demands of scene processing, it would be in that case a powerful heuristic to divert

Stuff and Thing input to separate associative areas in cortex for filtering as well as for

storage (i.e. V1 and V2, but also IT). The functional imaging studies of the future might be

focused on locating Stuff-specific areas that can join the fusiform face area (FFA) [91] and

the parahippocampal place area (PPA) [47] of Kanwisher and collaborators.

In consideration of these efforts, the business of disentangling “things” and “stuff” in precise

quantitative terms continues to be relevant, and further knowledge of the distinction may

be tied to advanced ability to diagnose the performance of state-of-the-art and resource-

constrained models. Operationalizing the “Things vs. Stuff” distinction is naturally linked

to the idea of coming up with a “fair” model of texture complexity. One way to attack this

directly and briskly is to consider the construct of texture complexity very coarsely and with

a simple design (to test the average performance of merely the class “things” against the

class “stuff”), and to attempt to develop it as a measure established by converging operations

(to measure this performance in the context of several fundamental but highly distinguished

operations).
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Further distilled:

• Scenes have multiple Things in them internally composed of Stuff. Scenes also host

swathes of undifferentiated Stuff.

• Things and Stuff are essentially very high-level categories (metacategories) that sit

atop the visual (conceptual) object hierarchy.

• We seem to want this distinction to exist, and the distinction seems to be relevant to

research areas that have yielded compelling capabilities.

• But does it?

– in a way that we can operationalize through a disfluency-based notion of textural

complexity?

Entropy and Kolmogorov complexity as unsatisfactory

measures of texture complexity

Whenever the notion of complexity is broached, there are two varieties that spring to mind.

They are both wholly unsatisfactory where naturalistic images are concerned.

The first kind is the complexity that is suggested by the difficulty of compressing the im-

age. An image is almost trivial to compress if it has the same gray level or intensity value

everywhere. An image is very difficult to compress if no regularities at all can be exploited.

When considering the pixels as being drawn from a discrete probability distribution, the

first case corresponds to a (discrete Dirac-type, or Kronecker delta) spike centered at the

gray level, and the second case is most similar to drawing from the uniform distribution over
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all achievable gray level values. This continuum is measured by the Shannon entropy [144]

(defined for convenience in 2.3.8).
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Figure 2: A very low entropy image (i.e. 0 for a truly flat color) and a very high entropy
(uniform noise) image. Entropy is not a satisfactory measure of image complexity because
large numbers of perceptually indistinguishable high-entropy images are easy to generate
and lack interesting structure.

One doesn’t need to actually calculate the Shannon entropy for any images to see that

practically all interesting images the normative, nonspecialist subjective human observer

would call “complex” inhabit the mid-entropy regime. Given that entropy is a quantity

admitting a continuum, we can just look at the extreme cases to see this. The Shannon

entropy as a form of image complexity certainly has one side of the spectrum correctly

defined: a very low entropy image or a zero entropy image (such that there is no uncertainty

about each successive pixel) is not complex in the least. Figure 2 shows an image with no

pixel uncertainty and an image with maximum pixel uncertainty. The high-entropy image

consisting of white noise should not be considered complex. Indeed when we see data of this

character in nearly any scientific pursuit, we just wave it away and say of these images that

they “look like we got a bunch of white noise”. In specifying entropy in terms of the pixel

distribution, there is no accounting for structure. Assuming that the pixel values actually

followed the uniform distribution rather than being simply drawn from it, we could create a

drawing program that allows someone to draw an interesting picture interactively by sorting
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the gray levels so that they become available to a drawer according to intensity and as long as

all pixel values are conserved, the image would have the same empirically measured entropy.

Obviously, you can add “structure” to entropy by windowing the images and taking the

probability distributions conditioned on window location to get some idea of how entropy

varies over space. In this sense of hierarchical entropy calculation, perhaps patches whose

subregions exhibit no variegation in entropy are reckoned “less complex”. But unless your

visual world consists of chessboards sometimes interrupted by the snow of white noise, this

seems to miss something essential. Interesting images have self-similarity, semantic meaning-

fulness, composition, improbable angles, interesting occlusions, patterns that follow natural

stochastic processes such as erosion or reflectance, and so on. Even in throwing out all of

the images which constitute art, or depict scenes, or show natural or man-made objects and

confining yourself to naturalistic texture, there is a rich complement of qualities that make an

image improbable to generate by chance but perhaps conditionally highly probable based on

the context. You can imagine mathematically reasoned, non-entropic proxies for complexity:

perhaps seeing the number of times within an image the image displays fractal self-similarity.

But it is the case that not all intruguing structure or evidence of generative difficulty or of

image improbability falls under these tidy mathematical measurement schemes.

The other convenient mathematical construct which enjoys some universality in any conver-

sation about complexity is the Kolmogorov complexity, or the algorithmic complexity. It

is defined to be the length of the shortest description that can reproduce an object. Most

commonly, it is seen as the shortest-length computer program that can compute an object

into existence. It does not necessarily cohere with entropy, and it does not continuously

develop. For example, a very large high-entropy image generated from the uniform distribu-

tion could consume billions of bytes. But a very small number of bytes suffices to regularly

yield something nigh-on perceptually indistiguishable from the image: the implementation

length of a program that implements a linear congruential pseudorandom number generator
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to reproduce other random images. Now, the definition of Kolmogorov complexity does not

include “perceptually indistinguishable” in its definition, and maybe a variant of it ought

to be developed to, but even under a condition of exactness there are problems. As Cover

and Thomas [32] observe, “print out the first 1,239,875,981,825,931 bits of the square root

of e” yields a number whose Kolmogorov complexity is (now supposed) much, much less

than its neighbors on account of the existence of the command as embodying a “program”

to compute the number. Indeed it is not particularly fair that the programming language

can have almost whatever fundamental instructions or syntax or semantics you wish to re-

duce Kolmogorov complexity. The complexity has known and provable bounds for many

kinds of objects (e.g. bitstrings in general), but it is not exactly computable or particularly

meaningful for many objects.

Put another way, if the Kolmogorov complexity K for a string is defined [32] as:

KC(s) = min
p:C(p)=s

l(p),

where C is a computer that can run any program, s is the string, p is the program, and l

is a function that takes the length of the program, K is in some sense not very interesting

unless we replace the absolute minimum (which is impossible to discover in general) with the

average over some class of reasonable programs. In the visual analysis domain, this would

be similar to seeing what the complexity of an image was by seeing what the complexity

of the average competent recognizer itself was in terms of, say, parameter count of a neural

network, but restricting ourselves only to a continuum of subjectively reasonable recognizers

– because, at the end of the day after all effort was expended, the minimum-effort recognizer

might only vacuously (e.g. accidentally) be able to make correct judgments about the image.

An average itself, to be actually useful for decision-making, needs to be a practically realizable

and empirical average that does not consume undue time. To contrast, the example of
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the “halting probability” related to Chaitin’s incompleteness theorem [27] and determining

Chaitin’s Ω number [32] perhaps demonstrates to the point of absurdity the lack of wisdom in

relying on intractable (and in that case, uncomputable) accumulations of the behavior of an

exhaustive space of programs. Chaitin’s number’s definition implies that if you authentically

have in your possession a certain number of bits of precision of the number Ω then you must

have known about the Halting Problem outcome of the programs (which temptingly include,

for large enough binary representational precision, very interesting programs such as proofs

of unsolved mathematical conjectures like Goldbach’s conjecture [32] which are formulable as

searches for conjecture violations) in the space, and also of length bounded by the number of

bits of precision. However, the contributions to the accumulated probability-type summary

of halting involve individual tests (i.e. the running of programs) susceptible to the Halting

Problem. The number itself, then, while admitting a rigorous definition and able to be

say, empirically, found for some number of bits of precision for individual machines (e.g.

[23], which uses this kind of notion to deem the Riemann Hypothesis as more complex than

Goldbach’s conjecture under a specified machine language) and program encodings, is not

generally computable. Non-practically computable (and certainly non-computable!) notions

of complexity should arguably be put completely aside in our artificial vision analyses –

they are obviously not what a natural vision system (which has to function reliably and

in a tractable amount of time) would use for complexity estimation, if those systems do

complexity estimation at all explicitly in anticipation of carrying out various stages of visual

processing or encoding for storage.

Of course, in adopting a very different strategy incorporating some subjectivity and a notion

of how “interesting” a texture patch is, we would have to be careful to not let complexity

lose its more objective grounding in difficulty, resource-intensiveness, or surprise. There are

admirable efforts [96] to estimate the memorability of images, as measured by recognition

accuracy using human subjects and as later approximated by convolutional neural networks,

but memorability is not complexity. We still want complexity to reflect difficulty, or the
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improbability of realizing a result.

To avoid this, “complexity” should be strongly grounded in the probability of computational

processes producing an image, recognizing an image, repairing an image, retrieving an image,

destroying an image, and so on. If human observers are involved, top-level biases and the

impact of attention and any number of other experimental nuisance factors come into play

in determining complexity as a result. The case of entropy shows that it is useless, though,

to absolutely ground it in the bare probability of synthesis, assuming nothing about how

images are actually generated, either by physical processes, computer programs, or biological

or artificial neural networks.

Complexity should be estimated in light of the obstacle an image (in the case of instance-level

complexity estimates) or classes of image (in the case of class-level complexity estimates)

poses to information processing. It is perhaps helpful to view image complexity then as a

characteristic of the image akin to friction, which prevents fluid and uneventful informa-

tion processing – and to restrict our study of that friction to at-hand, practically-realizable

systems.

This dissertation therefore focuses on operationalizing complexity as processing difficulty

composited over several fundamental operations (which I hereafter term “computational

disfluency”), focusing on the fundamental operation of recognition because it is potentially

behind many of the other fundamental operations of visual processing and perceptual organi-

zation. The emphasis is placed on the distinction between Things and Stuff and the promise

of showing Stuff to involve less disfluency-type complexity (interpose less difficulty to, for

example, recognition) than Things. The proximal objective is to devise potential method-

ology for class-level estimates, not instance-level estimates, partially because of the belief

that instance-level estimates should cluster around the class-level estimates, and partially

because recognition normally exists at the class-level granularity, whereas repair, synthesis,

segmentation, and effacement regularly need not necessarily.
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Hypothetical distributed recognition and segmentation

systems: feature thresholds & same-different judgments

Things and Stuff, however, might themselves be indirectly and partially defined by how they

behave in response to processes that incorporate recognition. We briefly divert to highlight

this possibility with two contrived examples.

Recognition as carried out by recognizers of any complexity often involves two fundamen-

tal objects of psychophysics: thresholds, and Same-Different judgments. For example, the

binary case of classification (i.e. the target class vs. not the target class) occurs in logistic

regression, and at the end of multiclass neural networks where a “one-hot” battery of termi-

nal neurons are ON or OFF, and also construed to be heading towards mutually exclusive.

An alternative scheme to the “multinoulli” case involves quantizing the activation level of a

single terminal neuron and assigning bands of activation strength to individual categories,

but this is generally chancier as the activation levels even of a functionally competent neural

network approximating a straightforward linear classification might differ in response to such

factors as nuisance input variation, training time, stochasticity of training, noise sustained

even during inference, and, in neuromorphically-instantiated artificial neural networks, the

uncertainty of the readout itself. In light of these sources of error which complicate assign-

ing fair, contiguous thresholds to categories, a binary judgment allows for minimal confusion

between categories.

Of course, recognition processes are not merely an end unto themselves. Recognition can also

be used internally within some other process of importance, as in the example of controlling

synthesis: a recognizer can be employed to detect changes in the level of conformance of

the synthesizer to the important criteria of, with added training, producing patches that are

different than they produced on the last step, and more likely rather than less likely of being

confused with the images that are known to be members of the ground truth training set.

14



To contrive an example of where Same/Different judgments tightly control a process that

does not constitute a normative form of “recognition”, we can consider a type of segmentation

that is neither semantic segmentation nor instance-level segmentation: the problem of estab-

lishing regions and contours by kinetic rather than osmotic spreading activation. There are

two natural points of extreme contrast with spreading activation methods. A trivial contrast

is the discriminative approach of deep learning: unless you are using a network specialized

for semantic segmentation or incorporating, like the R-CNN of Girshick et al. [59], explicit

region proposals, the notion of regions, similarly to the notion of objects vs. material, does

not (seem to) need to exist in the first place. The second contrast is made with the historical,

token based kind of segmentation. In the symbolic approach of Marr, the raw primal sketch

[114] that is composed of a map of edges, solid bars, bar terminations, and blobs (putative

regions of arbitrary geometry which exist with higher confidence because the edges already

enclose them prior to adjudication) [115] is developed into the full primal sketch using pro-

cesses that include (but are not limited to!) judgments of whether edge elements that look

like they are going to be contiguous should be joined into a contour or not, and judgments

of whether edge elements look extraneous or not. Sophisticated implementations of just this

subset of judgments involved in the development of the primal sketch could become very

involved, since varying scales of contours should be taken into account, as with the scale-

space filtering methods developed by Witkin [178]. An early implementation, however, of

these judgments is found in the description of the Binford-Horn Line-Finder [80], which also

explicitly taxonomizes contour finding methods into those that are edge-oriented and those

that are region-oriented. Of course, in the case of purely subjective contours whether static

or moving [95], such as Kaniza triangles, or in the case of having to view the analyzed region

incrementally through an aperture (anorthoscopic perception, [136]) edge-oriented methods

would encounter major difficulties.

The region-oriented notion of endogenously computing boundaries by envisioning them as

the limit of spreading activation is so ubiquitous in thinking about images (e.g. the intuitive
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flood-fill algorithm) but also neural activity that it does not seem specifically creditable

to any one line of thought. Nevertheless, a thoughtful treatment of spreading activation’s

possible role in establishing contours was given by Ullman [162] in the course of his proposal

of visual routines, or the notion that there may be many mid-to-high-level processes, not

necessarily local and not necessarily passive that are involved in effective visual perception.

A nonstandard use of spreading activation inward is certainly associated with the grass fire

transform or prairie fire transform of Blum [14]. Blum’s transform works (metaphorically,

burns) inwards, revealing the “skeleton” of the region, which is for some very simple shapes

a straight line medial axis.

We may consider these methods to be osmotic in that the spreading activation is radial up

to the limit of the “resistance” provided by the contour. This is not the only alternative:

for example, the spreading activation could be contrived to be ballistic. Casting rays from

a centrally-located seed point is reasonable; after all, an intuitive way to describe regular

polygon shape profiles in a 1-dimensional sense when the boundary is known is to consider

the plot of the distance to the boundary. A circle, for example, maintains a constant-value

centroidal shape profile commensurate with the constancy of the radius of a circle. This

polar approach obviously quickly becomes unsatisfactory for irregular objects, as fugitive

rays or lines of escape shot to the boundary can irregularly sample interesting geometry

at different scales or be blocked from observing far boundaries by the interposition of near

boundaries. The validity of a process founded on spreading in a single direction at a time to

compute contours in all directions and escape some of these difficulties may not be immedi-

ately obvious, but it involves embodied cognition related ideas of using the environment to

compute.

In an exotic example of something akin to spreading activation, Tero et al. [159] showed

that the slime mold Physarum polycephalum could morphologically compute approximate

minimum spanning trees: researchers placed oat-flake food sources in a configuration match-
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ing city locations in the Tokyo area onto a substrate, and an introduced slime mold first

spread from its seed position to cover much of the space, but later contracted into a series

of hubs and transport tubes that formed a network linking the food sources – a network

highly similar to the Tokyo area rail system presumably designed with robustness as well as

branching efficiency in mind.

In an example of biologically-inspired rather than biologically-instantiated computing, in the

Ph.D. thesis work of Dorigo [40], an agent-based heuristic method for approximate shortest-

paths graph search was proposed inspired by the pheromone-based navigation of ants and

their own scouting of food sources. Ant colony optimization and related algorithms involve

sending agents on trajectories through the graph. At each step, they deposit a “pheromone”

value on what they have just traversed. Critically, the amount of pheromone deposited

is decayed as time progresses so that later wandering which might prove to be aimless or

indicative of graph cycles gets discounted. When the “ant” finds a target (analogous to

a food source), it returns to the seed point, as a scout might to a real ant colony. The

graph annotated with pheromone information for the original ant is likely to not represent

an efficient path to the food source. However, when multiple ants are introduced, their

pheromone annotations on the graph can be combined, and it can be seen that some arcs

are more traversed than others. This tendency builds because of a further naturally-inspired

innovation which is to make later ants attracted via pheromone to the choices made (the

arcs traversed) by previous ants.

Leaving signals in the environment as a form of indirect coordination is known as stigmergy

[46]. Of course, image analysis could make use of stigmergic processes: instead of an anno-

tated graph as in ant colony optimization, we could maintain stigmergic maps. Through the

introduction of stigmergic maps, it becomes possible to consider ballistic spreading activa-

tion from a seed point as a way of establishing contours by combining (through a union-type

operation) individual trajectories “painted” onto stigmergic maps. The maps (slices of a
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stigmergic tensor) can be combined by some consensus operation to determine the region

endogenously.

We can define a toy process of kinetic image segmentation (KIS) using a few simple objects

and the guiding principle of imagining similarity of texture as related to a kind of permittivity

within a medium, and a lack of permittivity at and beyond the interfaces. It will be an active

sensing process for determining the bounds of the regions, similar to the active sensing

philosophy of sonar, but for shape. This process is not intended to be immediately practical

or even ever practical for segmentation problems. It is dependent on the scale of the textural

input in ways that have not been compensated for, and at any rate, image segmentation

has arguably already been “solved” by deep convolutional networks implementing semantic

segmentation. However, it does illustrate an important point about stationarity through

space as it relates to texture. The stationarity of a signal is usually defined in terms of

how little the signal changes statistically over time. Since images are signals as well, to say

that a class of moving images exhibits high stationarity is to say that the image statistics

change little over the image sequence. If we consider time to instead be yoked to viewing

small windows of an individual static image, a class of images (say even a broad high-level

class, such as all Stuff) exhibits a different kind of high stationarity with viewing time if,

when randomly viewing contiguous parts of the image as by smooth translation, the image

statistics change little. For homogeneous image patches (continuous texture, or Stuff), this

is to say that some statistics could be expected to be more often translationally invariant

than for heterogeneous patches containing objects (Things).

We can begin to demonstrate KIS by taking perhaps the simplest kind of homogeneous

image patch, a region of flat color. For extreme simplicity of demonstration, a black square

inscribed in a white square field can be used as the target region to be developed. A seed

point for the kinetically spreading activation is chosen near to the centroid of the square.

The seed point will shoot agents of spreading activation that can be referred to as probes.
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The seed point does not know where contours defining the boundaries of the region are

likely to be found, so the probes are shot in all directions, as defined by choosing random

angles spanning the unit circle. Probes advance a small amount of distance in a particular,

randomly-initialized direction on each discrete time step. The probe coordinates need not be

confined to integers, but the underlying scalar field of the image to be analyzed is discrete.

Probes come equipped only with their angle of movement, their square sampling window, a

window influence function, and a model of the texture at their seed point. The model of the

texture at the originating seed point could be very complex. For example, it could be the

confidence output by a deep convolutional neural network making a Same/Different judgment

with the benefit of millions of parameters tuned by gradient descent. Given the simplicity

of the black square stimulus, we will equip our probes with an equally rudimentary model of

source-texture: the proportion of black pixels. If we start our probes in the center of a black

square, then our excruciatingly simplified model of textural anomaly is initialized to expect

a high proportion of black pixels (i.e. 1). Critically, it tolerates approximate matches, as all

good recognizers should. For the time being, the threshold for being considered possibly the

same texture is set arbitrarily to 0.5.

We can assume a window influence function that is constant across the square window

admitting all of the pixels equally to the texture model, yielding the square itself. In practical

terms, to handle corners better with ill-sized probe windows, the influence function should

probably be defined to be a symmetric Gaussian. It is fairly critical that a small step size is

chosen – if too large a step size is chosen, a tunnelling or temporal aliasing problem ubiquitous

to physical simulations and collision detection can occur. Since the collision detection in KIS

is approximate, the procedure is more equivalent to ray marching (collision is checked at

incremental sample points) than ray tracing (where collisions are often analytically solved).
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Figure 3: Kinetic image segmentation on a simple homogeneous square with a seed point
near the centroid. A probe with a square perceptual window (128x128 pixels) and a constant
influence function (as opposed to Gaussian falloff, which may be better for more complex
region shapes), is shot from the seed point with a small step size (s = 2) in a random direction
(i.e. x = x+ ẋ, y = y+ ẏ ; [ẋ, ẏ] = [s · cos(θ), s · sin(θ)]) on the original image (4000x4000). In
the first case, the probe is in the interior of the region, and its simple model of texture (the
proportion of black pixels) initialized based on the window at the seed point (the middle of
the square) declares that the currently observed image window is consistent with its model
(Same), avoiding any deflection. In the second case, the probe is straddling the boundary,
nearing escape. When the texture model is inconsistent (Different), a different direction
angle is chosen for the next timestep. This causes the probe to become mired if it does
not return to the model-consistent region. The probe may escape the region significantly, in
which case it will become permanently slowed.

When, after the probe has moved to its new position in a new timestep, the assumption of

Same texture is violated (here, for example, when 49% of the pixels are black), the probe

will deflect. If we sought to model the probe’s collision as a billiard ball or pinball we

would need the geometric description of the obstacle so that the angle of reflection could be

calculated from the angle of incidence based on the contact point and accounting for any

obstacle-related geometry. In the case of the crisp black-white boundary, this might be a

well-defined boundary we could look for, but in the great majority of cases, the interface

between domestic and foreign texture could be poorly defined.

Therefore, to make fewer assumptions, the probe is set to deflect in a random direction. Note

that this could yield the same direction that caused the deflection, or a similar direction,
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fugitive from the seed point and headed out of the region. In this case, we will depend on

the fact that further timesteps in that direction are relatively more likely to trigger future

deflection events. On a more regular basis, the probe will be metaphorically stuck in the

doldrums until it chooses a direction consistent with Same texture. Sometimes, however, the

probe could move by fits and starts out into the foreign texture, where it will be trapped

around the periphery of the object, not subject to the guarantee of a reasonably fast escaping

random walk because the model is constantly issuing Different judgments leading to random

movements.

On each timestep, probes paint themselves onto their stigmergic map, much like a stamp.

Accordingly, until the less common event happens that the probe escapes the source region

consistent with its texture model, the region of the image that is consistent with the model

will tend to be painted over and over with paths determined by stochastic deflection. When

the escape event does happen, the probe will not tend to move far out of the model-consistent

region, so the error of the process is partially self-limiting. The word partially is chosen

because with enough expended timesteps for the probe, the probability of observing a rare

event such as an escape is more likely. Painting the negative space outside the region in an

ambling path also becomes more likely, owing to the tendency of random walks to escape

any area. No probe, therefore, should live forever. The demise of a probe due to old age is

a constraint on the probe that leads to a termination condition, probe senescence.

Figure 4 shows the result of 100 probes painting the same stigmergic map, where each probe

has a lifetime of 2,000 steps. The odd texture induced by the intersecting paths might be

called the resonance texture of the paths, and the contrast in the texture which is reminiscent

of liquid metal is actually due to integer overflow (an artifact of using an array of unsigned

8-bit integers to hold the map). 2000 steps of this small size using the probes described is

enough to somewhat tidily define the square’s boundaries kinetically.

21



0 500 1000 1500 2000 2500 3000 3500

0

500

1000

1500

2000

2500

3000

3500

0

50

100

150

200

250

Figure 4: Kinetic image segmentation, under the influence of probe senescence. The collective
stigmergy of 100 probes is shown, each probe with a life of just 2000 steps. Black-swan
events of the probe escaping the bounds of the homogeneous square are reduced simply due
to shortened observation times. The “resonance texture” exhibits topomap-like ridges and
rectangular banding artifacts, and moreover reveals the probes’ seed point texturally. The
unusual banding is due to using the conventional 8-bit unsigned integer to hold the gray level
for each pixel of the stigmergic map – even though each probe timestep imparts an activation
of 1, overflow is permitted. Here, the activations are simply sequentially summed onto the
same map, but the separate probe maps could be captured separately in a stigmergic tensor,
a consensus function such as simple averaging down the volume could produce the average
map.
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Figure 5: Kinetic image segmentation with 20000 step probes, beyond the help of a salutary
effect of probe death by senescence. The inlier resonance texture is varied and complex.
The outlier resonance texture is a flat gray, corresponding to regions painted with fugitive
probes, that escape and then become stuck outside the originating region.
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Figure 5 shows the result of a looser pressure of probe senescence, where probes are given

20,000 timesteps to live. When the time-to-live is increased too much, the rare events

of probes worming their way out of the region with the seed point is increased, and the

probes move on rambling trajectories seriously harming the definition of the region. It is

interesting to note that the outlier paths induce a smooth texture (because there are fewer

path intersections, and thus less overflow) than the inlier paths. Shapes can thus be analyzed

by the texture they induce with Same/Different texture probes.

Figure 6 shows the KIS process allowing 20,000 steps per probe but with an active loitering

or vagrancy detection process that terminates the probe before the end of its life if it is

deflecting 95% of the time in a moving window of timesteps. The moving window can be

shortened to make the 95% rule more draconian.
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Figure 6: Kinetic image segmentation with 20000 step probes, but using an active detection
routine that kills the probe early if it is “loitering”, or deflecting 95% of the time in a
moving window of timesteps. The moving window is a) 1000 and b) 100 timesteps long,
which controls the strictness of the loitering termination criterion. With stricter termination
criteria, the stigmergic contour more closely matches the actual contour. The resonance
texture on the boundary is qualitatively different from the coarse inner resonance texture.

In Figure 7a, we can see that the bizarre resonance texture disappears to be replaced by

a more commonsense gray patch depicting the region. The change involved was increasing

the representational precision from unsigned 8-bit integers to 64-bit floating point numbers.
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The extra integer precision averts overflow for this number of timesteps. The seed point,

since it always represents the starting position of the probe, is painted most often, and can

be seen much more clearly than in the overflow-prone condition, where it can perhaps be

diagnosed through texture analysis – here it is just the maximum of stigmergic activation.

Figure 7b shows the path of only one probe before it is terminated for loitering. Appropriate

corrections for the probe going out-of-bounds of the image are also something to think about

– to kill the probe for leaving rather than to return it is a bias in some sense against exploring

regions that are the background or the negative space of centrally located subjects.
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Figure 7: Kinetic image segmentation, a) identical to the preceding case, but using a 64-bit
floating point stigmergic map (averting integer overflow). In this form, the seed point can be
found from the consensus stigmergic map by thresholding, and the region can be estimated
by blurring and thresholding. b) The result of only using one probe vs. 100.

It was earlier promised that this method would help to ameliorate the core insufficiency

of centroidal shape profiles: concealing the influence of boundaries hidden behind other

boundaries from the perspective of first-contact raycasts. To understand why, it is helpful to

see the probe as akin to the proposal distribution in the Metropolis-Hastings algorithm [73].

In Metropolis-Hastings, the usually symmetric proposal or jumping distribution allows us to

synthesize a new location by assuming some uncertainty around the current location and to

compute an acceptance ratio used to determine if this will be the next location, and samples

are drawn according to this acceptance. Markov Chain Monte Carlo sampling using this
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kind of algorithm allows us to sample some low-probability locations, although with a built-

in local spatial dependence. Our probes also propose a new location, and decide whether

the location is acceptable or not, and the Monte Carlo process of simulating multiple paths

also allows us to penetrate (albeit more rarely) into harder to get to subregions of the region

being analyzed by KIS. The difficulty of visiting a subregion is defined by its narrowness,

how its shape interacts with probable points of pseudo-reflection elsewhere in the shape, and

where the seed point dispatching probes is relative to connected subregions permitting entry

into it.

The immediately obvious remedy to this difficulty is to provision more seed points, and

to combine the consensus stigmergic maps originating from seed points with each other

conditional on a hierarchical analysis that joins seed points if their maps have sufficient

pairwise intersection and the texture models at each seed points also agree. The particulars of

this graph-based analysis can be omitted to purchase some brevity, but it is likely hierarchical

models like this have high utility in vision systems – for example, the action of Gestalt laws

can be thought of as the graph theoretic problem of how a multigraph (edge strengths

representing the force of individual laws like similarity and proximity acting between nodes)

becomes a hypergraph (hyperedges representing scene elments an observer reports to be

perceptually bonded).

Where to place the seed points? One rule for generating good candidates is suggested by

considering Hoffman and Richards [78] in their statement of the minima rule:

“Minima rule. Divide a surface into parts at loci of negative minima of each principal

curvature along its associated family of lines of curvature.”

Figure 8 loosely reproduces the projected solid of revolution shape presented to illustrate

the minima rule and subjects it to KIS at seed points roughly in the middle of each of the

part boundary lines suggested by the rule. It can be seen that, in this instance, the part
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boundaries allot seed points that subjectively cover the object well, when the union of the

seed points’ stigmergic maps is considered. Of course, in the cases of completely simple

flat color texture and completely known shapes, seed placement rules can be objectively

evaluated by how efficiently the joined stigmergic maps of seed points generated by the rules

tend to cover the shape without, as it were, “coloring outside the lines”.
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Figure 8: Kinetic image segmentation of a reproduced projection of a solid of revolution
presented in Hoffman and Richards 1984, Fig. 16. The seed points (false color maxima)
in each case are placed at approximately the midpoint of the parallel defined by each pair
of negative minima of curvature, which are subjectively agreeable points for part segmenta-
tion. The negative minima can be seen to also define bottlenecks for a kinetically-spreading
activation (as opposed to flood-fill). In a further graph-based analysis, seed points should
be defined as nodes that are connected into graph components (regions) by defining edge
strengths proportional to the degree their stigmergic map has significant overlap with other
seed points, and the degree to which their texture model matches.
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With various difficulties of KIS partially remedied, the main remaining bit of complexity

concerns the texture model. It could be expected that tessellating a region with Stuff patches

would be more amenable to KIS than a tiling with Thing patches. “Homogeneous texture”

finds a functional definition, therefore, in how well it permits KIS. Of course, this conjecture is

not possible to test until a competent model of Same/Different texture is arrived at. Various

levels of model could be considered – the most primitive would directly report the degree of

lack of pixel correspondence directly but would be very brittle to authentic variation, the

somewhat-more-refined would calculate image statistics and try to match those statistics,

and the more advanced would probably involve fine-grained discriminative neural networks

making a direct judgment.

In addition to segmentation, recognizers can be critically important in supporting the process

of retrieval. In the heyday of “shallow” neural networks, the Hopfield network [79] was

perhaps the scheme most studied in the context of retrieval, but it has received renewed

attention as networks which attempts to learn programs need auxiliary memory structures as

components [134]. The Hopfield network implements an autoassociative content-addressable

memory, which is to say that you can query the memory for a pattern by providing a

sufficient part of the pattern. In the case of the Hopfield network and the Sparse Distributed

Memory of Kanerva [90] the memories are fundamentally bitstrings. Though there is a certain

universality to bitstrings, one can conceive of categorical alternatives (although alternatives

without the advantage of built-in retrieval based on similarity).

Drawing inspiration from the simple letter-recognizing networks of the Connectionists [117],

and also from experimental psychology in the tradition of discrete factors and levels, a data

structure can be developed to serve as a content-addressable memory, based on constraint-

satisfaction, for categorical values: the radial factor-level graph. Note that this hypothetical

factor-level graph is wholly unrelated to the factor graph used in variational inference to

associate observations or random variables with functions.
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We can imagine all instances stored in the RFLG as being embodied as nodes in a basin. The

data associated with the basin nodes are retrieved if they receive a prescribed number of units

of activation, which they receive from level nodes. The level nodes and their parents, the

factor nodes, belong to the list of factor-level trees (Fig. 9, Fig. 10) that comprise the outer

structure of the RFLG. There exists one factor node for each factor being considered. We

can take the example of a set of factors, backed by recognizers that perceive Low, Medium,

and High levels of Rockiness, Muddiness, and Grassiness in an image patch. Assume that

the image patch to go along with this example is a photographed section of a soccer field,

the morning after a day it has been raining. Entertain that the soccer field patch is likely

to be Low in Rockiness, Medium in Muddiness, and High in Grassiness.

To insert the patch into the RFLG (Fig. 11), we instantiate a basin node and attach the

patch data to it. We walk the set of factor nodes and examine the children to locate the

appropriate levels matching the patch and add a connection from the affected level nodes

to the basin node. To retrieve matching patches, we first set the activation level of all

basin nodes to 0. Then we take our search criteria (say the query is Grassiness=High

AND Muddiness=Low AND Rockiness=Low OR High) and separately forward activation

from the level nodes for each satisfied constraint. The node can be retrieved as an exact

match if the number of factors in the query equals the number of activation units, and as a

partial match if some lesser number of factor-level satisfactions is deemed permissible. The

RFLG partially implements through the basin nodes the relations of relational algebra (note,

though, that with only the structure currently in place it is unclear how to perform relational

join operations).

In a vision system specifically, the query (the activity of the level nodes) is envisioned as

driven by detectors of these various subjective textural qualities. Again, as with KIS this is

meant to be taken as a toy example, as this data structure confers no clear general advantage

if the activation polling is not very fast or somehow parallelized.
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F1

F1L1 F1L2 F1L3

B1 = {L1}

Figure 9: A “factor-level graph”, containing just one instance and one factor, with three
levels. On the outermost layer, a Factor node corresponds to a variable or feature. On the
lowest layer, a Basin node stores an instance. In between are Level nodes (although for
searching, this layer could actually be composed of search trees). For simplicity, disjoint
levels can be assumed within each factor, such that each Basin node or instance is like a
relation from relational algebra. The initial thick arrow denotes that when “activation” is
given to the Factor node, the factor enters consideration. The thick arrow from the active
level node to the retrieved basin node denotes that this instance was stored as exhibiting
the first level of the factor. The dashed arrows represent nonexistent connections. Even
when level nodes themselves are active, they cannot forward activation on connections that
are weak or nonexistent, signfiying no stored basin nodes. When the factor is considered,
the specific level or levels that are being queried are active, passing activation to any Basin
nodes it is strongly connected to. Basin nodes with a sufficient level of “activation” are
retrieved.

In a neural circuit, the level nodes would be driven by (not shown) detection mecha-
nisms separately connected to level units, but in the simple data structure, the highlighted
node corresponds to the Level (or possible value of the variable) we are querying for. Here,
only the first Level is active, and so the basin node receives one level of activation. A
reaping process in the basin selects every node in the basin that meets a threshold for
activation, which is logically the number of factors considered in exact retrieval, and less
than the total number in the case of approximate retrieval. If we consider only one factor,
we should retrieve the node. There may be many basin nodes in the basin, only possibly
connected to the level node shown.

31



Grassiness

High Med Low

Grass?{High}

Figure 10: The factor-level graph made concrete. A single factor, Grassiness, is shown.
To retrieve the image patches stored in the basin that are High in Grassiness, follow the
pointer down to the High node and then push activation to every child connected to that
node in the basin. A candidate node corresponding to a mystery image patch (Grass?) was
apparently stored as being high in Grassiness.

If this represents an exact retrieval query with Grassiness={High} as the only factor,
the mysterious patch stored in this basin node is returned as a search result.
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Figure 11: The radial factor–level graph is a collection of factor–level trees with a common
basin (here only one basin node is shown). For example, the query “Grassiness={High} AND
Muddiness={Low} AND Rockiness={Low OR High}” might return an texture patch of a
soccer field the day after a rainstorm, that is High in Grassiness, Medium in Muddiness, and
Low in Rockiness as measured by separate detectors with thresholded output. The activation
level of the basin node is 3 units, corresponding to meeting three of the constraints, and in
an exact retrieval scenario where these are the only factors, the patch should be retrieved.
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The homogeneity of Stuff seems like it lends itself also to this kind of data structure being

more appropriate. Separate instances of Things from a class seem less likely to be stored

in the same basin nodes in the presence of noise in storage and retrieval processes than the

homogeneous Stuff instances. Meeting the hard, categorical, and enduring thresholds that

gate assignment to level nodes in this structure is an all-or-nothing proposition. It seems

likely that it is worth more to adapt the input to be compatible with more flexible CAMs

like the Hopfield network than to depend on recognizers’ appraisals of High, Medium, or Low

concordance with textural dimensions in a scheme like the one just described. It is unclear

in the first place how one would come up with fair and meaningful dimensions for Stuff, let

alone Things. Perhaps the fairest consideration of quality dimensions, assuming no other

knowledge, is the “energy” or strength of association with a particular class from a dataset.

All of this speculative and perhaps unsatisfyingly incomplete algorithm design is to emphasize

that providing quality recognition in the form of secure Same/Different judgments and stable

thresholds could become critically important when recognition is applied to other primary

processes of visual processing, and that Things and Stuff may behave with strong individual

distinction in visual processes that are not simply recognition. To study the Things vs.

Stuff divide in recognizers, then, is to see how well and from which origins Same/Different

judgments and thresholds are developed between and among the two metacategories.

Given their potential importance in partially parallelizable non-recognition operations (e.g.

retrieval, segmentation) of distributed visual processing, this dissertation will focus on the

creation of recognizers and the analysis of the roots of their discriminability (specifically,

models of Same/Different texture judgment or confidence judgments), with a particular fo-

cus on the important question of whether Stuff and Things can be safely combined within

recognizers, or groups of recognizers acting as a composite recognizer. If recognition is, in

fact, strongly linked to quality of synthesis (or in biological systems, “imagination” and hallu-

cination), retrieval, and segmentation, the question becomes more important. This question
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is tantamount to whether a host of systemic differences exist between Things and Stuff (e.g.

in the “power” or capacity of recognizer needed, in the confusability of textures, in the

changes they induce in large recognizers like neural networks, in the amount of information

they require or cause to be stored, in the character of separability that is observed between

the feature vectors fed to drive them, or in the quality of low-dimensional representations

for decision-making that can be learned from them) that would suggest that they ought to

be processed by segregated systems – in digital computers and as well as brains.

0.1 Things vs. Stuff contributing datasets: Caltech256

and USPTex

The two datasets chosen to be representative of Things and Stuff are the Caltech256 [68]

dataset and the USPTex dataset [10].

Caltech-256 images depict Things, are of varying extent and may involve odd viewing per-

spectives. They are a mix of background-containing and background-isolated images. For ex-

ample, the classes blimp, hamburger, waterfall, spaghetti, cannon, jesus christ,

hot tub, and butterfly often include backgrounds. The classes chessboard, computer

keyboard, flashlight, frying pan, french horn, joystick, knife, pci-card, vcr,

yarmulke and revolver often do not. Keeping the backgrounded and backgroundless im-

ages together is not naturalistic to pre-electronic-age human visual perception, but is natural-

istic in the context of the datasets computer vision systems are often trained and deployed on,

and the stimuli people currently perceive, when, for example, they shop electronically. Some

classes are exceptionally non-naturalistic depictions (e.g. eric cartman, homer simpson)

while some classes are quite specific (palm pilot, ewer, ketch). Caltech256 images are

representative of many early image datasets that sourced their patches from researchers
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harnessing Internet image search.

USPTex texture classes are not given natural language labels but are assigned numbers. The

USPTex dataset has only 12 samples for each texture class, whereas the Caltech-256 classes

sometimes have in excess of 100 samples for the class (30,000+ images comprise the total

dataset, but they are not evenly distributed amongst classes). This is unfortunate, but most

well-known “texture”-focused datasets of a substantial size are not ideal to compare with

image datasets because they are either photographing the same texture patch under different

illuminants (designed to learn about the reflectance information modeled in bidirectional

reflectance distribution functions, e.g. CuReT, ALOT [21], RawFooT DB [33]) or they are

looking at entirely heterogenous images with the goal of identifying material used on an

object (e.g. MIT VisTex [120], Flickr Material Database [145]). USPTex (in the vein of

datasets with fewer classes such as the Kylberg agricultural dataset) otherwise begins from

a position of strength in that it is capturing distinct patches of the same material.

Interestingly, there is a general lack of an appropriate, well-known database for the general

study of homogeneous but actually uniquely sampled textures: possible future sources of

good varied datasets could eventually include detailed video game worlds, and particularly

satellite imagery by land type and land use, or entirely synthetic textures evolved by in-

teractive methods from patches of stock images or hallucinated by GANs. ILSVRC 2017

(comprising 200 classes and derived from the ImageNet taxonomy) is a good alternative

dataset for object images, although because ImageNet 2011 is a taxonomic database, there

are very highly variable numbers of exemplars per category as well as very specific categories

in the dataset.

Images from the two datasets are coerced to a standard resolution (128x128) which is less

than the maximum of the two resolutions. It is possible to standardize the images as is very

commonly done in preprocessing data for deep learning, but given the overall objective of

this research program, it is a debatable question whether transforming the image gray levels
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into z-scores is a fairer assessment of the complexity of the images than using the images as

provided (which may inhabit quite different gamuts), so this was not done.

Images were coerced to grayscale by applying just the luminance transform ([86], Table 4)

of the ITU’s YIQ NTSC color standard, producing the Y of YIQ:

E ′Y = 0.299E ′R + 0.587E ′G + 0.114E ′B,

where the E ′s are RGB gray-level intensities.

16 classes were chosen from each of Caltech256 and USPTex to serve as the Things vs. Stuff

comparison dataset. They are depicted in Figure 12. Of note is the fact that these classes

were not chosen at random but were picked for the potential of revealing some similarities

among textures through various recognition, synthesis, and analysis processes. For example,

among the Things the class washing-machine and the class video projector both often

have ocular elements in the form of the projector’s lens and the washer’s laundry viewing

window, the class ak-47 has visual elements in common with the class revolver but also

the class swiss-army-knife, and among Stuff there are multiple brick wall textures: c191,

c049, c047.
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Figure 12: Sample images from single channel Caltech256 (things) and USPTex (stuff) classes
used in the primary investigation 38



0.1.1 Superficial differences: simple image statistics

Things and Stuff as exemplified by the classes in our dataset differ more on the per-class

deviation of their image statistics than the per-class mean of their image statistics. This is

to say that Things are, instance-wise, more individual than Stuff. Of course, that very fact

is built into our admittedly flawed working or adopted definition of Stuff as authentically

homogeneous. Not all examples of a material from a certain class will be as homogeneous

as these in this particular dataset. The differences between Things and Stuff developed in

the remainder of this document may be somewhat exaggerated as an epiphenomenon of the

lack of wide ranging material datasets where the subjects are all the same fine-grained kind

of material (c.f. the Flickr Material Database, where material examples are arguably too

individuated for this type of analysis, yet belong to a unitary class, like glass or metal).

Regardless, it is important to establish the margin by which the Things and Stuff classes are

already different from each other before being placed into the recognizers we will study in

Chapters 1 and 2 and imagined in a common space relative to each other in Chapter 3.

The per-class deviations of Things are strongly significantly different (higher) than the per-

class deviations of stuff, across all four of the simple functional-moment based statistics:

means, variance, skewness, and kurtosis. The per-class means of means and of variances

are significantly different, where Things enjoy a slighter advantage over Stuff. That is, the

image mean gray-level value of Things as a metacategory is a bit higher on a per-class average

basis, partially due to the backgroundedness distinction but not overwhelmingly due to it.

The variance is significantly higher, again because of our notion of homogeneity. Whereas

the greater deviation of moments of Things images is driven by the heterogeneity between

instances, the per-class image variance being higher for Things is down to the heterogeneity

within an image, or, as was discussed above with KIS, the lack of stationarity of pixel-based

image statistics over space as you translate about the image.
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While a future study could perhaps control the issue of varying per-class background pro-

portion better by inserting standardized synthetic backgrounds behind already-background-

subtracted instances, and could control the issue of largely unbalanced instance count by

procuring or creating a new dataset with more instances, and both of these factors could

contribute a difference that is not down to the essential differences of Things or Stuff, at

some level the issue of heterogeneity vs. homogeneity is inextricably tied to the definition

of material vs. object, unless you are comparing systems that process pictures of objects

(Thing patches) but nevertheless reason about the material texturing those objects (i.e. the

distinctly different aim associated with the compilation of the Flickr Material Database). In

the succeeding sections, the heterogeneity of recognizer responses, recognizer constituency,

and recognizer separability that will be on display has to be assumed to be affected simul-

taneously by input heterogeneity (depicted in this section), nuisance factors such as back-

groundedness and sample intensity (i.e. relative number of image presentations), and any

innate, more deeply meaningful differences between Thing and Stuff processing that might

later be inferred.
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Figure 13: Per-class average mean gray level.
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Figure 14: Per-class average gray level variance.
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Figure 15: Per-class average gray level skewness.
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Figure 16: Per-class average mean gray level kurtosis.
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Figure 17: Per-class standard deviation of mean gray level.
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Figure 18: Per-class standard deviation of gray level variance.
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Figure 19: Per-class standard deviation of gray level skewness.
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Figure 20: Per-class standard deviation of mean gray level kurtosis.
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0.1.2 Hypothesized ease of stuff synthesis and recognition, favored

statistical test for comparing Thing vs. Stuff class charac-

teristics

The overriding primary hypothesis of this dissertation is that Stuff patches will pose less of

a challenge for recognition and synthesis than Thing patches. This may equate also to the

promiscuity of Stuff recognizers trained on only their own class, since during training they

will encounter less varied data than the Thing classes, which have more varied instances.

It is expected that Stuff-specific synthesizers will demonstrate higher competence at an

earlier stage of training than Thing-specific synthesizers (precociousness), on a qualitatively-

assessed basis. Cumulatively, this reflects the title of the investigation “stuff’s cheap, things

are expensive”. It is expected however that semi-objective quality estimation methods (e.g.

the Inception Score) involving an external oracle network will prove systematically biased

against assigning elevated quality scores to Stuff, since most networks in the convolutional

neural network literature have been trained on exclusively Thing classes.

The secondary hypothesis is that Stuff and Things will prove regularly separable in the

features used in primitive recognizers, and in the models and judgments of deep convolutional

recognizers, visually demonstrating the Things vs. Stuff dichotomy.

Throughout this report, statistical significance results are shown, in some places primar-

ily as a secondary consideration to subjective visual analysis (this unusual methodological

orientation is explained in 2.2.3). The classes and the per-class averages do not represent

the sort of individual and independent responses of human subjects, so the p-values them-

selves are not even as valid as they usually are in psychological research. Always where a

statistical significance is calculated it is between a proper vector or a flattened matrix of

numbers pertaining to Thing classes and Stuff classes. The test statistic is calculated based

on assignment to the two groups based on Thing or Stuff status. The hypothesis test is
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p-value Annotation

p < 0.05 *
p < 0.01 **
p < 0.001 ***
p < 0.0001 ****
p >= 0.05

Table 1: Statistical significance thresholds for star annotation.

always the Wilcoxon rank-sum test [177], also known as the Mann-Whitney U test as Mann

and Whitney more fully described it and the U distribution [112]. The implementation used

(scipy.stats.ranksums, [170]) does not implement the tie or continuity correction that

sometimes appears. The rank-sum test is used in place of, for example, Welch’s t-test, be-

cause it is a nonparametric method – we cannot assume that all of the Things vs. Stuff

measurements are normally distributed. In addition to rank-based methods seeming some-

how appropriate thematically in light of the sub-ordinal statistic proposed in Chapter 1,

rank-based methods are somewhat more robust to outliers relative to traditional hypothesis

tests. The development of Bayes factor type renovations to the Wilcoxon tests has been a

shockingly recent development [165] and so these methods are avoided because they are not

yet in common currency.

The plan of attack for diagnosing a pervasive Things vs. Stuff dichotomy in recognizers is

tripartite: two extremes of recognizer sophistication will be presented in Chapters 1 and

2 (i.e. some of the very simplest recognizers, working very close to the features will be

presented first, and then some of the very most intensive recognizers currently practical,

which also touch on synthesis, will be presented second), and then the behavior (as opposed

to the raw performance) of the extremes will be compared using the manifold-learning based

analysis methods presented in Chapter 3.
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Chapter 1

Things vs. Stuff in Primitive

Filterbank Recognizers

Statistical texture recognition using banks of linear filters and the gray-level statistics of

their filter response distribution of has been studied intently for at least the last forty years,

with object recognition that is both broad and fine-grained only becoming practical in the

last ten. Typically, filterbank based image recognition has involved choosing a set of filters

(traditionally, steered [51] edge detectors and combinations of Schwartz-like, or symmetri-

cally falling off, functions), convolving the patch being classified with each filter, and then

taking a moment-based histogram statistic (e.g. the mean) for each distribution to use as a

per-filter feature for classification.

The abstraction of having filter “channels” analogous to color channels is long-established,

dating back at least to the work of Campbell & Robson in 1968 [24] on Fourier composition of

simple grating textures and the measure of contrast-sensitivity functions therefrom. Richards

[135] explicitly described the hope that a small number of “texture primaries” could be

discovered to account for most of human texture discrimination, founded on the observation
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that there were many effective texture “metamers” (perceptually indiscernable but source-

distinct textures) among the early digitized and noise textures studied on some of the early

computer displays, and so possibly dimensionality reduction and discrimination techniques

from colorimetry could apply.

Because the level of orderliness of biological visual systems is incompletely known, it pays

to consider algorithms, data structures, compression strategies, and signal transformations

that at first would appear to be implausible and worse-performing compared to computer

models with well-behaved and studied, idealized components. How might the brain pass

around very approximate information about signal distributions in a convenient form? What

level of statistics is really needed to perform easy texture recognition tasks – do marginal

(intrafilter) and very low order (means, and comparing only very few filters) statistics suffice?

How far can you torture probability information and still derive useful results? From a

computational neuroscience of vision perspective, these are questions still needing to be

completely answered.

In resource-critical contexts (such as differential and interplanetary remote sensing) and

on very easy tasks (homogeneous texture recognition) we might like the complexity of a

classifier and the volume of retained input data to be very low compared to the prima facie

complexity of the imagery. Particularly in geospatially-correlated similar image search, where

it could be desirable to have a very simple and parallelizable process perform a first pass

over a mammoth dataset to flag up patches for more careful processing, it could be seen as

acceptable to sacrifice even a considerable degree of accuracy. A space probe distant enough

to have very slow accurate transmission rates back to Earth is in a position to capture much

more imagery in acceptable resolution than it can send over its lifetime – especially when

fastest transmission endangers that lifetime and shortens the window of useful scientific work.

A real-estate startup or participant in a building detection and labeling competition might

want to avoid the cost of storing large and complete sets of data. A geospatial intelligence
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agency with enough capability to quickly image patches of the planet might want to quickly

focus on suspicious developments or look for wreckage faster than they can conventionally

pull down imagery and classify it with state-of-the-art accuracy – even if, once the data is

appropriately stored, inference through large and well-trained networks would be fast. In

other areas of pattern recognition where the image data is likely to be very overcomplete for

the limited purpose of a classification, such as for detecting almost-identical copies of video

or audio data, it pays to be able to move across a large amount of signals data and gain

some rough knowledge based on very few samples ruling out a match: it may take almost

no information to diagnose a merely abused signal from an entirely alien signal.

Early texture analysis approaches on practical datasets like those created from subsets of

imagery from the LANDSAT survey used ad-hoc statistical approaches based on classifica-

tion using the distributions of arbitrary measurements of images, such as the Fourier power

spectrum ring integrals, the pixels themselves, means and variances of the raw input, lo-

cal neighborhood and path sums, sustained gray-level run lengths, whole image entropy

measures, and so on ([176] provides a prototypical example of early kitchen-sink style dis-

criminating features on LANDSAT in the mid-1970s).

Models of texture discrimination by 1990 [111] shared an emphasis on maintaining a bank of

multiscale edge detector based linear filter kernel patches (typically rotated Gabor wavelets

or Differences of Gaussians (DoGs)) which are convolved with the input image to produce

filter responses images (forerunners of the “feature maps” or texture channels discussed

with CNNs). First-order statistics or moments (e.g. single-filter means, as a proxy for

“activation” of a neural unit sensitive to a filter pattern standing in for its “receptive field”)

of the distributions of these response images were used as reduced-dimensionality feature

vectors for classifiers. The quality of texture discrimination then depended on how the

intrinsic difficulty of the classification task interacts with the choice of the filters. A filterbank

which is sufficiently large and well-chosen for the task should perform well; this thinking
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motivated much research into collecting well-tuned filterbanks, mostly as rotated, contrast-

adjusted, and mixed combinations of simple primitive shapes serving as the filters. Modernly,

following the deep learning [62] “revolution”, filters are learned for the dataset in a multiscale,

layered approach by stochastic gradient descent directly instead of being engineered from

mathematical or practical intuition. The fact that early layers tend to specialize similarly

for naturalistic target images and that those early layers are likely edge detectors can be

viewed as a partial vindication of the old fashion.

In 2003 Varma & Zisserman [168] posed the question “Are Filter Banks Necessary?”, arguing

that progress into texture classification in the 1990s was based not on picking good filterbanks

(c.f. the classifier of Leung & Malik 2001 [104]) but using more filters, considering their

joint statistics, and including the distribution itself as a feature (allowing the comparison

of distributions by divergence statistics). One successful family of classifiers they proposed

[169] combined the conventional machine learning techniques of vector quantization, k-means

clustering, and chi-squared divergence between histogram “models” which are constructed by

greedily picking the most informative dimensionality-reduced indices to perform statistical

“texton” matching using a volume created by stacked filter maps.

Concurrent with skeptical research into how little domain-specific and carefully-motivated

statistics were necessary for recognition work with texture, research into parametric texture

synthesis was attempting to find the minimal information needed to reconstruct textures

from statistics. Heeger and Bergen 1995’s [74] perturbative parametric texture synthesis

procedure used Laplacian image pyramids (Burt & Adelson 1983 [22]) to optimize a noise

image into a multiresolution histogram match with the statistics of the texture to be synthe-

sized. The algorithm depended on a coarse-to-fine approach where “subband” histograms

created by convolving low and high resolution versions of each patch with a small set of

steered filters were matched first at the top of the pyramid between noise and reference

images (with decorrelated gray-levels for each color channel being separately matched), and
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then the pyramid was collapsed. Portilla & Simoncelli 2000 [132] presented a variation

on this approach where a texture was represented durably as a point in a 710-dimensional

space. The individual features were derived from a 4-orientation, 4-level complex-valued

steerable pyramid representation, and were meant to be dataset-agnostic, measurable for all

naturalistic textures. These parameters included: marginal statistics (skewness and kurtosis

of lowpass reconstructions, variance, min, max of raw gray levels, and the variance of the

highpass band); autocorrelation statistics of lowpass images, coefficient-magnitude statistics

(autocorrelation of magnitudes of subbands, cross-correlation of subband magnitudes with

same-scale oriented copies, and cross-correlation of subband magnitudes with coarser ori-

entations); and “cross-scale phase statistics” (cross-correlated real parts of coefficients with

complex coefficients between all orientations at coarser scale).

Portilla & Simoncelli’s ablation-study type approach involved the authors demonstrating

that removing certain of these statistics would cause dependable degradations in the quality

of resynthesized images (patches which were analyzed to yield a feature vector and then

synthesized from pyramid matching these statistics). With marginal statistics removed, the

resynthesized textures were globally and locally lacking in contrast; with autocorrelation

constraint statistics removed, straight lines become warped; without magnitude correla-

tion constraints, local regions twist and randomly mix, and without the cross-scale phase

constraints, orderly elements in the texture become mixed and blurred. The specific pro-

cedure for matching these statistics itself had to be specially determined as simultaneously

optimizing them would not yield usable textures. Around 15 years later, the parametric

synthesis model of Gatys et al. 2015 [56] improved upon this without the benefit of this

feature engineering approach by using an already-trained 19-layer convolutional neural net-

work (VGGNet) and the Gram matrix (in this case, the sum of inner products of all feature

map pairings within a layer). The CNN outputs are used to compute Gram matrices at each

level for the texture to be resynthesized and a parallel network computes a layerwise coun-

terpart for the white noise image being optimized. A cost related to the comparison of Gram
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matrices is propagated back to correct the image being synthesized. The output textures

are of an impressive quality that handles orderly textures (such as brickwork) without the

muddying and bending artifacts seen in the Portilla and Simoncelli model, but with as many

as 852,000 parameters (vs. the 3000 or so used for the color extension of the earlier model).

Ustyuzhaninov et al. [163] revised this model quickly by showing that a single network using

random filters and one layer can generate a Gram matrix and the network can be trained

using backprop to produce comparable results. If the feature maps encompass a variety of

kernel support extents (filter sizes), performance is about as good as Portilla & Simoncelli

and Gatys et al. using responses from 1024 filters (but these are randomly initialized).

As the first part of this investigation into a dichotomy of Things vs. Stuff in recognizers, the

most primitive histogram statistics operating on the most uninformed filters (random noise)

will be used to construct low-quality convolutional recognizers. In Chapter 2, relatively

high-quality deep convolutional recognizers will be developed as a contrast to these, and

inspected very deeply.

To preview this chapter:

• The process of extracting histogram features for filterbank-based texture recognition

is reviewed.

• A sub-ordinal statistic with some interesting properties, the signchain, is introduced.

• An even more information-poor feature, the signchain-of-signchains, emerging from

signchaining the concatenations of bijections of signchained histograms, is briskly de-

tailed.

• A case for using Linear Discriminant Analysis as the classifier algorithm of record is

made.
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• Similarly, a case for using the Matthews Correlation Coefficient as the performance

index instead of accuracy, precision and recall, and d-prime is put forward.

• The classification performance of LDA classifiers using mean, median, signchain, signchain-

of-signchain, and full bin heights of histograms is assessed to see if there is a Things

vs. Stuff difference in competency of recognition.

1.1 Filter-based histogram statistics for recognition

Histogram-based filterbank recognition is implemented by convolving each patch p ∈ P

(where P is the set of patches in the dataset) to be classified with a battery of filters f ∈ F

(where F is the list of filters in the battery) producing filter activation maps a ∈ A (where A is

the list of activation maps, ordered parallel to F). The statistical features of the distribution

(which may be means, variances, or other arbitrary quantities) of interest are concatenated

from each contributing filter to form a combined feature vector for that choice of statistical

feature or features.

All histograms computed within this investigation could be considered “extemporaneous”

histograms in that they are potentially taken over different probability spaces each time –

the spaces are not guaranteed to be the same, even as they may tend to share values in

common. Hardware recognition circuitry based on computing distributions and doing fast,

low-information recognition operations with logical elements would likely be more suited to

a histogram over a constant probability space, where the total range of realizable values

(e.g. the minimum and maximum mean gray level activation) is known ahead of time; this

could be considered the “preplanned” histogram. Here, only “extemporaneous” histograms

are used, which may limit the utility of histogram feature recognition to be confidently

and immediately implemented in fixed-range contexts and also present an issue when, for

example, the entropy for empirical distributions of neural network quantities is calculated
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for different networks.

Histogram computation can vary so that it is adaptive [50] to the features of the data;

in particular, unequal width histograms can be useful for approximately fitting idealized

distributions or being convolved with 1-dimensional filters themselves to produce kernel

density estimates. Here, only non-adaptive, equal bin width histograms are used. For

example, the 32-bin histogram is computed simply by splitting the interval between the

minimum presented and maximum presented values into 32 bins.

1.2 Signchains as sub-ordinal statistics of histograms

The signchain S of a list L of n elements is a bitstring of k = n − 1 elements. In the

straightforward case, let E be a totally-ordered set, E∗ the set of all finite strings composed

of elements of E, and L an element of E* of length n. Then the signchain S of L is the

sequence that results from evaluating the signchain-bit function on the tuples (Li, Li+1)

for i = 1...(n− 1). In other words, the ith bit of the signchain is defined by the relationship

between the corresponding element of the list and its immediately following entry.

signchain-bit(L, i) =


1 if Li+1 >= Li

0 if Li+1 < Li

In reality, only adjacent elements in the sequence must be comparable, which means that

only a (non-strict) partial order on the elements in E and arranged in the list L is truly

required.

An unbroken series of 0s in the signchain signals that for that many consecutive change-

intervals the original sequence is strictly decreasing.
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For instance, for the 6-dimensional vector < 1, 2, 5, 4, 3, 3 >, the signchain of its components

is [11001].

When applied to the sequence of probabilities in a probability mass function, the signchain

captures what could be called sub-ordinal information about the probability distribution.

That is, not even reconstruction of the rank ordering of non-consecutive original values is

possible (in general, except for the notable cases of a signchain consisting of all 1s or all 0s)

because comparisons were only made between the current and next value.

Multiple signchains can be considered to help define a deterministic finite state machine that

is an acceptor for signchain-decimated probability distributions. Many possible distributions

can be consistent with a particular signchain and thus a path through the machine. Multiple

signchains can be arranged in a trie (prefix tree) structure so that distributions that are

signchain identical are mapped to storage associated with the same leaf node. Signchains of

symmetrical distributions like the Gaussian and signchains that are strictly monotonic can

be efficiently run-length encoded.

The signchain itself was inspired by the Markov language models highlighted by Shannon

in [144] as “the series of approximations to English”. A second order word approximation

was defined as constraining the generated stream of words by bigram frequencies, the first

order by word frequencies, and the zero order by nothing, leading to equiprobable selections

of words, which leads one to ask what a “fractional”-order Markov process would look like

in terms of a constraint on generation that is informed by only relative symbol probability

information.

Hierarchical summarization of binary input data by has been performed by others in the

past, for example, in the hierarchical bitvectors [60] which are a simpler precursor of the van

Emde Boas Tree [166] which implements an associative array using bitvector keys but also

additional range data. A system of hierarchical bitvectors allows fast determination of set
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membership in a contiguous set by using the leaf nodes of a tree to represent collectively a

set membership vector which is 1 where the value is in the set. Interior nodes of the tree

summarize their childrens’ set membership by taking on 1 only where at least one child has

a value of 1. The binary derivative part of the signchain operation, it turns out, is also quite

similar to the early stages (prior to monosequence finding) of the more involved sequential-

spectrum operation of Stepien [153], proposed as an alternative to the frequency spectrum

in some cases for analyzing signals with missing periodic sections.

The signchain-like idea of irrevocably throwing away information about encountered items

and setting up equivalence classes of streams of symbols so that multiple realizations can

map to the same irreversible summary is behind the foundations of probability in the first

place. In the description (see [32]) of the method of types, a type Ps is the proportion of

occurences of a symbol for some defined alphabet X and a defined production s. For a

sequence s = 1231233, the type Ps is:

Px(1) =
2

7
Px(2) =

2

7
Px(3) =

3

7

And the equivalence class called the type class is composed of the productions of the same

length drawn from the same alphabet whose symbol occurrences match the appearance

frequency constraints of the type. Just as probability mass functions are information-losing

acceptors for lists of data, signchains are information-losing acceptors for probability mass

functions and other sequences, and induce their own equivalence classes based on which

sequences conform to the constraints.

In this way it is possible for many activation maps of filterbanks to be signchain-equivalent

under a particular adaptive histogram.

For a signchain representing a histogram, the most significant bit (MSB) of the bitstring
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is arbitrarily the first change interval from the lowest-valued to the second-lowest-valued

bin, and the least significant bit (LSB) represents the final change interval between the

ultimate and penultimate bin. For a signchain representing a filterbank histogram feature,

the patch p ∈ P is convolved with the filter f ∈ F to produce the activation map a.

The extemporaneous equal-bin-width n-bin histogram is taken and the (n− 1)-bit signchain

accepting the histogram is computed, comprising the recognition feature associated with the

filter.

A signchain’s decimal representation is the “natural” bijection of the bitstring to the non-

negative integers.

For a bitstring bK , bK−1, ..., b1, b0, the decimal representation d is:

d =
K∑
k=0

ki · 2i

The decimal representation of the signchain should be expected to be less useful to a linear

classifier than a bitvector. One disadvantage is that this bijection much more strongly

changes the value at the MSB end of the signchain. The lowest value bin is not inherently

necessarily much more valuable than the highest value bin in a histogram.

At a loss of substantial visual interpretability, a fair permutation of the bits suited to classi-

fication could perhaps be discovered. Arrangements of binary codes with special adjacency

value properties occasionally have useful applications, as with the binary reflected Gray

code, which ensures that adjacent decimal values are associated with binary encodings that

are adjacent in the sense that only a single bit changes. The BRGC is used in a handful of

settings mostly involving minimum effort switching but especially electromechanical position

encoding elements that needed to ensure that each adjacent position value update changed

only one bit at a time.
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The integer signchain distance Υ between two sequences ~a and ~b of equivalent length is

defined to be the Hamming distance (number of components which do not agree) between

their signchain representations, or, equivalently, the two bitstrings XORd with the population

count (the number of 1 bits, or the binary Hamming weight) taken therefrom.

Υ(a, b) = popcount(signchain(a)⊕ signchain(b))

The population count can be accumulated directly, which would be most natural in an

integrated circuit setting where two registers carrying the signchains to be compared could

be XORd and the result popcounted by an efficient parallel device. In the odd case you had

the XOR already computed in decimal form, the equation for the popcount of n-bit decimal

representations (along with more efficient algorithms for specific machines) is given by [175]

as:

popcount(x) = x−
⌊x

2

⌋
−
⌊x

4

⌋
− ...−

⌊ x
2n

⌋

The signchain distance proportion Υ̂(~a,~b ) is the “fractional” Hamming distance, or Υ(~a,~b )
K

where K is the number of bits in each signchain. When signchain distance is mentioned, the

proportion Υ̂ is connoted.
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Figure 1.1: Example calculation of 15-bit signchain feature from convolution of patch with a
single filter. The patch is convolved with the filter kernel, producing an activation map the
size of the patch. The adaptive histogram with 16 bins is calculated. A signchain is then
determined by examining the 15 change intervals and producing a sequence of bits that is
1 where the interval is increasing (but not strictly, so no change also results in a 1) and 0
where it is decreasing. The decimal bijection of the signchain bitstring used as a member of
the list used to create a signchain-of-signchains from multiple filter signchains is also shown.
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Figure 1.2: Calculation of signchain feature from convolution of patch with a single filter,
using a thing patch
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Figure 1.3: First 10 filters of each kernel size (3x3, 7x7, 11x11) used to compute histogram
features
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1.3 Signchains-of-signchains as even lower-information

descriptors

If the signchain is somewhat like an atavistic version of the derivative on the discrete prob-

ability space that throws away a particularly extreme amount of information, the question

arises as to whether there is a natural way of degrading the probability information again

to produce an even-lower-information statistic. One answer lies in applying the signchain

process itself to signchain-decimate the feature vector of signchains. To signchain-decimate a

feature vector, we merely subject the list of elements in the feature vector to the signchaining

operation.

In the case of a signchain, which is a bitstring, being the feature extracted for each filter,

it is not particularly interesting to take this signchain of bits. With each application of the

derivative on the sequence you are consuming one bit (i.e. done once, this is essentially

the concatenation of binary second derivative evaluations). As an alternative, the successive

conventional decimal bijections of a signchain bitstring to a decimal signchain number may

conceal some order that the signchaining operation, combined with a linear classifier, could

reveal. Thus this, the signchain of the list of signchain numbers contributed by each filter,

is defined to be the canonical signchain of signchains for filterbanks.

As compared to the binary nth derivative formulation computed on the bitvector represen-

tation of the signchains, this method throws away significantly more information (over the

whole filterbank), specifically arriving at one-bit per filter comparison. Neural systems ben-

efit from summaries that can be expressed as small bitvectors because these can be most

efficiently and robustly transmitted and processed by circuits, and the burden of information

storage or the provision of any necessary error-correcting redundancy is lessened. Not all

bits are created equal. This fact continues to be an important theme in computational neu-

roscience; for example, research by Stringer et al. [154] examined the eigenspectrum of V1
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neuron response in mice viewing stimuli from the popular ImageNet dataset and discovered

the presence of “fractal” 1/n power-law scaling of principal components. This suggests the

importance of a few key features in early vision, and a predictable falloff in the importance

of less important features, as verified by looking at the complexity of the shapes of random

projections using various neural tuning curve schemes (spanning the spectrum from orthog-

onal “efficient coding” to highly overlapping channels) organized by eigenspectrum decay.

The authors claimed that “if the variance spectrum was to decay more slowly then the pop-

ulation code could not be smooth, allowing small changes in input to dominate population

activity”. In any case, visual features that are somewhat correlated (permitting stimulus

generalization) but which destroy enough low-level nuisance information (overly “fine” fea-

tures, whose destruction tends to prevent widely different mappings of subjectively Same

stimuli) are ideal. You can see the uselessness of overly fine features by just passing the raw

image pixels to a classifier; if this was ever a highly valid choice, there would not be much

of a field of texture analysis prior to deep learning. Even very impoverished information

about random noise filtering of the stimulus introduces more salutary coding or hashing (for

categorization) and improves upon the feature vector created by the stimulus itself.

The signchain of signchain numbers is an ambitious summarization theoretically capable of

large ultra-lossy “compression” rates, similar to the extreme case of classification labels (e.g.

with representational precision of a bit or a small number of bits) themselves: if you retain

only 49 signchain-of-signchain bits from even a small image (128x128 pixels, 3 channels,

using conventional machine word sizes) you can achieve “savings” of three or four orders of

magnitude. Of course ultra-short summaries are useful only if they are at all competent.
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1.4 Recognition performance of LDA classifiers using

signchains and signchains-of-signchains, mean, and

full histogram features

For the primitive recognizer features in this chapter, and the deep convolutional recognizer

features in Chapter 2, per-class classification performance results are reported using an over-

all multiclass classifier that employs Linear Discriminant Analysis. The specific implemen-

tation is that of [130], using no regularization, prior class proportions from the labeled data,

and a small threshold 0.0001 for testing the significance of singular values for assessing rank

deficiency – the LDA process used involves a “Fisher score”-maximizing (maximally mean-

separating accounting for combined standard deviation) vs. PCA-style (maximum variation

direction capturing) projection implemented with a singular value decomposition that is too

involved to relate here (but see the source code for [130]’s sklearn.discriminant analysis

in v.0.23.2 and [122], 8.6.3). The idea of the Fisher LDA score objective is to ground mean

separation in terms of standard deviation separation, which is an idea that is reflected at

least also in Student’s t-test, Cohen’s d, the d-prime discriminability measure, and the F

statistic calculated in ANOVA.

Linear discriminant analysis is a form of discriminant analysis, a generative technique (see

[122] for a detailed explanation) that involves calculating a decision surface based on esti-

mating the probability of class membership for data points via their distance, or distance

under a specific projection, to the centroid (aka class-conditional mean) of a not-necessarily

symmetric multivariate normal distribution inferred for each class. The distance is corrected

for the multidimensional variance (i.e. the covariance matrix Σc) of each class’s Gaussian;

specifically, it is the Mahalanobis distance, which is a component of the Bhattacharyya

distance between multivariate Gaussians:
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dmahalanobis = (x− µc)TΣ−1
c (x− µc)

Inference traditionally follows Bayes’ Rule (it involves evaluating a posterior based on the

prior probabilities of the class and the likelihood under each multivariate Gaussian model,

with a change in the class label arguments, so LDA needs no multiclass strategy like one

vs. rest), so where all Σc∈C are diagonal, the gaussian-based discriminant analysis (“GDA”)

is the Naive Bayes classifier. If a specific, enduring decision boundary is desired, though, a

threshold for equal interclass posterior probability with Gaussian density (a term of which

is the Mahalanobis distance) has to be determined. In the case where the class-conditional

covariance matrices are tied, meaning that they are all identical, the equation for the posterior

can be shown [122] to be simplified so that one of the x-containing terms cancels out in the

consideration of other classes under Bayes Rule. This leads to a linear decision boundary

between two densities being compared, vs. a quadratic decision boundary (two x terms

remained; and note that the parabolic shape is not the same as an isocurve or level set of

distance ellipse of the Gaussian).

The class associated with the Gaussian-based model with highest posterior probability was

chosen as the predicted class.

1.4.1 Using class-specific Matthews Correlation Coefficients in-

stead of alternatives in the presence of highly underpowered

and overpowered classifiers

When considering per-class performance in a multiclass scenario we are imagining each class

as having its own classifier working on a very unbalanced classification problem. Even for

the small number of patches we use (approaching 2000), the vast majority of the cases
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an imaginary “sub-classifier” (a contrived object that we pretend is associated with the

performance of a classifier on a single class) encounters are not positive. Negative cases are

much more prevalent than positives. The per-class accuracy calculated in this manner can

therefore be misleadingly high. When each binary “classifier” is considered, 4 contingencies

can occur: true positives (declaring the target class when it is the target class), true negatives

(declaring it is not the target class when it is not the target class), false positives (declaring

it is the target class when it is not), and false negatives (declaring it is not when it is).

Various disciplines attempt to improve on accuracy by using performance indices that take

into account some or all of these four possible contingencies. For instance, in machine

learning and particularly in computer vision, the convention seems to be to report the F1

score which is the harmonic mean of precision and recall.

If TP is the count of true positives, TN is the count of true negatives, FP is the count of

false positives, and FN is the count of false negatives:

F1 = 2·precision·recall
precision+recall

, where precision is TP
FP+TP

and recall is TP
TP+FN

.

More vividly, in the context of an imaginary duck hunt, recall would be associated with

asking the question “Did I shoot all the ducks?” while precision would be associated with

the quite different “Was everything that I shot a duck?”.

There may appear to be a problem with the definition of precision and recall in two cases.

First, when there are no true positives and no false negatives: this corresponds to there

being no missed positives and no claimed positives, which adds up to no positive cases in

general. Typically a researcher does not set themselves up to encounter this eventuality

when testing classification in contrived or preplanned situations, but it is eminently possible

in data you might naturalistically receive involving multiclass one vs. rest classification

scenarios. According to our colloquial definition above, the recall could be argued to be

1, as you claimed detection of everything there was to claim (no duck escaped being shot).
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For some this definition might be unsatisfactory. Second, when there are no true positives

and no false positives – no declarations were made in favor of the presence of the target

class. Precision is 1 under our definition (no non-ducks were shot). Blindly implementing

the conventional formula will produce undefined values that will propagate to the calculation

of the F1 measure. And of course, neither precision nor recall includes the number of true

negatives, so if you are given the number vs. the proportion of contingency types and not

also the total number of cases, distinct behavior for differing numbers of correct rejections

can go unsurveilled.

In experimental psychology, the use of d-prime (d′), associated with signal detection theory,

is the prevailing convention. Higher positive d-prime values are associated with the upper-

left corner of Receiver Operating Characteristic (ROC) space (see Figure 1.11a) signifying

progression towards perfect detection and strong negative d-prime values towards perfect

perverse detection (perfect detection if the labels were to be inverted) in the bottom-right

corner. The space defined by precision and recall imparts (see Figure 1.11b) slightly different

information, with the quality of the classifier on the ascending diagonal and the extremes in

the top-left and bottom-right corners corresponding to all claims made of the target being

valid and all valid claims being made respectively.

d′ imagines the “signal” (target presence) and “noise” (target absence) distributions as nor-

mally distributed such that the distance between them can be thought of as the distance

between the idealized distributions’ mean parameters accounting for their variance parame-

ters, but it is conventional to provide the index specifically as:

d′ ≈ Φ−1(hit rate)− Φ−1(false alarm rate)

where Φ−1 is the inverse CDF (or quantile or point-percent function) of the Normal distri-

bution, also called the probit.

The hit or true positive rate (sensitivity) is TP
P

or TP
FN+TP

, and the false alarm or false positive
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rate (1-specificity) is FP
N

or FP
TN+FP

.

d′ presents several disadvantages specifically in the situation in which you have very poor

classifiers intermingled with very good classifiers. The most superficial disadvantage is that

like a number of inverse CDF functions, the probit function is not calculable in closed form

and relies on consulting tables to interpolate a value, using differential equations, or employ-

ing occasionally opaque numerical methods. Perfect detection yields a d′ of infinity, which

hinders convenient visualization where finite and non-finite values must be simulatneously

plotted. Simply observing a d′ of infinity can also be highly misleading without further

context. If the false alarm rate is 0, the probit evaluates to negative infinity – the hit rate

then needs not be even close to 1 to result in d′ =∞. Further, quite elevated d-prime values

indicating high-performance classifiers can hover in the 3 to 4 range, which is not especially

obvious to those uninitiated in signal detection theory. The area under the curve (AUC)

of ROC space is directly related to d-prime; [151] is a classic compendium on niceties of

calculating and interpreting d′, AUC, and the bias (conservative or liberal) quantity of SDT.

Clearly, a performance index that still accounts for unbalanced classifiers (thus improving

upon accuracy) but whose maximum value is finite and is uniformly interpretable as good

performance is desirable.

The Matthews Correlation Coefficient is produced from a number of terms from the con-

fusion matrix, which are additive combinations of true and false in the denominator and

multiplicative combinations within true and false contingency types in the numerator:

MCC =
(TP · TN)− (FP · FN)√

(TP + FP )(TN + FP )(TP + FN)(TN + FN)

or, when a term in the denominator being zero sets the denominator to zero,
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MCC =
(TP · TN)− (FP · FN)

1

to gracefully avoid a problematic division by zero.

Of course, when there are no positive cases available (no false negatives and no true positives),

the MCC’s value should not be thought to be reflective of the classifier’s intrinsic quality.

Nevertheless, the MCC seems preferable to d-prime because with the correction for the

denominator it is always defined and finite and does not require evaluation of the inverse

CDF. Chicco & Jurman 2020 [28] further make the case against the F1 score citing the true

negative problem mentioned above and specifically the asymmetry of different F1 scores

resulting from flipping the positive and negative class. Here in the one vs. rest multiclass

scenario there is no ambiguity as to which is the negative class, but the MCC is chosen

because it retains the interpretability of perverse performance observable in negative d-

primes while not retaining the worst disadvantages of d′, and also gaining the familiarity of

the range [−1, 1] of a correlation coefficient.

1.4.2 Performance data for primitive filterbank recognizers

A constant set of 50 random noise filters (separately generated for extents 3x3, 7x7, and

11x11, see Figure 1.3) was generated according to the standard normal distribution. For

each patch in the dataset, the grayscaled, single-channel pixels of the patch were convolved

with each filter to produce a stack of activation, or feature, maps. For each map, an extem-

poraneous histogram was calculated with 16 bins, and the signchain operation was applied

such that the mean activation of the feature map, the median activation of the feature map,

the histogram bin heights of the gray levels, and the corresponding signchain could be ex-

tracted for each filter to serve as partial feature vectors. Additionally, the signchains were
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bijected to their decimal equivalents and then the list of these (over filters) was signchained

itself, producing the signchain of signchains. The other feature vectors were concatenated

over filters to form full feature vectors to join the signchain-of-signchain features, which are

calculated above the single-filter granularity.

These feature vectors, along with the appropriate class label, were passed into separate LDA

classifiers for each type of feature, for each patch. In total, there were 3x5 (kernel size

x feature type) LDA classifiers. 3-fold cross-validated labels were collected from each LDA

classifier. The classifiers had a grand accuracy calculated using the labels and the predictions.

Per-class performance was also assessed, imagining each as a separate binary classifier for

the purpose of tabulating signal-detection measures. An example of this tabulation for the

well-performing 11x11 Medians classifier is shown in Table 1.1.
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11x11 MEDIANS LDA

Class TP TN FP FN Precision Recall d’ MCC

001.ak47 15 1643 129 83 0.1042 0.1531 0.431865 0.0671
003.backpack 76 1653 66 75 0.5352 0.5033 1.777930 0.4782
014.blimp 8 1701 83 78 0.0879 0.0930 0.357162 0.0453
016.boom-box 12 1738 41 79 0.2264 0.1319 0.876934 0.1411
021.breadmaker 68 1455 273 74 0.1994 0.4789 0.949788 0.2201
027.calculator 11 1732 38 89 0.2245 0.1100 0.797786 0.1247
070.fire-extinguisher 8 1742 44 76 0.1538 0.0952 0.657058 0.0889
157.pci-card 17 1670 95 88 0.1518 0.1619 0.622192 0.1049
172.revolver-101 5 1734 37 94 0.1190 0.0505 0.395686 0.0448
183.sextant 13 1697 73 87 0.1512 0.1300 0.610050 0.0953
208.swiss-army-knife 25 1707 54 84 0.3165 0.2294 1.130154 0.2314
219.theodolite 4 1741 45 80 0.0816 0.0476 0.288231 0.0291
227.treadmill 38 1592 131 109 0.2249 0.2585 0.784325 0.1713
238.video-projector 20 1727 46 77 0.3030 0.2062 1.124322 0.2166
239.washing-machine 7 1728 58 77 0.1077 0.0833 0.462611 0.0575
246.wine-bottle 15 1700 69 86 0.1786 0.1485 0.719526 0.1195
c003 8 1855 3 4 0.7273 0.6667 3.375753 0.6944
c032 0 1853 5 12 0.0000 0.0000 -inf -0.0042
c045 12 1858 0 0 1.0000 1.0000 inf 1.0000
c047 6 1847 11 6 0.3529 0.5000 2.516857 0.4157
c049 8 1854 4 4 0.6667 0.6667 3.285578 0.6645
c066 10 1850 8 2 0.5556 0.8333 3.594529 0.6780
c089 12 1858 0 0 1.0000 1.0000 inf 1.0000
c093 0 1853 5 12 0.0000 0.0000 -inf -0.0042
c118 1 1851 7 11 0.1250 0.0833 1.289232 0.0973
c129 1 1844 14 11 0.0667 0.0833 1.047699 0.0679
c159 11 1850 8 1 0.5789 0.9167 4.010102 0.7264
c160 11 1842 16 1 0.4074 0.9167 3.764910 0.6078
c163 9 1847 11 3 0.4500 0.7500 3.191347 0.5776
c178 5 1841 17 7 0.2273 0.4167 2.149078 0.3018
c184 7 1848 10 5 0.4118 0.5833 2.760688 0.4862
c191 10 1842 16 2 0.3846 0.8333 3.349338 0.5624

Table 1.1: Example signal detection calculation table for the 11x11 medians LDA classifier.
The Matthews Correlation Coefficient is always finite and does not suffer as directly from
edge cases in the case of no true positives (precision and recall) or perfect performance (i.e.
an infinite d-prime in the case of only true positives and negatives).
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3x3 MEANS LDA

Class TP TN FP FN Precision Recall d’ MCC

001.ak47 2 1759 13 96 0.1333 0.0204 0.394968 0.0327
003.backpack 98 935 784 53 0.1111 0.6490 0.492957 0.1053
014.blimp 0 1781 3 86 0.0000 0.0000 -inf -0.0088
016.boom-box 0 1779 0 91 1.0000 0.0000 NaN 0.0000
021.breadmaker 95 1158 570 47 0.1429 0.6690 0.877489 0.1877
027.calculator 0 1770 0 100 1.0000 0.0000 NaN 0.0000
070.fire-extinguisher 0 1786 0 84 1.0000 0.0000 NaN 0.0000
157.pci-card 0 1765 0 105 1.0000 0.0000 NaN 0.0000
172.revolver-101 0 1771 0 99 1.0000 0.0000 NaN 0.0000
183.sextant 0 1770 0 100 1.0000 0.0000 NaN 0.0000
208.swiss-army-knife 0 1761 0 109 1.0000 0.0000 NaN 0.0000
219.theodolite 0 1786 0 84 1.0000 0.0000 NaN 0.0000
227.treadmill 14 1432 291 133 0.0459 0.0952 -0.350617 -0.0537
238.video-projector 0 1773 0 97 1.0000 0.0000 NaN 0.0000
239.washing-machine 0 1786 0 84 1.0000 0.0000 NaN 0.0000
246.wine-bottle 0 1769 0 101 1.0000 0.0000 NaN 0.0000
c003 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c032 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c045 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c047 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c049 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c066 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c089 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c093 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c118 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c129 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c159 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c160 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c163 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c178 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c184 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c191 0 1858 0 12 1.0000 0.0000 NaN 0.0000

Table 1.2: Example signal detection calculation table for the perversely performing 3x3
means LDA classifier.
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3x3 SOS LDA

Class TP TN FP FN Precision Recall d’ MCC

001.ak47 3 1704 68 95 0.0423 0.0306 -0.102005 -0.0091
003.backpack 38 1519 200 113 0.1597 0.2517 0.524161 0.1106
014.blimp 5 1712 72 81 0.0649 0.0581 0.175953 0.0187
016.boom-box 3 1740 39 88 0.0714 0.0330 0.176699 0.0160
021.breadmaker 38 1579 149 104 0.2032 0.2676 0.744291 0.1602
027.calculator 6 1707 63 94 0.0870 0.0600 0.249513 0.0291
070.fire-extinguisher 3 1737 49 81 0.0577 0.0357 0.117151 0.0104
157.pci-card 27 1643 122 78 0.1812 0.2571 0.830184 0.1598
172.revolver-101 4 1691 80 95 0.0476 0.0404 -0.052433 -0.0052
183.sextant 4 1711 59 96 0.0635 0.0400 0.083229 0.0083
208.swiss-army-knife 15 1651 110 94 0.1200 0.1376 0.443310 0.0705
219.theodolite 5 1746 40 79 0.1111 0.0595 0.447811 0.0502
227.treadmill 25 1555 168 122 0.1295 0.1701 0.342007 0.0642
238.video-projector 9 1692 81 88 0.1000 0.0928 0.364404 0.0488
239.washing-machine 3 1739 47 81 0.0600 0.0357 0.135188 0.0121
246.wine-bottle 3 1693 76 98 0.0380 0.0297 -0.167876 -0.0149
c003 10 1851 7 2 0.5882 0.8333 3.639648 0.6979
c032 1 1846 12 11 0.0769 0.0833 1.103052 0.0739
c045 9 1846 12 3 0.4286 0.7500 3.160536 0.5634
c047 2 1845 13 10 0.1333 0.1667 1.490008 0.1429
c049 0 1845 13 12 0.0000 0.0000 -inf -0.0067
c066 9 1853 5 3 0.6429 0.7500 3.457716 0.6922
c089 3 1846 12 9 0.2000 0.2500 1.811557 0.2180
c093 1 1841 17 11 0.0556 0.0833 0.976513 0.0607
c118 3 1850 8 9 0.2727 0.2500 1.952618 0.2566
c129 5 1846 12 7 0.2941 0.4167 2.275618 0.3451
c159 2 1842 16 10 0.1111 0.1667 1.414495 0.1293
c160 5 1849 9 7 0.3571 0.4167 2.376348 0.3815
c163 2 1836 22 10 0.0833 0.1667 1.294838 0.1098
c178 0 1840 18 12 0.0000 0.0000 -inf -0.0079
c184 2 1849 9 10 0.1818 0.1667 1.619355 0.1690
c191 1 1842 16 11 0.0588 0.0833 0.998922 0.0629

Table 1.3: Example signal detection calculation table for the 3x3 signchains-of-signchains
LDA classifier.
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In the SDT calculation, all data is considered from the perspective of just one class at a

time. The number of true positives, true negatives, false positives, and false negatives is ac-

cumulated from considering each patch’s case. Then the performance measures of Precision,

Recall, d-prime, and the Matthews Correlation Coefficient are computed according to the

description in Section 1.4.1. Note that the MCC is defined and finite for all classes in the

example table, where as d-prime reaches infinite values and precision and recall sometimes

take on potentially misleading extreme values. The MCC is at its maximum value for some

classes under this classifier, such as c045 and c089 which means every case was either a true

positive or a true negative: no mistakes were made. Given the multiclass nature of this

problem, the number of true negatives and true positives is necessarily very unbalanced,

which is why binary-judgment level accuracy was not reported.

The full signal detection table for two more classifiers, the 3x3 Means classifier and the

3x3 Signchains-of-Signchains classifier are reproduced as Table 1.2 and Table 1.3. They

represent respectively, the worst performing classifier and an intermediate case. The means-

based classifiers performed very poorly. This could be the result of a bad interaction between

the means features and the LDA classifier, but given exploratory classification with a linear

SVM and QDA, it is probably mostly due to the unsuitability of mean activation in the face

of using random noise, rather than principled, filters. The LDA does seemingly institute a

bias towards conservatism, since the mean LDA classifiers report an MCC of 0 often, and

this MCC is due to often issuing no positive declarations at all.

In Figures 1.4 through 1.8, the per-class MCCs are shown for each filter kernel size, grouped

by feature type. Within types the results are grossly similar to the eye, and so filter size

is not nearly the factor feature selection is. The means only perform above zero for a few

Thing classes. For one in particular, a negative MCC is observed. This is the trend towards

perverse detection, which is worse-than-chance performance.

For all remaining features, the per-class MCCs are systematically, but not strictly, higher
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for the Stuff classes as a group. This comports with the hypothesis that Stuff will be easier

to recognize, in general, than Things on account of its increased describability by simple

texture statistics that are stationary as you move about the image.
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Figure 1.4: Per-class Matthews Correlation Coefficients of LDA classifier using Means, for
a) 3x3, b) 7x7, c) 11x11 kernels
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Figure 1.5: Per-class Matthews Correlation Coefficients of LDA classifier using Signchains,
for a) 3x3, b) 7x7, c) 11x11 kernels
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Figure 1.6: Per-class Matthews Correlation Coefficients of LDA classifier using signchains-
of-signchains, for a) 3x3, b) 7x7, c) 11x11 kernels
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Figure 1.7: Per-class Matthews Correlation Coefficients of LDA classifier using full histogram
bin heights, for a) 3x3, b) 7x7, c) 11x11 kernels
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Figure 1.8: Per-class Matthews Correlation Coefficients of LDA classifier using medians, for
a) 3x3, b) 7x7, c) 11x11 kernels
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The medians classifiers occasionally reach the maximum MCC score of 1, but only for the

larger filter sizes, 7x7 and 11x11. Signchains, signchains-of-signchains, and the full bin

heights all reach MCCs of 0.7 or 0.8, again for larger kernel sizes.

The Reciever Operating Characteristic space is based on the true positive rate and the false

positive rate, and since the false positive rate is necessarily low for competent classifiers

such as the LDA on a sufficiently multiclass problem, ROC space is mostly uninformative

to examine. Figure 1.9 shows the Receiver Operating Characteristic space plot for classes

in the best-performing 11x11 Medians classifier. In this case, the classes (discrete points in

ROC space) stay at a very low FPR and rise up the TPR axis, with a discontinuity at very

mediocre performance (0.15-0.4) and a range of classes elsewhere in the interval [0, 1]. The

Things classes for this classifier fan out somewhat between the Stuff classes and the line-of-

chance performance. The upper-left corner in ROC space represents an approach towards

perfect detection, with high or infinite d-primes and MCCs approaching 1 in this area.

In the more modestly-performing 3x3 signchain-of-signchains classifier’s ROC space in Figure

1.12a, the Stuff classes are more concentrated in the poor performance area along the TPR

axis that was unpopulated for the 11x11 medians classifier. Also, relative to it, the Things

classes are rotated towards the line of chance, and some things classes fall very slightly

below the line, towards mild perverse performance. In the very poor 3x3 Means classifier’s

ROC space in Fig. 1.11a, nearly all classes from both Thing and Stuff metacategories are

concentrated at the origin, which represents no false positives and also no true positives

(negative, or Different, judgments only). The few exceptions to this are a few Thing classes,

some of which inhabit the middle of space above the line of chance (these points get closest

to the upper-right hand liberal corner than any others), and one (which we know to be the

treadmill from the MCC plot in Figure 1.4a) below the line of chance.
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Figure 1.9: Receiver Operating Characteristic plot showing where classes (points in ROC
space imagined as one-vs.-rest classifiers) fall in terms of hit rate and false alarm rate for the
well-performing 11x11 medians of filterbanks classifier. Things classes stay mostly near the
line of chance bisecting the space. Stuff classes range in quality of classification but mostly
avoid issuing false positives. None of the classifiers are very liberal, nor are any in the corner
approaching perfect perverse performance (perfect classification if labels were flipped).
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Figure 1.10: Precision/Recall plot showing where classes fall in terms of precision and recall
for the well-performing 11x11 medians of filterbanks classifier. Things classes have low pre-
cision and low recall, while Stuff classes have intermediate precision and recall. Stuff classes
make claims of Same that are more valid on average and have made a greater percentage of
the possible valid claims.
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Figure 1.11: ROC and PR plots for the very poorly performing 3x3 filterbank means classifier.
The LDA classifier elected to make very few claims of Same at all, so nearly all classes are
overplotted at the origin in both spaces. One class did notably worse than chance. The
failure of means classifiers across kernel sizes, presumably due to convolutional outliers given
the noise construction of the filters, suggests that means are not at all appropriate for random
noise filter classification.
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Figure 1.12: The 3x3 filter kernel signchains-of-signchains classifier was the worst performing
non-means based classifier, but it provides a more valid comparison with the best-performing
classifier. Compared to it, fewer classes approach perfect performance and there is less
separation between stuff and things.
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To see this data another way, Figure 1.10 shows the Precision-Recall plot for the well-

performing 11x11 Medians classifier. Stuff goes farther along the diagonal towards high

accuracy (high recall and high precision) while Things classes mostly stay in the regime of

quite low recall and precision. However, they are seen to be joined by some Stuff classes.

For the mediocre signchains-of-signchains classifier, the Precision-Recall plot (Fig. 1.12b)

shows that only a few classes of Stuff are in the reasonably high (0.75 to 0.9) range of recall

(percentage of found instances) and intermediate Precision (0.4-0.6). The rest exist closer

than for the best classifier to the Things classes, in the bottom left corner. For the poor

means classifier, the Precision-Recall plot (Fig. 1.11b) is close to useless. A few Things

vary mostly on recall with some reaching just shy of 0.65 recall but less than 0.2 precision,

arguing that the claims they make of Same are false ones. Stuff is visible at the upper-left

corner of perfect precision but zero recall, meaning simply that none of the Same instances

were found and all of the claims were speciously correct (as none were made).

In Table 1.4, the grand accuracy (merely tabulating the correctness proportion of predictions)

is shown for each classifier. The accuracy is the mean accuracy of those obtained from the

3-fold cross validation. The accuracy is also shown among just the Things and just the

Stuff. Note that the accuracy for just the Stuff is systematically among classifiers (except

for mean classifiers where, perhaps because of the conservative nature of the LDA) it is

effectively zero (accuracy results were rounded to 2 places). The MCCs from the signal

detection tables for each classifier were averaged and are also shown in this table, subsetted

similarly for Things and for Stuff. Again, these accuracies are systematically higher for

Stuff as compared to Things, in many cases. MCCs were nonzero for Things (rounded to

3 places here) sometimes but only for the very poor means classifiers. These differences

can be compared to see which are the classifiers with the greatest change in mean Thing

MCC vs. main Stuff MCC – the difference as viewed through the Wilcoxon rank-sum or

Mann-Whitney U test is also listed. Negative values are indicative of Stuff being easier than

things. The most negative U statistic is that of the 11x11 signchains-of-signchains classifier,
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Classifier ACC ACC(things) ACC(stuff) Avg. MCC MCC(things) MCC(stuff) U(MCC) p-val

3x3 MEANS LDA 11.18 12.46 0.00 0.008 0.016 0.000 0.302 0.763
3x3 MEDIANS LDA 18.18 14.72 48.44 0.230 0.085 0.374 -2.789 0.005
3x3 HISTS LDA 17.91 15.85 35.94 0.205 0.101 0.309 -2.073 0.038
3x3 SC LDA 13.10 11.03 31.25 0.193 0.052 0.335 -3.392 0.001
3x3 SOS LDA 13.16 11.38 28.65 0.144 0.046 0.243 -3.015 0.003
11x11 MEANS LDA 11.18 12.46 0.00 0.008 0.016 0.000 0.302 0.763
11x11 MEDIANS LDA 24.22 20.38 57.81 0.316 0.140 0.492 -2.789 0.005
11x11 HISTS LDA 18.50 15.49 44.79 0.257 0.103 0.411 -3.279 0.001
11x11 SC LDA 12.67 10.49 31.77 0.176 0.054 0.298 -2.676 0.008
11x11 SOS LDA 14.33 12.34 31.77 0.165 0.054 0.276 -4.070 0.000
7x7 MEANS LDA 11.18 12.46 0.00 0.008 0.016 0.000 0.302 0.763
7x7 MEDIANS LDA 21.39 17.40 56.25 0.286 0.111 0.460 -2.940 0.003
7x7 HISTS LDA 20.37 17.52 45.31 0.271 0.121 0.421 -3.354 0.001
7x7 SC LDA 14.12 12.10 31.77 0.179 0.067 0.291 -1.922 0.055
7x7 SOS LDA 13.58 11.44 32.29 0.160 0.052 0.269 -3.882 0.000

Table 1.4: Summary of filterbank features LDA classifier recognition performance. Total ac-
curacy is shown, followed by accuracy only among things, accuracy only among stuff ground
truth cases, and then Matthews Correlation Coefficients averaged over the classes. Subset
averages for things classes and stuff classes follow, then the Mann-Whitney U/ Wilcoxon
rank-sum test statistic (negative favoring better performance on stuff, positive favoring bet-
ter performance on things), and the associated p-value.

even though it is not the classifier with the highest accuracy and average per-class MCC (the

11x11 medians). This table also lists the associated p-values for the Wilcoxon test statistic.

The U statistics are negative and the p-values below the conventional significance threshold

(α < 0.05) for well over half of the classifiers assessed. A negative U but insignificant p-value

(α = 0.055) was found for the 7x7 signchains classifier, and of course, for the degenerate

means classifiers with small positive U (things easier than stuff), the p-values were high and

extremely insignificant (α ≈ 0.763).

Based on these results, there is a significant recognition difference between Thing and Stuff

patches in the very most primitive filterbank convolutional recognizers, such that Things

appear more complex than Stuff in terms of recognition difficulty, as would be expected from

knowledge of the history of filterbank-based recognition and synthesis, where in particular

a significant amount of time (decades) had to elapse before Things could be competently

synthesized.
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Chapter 2

Things vs. Stuff in Deep

Convolutional Recognizers

In this Chapter, we will see that a greater competence for working with Stuff is not cleanly

limited to uninformed, primitive recognizers; it also appears in synthesis, and in extremely

large, intensively trained models. A class of synthesis-controlling recognizer networks will

be shown to retain somewhat weaker general classification ability in groups when a simple

transformation of their output is adopted, and the divergent development of these networks

when they are trained with an ordinary objective function for recognizers will be studied to

measure the model performance and model constituency differences wrought by specializing

networks for adversarial synthesis control. The statistical homogeneity of Stuff input will be

seen reflected in these networks as well as several other deep networks, with implications for

mixing Things and Stuff in a unitary visual processing system being naturally suggested.

Is image synthesis more expensive in terms of model maturity (training time, or number of

epochs) for Things as opposed to Stuff? There are several varieties of image synthesis. For

homogeneous textures, there are nonparametric and parametric methods: parametric models
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(e.g. [132]) are able to synthesize entirely unseen textures from a reasonably small set (e.g.

3000) of statistical measurements by perturbing a noise image to match the statistics, while

nonparametric methods often merely sample and stitch together image blocks for an extended

or removed region depending on a nearest-neighbor type query of patch similarity [45]. As

mentioned in Chapter 1, relatively recent developments [163] have been able to use the

Gram matrices of convolutional neural networks with merely randomly initialized (“random

noise”) filters to constrain targeted statistics and even to directly implement the synthesis

of regular texture. Irregularities with textures involving regular patterns often arise among

certain classes of texture in parametric models – these synthesis failures are what researchers

historically looked for in the feature engineering process of stepwise inclusion and exclusion

of low-level image statistics to be matched.

For objects and scenes, only generative adversarial networks (GANs [63] [61]), improved

feverishly over the last five years, have proved highly and generally effective. GANs involve

learning an effective latent space for producing convincing hallucinated images that look like

the training set, and are generally not studied for their synthesis failures because, in part,

they like the other purely discriminative CNNs reject the feature engineering approach and

directly learn filters through deep learning.

There are many variants of GANs, but they all involve two networks, the discriminator and

the generator, which are jointly and adversarially trained. A discriminator network attempts

to accurately produce a confidence or judgment that an image is not from the training set.

A generator, which can be viewed as a decoder, the latter, production-oriented half of an

autoencoder network, attempts to produce plausible fakes from input noise in its code layer

(often denoted z). Traditionally, the discriminator’s confidence is only used through training

to cultivate the GAN’s generator, not for classification. This is presumably for two reasons:

1) classification has already been practically “solved” by CNNs which are designed and per-

form well at the problem, and 2) the confidences are only on the basis of “real” (from the
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training set) and “fake” (not actually from the training set). Given the fact that a discrim-

inator must manage this bipolar outcome which is distinct from that of a class membership

judgment, it remains to be seen how effective a GAN’s discriminator could be in classification.

Arguably, GAN research is very rarely focused on anything other than multiclass data be-

cause the emphasis is deservedly on broadly-competent, high quality synthesis, explorations

through the code space, and reverse correlating relationships between generated images to

relationships in low-dimensional projections of that space. Correspondingly, there has not

been emphasis on determining the residual power of GAN-origin-discriminators, which is

an important consideration because single-class GANs by construction only see their target

class. One conjecture that is possible but is not yet sustained by evidence is that such a net-

work could have to internalize that class more deeply because synthesis is a harder problem

than mere recognition.

The GAN’s unique ability is to convincingly learn to fill a latent code space (z) such that

nearly all patterns produced by the downstream generator network (G(z)) plausibly originate

from an input training set. An ordinary compressive or denoising autoencoder (see [62] for

a discussion of these and variational autoencoders) forms an information bottleneck that is

believed to help the network learn an efficient representation of the training set, compressing

inputs into the lower-dimensional code space. However, even for a well-trained autoencoder,

there is very little guarantee that each point specified by a specific pattern of code layer

activations corresponds to an image that looks like the training set. Adversarial training

of the generator in a GAN bakes into the objective function a reward pressure that fosters

output image plausibility across (with enough training) all possible configurations of random

input noise. An autoencoder is merely trained on the inputs in the training set, but the

GAN’s generator inputs derive from a (usually static and Gaussian) noise distribution that

the network must adapt to while still fooling the discriminator – the difficulty of this task

constrains outputs to realistic productions under “proper” training.
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Despite the general effectiveness of the “GAN loss” based on minimax or adversarial train-

ing of the generator and discriminator networks, GANs have undergone many renovations

to improve the quality of generated images. Without these changes, the synthetic samples

still look quite muddied (e.g. beds blending into windows and walls and pillows in the LSUN

[182] Bedrooms dataset). “High-resolution” (greater than 128 pixels square) GAN samples

were first popularly trialed using a Laplacian Pyramid GAN approach [38], which also intro-

duced the conditional GAN or CGAN (input noise is augmented with a special label input

that tells the network which class to produce hallucinated samples from). The DCGAN

(deep convolutional GAN) merely takes the GAN architecture modeled on an MLP-based

autoencoder and applies the convolutional-volume based innovations of the CNN [133] –

nearly all image-producing GANs of interest are fundamentally DCGANs for this quality

purpose. The DCGAN additionally demonstrated that linear interpolations between the

code layer representations of random rendered bedrooms produced relatively smooth tran-

sitions between the resulting hallucinated bedrooms produced by the interpolations. More

surprisingly, visual analogies were demonstrated, showing that deep convolutional GANs can

learn a low-dimensional embedding that tracks an interesting manifold where linear arith-

metic operations implement analogies: the coordinates in code space for an average smiling

woman could be subtracted by neutral woman’s coordinates and added to neutral man’s

coordinates to see an unseen smiling man produced by the resulting coordinates. Specific

manifolds within that space of interest could be approximated linearly or nearly linearly by

finding two images on the sides of a continuum (left-facing and right-facing face, all other

attributes held constant) and mapping the expanse between them.

Quality (diversity and convergence) concerns drive much research into GAN architectures

and training tricks. One somewhat inelegant solution type reminiscent of mixtures of experts

or gated models used in ordinary deep learning research to combat catastrophic forgetting

(negative transfer inflicted on a task by learning another, even closely related task) is to

create an ensemble of generator networks in the GAN (e.g. AdaGAN [161]) and make
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their output an additive mixture with new generators added to the mixture when synthesis

problems are detected.

The most exciting investigations relating to GANs involve amazing applications of multi-

class synthesis where details are not probed if quality and performance are not helped; they

are not stuffy methodological investigations probing the exact details of why, for example,

“things” are statistically distinct in some ways as compared to “stuff”. Pix2pix’s “image-

to-image translation” [84] and CycleGAN [188] involve learning highly convincing “neural

style” transformations which can turn, for example, overhead schematic map views into fake

satellite views and horses in a video sequence into zebras. The cycle of CycleGAN refers to

the “cycle consistency loss”, which measures how much detail is lost in a reconstruction of a

roundtrip from the original style to the target style and back again – if the transformation

is very well learned (or trivial) the restored image should exhibit only modest degradation.

CycleGAN enables unpaired translation, meaning that it does not need to learn a unidirec-

tional transformation on matched pairs where the transformation has been demonstrated

by human intervention. The StackGAN [185] involves two stages of GAN and incorporates

word embeddings. On the Caltech-UCSD Birds 200 dataset, the StackGAN is capable of

text-to-image translation, hallucinating novel bird photos of good resolution from short text

descriptions that do not just resemble images from the training set – a problem that GANs

can sustain related to mere memorization of training data.

However, if deep learning methods are to be used with decreasing caution in critical areas or

enterprises are to plan effectively for the expensive training time of networks, the expected

synthesis quality of individual image classes and the time to cultivate that quality must

be reliably predictable. As a blunt instrument, exploring the Things vs. Stuff dichotomy

would seem to provide a good methodological proving ground, and can perhaps even give

us developmental insight into how convolutional neural network recognizers are organized

through through the clarity afforded by a dichotomy.
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One hypothesis is that, as in the case of recognition, there is a performance gap that disfavors

object vs. material synthesizers – training time to produce good quality fakes should be

longer for objects, and using the discriminator from the GAN for classification (if this is even

feasible in the first place) should produce poorer results for longer (i.e., with less training

time). Presumably, the same pattern might even be seen when the GAN has to synthesize

image couples (two images concatenated together), especially for images of dissimilar or

broad (all dogs vs. a specific breed of dog) classes, in which case this technique can investigate

the relatedness and breadth of image categories, inducing a novel kind of similarity graph.

While there are numerical quality measures for synthesis that are partially objective, they

do exhibit the potential to be biased, especially in a way related to the Things vs. Stuff

dichotomy. Absent these, a study of synthesis quality of Things and Stuff class-specific

networks given a common amount of training time with which to strive towards competence

will have to be highly qualitative. Consequently, there is motive to see whether discrimination

can be used as a proxy for synthesis quality. First, of course, synthesis has to be competent

for Things and Stuff. The discrimination process during early training steps prior to the point

of generator fakes that seem reminiscent of training data to humans might be unstable and

uninformative of later quality. But at the point of bare competence, does the computational

fluency of Stuff recognition seen for primitive filterbank recognizers in Chapter 1 reemerge

for deep convolutional recognizers?

There are three broad classes of outcome: 1) neither metacategory is competently discrim-

inated by GAN-origin-discriminators, 2) both Thing and Stuff classification performance is

at ceiling, which is uninformative, 3) there is intermediate performance that hits neither

floor nor ceiling. Then, only in the eventuality of the third class of outcome can we detect a

possible Things vs. Stuff performance difference. A priori one might expect that even with-

out much hyperparameter selection and architecture finding an ordinary CNN discriminator

would be at ceiling performance since even at relatively shallow depths (3-5 convolutional
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layers) they were transformatively effective in computer vision, but that might not be the

case for a GAN-origin-discriminator. And if GAN-origin-discriminators are weak classifiers,

certainly they can be improved from their individual performance somehow by being bound

up in a conventional (i.e. non-synthesis-oriented) ensemble?

To preview this chapter:

• The DCGAN architecture used for the Thing vs. Stuff investigations is specified.

• The use of the WGAN-GP rule with no rectification is justified for reasons of overcom-

ing a lack of diversity.

• Synthesis results for Things and Stuff are shown at early and late development, and

qualitative results are discussed.

• Brief reeducation of GANs towards a single Thing and Stuff target is accomplished.

• Synthesis failure classes are presented for stuff and catch duplicate Thing networks are

introduced for contrast.

• The ensemble of GAN discriminators is detailed, and the joint activation affinity matrix

is motivated over graph-based analysis.

• Subtractive normalization of activation affinity is recommended based on the GANsem-

ble’s reaction to real and fake images.

• Problems with the näıve argmax classifier operating on the spectrum of class activations

given synthesis failures are anticipated.

• The characteristic pattern quadrant appearance of the pairwise model parameter dis-

similarity matrix is introduced and connected to signal detection theory.

90



• MSE, the L1 and L2 norms, Jensen-Shannon distance, Signchain Distance, and SSIM

(of the weights coerced into an image) are brought in to compare network weight

similarity at each major layer.

• The “NONGAN” is introduced with ordinary cross-entropy loss yet identical architec-

ture to the WGANs.

• Affinity matrix and parameter dissimilarity matrix analysis is repeated for the NON-

GAN, demonstrating early vs. late vision differences between GAN and NONGAN

based on content.

• NONGAN and GAN complement dissimilarity vector analysis is used to assess when

networks diverge most across Things vs. Stuff divide based on objective function.

• A NONGAN direct-discriminator of objectness (Things vs. Stuff) is strongly cross-

validated using a held-out, second dataset.

• Out-of-vocabulary misclassifications using the held-out dataset are used to assess the

retention of potential for strong similarity.

• Differential activation tracing of two non-target classes and a target class during train-

ing of a GAN and NONGAN is used to reveal developmental divergence of activation.

• The possibility of an implicit bias towards Things in the popular Inception Score is

evaluated, and the popular alternative Fréchet Inception Distance is probed for bias.

• The effect of the Things vs. Stuff difference on late-stage filter-related neuron activa-

tions and channel occupancy is examined.

• Performance of the näıve argmax and LDA classifiers based on GAN ensemble and

NONGAN ensemble class activation emissions is assessed using the Matthews Corre-

lation Coefficient, as in Chapter 1.
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2.1 Synthesis of Thing vs. Stuff patches with Genera-

tive Adversarial Networks

Before proceeding to the indirect measurement of quality through recognition, it pays to

consider the actual subjective quality, and it is necessary to specify the synthesis model

itself.

2.1.1 WGAN-GP-compatible DCGAN-type Model for Synthesis

and Recognition of Things and Stuff

The Deep Convolutional Generative Adversarial Network architecture arrived at for the

Things and Stuff investigation is described in this section, and was implemented with the

high-level neural network library Keras v2.3.0-tf from Chollet et al. [29] included in Tensor-

Flow v2.2.0, using two Nvidia RTX 2080Tis in parallel. The specific WGAN-GP learning

rule implementation was the reference version provided in the Keras documentation by A.K

Nain [124]. A high-level reference implmentation of neural network operations wherever pos-

sible was deemed very preferable so that these operations could be efficiently and accurately

employed; no innovations to learning algorithms or special corrections were planned.

Hand tuning of parameters occurred with the video projector class, choosing the parameters

including training time that subjectively seemed necessary to get decent quality samples

produced within the space of a targeted maximum of 3.5 hours of real world training time.

The tensor schematic layout of the discriminator model used is shown in Figure 2.1.

The model begins with a layer of input neurons, accepting a single-channel (grayscale) image

patch with gray levels on the interval [0, 1].
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The first stage of the discriminator passes this input forward through 5 convolutional blocks,

specifically consisting of Conv2D-LayerNorm-LeakyReLU layer groupings.

Conv2D layers are 2D convolutional layers implemented with matrix multiplication. Strided

convolution was employed constantly throughout the network, using a symmetrical stride of

2 in either direction, which has the effect of reducing the image extent in each convolutional

block by half. A telescoping-up sequence of filter channel counts (32,64,128,256,512) was

used, settled on through hand-tuning. This had the effect of taking the single-channel

128x128 input to 64x64x32, 32x32x64, 16x16x128, 8x8x256, 4x4x512 tensors progressively

through the network: this prototypical DCGAN-like progression was observed to be necessary

to prevent the network immediately failing to converge (producing saturated images with

input equal to 1 everywhere) or consuming too much of GPU video memory (ensembles of

DCGANs may easily grow to the size that constituent networks need to be spread to multiple

cards or swapped on and off disk). A perceptron-like bias vector added to the layer inputs

was opted for. The filter kernel extent was held constant, with 5x5 filters, and convolutions

were configured to be padded so that output shape resembled input shape before accounting

for stride.

Each convolutional block subjected the Conv2D tensor to layer normalization [9] (this too

was observed to be indispensable for convergence of the WGAN-GP, but not for the mode

collapse experiencing ordinary DCGAN which had originally been trialed). LayerNorm ad-

justs the input to neurons based on normalization using the observed mean and variance of

all summed inputs to neurons within the layer and computes an internal neuronwise bias

and gain parameter; the stock Keras implementation was used with the default parameter

ε = 0.001.

The end of each convolutional block was a rectification with the LeakyReLU [109] function,

with α = 0.2 arbitrarily for every layer.
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LeakyReLU(x) =


αx if x < 0

x otherwise

Following the five convolutional blocks, a max pooling operation is applied, which takes the

maximum activation value from the network. The max pooling used was global, meaning

that for each channel the global rather than a local maximum was taken.

The 512-dimensional resulting activation vector was fed forward through a final Dense (fully-

connected) layer to produce a single scalar output. The discriminator in total has 4,356,289

trainable parameters.
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Figure 2.1: The discriminator part of the DCGAN used throughout this research takes
128x128 patches and subjects them to 5 Conv2D-LeakyReLU blocks with inner layer nor-
malization, a single max-pooling layer, and then a terminal densely-connected layer that
produces a single activation value 95



The tensor schematic layout of the generator model used is shown in Figure 2.2.

Whereas the discriminator ends with a Dense fully-connected layer prior to the output,

the generator begins with a densely connected layer following the input, which is a 256-

dimensional noise vector. For all investigations described, the noise vector was generated

using a pseudorandom number generator targeting the standard normal distribution (with

µ = 0, σ = 1).

The noise vector is densely connected to a shallow layer of 16,384 neurons and reshaped into

a tensor output with image extent 4x4 and channel count 1,024.

According to the DCGAN design, the telescoping-down sequence of filter channel counts

halves each time (1024, 512, 256, 128, 64), and the extent doubles corresponding to a sym-

metrical “stride” of 2 in a Conv2DTranspose layer. The Conv2DTranspose (or “deconvo-

lutional”, or “fractionally-strided”, see [43],[184]) layer is not a simple upsampling as by

nearest-neighbor but is a dilation using a learnable kernel that capitalizes on the interaction

between stride and the transpose, nevertheless enlarging the output. As in the discriminator,

the filter kernel extent was held constant, using 5x5 filters, and convolutions were padded

so that output shape resembled input shape before accounting for stride. Contrary to the

discriminator, there was no bias layer used in the convolutional layers of the generator.

The convolutional blocks are BatchNormalization-LeakyReLU-Conv2DTranspose blocks. Batch

normalization [83], a forerunner of the layer normalization that was used in the discrimina-

tor, performs a similar function but the averaging is taken over the (mini)batch per neuron

rather than over the layer within a single image presentation. The LeakyReLU was config-

ured to use the same α = 0.2 setting used in the discriminator. Regularization via Dropout

[150] (using p = 0.1, 0.2, and 0.5) was informally found to be not helpful and in some design

attempts even inimical, so it was not used following the rectifications.

The final convolutional layer differed in that its units were specified to be rectified with the
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hyperbolic tangent function:

tanh(x) =
e2x − 1

e2x + 1

Note that for the discriminator, no nonlinearity was applied. This has implications for

classification. The output does not immediately resemble a confidence [0,1] that can be

likened to a probability.

It is conventional in normal discriminative networks that do multiclass (i.e. “multinoulli”)

labeling to have the rectified output of each terminal neuron transformed by the softmax

function so that the transformed node activations represent probabilities:

softmax(z)i =
ezi∑
c∈C e

zc

([62], e.q. 6.29), where here i is the class of interest, and C is the complete list of classes.

This choice was originally made because it did not seem to forestall synthesis, and perhaps

there was a chance useful information would not be thrown away or numerically obscured (es-

pecially from the point of view of planning to use a linear classifier) by forcing a nonlinearity

that could be used by the ensemble.
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Figure 2.2: The generator part of the DCGAN used throughout this research takes 256-
dimensional noise vectors and subjects them to a densely-connected layer followed by 5
Conv2DTranspose-LeakyReLU blocks with inner batch normalization to produce a single-
channel 128x128 synthesized image 98



The conventional loss function that could be minimized at the end of the (binary) discrim-

inator is the binary cross-entropy loss. The cross-entropy in general (where p and q are

distributions) is

H(p, q) = −
∑
c∈C

pclog qc

In the general cross-entropy loss, the prediction ŷ and the target value y are being compared

for classes c ∈ C in the same way p and q are the different interpretations being compared.

The binary cross-entropy loss is a special case that is based on connecting the Bernoulli

distribution’s PMF pk(1 − p)1−k log transformed (klogp + (1 − k)log(1 − p)) with this idea

(since there are 2 alternative considerations for a true and false prediction) and the log-

likelihood’s relationship to cross entropy:

BCE(ŷ, y) = −ylogŷ − (1− y)log(1− ŷ)

(see [89] for a partial derivation).

The GAN learns something a lot more complex than (even iterated) binary classification,

but its loss is conceptually simple at a high level. Following closely the notation of the NIPS

2016 GAN tutorial [61], if x represents true data (real samples from the training set), D is

the discriminator, G is the generator, and z is the noise that G consumes, the long-range

objective of the discriminator D (if it is emitting probabilities, but see above) is to output

something close to 1 when it is factually fed x and 0 when it is actually fed G(z). The goal

of the generator G is to emit output given z that makes D(G(z)) approach 1 as often as

possible.

Because of the positive logic involved, the cost of the discriminator can be formulated by

combining half the expectation of D(x) with half the expectation of 1−D(G(z)).
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−1

2
Ex∼pdata logD(x)− 1

2
Ezlog(1−D(G(z)))

The network output incorporating the nonlinearity is necessary to comply fully with these

theoretically-defined losses. Training proceeds by mixing in fake images produced by G with

real images. The generator’s cost function for reasons of gradient computation (see [61]

3.2.3 for why GANs although adversarial do not actually stick with a simple game-theoretic

minimax objective) focuses just on tricking the discriminator:

−1

2
EzlogD(G(z))

In practical terms, this boils down to injecting some random noise into the generator as

defined above and collecting the resulting images for a training batch. The discriminator’s

loss is determined by the discriminator’s binary cross-entropy loss previously mentioned on

the real and fake samples combined with the correct labels. The labels, being not strictly

binary, are corrupted with some noise for easier training in the context of all of the involved

nonlinearities and to leave some uncertainty. The generator’s loss is determined by the

discriminator’s binary cross-entropy loss sustained on the real and fake samples but combined

with misleading labels (i.e. all labels declare “this is real!”). The gradients are separately

taken with respect to these losses and gradient updates are made. Conventionally, the

discriminator is updated first, and the generator second.

Throughout, the networks were optimized using the popular Adam [98] method, with a

parameter of 0.0002.

During training, you may observe that the quality of the fakes is not strictly related to

the losses. But the losses (especially given our lack of constraint on the output of the

discriminator) can inflate, and the quality of synthesis convergence will suffer. This may
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suggest balancing the discriminator and the generator when they get out of balance w.r.t.

their losses. You can invent any number of balancing schemes (e.g. for every doubling, give

the disfavored network a power of two of the doubling count in terms of updates), but, at

least through the lens of casual experimentation, unprincipled ones seem destined to fail.

2.1.2 Observed mode collapse and non-convergence given low sam-

ple count prior to introduction of WGAN-GP

Initially, in the attempt to find networks with the power to synthesize things and stuff with

a DCGAN architecture as above using GAN loss, convergence was slow and unreliable with

increasing loss occasionally developing quite quickly regardless of terminal application of the

nonlinearity. Many deep convolutional network architectures easily capable of generating

MNIST [180] digits or hazy patches from the LSUN dataset popular for use with DCGANs

[182] were not capable of producing even barely acceptable quality yet still “creative” (or not

merely memorized) 128x128 patches of all of our data, which was presumably a combination

of several factors. First, 128x128 patches were once considered “high-resolution” for GANs

prior to the advent of coarse-to-fine improvement architectures like ProGAN [92]. Second,

our dataset was massively sample-impoverished: sample counts of 12 or even 100 are much

lower than the thousands or tens of thousands or more used in most casual demonstrations

of GANs. Third, the Things data particularly is more structured than Stuff data which

synthesizes fine with networks of lesser capacity and power – it could be even argued that

some muddled synthesis results on RGB images that seem convincingly creative and even

have the benefit of thousands of real input images actually do not vary substantially from

training set samples except by errors made and decoherencies introduced chromatically.

Besides trying to prevent GAN training from diverging and making it reliable and fast, the

other main objective of research into improving notorious weaknesses of unstable GANs is
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explicitly a prevention of the creativity-loss scenario just mentioned, but formally known as

mode collapse [61]. Mode collapse is so-called because it can be observed even on data that

is a simple mixture of Gaussians. Instead of synthesizing the full mixture, the GAN learns

to produce distorted samples from each individual Gaussian (a mode of the full mixture).

Mode collapse was certainly experienced in this project, in trying to develop GANs with

the power to synthesize the Things patches. Since the Stuff patches are already defined

to be quite homogeneous it is difficult to perceptually diagnose this condition in samples,

although it was informally observed to be less of an issue alongside the synthesis quality

being good early for many Stuff classes (with the exception of c003, the “holey” texture,

which has very large sized repeating features that could be easily smeared in GAN loss

syntheses). It appears that there is factually a competence hierarchy for synthesis that

is, like the case of recognition with primitive filterbank recognizers, strongly categorical:

some combinations of architectures, standardization tricks, and learning rules are capable

of producing monochrome digits, others low-resolution homogeneous patches, and others

high-resolution object patches.

A philosophical question connected with this is whether GANs are actually just faulty mem-

orizers ([123] preliminarily investigates criteria for departing memorization), and that any

profound creativity, for example in creating completely novel and convincing high-definition

human faces (as with the state-of-the-art StyleGAN [93] that uses a progressively-grown

ProGAN discriminator and private noise channels skipped to layers of the generator), is an

example of failed memorization that just results in a useful discrepancy if the synthesis is

deep enough and the features sufficiently high-level.

In classification rather than synthesis problems, something that ameliorates incompetence

given low sample data count is nearly any form of data augmentation (see [147] for a read-

able survey), or creating new “synthetic” samples. Traditional data augmentation involves

trivial transformations of the sample patches, such as flips, rotations, small translations,
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and contrast and whole image scale adjustments; an ideal classifier should, after all, have

performance that is invariant to these considerations. For example, deep convolutional net-

works enjoy some translation invariance from directly pooling operations within one layer

over the strided action of the included filter kernels, and target patterns can be recognized

from the nonlinear combination of focal activations across layers. Many higher-level, nonlo-

cal statistical homogeneities of the class samples might not change, or might change trivially

with these transformations. Using data augmentation might make classifier networks more

robust to these changes which is clearly desirable, but they might also facilitate smoother

approximation of the network by gradient descent in the first place, which is of foremost and

initial importance. Aside from these practical and observable considerations, elementary

data augmentation by image transformations is then somewhat akin to the general statis-

tical technique of “bootstrapped” [44] resampling-based estimates, which may come off as

inherently unpalatable because you are reasoning on “made-up” data. Data augmentation

for training synthesizers has not been well-studied; in fact, looking for research into GANs

and data augmentation almost invariably results in finding many papers (e.g. [13]) which

advocate using GANs for advanced data augmentation. Indeed, where the GAN in question

has converged to produce factually diverse samples that are acceptable to a human observer

as coming from the class, there is little reason to be too suspicious of these synthetic samples,

and so this is a preferable source of augmented data for training vision systems.

Conceivably, even fake visual worlds could be used to train new synthetic vision systems

for the real world. Object-rich video games like Fallout 4 contain hundreds of textured 3D

model assets that could be positioned into scenes automatically and “photographed” from

many directions using placement markers, room templates, a random number generator,

and an internal scripting language, and this approach could easily produce millions of scene

samples. These samples could be used for general vision systems or for specific vision systems

such as those with tactical applications relating to, for example, automatically computing

an estimate of the concealment potential a scene affords from the point of a combatant
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trying to conceal themselves from snipers, or networks also incorporating EEG or galvanic-

skin response measurements to assess the joint effect of environment and type of scare in a

survival horror game. The idea of representing say schema of what belongs in a bedroom or

bathroom with Hopfield network [79] style content-addressable memories is reborn somewhat

in the original DCGAN [133] work which produced patches based on the LSUN-Bedrooms

dataset, but GAN synthesis of what we might call sparse output problems (e.g. vectors

of indexed objects and positions rather than image data) remains an important gap in the

literature. To illustrate further, using GANs for automated level design where the level

design is specified by dense signals or where a natural dense representation can be computed

has already been studied by researchers [58] who used a GAN to generate images that could

be used to create DOOM levels (the authors show how different image channels can be

used to build floor maps, wall maps, height maps, and Things maps that place enemies,

activators, and powerups within the level and that these can be automatically transformed

into the somewhat unconventionally mostly geometry-based level data used in the DOOM

WAD file format – see [141], Ch. 4, for an in-depth discussion). Similar research [171]

has been done using evolutionary strategies refinement of GAN output generating levels

for Super Mario Bros. – a game that was necessarily tile-based due to the design of the

Nintendo Entertainment System’s video hardware. It is unknown at this point if the quality

of synthetic levels for object-intensive games where the architecture and landscape often

are implemented as placed objects would be better using a non-convolutional GAN on the

object entity data (positions and identity vectors) or if some 2D information packing scheme

could be developed to optimally make use of research results derived from computing with

fully naturalistic images. In any case, it seems clear that deep convolutional recognizers

and synthesizers like the GAN will find ample future potential in research into closed-loop

design (automated generation and subjective evaluation) of video game environments, and

that this research will potentially bleed back into mainstream computational vision. These

datasets may not have widely emerged for reasons of resource-intensiveness (i.e. training the
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synthesizers might require organizing a contest to produce 1000 houses in a level editor) or for

reticience to rely on the fair use doctrine in involving commercial games so deeply in academic

research. Nevertheless, the case for public use of modern complex virtual environments

for cognitive science research is compelling; properly instrumented games could allow us

to inspect player patterns of exploration, dwelling, looking, structure-building, or inventory-

level acquisitiveness for markers or clusters of mental illness, creativity, high-level perceptual

acuity, or leadership.

To return from this playful digression to the motivation for the choice of the WGAN-GP

learning rule, the kind of mode collapse that was initially observed on our low-sample count

(as few as n = 12 within some classes) dataset is presented in Figure 2.3.

Under the GAN learning rule, the architecture we detailed above suffered mode collapse

of considerable severity. Mode collapse of the highest severity would be naturally defined

by producing exactly the same, memorized samples. Here, it is clear that the GAN was

memorizing input samples almost completely: this is best shown in the distinct hourglass-

shaped front panel model boom box and the docking station style boom-box (3rd and 4th

images, first row, reading left-to-right), but even the lower quality samples demonstrating

more peripheral image noise have only trivial variability.
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Figure 2.3: Illustration of mode collapse on boom box images, where a GAN produces only
a few samples of the class, usually memorized samples from the dataset (as shown here), a
problem perhaps exacerbated by extremely low sample count relative to most GAN datasets
(tens of thousands of samples). WGAN-GP was needed to escape this problem entirely.

An example of attempting to solve this frustrating problem using traditional data augmenta-

tion (here, vertical and horizontal flips and 45 degree range rotations of the input images were

permitted) to train the GAN synthesizers is presented in Figure 2.4. Amusingly, the instabil-

ity of training manifests in averaging the rotation of the image input directly into synthesis!

The resulting images look like they approach radial symmetry, taking the oblique views of

the AK47 rifles and rotating them through, most commonly for this rotation-randomization

range of 45 degrees, 2 or 3 orientations, making the magazines look like wings in poor-quality

images of birds. Increasing the randomization range was found to exacerbate this problem,
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Figure 2.4: Ordinary data augmentation via transformed (rotated, scaled, contrast adjusted,
translated) input data produced variety in samples, but not accurate samples. For example,
these samples could be better mistaken for poor pictures of birds than AK-47s. Qualitatively,
less rotation in input had less of an effect (not shown) on mode collapse. All input experienced
random flips and rotation of 45◦.

producing more radially-symmetrical fakes; small rotation range (e.g. 5 degrees) triggered

mode collapse comparable to that previously observed, although with some rotation in out-

put images.

The use of traditional data augmentation useful for classification should thus be suspected in

easing performance failures in synthesis problems, because the GANs capture the transforma-

tions but at the cost of losing the natural transformation-related invariance in the produced

results. In the real world, rotating a picture of an AK-47 does not change the number of
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magazines on the AK47 in the picture, but in the world of unevenly trained GANs, exactly

these things are possible.

An avenue that remains open despite this result in addressing mode collapse is in making

training stable. When training is stable (as measured externally only by loss), it may happen

also that the network learns at a more similar rate throughout the layers and filters of

the network, preventing chimeral mixtures of representations from desynchronized gradient

updates. Under “stability”, the discriminator and the generator are less likely to depart

their Nash equilibrium like [61] stability, as when the discriminator loss (assuming unrectified

output for the discriminator as detailed above!) stays stable and the generator loss (based

on fooling the discriminator) flies off uncontrollably, so progress towards convergence and

thus higher quality samples are likely to materialize.

Assuming that the GAN process is bringing the fake distribution and the real distribution

into alignment, and thus to make the distance function used to assess the distance between

distributions smoother is to make an overall loss function using this distance smoother, was

the main insight underlying the authentically landmark Wasserstein GAN of Arjovsky et al.

[8]. They explicitly proposed avoiding the rectification on GANs (which this investigation

did for the mostly unrelated reason of trying to assure an ensemble of class-specific GANs

had the most unadulterated information from the member networks) and substituting in

the Wasserstein-1 distance for the notion of the disconnect between the distributions. The

1st Wasserstein distance is also called the Earth Mover’s Distance because it measures the

distance between distributions by shifting probability mass from value to value in the space

and considering that the “transport cost” of that move is based on how many adjacent values

the mass has to move. Particularly, the EMD is the optimal transportation of mass plan,

which means that it is not completely straightforward to calculate (falling into the category

of planning-related quantities that need linear programming or other more intense methods

to solve and which are not susceptible to general closed form expressions).
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Wasserstein-1 has the following definition [8]:

W (Pa,Pb) = inf
γ∈Π(Pa,Pb)

E(x,y)∼γ[|x− y|],

where the greatest lower bound of an expected probability value disparity is taken over the

possible joint distributions. A joint distribution γ is considered to be evaluated on the cost

of moving the mass from one position in the probability space to another. Arjovsky and

colleagues considered the total variation distance (which is just the supremum of the norm

of the difference of value, or the distance, at each probability value), the KL divergence

both ways, the Jensen-Shannon divergence, and the Wasserstein distance and showed that

the latter places less topological constraint and is “weaker” than the other divergences,

converging in a certain case where they did not. They then proved that using EMD as

the basis of a loss function would lead the loss function to be continuous everywhere and

differentiable almost everywhere under some assumptions, and that the gradient of the EMD

is equal under these assumptions to the negative of the expectation of the gradient of a

function like that of the discriminator judging the output of the generator given the noise.

The most notable assumption involves Lipschitz continuity (which relates to the bound on

the maximum value of the derivative attainable with a function). From a sequence of insights,

they develop a poor-man’s method of enforcing Lipschitz constraints in the case of the GAN:

clipping the weights after gradient updates to a specific range.

The WGAN algorithm eventually developed renames a slightly-modified discriminator to the

critic. As happens when you would attempt to balance the discriminator and the generator

through some likely-doomed ad hoc method of your own invention, you define a number of

surplus update steps the discriminator gets for each step the generator gets, ncritic. While

training, you compute the gradient updates for the discriminator. The gradient is determined

from considering the difference between the activation of the discriminator on real samples

and fake samples as in traditional backprop. However, the gradient descent procedure is,
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critically, modified. Instead of using the ordinary gradient descent with no momentum (or

memory of the last gradient, with the family’s start being credited to Polyak [131]) or the

popular Adam optimizer, they selected RMSProp (introduced in lecture notes by Hinton et

al. with the descriptive title “rmsprop: Divide the gradient by a running average of its recent

magnitude” [77], and named because some unpublished work found that it worked better

when adding a square root to the mean square operation). The gradient updates the weights

using RMSProp but then at the last moment, the weights are clipped between −c and c, a

clipping parameter. The choice of this hyperparameter is free and therefore subject to being

chosen poorly. Analogously (the negative of) the gradient based on the average of the critic

activations on the generated fakes batch is determined and updated with RMSProp and no

clipping.

The qualitative results of the experiments in [8] were impressive. WGAN produced better

quality images than a stock DCGAN, did this without needing BatchNorm, and most inter-

estingly suffered no mode collapse generating Bedrooms, which was a source of excitement

in GAN research.

For whatever reason, when the WGAN algorithm was tried with our reasonably standard

architecture and using the default parameters in an attempt to derive the no mode collapse

benefit, it failed to converge. Rather than moving to complete a detailed parameter sweep,

an improvement was chosen, the WGAN-GP (Wasserstein GAN with Gradient Penalty)

algorithm of Gulrajani et al. [71]. The WGAN-GP method revises out the weight clipping

parameter and replaces it with a gradient penalty, which seems more appropriate since it is

not constraining the weights maximum achievable value after the update directly.

The WGAN-GP also specifies a number of surplus passes for the modified discriminator,

and the total number of passes is ncritic. It lacks the clipping parameter c but has a gradient

penalty parameter λ and uses the Adam optimizer instead of the RMSProp optimizer. For

each critic round, the loss is accumulated over the batch subject to the sum of the discrimi-
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nator’s activation on the fake image, the negative of its activation on the real image, and a

gradient penalty term

L← D(fake)−D(real) + λ(||(∇interpolatedD(interpolated)||2 − 1)2

The interpolated term may seem bizarre, and arguably it truly is. The authors relate en-

forcement of the Lipschitz continuity without resort to gradient clipping by bounding the

constituent samples being compared between each other, and this is done with alpha blend-

ing. A random ε is chosen ε ∼ U [0, 1], and the epsilon is used with the familiar alpha

blending linear interpolation equation to produce the blended sample.

interpolated = εreal + (1− ε)fake

Adam is then used to get the weight update for the critic corresponding to the averaged

losses from the batch. For the generator pass, fakes are created and then a similar average

is run through Adam using the more familiar GAN formulation of the discriminator (which

has now been updated several times) working on the patches the generator has built from

noise.

For the purpose of reproducibility and reliability in this involved process, the implementation

used in this investigation was exactly that of [124] A.K. Nain in the [29] official Keras

documentation. The number of discriminator steps ncritic was 5, and the weighting of the

gradient penalty λ was 10, using the architecture described above.

Gratifyingly, the WGAN-GP process worked acceptably despite our sample impoverished

data. Convergence happened for almost every class, and mode collapse was clearly not a

problem, although sample diversity could still be described as low, especially among Stuff
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classes where this is definitionally a given. The training time expended for each GAN,

each working to synthesize new samples for a specific class, was measured in completely

nonstandard “units of training”: triples of 32 image batches, and these numbered 15,000

per network trained. Epochs (whole passes through the data) were not used because of the

incomparable class sample sizes.

2.1.3 Qualitative Differences in Things vs. Stuff Fakes

With the training regimen of the networks specified, the qualitative results of the synthesis

that results can be considered. The 15,000 training steps were chosen to bring the Things

to the edge of competent synthesis, since it was expected that these would be most difficult.

Sample results from within the first 1,000 steps are shown in Figure 2.5 for Things and

Figure 2.6 for Stuff. It is interesting to notice that at the earliest shown points (e.g. 50-300

elapsed units), the proximal “goal” of the optimization is dichotomous for Things and Stuff.

That is, the “proto-stuff” first focuses on filling out the image plane in a grid like pattern.

Radial (ellipsoidal) zones in the texture that start as more rectangular grids indicative of

the influence of local window filtering operations differentiate over time into the proper

detail. Interestingly, even by the end of training and certainly by the first 10,000 steps

(Fig. 2.8), some Stuff classes have not converged. Interestingly, they were classes whose

target form is reminiscent of the “proto-stuff” pattern – an organic texture with Voronoi or

leaflike cell-shaped structure and a truncated dome texture. It could possibly be that these

synthesis failure classes emerge because the target is too similar to early-developing Stuff

synthesis and the optimization cannot escape or re-penetrate these areas of the parameter

space. Proto-things, meanwhile, appear to focus on establishing average object bounds in

the earliest steps of training – and then adding detail or less common forms later. Despite

the fact that the “backgroundness” proportion of each class in the Things dataset varies
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significantly, especially in the earliest steps there is an apparent bias for most classes against

backgrounded samples. To confirm this tendency with high confidence though, a neural

network backgroundedness classifier could be trained so that thousands of samples could be

automatically graded on having a background or not.

Observed synthesis failure classes and intentional “catch” duplicate networks

Since the synthesis failure classes (c093 and c129) are so dissimilar in quality from their peers,

it can easily be conjectured that they are arrested at a different state of neural development

than these peers: this would be bound to be evident in their behavior, but also likely the

weight patterns of the neural networks contributing to that behavior. Studying the synthesis

failure classes would then allow qualitative synthesis failure to be predicted from behavioral

and parametric anomaly and would provide explanation of those anomalies upon visual

inspection.

Because this phenomenon is potentially useful to gather information about and apparently

as far as is demonstrated here, is a feature particular to Stuff, the preplanned Stuff classes

resulting in synthesis failure were retained for investigation.

In addition, it was decided that duplicate networks showing the divergence of training and

reflecting on multiple realizability of synthesis would be included as catch networks. The

theodolite class was used to train two networks that diverged only in the stochasticity of

training, and the boom-box class was also given a duplicate network, but this was trained

for 25,000 units. The hypotheses related to the foregoing “catch networks” would be that

1) the simply duplicated network, if not parametrically similar, is behaviorally similar, and

that 2) the network with extra training produces markedly higher quality output and that

a divergence from the other networks on parametric lines could be statistically observed in

a joint analysis of parameters, perhaps with a tendency the opposite of the incompetent
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synthesis failure networks.

These qualitative results build on the notion of Chapter 1 that there is a competence hierar-

chy of broad classes of texture that makes Things harder to recognize than Stuff, and affirms

strongly that there is a similar synthesis quality competence hierarchy.

Since synthesis quality is controversial to quantify, the bulk of the remaining investigation

focuses on recognition of fakes and real images involving the collection of WGANs in the line

of assessing the practicability of GAN-based recognition as a rough, highly indirect proxy

for synthesis quality.
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Figure 2.5: Thing Synthesis samples from the WGAN-GPs in the GANsemble, before 1,000
units of training (3x batches of 32 image presentations) elapsed. In the earliest stages of
training, the patterns of Thing and Stuff synthesis are qualitatively dissimilar in how they
depart from the nothingness of saturated output. “Proto-things” try to establish object
boundaries first. Object boundaries are not very uniformly established within Things, sug-
gesting that they take longer to produce minimum-acceptable synthesis results.
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Figure 2.6: Stuff Synthesis samples from the WGAN-GPs in the GANsemble, before 1,000
units of training (3x batches of 32 image presentations) elapsed. “Proto-stuff” prioritizes
tessellating the plane before adding detail, succeeding around training unit 600. Exceptions
exist for synthesis failure classes which only exist in Stuff: c093 and c129, both circular grid
patterns similar to proto-stuff, do not converge at all during this time.
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Figure 2.7: Thing Synthesis samples from the WGAN-GPs in the GANsemble, before 10,000
units of training (3x batches of 32 image presentations) elapsed. Things are still poor quality,
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Figure 2.8: Stuff Synthesis samples from the WGAN-GPs in the GANsemble, before 10,000
units of training (3x batches of 32 image presentations) elapsed. Excepting synthesis failure
classes c093 and c129, Stuff is near a quality ceiling.
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2.1.4 GAN “morphs”: retargeting pretrained GANs

One rough, primarily qualitative measure of the similarity of a bank of class-specific GANs is

to subject them to a period of reeducation where they are trained towards a single synthesis

target class. Stored GANs originally trained towards their own class-specific objectives and

on their own data are loaded into memory, and retasked to the new objective: the single

target class is fed to the list of all of them.

Consider the case of this battery of new GANs receiving a very small amount of extra training:

say 150 units of training as opposed to 15,000. If an ordinary discriminator without the GAN

objective were loaded to be paired with any of the trained generators, presumably quite an

extended period of training would be required, comparable to training from scratch. The

performance could be hypothesized to be terrible. In the other extreme, if the discriminator

is one that is substantially similar or the same to the target, it should only act as purely

surplus training time, further refining the result. In intermediate measure, the other networks

that have been specialized for image synthesis but particularly for classes such as brick walls

and boom boxes should require a middling level of adjustment in the form of allowed image

presentations and weight updates to reach the level of quality produced by the originally

trained class-specific GAN.

It could perhaps be the case that the speed of this kind of transfer learning [17] could

be reliably proportional to the similarity of the network-originating class, but this would

require an agreed-upon quantitative measure of image quality and also deep class similarity,

and opinions on these measures are unsettled. If this strong hypothesis is true though,

a weaker version must surely prevail as well: that it is easier to train Things networks

to produce Things and Stuff networks to produce Stuff than to cross over this important

metacategorical divide in the synthesis reeducation domain. The pattern that is observed is

that the metacategory itself is more determinative of quality: stuff is easier to synthesize for
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both reeducated networks than things.

In point of fact, if Figures 2.9 and 2.10 are correct, both these hypotheses would appear

to be false on visual inspection. However, it is the case as seen in Figure 2.11 that taking

a discriminator of equal architecture with a cross-entropy loss and substituting it in for a

discriminator with the GAN-oriented loss does not produce acceptable synthesis results with

only 150 units of training and the network as a whole will require substantial revision.

In addition to morphing class-specific GANs into each other with transfer learning, with bet-

ter automated quality and similarity measurements, the prospect of optimally pulling GAN

layers apart for recycling into new Frankenstein or chimera networks could be studied using

methods for gradientless discrete optimization methods (such as evolutionary computation)

and perhaps a small allowance of fine adjustment polish training – but it would be consistent

with these results that it would be hard to improve on a coherent network with linear or,

especially, layer-substitution mixtures of networks since it takes time to cure inconsistencies

at the level of discriminator substitutions, let alone swaps at the granularity of layers or

linear combinations of layer weights. Possibly beyond the things vs. stuff distinction, it will

be tough to predict optimal mixtures; however, this does rule out an effort to store a library

of class-specific networks and to try to predict which will be the best candidates for transfer

learning given a particular target.
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trained for 150 extra training units but targeting the less trained boom box discriminator.
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Figure 2.11: Discriminators not trained with the GAN-style loss fail in their attempt with the
old generators to synthesize more than primordial proto-thing samples with the provision
of 150 training units. The donor networks were the a) pci-card and b) fire extinguisher
networks.

2.2 GANsembles: committees of one vs. rest GAN

discriminators and their interclass label and weight

affinities

As previously alluded, GAN-origin-discriminators are trained to aid synthesis, not do efficient

classification. For a GAN targeting a single class for synthesis, they are exposed to the target

class of interest and not any other class. We should expect them to suffer when compared to a

network for classification. Therefore, they can be assumed individually to be weak classifiers.

A way of improving the results of weak classifiers taken in isolation is to consider the joint

behavior of the weak classifiers operating on the same input – this is the approach of the

ensemble in machine learning, which has many varieties depending on how the information

from the contributing classifiers, sometimes called the committee, is combined. Anticipating

the frequency of reference to this new object, we presently term the ensemble of GAN-

origin-discriminators to be the GANsemble. Previous work [173] [108] has created ensembles

of GANs but these are primarily ensembles of the whole GAN and may even be confined

to testing different initializations of generators to potentially expand the creative output in

terms of fake patches of the collection with the idea that this could improve synthesis results.
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At this point, the present investigation is no longer primarily concerned with synthesis

results, but classification.

2.2.1 GAN-origin discriminator interclass labeling affinities on fake

vs. real images

Before settling on a method to combine the information gained from each GANsemble mem-

ber network, the joint output distribution of the networks should be considered. To estimate

this distribution, we have two natural choices: we can estimate the output distribution on

the real images used to guide synthesis, or we can use the fake images which result from

synthesis. Any dichotomous Things vs. Stuff results (when thought of in terms of signal)

for the fake images are assumed a priori to be “weaker” versions of the results obtained for

the real images, since the synthesis has only come to the point of being barely competent in

perceptual quality.

A fully satisfactory characterization of the joint distribution of output values is unlikely, so

we simplify this to consider just an average terminal activation of networks. For a patch

p, each network Dk in the GANsemble emits an activation value ak that contributes to

the GANsemble’s activation vector A, which we can term the label emission spectrum of

the GANsemble after the example of Fourier analysis of signals and spectral analysis of

chemicals, since we are looking for the “power” of activation at each (admittedly complex

and unorderable) sensor level.

For real images, each member network Dk in the GANsemble receives all of the patches p

in Pci∈C , where C is the totality of classes in our dataset, and i is an index for Dk that

indicates the target class ci, since with duplicate networks a crosswalk vector may be needed

to correspond networks with non-uniquely occurring classes. It emits a “label” that because

of the lack of rectification for the WGAN is actually just a bare activation, but one that
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should be thought of as consistent for that patch given the network as it was trained since

we will not update the gradients and weight values in a backward pass for merely measuring

activation.

We can construct the Real firing or “label” pairwise affinity matrix RR(k1, k2) by dividing

the vector of activations collected by firing Dk2 on the Dk1 network’s corresponding target

class Ci. The patches come from an unchanging authoritative source – the dataset.

The Fake pairwise affinity matrix FF (k1, k2) is the result of firing Dk2 (the fake-receiving

network) on a batch of generated image fakes from Gk1 (the fake-producing network). The

image fakes produced vary because they are the result of random input noise vectors (e.g.

G(z)), so we are computing a Monte Carlo average with the idea of approximating the

asymptotic behavior of infinite generated images. The count of image samples nMC = 100

used for Monte Carlo averaging is small to keep our computations relatively quick since the

number of the entries in the matrix in the first place grows with the square of the number

of partipating networks (i.e. 342).

The fake images affinity matrix computed is displayed in Figure 2.12. For lack of more

precise language, it is vertically streaky. This corresponds to the fake receiving networks

emitting activation at proprietary (and not directly comparable) ranges. For example, the

wine bottle class fires highest. Most other classes fire higher than an absolute 0 indicating

some acceptance of the fake patch. A few classes, notably the synthesis failure classes c093

and c129, fire with inverted sign and out-of-band magnitude compared to the rest of the

field. Of the receivers that fire high, the wine bottle class fires highest.
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Figure 2.12: Per-class activation Monte Carlo average of each discriminator in the GANsem-
ble to every other network plus itself (diagnonal) calculated over the 100 fakes produced
by each network. Some networks fire higher than others systematically, preventing even the
discriminability of things vs. stuff. Synthesis failure classes c093 and c129 fire systematically
lower. Similarity of identical catch classes boom box and theodolite is barely discernible.

The pairwise affinity matrices should live up to their name in that we use them to estimate

the dissimilarity of classes. That is, we should arrive at a representation where the diagonal is

close to a relative reference zero point (which may or may not coincide with the real absolute

zero point) and so the activations departing from the reference point are strongly related to

class dissimilarity. Recall that the WGANs, being unregulated by a nonlinearity, tend to

return high values when they perceive a real image, and low values when they perceive a fake

image. Intermediate values near zero are what indicate non-confidence in this unrectified

case. This will soon become important.
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Now, the fake affinity matrix representation is in some sense dual to an directed graph

representation where nodes are classes and the edge weight or potential in one direction

corresponds to the nearness of two networks where one is the receiver and one is the producer.

An opposite potential reverses the role. Once we arrive at a transformation of the affinity

matrix into a more proper affinity matrix that more closely represents dissimilarity we might

consider these potentials to be part of a dissimilarity graph.

Graph representations of similarity are appealing because we can apply the interesting tool-

box of graph theory methods to image class similarity, permitting some level of studying

the categorization induced by deep neural networks, rather than with a human-in-the-loop

looking at the graph and suggesting important classes and important taxonomic divisions.

For example, in graph theory, the rich-club coefficient [187] of a graph concerns how con-

nected the pivotally well-connected node (hubs) of the graph are, the minimum spanning

tree describes efficient paths through the graph, the isoperimetric or Cheeger-related con-

stant [121] describes how bottlenecked a graph is, and the Fiedler [48] vector values (the

second-lowest-eigenvalued eigenvector of the graph Laplacian matrix that is the difference

of the degree matrix and adjacency matrix representation of the graph) collectively provide

a recipe for locating ideal cuts and counting connected components. Some number of these

techniques are restricted to undirected graphs, however.

For our inspection, however, the directed affinity graph corresponding to the fake affinity

matrix can be drawn, although since it is fully connected to start, it is almost an almost

completely uninformative depiction (the classes are arranged in a ring with all of the possible

connections creating some aesthetically interesting intersections but little else). If we want

to gain some information from the visualization we can use a force-directed graph drawing

algorithm, such as Fruchterman-Reingold [52] off the shelf (using [72]). A discussion of the

Fruchterman-Reingold algorithm is beyond the scope of this project, but suffice it to say that

the idea of force-directed graph drawing in general is roughly based on the idea of using the
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weight potentials in the graph to define a kind of Hooke’s Law like spring attraction quantity

that can be combined with an electricity like repulsion between nodes so that the system can

be physically simulated until an acceptable equilibrium is reached. This heuristically more

usually avoids intersecting edges but also has the benefit of often placing bonded nodes near

each other when they are similar (if similarity or dissimilarity information is represented on

the graph’s arc weights).

Figure 2.13 is the force-directed digraph corresponding to the fake images affinity matrix.

The positioning of networks or nodes on this graph is not expected to be replicated in

a subsequent run of the simulation. Even relative proximity information is likely to be

somewhat highly disrupted by the complexity of this process and the multiple realizability

of equilibrium.

This problem is exacerbated in that the arcs included involve weak potentials which may

have a very-non-directly-related effect on placement. If you were to try to take the entire all-

to-all connected graph (the complete graph) with its 34 nodes and its 234(34−1)
2

= 2 ∗ 561 =

1122 edges and request from the graphviz tool [101] the default dot drawing style which

is aesthetically pleasing for trees, you might not even get an output. If you wanted to

decimate the graph so that only the most informative pairwise distances were represented

you could set a threshold. The threshold could be symmetric (favoring both extremities

x ∈ (−∞,−100] ∪ [100,∞) ) or asymmetric (favoring just one). Figures 2.14 and 2.15 show

the effect of graph-thresholding with the force-directed drawing method preserved; the graphs

are very distinct where the “highly-positive pass” one is very uninformative, capturing only

the streak of maximum activation corresponding to the wine-bottle class from the matrix.
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Figure 2.13: Fruchterman-Reingold graph drawing of the graph corresponding to the GAN
Fake images affinity matrix. Arrowheads denote that this is a digraph, where the directions
along the arc are related to fake-producing and fake-receiving role.
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Figure 2.14: Fruchterman-Reingold graph drawing of the “highly-negative pass” graph cor-
responding to the GAN Fake images affinity matrix. Only entries from the matrix whose
values are less than or equal to -100 are included as arcs.
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Figure 2.15: Fruchterman-Reingold graph drawing of the “highly-positive pass” graph cor-
responding to the GAN Fake images affinity matrix. Only entries from the matrix whose
values are greater than or equal to +100 are included as arcs. a) The total graph is shown.
It has disconnected components. b) The area of the graph which is connected is enlarged to
show that the very positive activations are all directed onto the wine-bottle class.
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What you learn from similarity graphs, even with only 34 networks and 32 image source

classes here, is very limited compared to the space and effort they consume, and the in-

formativeness that does remain is very sensitive to your hyperparameterlike free parameter

setting of thresholding. Additionally, the force-direction does not stably capture similarity

the way other manifold learning methods (such as MDS, which will be visited in detail in

Chapter 3) might, although the foray into graph visualization does give one a clue that man-

ifold learning (or dimensionality reduction) methods which rely on the (unweighted) graph

adjacency matrix (for example, Laplacian eigenmaps [11]) may do poorly on this particular

kind of dense data.

Even if the affinity matrix is preferred, it is apparent that it is still grossly unsatisfactory.

The streaky pattern does not show even a difference between Things and Stuff, our high-level

metacategories! Could this be the end of our project, that GAN discriminators are almost

completely uninformative, even in ensemble?

It turns out that it is not, as the reader who has either the heft or the view of the remaining

pages could easily intuit: a simple transformation yields some promise of the Things vs. Stuff

dichotomy, and even a pattern of graded negativity in responding that could potentially be

used to aid classification (as well as class similarity judgments).

The reference firing level seeming to float for various of the deep convolutional recognizers in

our GANsemble seems to suggest the curative use of normalization. Normalization computa-

tions are useful in early visual circuits accounting for contrast, and it is suggested by Heeger

and others that normalization is “a canonical cortical computation” [26]. Now, the neurons

in our GANs bear such a pitifully passing resemblance to biological neurons that it could be

jokingly suggested that no real neuroscientist should be involved in studying the behavior

of devices that are composited from them, but when it comes to normalization, there are

two familiar kinds from mathematics: normalization by subtracting a baseline value and

normalization by dividing by a baseline value. It turns out, of course that the choices have
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different implications, and these implications were studied in terms of the long range effects

on dynamics in the case of Hebbian learning in work that imagined the necessary firing-

rate control constraints [119] on idealized circuits preventing runaway activation growth as

influenced by regularizing-penalty-like subtractive normalization vs. multiplicative normal-

ization. Specific meaning is given to these terms in that work and what is tried below is not

completely identical.

Given the work done with our nonstandard definition of affinity (which should ordinarily

be a byword for similarity, not “ur-similarity”) in the affinity matrices presented, we can

come up with a sensible definition for a baseline. It is the Monte Carlo average (as recorded

in the Fake matrix, on the diagonal) of a network assessing its own generator’s fakes, the

auto-association.

Divisive normalization and subtractive normalization are trialed in Figures 2.16 and 2.17.

The divisive transformation does not improve on the lack of quality seen in Figure 2.12. The

subtractive transformation evidences a strikingly different pattern, and one that we come

to see the Things vs. Stuff dichotomy appear within. It can be presumed that subtractive

normalization is justified in the following sense: if extra training or extra proficiency with

the same amount of training tends to add activation, the sensible undoing operation is to

take away, or subtract activation, not to divide. It may also be that divisive normalization

and subtractive normalization rules work differently depending on the within-network vs.

between-network variance of activation, and a scalar field of F-statistic-like quantities could

be sampled in a simulation and annotated with the superiority in terms of separability able

to be produced by either rule to see under which variance conditions each rule is useful.

For the time being, though, we leave the superiority of subtractive normalization in this

particular case as a simple empirical fact.
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Figure 2.16: GANsemble average activation matrix for fake images, but with each activation
divided by the receiving network’s MC average baseline self-activation. The fire-extinguisher
class fires strongly negatively to every other class, and the treadmill and only the less trained
boom-box discriminator fires higher to most other classes. Again, things and stuff are not
at all discernible.
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Figure 2.17: GANsemble activation affinity matrix for fake images, but with each activation
subtracted by the receiving network’s MC average baseline self-activation. Things to things
comparisons (upper-left quadrant) show graded negativity facilitating similarity and classi-
fication whereas stuff-to-stuff comparisons (lower-right quadrant) show less useful patterns.
Things-to-stuff and Stuff-to-things activations are also less informative. The promiscuous
firing of the synthesis failure classes and the expected discriminator affinity of the catch
duplication classes (boom-box and theodolite) are both clearly observed.
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Figure 2.18: GANsemble firing affinity matrices on real images for a) raw-activation, b)
baseline-division, c) baseline-subtraction. The patterns are grossly similar as for the fake
images, except that the quadrants have traded off somewhat in vareigation and the self-
activation diagonal is zero as expected for inter-stuff comparisons but high for inter-thing
autoactivation, illustrating that GAN discriminators after baseline subtraction fire towards
a high and a lower baseline point to the target class depending on whether it is seen as a
real or a fake, with other (e.g. sub-baseline) activations portending a non-target patch.
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2.2.2 Näıve argmax classification, and synthesis failures as prob-

lematic defectors on the committee

Now that the ensemble is established and a transformation discovered to its internetwork

firing affinity matrix that yields graded dissimilarity, the stage is set for the ensemble to

perform classification.

For each classifier dk in the battery of networks, presenting a patch p leads to a vector of

emissions composed of each patch-network combination activation (dk(p)). We might call

this vector the label (or activation, since the WGANs are unrectified) emission spectrum

of the GANsemble. The term spectrum is chosen to provide loose analogy to chemical and

light analysis techniques appealing to an estimate of “energy” or “power” which exists on

an ordered determining axis. No single fair and deeply meaningful way of ordering textures

is established, but it is suggested in the possibility of a Things vs. Stuff dichotomy that

textures will eventually prove locatable even within the metacategories on a multifactorial

composite notion of complexity or computational difficulty of processing.

Hence, we consider perhaps the simplest method for combining the judgment of impaneled

ensemble members as expressed in the activation spectrum, the näıve argmax classifier:

ŷp = argmax
d∈D

d(p)

Metaphorically, this corresponds to the committee of networks choosing the “the loudest

voice”. At the risk of personifying relatively uncomplicated neural networks, it is näıve in

assuming that committee members will press their individual claims honestly. Of course, one

modification suggested already by the data was the subtraction of the Monte Carlo estimate

of the expectation of the activation of a GANsemble member to fakes from its own associated

generator when given random noise (i.e. baseline subtraction).
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ŷp = argmax
d∈D

(d(p)− E(d(gd(z))))

If the activation of the discriminator is stable over time, or for nearly everywhere past

the initial steps of training, then this is a possibly workable assumption. We will see in

subsequent sections that being almost-fully-näıve does happen to be practically workable

(although only for the one-half of the Things vs. Stuff dichotomy where graded negativity

of the affinity matrix exists in some measure for fakes and reals).

However, if the level of activation is developmentally-dependent, and some networks are at

an arrested state of development, then one possibility is that the developmentally-arrested

networks may emit systematically lower activation on average regardless of input compared

to peers. This would cause the näıve argmax classifier never to declare for these networks’

classes. A much worse result for the classifier manifests if the opposite possibility is realized:

with a systematically high activation that is not conditional on input, the anomalous devel-

opment classes emit a high value for all presented classes, winning all or nearly all contests.

In this context, the classifier becomes useless.

Under this possibility, which is actually the case, synthesis failure classes in a committee

therefore present an existential threat to GANsembles using just the naive argmax classifier

and therefore the prevailing action of one network. This suggests two important research

thrusts: settling on a decent classifier that is not as näıve or easily manipulated as the argmax

classifier employing all joint activation in the emission spectrum, and automatically detecting

synthesis failure with neither human observers nor specialized auxiliary neural networks

trained to find synthesis anomalies. This kind of quality control network could realistically be

brought to bear in non-GAN parametric texture synthesis, such as the Portilla and Simoncelli

models [132], which have extensions to color textures where the color channels can become

focally decoupled in mixing the feature vectors of texture statistics to produce novel textures,
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producing local color anomalies that would have to be statistically repaired and patched,

perhaps using quite simple statistical tests of variance on windows and nonparametric [45]

or stitching-based “synthesis” for texture anomaly inpainting. While auxiliary networks for

synthesis quality control present an interesting direction for study, it remains possible as

conjectured above that the telltale signs of synthesis nonconvergence are discoverable from

variance in the model weights.

2.2.3 GAN-origin discriminator interclass model parameter dis-

tances

The pairwise firing affinity matrices just computed are useful for considering the joint inter-

action behavior of the GANsemble outputs, but while this kind of analysis is top of mind, it is

convenient to consider the similarity of the models themselves, not just the classes as viewed

by the collective of models. Deep neural networks facilitate massively multiple realizability

of image judgment operations and it is interesting to discover if any weak constraint on this

realizability leads to detectable similarity between models trained to deal with classes that

are similar. Particularly if GANs are glorified memorizers of their input, we should expect

to find some similarity.

Measuring the effectiveness of class similarity induction by a committee of networks is not

completely straightforward. It would be possible, although resource-intensive, to assemble a

panel of human subjects and have them create a set of similarity judgments over classes, for

example by way of analogy (e.g. 98 percent of subjects agreed that theodolites were more

similar to sextants than backpacks were to sextants) and to take the high-concordance rules

and use them as inputs into a massive constraint-satisfaction problem to score GANsembles

on their agreement with the greatest number of prevailing empirically-discovered analogical

constraints. If there were a rigorous idea of the qualitative “principal components of texture”
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or something you could imagine as the fairest set of adjustment “knobs of texture”, then other

neural networks could be trained to discover these qualities, regress unseen textures reliably

on them and compute an agreeable composite of these quality dimension wise features. Of

course, there may not be natural texture dimensions of a parsimonious sort if, analogous to

color sensing, there are texture channel (texture channels were discussed by [135]) activations

and those channels are determined, by say, the action of a large set of completely random

noise filters that are different for every perceiver.

In some highly constrained and contrived spaces of texture, there are natural “knobs”. For

example, you can consider the highly constrained set of textures that come about from

computing the 2-dimensional inverse discrete Fourier transform of a forward-transformed

blank image whose phase information is then corrupted by being painted over with energy

according to a Lévy flight [146] or other random walk initialized by a few latent parameters.

With Markov Chain Monte Carlo methods, you could even discover the likeliest parameter

settings that produced a group of textures. In this and many other special class of texture

investigations, such as work concerning isodipole textures [70] or simple point clouds [156],

the stimuli are so completely non-naturalistic that these researchers are almost studying a

completely different thing from researchers in neural networks who even use the concept

of the degree of naturalism for practical purposes (e.g. constraining neural networks by

the imposition of natural image priors, [126]) under the heading of research into “texture”.

In another situation, names are given to the parameters generating the image; this is the

case with the libnoise [12] implementation of the popular 2D self-similar Perlin noise which

allows you to specify dimensions like lacunarity, octave count, and persistence that all are

meaningful with respect to either the calculation or the visual experience (i.e. high lacunarity

noise has wide subjective “holes”) of the produced patches.

This is not at all practically applicable to the space of naturalistic textures we contend

with throughout life. Laborious work involving collecting multiple-stages of judgments can
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[152] associate human preferences reliably with these subjective and “naturalistic” labels

laymen or designers might converse about, like the humorous case of “premiumness”, but

the determination of the labels themselves is not systematic. In other words, we could be

reduced to scoring our GANsembles on similarity more objectively by running them through

a layer of indirection to subjective judgments of arbitary features, like pointyness, ornateness,

bulbousness, ocularity (perhaps this would be the confidence or multiplicity of containing

an atrium-like inner hole or annulus in a patch), but it is not immediately clear what the

value of that effort would be, except to see which architectures for synthesis or methods

for embedding would have trouble with producing or closely placing patches containing

elevated or reduced magnitudes on these subjective quality dimensions. The special case of

considering class identity as wholly categorical and not decomposable into qualities leads

to a brutish criterion of measuring similarity by at least assuring that the duplicates of the

same class are located in similarity space amongst themselves across multiple recognizing or

synthesizing network realizations, or analysis methods of the outputs of those realizations.

Measuring the similarity of models rather than classes is comparatively much easier, but it is

important to remember that it is not completely determined; it is just the case that the pure

and applied mathematical community has settled on a few different notions of “distance”

(beware: here we use distance and metric colloquially rather than according to their technical

definitions!) that are unique enough from each other to be considered distinct and that each

have a practical purpose in various fields of inquiry. This investigation considers only a

handful of them that are considered most important.

Consider the pairwise model parameter affinity matrix Ξ(N1, N2, f) to measure the distance

between N1 and N2 according to some single “distance” function f . In a deep convolutional

neural network, the network has trainable (updated by gradient descent) and not trainable

weight and preprocessing parameters, and many of the trainable ones concern units whose

parameters are grouped in discrete layers. For example, there is the notion of a first, second,
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third, fourth, and fifth convolutional layer in our GANsemble discriminator networks when

counting away from the input towards the terminal densely-connected layer and the output

neuron whose activation stands for that of the whole network as far as the ensemble is

concerned. In the discriminator, our layers have biases, and we can consider the bias weights

alone as associated with a conceptual layer if the definition of layer is relaxed to not strictly

mean a discrete stage of transformation of all the input.

Therefore we can stack the pairwise affinity matrices of different layers to produce the pair-

wise model parameter affinity tensor Ξ(N1, N2, Li, fj) where i varies the index of logical

weight groupings temporarily considered “layers” and j varies the choice of distance func-

tions considered. Holding j constant, we have a stack of matrices corresponding to the

actual affinity matrix (cf. the pseudo-“affinity” matrices of firing) between the two net-

works based on the distance between their parameter vectors. We only consider the Dense

and Conv2D(Transpose) layer weights (filter and bias) in this investigation, even though

parameters of BatchNorm and LayerNorm, which include learned elements, can also be con-

sidered. So these are proper weight vectors. While in a library such as Keras these weights

may be stored as tensor objects in light of meaningful spatial dependence (e.g. slices of

the convolutional block activations are channel activations) that is perhaps also meaningful

for distributing computation in memory and affecting locality, we flatten them to vectors

to treat them as homogeneous quantities and to permit most distances to be calculated on

them.

The pairwise matrix ξ(N1, N2) for a layer and a specified distance function can have a

number of extreme appearances in view of a possible Things vs. Stuff dichotomy. The most

indicative of the dichotomy might be called the characteristic pattern. In all valid patterns,

the distance between a network and itself should be zero, corresponding to the diagonal.

When an equal number of things classes and then stuff classes are grouped together (i.e.

all 16 things, then all 16 stuff) on the axes of ξ, four quadrants develop. In the case of
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imbalance between the things and the stuff class, ξ is still square but the quadrants are not

proper quadrants. The upper-left quadrant (conventionally, II) represents Thing-to-Thing

intermodel distances. The lower-right (IV) represents Stuff-Stuff distances. The remaining

quadrants (I,III) represent Thing-Stuff, or “cross”-metacategory comparisons. While this

matrix exhibits symmetry when only symmetrical distance functions are chosen, not all

distance functions are symmetrical (e.g. the directed Hausdorff for point sets, and the

Kullback–Leibler for distributions), so we can mock the “idealized” characteristic pattern by

drawing from a distribution separately per quadrant (for the symmetric case, one triangle is

not allowed to vary).

In the expected pattern, the least dissimilarity (i.e. 0) is always expected for a network being

compared against itself, and this expectation should only be violated when using approximate

or stochastic distance functions. The next least dissimilarity is expected among Stuff classes.

Since Stuff classes are homogeneous within the class, are mostly statistically stationary

as you move around the patch, and can be recognized and synthesized by techniques of

lesser “power” (e.g. primitive filterbank recognition, or Heeger & Bergen [74] or Portilla &

Simoncelli [132] for Stuff synthesis), we might a priori expect less distance in the models

(models for Stuff are closer to each other than models for things, which may be aligned or

may not be aligned with the models being easier to morph into each other by retargeting

gradient descent). Quadrant IV should then exhibit an elevated, but only slightly elevated

average value. In the “idealized” case, the variance is low so that the dichotomy is clear (the

kurtosis might be negative if we used a uniform distribution) within the quadrant – but the

actual interesting pattern would develop if model distances were closest to actual similarity,

and the presence of graded positivity of the dissimilarity in this quadrant would be necessary

but not sufficient for the model distance capturing similarity. We could correlate the firing

affinity matrices cellwise with model matrices, but in reality we possess no known very

competent similarity oracle for the purposes of this initial investigation, and won’t assume

directly that the firing affinity matrices constitute such oracles. Quadrant II should be like
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Quadrant IV but at a notably higher dissimilarity level, connoting the greater model distance

within Things (amongst Thing-Thing network parameter comparisons). The Thing-Stuff

comparisons quadrants (I, III) should be of intermediate dissimilarity. Figure 2.19 shows the

mocked-up pattern when a high, low, and intermediate value are chosen to control generating

equal-variance Gaussian distributions with narrowly tuned σ = 1 for the quadrants.
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Figure 2.19: a) The idealized characteristic pattern of the Things vs. Stuff dichotomy in
model distance “quadrants” in which there is higher dissimilarity in Thing-Thing model com-
parisons (Q2), lower dissimilarity in Stuff-Stuff comparisons (Q4), intermediate dissimilarity
in cross-comparisons (Q1 and Q3), and definitionally no dissimilarity in self-comparisons
(matrix diagonal). Simulated values within “quadrants” are drawn according to b) ideal-
ized normal distributions with sigma 1 and resultingly high “idealized d-prime” separation
(d′ = 30).
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Figure 2.20: a) Weaker version of the idealized characteristic pattern of the Things vs. Stuff
dichotomy. At σ = 10, the pattern is much weaker to see because the b) generating distribu-
tions for the quadrants produce much more mixed values with the same mean separation but
increased bandwidth. Alternatives to the characteristic pattern are 1) the inverse character-
istic pattern (higher dissimilarity among Stuff networks), 2) severe cross-comparisons pattern
(higher dissimilarity in quadrants 1 and 3 corresponding to Thing-Stuff comparisons), and
3) and roughly-constant pattern (which may be low or high relative to true outliers like
synthesis failures). 146



When the bandwidth of the Gaussians is widened to σ = 10, the characteristic pattern

becomes noisy and weakened, appearing as it does in Figure 2.20. The generating distribu-

tions exhibit lower separation as the mean activation values have not moved to compensate,

and so their degree of overlap increases. The reader with signal-detection theory experience

will note that this notion of separation (between two distributions, the signal and the noise

distribution) coheres with the idea of d-prime. As listed in Chapter 1, d′ is conventionally

defined specifically in terms of the probit function on the false alarm and hit rates, but an

idealized d-prime is really just a distance between two means accounting for spread, where

there are various possible ways of accounting for spread; for example the difference family

of effect size measurements including Cohen’s d and Hedge’s g are mean differences that

express slightly different opinions on the proper way to pool effect size.

If we arbitrarily take the “idealized” rather than the empirical d-prime to be equal to the

less-commonly encountered root-mean-square variant of Cohen’s d ([31],eq. 2.3.2)

d′ideal = dσ1 6=σ2 =
µ1 − µ2

spσ1 6=σ2
=
µ1 − µ2√

σ2
1+σ2

2

2

It can be seen that with the increasing dissimilarity quadrant generating distribution sigma,

this “idealized” d-prime or Cohen’s d decreases, showing less of a chance of taking a random

value from ξmock and associating it and those near it in value uniquely with a quadrant.

The second extreme appearance to be considered is the “inverse characteristic pattern” which

merely exchanges the lower and higher activation value connoting more model similarity and

less model similarity. Observing the inverse characteristic pattern on a dissimilarity matrix

would connote high Stuff-Stuff dissimilarities and low Thing-Thing dissimilarities. Of course,

when the dissimilarity is exchanged for the similarity there is a change in polarity, so consider

the characteristic pattern for similarities to resemble the inverse pattern for dissimilarities
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and vice versa.

Another extreme appearance, then, would be observed low values of dissimilarity in the

metacategory-consistent quadrants (Thing-Thing or II, and Stuff-Stuff or IV) and high values

in the ordinarily intermediate metacategory-inconsistent or Thing-Stuff or cross-comparison

quadrants (I,III). When the cross-metacategory comparison quadrants are high, consider this

the cross-comparisons most severe case.

Finally, the last extreme appearance considered is that of the dissimilarity being roughly

constant across all quadrants. The degree of constancy becomes referential to outlier com-

parisons which are substantial. Synthesis failure classes, where they induce large dissimi-

larities with the internals of comptetently trained networks can set the degree of this high

dissimilarity fluctuation. If synthesis failure class activation values dominate the variation,

they would tend to obscure the pattern somewhat in an automated heatmap process, so

if the characteristic pattern appears, this is an additional testament to the strength of the

apparent dichotomy.

A last possibility is no pattern at all, or seeming visual noise, consistent with taking the

mock characteristic pattern and letting the σ increase.

With the characteristic pattern and the other conspicuous cases defined, it is now possible

to consider each ξ ∈ Ξ to determine at which stage of visual neural differentiation or inverse

visual (hallucination) differentiation the Things vs. Stuff dichotomy develops. In the spirit of

varying distance as established by the transition from the GAN to the WGAN, the question

of whether it develops early or late (e.g. in Conv2D layer 1 in the discriminator or Conv2D

layer 5’s bias) may critically depend on the nature of the distance chosen to examine it.

Notably, the boom-box class had two network variants, one with the benefit of 25,000 training

units, so this extra training could be detected too if the activation were the result of the

amount of training and not a mere competence-incompetence distinction. The duplicate
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theodolite networks (identical training time of 15,000 units) give a rough idea of the degree of

multiple realizability with the same training, as it may be that networks targeting synthesis of

the exact same image set, with the exact same training time, and the exact same architecture,

loss function and optimizer could exhibit completely different weight structure.

Each distance function detailed below contributes to a cell in the ξ matrices the result of

comparing all the weights associated with a logical grouping of weights across two networks.

Corresponding-weight disparity: MSE

The most immediately obvious distance to calculate is the familiar mean-squared error used,

arguably poorly, to assess the average non-correspondence at the pixel level in images.

Recall that it, for the case of I being one image flattened to one dimension, and Î being a

comparison image with the same N pixel locations, is defined:

MSE(I, Î) =
1

N

N∑
n=1

(I[n]− Î[n])2

The mean squared error takes the average of the squared pixelwise or valuewise disparity.

When we use it on the weights of a neural network in some layer, we flatten the weights of

that layer to a single dimension and compute the MSE on that vector.

With millions of weight locations to compute, there are bound to be outliers and the MSE is

sensitive to them. However, it is easy to compute, ubiquitous in image quality measurement

comparisons, and has a satisfying low-level basis in the accumulating the average (squared)

pixel disparity. It is perhaps more clever to instead use a variation of this idea that is less

sensitive to outliers, for example the median absolute deviation, which is usually advocated

(e.g. [105]) over standard deviation for characterizing magnitude of deviation in the form
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of the median of the absolute-valued deviations from the median, but could be instead set

to track the median of the absolute valued difference of corresponding weights, but this

is not standard practice in either image quality assessment or the loss function of neural

networks. Suffice it to say that the MSE may not be very informative, and that other

average direct correspondence measures could be slightly less uninformative, but average

non-correspondence being low for blur on homogeneous images may say something also about

its inability to discern neural network weights, which look may look reasonably homogeneous

when plotted as an image.
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Figure 2.21: Discriminator weight mean-squared error (MSE) distance matrices calculated for
each convolutional layer (and for the learnable layer biases separately) and the terminal Dense
layer. Stars next to the layer name conventionally indicate the significance of comparing the
things-things to the stuff-stuff comparison quadrant using a Wilcoxon rank-sum test, which
is highly misleading given the lack of independence and the susceptibility of hypothesis tests to
outliers. The synthesis failure classes (bright lower cross converging in lower right) dominate
the comparisons as their network weights are strongly different to the others on a point-
to-point basis. The strongest Things vs. Stuff distinction can be perceived in the terminal
Dense layer, the 3rd convolutional layer’s bias, and the 5th convolutional layer, with things
networks being more dissimilar from each other in these areas. By the final convolutional
layer, some strong dissimilarities have emerged in the bias. Developmental differentiation
under MSE for content/class is thus relatively late for GAN discriminators. Hotter colors
indicate more dissimilarity between a pair of networks.
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Figure 2.22: Generator weight mean-squared error (MSE) distance matrices calculated for
each convolutional layer (there are no learnable biases) and the initial Dense layer. The
extra training of the second boom-box network is clearly visible in the upper left, and the
synthesis failures also remain visible. A pronounced difference in Thing-Thing vs. Stuff-Stuff
comparisons is only seen in the beginning Dense layer which translates the incoming noise
of encoding space and then this strongly reemerges by the final convolutional layer which
produces the output patch. The characteristic pattern consists of close to zero individuation
between stuff, maximum individuation between things, and intermediate individuation where
Stuff networks are compared to Thing networks. Interior layers in GAN generators are thus
relatively similar on a point-to-point basis despite large changes in content. Hotter colors
indicate more dissimilarity between a pair of networks.
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Geometric-location-of-model disparities: L1 and L2 Norm

Alternatively, networks can be imagined as points in a high-dimensional space. Our discrim-

inators, for example, can be considered in terms of their learnable parameters as existing as

points in a 4,356,289-dimensional design space.

Then the natural distance is the Euclidean distance, the Minkowski distance associated with

(the difference is taken in each term contributing to) the L2 norm in the family of Lp norms:

d(a, b) =
√

(a1 − b1)2 + (a2 − b2)2 + ...+ (an − bn)2

||v||2 =
√

(v1)2 + (v2)2 + ...+ (vn)2 ||v||p =
p
√

(v1)p + (v2)p + ...+ (vn)p

Exploring other p-norms, the infinite norm ||v||∞ = max(v1, v2, ..., vn) doesn’t contain much

information. But the L1 norm, whose corresponding Minkowski distance is also known as the

Manhattan (or, for easily-intuited-to-be-related reasons, the taxicab) distance, is interesting

because it is at least as big as the Euclidean distance and because the distance is simply

accumulated on each coordinate axis (dimension).

d1(a, b) = |a1 − b1|+ |a2 − b2|+ ...+ |an − bn|

Of course, the L1 and L2 norm can be expected to be quite similar in how they portray the

pairwise relationships between networks because they are distinguished only in the squaring

of the terms and then the square root of the sum. However, the squaring is likelier to

be susceptible to the influence of outliers, and since some outliers are eventually going to

surface in very-high dimensional data, it is of some interest to see if these distances differ
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qualitatively.
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Figure 2.23: Discriminator weight Manhattan (L1 Norm) distance matrices calculated for
each convolutional layer (and for the learnable layer biases separately) and the terminal
Dense layer. Unlike the MSE, the L1 norm notion of distance does not reveal the strong
characteristic pattern of Thing-Thing vs Stuff-Stuff separation in the convolutional layers
proper, but does consistently in the bias (where dissimilarity grows until the 4th convolutional
layer’s bias, and then recurs very strongly in the final bias). The terminal Dense layer also
exhibits a pattern of low L1 norm separation between Stuff networks. Hotter colors indicate
more dissimilarity between a pair of networks.
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Figure 2.24: Generator weight Manhattan (L1 Norm) distance matrices calculated for each
convolutional layer (there are no learnable biases) and the initial Dense layer. The charac-
teristic pattern is only observed in the last convolutional layer of the generator, suggesting
that content specialization is late as observed through the L1 norm. Hotter colors indicate
more dissimilarity between a pair of networks.
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Figure 2.25: Discriminator weight Euclidean (L2 Norm) distance matrices calculated for each
convolutional layer (and for the learnable layer biases separately) and the terminal Dense
layer. The layer disparities are extremely similar to those calculated for the L1 norm, which
is reasonable given the similar formulation of the L1 and L2 norms and the extremely high
dimensionality. Blue pixels indicate pairs of networks that are relatively more close to each
other in a 4.3M-dimensional space when the networks are thought of as points. Hotter colors
indicate more dissimilarity between a pair of networks.
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Figure 2.26: Generator weight Euclidean (L2 Norm) distance matrices calculated for each
convolutional layer (there are no learnable biases) and the initial Dense layer. Again, the
characteristic pattern is observed for the generator only in the final convolutional layer. The
pattern is again extremely similar to that of the L1 norm, suggesting that having two of
these Minkowski norms is redundant when comparing GANs. Blue pixels indicate pairs of
networks that are relatively more close to each other in a 21.6M-dimensional space when the
networks are thought of points. Hotter colors indicate more dissimilarity between a pair of
networks.
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Weight distribution disparities: Jensen-Shannon & Signchain

The direct notions of distance can be supplemented with a different notion of disagreement

of network parameters. If a similar pattern of connectivity in a layer emerged but with the

pattern shifted or otherwise not aligned, ordinary distances would fail to credit the similarity.

One way of seeing if the values are comparable is to examine the distance between the

empirical weight distributions.

One such distance is the Jensen-Shannon Divergence, which is chosen over the Kullback-

Leibler divergence because the former is symmetric, or insensitive to the order of the argu-

ments.

The Jensen-Shannon Divergence is:

DJS(P ||Q) =
DKL(P || (P+Q)

2
)

2
+
DKL(Q|| (P+Q)

2
)

2

where the KL divergence (or relative entropy) between two distributions P and Q over the

same space X is:

DKL(P ||Q) =
∑
x∈X

P (x)log

(
P (x)

Q(x)

)

In this case, we actually use the derived Jensen-Shannon distance dJS, which is the square

root of the divergence dJS =
√
DJS.

As stipulated in Chapter 1, the empirical distributions are extemporaneous (meaning that

the range of observations and bins is not preplanned), so the Jensen-Shannon distance is not

necessarily measuring the same weights equally. If weight ranges were vastly different be-

tween comparison networks, this would not be appropriate – even as a preplanned histogram
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for all comparisons might also be misleading if, choosing the largest range in one example, it

put all bins in one place through the in-common histogram function. However, we already

know through the weight clipping of WGAN (vs. the gradient penalty of WGAN-GP) that

neural network weights within a circumscribed range still function to compute as long as the

range is suitably commodious relative to precision (e.g. [8] prescribed a clipping parameter

of 0.01, leaving weights bounded in [-0.01,0.01]), and if neural networks being trained mostly

fill out representation space (this appears an unstudied question), then this is an acceptable

approximation.

As a companion to the Jensen-Shannon distance, we can consider the signchain distance

proportion, which also can measure how well discrete distributions cohere, although on a

sub-ordinal basis. As such, if it measures something like the JS distance does, we should

see a similar pattern in the dissimilarity matrix, but one that appears to be a weaker signal

than the JS distance.

The signchain distance proportion Υ̂(~a,~b ) was defined in 1.2, but is simply the proportion

of bits in the signchain which do not agree.

In total, the weights of a layer are flattened for the two networks, the extemporaneous

histogram of 32 bins is taken separately so that resulting vectors have their JS distance

calculated, and also the extemporaneous histogram of 33 bins yielding 32-bit bitstrings is

taken and Υ̂ is calculated for the bitstrings.
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Figure 2.27: Discriminator weight distribution Jensen-Shannon distance matrices calculated
for each convolutional layer (and for the learnable layer biases separately) and the terminal
Dense layer. Distributions are estimated from a 32-bin adaptive histogram of the weights.
While quadrants can be visually individuated (especially in the Dense layer and final con-
volutional bias weights) with some difficulty, the characteristic pattern is not visible. The
things vs. stuff cross-comparisons show that network weight distributions are maximally
individuated when comparing Thing networks and Stuff networks. Things and Stuff GAN
discriminators thus seem to differ detectably in their weight distributions in the final Dense
layer, whereas their spatial locations and MSE match differ more among Things networks.
Hotter colors indicate more dissimilarity between a pair of networks.
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Figure 2.28: Generator weight distribution Jensen-Shannon distance matrices calculated for
each convolutional layer (there are no learnable biases) and the initial Dense layer. No char-
acteristic pattern is observed, nor is any fully consistent pattern. There is somewhat reliably
less divergence among Thing classes. Hotter colors indicate more dissimilarity between a pair
of networks.
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Figure 2.29: Discriminator weight distribution Signchain distance matrices calculated for
each convolutional layer (and for the learnable layer biases separately) and the terminal
Dense layer. Distributions are estimated from a 33-bin adaptive histogram of the weights,
giving a 32-bit signchain. The Dense and first convolutional bias layers are reminiscent of a
weaker form of the pattern established for the Jensen-Shannon distance in the Dense layer.
This suggests that the signchain distance only weakly performs a similar function to the
Jensen-Shannon distance. The remaining patterns effectively resemble visual noise. Hotter
colors indicate more dissimilarity between a pair of networks.
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Figure 2.30: Generator weight distribution Signchain distance matrices calculated for each
convolutional layer (there are no learnable biases) and the initial Dense layer. Every layer is
grossly visually reminiscent of a weaker version of the GAN generator results for the Jensen-
Shannon distance, with this relation being stronger than that for the discriminator. Hotter
colors indicate more dissimilarity between a pair of networks.
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Weight neighborhood “appearance” disparities: SSIM of “Weight Portraits”

In addition to the traditional notion of distance, the distributional divergences, and the point-

to-point lack of correspondence, there is also the notion of visual nearness, or similarity. Of

course, machine estimates of visual similarity are the province of neural networks. To avoid

the problem of having to specify some auxiliary neural network and attempt the learning

of discrete levels of similarity, a researcher might turn to one of the image similarities often

said to be “perceptually-motivated”. Perhaps the most famous putative perceptual quality

measurement is the Structural Similarity Index metric, or SSIM, of Wang et al 2004 [174].

The SSIM is defined as a function (for simplicity, the combination function’s exponents are

set to 1) of three components, a luminance term, a contrast term, and a “structure” term:

S(x, y) = f(l(x, y), c(x, y), s(x, y)) = l(x, y)α · c(x, y)β · s(x, y)γ

The terms are computed where “luminance” is based on average pixel intensity and a denom-

inator smoothing constant C1 based on the pixel range of the image and a small coefficient,

l(x, y) =
2µxµy + C1

µ2
xµ

2
y + C1

constrast is computed with an exchange for the standard deviation,

c(x, y) =
2σxσy + C2

σ2
xσ

2
y + C2

and “structure” is computed using the joint variance (read: covariance) over the product of

variances (in total, the correlation coefficient):
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s(x, y) =
σxy + C3

σxσy + C3

Importantly, the means and standard deviations are local, computed in the neighborhood

around a pixel for the pixel. The neighborhood is weighted with a symmetric Gaussian

to falloff evenly so that closer pixels to the current pixel are weighted more and to reduce

blocking artifacts. The MSSIM (or mean SSIM) is merely the mean of the scalar field created

corresponding to image pixels for the SSIM. When the “SSIM” is reported, it is typically

actually the MSSIM.

The implementation used in this investigation [164] ignores pixels around the edge in the

SSIM field as the filter implementation may vary for how it deals with pixels whose windows

go off the edge, and uses a 7x7 kernel and window, a σ = 1.5 for the Gaussian windowing,

K1 = 0.01, and K2 = 0.03 for the constants K used to set the constants: C1 = (K1L)2, C2 =

(K2L)2 based on the range L which is 255 for (the 8-bit) images, and the maximum 32-bit

floating point number ∼ 3.4x1038 otherwise (including here, for weights).

The (M)SSIM is often shown in direct comparison to the MSE, by revealing some images with

large perceptually apparent degradation from a reference but equal MSE. The SSIM of these

images varies. However, there is little reason to suspect that this cannot be just as easily

done for the equal-SSIM “hypersphere”. How to accomplish that was studied by Dosselmann

and Yang in 2008 [41], who characterized this kind of demonstration as a “deception” and

showed that the luminance and contrast terms taken away yielding just the structure term

was heavily related to MSE. Amusingly, they derive equations for transferring back and

forth from each term (with the exception of contrast) to MSE! As SSIM has proliferated

and has become used in computer vision and computer graphics (and also the entertainment

industry, with the original authors winning an Engineering Emmy in 2015), researchers [127]

have become very concerned with discovering its edge cases, such as where there are patches
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of low-intensity or regular intermediate-range variation that is missed due to the windowing.

While the SSIM is not deeply reminiscent of the human visual system in any way, and this

is perhaps obvious to some, it does degrade very severely with the addition of noise, and

noise is what our weights might look like. To get the weights in a format that is suitable for

the 2D windows of SSIM, the weights are flattened as usual but then reshaped with suitable

trailing zero-padding into the nearest square matrix, which we may call the weight portrait.

The MSSIM of the two weight portraits are what is compared across networks.
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Figure 2.31: Weight portraits of the final convolutional layer of the generator for the AK47
network and the boom-box network. Note that there is no padding because

√
1600 = 40.
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Figure 2.32: Weight portraits of the final convolutional layer of the generator for the c047
network and the c191 network, plotted with common color axes. The stuff networks are
much more visually similar and homogeneous than the thing networks.
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It can be seen when plotting with identical false color assignment the last convolutional layer

of the generator for a pair of Things (Fig. 2.31) and a pair of Stuff (Fig. 2.32) that the

weight portraits for Things and Stuff look qualitatively different. The weight portraits of

the Stuff are themselves homogeneous, whereas the weight portraits of the Things are not,

looking like the Stuff portraits overlaid with irregular (and thus possibly meaningful) noise.

If the pattern of these pairs holds up, it predicts a SSIM similarity matrix for this layer will

show the characteristic pattern (low variation, or high similarity, for Stuff).
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CONV2DBIAS_5****
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DENSE****

0 1

SSIM   between classes (GAN)

Figure 2.33: Discriminator weight portrait SSIM matrices calculated for each convolutional
layer (and for the learnable layer biases separately) and the terminal Dense layer. Barely
any similarity can be observed between anything in the convolutional filter weights proper,
but Stuff-to-Stuff comparisons show that many Stuff networks appear similar to each other
in intermediate convolutional layer biases. The weights are flattened into a list and then
reshaped into the closest fitting square with zero-padding added so that the SSIM, which
processes statistics on windows of 2D images can be defined. Hotter colors indicate less
dissimilarity between a pair of networks.
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Figure 2.34: Generator weight portrait SSIM matrices calculated for each convolutional layer
(there are no learnable biases) and the initial Dense layer. SSIM of Stuff-Stuff network com-
parisons is high except in the intermediate layers, but the characteristic pattern (including
intermediate distance for Thing-Stuff comparisons) is very firmly established by the final
convolutional layer just prior to the synthesized image. If SSIM were truly perceptual, stuff
heatmaps of the weights themselves would by this layer look relatively similar compared to
thing heatmaps. Hotter colors indicate less dissimilarity between a pair of networks.
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Notably, the synthesis failure networks (which were deficient performers) and the duplicate

boom box network with more training (which was for obvious reasons an above-average

performer) are both visible within many of the distance matrices. The synthesis failures are

seen in the cross that intersects in the middle of the Stuff-Stuff quadrant, and the overtrained

network is visible more rarely (for example, it is easily seen in the pure-distance MSE and p-

norm matrices) in the upper left hand corner, in the beginning of the Thing-Thing quadrant.

This suggests that with a field of enough networks with convergence and common training

time, that this method of visualization could be used forensically to discover synthesis failures

and, perhaps more practically in some abstract contest, cheating by overtraining.

To confer an idea of the importance of studying the characteristic pattern, the Wilcoxon or

Mann-Whitney U statistic’s induced level of significance separating the Thing-Thing quad-

rant (QII) affinity values from the Stuff-Stuff quadrant (QIV) values is hinted at using the

conventional star-notation for significance. The precise Us and p-values are not reported,

somewhat for brevity, and somewhat because these are not valid or effective tests. To see

that they are not effective, notice that the Wilcoxon results are unusably more promiscuous

than visual confirmation of a characteristic pattern. This is because hypothesis tests are

normally formulated in terms of means or things like means and they are then subject to the

influence of outliers, which is extremely significant here due to the presence of the synthesis

failure classes. In the presence of anomalies, this is fatal. Further, the test is not legitimate

because even though it is nonparametric, the activation values are anything but statistically

independent due to such factors as the dependence induced by row and column relations

corresponding to primary and secondary network in the pairwise comparison.
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Strong Characteristic Pattern
(low Stuff-Stuff network variation,

high Things-Things variation)
5th Convolutional Layer, Generator (MSE, L1Norm, L2Norm, SSIM)

Weak Characteristic Pattern
(low Stuff-Stuff network variation,

high Things-Things variation)

2nd Convolutional Bias Layer, Disriminator (SSIM)

3rd Convolutional Bias Layer, Discriminator (L1Norm, L2Norm, SSIM)

4th Convolutional Bias Layer, Disriminator (SSIM)

Dense Layer, Discriminator (L1, L2, SSIM)

Strong Inverse Characteristic Pattern
(high Stuff-Stuff network variation,

low Things-Things variation)
(none)

Weak Inverse Characteristic Pattern
(high Stuff-Stuff network variation,

low Things-Things variation)
(none)

Cross-Comparisons Most Severe Pattern
(highest Stuff-Things network variation)

5th Convolutional Layer Bias, Discriminator (JSDivergence)

Dense Layer, Discriminator (JS Divergence, Signchain Distance)

Table 2.1: Subjective presence of characteristic Things-Things vs. Stuff-Stuff quadrant
separation in interclass GAN model comparisons

2.3 Comparative Behavior of Architecturally Identical

GAN-origin vs. non-GAN/direct Discriminators

In the previous sections, the labeling affinity and the model parameter affinity of the classes

in the GANsemble were described. DCGANs, and especially committees of WGAN-GP

models, are clearly not the most efficient networks to train if all you desire is recognition.

Since GAN-origin-discriminators only experience their own class and their loss is tuned

towards avoiding being tricked by their generator, it is interesting to consider what precisely

you give up discriminability-wise in assuming the GAN loss and forgoing experiences out-of-

class.

This area is not at all well-studied: of course there are investigations into ensembles of

169



GANs, given the immense popularity of the family of architectures, but the focus is on

synthesis quality, not comparative studies of discriminability, and in at least one case involves

ensembles of GANs where the ensemble is mostly comprised of the action of generators with

different initializations being picked randomly to produce outputs [173] [108].

2.3.1 The “NONGAN”, and its loss function

A priori, you can expect that the pressure of GAN synthesis isn’t going to produce a good

classifier since it is not constrained to bear directly on the universe of alternative input at

all. Admittedly, to compare state-of-the-art, specifically designed recognition networks to

any GAN on its own is foolish.

It is simply unfair to compare any GAN-origin-discriminator against a good purpose-built

discriminator of varying architecture. The fairest comparison is to be had with its NONGAN-

origin-complement, which is the architecturally exact equivalent that differs only in the

training rule.

Gone is the WGAN-GP procedure with its interpolative gradient penalty, the weight clipping

of WGAN, and the extra discriminator passes afforded by the wcritic hyperparameter. The

loss for a NONGAN we define presently to be just the binary cross-entropy loss previously

mentioned in the theoretical description of the GAN.

However, owing to our previous intuition, and to assure maximum validity of comparison,

no nonlinearity is revised into the architecture. This is seemingly inappropriate given the

likelihood of saturating one side of the loss asymmetrically, but it does preserve the wish of

no change, however minor, to the architecture.

For each network in the GANsemble, a NONGAN complement has been trained, forming a

NONGANsemble.
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One believes that the detailed comparison of the GAN and NONGAN, afforded by the Things

vs. Stuff distinction, is its own important contribution not just because it considers the loss

sustained in assuming the GAN loss function, but also the ability of a Same/Different classi-

fier to recognize and generalize, and beyond this, the possibility that GANs and NONGANs

(or at least a collection of each embodied in a GANsemble and NONGANsemble) can be

shown to measure different things. It could then be, in the future, eventually discerned

if the judgments of GANs and NONGANs and special divergences between their behavior

and their models could inform a hybrid model or new diagnostic criteria for the training or

evaluation of recognizers and synthesizers.

2.3.2 NONGAN interclass labeling affinities on fake vs. real im-

ages

The NONGAN discriminator does not have the burden of determining real from fake images

and bootstrapping synthesis with a generator; we should expect more, then, of the NON-

GANsemble in terms of facilitating recognition and similarity. This expectation is fulfilled,

as we can see when we examine the pairwise activation affinity matrices for real images and

fake images (Figures 2.35 and 2.36).

Immediately, it can be seen that baseline subtraction is not needed to get rid of the streaky

pattern indicative of individual firing regimes in the unsubtracted activation of the GANsem-

ble. For both reals and fakes, this pattern holds in the raw activation and the baseline-

subtracted activation (critically, the baseline is still assessed on fakes from the GANsemble).

The divisive normalization undoes this progress in both cases, revealing the individual firing

regimes. Otherwise, for both reals and fakes, this individual regime pattern is evinced most

in the baseline-subtracted affinity, but only for NONGANs that were trained on Stuff (see

the streaks predominantly down the right side of the baseline-subtracted affinity matrices).
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This suggests that direct discrimination of Stuff, like synthesis of Stuff, induces a lesser

pressure on improvement of recognition quality than Thing networks require in the course

of their training, or that there is at least less information they get to absorb on account of

the homogeneity of their input.

Additionally, in the raw activation with no baseline correction condition, the fake and real

affinity matrices have less graded and less severe negativity in the Stuff-Stuff quadrant,

which is as it was with the GANsemble, but presenting as less severe of a problem. Again

the streaked pattern is perceived somewhat, in the upper-right quadrant comparing Stuff and

Things, yet again when the Stuff networks must make determinations; baseline-subtraction of

the NONGAN matrices had also made the Stuff-Stuff comparisons more promiscuous. In the

case of the NONGAN, there is from the outset (when division is avoided) an asymmetry of

polarity favoring negative activation, and in fact, only the target class gets positive activation.

Just as with the GANsemble duplicate Thing classes of boom box and theodolite can both

be seen distinctly as squares partially off the diagonal.

The preferred strategy, then, for the NONGAN is to not undertake baseline-subtraction since

it is naturally a notion needed for dealing with the bipolarity of the WGAN-GP-induced ac-

tivation and the compensation factor (i.e. the baseline) is dependent on the GAN anyway.

The graded dissimilarity being more pronounced everywhere here is strongly indicative of

the better quality of direct discriminators for classification and similarity, although the joint

information of a classifier more complex than the argmax is likely to overwhelm this differ-

ence, at least with the small number of classes (32) we have studied. Producing similarity

judgments, however, is a subtler distinction to make, and since the potential informativeness

(especially for Thing-trained perceivers) is so rich, we should expect to see for the GANsemble

relative to the NONGANsemble a serious degradation in coarse measurements of similarity

(such as top misclassifications) and maybe some significantly perceptible loss in a method

that uses joint information from affinity effectively (such as producing a low-dimensional
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embedding of the matrix into an informative plane).
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Figure 2.35: NONGANsemble firing affinity matrices on fake images for a) raw-activation,
b) baseline-division, c) baseline-subtraction.
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Figure 2.36: NONGANsemble firing affinity matrices on real images for a) raw-activation,
b) baseline-division, c) baseline-subtraction.

2.3.3 Interclass model parameter distances redux, for NONGANs

The visualization-based demonstration along the lines of characteristic pattern quadrant

analysis demonstrated for the GANsemble in Section 2.2.3 is repeated in this section, but

for the parameter “distance” matrix created by deeply comparing the discriminators of the

NONGANsemble.

There is little to note here beyond what was developed already, except that whereas the

GANsemble did not experience the inverse characteristic pattern, the NONGANsemble did,

along the pure distance type measurements as well as the SSIM in the bias of the first

convolutional layer. The characteristic pattern was observed for these same measurement
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types in the Dense layer. Only the Jensen-Shannon distance of the first convolutional layer’s

bias evidenced maximum network distance in the Thing-Stuff cross quadrants. This is in

stark contrast to the GANsemble, which experienced the majority of its stereotyped patterns

in the ending stages of the network, with weak characteristic pattern developing throught

the network for SSIM.

The conclusion, then, probably is that the NONGAN develops the Thing vs. Stuff dichotomy

very early in the course of its discrimination: it has demonstrated this facility by the end of

the first convolutional layer, and the separation recurs somewhat more weakly in the terminal

dense layer, but with alternate, and now canonical, polarity: low Stuff-Stuff variation, high

Things-Things variation. Why Stuff-Stuff network comparisons are emphasized early is a

bit of a mystery in terms of possible explanation, but it could be simply that, for the

NONGAN, it is possible immediately from the edge detection level of abstraction filters in

the first convolutional layer to disentangle Stuff, and that these earlier layers are highly

specialized for that purpose: the notion of “early” or “late” here is not that of training time

but of the early vs. late debate concerning circuitry of the human visual system.

Object (or “Thing”) perception has long been linked with activity in inferotemporal cortex

as a later stage of processing past the early visual cortex, and the single-cell recording

work in 2010 of Rust and DiCarlo [138] showed in rhesus macaques that neural activity in

V4 and IT could be combined with a support vector machine to predict which of several

objects, presented under differing simple transformations, was being presented at the time

of recording. Although extracting this information from macaques and subjecting it to an

SVM on an external computer doesn’t particularly reverse-engineer the algorithms used by

the brain (i.e. it is not a Marr level 2 investigation), it does show that more of the available

information is present (in a linearly separable sense) by the point of IT, and demonstrated a

“V4-to-IT gain in tolerance” to simple transformations – but, appropriately, not necessarily

identity-changing transformations, as Rust and DiCarlo amusingly used the failure case
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of Portilla and Simoncelli synthesis, the tendency to turn inhomogeneous texture such as

faces and figures into flowy, veiny, streaky silk or rock-like homogeneous texture, to produce

“scrambled” stimuli.

Considerably less research focuses on localizing likely neural representations of homogeneous

patches, as the complexity continuum’s extremes of simple gratings and objects have at-

tracted more functional neuroanatomy interest. Notably, though, a study by Jacobs et al. in

2014 [87] used fMRI in two ways to try to get at the loci of Stuff representations. In the first

paradigm, viewers looked at material patches like wood, fabric, and stone, and a linear näıve

Bayes classifier was used on the full brain as well as mostly early region (V1, V2, V4, and

also the PPA) region-of-interest voxel data. V1 voxels were the most informative of early

areas for the ROI analysis, and the full brain analysis yielded informativeness arising from

the supramarginal gyrus, which the authors claimed has shown more activation to roughness

judgments than aesthetic judgments in their work. In the second, an adaptation task, similar

analysis highlighted the right parahippocampal gyrus, and again but less strongly the supra-

marginal gyrus. Because research concerning Things and Stuff, beyond early visual cortex,

currently focuses on different areas, it is currently difficult to make a determined stance on

whether Thing processing is conclusively later than Stuff processing. Early areas, such as

V2, of course show specific responding (in macaques) to complex stimuli like hyperbolic and

polar gratings [75] that might resemble some classes of homogeneous texture, and these areas

naturally exhibit activation for visual stimuli in general.

If the NONGAN is comparatively better at discrimination of final results because it does

not have to contend with discerning current fakes as the GAN does, then there may be more

opportunity allocated to tuning early vision to do better on otherwise similar homogeneous

texture. The GAN, by constrast, would seem to develop this capability for representing the

dichotomy only once, and in late stages of this highly simplified model of the visual system,

whereby it is able to pull in all of the previous nonlinear projection capability of the earlier
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layers of the network.
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Figure 2.37: NONGAN Discriminator weight mean-squared error (MSE) distance matrices
calculated for each convolutional layer (and for the learnable layer biases separately) and the
terminal Dense layer. The characteristic pattern is found in the terminal dense layer only
but there is more similarity amongst Things networks in the contributing bias layers.
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Figure 2.38: NONGAN Discriminator weight L1 Norm distance matrices calculated for each
convolutional layer (and for the learnable layer biases separately) and the terminal Dense
layer. The characteristic pattern is found in the Dense layer but the inverse characteristic
pattern is found in the first bias layer.
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Figure 2.39: NONGAN Discriminator weight L2 Norm distance matrices calculated for each
convolutional layer (and for the learnable layer biases separately) and the terminal Dense
layer. As with the L1 Norm, the characteristic pattern is found in the Dense layer and the
inverse pattern is found in the first bias layer.
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Figure 2.40: NONGAN Discriminator weight Jensen-Shannon distance matrices calculated
for each convolutional layer (and for the learnable layer biases separately) and the terminal
Dense layer. A clear characteristic pattern is found nowhere but the first bias layer and all
subsequent (layer 2,3,4,5) convolutional layers are opposed in their patterning.
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Figure 2.41: NONGAN Discriminator weight signchain distance matrices calculated for each
convolutional layer (and for the learnable layer biases separately) and the terminal Dense
layer. A pattern of dissimilarity pervades; the signchain distance for NONGANs is even
more weakly related to the Jensen-Shannon distance.
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Figure 2.42: NONGAN Discriminator weight SSIM matrices calculated for each convolu-
tional layer (and for the learnable layer biases separately) and the terminal Dense layer. The
characteristic pattern appears in the first convolutional bias (but since this is a similarity it
is actually the inverse characteristic pattern). Strong similarity is observed between Thing
networks in all layers of the bias. There is extremely weak elevated similarity amongst Stuff
by the time of the Dense layer preceding the discriminator’s decision.
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Characteristic Pattern
(low Stuff-Stuff network variation,

high Things-Things variation)
Dense Layer (MSE, L1Norm, L2Norm, SSIM)

Inverse Characteristic Pattern
(high Stuff-Stuff network variation,

low Things-Things variation)
1st Convolutional Layer Bias (MSE, L1, L2, SSIM)

Cross-Comparisons Most Severe Pattern
(highest Stuff-Things network variation)

1st Convolutional Layer Bias (JSDivergence)

Table 2.2: Subjective presence of characteristic Things-Things vs. Stuff-Stuff quadrant
separation in interclass NONGAN model comparisons

2.3.4 Intermodel parameter distances between GAN and comple-

mentary NONGAN, early vs. late specialization for loss vs.

content

The immediately preceding section discussed the early vs. late vision debate as embodied in

the Things vs. Stuff dichotomy in the GANsemble and NONGANsemble separately. That

discussion looked at the lateness distinction in terms of specialization for content. There

is another way we can look at the pressure of the choice of loss function directly, to intuit

“when” specialization for the loss function itself is likely to most severely occur.

Since the GANsemble and NONGANsemble use fully commensurable architecture and train-

ing, it is appropriate to look at the GAN and NONGAN networks as pairs, and take the

“difference” between these dual representations of the unrectified DCGAN architecture dis-

criminator along parameter disparity lines. The Wilcoxon significance level is still indirectly

signified in the parameter distance vectors. Indeed the test between the leading Things seg-

ment and trailing Stuff segment of each vector comports more often with visual inspection

of a systematic difference because the problem of the two-dimensional dependency has been
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eliminated. However, the Wilcoxon test is still subject to outliers, despite the rank-based

formulation of the statistic. This provides a general caution about depending on these tests

absent visual or carefully automated inspection of dichotomous data.

The characteristic pattern for the Things vs. Stuff vector is still low Stuff variation and high

Thing variation. As shown in Table 2.3, no easily apparent inverse characteristic pattern

was observed. The characteristic pattern (again, of the relative fungibility analogously to

promiscuity of Stuff networks) is observed, but only nearly comprehensively by the terminal

Dense layer. The signchain distance, a weak version of the Jensen-Shannon distance be-

haviorally before, reveals no systematic change. The L1 and L2 norm and SSIM detect a

difference in the third convolutional layer’s bias, which is still reasonably late.

Note that nearly all of the dichotomy consistent or dichotomy related stereotyped patterns

subjectively observed have been either with the Dense layer or the bias components of the

convolutional layers. This suggests that the bias does most of the heavy lifting related to

specialization for content and for loss in deep convolutional recognizers. There is a limitation

to this that is inherent in the visual inspection and that is that there are many fewer compo-

nents (the weight vectors have much lower dimension) in these as opposed to the main filter

implementing weights of the convolutional network and so a dichotomy might not appear

very strongly, or it might even hinge on a few sparsely distributed weights.

But from a relative persepective, this investigation has seemed to show that the specialization

for the kind of loss happens “after” early visual circuitry and simple filters, towards the

middle of the network. The specialization for content, at least so far as it is only discoverable

in the presence of the gross Things vs. Stuff dichotomy, happens only at the end for the GAN

and only at the convolutional extremes (suggesting survival of this information in middle

layers) for the NONGAN.

If early vs. late development of the dichotomy is linked to a tradeoff in discriminative com-
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petence, then it is important to measure competence of this particular DCGAN architecture

objectively, at least for the NONGAN where some form of protection against overfitting

can be employed without the cost of training the highly expensive WGAN-GPs on sepa-

rate folds of data or sacrificing the already precious sample count. And if Things and Stuff

GANsembles and NONGANsembles should be convened separately because of their statis-

tical distinction, it is important for establishing these committees to be able to briskly take

an unknown class and corresponding network and assign it a Thing or Stuff metacategory

label so that it can be properly referred.
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Figure 2.43: Per-network GAN vs. NONGAN discriminator layerwise MSE of the weights.
As before, the synthesis failure classes c093 and c129 are detectable anomalies. The largest
MSE differences found are for the final convolutional layer’s bias and the terminal Dense
layer prior to the decision. In both cases, the Thing GANs and their respective NONGAN
complements vary more between each other. Other layers are relatively similar (cool) between
GAN and NONGAN compared to the synthesis failures, irrespective of Thing or Stuff class
affiliation. As before, a Wilcoxon rank-sum test is run between things and stuff and the
significance is conventionally signaled with asterisks – this test is less miseleading because
of the decreased dependence but is still susceptible to outliers.
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Figure 2.44: Per-network GAN vs. NONGAN discriminator layerwise L1 Norm of the
weights. The largest L1 Norm differences are found in the middle (3rd) convolutional bias
and the terminal Dense layer. The final convolutional bias layer is highly variable in GAN-
NONGAN distance.
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Figure 2.45: Per-network GAN vs. NONGAN discriminator layerwise L2 Norm of the
weights. The largest L2 Norm differences are found in the middle (3rd) convolutional bias
and the terminal Dense layer. The final convolutional bias layer is highly variable in GAN-
NONGAN distance. As with the interclass distances, the L2 norm very strongly resembles
the L1 norm, suggesting that including both of these measures is redundant.
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Figure 2.46: Per-network GAN vs. NONGAN discriminator layerwise Jensen-Shannon dis-
tance of the weight distributions. The only reliable Things vs. Stuff Jensen-Shannon dis-
tance difference is found in the terminal Dense layer. Otherwise the weight distributions
vary wildly.
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Figure 2.47: Per-network GAN vs. NONGAN discriminator layerwise Signchain Distance
of the weight distributions. No reliable Things vs. Stuff Signchain distance difference is
found. As with the Jensen-Shannon distance, the signchain distances vary considerably and
unpredictably from network to network.
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Figure 2.48: Per-network GAN vs. NONGAN discriminator layerwise SSIM (similarity) of
the weight distributions. The only reliable Things vs. Stuff SSIM difference is found in the
Dense layer and the 3rd convolutional bias term (as with the L1 and L2 norms). In both
cases Things matched network pairs have less SSIM-similar weights than Stuff.
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Characteristic Pattern
(low Stuff-Stuff network variation,

high Things-Things variation)

3rd Convolutional Layer Bias, (L1,L2,SSIM)

5th Convolutional Layer Bias, (MSE)

Dense Layer (MSE,L1,L2,JS,SSIM)

Inverse Characteristic Pattern
(low Stuff-Stuff network variation,

high Things-Things variation) (none)

Table 2.3: Subjective presence of characteristic Things vs. Stuff vector segment separation
in intraclass GAN-NONGAN model comparisons

2.3.5 Performance of an explicit Thing vs. Stuff recognizer, tested

or trained on held-out classes

In the context of panoptic segmentation [99] seeking to label each pixel with its identity

(as in semantic segmentation) but also to carve up the scene into sensible regions and parts

(more along the lines of classical image segmentation), omnibus Thing vs. Stuff classifiers

are obviously useful, and at least one [5] has manifested as an “objectness” classifier meant to

be used on windows of input passed over a scene. However, this method is explicitly scene-

based, viewing object patches as anomalies and is implemented using a Bayesian model

for combining heuristic cues for the presence of a Thing such as the density of detected

edges, neigbhorhood color contrast, and the connectedness of texturally-coherent superpixels

found by segmentation. Even prior to the introduction of impressive pixel-level labeling (i.e.

semantic segmentation), good techniques existed for inferring texturally-coherent regions

and their boundaries, such as the pointwise mutual information technique of Isola et al. [85]

or the many-cued hierarchical multiscale contour detection program of Arbeláez et al. [7].

Nevertheless, in consideration of defining a possibility in between panoptic segmentation

or semantic segmentation involving pixel labeling in terms of sophistication, we consider
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presently a direct discriminator for things and stuff that is simply a deep convolutional one

not based on heuristics. If our NONGAN architecture, albeit not designed at all to be state-

of-the-art and only to compare directly with GAN-origin complements, is at all competent, it

should be able to exhibit a reasonable degree of accuracy on the Things vs. Stuff distinction.

This accuracy can be assessed by training a NONGAN on the same patches but with modified

labels where the true class labels are replaced with 1 in the case of originating from the Things

metacategory and 0 if originating from the Stuff metacategory. There are some limitations

with the approach (the argmax accuracy only is considered, and there is no cross-validation

of the training of the GAN, so the good performance could reflect memorization and fail

to generalize), but this would establish the bare competency of the NONGAN in a limited

sense.

To avoid the problem of no cross validation of NONGAN training for this analysis only,

Figure 2.50 shows the accuracy of the direct Things vs. Stuff NONGANsemble trained on

the original Things vs. Stuff dataset used throughout this investigation on a second, held-out

dataset collected for this specific purpose from alternative classes. A mirror NONGANsemble

trained on the second dataset assesses the original set of classes as well. The NONGANsemble

trained on the second dataset does better, and perhaps this could be related to a lack of

synthesis failure classes in Stuff on that dataset, but as we have not incurred the substantial

cost (about 4 or 5 times the training time) to train a GANsemble for the second set of classes,

we do not know, nor do we have available held-out GANsemble accuracy data.
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Figure 2.49: Sample Things vs. Stuff images from the second held-out/comparison dataset
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Figure 2.50: Performance of NONGAN objectness detector a) trained on original dataset,
tested on heldout dataset; b) trained on heldout dataset, tested on original dataset
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2.3.6 Examining out-of-vocabulary misclassifications on held-out

data for GANs vs. NONGANs to confirm sensitivity to

similarity

Just as successful classification by strictly naive argmax prior to baseline subtraction is a

stricter expectation on success than successful classification using the joint information of

the full vector of label emissions from a GANsemble through the LDA classifier, there are

various levels of confidence we can have in the usefulness of the GANsemble relative to the

NONGANsemble for inducing good similarity maps.

A weak test is to take the affinity matrix and confirm that there is enough sensibly graded

negativity among classes to effect similarity, and a strong technique for implementing this

weak test is explored in detail in Chapter 3. A strong test along the lines of the argmax for

classification is examining the specific misclassifications of a GANsemble and NONGANsem-

ble on held out data.

If the GANsemble misclassifies in ways humans might objectively consider forgivable (such as

by seeing a treadmill when the network is actually given a self-propelled lawnmower, owing

to the similar handle structure of those objects), then it is more likely to have a strong

sense of similarity. Recall that a weakness of our non-cross-validated-through-GAN-training

approach used for expediency is that it could very plausibly be that the GANs could be

mostly memorizing sample information and are unable to contribute robust information to

classifiers. Strong preservation of similarity to completely out-of-repertoire classes is thus

related to generalizability of recognition, which seems itself an easier task than providing a

naturalistically agreeable judgment of similarity.

The GANsemble’s detailed top classification labels for each class of the second, held-out

dataset are listed below. The GANsemble is actually listed twice because the argmax for-
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mulation of classification allows other Stuff particularly to be dominated by the two Stuff

synthesis failure classes that are defectors on the committee emitting a different and not

sensibly graded activation value when presented with any patch; the second GANsemble

listing explicitly pretends these classes’ networks do not exist (i.e. they are forcibly ejected

from the committee for this sensitivity analysis alone).

The top classification labels are also enumerated from the perspective of the NONGANsem-

ble.

Examining these detailed misclassifications reveals that strong similarity is only likely for

the NONGAN. This is plausible since only the NONGANs have been exposed to alternative

class data. Can a robust idea of similarity in general (e.g. the shared pointyness of AK-47s

and sextants vs. the shared ornate shapes of theodolites and sextants) be learned from only

being exposed to one class? It seems a priori unlikely.

This should not be construed just yet to suggest that the networks working in tandem in

the GANsemble are likely to not generalize, nor that the single GAN-origin-discriminators

are consigned even themselves to not generalize for classification. It does suggest that single

GAN-origin discriminators do suffer in the similarity sensing domain relative to non-GAN-

origin discriminators, which is eminently reasonable.

GANsemble categorizes held-out dataset

012.binoculars

(c093 : 60)(c129 : 54)(c191 : 53)

(c032 : 14)(c118 : 14)

053.desk-globe

(c003 : 26)(c093 : 19)(c032 : 10)

(c118 : 9)(c129 : 8)

066.ewer-101

(c093 : 59)(c003 : 9)(c129 : 4)

(c066 : 3)(157.pci-card : 2)

077.french-horn

(c093 : 38)(c003 : 37)(157.pci-card : 5)

(c191 : 3)(c118 : 3)
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101.head-phones

(c003 : 33)(c093 : 28)(c191 : 22)

(021.breadmaker : 14)(c118 : 10)

110.hourglass

(c093 : 65)(c003 : 9)(c066 : 5)

(c118 : 2)(c191 : 1)

123.ketch-101

(c093 : 55)(c003 : 21)(003.backpack : 14)

(157.pci-card : 6)(c129 : 6)

139.megaphone

(c003 : 31)(c093 : 25)(c191 : 9)

(c118 : 6)(c129 : 5)

156.paper-shredder

(c003 : 39)(c093 : 26)(c129 : 7)

(c118 : 6)(c191 : 4)

174.rotary-phone

(c093 : 50)(c129 : 10)(c003 : 7)

(c191 : 5)(c118 : 5)

177.saturn
(c093 : 95)(c118 : 1)

182.self-propelled-lawn-mower

(c003 : 76)(c093 : 17)(c066 : 7)

(c191 : 6)(c118 : 5)

202.steering-wheel

(c093 : 73)(c003 : 8)(c191 : 6)

(021.breadmaker : 3)(003.backpack : 3)

211.tambourine

(c003 : 38)(c093 : 29)(c191 : 10)

(c118 : 6)(003.backpack : 5)

231.tripod

(c093 : 47)(c003 : 45)(c129 : 4)

(157.pci-card : 3)(021.breadmaker : 3)

243.welding-mask

(c093 : 45)(c129 : 17)(c191 : 8)

(c118 : 6)(c003 : 5)

c002
(c093 : 12)

c011
(c093 : 12)

c064
(c093 : 12)

c065

(c093 : 7)(172.revolver-101 : 3)(157.pci-card : 1)

(c129 : 1)

c071
(c093 : 12)

c072
(c093 : 12)
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c078
(c093 : 10)(172.revolver-101 : 1)(c129 : 1)

c083
(172.revolver-101 : 10)(183.sextant : 1)(001.ak47 : 1)

c090
(c093 : 12)

c119
(c093 : 10)(172.revolver-101 : 2)

c134
(c093 : 12)

c145
(c093 : 12)

c158

(172.revolver-101 : 8)(c093 : 2)(183.sextant : 1)

(001.ak47 : 1)

c168
(c093 : 12)

c182
(172.revolver-101 : 7)(021.breadmaker : 5)

c185
(c093 : 12)

Table 2.4: Top 5 categorizations of GANsemble argmax classifier attempting to categorize
held-out dataset. The synthesis failure classes dominate the other classes, often even when
Things are presented.

GANsemble (synthesis failures excluded) categorizes held-out dataset

012.binoculars

(c191 : 96)(c118 : 35)(c066 : 20)

(c032 : 19)(157.pci-card : 16)

053.desk-globe

(c003 : 26)(157.pci-card : 15)(c118 : 12)

(c032 : 10)(c191 : 8)

066.ewer-101

(157.pci-card : 18)(172.revolver-101 : 12)(003.backpack : 11)

(c003 : 9)(c066 : 7)

077.french-horn

(c003 : 37)(157.pci-card : 19)(172.revolver-101 : 13)

(001.ak47 : 6)(c118 : 5)

101.head-phones

(c191 : 33)(c003 : 33)(021.breadmaker : 16)

(c118 : 14)(c066 : 10)

110.hourglass

(c118 : 16)(157.pci-card : 15)(172.revolver-101 : 15)

(c066 : 11)(c003 : 9)
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123.ketch-101

(157.pci-card : 25)(c003 : 21)(003.backpack : 21)

(172.revolver-101 : 12)(183.sextant : 11)

139.megaphone

(c003 : 31)(c118 : 13)(c191 : 11)

(172.revolver-101 : 9)(157.pci-card : 8)

156.paper-shredder

(c003 : 39)(c118 : 11)(172.revolver-101 : 10)

(c191 : 7)(c032 : 6)

174.rotary-phone

(c191 : 19)(c118 : 17)(157.pci-card : 13)

(c066 : 9)(c003 : 7)

177.saturn

(157.pci-card : 38)(001.ak47 : 38)(003.backpack : 8)

(227.treadmill : 4)(172.revolver-101 : 4)

182.self-propelled-lawn-mower

(c003 : 76)(c191 : 10)(c066 : 9)

(172.revolver-101 : 7)(c118 : 7)

202.steering-wheel

(157.pci-card : 21)(c191 : 15)(172.revolver-101 : 13)

(021.breadmaker : 10)(c003 : 8)

211.tambourine

(c003 : 38)(c191 : 17)(c118 : 14)

(157.pci-card : 6)(003.backpack : 5)

231.tripod

(c003 : 45)(172.revolver-101 : 14)(c118 : 14)

(157.pci-card : 12)(183.sextant : 7)

243.welding-mask

(c118 : 22)(c191 : 19)(c066 : 9)

(157.pci-card : 8)(172.revolver-101 : 8)

c002
(001.ak47 : 7)(172.revolver-101 : 3)(183.sextant : 2)

c011

(172.revolver-101 : 5)(157.pci-card : 3)(183.sextant : 3)

(c118 : 1)

c064
(001.ak47 : 10)(c066 : 1)(172.revolver-101 : 1)

c065
(172.revolver-101 : 9)(157.pci-card : 2)(183.sextant : 1)

c071
(001.ak47 : 12)

c072
(001.ak47 : 12)

c078
(172.revolver-101 : 9)(183.sextant : 2)(c118 : 1)

c083
(172.revolver-101 : 10)(183.sextant : 1)(001.ak47 : 1)
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c090
(183.sextant : 9)(172.revolver-101 : 3)

c119
(172.revolver-101 : 10)(183.sextant : 2)

c134
(001.ak47 : 9)(172.revolver-101 : 3)

c145
(001.ak47 : 8)(172.revolver-101 : 3)(183.sextant : 1)

c158

(172.revolver-101 : 9)(157.pci-card : 1)(183.sextant : 1)

(001.ak47 : 1)

c168
(183.sextant : 7)(172.revolver-101 : 4)(157.pci-card : 1)

c182
(172.revolver-101 : 7)(021.breadmaker : 5)

c185
(001.ak47 : 12)

Table 2.5: Top 5 categorizations of GANsemble (synthesis failures excluded) argmax classifier
attempting to categorize held-out dataset. Synthesis failure classes have been removed,
but the GANsemble does not provide sensible similar miscategorizations, which doubtfully
portrays the successful generalization of the GANsemble argmax to other classes or even
data (given that our reported accuracies are not cross-validated through the training of the
GAN).

NONGANsemble categorizes held-out dataset

012.binoculars

(003.backpack : 57)(016.boom-boxB : 22)(238.video-projector : 19)

(172.revolver-101 : 19)(208.swiss-army-knife : 15)

053.desk-globe

(219.theodolite : 15)(219.theodoliteB : 11)(238.video-projector : 9)

(003.backpack : 8)(157.pci-card : 6)

066.ewer-101

(246.wine-bottle : 10)(021.breadmaker : 10)(219.theodolite : 9)

(208.swiss-army-knife : 8)(070.fire-extinguisher : 7)

077.french-horn

(157.pci-card : 18)(027.calculator : 13)(219.theodolite : 12)

(183.sextant : 10)(172.revolver-101 : 7)

101.head-phones

(003.backpack : 24)(246.wine-bottle : 21)(208.swiss-army-knife : 15)

(021.breadmaker : 10)(238.video-projector : 8)

110.hourglass

(246.wine-bottle : 13)(219.theodolite : 12)(070.fire-extinguisher : 12)

(003.backpack : 11)(227.treadmill : 7)
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123.ketch-101

(227.treadmill : 42)(246.wine-bottle : 19)(014.blimp : 11)

(021.breadmaker : 7)(219.theodolite : 5)

139.megaphone

(021.breadmaker : 13)(208.swiss-army-knife : 10)(238.video-projector : 8)

(172.revolver-101 : 7)(246.wine-bottle : 6)

156.paper-shredder

(021.breadmaker : 43)(003.backpack : 20)(239.washing-machine : 8)

(208.swiss-army-knife : 5)(027.calculator : 3)

174.rotary-phone

(003.backpack : 15)(219.theodolite : 10)(172.revolver-101 : 10)

(070.fire-extinguisher : 6)(157.pci-card : 5)

177.saturn

(001.ak47 : 28)(238.video-projector : 23)(246.wine-bottle : 19)

(014.blimp : 6)(003.backpack : 5)

182.self-propelled-lawn-mower

(227.treadmill : 46)(208.swiss-army-knife : 41)(027.calculator : 8)

(070.fire-extinguisher : 5)(219.theodolite : 4)

202.steering-wheel

(227.treadmill : 10)(003.backpack : 9)(070.fire-extinguisher : 8)

(246.wine-bottle : 7)(238.video-projector : 7)

211.tambourine

(021.breadmaker : 23)(238.video-projector : 14)(003.backpack : 14)

(208.swiss-army-knife : 10)(227.treadmill : 5)

231.tripod

(001.ak47 : 18)(246.wine-bottle : 16)(208.swiss-army-knife : 13)

(172.revolver-101 : 11)(227.treadmill : 8)

243.welding-mask

(003.backpack : 40)(238.video-projector : 9)(246.wine-bottle : 8)

(001.ak47 : 5)(070.fire-extinguisher : 5)

c002

(c066 : 9)(070.fire-extinguisher : 1)(027.calculator : 1)

(157.pci-card : 1)

c011

(c184 : 3)(246.wine-bottle : 2)(208.swiss-army-knife : 1)

(014.blimp : 1)(021.breadmaker : 1)

c064

(227.treadmill : 4)(c049 : 3)(c066 : 2)

(219.theodolite : 1)(001.ak47 : 1)

c065

(001.ak47 : 3)(c184 : 2)(246.wine-bottle : 2)

(239.washing-machine : 2)(208.swiss-army-knife : 1)

c071
(c066 : 7)(c089 : 4)(c178 : 1)

c072

(001.ak47 : 5)(227.treadmill : 3)(c032 : 1)

(219.theodoliteB : 1)(003.backpack : 1)
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c078

(001.ak47 : 3)(239.washing-machine : 2)(219.theodolite : 1)

(c159 : 1)(014.blimp : 1)

c083

(c118 : 5)(239.washing-machine : 2)(c047 : 1)

(014.blimp : 1)(021.breadmaker : 1)

c090

(c045 : 2)(183.sextant : 2)(c184 : 2)

(c178 : 1)(070.fire-extinguisher : 1)

c119

(c191 : 5)(c047 : 2)(001.ak47 : 1)

(208.swiss-army-knife : 1)(014.blimp : 1)

c134

(c089 : 7)(219.theodolite : 1)(c045 : 1)

(c184 : 1)(027.calculator : 1)

c145

(c066 : 4)(c159 : 3)(219.theodolite : 1)

(001.ak47 : 1)(c184 : 1)

c158

(c118 : 5)(021.breadmaker : 3)(208.swiss-army-knife : 2)

(c045 : 1)(001.ak47 : 1)

c168

(c032 : 4)(172.revolver-101 : 3)(c191 : 2)

(219.theodolite : 1)(c047 : 1)

c182
(c118 : 7)(021.breadmaker : 5)

c185

(c066 : 5)(c089 : 2)(027.calculator : 2)

(227.treadmill : 1)(001.ak47 : 1)

Table 2.6: Top 5 categorizations of NONGANsemble attempting to categorize held-out
dataset. Stuff is more susceptible to thing labeling than Things are to stuff labeling. Com-
pared to the GANsemble, somewhat sensible similarities between classes in the vocabulary
of the GANsemble and classes in the held-out dataset are occasionally suggested. For exam-
ple, desk globe and french horns are claimed by theodolite networks, ewers by wine bottles,
tripods by AK-47s, and lawnmowers by treadmills. This suggests that even the information
from single network firing of NONGANsembles can be used to build image similarity spaces
whereas this is not practical for discriminators trained with the GAN loss and exposed only
to one class, but does not rule out similarity spaces being created from joint information
from multiple network activations on the GANsemble committee.
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2.3.7 Differential activation levels during and after training of

GANs and NONGANs

The previous sections consider GAN and NONGAN activations in a steady-state, after the

15,000 training units have elapsed. Nothing, however, has been shown about the differential

development of GAN and NONGAN sensitivities, and in particular the acculturation of the

level of firing of the networks.

To remedy the lacunarity inherent in our treatment so far, we introduce a “differential trace”

procedure. Three familiar classes (hereafter termed the discrimination triad) are chosen: a

target class (the boom-box), a comparison Thing class (the AK-47), and a comparison Stuff

class (the brick wall class c191).

A GAN and a NONGAN are trained from scratch for the now-established standard 15,000

training units, each targeting the target boom-box class in their proprietary manners. The

GAN seeks to create convincing boom-box fakes and also a competent fake detector, and

the NONGAN attempts to mold itself into a competent boom-box detector, although aided

in its quest by being exposed to other classes.

At each training unit along the way, the activation of the network is polled for each of

the three classes in the triad, but naturally with no corresponding gradient update to the

feedforward passes. Loss (and thus unrectified “prediction”) in a neural network is immedi-

ately visually recognizable as having the potential to be noisy: to improve our estimate, at

each sample point, the 10-sample output activation will be polled. This simply means that

the first 10 patches from the class are passed to the network and the 10 unrectified scalar

activation values are collected from each of the two networks.

The mean 10-sample activation trace is plotted first for the GAN. Because it is indeed very

noisy, a “shape-preserving” Savitzky-Golay filter of wide bandwidth (999 samples, chosen
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to resemble the automatically chosen plot abcissas, and using an degree 2 polynomial) has

been applied to the time series. The standard deviation time series of the 10-sample trace

has also been taken, with identical filtering. The process is repeated for the NONGAN.

We see in both cases the development of elevated terminal node firing strength to the target

classes 10 patch sample. For the GAN, the maximum firing strength emerges very early

at around training step 2000 (well before synthesis convergence) and descends, decelerating

and maintaining a large separation between itself and the comparison class. The mean

separation is not strong between comparsion classes and actually the Things class is more

distantly separated from the target Things class. This, however, makes some sense given

that the activation value is negative, which could be associated with the GAN judging that

the comparison Thing class is more strongly reminsicent of a fake image of the target class

than the comparison Stuff class. As was shown with the affinities, ordinary classification

emulated on WGAN-GP emissions is not intepretable in the usual way.

The standard deviation time series is more strongly separated, with the standard deviation

remaining roughly flat for the comparsion classes and with the Things class overlying the

Stuff class. This is perhaps interpretable purely on the image statistics, which were presented

with the dataset – there is simply more intersample variation in the Things class, which of

course was also inherent in the Things vs. Stuff definition we have temporarily adopted.

The activation trace of the NONGAN is more exotic-looking and also substantially less

in need of the Savitzky-Golay filter. Among the more minor considerations: the Things

comparison class only barely overlies the Stuff comparison class nearly everywhere, including

in the standard deviation of the firing, suggesting perhaps that NONGAN firing variation is

less susceptible to the underlying variation in the image statistics. More notably, the graph

of the comparison pair of classes and the graph of the target class are close to symmetrical

about the x-axis (signifying no firing). They converge more closely when, at around training

unit 10,000, the NONGAN suffers from a failure of gradient descent causing its target firing
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to drop towards zero and the comparison classes to rise towards zero.
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Figure 2.51: Raw differential GAN training trace of the a) mean and b) standard deviation
of static real-image 10-sample output activation from a target class and two comparison
classes for 15000 units of training (3 batches of 32 image presentations ea.)
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Figure 2.52: Savitzky-Golay filtered differential GAN training trace, filter window of 999
training units. The b) standard deviation of the comparison stuff and things traces are
separated but not the mean a), while the network fires high to its target class

At the end of training, if we consider the average NONGAN and baseline-subtracted GAN

firing strength, the firing strength of the GAN is still greater even after baseline subtraction.

Furthermore a strong group difference between Things and Stuff is observed in a higher firing

ratio favoring the Things. Of course, this could be affected by the precision of the image

statistics of the Stuff classes, with their low-intersample variation.
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Figure 2.53: Raw differential NONGAN training trace of the a) mean and b) standard
deviation of 10-sample output activation. Sample activation undergoes a discontinuity at
around unit 11,000 when stochastic gradient descent fails potentially due to overfitting)
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Figure 2.54: Savitzky-Golay filtered differential NONGAN training trace, showing insignif-
icant separation of both a) mean and b) standard deviation of sample activation between
thing and stuff comparison classes, still firing high to the target class
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Figure 2.55: Things vs. Stuff comparison of the average GAN/NONGAN firing ratio to a
network’s own real reference patches with baseline subtraction for the GAN. GAN activa-
tions are higher even after baseline subtraction than their NONGAN equivalents, and Thing
ratios are dependably higher than stuff ratios. This latter observation could possibly be an
artifact of the baseline activation estimate presumably being more reliable for the ultimately
homogeneous stuff.
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If this trace was to be repeated for a large number of possible discrimination triads, it

might perhaps be confidently established that the NONGAN is more susceptible to training

discontinuties where the gradient updates suddenly destroy performance after too much

training. The very popular strategy of early stopping with discriminator networks in general

might then be revised if the element of GAN-based-discrimination that is not susceptible to

this could be transplanted into non-GAN-based discriminators without a loss of performance.

However, this pattern of robust GAN discriminator learning, since it is only studied for one

triad, and not even until very high-quality synthesis is shown to be met, could disappear with

the substitution of other classes, unlucky initialization of the GAN, or most problematically

with an extension of the training time being surveilled.

This activation trace procedure is only for the action of a single network. The steady-state

results shown thus far in this investigation highlight the importance of considering the added

power of the joint action of the GANsemble or NONGANsemble in total. The change over

time of the joint action of the committee members could be studied as well, as at every time

point, there is also a correponding affinity matrix. The time evolution of GANsemble and

NONGANsemble affinity matrices, as well as the model parameter matrices, could be studied

with a number of methods, but it is possible to take an affinity matrix A1 preserved at time

t1 and an affinity matrix A2 at time t2, compute their difference matrix A1,2, and as this

difference matrix is a scalar field, compute the gradient, yielding a vector field. One notable

vector field would be the one resulting from the difference matrix of an affinity matrix before

training and after training. If the Things vs. Stuff characteristic pattern were to acculturate

in the final scalar field, this particular vector field difference might demonstrate coherencies

(as compared to randomness) at the quadrant divides.

In Chapter 3, embeddings will be computed on these matrices – there is thus even a time

evolution study that could be done of the Things vs. Stuff divide in terms of embeddings

where things and stuff clouds would be able to be visualized in a video sequence as pulling
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Figure 2.56: The gradient of the mock characteristic pattern matrix of model parameters
with low sigma subtracted by random noise with the same mean and deviation. In this
extreme case, the quadrants are detectable just from the magnitudes and direction at the
interfaces in the vector field. Statistically, we may expect more coherence along interfaces
over time and more random, cancelling action within the quadrants when examining later
differencing periods in training.

apart for some recognizers throughout training but with the added local and global uncer-

tainty caused by the stochasticity of the embedding process. Both the time evolution of

matrices study and the time evolution of embeddings study were not pursued because the

GAN state at a training time t would have to be sampled and retained as the quite large

networks were trained – and this would have to have been preplanned and would have added

considerable time and storage requirements that are beyond the scope of this project. Nev-

ertheless, studying the time evolution of firing affinity matrices and embeddings presents an

interesting extension of evaluation of training that could be used in conjunction with tradi-
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tional per-model losses in neural network ensembles, when evaluated very coarsely given the

computational demands.

Therefore, notwithstanding this section, the investigation-at-large has been confined to the

steady-state behavior of the networks being considered.

2.3.8 Compressibility of GAN vs. NONGAN weights

The homogeneity of the image statistics of the Stuff would lead one to consider that the

weights of the network might be affected differentially in terms of how varied they are. As

we examined the GAN-to-NONGAN firing strength ratio, we can also take a measurement

related to the compressibility of the weights. A natural hypothesis is that the NONGAN’s

weights, since they would tend to remember the more varied information they receive from

out-of-class patches, would be less compressible.

We can take the 256-bin extemporaneous histogram of weights from the NONGANs and the

GANs per-class. Recall the caveat that the extemporaneous histograms are not defined over

the same discretized probability space. However, if we trust the relative comparability of

resulting measurements, we can estimate the entropy of each distribution.

Entropy (in bits) is:

H(X) = −
K∑
k=1

p(X = k)log2p(X = k)

summing over the transformed probabilities encountered at the weight levels in the extem-

poraneous histogram.

The per-class difference of the estimated entropy of the GAN weight distribution and its

complementary NONGAN weight distribution is plotted in Figure 2.57. It is negative for

most classes, with no statistically significant difference between the Thing and Stuff classes.
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This means that the NONGAN has greater estimated entropy than its GAN complement for

most classes.

It is problematic to relate the compressibility of real floating-point data on disk using real-

world compression algorithms because of the construction of dictionaries, varying padding

and numeric representation schemes, and compressed blocks within compressed blocks, so if

we take the entropy as estimated to be indicative of the compressibility, the GAN weights

are generally more compressible, as expected, implying that the NONGAN networks “soak

up” more information.
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Figure 2.57: Things vs. Stuff comparison of the average entropy difference of discrimina-
tor weights. All weights from all layers are combined and then the entropy of the weight
distribution based on (separate) 256-bin adaptive histograms are measured. The entropy
difference of the GAN and NONGAN shows a clear negative bias, especially for things. This
means that the NONGAN’s entropy is higher, perhaps reflecting how its training requires
being exposed to all of the other classes and memorizing statistically distinct input. There
is no significant difference between Things and Stuff in this regard.
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2.4 Things vs. Stuff Biases in “Gold-Standard” Refer-

ence Networks

If the Things vs. Stuff dichotomy is comprehensively real, it should be seen even in networks

which are not the member networks in our GANsemble and NONGANsemble. Accordingly,

attention turns to two notable networks in use for quality estimation and feature map visu-

alization respectively.

2.4.1 InceptionV3 as a thing-biased quality oracle

Beyond the adversarial trick of pitting discriminator against generator, the GAN itself lacks

an explicit objective function that could be closely associated with the perceptual quality

of samples. A popular quality index to report, however, has been the Inception Score of

Salimans et al. [140]. The Inception Score uses the quite large and complicated Inceptionv3

network [158] as a defacto quality oracle. Specifically, Inception Score was defined as

IS = e(ExKL(p(y|x)||p(y)))

where p(y|x) is the conditional label distribution, and p(y) is the distribution of labels, at

the output of the network, and KL denotes the familiar KL divergence.

The motivation was to have a distribution p(y|x) with low entropy, and to further have∫
p(y|x = G(z))dz have high entropy. The secondary criterion simply expresses that across

the range of noise inputs to the generator, the discriminator should be experiencing a wide

range of inputs that leads to a wide range of classifications. The first criterion corresponds

to desiring a peaky or overall confident label distribution per class so that within a class,
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the discriminator is only placing high probability on a few possible target classes.

Strictly, this criterion is only directly naturally applicable while adhering to the classes used

by the oracle network trained. However, in practice, new classes you wish to fake that

are (to misappropriate a term from natural language processing) out-of-vocabulary of the

Inception network (evaluated on 1000 classes from the ILSVRC 2012 classification challenge

[137] validation set) will be somewhat similar to some classes but not others that have graced

the pretrained Inception network’s sensorium.

In computing the average dichotomous Inception Score using the Inceptionv3 network, you

are at the mercy of whether your synthesis quality is truly biased or the Inception score is

biased by one overarching category being more similar to the Inceptionv3 class vocabulary

than the other.

An ideal test case for the possibilty of this is the comparison between Things and Stuff.

Most competition datasets in computer vision are either totally or near-totally Thing-based,

and so it seems a priori likely that the conditional label distribution will be flat and unin-

formative across the range of Stuff classes. The associated hypothesis is that, in computing

the Inception Score of our present dataset, the Inception Score will systematically judge

the quality of Stuff synthesis as lower than Thing synthesis despite the fact that at 15,000

training units it is manifestly perceptually more advanced than perhaps any of the Thing

classes, synthesis failures of stuff excepted.

The expectation E(x) being taken prior to the exponentiation is the average over images but

it is also possible to compute this score over several splits of the data. The implementation

used here very closely followed that of [20], which computes the Inception Score over ten

subsets and also smooths the probabilities by adding a very small ε = 1e-16 prior to log

transformation; the choice of a small epsilon may be particularly important here as zero

probabilities are expected. To match the expected tensor dimensions expected by the net-
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work, the Thing and Stuff patches were resized to 299x299, the single gray-level channel was

replicated two times to fake three-channel input, and the image was preprocessed according

to the prescription of Keras (gray levels rescaled into the -1 to 1 interval).

In Figure 2.58, it can be seen that the hypothesis of bias is substantiated. There is a

highly significant distance in the estimated Inception Score, tending for a higher score for

Things even though the subjective attained synthesis quality of Stuff is uniformly higher.

The Inception Score also fails to detect the synthesis failures as anomalies that are not

acceptable quality.
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Figure 2.58: Things vs. Stuff comparison of per-class Inception score, calculated by sending
the GANsemble’s fakes to the Inceptionv3 network (100 samples with 10 splits) and consult-
ing the entropy of the label distribution. Despite the almost perfect perceptual quality of
Stuff patches, the things earn a systematically higher score. This is likely due to the implicit
bias of the network having been trained on other Things patches.

2.4.2 Fréchet Inception Distance for Things vs. Stuff: Reals-to-

fakes, fakes-to-fakes & reals-to-reals

A potentially anticorrelated measure involving the same network that, however, is not di-

rectly subject to the label distribution Things vs. Stuff entropy bias is the Fréchet Inception

Distance, introduced by Heusel et al. [76] in their work on a two time-scale update rule
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(TTUR) that prescribes the differential learning rate of the discriminator and the generator

in GANs.

The Fréchet distance alluded to (which they note to be equivalent to the Wasserstein-2

distance, c.f. the Wasserstein-1 distance used in WGANs) is a specific case of the general

Fréchet distance (the tether-like shortest distance between two paths corresponding in, for

example, time), specifically the Fréchet distance between multivariate Gaussians [42]

d2((µ1, C1), (µ2, C2)) = ‖µ1 − µ2‖+ Tr(C1 + C2 − 2(CC2)1/2)

where µ1 and µ2 are the means and C1 and C2 are the covariances of the first and second

Gaussian respectively, and the final term contains a matrix square root (e.g. BBT = A,

which may fail if A is singular).

The Inception element of FID is integrated in that the multivariate Gaussians you are com-

paring are based on the mean and covariances of the activations extracted from the pooling

layer prior to Inceptionv3’s output. Conventionally, you take the distance between the Gaus-

sians based on empirical means and covariances of a batch of GAN fakes and a batch of real

images that generated them. Similarly to the Inception Score, the implementation closely

followed [19] and included the same preprocessing prescribed for the network.

Figure 2.59 shows that the difference between Things vs. Stuff of per-class Fréchet Inception

Distance between reals and fakes is highly significant, although not as overwhelmingly signif-

icant as the Inception Score difference. Importantly, since the FID measures how poorly the

fakes match the reals in this context, then the difference means that the FID is, consistently

with its spirit, declaring that the Thing fakes are poorer quality. However, the FID fails to

uniquely identify the synthesis failures, flagging only c129 and not c093.

Although it is assuredly not the main intention of the FID, the measurement mathemat-
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ically isn’t restricted to comparing same-class data. So a pairwise FID affinity matrix is

calculable for Reals and Fakes. The appearance of these matrices (Figure 2.60 and Figure

2.61, respectively) is close to identical on casual inspection, with more gradation actually

represented in the Fake-based matrix, and the overall pattern is, surprisingly, low FID in

the Things-Things quadrant. This suggests that FID is doing something strange – possibly

based on the fact that the statistics of Stuff classes are more sharply defined, and so if you are

taking variance-corrected distances, they really might be more distant in the space induced

by summarizing the Inception coding layer’s activations.

Finally, in Figure 2.62, the Inception Score of fakes per-class is plotted directly against the

FID between real and fakes. Conceptually, these should be anticorrelated. However, the mea-

sures are overall positively correlated. Outliers were eliminated using a RANSAC process

(RANdom SAmple Consensus [49], see sklearn.linear model.RANSACRegressor[130])

before plotting lines-of-best-fit but after taking the correlation coefficient, showing the signif-

icant influence of outliers in reversing the sign of the Stuff slope. The strength of the overall

correlation would decrease considerably when the Thing and Stuff subsets are considered

separately.
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Figure 2.59: Things vs. Stuff comparison of per-class Fréchet Inception Distance, based on
assessing how real and fake patches affect the final pooling layer activations of the Incep-
tionv3 network, specifically real and fake Wasserstein-2/Fréchet difference as modeled by a
multivariate Gaussian. The Things have a higher observed distance which implies that their
fakes and reals are not as similar as the fakes and reals for the Stuff patches. This is the
perceptually expected result.
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2.4.3 Things and Stuff differentially engage late-stage filters in

VGGNet

The Inceptionv3 network is a gold standard with respect to experiments in quantifying

quality, but one other network of historical interest has been VGG16, sometimes used for

visualizing filter specialization, owing to its relative simplicity as compared to Inception

nets. Knowing where in the network filters are general purpose for a space of natural images

(for example, when the filters of the first convolutional layer resemble edge detectors), and

by which later stage they have been specialized (e.g. a late filter that directly resembles

something like the particular instance of a class) is a subject more of interest to computational

vision and neuroscience researchers. The original Inception network [157] and the associated

DeepDream [4] program that created psychedelic art by optimizing images to maximally

stimulate a late stage artificial neuron spurred popular interest, but landmark work by

Zeiler and Fergus [183] and follow-up techniques from Simonyan et al. [149], and especially

Yosinski et al. [181] focused on determining which images in the training set maximized

responding at the filter channel level.

Zeiler and Fergus’s approach accumulates activations of interest from a layer by attaching a

“deconvnet” to the layer almost as one might attach a debugger to a piece of software. The

deconvnet takes the layer of interest’s output and “unpools” it (reconstitutes areas of activa-

tion in the downstream representation that were collapsed to points from regions of maxima

in the upstream representation using a series of switch variables), rectifies it with ReLU,

and filters (but attempting inversion by using transposed versions of the upstream filters) it.

This involved process and the later refinements are focused on producing the best possible

reconstruction of filter response to an input patch: presenting pictures of animal heads may

discover filter channels that princpally seem to produce deconvnet maps highlighting the

eyes, increasing confidence that there are explicit eye filters. In a convolutional network, the

only purely visualizable filters are the first set of filters, as the path of convolutions through
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the network constitutes the true filter, not the contents of the filter channel at the current

layer.

For judging relative activation coarsely, however, these involved and thoughtful inverse op-

erations are not needed. One can derive coarse activation maps that display the activity of

the filter channel output based on input patches purely by considering the activations from

those channels at the end of the Conv2D block. We take the images in our dataset and

map them into the proper dimensions and gray-level domain for VGGNet which is 224x224

3-channel images. The same channel duplication strategy used with the Inceptionv3 network

has been used here, but the gray levels have been mapped into the [0,1] range instead of the

[-1,1] range from the conventional [0,255].

In Figure 2.63a we see the first 64 of 512 filter channel outputs for the last Conv2D block

with extent 14x14, as they would appear when the network was subjected to a single image

from the boom-box class. In Figure 2.63b, we see the same channel visualization but for an

image from the final brick wall class c191.

These images are presented so that the reader takes them to be prototypical of the Things

vs. Stuff distinction as viewed through late stage VGG activations. Stuff patches fill fewer of

the channels but more of their extent. Thing patches, however, induce the stereotypical filter

response map result of convolution, which is a focal dot where the target shape matching

the template of the filter would reside: for example, if the template was something even as

high-level as a STOP sign and made the filter, it would when convolved with a scene tend

to produce a focal activation at the STOP sign in the scene’s activation map.

The reader is not expected to take this on faith, however. Repeating this process for all

of the image in our Things vs. Stuff dataset, we can compute three averages of interest to

quantify this difference.

The first average to take is the per-class average of the conditional raw average of channel
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VGG16 CONV2D14x14:8 model_4 VGG16 CONV2D14x14:8 model_4

Figure 2.63: Filter channel activations (first 64 channels) from the VGG16 network’s last
Conv2D layer when presented with a) a boom-box image, b) a brick wall image. Analysis
using the whole dataset shows that Stuff patches engage fewer channels but fill them more
widely, whereas for thing patches focal activation points which resemble the stereotyped
output of a simple convolutional detector are common.

activation, where raw average is taken to mean the average activation value in each channel

slice of the Conv2D block tensor. The values are not strictly clipped to be in the [0,1]

range following the convolution. Only active channels with some activation value above zero

anywhere within the response map are included, hence the average being conditional. This

is because we wish to indirectly quantify the width of the actually-realized filter activations.

A more direct and accurate approach would use 8-connected components analysis or perhaps

Hough transforms to explicitly find and measure the radii of candidate activation blobs, but

for expediency this simple approach suffices.

The second average to take is the per-class average of the conditional binary-threhsolded

average of channel activation, where the meager innovation adopted over the last average

is to threshold each pixel contributing to the average as ON or OFF corresponding to its

nonzero status. This average is an appropriate check if you are aiming at discovering the

area active within the channel and you do not wish that estimate to be biased by especially

high-activation level values from the convolution. We see that the general pattern of the raw

average survives in the binary thresholded average.
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The final average to take is the per-class average of the proportion of quiescent channels

in the tensor. This is the fraction of channels that are “dead” as previously mentioned

forming the condition from an activity standpoint when the probe patch is presented (i.e.

with (binary-thresholded) average or sum of channel activation equaling zero). Note that

this is distinct from the problems of “dead neurons” sometimes talked about with respect to

learning, where the neuron is connectively dead due to the severing of incoming connections,

or incurs no gradient update due to saturation of the neuron’s nonlinear activation function.

In Figure 2.65, it can be seen that there is a highly statistically significant difference between

Things and Stuff as measured by the Wilcoxon test for the raw average activation for active

channels, where Stuff classes activated the channel more strongly. To confirm that this is not

just biased by exceptionally strong focal activation, the occupancy of the channel is shown

through the per-class binary threshold average in Figure 2.66, where there is again a highly

significant difference tending the same way. Interestingly, as shown in Figure 2.67, this

difference is also sustained for the proportion of quiescent channels. This means that fewer

channels at the end of the VGG16 network near to the 1000-class multinoulli judgment are

active when presented with the Stuff patches, but when they are active they are significantly

more active. Possibly this suggests a population composed of broadly-tuned and sharply-

tuned filter channels.
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Figure 2.64: VGG16’s last high-level Conv2D block finally produces 512-channel output
measuring 14x14 pixels which is where we measure the utilization of channels and the number
of dead channels relating to Things vs. Stuff
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Figure 2.65: Per-class channel average of activation in the last convolutional layer of VGG16.
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Figure 2.66: Per-class channel average of binary-thresholded activation in the last convolu-
tional layer of VGG16.
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2.5 Recognition performance of LDA and argmax clas-

sifiers using GANsemble and NONGANsemble la-

bel emissions

Assessing the performance of the GANsemble and NONGANsemble follows closely the strat-

egy in Section 1.4.2. The LDA classifiers are still cross-validated but they take as input the

features from the GANsemble and the NONGANsemble, which are not cross-validated. The

feature extraction involves no further filtering beyond what is done within the individual

member networks to produce their terminal activations.
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Figure 2.68: Per-class Matthews Correlation Coefficients of simple argmax classifier using
GANsemble label emissions, with and without baseline subtraction

In Figure 2.68, the performance of the GANsemble according to the per-class Matthews

Correlation Coefficients using the argmax classifier is shown, with and without baseline

subtraction. It is apparent that baseline subtraction is critically important for Things, raising

the average accuracy well above 85%. It increases the MCC for a number Stuff classes too,

although not to the same extent. It is not the case that this means that Things are easier

to recognize in deep convolutional recognizers in general, however. Recall that earlier in

Chapter 2, the flat nature of the real and fake affinity matrices in the Stuff-Stuff quadrant
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Figure 2.69: Per-class Matthews Correlation Coefficients of LDA classifier using GANsemble
label emissions, with and without baseline subtraction

(QIV) suggested that similarity and recognition quality would be hampered among Stuff

comparisons. The effect of this is what is shown in Figure 2.68b, but the other consideration

is the inclusion of the synthesis failure classes, as mentioned in Section 2.3.6, when similarity

was assessed through the out-of-vocabulary labeling on the heldout dataset. Even with

baseline subtraction, nothing has been done to remove the synthesis failure classes.
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Figure 2.70: Receiver Operating Characteristic Plot of argmax and LDA classifier perfor-
mance for the GANsemble. The LDA classifier has much better performance on stuff and
improved performance on things. It avoids false positives scrupulously (again, excepting the
synthesis failure classes). The argmax classifier also avoids issuing many false positives (the
clear outlier is synthesis failure class c093).

Rather than do that, which is an ad hoc kind of measure if an automated method for
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discovering synthesis failures from their anomalous contribution to the parameter distance

is not also endorsed, Figure 2.69 considers the case in which the argmax classifier is replaced

with the LDA classifier using the same feature vector. Performance is now close to ceiling,

with significantly reduced MCC only being observed for two classes, which are exactly the two

synthesis failure classes. In Table 2.8, it is suggested that this inaccuracy is due to synthesis

failure classes trading off when they make mistakes. Figure 2.70 shows the difference in ROC

space between the argmax classifier and the LDA classifier. For the LDA classifier, nearly

all of the classes are cleaving to the TPR axis, with some Stuff classes (the failure classes),

exhibiting TPR as low as below 0.8. In the argmax classifier’s ROC space, the anomalous

synthesis failure class c093 can be seen with high false positive rate, and this can be seen

directly by examining the Precision or directly the number of False Positives for the class in

Table 2.7.
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GANsemble ARGMAX

Class TP TN FP FN Precision Recall d’ MCC

001.ak47 78 1772 0 20 1.0000 0.7959 inf 0.8872
003.backpack 149 1719 0 2 1.0000 0.9868 inf 0.9928
014.blimp 73 1784 0 13 1.0000 0.8488 inf 0.9180
016.boom-box 89 1779 0 2 1.0000 0.9780 inf 0.9884
021.breadmaker 142 1728 0 0 1.0000 1.0000 inf 1.0000
027.calculator 100 1770 0 0 1.0000 1.0000 inf 1.0000
070.fire-extinguisher 80 1786 0 4 1.0000 0.9524 inf 0.9748
157.pci-card 105 1765 0 0 1.0000 1.0000 inf 1.0000
172.revolver-101 98 1768 3 1 0.9703 0.9899 5.252731 0.9789
183.sextant 100 1770 0 0 1.0000 1.0000 inf 1.0000
208.swiss-army-knife 106 1761 0 3 1.0000 0.9725 inf 0.9853
219.theodolite 83 1786 0 1 1.0000 0.9881 inf 0.9938
227.treadmill 147 1723 0 0 1.0000 1.0000 inf 1.0000
238.video-projector 96 1773 0 1 1.0000 0.9897 inf 0.9946
239.washing-machine 79 1786 0 5 1.0000 0.9405 inf 0.9684
246.wine-bottle 94 1769 0 7 1.0000 0.9307 inf 0.9628
c003 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c032 1 1858 0 11 1.0000 0.0833 inf 0.2878
c045 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c047 1 1858 0 11 1.0000 0.0833 inf 0.2878
c049 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c066 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c089 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c093 9 1654 204 3 0.0423 0.7500 1.902106 0.1609
c118 12 1858 0 0 1.0000 1.0000 inf 1.0000
c129 0 1858 0 12 1.0000 0.0000 NaN 0.0000
c159 4 1858 0 8 1.0000 0.3333 inf 0.5761
c160 3 1858 0 9 1.0000 0.2500 inf 0.4988
c163 2 1858 0 10 1.0000 0.1667 inf 0.4072
c178 3 1858 0 9 1.0000 0.2500 inf 0.4988
c184 1 1858 0 11 1.0000 0.0833 inf 0.2878
c191 8 1858 0 4 1.0000 0.6667 inf 0.8156

Table 2.7: Example signal detection calculation table for the GANsemble argmax classi-
fier.�Note!: The d-prime is misleadingly marked as infinite here even though false classifications were

made. This is possible when the false alarm rate (FP/FP+TN) is 0, as when the number of false positives

is 0. Stanislaw & Todorov 1999 [151] survey various proposed corrections for this case including adding

“smoothing” to the counts, but this has not been done here.
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NN GANsemble LDA

Class TP TN FP FN Precision Recall d’ MCC

001.ak47 97 1772 0 1 1.0000 0.9898 inf 0.9946
003.backpack 151 1719 0 0 1.0000 1.0000 inf 1.0000
014.blimp 83 1784 0 3 1.0000 0.9651 inf 0.9816
016.boom-box 91 1779 0 0 1.0000 1.0000 inf 1.0000
021.breadmaker 142 1728 0 0 1.0000 1.0000 inf 1.0000
027.calculator 100 1770 0 0 1.0000 1.0000 inf 1.0000
070.fire-extinguisher 84 1786 0 0 1.0000 1.0000 inf 1.0000
157.pci-card 105 1765 0 0 1.0000 1.0000 inf 1.0000
172.revolver-101 98 1771 0 1 1.0000 0.9899 inf 0.9947
183.sextant 97 1770 0 3 1.0000 0.9700 inf 0.9841
208.swiss-army-knife 109 1761 0 0 1.0000 1.0000 inf 1.0000
219.theodolite 84 1786 0 0 1.0000 1.0000 inf 1.0000
227.treadmill 147 1723 0 0 1.0000 1.0000 inf 1.0000
238.video-projector 97 1773 0 0 1.0000 1.0000 inf 1.0000
239.washing-machine 84 1786 0 0 1.0000 1.0000 inf 1.0000
246.wine-bottle 101 1769 0 0 1.0000 1.0000 inf 1.0000
c003 12 1858 0 0 1.0000 1.0000 inf 1.0000
c032 12 1858 0 0 1.0000 1.0000 inf 1.0000
c045 12 1858 0 0 1.0000 1.0000 inf 1.0000
c047 12 1858 0 0 1.0000 1.0000 inf 1.0000
c049 12 1858 0 0 1.0000 1.0000 inf 1.0000
c066 12 1858 0 0 1.0000 1.0000 inf 1.0000
c089 12 1858 0 0 1.0000 1.0000 inf 1.0000
c093 10 1850 8 2 0.5556 0.8333 3.594529 0.6780
c118 12 1858 0 0 1.0000 1.0000 inf 1.0000
c129 9 1852 6 3 0.6000 0.7500 3.398034 0.6685
c159 12 1858 0 0 1.0000 1.0000 inf 1.0000
c160 11 1858 0 1 1.0000 0.9167 inf 0.9572
c163 12 1858 0 0 1.0000 1.0000 inf 1.0000
c178 12 1858 0 0 1.0000 1.0000 inf 1.0000
c184 12 1858 0 0 1.0000 1.0000 inf 1.0000
c191 12 1858 0 0 1.0000 1.0000 inf 1.0000

Table 2.8: Example signal detection calculation table for the GANsemble LDA classifier.
Since there are very few cases unclaimed by classes when the performance is at ceiling,
synthesis failure classes (c093 and c129) are mostly trading off with each other in making
their mistakes.
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Figure 2.71 and Figure 2.72 show the argmax and LDA classifier accuracy for the NONGAN

discriminators, with and without baseline subtraction using the values from the GAN. In

both cases, accuracy is shown to be perfect. Given the lack of cross-validation over GAN

training, this result does not advocate for this network to be generally used for recognition

because of some nebulous special properties or true perfection, but the NONGANsemble

is certainly more adept than the GANsemble at classification. However, this difference is

mitigated with proper use of baseline subtraction and an explicit second-stage classifier of

competence (here, LDA) to a large degree. It cannot therefore be said that GAN-origin-

discriminators lose the ability to be useful conventional recognizers when they are combined

in ensemble. More care is needed to use them, however.
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Figure 2.71: Per-class Matthews Correlation Coefficients of simple argmax classifier using
NONGANsemble label emissions, with and without baseline subtraction
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Figure 2.72: Per-class Matthews Correlation Coefficients of LDA classifier using NON-
GANsemble label emissions, with and without baseline subtraction

In a manner reminiscent of Table 1.4 for the primitive recognizers of Chapter 1, Table

2.9 summarizes the accuracies, averaged per-class MCCs, and resulting Wilcoxon or Mann-

Whitney U statistics comparing Thing vs. Stuff recognition performance for each of the

classifiers. The only statistically significant change between Things and Stuff is found in

the argmax classifier for the GANsemble, whose deficiencies are not generally related to the

complexity of recognizing Things and Stuff.

Therefore, while ensembles of deep convolutional networks may be too powerful recognizers

to uncover Things and Stuff recognition disparities visible through mere performance, in the

course of developing them we can see many evidences of the Things vs. Stuff distinction,

including those in synthesis, similarity, and quality assessment operations.

Classifier ACC ACC(things) ACC(stuff) Avg. MCC MCC(things) MCC(stuff) U(MCC) p-val

NN GANsemble LDA 99.25 99.52 96.88 0.977 0.997 0.956 -0.075 0.940
NN NONGANsemble LDA 100.00 100.00 100.00 1.000 1.000 1.000 0.000 1.000
NN GANsembleNoBS LDA 99.25 99.52 96.88 0.977 0.997 0.956 -0.075 0.940
NN NONGANsembleNoBS LDA 100.00 100.00 100.00 1.000 1.000 1.000 0.000 1.000
NN GANsemble ARGMAX 88.93 96.48 22.92 0.640 0.978 0.301 4.315 0.000
NN NONGANsemble ARGMAX 100.00 100.00 100.00 1.000 1.000 1.000 0.000 1.000
NN GANsembleNoBS ARGMAX 12.14 13.53 0.00 0.055 0.111 0.000 1.206 0.228
NN NONGANsembleNoBS ARGMAX 100.00 100.00 100.00 1.000 1.000 1.000 0.000 1.000

Table 2.9: Summary of GANsemble and NONGANsemble LDA and naive argmax recognition
performance and Things vs. Stuff MCC difference
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Chapter 3

Things vs. Stuff in the Metaspace of

Recognizers

The investigation for simple filterbank based recognizers argued that it is not only the di-

mensionality of our features we should consider but also the relative informativeness and the

efficiency per bit incurred of each feature itself. In a similar way we may wish to consider

not only the magnitude of the performance of each classifier, network, or metric but also

their relative behavior. To look at the similarity of behavior in a perceptually manifest way,

it would be ideal to see how feature choices, joint network activities, and choice of simi-

larity measurement comparing models situate classes of images and networks in a shared

space. It does not seem enough to place recognizers by a similarity that only includes their

performance standing, as if to say that means are stratified from signchains and signchains

of signchains, and that perhaps all primitive recognizers are in general stratified by their

performance on challenging Things patches from the deep convolutional recognizers.

To take an example, all Things and Stuff classes in our dataset could be situated in a space

induced by features employed by a recognizer. In this space, perhaps the Things and Stuff
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classes are separable, and perhaps similarity between similar classes is preserved. The space

induced by the recognizer relying on a feature vector could for lack of better nomenclature

be called the feature space in which classes are situated. In this chapter, we further consider

the possibility that it is interesting to consider the recognizers themselves as situated in a

space, which with a similar lack of creativity could be termed the recognizer space, as it is a

space in which the recognizers owning the features placing the classes are situated. Further,

for the deep convolutional recognizers we have developed in Chapter 2, the recognizers may

exist in several spaces only as we have studied them already: a) in terms of the feature

vectors the ensembles produce for a later stage classifier such as LDA, b) in terms of the raw

affinity matrices they evince between classes prior to combination in a flattened-out decision

on specific patches. We can then imagine these separate senses as points in a space of spaces

in which the recognizers exist: the beginnings of a metaspace of recognizers.

The vectors of features (e.g. means and signchains of histograms, or label emissions of

GANsembles) used by the recognizers we have considered are at times quite high-dimensional,

having been formed by concatenating either scalars or vectors of numbers for each member

filter or network – easily possessing dozens or hundreds of components. The vectors which

embody the rows of the affinity matrices we have computed for GANs and NONGAN cross-

class firing and the vectors which embody the rows of the dissimilarity or similarity matrices

we compute layerwise to compare the ensembles’ constituent networks in various senses

are lower-dimensional but still higher-dimensional than we could ever practically visualize

mentally or with pages of draftsman’s plot arrays of scatter plots.

For ease of interpretation, we consider positioning of classes and networks in a plane based

on their full feature vectors. This is the province of dimensionality reduction methods, which

provide a low-dimensional embedding (LDE) of the input data. Much deep learning research,

such as that which demonstrates that word embeddings like those induced by word2vec per-

mit analogy completion of man::woman::king::??? [118] by simple linear arithmetic, concerns
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itself with the low dimensional embeddings in networks.

In the current situation, we concern ourselves with the low-dimensional embeddings that

exist in the space created between networks, or recognizers, or choice of features.

While many techniques are available for extremely high-dimensional data, such as the more

recently introduced t-distributed stochastic neighbor embedding (t-SNE, one of a family

of stochastic neighbor embeddings introduced by [110] Hinton and collaborators) method

popular for visualizing where input or synthesized images lie on lower-dimensional manifolds

which exist in spaces of activations or noise-inputs in deep networks, the data we possess

is not extremely high-dimensional, in the hundreds of thousands to hundreds of millions of

features.

A more classical technique suitable to feature vectors of intermediate dimension was chosen

for this investigation from the multidimensional scaling family of methods, which have in

common that they situate data points in the low-dimensional embedding according to the

minimization of a loss function called stress which measures how well the euclidean distance

between data points’ feature vectors is respected.

To preview this chapter:

• Metric multidimensional scaling (metric MDS using SMACOF) is advocated as the pre-

ferred method of taking Chapter 1 and Chapter 2’s data and creating low-dimensional

embeddings.

• Low-dimensional embeddings (LDEs) are created through multidimensional scaling of

three embedding groups (not mathematical groups) of features: recognizer features,

deep convolutional recognizer labeling affinity matrices, and deep convolutional pa-

rameter distance matrices.

• The idea of an encapsulation taxonomy declaring linear separability of Things and Stuff
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point sets, or full, inviolate containment of one point set within another is proposed, and

an algorithm based on the computation of convex hulls and ray casting intersection

tests is provided. All embeddings are processed by the algorithm and the lack of

members across the 3 groups in one specific encapsulation class is discussed.

• Scaled Orthogonal Procrustes superimposition is reviewed and used to align embed-

dings within embedding groups to least squares distance to produce an embedding-

pairwise distance matrix for each embedding group.

• “Embeddings of embeddings” (which may be termed metaembeddings or acroembed-

dings) are introduced as the MDS induced embeddings of Procrustes-aligned embed-

dings. Each first stage embedding in an embedding group is a point in the space

induced for the embedding groups.

• The Euclidean “meta distance” between conditional metaembeddings (separate metaem-

beddings created originally from only either Things or Stuff) is assessed for each em-

bedding in each metaembedding space by using a second-round of Procrustes alignment

following the second round of MDS.

• A distance matrix is created between classifier per-class rankings by Matthews Corre-

lation Coefficient using Kendall’s Tau distance and a higher-level embedding analogous

to the metaembeddings is created for the rankings.

• The rankings of recognition difficulty are aggregated into a composite ranking using

the Borda count method of voting and the Borda count derived composite rank is

correlated to Fréchet Inception Distance and Inception Score to assess how per-class

recognition disfluency across recognizers is related to synthesis disfluency using these

heuristic methods, and if there is a difference between Things and Stuff.
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3.1 Low-Dimensional Embeddings via Multidimensional

Scaling

The simplest method in the family, sometimes known as classical MDS, involves beginning

with the very well-known operation of principal components analysis, which situates a higher-

dimensional dataset in a low-dimensional linear subspace by discovering the most significant

principal components of the data, usually by mean-subtracting the data and computing the

singular value decomposition to discover the eigenvectors and eigenvalues associated with

the centered data matrix. As a result of PCA, you obtain PCA loadings (describing the

linear combination of original variable values needed to synthesize a principal component

coordinate) and PCA scores (representing the transformed data in the space of principal

component coordinates), and thus retain the appealing advantage of easily being able to

project new instances (here, corresponding classes or networks) into the space. PCA based

on a specially transformed dissimilarity matrix can be used to produce the coordinates of

classical MDS.

PCA is well-known to produce flat, subjectively uninformative embeddings of contrived test

functions, such as the classic “swiss roll” (see e.g. in [71]) or S-shaped point clouds. In prac-

tice, it is easily discovered that it is hard to tell ahead of time without clearly predetermined

criteria which choice of manifold learning algorithm is the “best” because they can highlight

wildly different structure in the data – methods based on spectral graph theory may produce

quite different planar embeddings of 3D point clouds than locally-varying influence of PCA

(say streaky or strongly curvilinear embeddings rather than ones which allow adjacency in-

formation to uniformly fill a portion of the plane), but it seems in keeping with parsimony to

prefer the next simplest method. For this study, we surrender that conspicuously mentioned

advantage of being based on PCA somewhat unwillingly though because PCA is based on

a linear process and we are interested utmost in preserving the natural pairwise distances
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of our items, than in highlighting the two directions of maximum variation – the prospect

of reprojectable embeddings that can imagine new classes or networks in the space can be

left as an area for future study if we are optimizing first for the quality of the embeddings.

The next least sophisticated technique, metric MDS, allows a small measure more flexibility

in that the stress function can correspond to a function of the pairwise distance in items

(non-metric MDS is further relaxed to allow non-absolute knowledge of the value of the dis-

tance, as by reduction to ordinal information about the standing of items, but also requires

an isotonic regression step to determine a monotonic function to transform the dissimilarity

matrix each iteration).

The stock MDS implementation (sklearn.manifold.MDS,[130]) used in the following in-

vestigation was based on the SMACOF algorithm (Scaling by MAjorizing a COmplicated

Function, [103]), which starts with an initial random configuration of points in the space,

computes the stress from the dissimilarity matrix and the current configuration of the points

and then updates the points using a process based on a specific-instantiation of the Guttman

transform (a replacement of the update of the step-sized dissimilarity matrix X via the gra-

dient of the poorness-of-fit with a square symmetric matrix-valued function C of X) that

is motivated by improving on a gradient descent update of the matrix with an uninformed

step size [37]. It is further parameterized by the maximum number of iterative majorization

updates in the SMACOF algorithm (e.g. it may terminate early at some stress ε value,

signifying convergence) and also the number of runs of the algorithm in total to produce

the lowest stress. To produce the “best”, or reasonably stable quality, embeddings with the

idea that early error accumulated will propagate through later planned operations, all MDS

embeddings obtained below have been run with a maximum of 1000 updates and 100 runs,

using an ε of 0.003.

The dissimilarity matrix X has been computed from the full data or design matrix X0

comprising the stacked original feature vectors by taking the pairwise Euclidean distance.
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Clearly, different choices of distance notion here could be explored even in this facet, but the

Euclidean distance between data points is the overwhelming convention.

3.1.1 Recognizer Feature LDEs

The recognizer feature LDEs depicted below show where Things and Stuff classes fall given

the choice of recognizer (where recognizers, of course, have only been distinguished on which

features they use). Following the investigation in Chapter 1, there are 5 primitive filterbank

recognizers we have defined: the ones based on means, signchains, signchains-of-signchains,

histogram bin heights, and medians. Additionally, following the completion of investigation

in Chapter 2, there are two deep convolutional recognizers, the GANsemble and the NON-

GANsemble that arise from the deep convolutional discriminator networks we have trained.

To produce the low-dimensional embeddings, we simply take the feature vectors which were

computed to assess the classification performance in Chapter 1 and Chapter 2 and stack

them for each first occurring patch for a class in the dataset for each feature vector type and

subject the resulting data matrix (e.g. X0,MEANS) to the metric MDS procedure previously

described. Alternatively, the feature vectors could have been averaged prior to MDS, but

this would produce feature vectors that would not be reflective of the original feature vectors.

Or, the MDS configuration points within a class could have been averaged – this would have

been more legitimate than the last idea but for simplicity the unique instance approach

is used. The chosen rule also expresses a bias against finding separation results because

individual instances could be uninformative of the class by chance. Consequently, when

Thing vs. Stuff dichotomies appear in the MDS data below for recognizer features, we can

be if anything more confident that the feature choice leads to a dichotomy – and where mixed

results appear, the embedding might not actually be as degenerate.
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Primitive

Immediately, in Figures 3.1 through 3.5 it is apparent that Things and Stuff usually exhibit,

on average, but not always securely, some sort of separation that survives the low-dimensional

projection of their primitive recognizer feature vectors. Systematically this separation is not

linear, but often involves the cloud or point set of Stuff being contained inside the point set

of Things.

The least degree of this kind of embedded separation is observed for the signchains-of-

signchains features, where the tendency is almost reversed. A similar pattern is observed

for the signchain. The convergence or collapse of Stuff classes to a point is most clearly

observed for the means and the medians. Of course, this is mildly curious because the

means are the lowest performing features and the medians along with the full histogram bin

heights are among the best. So the behavioral similarity of features is not purely captured

by performance.

Of course, classification performance on the Thing vs. Stuff distinction and not on ordinary,

per-class recognition is most tightly related to where the Things and Stuff exist in feature

space and its low-dimensional projections. This suggests, though, that there is additional

information of some kind to be gained from identifying a patch as Thing or Stuff and using

nonlinear classification methods even as linear methods may prove reasonably competent at

the actual classification problem. It clearly suggests that omnibus Thing vs. Stuff classi-

fiers miss out on good information using purely linear methods, and that they should have

nonlinear elements that can use, at the least, quadratic or Gaussian decision boundaries.

The next most apparent pattern is that the kernel size is almost irrelevant to determining the

type of separation. The kernel size (as seen at the end of Chapter 1 and Chapter 2) is indeed

quite related to the quality of classification, even though it is secondary to feature selection

(the means with a linear classifier are not saved by 11x11 random filters). Reducing per-class
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confusion then, if it is assessed by this method, involves properly separating instances in the

low-dimensional space. If anything, where feature vectors induce a space that permits clas-

sification by attracting all members of a class to primarily a proprietary area of the space,

improving recognizer success hinges on finding a way for each cloud to be discriminated from

best from its nearest neighbors without losing the stability of the long-range organization

of proprietary spaces to feature adjustments or transformations. Feature selection schemes,

conventionally, add or mutate features in a feature vector based on improvements to clas-

sification performance, without looking at optimizing for salutary adjustments to be made

in view of the underlying projection geometry; the type and severity of separation contains

more information than does pure performance, even though not all of that information may

be directly germane to classification performance if you are actually interested in classifying

at a differently specified level of hierarchy (things vs. stuff as opposed to class vs. class). In

summary, the Thing vs. Stuff distinction is strong in the face of kernel size changes, and the

classification performance at a finer grain is brittle.
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Figure 3.1: MDS embedding based on filterbank means, kernel size increasing from 3 to 11
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Figure 3.2: MDS embedding based on filterbank signchains, kernel size increasing from 3 to
11
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Figure 3.3: MDS embedding based on filterbank signchains-of-signchains, kernel size increas-
ing from 3 to 11
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Figure 3.4: MDS embedding based on filterbank histogram bin heights, kernel size increasing
from 3 to 11
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Figure 3.5: MDS embedding based on filterbank medians, kernel size increasing from 3 to
11
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Figure 3.6: MDS embedding based on GANsemble member labels, with baseline subtraction
and without
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NONGANsemble (with baseline subtraction) Features
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Figure 3.7: MDS embedding based on NONGANsemble member labels, with baseline sub-
traction and without

In Figure 3.6 and Figure 3.7, the low-dimensional embeddings of the recognizer features for

the deep convolutional recognizers (the GANs and NONGANs) are shown.

The GANsemble activations for patches produce embedding geometry more reminiscent of

that for the means and medians, which is a focal concentration of the Stuff classes. The

NONGANsemble, meanwhile, produces an embedding that better resembles the signchains

classes (but is actually expected to be more linearly separable).
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This difference underscores the fact that GAN style loss and ordinary loss discriminators

are indeed different (as the lens of Things vs. Stuff reveals for us), and their feature vectors

created by committee members labeling patches are distinct, to the point of changing the

optimal choice of consensus function, at least after dimensionality reduction is applied. In

the case of the GAN activations after MDS, a Gaussian Discriminant Analysis that permits

dynamic distance queries is likely preferable to a Linear Discriminant Analysis with its

additional projection and its extra effort settling on a hard, constant decision boundary.

An advanced behavioral query that these types of embeddings could allow us to make in

the future might be: “do direct objectness classifiers, such as those introduced using the

NONGAN dichotomously on all class data in Chapter 2 occupy a position in feature space

that is close to the metacategory-conditional centroid for Things, the global centroid, or

neither?”

3.1.2 Ensemble Labeling Affinity LDEs (Model Output)

The labeling affinity LDEs depicted below show where things and stuff classes fall based

on the internetwork firing affinity matrices. As established in Chapter 2, there are affinity

matrices defined for the GANsemble processing the fake images, the GANsemble processing

the original/real images, the NONGANsemble processing the fake images, and the NON-

GANsemble processing the real images. Further, for each of the four preceding cases, there

are also transformed affinity images producing distinct embeddings according to whether

baseline subtraction, no baseline subtraction, or baseline division was applied.

The low-dimensional embeddings are produced mostly as before, treating the affinity matrices

themselves as the data matrices X0 subjected to metric MDS. There is no notion of having

to pick either a unique class champion arbitrarily or averaging since only the one possible

affinity matrix was studied and not permutations.
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The natural hypothesis is that the GANs and NONGANs are behaving quite differently

and so a bifurcation between GANs and NONGANs is expected in subjectively “good”

embeddings.

Figures 3.8 through 3.11 show the MDS for the real and fake GAN and NONGAN affinity

matrices, with all three of their postprocessing states: no change, baseline-subtraction, and

baseline-division. It can be seen clearly across all embeddings that baseline-division harms

separability, as previously established multiple times throughout Chapter 2. It either draws

the frontier of Things and Stuff really close, leaving far flung outliers, or it places things

and stuff on a (admittedly bifurcated) line, as in the case of the GAN’s affinity matrix

of fakes. Overall, Things and Stuff can be separated in these projection spaces with hard

decision boundaries of either a line, two lines, or a parabola, and sometimes with commodious

margins. A notable exception is the GANsemble’s affinity matrix for reals, where the Stuff

is again included within the cloud of Things and so a GDA type classification (i.e. picking

the nearest Gaussian, corrected for spread) would be best.

Finally, in the overwhelming majority of these embeddings it is important to note that

the boom-box and its duplicate network are colocated (either at imperceptibly different

positions, or at least with no closer intervening network) and so are the theodolite and its

duplicate network. An unsurprising exception is the GANsemble fake with baseline division

embedding, where this is slightly violated. This is a good, further indication that the pairwise

firing-based affinity matrix retains decent similarity information since it can at least recognize

same-data scenarios even through the process of an embedding. In many of the embeddings,

the sextant is either close to a theodolite or a swiss army knife, AK-47, or revolver, showing

evidence of a slightly less trivial level of similarity-preserving.
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Figure 3.8: MDS embedding based on GAN affinity matrix of fake patches, with subtractive
normalization of output, no normalization, and divisive normalization
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Figure 3.9: MDS embedding based on GAN affinity matrix of real patches, with subtractive
normalization of output, no normalization, and divisive normalization
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Figure 3.10: MDS embedding based on NONGAN affinity matrix of fake patches, with
subtractive normalization of output, no normalization, and divisive normalization
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Figure 3.11: MDS embedding based on NONGAN affinity matrix of real patches, with
subtractive normalization of output, no normalization, and divisive normalization

One addition is made to this family of embeddings even though it is not an affinity matrix

computed from the firing of networks in the GANsemble or NONGANsemble. It is the affinity

matrix that is created indirectly by the interior activations of the Inceptionv3 network when

subjected to fake patches from the networks. It depicts quite vividly that the internetwork

(between fakes) FID affinity spaces out Stuff far more than Things. This is distinct from

the FID pattern used in its proper context, and observed in Chapter 2, between produced

reals and fakes, where there were higher Thing Real-Fake FIDs – cumulatively this suggests

that Fréchet Inception Distance responds very interestingly interclass with respect to the

variation within a class, which is obviously lower for Stuff since it is based on the distance
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of multivariate Gaussians (which depends on mean but also standard deviation).
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Figure 3.12: MDS embedding based on GAN internetwork fake patches Fréchet Inception
Distance affinity matrix. The Frechet Inception Distance, for fake patches, induces much
more variation comparing Stuff classes, which is curious given the homogeneity of stuff.
Possibly this pattern results from the fact that the FID is founded on a multivariate Gaussian
distance, and the difference also depends on the bandwidth of the Gaussian, which may be
appreciably lower for Stuff.

3.1.3 Neural Network Interclass Weight Disparity LDEs (Model

Parameters)

Analogously to the pairwise affinity matrix, the model parameter distance matrix is turned

into an embedding and shown for each of the measurements defined in Section 2.2.3 in

Figure 3.13 through 3.18. The embeddings are made separately for the GAN and NONGAN
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affinity matrix, so only the discriminator layers are considered, as the NONGAN obviously

possesses no generator. The pooled layerwise matrix is composed by taking the vectors

in each logical layer’s affinity matrix and concatenating them so that the vector for each

network is representative of all of the layers in the discriminator, and this composes the

design matrix X0 that is processed by metric MDS.

The anomalous synthesis failure classes c093 and c129 return to prominence in distorting

the embeddings, especially those for the GAN’s MSE, L1, and L2 Norm, and SSIM. A

significant number of the embeddings are unusable for separating Things and Stuff, notably

the Minkowski norms and the Jensen-Shannon distance. Approximate linear separability is

evident for SSIM and for MSE, and also for the Signchain Distance (but in this case, only

for the GAN).

The previous image-based analysis revealed that only certain layers expressed a Things vs.

Stuff dichotomy. In this form of visualization, it can be seen that the MSE and the SSIM

are the best measures (of those assessed) for disentangling Thing and Stuff discriminator

networks based on all of their relevant weights. Clearly, the SSIM is a relatively-sophisticated

way of looking at distance, at least on the coarse grain of trying to guess from the weights

alone whether the network was trained with Things or homogeneous Stuff. But the notion

of natural distance, taken between models in high-dimensional weight space, is even less

meaningful, at least for discerning a difference between Things and Stuff. This could be an

epiphenomenon of the sensitivity of the MSE to outliers, but is likely a problem of the MSE

being a much more direct way of accumulating total model disparity on all dimensions. While

the Jensen-Shannon distance shows some metacategory-centric separation, it isn’t secure,

and therefore it is particularly noteworthy that the signchain distance (which appeared a

weaker form of Jensen-Shannon distance in the parameter matrices) separates so well, at

least for GANs. It does not for the NONGANs. As previously discussed, the distributional

divergences are already somewhat problematic because they are based on extemporaneous
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histograms, which may have different supports.
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Figure 3.13: MDS embedding based on layerwise MSE between networks a) in the GANsem-
ble b) in the NONGANsemble
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Figure 3.14: MDS embedding based on layerwise L1 Norm between networks a) in the
GANsemble b) in the NONGANsemble
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Figure 3.15: MDS embedding based on layerwise L2 Norm between networks a) in the
GANsemble b) in the NONGANsemble
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Figure 3.16: MDS embedding based on layerwise Jensen-Shannon Divergence between net-
works a) in the GANsemble b) in the NONGANsemble
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Figure 3.17: MDS embedding based on layerwise signchain distances between networks a)
in the GANsemble b) in the NONGANsemble
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Figure 3.18: MDS embedding based on layerwise SSIMs between networks a) in the GANsem-
ble b) in the NONGANsemble
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3.2 Things vs. Stuff Encapsulation Class of LDEs

Just as we demand of recognizers various accountings of their performance, we expect some

quantitative analysis of embeddings. Quantifying the empirical separability of the Things

and Stuff classes demonstrating the existence of a Things vs. Stuff dichotomy displayed

in a candidate embedding is obviously of foremost importance over preservation of known

similarities (theodolite-theodolite, boom-box-boom-box) for our investigation of Things vs.

Stuff.

There are various choices available when looking at the separation between Things and Stuff

point sets. Beginning with the pairwise distance matrix p which stores the Euclidean distance

between every possible pair of thing points T and stuff points S, one could report the average

Euclidean distance. In addition to the average entry, two extremes can be considered.

On one extreme, focusing on the maximum separation, there is the maximin type directed

Hausdorff distance (used for template matching in computer vision and elsewhere, see [64]

for fast approximate Hausdorff algorithms) where

h(T, S) = max
t∈T

(min
s∈S

(p(t, s)))

describes the maximum distance from an adversarially chosen Things point to the closest

Stuff point. To imagine this vividly, this is related to the farthest distance a missile would

have to travel from the farthest-flung silo in an aggressor state to the nearest target in enemy

territory. The distance is directed because

h(S, T ) = max
s∈S

(min
t∈T

(p(t, s))) the distance from the adversarially chosen far point of the S

cloud to the nearest point in T need not be equivalent. Given the maximin spirit of the

definition, the intuitive undirected Hausdorff distance is simply
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max(h(S, T ), h(T, S))

On the other extreme, there is the minimin type minimum separating distance between the

two clouds, which is

m(T, S) = m(S, T ) = min
t∈T

(min
s∈S

(p(t, s))) = min(p)

Again, to imagine this with a military planning example, this is related to the closest points

of coastline in an invading and an invaded country. This is somewhat related to the max

margin loss in support vector machines where you are trying to position the hyperplane such

that it provides a symmetric margin maximizing this kind of distance for the support vectors

of each class.

While the maximin and the minimin pairwise differences could be reported easily enough for

the LDEs above, neither are extremely directly related to recognition. The embedding with

minimum minimin distance could happen, for example, to be very predictably modelable

by two very distinct Gaussians or separable with a linear classifier but directly abutting.

In another degenerate case, a situation where Things and Stuff clouds were directly super-

imposed so as to make classification by conventional means very difficult but with a large

constant separation between pairs could mislead if one was to erroneously believe that the

best embedding was the one with the maximum minimum separation. The maximin Haus-

dorff distance, while very generally useful in template matching, isn’t informative either for

this kind of recognition; in particular, it can be driven by an outlier point far on the fringes

of the LDE, such as those which might be induced in GANsemble LDEs by synthesis failure

classes.
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3.2.1 Automatic Estimation of Encapsulation Class Using Convex

Hulls and the Point-in-Polygon Query

What we are interested in from the point of view of predicting embedding performance on

separating Things and Stuff is estimating linear separability. Of course, linear separability

can be inferred with the perverse misuse of a support vector machine’s regularization param-

eter C. The parameter C being very large eliminates the softness of SVM (see [122], 14.5.2.2

for an explanation) which tolerates separability violations if the margin can be increased.

If C is set very high and the SVM linearly separates the data (for example, experiences

no misclassification on the data it was trained on, reminiscent of our own classification on

training data with the GANsembles), for a feature selection and embedding procedure A

but not a feature selection and embedding procedure B you might be more confident that

A represents the better combined choice of manifold learning procedure and set of features

to select for classification for unseen data – confining yourself to linear classifiers.

In addition to separability, we are also interested in the curious question of whether all

Stuff might converge to a single point in Thing space (i.e. all Stuff behaves like a single

Thing under some transformation) or all Things might converge to a single point in Stuff

space (i.e. all Things behave like a single Stuff class) for various embeddings. The intuitive

hypothesis the average person might have is that all things are a kind of stuff originating

from amorphous material, but we have defined Stuff classes to be only homogeneous objects

in terms of image statistics, so the opposite hypothesis seems more likely in terms of the

increased expectation of more uniform behavior given more uniform input. Is it possible that

all homogeneous textures behave essentially the same under some transformations? Being

able to demonstrate this visually from embeddings would shore up confidence in applying

separately methods that assign things and stuff categorically different outputs (e.g. Inception

Score as shown in Chapter 2) and making proper range corrections for the possibility that a

whole space might actually exist entirely inside another, encapsulated.
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To taxonomize our embeddings by probable (for our present purposes, not by any means

as a guarantee) separability and also encapsulation (to be sure, a strong variety of non-

separability in the linear sense), the convex hulls for each of the Thing and Stuff point sets

are computed for each embedding. Things and Stuff are assumed here to be likely separable

if the convex hulls do not intersect. They are assumed to not be separable if they do. Things

are assumed to be fully encapsulated in Stuff if no Stuff points lie within the Things convex

hull but all Things points lie within the Stuff convex hull. Stuff is assumed to be fully

encapsulated in Things if all Stuff points lie within the Things convex hull but no Things

points lie within the Stuff convex hull.

The word “inside” is chosen precisely here, as for simplicity’s sake in calculation we consider

the tests only inside the polygon corresponding to the hull, not on the polygon, and assume

that the subcomponents of our algorithm are defined in such a way as to effectively erase that

distinction. For points in the set contributing to the hull, if the “convex hull” determination

algorithm only included the extremal points (e.g. it first detects and removes points when

three adjacent processed points are collinear), then an “in-or-on-polygon technique” would

need to do more to fulfill the “on-polygon” subquery than simply detect if the query points

match vertex points for the hull, if the ”in-polygon” technique also happened to exclude the

points on the polygon. It would also need to determine whether a point lies on the line

segments which constitute the simplices of the convex hull (e.g. by using the wedge product

of vectors from the query point to the simplex edgepoints to determine that the area of the

triangle between the three points is zero (establishing collinearity), and by using the dot

product or some other means to determine that it is included within the bounds of the line

segment).

The point-in-polygon (PIP) subproblem for the convex hull can be solved by a raycasting

method called the even-odd rule. A ray R with a random direction originating from the

query point P is tested for intersection with every simplex of the hull using a ray-line segment
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intersection operation. If the number of intersections is odd, the ray has passed through at

least one simplex without a corresponding intersection – it is inside the polygon, escaping.

The case of a point lying outside the polygon shooting its ray into space and also the case

of into and then out of the polygon is consistent with an even number of intersections.

This method works for the “strictly inside” variant of the query regardless of whether the

ray-intersection test includes the origin of the ray as is sensible (that is, a point lying on a

simplex shooting its ray into the ether, say perpendicularly to the simplex, would be deemed

outside if the intersection at the origin of the ray with the line segment were excluded as

a proper intersection). An efficient method that sorts the coordinates of the vertices and

potentially avoids some operations is described in [3], which also relates the even-odd rule

to the Jordan Curve Theorem.

The PIP status of each query point can be accumulated in a list of PIP results for each of

the Things and Stuff sets.

The determination of following types from sums of these PIP query vectors emerges:

• Type I: If the sum of Stuff points in the Thing hull is 0 and the sum of Thing points

in the Stuff hull is 0, then linear separation is assumed.

• Type II: If both sums are nonzero, or the single nonzero sum is not equal to the

appropriate total, then linear separation is not assumed, and neither is encapsulation.

(This is the fallthrough case for Types I,III, and IV.)

• Type III: If the sum of PIP results for Stuff points in the Thing hull is equal to the

number of the points in the set (all points) but the sum of PIP results for Thing points

in the Stuff hull is 0 (no points), then the Stuff cloud is fully encapsulated in the Thing

cloud.

• Type IV: If the sum of PIP results for Thing points in the Stuff hull is equal to the
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def separabilityType(thingsLDEs, stuffLDEs):

convex_hull_things = ConvexHull(thingsLDEs)

convex_hull_stuff = ConvexHull(stuffLDEs)

appendFirst = lambda npa: np.append(npa,npa[0])

hullpos_things = thingsLDEs[appendFirst(convex_hull_things.vertices)]

hullpos_stuff = stuffLDEs[appendFirst(convex_hull_stuff.vertices)]

stuffInsideThings = pointsInOrOnPolygon(stuffLDEs, hullpos_things)

thingsInsideStuff = pointsInOrOnPolygon(thingsLDEs, hullpos_stuff)

stuffIsEncapsulated = False

if np.sum(stuffInsideThings) == np.size(stuffInsideThings) and np.sum(thingsInsideStuff) == 0:

stuffIsEncapsulated = True

thingsAreEncapsulated = False

if np.sum(thingsInsideStuff) == np.size(thingsInsideStuff) and np.sum(stuffInsideThings) == 0:

thingsAreEncapsulated = True

linearlySeparable = False

if np.sum(stuffInsideThings) == np.sum(thingsInsideStuff) == 0:

linearlySeparable = True

separationString = ’Not Assumed Linearly Separable’

if linearlySeparable:

separationString = ’Assumed Linearly Separable’

elif stuffIsEncapsulated:

separationString = ’Stuff is Encapsulated’

elif thingsAreEncapsulated:

separationString = ’Things are Encapsulated’

return linearlySeparable, stuffIsEncapsulated, thingsAreEncapsulated, separationString

Figure 3.19: Python code for determining separability type given things-only LDE coordi-
nates, stuff-only LDE coordinates, a stock convex hull determination routine, and a mem-
bership function that returns whether a point lies in a polygon.

number of the points in the set (all points) but the sum of PIP results for Stuff points

in the Thing hull is 0 (no points), then the Thing cloud is fully encapsulated in the

Stuff cloud.
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Figure 3.20: After computing convex hulls for Things and Stuff, repeated PIP (point-in-
polygon) queries can determine that all Stuff points lie within the Things hull, but no
Things points lie within the Stuff hull, illustrating Type III separability

3.2.2 Failure to observe Type IV separation (things converging to

a point in stuff space)

The subjective conclusions of the preceding sections covering the three embedding groups can

now be backed up by the algorithm just described. Each table in this section taxonomizes

the embeddings within a group (i.e. recognizer feature, affinity matrix, model parameter

(dis)similarity matrix), according to whether they are Type I, II, III, or IV.

In the first group, the recognizer feature embeddings, none of the embeddings are adjudged

likely to be linearly separable. Kernel size, as mentioned, is not the deciding factor, except

264



in a marginal case (if this encapsulation case was a cell, it would be exocytosing!) of the

3x3 kernel pure histogram features. Means, medians, and histogram bin heights are grouped

with the GANsemble in showing all Stuff as in one contained location in the region of space

for Things. Signchain and signchain-of-signchain features, as well as the label emissions of

the NONGANsemble are not assumed to be linearly separable. If you are trying to separate

Things and Stuff, the lowest-performing-in-their-category mean and GANsemble features are

actually better, assuming it is not linear separability you are pursuing.

Encapsulation Class Members Apparent

Type I: Assumed Linearly Separable (none)

Type II: Not Assumed Linearly Separable

NONGANSEMBLE
NONGANSEMBLENoBS

3x3 SC
3x3 SOS

3x3 HISTS
7x7 SC

7x7 SOS
11x11 SC

11x11 SOS

Type III: Stuff is Encapsulated

GANSEMBLE
GANSEMBLENoBS

3x3 MEAN
3x3 MEDIAN

7x7 MEAN
7x7 MEDIAN

7x7 HISTS
11x11 MEAN

11x11 MEDIAN
11x11 HISTS

Type IV: Things are Encapsulated (none)

Table 3.1: Things vs. Stuff Encapsulation Class of Recognizer Feature LDEs

In the second group, the firing affinity matrix embeddings, there are empirically linearly

separable embeddings. They are only the affinity matrices calculated for Fakes, and also the

Fake-to-Fake FID matrix. Of course, for the former, non-FID matrices, this does not make
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significant comment on the true nature of Things and Stuff, only likely on the competency gap

that still exists in synthesis that manifests as high-quality syntheses for Stuff (and perhaps

the overtrained boom-box producing network) alone. The odd Fake affinity matrices out are

the deficient divisive normalization transformations of the matrix. All other embeddings,

Reals for GANs and Real for NONGAN are not assumed to be linearly separable on the

Things vs. Stuff distinction.

The GANsemble affinity matrix for real images with proper post-processing methods (i.e.

not baseline-division) show Stuff classes being encapsulated in the hull of Things classes.

Separation Type Members

Type I: Assumed Linearly Separable

FF GAN
FF GAN SUB
FF NONGAN

FF NONGAN SUB
FID FAKEFAKE

Type II: Not Assumed Linearly Separable

FF GAN DIV
FF NONGAN DIV

RR GAN DIV
RR NONGAN

RR NONGAN DIV
RR NONGAN SUB

Type III: Stuff is Encapsulated
RR GAN

RR GAN SUB

Type IV: Things are Encapsulated (none)

Table 3.2: Things vs. Stuff Encapsulation Class of Ensemble Labeling Affinity LDEs

In the third and final group, the model parameter distance embeddings, there are also

empirically linearly separable embeddings. These are the MSE and SSIM for the NONGAN

and the Signchain Distance for the GAN, as was subjectively adjudicated before, with some

justification as to why this was the case for the MSE and SSIM (also almost separable for the

GAN, but this is harmed by synthesis failures for the GAN). It is unknown why Signchain
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Distance is separable, with a large, clear margin and Jensen-Shannon Distance is not. All

other embeddings hit the default case, Type II of neither being linearly separable or having

one metacategory embedded in the other.

Encapsulation Class Members Apparent

Type I: Assumed Linearly Separable

SSIM NONGAN
MSE NONGAN

SignchainDist GAN

Type II: Not Assumed Linearly Separable

SSIM GAN
MSE GAN

L1Norm GAN
L1Norm NONGAN

L2Norm GAN
L2Norm NONGAN
JSDivergence GAN

JSDivergence NONGAN
SignchainDist NONGAN

Type III: Stuff is Encapsulated (none)

Type IV: Things are Encapsulated (none)

Table 3.3: Things vs. Stuff Encapsulation Class of Neural Network Weight Disparity LDEs

Now that the number of instances of each class of embedding separation has been tabulated,

even the casual reader will note that in over 40 sometimes very different types of embeddings,

Type IV was never observed. So there is now an open conjecture of whether any practically

motivated set of features results in strong encapsulation of all Things classes within the

cloud of Stuff classes. The faux-philosophical question of “Is all Stuff really a Thing?; Or are

all Things really Stuff?” has a tentative answer that Stuff in terms of both primitive and

deep convolutional recognizers all tend to behave like a single Thing more than the other

way around. That the results tend this way should, once again, be unsurprising given the

homogeneous definition of Stuff and the individualistic concept of Things, but it is comforting

to see that confirmed visually after an improbable number of mathematical operations.
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3.3 Inducing Feature-Based “Embeddings of Embed-

dings” via Procrustes Alignment and Second-Round

MDS

With so many computed LDEs, it is desirable to be able to compare them on the basis of

more than just their membership in an encapsulation class. Within each coarse category

(recognizer feature, affinity, model parameter distance) of embedding, we seek to easily vi-

sualize their degree of relatedness. This suggests employing a second-round of MDS, but

predicated on the dissimilarity matrix of the embeddings themselves and not on the features

directly. In other words, what we desire is an “embedding of an embeddings”, or a metaem-

bedding, based on an appropriate notion of the “distance” between embeddings. In fact the

term “meta-embedding” has come into use recently in NLP [30] to denote merely composite

embeddings computed, usually, by simply averaging corresponding configurations across a

set of embeddings. This does not cohere with the popular reflexive sense of the meta- prefix

(as in metafiction or metahumor) as it would better apply to “embeddings of embeddings”

– perhaps we will be left with referring to our high-level or parent embeddings as something

clumsier or less immediately cognizable like matriembeddings or acroembeddings (because

they teeter above daughter embeddings) in the wake of this prior art.

3.3.1 Procrustes Alignment of Embeddings And MDS of Pro-

crustes Distance Matrix

In any case, the natural notion of distance is the L2 norm, but we are looking to minimize

this distance between corresponding points (i.e. identifying the same classes or networks)

in each embedding. Minimizing the pointwise differences between paired datasets by a spe-

cific alignment procedure is minimizing the “Procrustes distance” between the point sets.
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Practitioners of shape analysis such as those in anthropology or paleontology are familiar

with the Generalized Procrustes Analysis [65], which builds a consensus reference shape

that is an intermediary between a list of shapes being compared. By contrast, classical

Procrustes analysis chooses one data set as the reference shape and aligns the other set

to it by finding an optimal transformation matrix T which when multiplied with the data

set B best superimposes on the data set A. The specific procedure used by our stock im-

plementation (scipy.spatial.procrustes, [170]) is based ultimately on the Ph.D. thesis

work of Schonemann [143], who provides an algorithm for finding the optimal orthogonal

procrustes transformation, meaning one that only used rotations and reflections. Schone-

mann worked at the University of Illinois, where others studied the burgeoning literature

of factor analysis rotations and Hurley and Cattell developed a popular computer program

called PROCRUSTES, cheekily named after the bandit of Greek myth. They humorously

opined [82] in 1962:

This program lends itself to the brutal feat of making almost any data fit almost

any hypothesis! Because of this possible proclivity we gave the code name Pro-

crustes to this program, for this reference describes what it does, for better or

worse. To publish widely a program which permits any tyro, by pressing a com-

puter button, to seem to verify any theory, is as irresponsible as loosing opium

on the open market.

making comparisons to the blind application of the Varimax rotation. Schonemann showed

himself that his work was a more generalized version of that of Green [67] which also at-

tempted to find a minimization of the sum of squares distance.

Since the unencumbered term “Procrustes analysis” can then be considered somewhat his-

torically ambiguous, the specific instantiation we use apparently proceeds as follows:

• The data matrix A and B are mean subtracted, moving the data to the origin. The
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Frobenius norm is taken of each transformed matrix. The matrices are divided by their

respective norms, producing transformed matrices A′ and B′.

• Then the Orthogonal Procrustes transformation matrix R that transforms B′ and

returns a scalar s is computed.

– To compute the Orthogonal Procrustes matrix R and scale factor, the singular

value decomposition of (B′TA)T is taken.

– The transformation matrix R is produced by multiplying the resulting left singular

vectors matrix u by the right singular vectors matrix v.

– The scale s is the sum of the singular values w.

• Now that R and s are computed:

– The transformed version of B′, B′′, is sB′RT .

– The Procrustes distance M2 is the sum of squares, or
∑

(A′ −B′′)2.

With the Procrustes distance defined, any group of embeddings operating on the same base

objects (e.g. classes through their recognizer features) can have its pairwise Procrustes

distance matrix calculated. This distance matrix can then be fed as a different data matrix

X to be used by the metric MDS procedure. This second round of MDS produces the

metaembedding for the group of embeddings, associating a point in the metaembedding’s

space with each embedding.

Schematically, this is the procedure so far, up to the point of producing the metaembeddings:

MDS(features)→ Procrustes(MDS(features))→ MDS(Procrustes(MDS(features)))

Metaembeddings could potentially enable some interesting advanced queries. For example,

if you were to signchain-decimate the feature vectors in your design matrices X, would the
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signchain-decimated features end up in close proximity to their unsignchained equivalents?

If so, it would suggest that quite a lot of information that can be used for classification is

encoded in the subordinal information of features.

3.3.2 Recognizer Feature Metaembeddings

In Figure 3.21, the embedding pairwise Procrustes distance matrix is shown for the vari-

ous recognizer feature embeddings. Naturally, embeddings have zero distance to themselves

but other embeddings with a small amount of Procrustes distance are the medians features

amongst themselves, and, to a lesser extent, the means. The NONGANsemble is also some-

what similar to the NONGANsemble without baseline subtraction, whereas the GANsemble

is not. This comports with the recognition results at the end of Chapter 2 and also the affin-

ity matrix results where baseline subtraction is critical for the GANsemble but not for the

NONGANsemble. NONGANsemble embeddings are very poorly alignable with GANsem-

ble embeddings and also the primitive recognizer embeddings. Most of the similarity in a

Procrustes minimizing sense is found among the various primitive features.

Recall that these distances are not related directly to similar performance, they are related

to how similarly the feature vectors assign classes and networks to similar points in the

low-dimensional embedding spaces.

Visually, it is inconvenient to reason about the kinship of embeddings using a heatmap vi-

sualization of the distance matrix. Figure 3.22 presents the embeddings as points in the

metaembedding space. These metaembeddings reveal, for example, the earlier mentioned

tendencies. For example, the NONGANsemble with and without baseline subtraction expe-

rience very diminished separation compared to the GANsemble with and without baseline

subtraction, and this is seen immediately. The signchain of signchains and signchain features

are grouped together regardless of feature size, and the median features are as well. Mean
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and Histogram features primarily are but move into different sections of the space with a

change to the highest filter kernel size, 11x11.
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Figure 3.21: Procrustes distance matrix between embeddings of classes based on recognizer
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ing MDS on the Procrustes distance between first-stage (classes in a feature-based space)
embeddings

3.3.3 Ensemble Labeling Affinity Metaembeddings (Model Out-

put)

Figure 3.23 displays the pairwise Procrustes matrix for the second group of embeddings,

based on the first-round MDS of affinity matrices. It can be seen that the closest similarities

are of the GAN and NONGAN affinity matrices with raw activation to their corresponding

affinity matrices with baseline subtraction. This too was borne earlier in examining by eye

the first stage embeddings, and also realizing the effect of the affinity matrices (although

the dissimilarity is higher for the NONGAN than it is for the GAN, which is somewhat
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curious given the importance of the baseline subtraction activation. The greatest distance

seen in the matrix is between the GAN operating on reals and the NONGAN. Baseline

divided matrices can also be expected to be distant from each other in a second-round

embedding. Interestingly, the FID between fakes is not the most distant from any thing

but the reals compared through the GAN, which suggests that the NONGAN assessed on

reals and fakes and the GAN assessed on fakes “perceive” in a relatively more similar way

to the Inceptionv3 net, in the sense of positioning the various classes in the space created

by activations (specifically model-terminal activations for the GANs and NONGANs, and

slightly earlier activations for the comparatively sprawling Inceptionv3).

Figure 3.24 shows the metaembeddings for firing affinity. The NONGAN and NONGAN sub-

traction conditions for reals and fakes are strongly colocated. The GAN assessing fakes and

the GAN assessing fakes with subtraction are nearly coincident, and proximate to the FID

metaembedding, which lies between these and the NONGANs with proper post-processing.

Meanwhile the GAN and GAN with baseline subtraction operating on the reals are colo-

cated, but distant from the majority of configurations. Flanking them are the improper

transformations of the GAN and NONGAN, the divisive normalization cases. In all other

cases, the tightest pairs are based on assessing the same kind of images (either only reals

or only fakes) and having the same kind of network (only GAN or only NONGAN). The

divisive normalization bucks the trend by showing the most closely aligned embeddings to

be those that share only the network type regardless of type of images seen. Thus, divid-

ing by the baseline creates matrices that are more discriminative of the type of network,

which may relate primarily to the different levels of activation (the GAN firing ratio, which

was positive for all classes, showing detectably higher activation levels even after baseline

subtraction only applied to the GAN activations) – a factor which is highlighted best when

the activations have not been corrected for class-differential firing regimes and the affinity

matrices are therefore streaked.
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Figure 3.23: Procrustes distance matrix between embeddings based on GANsemble and
NONGANsemble labeling affinity matrices.

Note that in the metaembedding space, GANs and NONGAN affinity matrices are linearly

separable, and the closest vector to the probable margin (which in SVM would be probably

chosen as a support vector) is the FID vector. Thus, FID distance between classes may

represent something intermediate to the sense of distance separately established by GANs

and NONGANs. Once again, just as the recognizer feature metaembeddings do not focus

on the mere performance of the recognizer features primarily but the nearness of the feature

vectors (the behavioral similarity of the operation in terms of placing classes and networks

near each other), so too do the affinity metaembeddings comment on the behavioral similarity

of the affinity matrices at the class positioning level and not at the performance level (which

for affinity matrices and distance matrices we have considered by the end of Chapter 2 to be a

275



1.0 0.5 0.0 0.5 1.0
MDS Dimension 1

1.0

0.5

0.0

0.5

1.0

1.5
M

DS
 D

im
en

sio
n 

2

FF_GAN

FF_GAN_DIV

FF_GAN_SUB

FF_NONGAN

FF_NONGAN_DIV

FF_NONGAN_SUB

RR_GAN

RR_GAN_DIV

RR_GAN_SUB

RR_NONGAN

RR_NONGAN_DIV

RR_NONGAN_SUB

FID_FAKEFAKE

Affinity-Based Embedding of Embeddings (Overall)

Figure 3.24: MDS metaembedding which situates affinity matrices in a shared space using
MDS on the Procrustes distance between first-stage (classes in a affinity-matrix-based space)
embeddings

mix of demonstrating the Things vs. Stuff dichotomy by displaying the characteristic pattern

while also preserving enough graded negativity for similarity and recognition operations to

be successful).

Accordingly, an advanced future query that this type of metaembedding could allow us to

make is: “does a straight mixture of GANsemble and NONGANsemble joint labeling as by

addition or averaging lie evenly between the GANsemble and NONGANsemble centroids?”
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3.3.4 Neural Network Interclass Weight Disparity Metaembed-

dings (Model Parameters)

One way of assessing the balance of constituent models (not according to behavior, but

according to makeup) in a chimeric mixture of models is by assessing the relative distance of

a chimera to candidate parents using the model parameter distances studied in Chapter 2.

The metaembeddings constructed from the various parameter distance embeddings do not, as

before, comment on the recognizers (whether deep convolutional or primitive convolutional).

They comment on the kinship of distance measurements themselves, demonstrating to us

through the lens afforded by particular high dimensional objects (our GANs and NONGANs)

how closely the measurements perform similar functions. This is without resort to the

mathematical formulation of those functions, so it is an interesting method with which to

taxonomize functions functionally, rather than by descent through analytical derivation.

Of course, this method of assessing nearness of functions is only valid when the functions are

receiving the same input, so we should again expect to see a bifurcation on differing input,

specifically in this instance a separating frontier between the GANs and NONGANs since

the distances are measuring different sets of data.

Upon examination of Figure 3.26, this frontier is discoverable, cutting across from top left

to bottom right and separating GAN vs. NONGAN metaembeddings. However, on a nearly

opposing axis, there is a separate bifurcating frontier (it is not being called a decision bound-

ary in the absence of a preplanned decision) which situtates metaembeddings in the upper

left with points corresponding to embeddings which represent distances which are distribu-

tional (the Jensen-Shannon divergence and the signchain distance). In the lower right, the

points correspond to traditional distances, with the very traditional distances, the Minkowski

p-norms, situated as the most extreme alternatives to the distribution divergences, and the

SSIM and for the NONGAN the MSE as intermediary alternatives.
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This pattern is seen in Figure 3.25 which is the metaembedding-generating pairwise Pro-

crustes matrix. The top left corner of the matrix shows a variety of distances, but the

distributional distances, ordered last, are strongly different from the other distances, enough

to make their entries look like a visually distinct augmentation to the matrix. However,

the second-round of MDS is powerful enough to help see that the Jensen-Shannon diver-

gences and signchain distances are similar enough to each other forming a bloc in the long

run as compared to the other measurements, even when, from the perspective of the Sign-

chain Distance, the lazy strategy of picking solely the nearest Procrustes neighbor with no

more detailed information about other potentials would lead one to group the SSIM and the

Signchain Distance most closely together.

Since these metaembeddings can be constructed even where distances are measuring slightly

different data from the same general source, it would be highly interesting to create a sim-

ilarity map of the exotic zoo of remotely valid distances, metrics, similarities, and corre-

lations that have been proposed throughout mathematics. If colocations were stable for

high-dimensional enough but varying source data, it would go far as to justifying the choice

of distances evaluated by researchers in many areas (for example, the controversy of the

redundancy of SSIM, MSE, and PSNR in image quality statistics [41][127]). The decreased

emphasis on clustering metrics by their own reported performance rather than redundancy

mirrors the decreased emphasis on performance, and increased emphasis on similar judg-

ments, inherent in this procedure.
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3.3.5 Estimating Relative Invariances of Metaembeddings to the

Things vs. Stuff Distinction via Second-Round Procrustes

Alignment

Since the object of this investigation is ultimately to compare Things and Stuff classes,

we extend the metaembedding procedure one step further. Accordingly, two new sets of

metaembeddings for each parent metaembedding are recalculated with only the things classes

considered in one case, and only the stuff classes considered in the other. These could be

called the conditional metaembeddings of the embedding group under consideration because

their construction has been subject to the conditioning variable of objectness in this case.

It can be easily seen that we now have two sets of corresponding metaembedding coordinates,

which seems to call out for a second round of Procrustes alignment following the second round

of MDS.

Once more, schematically:

MDS(features)→ Procrustes(MDS(features))

→ MDS(Procrustes(MDS(features)))→ Procrustes(MDS(Procrustes(MDS(features))))

Once A′Things and B′′Stuff are superimposed, the pairwise Procrustes distance matrix is not

particularly interesting, given that it is one entry. What we are interested is the vector

of pointwise disparities themselves, which is specifically the Euclidean distances between

corresponding thing metaembedding and stuff metaembedding points.

When these distances are known, it will be known, for example, which recognizers were

most vs. least invariant to the Things vs. Stuff distinction, not in terms of recognition

performance, but in terms of recognizer labeling behavior.
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Much past this point, one may object that the accumulating error of the Procrustes alignment

process and the instability of the multidimensional scaling procedure would accumulate to

the point where these results are uninformative. Indeed the misalignment is what we rely

upon to make the metaembeddings and comparisons of conditional metaembeddings in the

first place so it is not escapable, and the second concern is a point well-taken that is only

slightly helped by the fact that we have baked into the metric MDS procedure many iterations

to try to get the highest quality results. A full Monte Carlo estimation of the stability of

conditional metaembedding alignment through iterated optimizations is somewhat beyond

the scope of the investigation.

Fortunately, there is no more natural way forward chaining together MDS-based embedding

and Procrustes-based alignment beyond situating the three embedding groups (recognizer

feature, network affinity, and model parameter) somehow in a shared space. With only three

groups of metaembeddings operating on somewhat dissimilar base objects, such a delve into

the space of the space (metaspace) of recognizers seems profitless for the time being, and we

stop at mentioning its existence as a theoretical object.
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Figure 3.27: Conditional (Things and Stuff classes respectively) metaembeddings ultimately
based on model parameter distances, shown separately

Figure 3.27 shows the conditional metaembeddings (for Things and for Stuff, respectively)

for the distance embeddings. The “unconditional” metaembedding was shown previously, in
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Figure 3.28: Second-round Procrustes alignment of conditional (Stuff and Things) model
parameter distance metaembeddings into a shared space.

Figure 3.25. When the conditional metaembeddings are aligned through a second, chancier

round of Procrustes superimposition, the result is shown in Figure 3.28. For complete-

ness, Figures 3.30 and 3.29 show the conditional metaembeddings and their second-round

Procrustes superimposition for recognizer features and affinity matrices metaembeddings

respectively.
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Figure 3.29: Second-round alignment, affinity metaembedding
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Figure 3.30: Second-round alignment, recognizer feature metaembedding
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It can be seen that at this point the Procrustes process does not always align points in

the Things cloud closest to their correspondents in the Stuff cloud. However, some large

degree of specific misalignment still resulted in the useful and theoretically and empirically

explicable metaembeddings. The accumulation of optimization error and the constraint on

affine transformations in Procrustes superimposition and similar limitations in MDS threaten

to make this alignment somewhat less valid, however.

Pending those concerns, in Figure 3.31, the Euclidean distances between natural correspon-

dents from each conditional metaembedding post the superimposition are listed, and sorted

by least “meta-distance”. If the process of two rounds of MDS and two rounds of Procrustes

superimposition were perfect or not sufficiently error-accumulating, this visualization would

show which distances were least affected by the Things vs. Stuff dichotomy. We might

assume, perhaps incorrectly, that the most extreme values (the largest deviations, or the

furthest outliers) are the most reliable for observing authentic order preservation of degree

of invariance.

The most invariance in the distances is the MSE of the GAN, and the lower half of these

meta distances primarily belong to natural distances (L1Norm, L2Norm) whereas the higher

half (associated with less invariance to the dichotomy as purely according to this method)

is associated with distributionally-oriented distances (the Jensen-Shannon Distance and the

SSIM, which is, while not a divergence, a highly distributionally-founded distance due to its

calculation of local statistics such as the mean, variance, and covariance). GAN metadis-

tances are more interior to the sorted value curve, but not as a definite rule, and the middle

of this curve should be expected to elicit greater metadistance uncertainty by the informa-

tiveness of extreme values. It is difficult to support this technique using the evidence of

the previous confusion matrices, because, if anything, the MSE for the NONGAN presented

layerwise quadrant differences that were more pronounced than those for the distributional

differences. A proper confirmation or refutation might only arise by taking into consider-
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Figure 3.31: Euclidean (aka L2 Norm) distance between corresponding points in aligned
thing and stuff-based metaembeddings of GANsemble and NONGANsemble model param-
eter distances, sorted ascending

ation distance matrices based on the entire set of weights (as was ultimately used for the

metadistance calculation) instead of layerwise subsets of the weights (which is displayed in

the distance matrices, which have quite significantly different attained ranges at times, es-

pecially for the L1 and L2 norms). If the highest invariance expressed by metadistance was

actually the MSE of the GAN, this would make better visual sense, since the MSE of the

GAN induced perhaps the subjectively flattest (mostly driven by synthesis failure anomaly)

distance matrices. For the primitive recognizers, the pattern is that smaller kernel sizes are

more invariant to the distinction. Of course, smaller kernel sizes are somewhat less compe-

tent at recognition, as we have seen in Chapter 1, and so a greater projected invariance to
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Things vs. Stuff does not constitute a practical reason to argue for them.
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Figure 3.32: Euclidean (aka L2 Norm) distance between corresponding points in thing and
stuff-based metaembeddings of recognizer features following second-round Procustes align-
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This case is made with greater confidence though via the recognizer feature metaembed-

dings, where the tails of the sorted metadistances (Fig. 3.32) are the GANsemble and

NONGANsemble respectively. This argues that the GANsemble features might be most in-

variant to the Things vs. Stuff distinction and the NONGANsemble features might be least

invariant. Possibly confirmatory evidence for this is provided in the affinity matrices pre-

sented in Chapter 2. In the affinity matrices for GANs, the Stuff-Stuff quadrant was mostly

flat, but the Thing-Thing quadrant was not strongly uniformly delineated as might be found

in the idealized characteristic pattern (of parameter distance matrices); additionally, the
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Thing-Stuff cross quadrants were not as strongly related in appearance to the Thing-Thing

quadrant. For the NONGANsemble, this changes, and in revisiting these affinity matrices,

it can be seen that the Stuff-Stuff quadrant is the qualitatively dissimilar quadrant from

the other three. That this pattern coheres to the results we obtain through metadistance

estimation is very impressive if it is not an accident; it is made more impressive owing to

the fact that one may recall from earlier in this chapter that the embeddings for recognizer

features were based on the features emitted for the first-encountered unique patch, and not

all the patches in the class. If the first-stage embeddings were to be improved by making

sure they represented consensus configurations averaged over all the patch instances from a

class, this pattern might even more strongly develop.

Finally, in Figure 3.33, sorted metadistances are shown for the affinity matrices themselves.

The most invariant is the GAN operating on the reals with subtraction and the least invariant

is the GAN operating on the reals with division. The next most invariant are mostly fakes.

The next least invariant are mostly reals. More of the “proper” (that is, absent baseline

division) affinity matrices of the NONGAN rank lower on invariance, and more of the proper

affinity matrices of the GAN (especially the reals, along with the FID between fakes) rank

higher on invariance. This is consistent with the last set of metadistances. Recall once more

that only one patch contributed to each feature in the recognizer feature metadistances, here

we have the joint firing information across the networks and their classes represented. The

GANsemble in the last set of metadistances is the firing on a real patch from each class, and

the reals have the lowest metadistance (highest projected Things vs. Stuff invariance) in this

set of metadistances; of course, the GANsemble’s firing profile in total is a mixture of its

behavior on reals and fakes, but the invariance to Things vs. Stuff is lower on Fakes. This

observation, at least, makes perfect sense, because the Things and Fakes differ on quality

and therefore discriminability in the sense that for this level of training, the Things were less

competently synthesized than the stuff.
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It is reasonable from this to assume that the GANsemble is more robust (for real images)

to the Things vs. Stuff distinction than the NONGANsemble. Perhaps it is also reasonable

to assume, purely from the metadistances and without much extra supporting information,

that the NONGANsemble is more invariant to the distinction for fake images (when synthesis

quality has not settled, and the inherent difficulty of synthesis of stuff still holds power).

This brief example is not enough to prove the validity or reliability of metadistances, but in

a majority of the three cases, the metadistances matched the expectations we have gleaned

in Chapter 2.
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3.4 Inducing Outcome-Based Metaembeddings Based

on Classifier per-class MCC Rankings

Just as signchains showed that we could throw away some level of information about fil-

terbank activations and still extract some meaningful information, the performance of the

argmax and LDA classifiers after they act can be examined in terms of relative behavior even

following some quite significant loss of information – a resort to only rank-based information

about performance.

3.4.1 Kendall’s tau correlation between recognition ease rankings

Consider one classifier such as the LDA classifier using medians information from the 11x11

kernel-size filters. For each class we produced a sub-classification quality index, the MCC.

The easiest classes for the classifier to recognize (as we confirmed, Stuff classes) had the

highest MCC values observed within that classifier. Classifiers varied wildly in performance,

so the range of MCC values makes per-class standing in terms of recognition ease incom-

mensurable in an absolute sense.

Classifiers’ per-class rankings of recognition ease are commensurable, however. The similar-

ity between rankings of classes in common can be measured by how many pairs the rankings

disagree on, known as the Kendall τ distance. When one ranking is considered the authori-

tative ranking, the distance relates how many swaps are still required to bring the unfavored

ranking into the “proper order”, as by the bubble-sort algorithm. The associated Kendall’s

tau rank correlation coefficient is calculated as:

τ =
c− d(
n
2

) =
c− d
n(n−1)

2

=
2c− 2d

n2 − n
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where c is the number of in-order, or concordant, pairs, and d is the number of out-of-order,

or discordant pairs, involved in the Kendall τ distance.

For all of our rankings associated with various classifiers, we can compute the pairwise

Kendall’s τ rank correlation matrix, pictured in Figure 3.34. In this matrix, it can be

seen that the pairings of intermediate Kendall’s τ are all in the center, where the primitive

recognizer statistics reside. The area of highest rank correlation is where classifier rankings

from the mean features are compared. The mean features induce rankings that agree very

strongly – of course, this is no testament to the strength of the rankings on informativeness.

At the other end of the performance spectrum, the deep convolutional recognizer rankings

are all (with the exception of the known-anomalous GANsemble with the argmax classifier)

reasonably similar.

Once more, the similarity of the rankings is not proportional to their quality. Obviously the

quality of the means rankings are poorly informative because the use of means induced at-

chance or worse classifiers, as was shown at the end of Chapter 1. But the GANsemble and

NONGANsemble recognizers are also expected to be poorly informative rankings. At the

end of chapter 2, it was shown that these classifiers were performing at or near ceiling, with

some nuisance variation primarily caused by the synthesis failure classes. Since our rankings

are formulated on the basis of the per-class MCCs and these are at ceiling, they do not

provide much meaningful (rather than accidental) information for ranking the recognition

difficulty of textures in an attempt to find a Things vs. Stuff dichotomy. Therefore it can be

summarized that to create valid rankings, one needs classifiers of intermediate competence.

For completeness, we shall include all of the classifiers from Chapter 1 and 2, but better

quality results would likely be gained by removing uninformative classifiers. Nevertheless,

we simultaneously desire a method where uninformative classifiers do not efface all useful

information, and, if anything, since it is more honest to bias ourselves against finding a

Things vs. Stuff distinction, the addition of a range of classifiers which anomalously figure
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the recognition ease of Things or which declare an equal level of ease works towards that

goal.
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Figure 3.34: Kendall’s τ rank correlation coefficient matrix between each classifier’s ranking.
This is the number of concordant pairs pairs minus the number of discordant pairs divided
by the binomial coefficient appropriate for the number of items, distinct from the “Kendall’s
tau distance” which is just the number of discordant pairs. Hotter values indicate ranking
pairs which agree more.

3.4.2 Higher-order embedding of rankings via MDS

As with the affinity matrices we have seen up to this point, then this matrix can be processed

by metric MDS as an input data matrix, producing an embedding. Though this relates rec-

ognizers, just as with the metaembeddings, the resulting embedding is not a metaembedding
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because the rankings used to construct it are not embeddings (even as the rankings do rela-

tively position classes, albeit in a one-dimensional sense). Analysis of the distance between

thing and stuff conditional embeddings of rankings we will then omit, although a comparable

analysis is clearly possible.

Figure 3.35 shows the embedding of rankings. Visible are the means tightly off on their own,

the other histogram features of intermediate informativeness clustered together, although not

tightly by kernel size primarily or method primarily (as the specific rankings, also encompass-

ing all patches are not as tightly separated by measure as performance), the GANsemble and

NONGANsemble classifiers of most kinds, and then distantly as singletons the GANsemble

with the argmax classifier, in both its incarnations, without baseline subtraction and with

baseline subtraction. If the exclusion of the synthesis failure classes, pursued only for Sec-

tion 2.3.6, was replicated here, then it could be expected that the rankings produced by the

GANsemble using argmax with baseline subtraction and exclusion might be closer to the

rankings of the other GANsemble and NONGANsemble classifiers.

In summary of the lesson of most of the preceding work it can be said that there are actually a

number of distinct levels of analysis of recognizers. For primitive ones based on mere features,

there is the separation caused by the features, the performance under a classifier, and the

separation in the internal projections possibly used by that classifier. For deep convolutional

ones based on committees there is the separation in the list of activation emissions of a

set of networks evaluating a particular patch, but there is also the separation between the

recognizers that latently exists, up to a point of training, which can be viewed in various ways,

which for a GAN include performance on fakes, reals, and discrepancy measures like the FID.

Beyond that for networks there are the disparities between the recognizers model weights

themselves. And even after the classifiers have done their work there is the difference the

recognizers produce in the classification performance, and in the ordinally-restricted iteration

of that, the rankings. There is more to analyze than mere performance.
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Figure 3.35: Higher-order ranking embedding based on Kendall’s tau rank correlation coef-
ficient. The means, other histogram features, and deep convolutional recognizers not based
on argmax of the GANsemble form clusters.

3.5 Ease of recognition index composited from primi-

tive and deep convolutional classifier performance

rankings

More interesting than being able to cluster the behavior of rankings is the fact that having

accumulated a number of differently founded rankings of recognition ease for the same classes

freely admits creating a consensus ease ranking composited from the individual rankings.
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3.5.1 Combining rankings by the Borda count method

The commonly accepted way to achieve consensus is, of course, to put it to a vote. We can

borrow from the surprisingly technical study of election methods and social choice (e.g. [139])

the Borda count. In the context of elections, the Borda count is the prototypical positional

voting system (which means that candidates are rank ordered by each voter and seats are

allocated first to commonly high rank individuals). Although the Borda count is often

described as a method which give voters with an identical ballot a way to express a graded

precedence for a list of candidates in common, the voting scenario is substantially identical

to the problem of determining an average global ranking from the individual rankings of

classifiers.

The Borda count assigns for a ranking an opposite-order number of points. Specifically,

a 0-indexed Borda count assigns 0 Borda votes to the candidate ranked last by the rater

(the numerically highest rank value), and n votes to the most preferred candidate (the

numerically lowest rank value, of highest rank), where n is the number of candidates, with

subsequent candidates receiving n − 1, n − 2, n − 3... Borda votes. The consensus winner

can be determined by counting who has the most votes. Voting systems are often evaluated

based on how they satisfy arbitrarily complex criteria of desirability (e.g. [179]).

The Borda count lacks some desirable criteria, as all voting systems must to some voters,

but these mostly are irrelevantly for our purposes restrained to arbitrary distinctions – the

Borda count is not guaranteed to elect the majority first-ranked or the Condorcet (plurality of

pairwise elections) winner. The Borda count’s susceptibility to manipulation in the real world

is more relevant. Several facets of this are still irrelevant in our context – the classifiers will

not be indulging in strategic voting for candidates they don’t support nor will they truncate

their ballots by returning partial rankings. But one consideration is semi-relevant: with the

Borda count, a political party fielding many, possibly weak candidates is less harmed than
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in conventional systems (the effect of adding additional candidates of homogeneous appeal

(clones) is studied by Tideman [160] in the motivation of his ranked-pairs graph theoretical

voting method) and more likely to win some seats and dilute the power of other parties.

Note that this is a problem of candidates not a problem of voters.

In a mostly unrelated way, the voter “blocs” formed by our very similar classifiers (e.g. the

signchains) may gain extra influence over the composite ranking than they would have as

a result of their inclusion; it could be thus a priori reckoned less fair to have the kernel

variations included if we expect they induce similar rankings. Along the same lines, the

informativeness of the composite ranking could be harmed by how ties are handled, which

figures in significantly for the worst and best classifiers that hit floor and ceiling perfor-

mance. For simplicity, all classifiers previously described have been included, and worse,

with assigned ranks artificially made to be unique by doling them out in the case of equality

of MCCs in the canonical appearance order of classes (the somewhat lexicographic order

split on things and stuff used in the majority of figures). In a refined analysis it might be

deemed more appropriate to have the composite rankings only restricted to classifiers which

have intermediate performance so that some difference can be discovered, and in “fair” pro-

portion to the family (e.g. one argmax neural network, one filterbank signchains at the best

performing kernel size) of classifier.

Table 3.4 nevertheless models the necessary computation within a classifier for the familiar,

high-performing primitive recognizer using the LDA classifier on the medians of 11x11 ran-

dom noise filterbank features. The ranks are assigned with ties going to the first-occurring

class (even as it might be fairer to properly tie them), and the table shows classes by as-

cending MCC. Ascending MCC is associated with increasing rank number (lower rank) and

lower numbers of Borda votes.
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11x11 LDA MEDIANS

Class Rank Borda MCC

c093 2 30 -0.004161
c032 1 31 -0.004161
theodolite 3 29 0.029075
revolver 4 28 0.044750
blimp 5 27 0.045267
washing-machine 6 26 0.057511
ak47 7 25 0.067089
c129 8 24 0.067851
fire-extinguisher 9 23 0.088940
sextant 10 22 0.095333
c118 11 21 0.097343
pci-card 12 20 0.104857
wine-bottle 13 19 0.119508
calculator 14 18 0.124689
boom-box 15 17 0.141094
treadmill 16 16 0.171279
video-projector 17 15 0.216622
breadmaker 18 14 0.220134
swiss-army-knife 19 13 0.231428
c178 20 12 0.301785
c047 21 11 0.415670
backpack 22 10 0.478174
c184 23 9 0.486231
c191 24 8 0.562411
c163 25 7 0.577606
c160 26 6 0.607829
c049 27 5 0.664514
c066 28 4 0.677994
c003 29 3 0.694437
c159 30 2 0.726441
c045 31 1 1.000000
c089 32 0 1.000000

Table 3.4: Example computation of Borda votes given MCC for the 11x11 medians LDA
classifier, with ties in rank going to the first occurring class
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Class Borda Votes Ease Ranking Difficulty Ranking Avg. MCC (across classifiers)

blimp 123.0 32 1 0.314636
fire-extinguisher 182.0 31 2 0.323676
revolver 183.0 30 3 0.322915
boom-box 188.0 29 4 0.332154
ak47 212.0 28 5 0.323538
calculator 217.0 26 6 0.335903
sextant 217.0 27 7 0.339548
theodolite 262.0 25 8 0.337631
treadmill 281.0 24 9 0.341005
washing-machine 284.0 23 10 0.332816
wine-bottle 291.0 22 11 0.333519
pci-card 303.0 21 12 0.365585
swiss-army-knife 323.0 20 13 0.368268
c093 347.0 19 14 0.306469
c047 365.0 18 15 0.336530
c032 377.0 17 16 0.362817
video-projector 378.0 16 17 0.413662
c178 389.0 15 18 0.315585
backpack 395.0 14 19 0.436127
breadmaker 409.0 13 20 0.427023
c129 449.0 12 21 0.356371
c163 480.0 11 22 0.363049
c003 486.0 10 23 0.514773
c184 493.0 9 24 0.366618
c049 499.0 8 25 0.486428
c118 548.0 6 26 0.467162
c160 548.0 7 27 0.521319
c045 551.0 5 28 0.625492
c066 574.0 4 29 0.585853
c159 581.0 3 30 0.505439
c089 595.0 2 31 0.619319
c191 614.0 1 32 0.496561

Table 3.5: Combined Borda Count ease of recognition votes and final composite difficulty
ranking based on all classifiers. Note that the average MCC observed per class does not
always cohere with the composite ranking.
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Once all classifiers have the number of Borda votes per class tabulated, then the number

of Borda votes per class can be added across the classifiers, producing the combined Borda

vote and composite ranking table reproduced as Table 3.5.

It can be seen that sorting by per-class MCC averaged over classifiers is not equivalent to the

Borda-induced ranking. The five hardest classes to classify, according to our index are the

blimp, fire extinguisher, revolver, boom-box, and ak47, all Things. The five easiest classes

to classify are c191 (one of the brick wall classes), c089 (round river rocks), c159 (mixed

aggregate), c066 (streaky stucco), and c045 (quilted dot). c093 and c129, the synthesis

failure classes, are among the hardest Stuff to classify. The hardest Stuff to classify was

c093 (truncated domes, a failure class), c047 (high contrast brick wall), c032 (a granite-like

veiny rock), c178 (grape ivy), and c129 (organic plant “cellular” shapes, a failure class).

The 5 easiest things to classify were breadmakers, backpacks, video projectors, swiss army

knives, and Peripheral Component Interconnect expansion (PCI) cards. Video projectors,

backpacks, and breadmakers were easier to categorize than some Stuff classes. There is not

a systematic pattern among the Things which are easier and the Things which are hard, but

this is partially reflected in the lack of separation of average MCC which constitutes a sanity

check on the rankings (most are around 0.33). Video projectors, backpacks, and breadmakers

tend to have highly stereotyped shapes, even more than boom-boxes and washing machines,

and this lack of variance may partially account for the ease of recognition. The easiest stuff

was notably inorganic, and lacking in the radial, proto-stuff like shapes that characterized

the synthesis failure classes.

We can avoid dwelling too long on the appropriateness of adjustments to the Borda count

though because the main hypothesis is definitely supported. A full evaluation of these

methods would require many more classes to be assessed, and a careful eye taken to balancing

the number and diversity of samples. Because of the prohibitive cost in time to train and

fully analyze the GANs and NONGANs as was done in Chapter 2, the number of classes
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was purposely kept small; the objective was not to build a good recognizer or the best

continuous evaluator of textural complexity. Certainly with a wider number of sensible

classifiers included, this method could make a good estimate of the class-level complexity

of textures. It remains to be seen how best to estimate an individual patch level of texture

complexity; of course, these methods could be applied to classes consisting of a single patch

with varying levels of noise, but they are so expensive that patch-level complexity estimates

will eventually have to be regressed from a known library of complex textures.

It is, as a rule though, easier to recognize Stuff than it is to recognize Things, a fact that

should be surprising to few but which has been verified in great detail over the last three

chapters.

3.5.2 Does composite ease of recognition correlate with our proxy

for quality of synthesis?

Our original objective in training the class-specific GANs was to assess recognition as a

proxy for synthesis quality. At the end of Chapter 2 we discovered that, at the natural “fair”

point of barely-competent for both Things and Stuff in training, this was not practicable

because performance reaches a ceiling, or close to it. One possible remedy is to consider the

other intuitive point, that at which all the Stuff classes were competent. This was not the

road traveled by but since we have the fortune of composite rankings that are informative

(even as they include the uninformative rankings in their formulation), the question can be

asked of whether the difficulty of synthesis is related to the difficulty of recognition. If it

is strongly related, then that constitutes the first real suggestion of a unitary, underlying

notion of texture complexity that does not have to be the aggregate of many computational

challenges.

We refine that inquiry to ask if the synthesis quality and recognition ease are straightforwardly
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related, which is operationalized in particular as linearly related; quality is invariably judged

for lack of a satisfying alternative using the same Inception Score and Fréchet Inception

Distance we cast doubt on before in Chapter 2.

Figure 3.36 plots our Borda composite score of recognition ease against the Inception score of

the fakes produced by the GANsemble (at its current 15,000 unit reference level of training).

The correlation coefficients are calculated as is and then linear regression equations are found

separately for Things, Stuff, and all classes following a RANSAC pass as was done for the

regressions in Chapter 2. What can be seen is that overall ease may appear to be inversely

related to quality! However, when you inspect the Thing and Stuff clouds separately, this

pattern very barely holds (r ≈ 0.13) for Things and is reversed, again very weakly (r ≈ 0.22)

for Stuff – this is because the correlation coefficient calculation is pre-RANSAC. So, especially

given our limited sample of classes (n = 32), it is hasty to conclude that ease of recognition

and quality of synthesis are inversely related even though this is the discovered pattern, if

anything.
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Figure 3.36: Borda votes towards ease of recognition are plotted against Inception Score as
a proxy for image quality. The correlation coefficient is calculated and then RANSAC is
used (in an attempt to) to remove outliers before a line of best fit is determined separately
for Things, Stuff and all classes. The combined regression line recalls Simpson’s Paradox in
that the overriding negative correlation (ease of recognition inversely related to quality) is
much stronger.

The reader will object that we have already shown the horrendous bias against Stuff in

Inception Score, and note that if we throw Stuff out, the correlation coefficient is very weak.

Perhaps FID, which is less subject to the problem of bias because it does not depend on the

label distribution at the end of Inceptionv3 but does instead use multidimensional Gaussian

distance as estimated from the activations of a previous layer, is a fairer test.

Figure 3.37 reproduces the same regression plot as before, but substituting Inception Score

for the Inverted Frechet Inception Distance (the FID multiplied by −1). FID is inverted
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because a large FID between Reals and Fakes for a class is indicative of the Fakes not

attaining the quality of reals, with the critical assumption of course, that the fakes have

not surpassed the Reals in subjective quality. The need for RANSAC, averted in the last

plot, can be seen again with the two classes with anomalously high FID throwing off the

pre-RANSAC correlation coefficient for the Stuff. The correlation coefficients of Things and

Stuff, post-RANSAC, would be obviously modest.
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Figure 3.37: Borda votes towards ease of recognition are plotted against Inverted (FID is
mulitiplied by -1 rather than taking the multiplicative inverse) Fréchet Inception Distance
as a proxy for image quality. The correlation coefficient is calculated and then RANSAC is
used to remove outliers before a line of best fit is determined separately for Things, Stuff
and all classes. For the possibly less biased FID, synthesis quality is positively related to
ease of recognition for a class.

The combined correlation coefficient, properly corrected, would be stronger but still not

excessively high. However, clearly on an overall basis, the ease of recognition is positively
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related to quality as measured by (inverted) FID. Because FID, but not Inception Score,

actually matches the qualitative synthesis results we observed at the beginning of Chapter

2, it is obviously more credible.

However, since to get a reasonably strong correlation coefficient we have to forget the Things

vs. Stuff distinction, this relationship merits more investigation with a more numerous set

of classes. Presumptively, the ease of recognition is though somewhat linearly related to the

quality of synthesis, specifically in the case of partially trained, class-specific WGAN-GPs

operating on single-channel image data.
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Conclusion

At this point, a preponderance of the available evidence argues that the intuitive and ar-

guably completely obvious distinction between Things and Stuff has functional impacts

within and between filterbank based recognizers, whether of primitive or advanced sophisti-

cation. That is, there exist detectable systematic differences in the output of (particularly,

class-specific) recognizers as well as the constituency of recognizers which are conditional

on the class belonging to the very-high-level category of Thing or Stuff. Quality-control

analyses currently in widespread use, such as the Inception Score as a proxy for quality,

are susceptible to strong training biases that future researchers should be aware of, and the

convening of heterogeneous committees of recognizers that include both Things and Stuff

must responsibly handle this distinction if they are to be maximally effective. Even though

results in these areas are already impressive, more refined knowledge of the distinction could

improve advanced recognition and synthesis tasks such as panoptic segmentation and dy-

namic video inpainting [55]. To fail to address the problem of bias may misdirect the choice

of architecture or training tricks in deep-learning type computer vision research generally,

because synthesis quality measures are a salient factor used to assess the worthiness of al-

gorithmic and architectural (Marr level 2) innovations current researchers perceive of and

propose. Indirectly, this suggests that computational neuroscience, vision science, and cogni-

tive neuroscience researchers studying visual systems should be aware of the possibility that

brains at some stage incorporate separate recognition or retrieval regions, representations,
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processes, or criteria based on whether a patch of the image received from the retina resem-

bles heterogenous (particularly object-suggesting) or homogeneous texture, simply because

it appears from this investigation that to maintain some level of segregation would prevent

producing some of the unusual situations that result (e.g. the incorrectness of Inception

Score, the group promiscuity and susceptibility to synthesis failure outliers of Stuff detec-

tors serving on committees) when measurements of Things and Stuff are presupposed to be

directly commensurable.

In Chapter 1, it was shown that it was overwhelmingly significantly easier to recognize Stuff

patches as opposed to Thing patches using a small set of sensible histogram statistics of con-

stant random noise filters as features and a classifier admitting a linear decision boundary.

The kernel extent of the filters themselves was shown to be far less critical than the choice of

statistic. The effect of activation map outliers was significant enough to make mean-derived

features almost entirely uninformative in the eyes of the classifier and to elevate even less-

than-ordinal information about the shape of the convolutional response distributions above

outlier-biased information about the location of the distributions. Less-biased median acti-

vation map statistics were shown to perform comparable or favorably to including the entire

histogram. This showed that Stuff recognition is in a sense cheaper than Thing recognition in

terms of the amount of information needed to perform competent classification. It suggests

that not all bits are created equal with respect to information about filter response distri-

butions and that the efficiency and representational precision of features should always be

considered alongside the dimensionality of feature vectors. The effect of outliers potentially

provides some caution in light of the fact that even modern deep neural networks some-

times involve pooling filter activations to find a maximum (“max pooling”), and this too is

a quantity that can be affected by outliers in convolutional features. This investigation also

reinforces that shape information – even highly tortured shape information – about filter

response distributions can also be discriminative. Since at this point it was possible that the

Things vs. Stuff distinction could exist in primitive, historical-type recognizers characteristic
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of 20th century machine and computer vision and that this distinction might be remedied

in the sophisticated deep learning models of today which eschew feature engineering, some

investigation into the distinction’s survival in these new models had to be undertaken.

In Chapter 2, an ensemble of WGAN-GP networks and a non-synthesis oriented equivalent

was developed to represent the more sophisticated, currently realizable class of recognizers,

where filterbanks are learned across different scales and through many rounds of stochastic

gradient descent. Since after sensible corrections were made, Things and Stuff were catego-

rized about equally well because the incompletely cross-validated accuracy of recognition was

at ceiling, this distinction did not exist as clearly. However, in the course of developing and

examining the networks to make these sensible corrections, systematic distinctions between

Things and Stuff were repeatedly made. For one thing, when considering the pairwise joint

affinity of class-specific network activations, Stuff networks were shown to be, as a group,

more promiscuous to other classes. This susceptibility remained when examining Stuff rec-

ognizer network performance on “out-of-vocabulary” classes from a held-out dataset. For

another, when comparing the networks’ actual parameter weights in a layerwise fashion us-

ing a small number of different notions of dissimilarity or distance, characteristic patterns of

Thing vs. Thing and Stuff vs. Stuff comparison separability appeared in specific layers. The

location of the dichotomy-evidencing layers changed depending on whether the GAN-origin

(generation-focused, trained only on ascertaining Real and Fake for images originating from

the target class) or non-GAN-origin (discrimination-focused, trained on the entire set of real

and fake images) discriminators were considered, suggesting a developmental difference ex-

isting in how “early” or “late” artificial synthetic vision specializes for content as opposed to

form. Images of the weights themselves, in some layers, are perceptually different between

Things and Stuff as supported by the locally-sensitive MSSIM measurement currently used

for ordinary image quality inquiries. On that note, Things and Stuff’s divergent behavior

is not exclusive to these particular deep convolutional recognizers; it can also be seen in fa-

mous networks used for standard computation of synthesis quality estimates and feature map
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visualization, the Inceptionv3 and VGG networks, that they systematically cause different

behavior. Based on Inceptionv3, the Inception Score is biased against assigning high quality

index to Stuff images as a result of its Thing-intensive training and the alternate Fréchet

Inception Distance based on a massively multivariate Gaussian estimated from activations

slightly earlier in the network spreads Stuff classes very far from each other as opposed to

Thing classes. VGG16’s final convolutional layer channel activations show that presented

Stuff patches as a rule occupy more activation of the filter channels they do activate, but

they activate a smaller proportion of the available channels than Thing patches. In terms of

subjective synthesis results, the fakes of the GANsemble studied evidence earlier (in terms

of training time) subjectively competent synthesis of Stuff as compared to Things, with the

group difference measuring in the hundreds of thousands of image presentations. A transfer

learning experiment which retrained the barely competent networks to a Thing or a Stuff

target showed that both Thing and Stuff trained networks more easily specialized to the Stuff

target. Synthesis failure classes were observed, but only unilaterally for stuff, and it is visu-

ally suggested that their synthesis objectives are unfortunately close to early synthesis results

for Stuff, or “proto-Stuff”. Finally, an explicit, omnibus Things vs. Stuff classifier, derived

from the untuned-for-purpose non-GAN-discriminator, was able to exhibit high accuracy on

this distinction whether it was trained on held-out classes and tested on the original classes

or trained on the original dataset and tested on the held-out classes, suggesting that the

Things vs. Stuff distinction (previously called “objectness”) is directly sensable by neural

networks specialized to look for this distinction in presented texture patches.

A number of collateral results, including the fact that the joint-affinity pattern and member

activation vectors of ensembles should be baseline-subtracted for GAN-origin-discriminators

to account for the Real-Other-Fake tripolarity (cf. the traditionally-encountered Same/Different

bipolarity) were also obtained. The examination of the “GANsemble” vs. the “NON-

GANsemble”, separately from the motivating Thing vs. Stuff distinction, represents one of

the first thorough demonstrations of the survival of general-purpose discriminability in GANs
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severally and in ensembles designed for discrimination, if not actually the first demonstration.

Since GAN-origin discriminators and non-GAN-origin discriminators issue systematically dif-

ferent judgments and develop divergently (including in how they treat target-consistent vs.

target-inconsistent input with the provision of extra time and in the information as measured

by entropy they soak up during training), and the former retain some (admittedly reduced)

ability for discrimination and similarity, this may have quite important general implica-

tions for deep computer vision, because it suggests NONGAN and GAN network judgments

can be combined somehow to glean extra information that may improve knowledge about

unknown patches and furthermore suggests that GAN-origin-discriminators could be sepa-

rately trained on individual classes in total isolation, which potentially leaves the door open

to class-level embarassingly parallel training of massive image models if suitable second-stage

recognizers (e.g. ensemble consensus functions) can provide similar performance to that ob-

served here and if organizations in custody of those models also enjoy a massive amount of

pre-segregated training data and the distributed computing environment to efficiently elicit

committee judgments.

In Chapter 3, metric multidimensional scaling was employed to create embeddings represent-

ing recognizer features, joint recognizer-on-recognizer activation based “affinities”, and the

model parameter (i.e. weight) distances between the deep convolutional recognizers. These

embeddings most often visually confirm a Things vs. Stuff dichotomy in those particular

senses studied in Chapters 1 and 2. A taxonomy of how Thing and Stuff class or network

specific configuration points in the embeddings are separable or strictly encapsulated was

arrived by comparing intersection of the convex hulls of Thing and Stuff points. One possible

encapsulation class in the taxonomy, the one where all Thing points behaved more like a

single Stuff point in apparent convergence, was simply not observed at all, across all three

of the groups. Pairwise scaled orthogonal Procrustes superimposition of embeddings and a

second round of MDS was used to create higher level embeddings of embeddings (or metaem-

beddings) that showed how recognizers themselves (both primitive and deep convolutional)
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were arranged in an induced-low-dimensional space. This confirmed findings about the dis-

similarity of the GAN and the NONGAN under baseline normalizations, natural notions

about the relatedness of different disparity notions themselves (i.e. SSIM, MSE, the two

most-common Minkowski p-norm distances, the Jensen-Shannon distance, and the signchain

distance arbitrarily defined in Chapter 1 which is shown here and in Chapter 2 to produce

similar but weaker results to the Jensen-Shannon Distance), and the effective kinship of

the primitive and deep convolutional recognizer features (i.e. confirming also that signchain

and signchain-of-signchain features are similar and that GANsemble and NONGANsemble

features do not project analyzed textures as similarly as do mean and median primitive

features, even as the effectiveness of these features is differentiated dramatically). Using

the notion of a conditional metaembedding which is dependent on calculation incorporating

only Things or Stuff classes and the Euclidean distance residuals second-round of Procrustes

superimposition yielded “metadistances” that weakly seem to suggest which recognizers and

distances are empirically suggested most invariant and least invariant to the Things vs. Stuff

distinction, although this process is subject to the accumulation of multiple levels of opti-

mization error and should be viewed with some suspicion. The per-class rankings of the

Matthews Correlation Coefficients used to more fairly and stably assess the performance of

both the primitive and sophisticated convolutional recognizers in Chapters 1 and 2 as com-

pared to bare accuracy were compared through the use of the Kendall’s tau rank correlation

coefficient and MDS was used once more to compute embeddings of rankings (that is, of

similar high order to the proper metaembeddings) that reproduced the patterns of results or

performance similarity between the recognizers as seen at the end of each Chapter (e.g. that

the näıve argmax classifier behaves very anomalously to all of the other classifiers, perform-

ing better on Things given the promiscuity of the Stuff classifiers and the susceptibility of

the committee’s classification to confident pronouncements made by the networks declaring

for synthesis failure classes). The MCC rankings are also combined, using the Borda count

method across all of the studied classifiers, to produce one possible composite ranking of
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recognition difficulty. Class-level ease of recognition was shown to be moderately linearly

related to the shown-to-be-fairer of the two gold-standard objective quality indices of syn-

thesis quality, the FID, and almost segregated Things from Stuff in the sense that the most

difficult to recognize classes across recognizers were Things, with synthesis failures in Stuff

also ranking poorly.

Throughout the dissertation, the peripheral methodology developed to show the Things vs.

Stuff distinction, such as metaembeddings, KIS, and the quadrant-based analysis of pairwise

affinity matrices of recognizer activation and model parameters will remain generally relevant

to the future study of any severe dichotomy in recognizers, not just the objectness dichotomy

which was studied. And of course, this dissertation provides an enduring plan for attempting

to replicate these findings with more numerous classes, better quality and less problematic

image databases, and an expanded view of Stuff as encompassing all views of material, not

just homogeneous patches of material from similar but non-identical sources, which was the

working definition adopted here. It is reasonable that some of these distinctions may become

weaker or may not survive the expansion of the working definition, but it seems likely that

at least some of the differences will persist. For simplicity, the studied images were also

single-channel, as opposed to the three color-channel images which are ubiquitous because

of (admittedly normative, considering the varieties of human color vision anomaly) human

trichromacy. Many of the methods that have been described in this dissertation can be

straightforwardly adapted for color vision but it is possible that this too could impact the

strength of the observed dichotomy.

Based on just this data, the secure Things vs. Stuff distinction at the class-level supports

the notion, advanced above, that there may be a general level of processing difficulty (com-

putational disfluency) associated with image categories. To further develop this notion, the

methodology developed in this dissertation will have to be turned on a more numerous and

less confounded sample of naturalistic image classes, and the notion of computational flu-
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ency will likely have to be built out to encompass other fundamental computations of image

processing, including retrieval and segmentation, as mentioned during the motivation of the

inquiry into recognition itself. Computational disfluency should probably not be forever

limited to be founded on difficulty encountered by artificial vision systems except to be

more easily estimable, and to initially establish a presumptive ordering of classes of texture

on disfluency-based complexity – it is possible that through later behavioral experiments of

memorability and susceptibility to visual illusion the difficulty subjects encounter in mak-

ing judgments can be used as sparse data to estimate a truer and more general perceptual

difficulty ranking of broad classes of texture.

Concerning the generality of these findings, the main threats to validity are the problem of

backgroundedness, the problem of unbalanced sample intensity, the problem of insufficient

breadth or representativeness of categories, the stability of the the metaembedding process

and the WGAN synthesis process, and the infeasibility that was cited as a reason to not

fully cross-validate GAN-based recognizer training.

To provide an estimate of the sensitivity of these results in light of each methodological

shortcoming:

• Lack of performance cross-validation through the expensive GAN training

process: this is perhaps one of the less critical objections, because the performance of

deep convolutional recognizers was in the case of most of the studied innovations al-

ready at ceiling, and Things vs. Stuff differences were emphasized on dimensions other

than straight performance in the deep convolutional case; this methodology proved

unable to discover that discriminability in deep convolutional recognizer was directly

harder for Things. The surprising lower competency for Stuff is impacted somewhat

by the presence of the synthesis failure classes in the näıve argmax classifier, so it is

difficult to sustain the direct result encountered for the primitive recognizers without
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hobbling the LDA of the ensemble classifier by introducing noise or some other diffi-

culty. If that particular facet of the investigation was pursued, then the cross-validation

objection would become more important. We know that the non-GAN-discriminators

as parameterized by architecture and loss function are not totally incompetent because

the omnibus Thing vs. Stuff classifier was reasonably competent, trained on entirely

held-out classes, not just instances.

• Stability of the WGAN-GP synthesis process: There was an alternative point

of bare competence we could have examined to assess LDA-corrected Thing vs. Stuff

raw recognition performance without the introduction of noise or some other post-

hoc measure. We could have trained the networks to the earlier-occurring point of

bare synthesis competence on Stuff, since this was lower. However, this was not the

election (of the two which were possible) that I happened to make, because I was more

concerned in showing subjective synthesis results given the important focus on GAN-

origin as opposed to non-GAN-origin discriminators. The stability as a problematic

factor per se of WGAN optimization is a lesser worry because the WGAN-GP process

improves so much over the ordinary GAN process in assuring subjective convergence

(in every case, of course, excepting the two retained failure classes) and escaping mode

collapse. The greater factor is the choice in the amount of training time allotted, which

an experimenter would make differently if they had focused on just securely obtaining

the recognition difficulty result in Chapter 2 congruent to Chapter 1, as opposed to

much more comprehensively piling evidence of various kinds on a Things vs. Stuff

dichotomy (read: the intent of this investigation).

• Insufficient breadth or representativeness of categories: It is certainly the case

that particular categories of Things may be more Stuff like. We could take the example

of traditional canvas camping tents, patches of which are large expanses of undifferen-

tiated texture. It is also certainly the case that Stuff textures that are authentically

314



homogeneous may exist which have repeating features so coarse that they are more

Thing-like in how they present in the signals studied in this dissertation. This is a

difficulty that can only be addressed by using more of the Caltech256 and USPTex

datasets, or better, improved datasets without the idiosyncrasies (e.g. cartoon char-

acter and 1990s era technology specific classes, overrepresentation of brick walls and

featureless texture classes) of these datasets. In this case too, the investigation was

limited by the cost in calendar time and expense of training WGANs. All pairwise

affinity matrix and embedding operations are also affected by an increased number of

classes; for example, the number of entries in a pairwise matrix grows with the square

of the number of classes or networks, and the serial calculation of the whole matrix

becomes slower and clarity of visualization arguably suffers as a result of including

more classes in a first foray.

• Stability of the metaembedding process: We saw in Chapter 3 that conclusions

from the metaembeddings directly cohered with what was seen in the contributing raw

data presented in Chapters 1 and 2, so the error introduced by Procrustes alignment

and metric MDS was minimal enough for the size of our dataset that it can be consid-

ered as not a factor. However, it should be noted that part of this may have been due to

the Monte Carlo -esque protective measure of trying to get the best-quality obtainable

embedding out of metric MDS by sustaining the cost of many iterations within the

algorithm and repetitions of it. The security of the estimate of the baseline used for

baseline-subtraction also included this Monte Carlo assumption, that 100 fake samples

is enough to capture the asymptotic average baseline with high precision, almost cer-

tainly an invalid assumption, but necessary to quickly calculate the pairwise matrices.

It can be safely recommended that future researchers use at least the number of Monte

Carlo iterations of metric MDS and fake generation if they attempt to replicate these

results, or extend them to a better-founded dataset. In the latter half of Chapter 3,

doubt was cast on the validity of the metadistances. In 2 of the 3 cases, the outer
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metadistance results (lowest and highest, or the tails of the categorical distributions)

were easily explainable, but the fact that not all of the results were explainable urges

some caution in faith in metadistance in reflecting true invariance to the Things vs.

Stuff distinction after the accumulated optimization error or fundamental instability

of two rounds of metric MDS and two rounds of Procrustes superimposition.

• Problem of backgroundedness: This is a more severe problem, because this is a

subjectively observable confound between metacategories (see Figure 3.38a). Things

vary in backgroundedness. Stuff does not. The proper way to address this is to take

background-subtracted images and artificially give them false backgrounds as was sug-

gested when the datasets were introduced, since there could be an implicit bias in

retaining only the backgrounded Thing images from a dataset. However, in an at-

tempt to be completely accurate to the dataset and more “naturalistic” to the images

encountered in computer vision (as opposed to the real world), and a concern that fair

false backgrounds would have to themselves be justified, this was not pursued. A fu-

ture study should examine the robustness of these findings to this factor, however, the

Thing vs. Stuff dichotomy was evidenced strongly in many cases in many facets in this

investigation, and as an absolute difference of dominance in some cases. While there

was substantial per-class variation in Thing backgroundedness, there was often not a

close comparison between Things and Stuff that could have tracked the background-

ness proportion on a per-class basis. Presumptively it can then be assumed that this

nuisance factor alone does not explain any of the major results. Figure 3.38b regresses

Borda composite ranking from backgroundedness and shows a weak negative associa-

tion between ease and proportion of images backgrounded at best. This would suggest

greater backgroundedness of a class leads to decreased ease of recognition, whereas

we see that on the whole, Stuff experiences greater ease of recognition. So in some

cases, post-hoc regressions could be expected to show that the dichotomy was found

in spite of the confound, not because of it, as one might expect. This is a position of
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greater comfort, if the pattern holds across other variables of interest (recall that some

of our differences, however, involved subjective categorizations, and aren’t subject to

regression analysis as a sanity-check).

• Problem of unbalanced sample intensity: Arguably, this is the most severe threat

to the validity of the observation of dichotomy. There were only 12 samples per class

for USPTex and variably more than that for the Caltech256 class. To keep the results

directly and straightforwardly replicable by someone with access to the dataset, the

classes themselves instead of reasoned or randomized subsets of the Caltech256 classes

were used. It was considered that the restrained definition of Stuff classes adopted out

of necessity (i.e. the character of USPTex) for the study as truly homogeneous patches

from distinct areas of a common source constrains the effective diversity of sample

patches anyway, and if there were 100 patches from USPTex as opposed to 12, these

would still involve very little change in diversity to make up the gap with the diversity

of Stuff classes. This factor is very much a limitation of the dataset and a working

definition of truly homogeneous patches and a future investigation should attempt to

replicate these results with a considerably more liberal definition of Stuff incorporating

more individuated examples of material texture for each class. Since the GANs receive

equal amounts of training (recall the unconventional decision to use “units of training”

as opposed to epochs) and thus image presentations, that is not so much an issue

but there is the question of the impact on the development of the weights within the

networks. Some comfort is offered by examining the GAN and NONGAN per-class

entropy differences across Things and Stuff. These are not diametrically opposed,

suggesting at least that the choice of GAN vs. NONGAN was much more of a factor

than Thing vs. Stuff in terms of the theoretically expected compressibility of the neural

network weights. Once more, the restrictive definition of Stuff as fully homogeneous

in this investigation is something that requires renovation in future study so that the

results most generally describe the essence of all Stuff, but it is entirely likely that a
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whole new dataset will have to be compiled with this objective in mind.
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Figure 3.38: a) “Backgroundedness” proportion by class, b) Borda composite index of dif-
ficulty regressed as a possible function of backgroundedness. Only Things varied in back-
groundedness, although they varied substantially between classes. The united front Things
possess in most points of difference highlighted in Chapters 1 and 2 are more systematic
than backgroundness being an overwhelming factor would permit (since it varies). However,
there are weak correlations of backgroundedness with the terminal/output measurement of
Borda composite difficulty.

With the most salient potential limitations on the generality of these findings enumerated,

attention briefly turns to the expansion of the notion of computational disfluency to other

fundamental operations not previously expanded upon.

One such operation is repair, considered broadly. When a signal becomes degraded during

processing or within a memory system, it is possible to attempt to restore the original signal

by, for example, retrieving a similar stored signal from a content-addressable memory as a

stand-in or applying a learned transformation that is known to attempt to undo a degra-

dation, destructive processing step, or failure of a sensory system to satisfactorily capture

additional information. In deep learning research even quite ambitious processes have proven

successful: inferred colorization of grayscale images [186], inferred “superresolution” of un-

satisfactorily detailed images [172], inferred air-medium photography color and sharpness

from underwater images [106], and inferred sound from video sequences with no audio [129].
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Pre-deep-learning, research into less venturesome image restoration focused on undoing sim-

ple degradations, leading to (chiefly Bayesian) models of deblurring or denoising (e.g., [148]).

There is a possible distinction to be drawn between learned methods that require known,

paired reference images that are undegraded with methods which heuristically work well and

require no paired input data. It is generally difficult to conceptualize looking finely at the

disfluency-type complexity of restoration, but in aiming simply to measure relative instance-

level or class-level complexity rather than to solve restoration problems practically we are

not confined to generalizable methods. Consider a proposal of deblurring and denoising by a

program of “evolutionary texture matching”, which would use the crossover and mutation-

based gradient-free stochastic optimizers of genetic algorithms and evolutionary strategies

(see [46] and [36] for good high-level overviews of evolutionary computation more broadly) to

directly evolve image pixels as genes with the fitness objective function specified as either the

minimization of MSE or the maximization of SSIM. Evolutionary texture matching would be

a completely practically useless method for texture repair because the gene-level/image-level

solution arrived at by evolutionary processes is not generalizable, tailored completely to the

instance and requiring at all times the reference image, but discrete evolutionary time (i.e.

generations) would provide a consistent measurement of the difficulty of reaching some SSIM

or MSE threshold of quality of coherence with the reference. For this reason, evolutionary

texture matching could be used to characterize the relative complexity of repairing different

textures or classes of texture. Once an initial degradation of blur, noise, or a mixture of

the two was used to create the initial degraded image from a reference, the initial MSE

and SSIM could be collected. Classes of image differ significantly on their susceptibility to

identical strength degradations (see Appendix A), so initial degradation must be character-

ized to be factored in later for fair comparisons of rate of repair. From there, the images

can be subjected to evolutionary optimization and the classic “best-so-far” curves [36] of

evolutionary improvement can be charted. Over a small number of random initializations,

the average best-so-far curve can be computed for each instance patch, and these can be
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averaged by class to produce per-class average best-so-far curves. Then the curves can be

divided by their initial degradation values to determine the relative rate of evolutionary im-

provement by class. It can be assessed whether Things and Stuff remain separable within

evolutionary repair rates, or whether there are more and less difficult types of Stuff to repair

that, for once, encapsulate Things. This subject deserves its own report, since the choice

of evolutionary optimizer may induce different results; evolutionary hyperparameters (refer

to [36]) such as mutation rate, mutation type, crossover operator, population size, selection

operator (e.g. roulette-wheel or linear stochastic ranking), and population structure (fully-

mixed or island model) stand to produce different orderings and perhaps grossly different

growth trajectories. This kind of study could even benefit the evolutionary computation lit-

erature at large: there are few dependable benchmark functions of intermediate complexity

which also are naturalistic – evolutionary methods on one end are regularly evaluated on

contrived mathematical test functions generally used to test single-objective optimizers (e.g.

the Ackley, Bohachevsky, Easom, Griewank, Rastrigin, Rosenbrock, Bukin, Himmelblau,

Styblinski-Tang, and Eggholder functions, see [46], Appendix A.5) and on the other extreme

in complicated and experimental deep neuroevolutionary scenarios (e.g. [155]) involving

their own novel sources of complexity (i.e. methodological innovations) that complicate

interpretation of evolver competency.

Of course, removing stimuli from perceptual consideration also interposes difficulty which

could be characterized to rank textures.

The effaceability complexity of stimuli can be characterized in perceptual disappearance

phenomenon type visual illusions. One disappearance phenomenon which has long been

known is Troxler’s fading, but it works only for stimuli which are roughly psychologically

equiluminant with the field behind them – there is not the general ability to disappear nearly

any patch of a particular size, and so the illusion cannot be used to assess the vast majority of

possible imagery. Motion-induced blindness (Bonneh et al. 2001 [15], but originally studied
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with a physical apparatus by Grindley and Townsend 1966 [69]), is a kind of transient

disappearance phenomenon wherein even a highly-salient target stimulus (a bright-colored

dot, a photo of an object, a visual texture with high contrast) or group of these, situated

in the periphery can disappear from conscious experience if the correct conditions (rough

subject fixation in the center of a display, and motion of a distractor field in the background)

are met. Induced stimulus suppression of this “blindness” type also arises in binocular

rivalry, inattentional blink, visual crowding, the application of TMS, various flash suppression

displays, flicker fusion, perceptual filling-in of patches on dynamic noise masks, and various

types of change blindness, among other examples (for a fine-grained or comparative survey,

see Breitmeyer 2015 [18]). The research amassed on MIB thus far demonstrates that it is

a distinct disappearance phenomenon from many others currently known to us (including

PFI, CFS, Troxler’s fading, CA, BR) and neurophysiological and eye movement evidence

conclusively shows (Bonneh et al. 2010 [16], Kloosterman et al. 2015 [100]) that MIB is,

rather than possibly being some local adaptation effect happening at the retina, associated

with areas beyond early visual processing (i.e. beyond V1, through dorsal and ventral stream

areas, and into frontal cortex).

MIB disappearance events are involved with changes in activation across the visual system.

Libedinsky, Savage, and Livingstone 2009 [107] provided physiological evidence of MIB in

nonhumans: single unit recording in V1 was performed with awake, behaving macaque

monkeys. A response anticipatory increase in V1 neural activity was observed (for both

actual and “illusory”) disappearances. Donner, Sagi, Bonneh, and Heeger 2013 [39] observed

a decrease in activity in V4 coincident with disappearance. Nuruki et al. 2013 [128] found

that TMS disruption targeted at the rPPC lengthened stimulus disappearance. Disruption

targeted at the ventral stream areas (V5/MT) however, shortened stimulus disappearance

below baseline and thus decreased disappearance chance. For Scholvinck and Rees 2010

[142], target disappearance was concomitant with an increase in activity in V1 and V2,

and also in contralateral MT. Physical target disappearance caused a reduction in activity
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rather than an increase. Observers with higher GABA concentrations (van Loon et al. 2013

[167]) in various brain areas tended to experience slower perceptual shifts, which in the case

of MIB, were the switches between disappearance and appearance. This pattern was not

found around DLPFC, perhaps suggesting that MIB emerges most completely before this

late decisional stage.

Some information is known about the typical time course of MIB and what stimulus factors

impact it. The disappearance of target stimuli is easily experienced by normal observers

(though the time course of disappearance is variable from observer-to-observer and from

epoch-to-epoch), and it lasts as long as several (∼ 5) seconds (Bonneh et al. 2001 [15]).

From this same report, we know that disappearance paradoxically increases with contrast,

that disappearance decreases with target size, and with target speed (unlike Troxler’s fading,

small movements of the target may be tolerated without a reappearance), increases with

speed of the distractor field (or mask), and decreases when the target is either too central

or too peripheral. Interestingly, we also know from the same report that targets tend to

disappear and reappear in groups, when they form good Gestalts. If the distractor field is

at too different a perceived depth in a stereoscopic version of the illusion, the disappearance

rate lowers (Graf et al. 2002 [66]).

Various theories of MIB, some exotic, have been proposed. The original local attentional

load interpretation (Bonneh et al. 2001 [15]) argued that winner-take-all circuits engaged

to eliminate stimuli when moving parts of the scene demanded more attentional processing

than salient, but unmoving partially-processed entities. A second interpretation focused on

the hemispheric asymmetry research (Funk & Pettigrew 2003 [54]) undertaken with MIB

and argued that corrective processes in a ”pattern-seeking” left hemisphere were trying to

factor out inconsistencies in the scene. Related interpretations argued that MIB was a

epiphenomenon of an overzealous module for processing occlusion (Graf et al. 2002) or for

discounting organic damage or disruption (scotoma) to the retina (New & Scholl 2008 [125]).
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Overwhelmingly, research has focused on effacing a common type of simple disappearance

target stimulus (small, bright yellow circles with crisp boundaries). Historically, MIB dis-

plays vary from study to study depending on which factors are being investigated in the

experimental design. However, the most common MIB display (similar to Libedinsky et al.

2009 and Graf et al. 2002) for popularizing the illusion consists of four elements: a plain

black background field, a fixation dot, 3 disappearance targets (typically bright yellow cir-

cles subtending no more than a very few degrees of visual angle) arranged in a centered and

inverted triangle (the two targets on the same height line lie above the center of the display

flanking on each size and the third lies below on the center line), and a distractor field of

blue crosses undergoing a rigid group rotation at a brisk speed (0.2 Hz). However, you can

disappear photographs of faces and texture patches (albeit with somewhat more difficulty,

and with an initial desaturation prior to disappearance for the complex stimuli only or “color

drain” that I have informally observed).

Figure 3.39: The typical motion-induced blindness display is characterized by a fixation dot
the subject looks at while peripheral disappearance targets, usually sharply defined bright
yellow circles, disappear due to the coherent rotating action of the distractor field of blue
crosses. In a potentially interesting Thing vs. Stuff behavioral experiment, Thing and Stuff
patches, grayscale as well as color, could be the disappearance targets, or arbitrary images
like full-color face photographs.
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A simple behavioral experiment could show if there is any consistent difference in the mean

time-to-disappearance or time-to-desaturation between Thing-like or Stuff-like patches, po-

tentially offering a new psychophysical source of texture complexity information. The class-

level time-to-disappearance for Stuff classes will be expected to be greater than those in

the object Things set if MIB disappearance is related to region occupancy (a la channel

occupancy in VGG16), and the opposite pattern would be observed if MIB disappearance

actually tracked low-level computational disfluency of recognition and synthesis, as mea-

sured in this dissertation. This method provides instance-level complexity data, unlike the

recognition study. It might also happen that no significant difference would be observed,

preventing texture ranking.

Looking beyond computational disfluency as an instance-level or class-level quantity, fea-

tures themselves can be viewed as exhibiting disfluency-type complexity. For example, the

amount of latent space distance or evolutionary time an optimizer must traverse on average

in a competent generator (such as Nvidia’s StyleGAN2, which currently produces faces [94]

sophisticated enough to regularly fool human observers, via e.g. thispersondoesnotexist.com,

using data from the Flickr-Faces-HQ dataset and exploration and training encompassing an

estimated “51 single-GPU years” (!) of computing with commercial-grade GPUs) to fool a

binary discriminator that a high-level feature has flipped could be used to characterize the

complexity of the high-level indecomposable features of apparent male/female sex, high/low

facial attractiveness, or high/low trustworthiness. It is possible that the complexity of trust-

worthiness is higher along these lines than the complexity of gender. Characterizing the

complexity of high-level, psychologically relevant features themselves is an exciting prospect

for cognitive science and experimental psychology because it could be eventually used to

predict the difficulty of discovering effects in human behavioral studies, or the probability of

producing quality synthetic but naturalistic stimuli for those studies.

It seems reasonable that difficulty of visual processing within, for example, the Things meta-
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category may found to be related to the sort of subjective feature dimensions (such as sharp

angular features or large circular cavities) previously described. Across domains, especially

those domains that are not simple visual search, difficulty seems more likely to be related

to the presence of problematic critical objects and the conjunction of these presences, rather

than the number of objects to process or the improbability of a configuration – that is, prob-

lems might profitably be thought of as having implicit, unknown feature vectors that merit

analysis using the type of fuzzy logic similarity computations discussed throughout Chapter

2 and 3. This is perhaps best illustrated explicitly in cognitive science in the subfield of

human and machine problem solving. A good example is the innovative Virtual Tools do-

main recently proposed by Allen, Smith, and Tenenbaum [6], which studies problem solving

directly in a game that has human and reinforcement learning agent participants drop one of

several “tools” into a highly simplified world of physically-simulated objects in an attempt

to launch or support a ball-shaped object into a goal region. The ingenious element of the

formulation of the challenge is the constraint of using provided tools rather than designed

tools, and the only allowed action being the initial placement of the tool into the world

with gravity and collision taking over thereafter – this makes the priors of Bayesian agents

incredibly easy to characterize because the tool use strategies over time resemble Gaussians

of tool position uncertainty conditioned on tool index. The Tools challenge levels vary sub-

stantially in difficulty as measured by completion rate in twenty attempts, with the very

hardest levels involving dropping objects so that their edges effect a catapult, raze a tower,

or form a bridge just right. There is substantial variability in difficulty which interacts with

the central obstacle of each level, such as whether you are trying to topple the top block

of a pyramid or the base block or whether you are trying to authentically create a bridge

or create an unstable bridge that allows the ball to get below it, but the gross features are

largely indicative of level difficulty.

Analogous to the problem of visual recognizers of different complexity and formulation hav-

ing trouble on different patches, and therefore fair difficulty indices needing to incorporate
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consensus difficulty, in the Virtual Tools challenge, humans and DQN agents as well as

various flavors of Allen et al.’s bespoke simulation-incorporating hypothesis-focused SSUP

(“Sample, Simulate, Update”) agent diverge in performance on some levels and do not on

others. In a level called Prevention A, you have to arrest a falling bar by interposing a thin

platform so that the falling bar does not fall directly into the goal region before the ball

moves down an incline. Humans do much better on this level, perhaps because they have

accumulated intuitive theory notions of inclined planes vs. straight drops and the ability to

block falls that the somewhat clever experimentalist SSUP model has to discover and the

relatively-more-exhaustive empiricist Deep Q Network “discovers” only by accident. An-

other human-advantaged level involves a tool placement exclusion region that forces you to

trigger a chain reaction of dropping your tool to create a cascade of falling balls, which is

obvious from context. A level all agents do well at involves unlidding a box enough to permit

a ball in because the challenge is highly multiply realizable (you can hit either the center or

the edge of the box with all of the different tools) and a rarer example of a puzzle humans

are inferior at is Falling A, where the RL agents probably improve over humans because

humans use their tools above or near a falling bucket rather than destabilizing the bucket

by balancing it poorly on a ball, revealing functional fixedness. Difficulty is necessarily best

estimated as a fuzzy composite across multiple dimensions: strategies, distinct perceivers,

the manifest presence of generally problematic obstacle classes, and the specific, sometimes

accidental conjunction of features which may make the obstacles much more effective than

they usually are. Perhaps unusually, as for puzzle game levels, so for visual texture patches,

in this particular respect.

In insisting on a notion of complexity that is not founded in the absolute improbability

of scene generation but in the relative improbability of easy processing of those scenes by

actually realized perceivers, a more difficult challenge is being taken on. The Thing vs. Stuff

dichotomy suggests that “objectness” strongly loads on the early “principal components” of

true visual complexity measurement, even if it does actually turn out that there is no clean,
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unitary difficulty index completely determining the resource-intensiveness of prima facie (but

not actually) disparate processes like recognition, synthesis, retreival, and segmentation. But

this is presumably just one conspicuously unsubtle determiner of this kind of complexity.

Estimating difficulty is not an easy pursuit, but it is a worthy pursuit. The potential im-

portance of deep estimation of visual difficulty handily transcends being able to predict the

training time of classes to efficiently budget beforehand the provision of computing resources

for industrial enterprises or to most safely arrange hierarchical or heterarchical committees

of recognizers on-demand from an available distributed pool. In education and communica-

tions, crude estimates of readability (e.g. the Gunning-Fog and Flesch-Kincaid indices [97])

have long been used to drive design of instruction materials. Once they were in sufficiently

wide use, some large number of technical writers were forced, wisely or unwisely, to take

notice of them and to accept constraint by these “standards” in their work product, despite

the arguably shallow founding of these indices. When mid-level features of complexity can be

dependably used by artificial vision systems to estimate affective reactions to environments,

the design and ordering of the environments themselves will change to suit the perceptual

bottlenecks and processing quirks of perceivers. This goes beyond simple estimates of local

saliency, and sort of considers the inverse scenewide map which opposes saliency.

Future vision systems with the ability to predict the onset of difficulty, whether from low-

level indices of visual processing or by direct discriminative models of different varieties of

difficulty or consternation, could be used to better understand from street-level imagery the

tentativeness or risk-taking behavior of drivers traversing unfamiliar roadways, the annoyance

of clothing store customers which prevents them from browsing through an unorganized

display where disparate colors, styles, and types of clothing have been arranged pell-mell,

the level of distraction to educational pursuits interposed by the physical disorganization of

a home, or the level of wonder experienced the first time one walks through a new, detailed,

and exotic virtual reality world.
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At that late point, the environmental evaluation capabilities of artificial vision systems could

be reckoned to be much more closely matched to those of natural vision systems than even

we observe today with networks that can already imagine scenes, and better integrated with

the apperceptual mechanisms of the brains that back them.
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Figure A.1: Sample images from each class and their degraded (blurred and noised) equiv-
alents. Gaussian blur is σ > 1, Gaussian noise has a mean of 1 with variance of 0.5, and
Poisson, salt and pepper, and Speckle noise with a constant seed are added to create a further
distorted image. 344
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Figure A.2: Boxplots of Things vs. Stuff per-class average SSIM value following a) compre-
hensive noise and b) gaussian blur degradation
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Figure A.3: Boxplots of Things vs. Stuff per-class average MSE value following a) compre-
hensive noise and b) gaussian blur degradation. A highly significant difference was found for
blur and a significant difference was found for noise.

345



Class SSIM (Noise) SSIM (Blur) MSE (Noise)* MSE (Blur)***

001.ak47 0.290071 0.622159 0.034074 0.020014
003.backpack 0.356969 0.525428 0.033894 0.031732
014.blimp 0.289445 0.632064 0.033907 0.018948
016.boom-box 0.353024 0.542287 0.035034 0.027933
021.breadmaker 0.249472 0.704395 0.036825 0.015187
027.calculator 0.369878 0.520704 0.035747 0.028326
070.fire-extinguisher 0.349414 0.542153 0.034225 0.027950
157.pci-card 0.331589 0.597943 0.036483 0.022124
172.revolver-101 0.320476 0.601347 0.035287 0.024577
183.sextant 0.356505 0.521855 0.034204 0.026583
208.swiss-army-knife 0.301681 0.633590 0.036322 0.024359
219.theodolite 0.362882 0.537789 0.035085 0.028403
227.treadmill 0.352758 0.561325 0.035675 0.030406
238.video-projector 0.306313 0.620334 0.035942 0.022637
239.washing-machine 0.276506 0.630854 0.035510 0.017116
246.wine-bottle 0.323609 0.578884 0.034227 0.026184
c003 0.275599 0.626444 0.033616 0.023993
c032 0.347602 0.399484 0.033313 0.014600
c045 0.217904 0.598689 0.033069 0.006137
c047 0.223425 0.605224 0.034264 0.005437
c049 0.299617 0.548634 0.034509 0.010396
c066 0.414196 0.318380 0.033531 0.014461
c089 0.397123 0.395882 0.034433 0.029837
c093 0.144926 0.807133 0.034836 0.002188
c118 0.279294 0.440426 0.036669 0.008444
c129 0.191005 0.654931 0.034415 0.004293
c159 0.361263 0.414731 0.034599 0.018150
c160 0.325780 0.428560 0.034519 0.010520
c163 0.306720 0.522677 0.034162 0.015516
c178 0.396957 0.368437 0.033582 0.023680
c184 0.394858 0.375693 0.033356 0.020246
c191 0.255615 0.576282 0.035516 0.010152

Table A.1: Per-class average SSIM and MSE following identical strength noise and blur
degradation. Things vs. Stuff significantly (according to a Wilcoxon rank-sum test) differed
on their resistance to blur in the eyes of mean-squared error (stuff was seen by the MSE as
degrading less). SSIM is particularly affected for both metacategories under noise.
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