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Abstract

Cross-coupling catalysts are prone to unproductive side reactivity that can limit their practical 

use in synthetic chemistry. A detailed understanding of these pathways and the conditions that 

enable them is important for reaction optimization and rational catalyst design. In this work, 

we report the off-cycle reactivity of a monoligated, CyJohnPhos-bound Ni0 complex following 

product-forming reductive elimination. In the absence of substrate, free phosphine ligand, or 

π-accepting additives, dimerization of (CyJohnPhos)Ni0 occurs, followed by C–P bond activation 

of the ligand to form a phosphido-bridged Ni0/NiII dimer; both the Ni0/Ni0 and Ni0/NiII dimers 

were structurally characterized. Monomeric (CyJohnPhos)Ni0 must be intercepted by substrate or 

free ligand to prevent irreversible dimerization and catalyst deactivation.
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In transition metal catalysis, thorough mechanistic understanding of both productive and 

unproductive reactivity is important for the design of better catalysts and optimization 

of reaction conditions.1,2 Numerous unproductive pathways are known for cross-coupling 

catalysts, including aggregation,1,3,4 substrate/product inhibition,1,5 and formation of off-

cycle oxidation states.6,7 While ancillary ligands typically serve to minimize these 

events, the ligand itself may deleteriously react with the metal center leading to catalyst 

deactivation;1 for phosphines, cyclometallation8–10 and C–P bond activation11–13 are most 

commonly encountered. Herein, we report the catalyst deactivation pathway of monoligated 

(L1)14 Ni0 bound by CyJohnPhos, where interactions between low-valent Ni and the 

aromatic system of the phosphine enables irreversible dimerization and subsequent C–P 

bond cleavage. The presence of free phosphine, olefin, or substrate in solution following 

product-forming reductive elimination was necessary to trap monomeric Ni0 and prevent 

off-cycle speciation.

Recently, in studying Ni-catalyzed C–N cross coupling with Buchwald-type phosphine 

ligands, we identified and structurally characterized amine-bound L1NiII oxidative addition 

complexes.15 The CyJohnPhos/morpholine-bound complex (1, Figure 1A) was found to be 

a highly active on-cycle species, which underwent C–N reductive elimination following 

deprotonation in seconds with a low barrier of 13.3 kcal/mol as calculated using density 

functional theory (DFT). Complex 1 was also a viable precatalyst for the C–N coupling 

at room temperature, with 30 catalytic turnovers observed in less than one minute. In 

stoichiometric studies of 1, we observed that (CyJohnPhos)2Ni0 (2) formed following 

reductive elimination when one or more equivalents of free CyJohnPhos was present to 

trap the putative L1Ni0 species. However, we were interested to determine the structure and 

reactivity of monoligated species in the absence of added ligand or substrate, given their 

presumed relevance in the catalytic cycle. Indeed, oxidative addition of aryl chlorides to 2 
was attenuated by addition of free ligand,15 implicating (CyJohnPhos)Ni0 (intermediate i) as 

the active Ni0 species in catalysis.

Upon deprotonation of 1 with a slight excess of NaOt-Bu and no added ligand or 

electrophile, an immediate color change from orange to dark brown was observed; 
31P{1H} and 1H NMR analysis of the reaction mixture indicated the presence of a new 

diamagnetic Ni species. SCXRD analysis of the crystallized complex revealed its identity as 

[(CyJohnPhos)Ni0]2 (3, Figure 1B), the dimer of the putative monoligated (CyJohnPhos)Ni0 

complex (i, Figure 1C) formed after reductive elimination. In the crystal structure of 3, each 

Ni is coordinated by a single phosphorus, and the two Ni centers are “sandwiched” between 
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the B-rings of the two CyJohnPhos ligands.16,17 Each Ni is engaged in two η2-Carene 

interactions—one on each B ring of the sandwich—for a total of four η2 interactions in 

the complex (two total per B ring).17,18 The arenes are considerably dearomatized due 

to substantial backdonation from the two Ni0 centers; both C–C bond lengthening (up 

to 1.467(6) Å for C3–C4) and contraction (down to 1.364(5) Å for C1–C6) compared 

with unbound CyJohnPhos is observed (Figure 1B). By 1H NMR spectroscopy, several 

of the B ring aromatic protons of 3 are shifted significantly upfield—the most shifted 

aromatic resonance is found at 3.9 ppm—corroborating the solid-state observation. The Ni–

Ni distance is relatively long at 2.7618(9) Å (formal shortness ratio of 1.20), longer than 

a typical Ni–Ni single bond.19 Given the formally d10 electronic configuration of both Ni 

centers, their proximity in the complex is likely due more to the sandwiched nature of the 

metals between the B ring arenes than to Ni–Ni bonding.

We then investigated the room temperature reactivity of 3 with added free CyJohnPhos 

and π-accepting E-stilbene. We observed that if either CyJohnPhos or stilbene was added 

following formation of dimeric 3, no reaction occurred. However, if either CyJohnPhos or 

stilbene was added to 1 before deprotonation/reductive elimination, 2 or 5 were observed 

to form, respectively.15 Similarly, if 4-chlorobenzotrifluoride was added after reductive 

elimination and formation of 3, no consumption of the electrophile was observed by 19F 

NMR. However, if 4-chlorobenzotrifluoride was combined with 1 prior to reaction with 

NaOt-Bu, oxidative addition immediately took place following reductive elimination. This 

suggests that 3 is an off-cycle species, and that its formation is deleterious to efficient 

catalysis. We hypothesize that monomeric (CyJohnPhos)Ni0 (i) forms initially following 

reductive elimination, which can be intercepted by the phosphine, olefin, or aryl halide. The 

presence of one or more equivalent (relative to Ni) of 1,5-cyclooctadiene (COD) in solution 

also serves to trap monomeric Ni0 in the form of a mixture of Ni(COD)2 and 2.15 However, 

in the absence of added ligands and/or substrates, irreversible dimerization of i occurs to 

form 3 (Figure 1C).

Furthermore, we observed that 3 itself was not indefinitely stable in solution at room 

temperature. Over time, two sets of doublets with 1:1 integration and JPP values of 34.3 Hz 

were observed downfield of 3 by 31P{1H} NMR spectroscopy. One of these doublets was 

substantially downfield (δ = 158.2 ppm), consistent with a Ni-phosphido species formed 

after a C–P bond cleavage.12,20,21 The second doublet (δ = 35.9 ppm) was consistent with 

an “intact” phosphine. Over 48 hours, 3 converted completely to this putative C–P activated 

complex (Figure 2A).

The crystal structure of the complex confirmed its identity as a C–P activated dimer (4, 

Figure 2B). Complex 4 consists of one intact CyJohnPhos ligand bound to one of the two 

Ni centers and a μ2-PCy2 bridging the second Ni center, which is also bound to the biphenyl 

moiety. The B ring of the intact CyJohnPhos supports both Ni centers via an η2 interaction 

to Ni1 and an η3 interaction to Ni2. The Ni–Ni distance is 2.4312(7) Å (formal shortness 

ratio of 1.06), far shorter than that observed in 3, and consistent with a Ni–Ni bonding 

interaction.19 The formal oxidation states of the Ni centers in 4 are more ambiguous than 

in 3. However, given that Ni2 is bound to the X-type biphenyl ligand and that the Ni2–P2 
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distance is shorter than the Ni1–P2 distance (indicative of more positive charge on Ni2), 4 is 

more consistent with a mixed Ni0/NiII species than NiI/NiI (Figure 2B).22,23

To investigate the mechanism of C–P bond cleavage, conversion of 3 and formation of 4 
were monitored by 31P{1H} NMR spectroscopy over 24 hours. The results were consistent 

with a first order dependence on [3], with a rate constant of 4.4 × 10–5 s–1 (half-life of 4.3 

hours) at 298 K (Figure 2A). Addition of free CyJohnPhos to trap any monomeric species 

that would form due to dissociation did not affect the reaction. Overall, these results suggest 

that the C–P bond activation itself likely takes place from 3 and not from i or a higher 

nuclearity aggregate. DFT calculations were performed to further interrogate this process 

(Figures 2C and S27). In the computed pathway, 3 reorganizes to form intermediate ii (10.3 

kcal/mol above 3),24 wherein one Ni center is coordinated by both phosphines and the lower 

(B ring) of one CyJohnPhos ligand. The second Ni in ii is sandwiched between this B 

ring and the upper (A ring) of the second CyJohnPhos; the η2 interaction with the A ring 

includes the C–P ipso carbon. The transition state of the subsequent C–P bond cleavage 

was located with a ΔG‡ of 4.4 kcal/mol above ii (14.7 kcal/mol above 3).24 See Figure 

S27 for the full free energy profile. A similar multinuclear C–P activation mechanism likely 

occurs with other coordinatively unsaturated Ni0 complexes bound by aryl phosphines (e.g., 

PPh3).12,25

In conclusion, we found that in the absence of additional ligand equivalents, π-acceptors, 

and/or electrophile substrate, monoligated (CyJohnPhos)Ni0 forms off-cycle dimeric 

complexes that are recalcitrant towards catalytic cycle reentry. Over time, these Ni0 dimers 

decompose further via C–P bond cleavage to generate a Ni0/NiII dimer. Knowledge of these 

off-cycle complexes and an understanding of the conditions that lead to their formation 

is helpful in the design of new ligands and Ni precursors, as well as in the fine tuning 

of reaction conditions to maximize productive Ni-catalyzed cross-coupling. Continued 

effort by the field to fully elucidate these pathways, as has been done for precious metal 

complexes,26–30 will undoubtedly lead to more practical and efficient use of Ni in valuable 

bond-forming methodologies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Stoichiometric formation of [(CyJohnPhos)Ni0]2 (3). (B) Structural characterization 

of 3. Solid state structure with thermal ellipsoids at 50% probability shown. Hydrogen 

atoms omitted for clarity. (C) Stoichiometric reactivity studies following C–N reductive 

elimination at room temperature in THF-d8.
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Figure 2. 
(A) C–P bond activation of 3 observed and monitored in situ at room temperature by 
31P{1H} NMR spectroscopy at 298 K. (B) Structural characterization of 4. Solid-state 

structure with thermal ellipsoids at 50% probability; hydrogen atoms omitted for clarity. 

(C) DFT-computed structures for C–P bond cleavage at the M06/def2-TZVP//B3LYP-D3/

def2-SVP (SMD solvation model for THF) level of theory. Energies relative to 3 (0.0 kcal/

mol).
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