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EPIGRAPH

The sea, the great unifier is man’s only hope.
Now, as never before the old phrase has a literal meaning:

We are all in the same boat

Jacques Yves Cousteau
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The ocean’s overturning circulation is a large-scale conveyor belt responsible for transport-

ing mass, heat and tracers around the global oceans driven primarily by heat and density gradients

between different water masses. Two distinct cells of the global MOC have been proposed based

upon observations guided by physical constraints, the upper cell (u-MOC) associated with waters

sinking to lower to mid-depth in the northern reaches of the North Atlantic Ocean, and the lower

or bottom cell (b-MOC) which is linked to the sinking of waters formed around Antarctica to

abyssal depths. The deep and abyssal oceans are responsible for absorbing a significant fraction

of the global heat budget. Processes that govern the sequestration of heat and carbon in the
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deep ocean and its redistribution into the interior ocean have huge consequences for the large

scale circulation, sea level rise, and the global climate system as a whole. Studying the abyssal

ocean depths below 2000 m has historically been limited due to the paucity of high-quality

observational data. Only in recent decades have advances in autonomous float technologies,

satellite remote sensing, and regular ship-based observational programs begun to reduce the

existing data deficit. This thesis uses data from decades of ship-based observations, thousands of

profiles from autonomous Argo floats worldwide, and other novel instrumentation to understand

and characterize some of the fundamental questions regarding the contemporaneous changes in

the abyssal ocean and its impact on climate.

In Chapter 2, we construct a heat budget in the Southwest Pacific Basin and utilize

ship-based observations gathered over three decades to understand the changes in the large-scale

abyssal circulation in the basin. We further calculate the estimates of turbulent mixing in the

basin, reconciling them using three different techniques of backing out the turbulent diffusivities

in the basin. In Chapter 3, we demonstrate a methodology deploying a novel turbulence profiler

called 𝜒-Pod and develop a method to reduce spikes in the error-prone data. In Chapter 4, we use

a novel unsupervised machine learning technique to characterize different internal wave spectra

observed in the ocean, using observations from 15 repeat hydrographic sections around the globe.

Lastly, in Chapter 5 we quantify the rate of sea level rise and the contribution of the warming in

the abyssal ocean in the Southwest Pacific Basin using data from 4954 profiles from Deep Argo

floats. These chapters provide a detailed view of critical processes in the abyssal ocean measured

by novel instrumentation to better understand the role of the oceans in a changing global climate.
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Chapter 1

Introduction

The meridional overturning circulation (MOC) of the ocean is a global heat engine

associated with large-scale transport of water, heat, carbon, nutrients, and other tracers poleward

from the tropics, and the equatorward return flow of colder dense water formed near the polar

ice-caps. Two distinct cells of the global MOC have been proposed based on observations and

guided by physical constraints (Wunsch & Ferrari, 2004; Talley et al., 2011; Marshall & Speer,

2012), the upper cell (u-MOC) is associated with waters sinking to lower to mid-depth in the

northern reaches of the North Atlantic ocean, and the lower or bottom cell (b-MOC) which is

linked to sinking of waters formed around Antarctica to abyssal depths (Figure 1.1). Furthermore,

for the circulation to be sustained and to complete the cycle, these dense cold water masses

must eventually upwell to the surface. The bulk of the upwelling in the ocean is accomplished

through processes in the ocean that result in turbulent mixing of these cold waters with warmer

waters thereby causing gain in its buoyancy (Munk, 1966; Bryan, 1987; Munk & Wunsch, 1998a;

Wunsch & Ferrari, 2004).

The role of turbulent mixing in the dynamics of the global MOC, its sources and

sinks as well the magnitude and geographical distribution has been long pondered and is a

fundamental question in the field of physical oceanography. The strength of this large-scale

diapycnal transformation of waters is often expressed in terms of the diapcynal diffusivity 𝜅

(m2/s) and the rate of dissipation of turbulent kinetic energy 𝜖 (W/kg). From a 1-D idealized
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perspective computed using an advective-diffusive balance, Munk (1966) postulated that the

observed stratification in the deep ocean required an average diapycnal diffusivity 𝐾 = O(10−4

m2 s−1) for waters to upwell through the main thermocline, given the rate of deep and bottom

water being produced in the northern and southern polar regions, later corroborated by idealized

numerical experiments, heat budgets and inverse estimates (Bryan, 1987; Lumpkin & Speer,

2007; Macdonald et al., 2009). However, measurements in the open-ocean thermocline from

microstructure instrumentation and tracer release experiments have revealed broad-scale mixing

rates weaker by an order of magnitude 𝐾 = O(10−5 m2 s−1) (Gregg, 1987; Ledwell et al., 2000,

1998a; Kunze et al., 2006a), than those suggested by the idealized theoretical frameworks.

This paradox of the “missing mixing” is largely reconciled in the modern two-cell global

MOC framework in which abyssal waters in both hemispheres (Figure 1.1, blue arrows) are

largely upwelled to mid-depths (∼3000 m) by vigorous turbulence, primarily driven by breaking

internal waves, upon which they are drawn to the surface in a largely adiabatic pathway into

the Southern Ocean’s Antarctic Circumpolar Current (ACC) region (Figure 1.1) (Toggweiler,

1994; Lumpkin & Speer, 2007; Marshall & Speer, 2012). The upwelling is induced by northward

Ekman transport from westerly winds in the ACC region and enables a pathway from the interior

abyssal ocean to the surface facilitating the communication of abyssal waters to return to the

surface, thus eliminating the constraints posed by unobserved large thermocline diffusivities

(Sverdrup, 1933; Doos & Webb, 1994; Toggweiler & Samuels, 1995, 1998; Talley, 2013).

While observational evidence of weak mixing in the stratified interior away from

boundaries and topography is robust, measurements from decades of microstructure and tracer

release experiments have shown that turbulent mixing two to three orders of magnitude higher

than the interior ocean occurs in the abyssal ocean near rough topography, seamounts and,

hydraulically controlled passages and canyons (Lueck & Mudge, 2009; Ferron et al., 1998;

Kunze & Toole, 1997; St. Laurent et al., 2001; Polzin et al., 1997; Roemmich et al., 1996)

driven primarily by dissipation of turbulent kinetic energy through non-linear internal wave-wave

interaction (Garrett & Munk, 1979). Although these observations indicate that these regions of
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elevated turbulence are highly localized and spatially and temporally variable, mixing plays a

critical role in enabling water-mass transformation in the deep and abyssal ocean, but also in

balancing the kinetic energy budget of the ocean. Global power input to the internal wave field

is derived primarily from winds, tides and geostrophic currents of roughly 3-3.5 TW (Wunsch

& Ferrari, 2004). The dissipation resulting from internal wave-driven turbulence acts as a sink

to balance the energy budget with tidally generated internal waves contributing roughly 1 TW

(Egbert & Ray, 2000; Nycander, 2005), near-inertial dissipation from time-varying wind stress

input of roughly between 0.3-1.4 TW (M. H. Alford, 2003; Jiang et al., 2005; Simmons & Alford,

2012; Nikurashin & Ferrari, 2010) and finally dissipation related to internal lee wave generation

of roughly 0.2-0.7 TW (Nikurashin & Ferrari, 2011; Scott et al., 2011; Wright et al., 2014;

Nikurashin et al., 2014) (Figure 1.2). Ultimately, complex and convoluted processes governing

the generation, propagation and dissipation of internal waves shape the overall distribution of the

turbulent mixing globally (Kunze et al., 2006a; Whalen, Talley, & MacKinnon, 2012; Waterhouse

et al., 2014a; Kunze, 2017b), drive the MOC, shaping many of its characteristics and in turn the

global climate system. The modeled magnitude and structure of the MOC is tightly coupled with

the horizontal and vertical distribution of mixing, an indication of its importance for setting the

MOC’s observed properties (Oka & Niwa, 2013; Melet et al., 2016; Hieronymus et al., 2019).

The distribution and magnitude of internal wave-driven mixing in the ocean has broader

effects on the climate system. Parameterizations to capture spatio-temporal variability of

internal wave-driven mixing are being developed (MacKinnon et al., 2017a) since they it is not

captured adequately in current global ocean and climate models. Studies report that even small

perturbations in the magnitude or distribution of the diffusivity in global models can lead to

substantial changes in the air-sea fluxes, stratification and circulation in the models (Melet et

al., 2016; Hieronymus et al., 2019). Models are highly sensitive to mixing as it alters spatial

distributions of fundamental properties of the ocean such as temperature and salinity and thereby

induces changes in density, stratification and large-scale circulation and dynamics (Tatebe et

al., 2018; Zhu & Zhang, 2019; Jochum et al., 2013; Stanley & Saenko, 2014). Further, this can
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lead to downstream effects of variations in sea surface temperatures (SSTs), mixed layer depth,

and air-sea fluxes in the model representations (Melet et al., 2013a, 2014; Zhu & Zhang, 2019;

Jochum et al., 2013) and thereby perturbing effects on air temperatures, sea-ice concentrations,

atmospheric circulation, and precipitation. These substantial effects of the representation of

internal wave-driven mixing in the ocean are critical not only for understanding ocean circulation

and dynamics but also have wide-ranging impacts for global climate models and accurate

representation of the climate system and therefore are the next frontier in understanding and

interpreting the importance of diapycnal mixing in the ocean.

The role of the deep and abyssal ocean is at the forefront of inquiry in observing,

understanding and modeling the impacts of global atmospheric radiative imbalance (global

warming) resulting from an increase in greenhouse gas concentrations (Meyer et al, 2014). Over

the past few decades the oceans have absorbed between 80% - 90% of the excess heat gain

from the radiative imbalance with about 10% sequestered into the abyssal ocean below 4000 m

(Levitus et al., 2000; Purkey & Johnson, 2010; von Schuckmann et al., 2022), primarily due to

its large mass and high heat capacity, and therefore, dominates the heat inventory of the Earth

(Von Schuckmann et al., 2016; Cheng et al., 2017, 2019). (Figure 1.3). While high-quality

observations of the abyssal ocean are greatly limited in spatio-temporal coverage and are mostly

derived from decadal or semi-decadal hydrographic observations in various basins, the recent

rise in earth observations from remote sensing through satellite altimetry (Cazenave et al., 2009;

Dieng et al., 2015; Llovel & Lee, 2015) and gravimetry (Tapley et al., 2004; Chambers, 2006;

Böning et al., 2008; Chambers & Willis, 2010; Tapley et al., 2019) as well as from autonomous

floats profiling the ocean called Argo and Deep Argo (Wong et al., 2020) have greatly added to

the inventory of data to better understand the ocean’s role in a warming climate.

Basins adjacent to Antarctica and tied to Antarctic Bottom Water formation regions have

shown signs of consistently higher warming rates than most ocean basins to the north (Purkey

& Johnson, 2010; Desbruyères et al., 2016; Purkey et al., 2019; G. C. Johnson et al., 2020;

G. C. Johnson, 2022). The warming seen in the AABW formation region is exacerbated through
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positive feedback by causing changes in the rate of formation of AABW through increased

meltwater from ice shelves around Antarctica and has a potential to slow down to the point of

collapse in future climate scenarios (Gunn et al., 2023; Lago & England, 2019; Li et al., 2023)

and leading to further atmospheric warming (Liu et al., 2020). This has critical implications

for global sea-level rise projections through thermosteric effects as well as sea-level rise due to

additional melt from polar ice-caps and glaciers from the warming oceans (Cazenave et al., 2018;

Trenberth & Fasullo, 2009; Purkey & Johnson, 2012a; Cazenave et al., 2018). Estimates of the

altimetry-based global mean sea level have shown that sea level has risen at an average rate of 3.1

± 0.3 mm yr−1 and has been accelerating recently in the satellite altimeter era since 1993 (Church

& White, 2006; Nerem et al., 2018). Since direct observation of heat content changes in the

deep ocean below 2000 m are extremely sparse, most methods have relied on indirect methods

utilizing altimetry along with its constituent components (thermosteric from Argo observations

and gravimetry-based ocean mass) to constrain this elusive piece of the puzzle. However, the

errors remain too large to provide robust estimates of the deep ocean contributions to sea level

rise and ocean heat content (Von Schuckmann et al., 2016; G. C. Johnson & Chambers, 2013;

Watson et al., 2015; Dieng et al., 2015).

This thesis, consisting of 4 main chapters, is a scientific foray into some of the aforemen-

tioned larger outstanding questions concerning large-scale circulation of the deep and abyssal

ocean. The inquiry is probed primarily with the use of high-quality observations obtained

from ship-based surveys, autonomous floats in the ocean and from remote sensing. Chapter 2

begins with an investigation into the bottom limb of the overturning circulation (b-MOC) in the

Southwest Pacific Basin, which is driven primarily through the northward flow of cold waters

formed in the Southern Ocean and diffusion-driven upwelling from oceanic turbulence, both of

which are difficult to measure and quantify accurately. This chapter aims to reconcile different

methods of measuring the overturning in a large ocean basin by 1) inferring the mixing required

to sustain the overturning using long-term observations of inflow and outflow heat fluxes from a

time-dependent heat budget and 2) direct/indirect observations of mixing within the basin. While
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our results show the consistency of the basin-averaged mixing estimates from several different

methods, this study also highlights the need to make sustained oceanic observations of mixing

and circulation to further reduce uncertainty in the estimates.

Chapter 3 is centered around methodological development and testing of novel instrumen-

tation to estimate the turbulent dissipation rate 𝜖 by obtaining measurements of the dissipation

rate of temperature variance 𝜒 from fast-response FP07 thermistors mounted on a standard

shipboard conductivity, temperature and depth (CTD) rosette, called the CTD-𝜒pod (J. N. Moum

& Nash, 2009). Until recently direct observation of deep-ocean mixing has required special

free-falling profiling instruments, which was one of the reasons for sparse mixing observation

in the ocean (Waterhouse et al., 2014a). This chapter describes a relatively new technique for

obtaining ocean mixing by measuring very small-scale temperature fluctuations during traditional

CTD operation. From data gathered on over 200 profiles in the SW Pacific basin along the P06

transect, we develop a methodology to accurately filter out spurious, noisy and contaminated

turbulence data- a routine occurrence when sampling on unstable profiling platforms tethered to

rocking oceanic vessels. The method is shown to not be significantly biased, which provides

support for making continued observations within the global repeat hydrography programs, data

from which are utilized in both Chapters 2 and 4.

In Chapter 4, we employ a novel framework using unsupervised machine learning to

investigate multi-dimensional coherent patterns and covariances in oceanic properties used to

predict the rate of turbulent mixing from internal waves in the ocean. As an alternative to obtaining

in-situ measurements of mixing such as described in Chapter 3, simplified parameterized models

(finescale parameterizations) to estimate the rate of mixing are widely used by incorporating

relatively easily collected oceanic properties such as temperature and velocity as inputs (Polzin et

al., 1995). However, inaccuracies in predictions by these simplified models arise when certain

assumptions in the model are violated. In this study, by incorporating data collected from a

global suite of ship-based observations from 15 hydrographic sections, we use a data-driven

approach to identify the spatial distribution of two distinct regions in the ocean where large biases
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in the predictions by the simplified models are possible. These patterns exhibit distinct spatial

patterns globally which are likely a result of the underlying circulation and dynamics unresolved

in these finescale parameterizations of mixing (e.g., Waterman, Polzin, Naveira Garabato, Sheen,

Forryan, Garabato, et al., 2014; Takahashi & Hibiya, 2018). Extending this approach, future

studies could potentially identify the underlying causes of such disparities to further improve

models of turbulent mixing in the ocean.

Finally, in Chapter 5 we investigate the contemporary warming in the deep and abyssal

ocean and quantify its contribution to the steric component of the sea level budget using data from

autonomous floats (Deep Argo) in the Southwest Pacific Basin. Distinct from the “core” Argo

fleet of floats which sample only the top 2000 m of the ocean, Deep Argo floats are capable of

sampling the full ocean depth (∼ 6000 m) and provide extremely valuable bi-monthly sampling of

primary oceanographic properties of roughly 50% of the ocean’s volume, otherwise impossible

without ship-based observations. Using data gathered from 56 floats and roughly 5000 full-depth

profiles between 2014 and the Present in the Southwest Pacific Basin, we find large warming

signals in the abyssal ocean primarily concentrated below 3000 m in depth with the rate of the

warming maximal between 4500 m and 5500 m. We quantify that the warming ocean in this

basin is contributing on average roughly 1.3 millimeters per decade to the sea level rise in the

basin. Finally, we use this new estimate of the full-depth steric sea level signal to provide better

closure in the sea level budget. At a relatively high resolution of 5𝑜 × 5𝑜, the incorporation of the

deep steric component observed by Deep Argo along robust estimates from the upper ocean from

”core” Argo (Roemmich & Gilson, 2009), results in an improvement of roughly 5% in explaining

sea level variability in a limited region of the Southwest Pacific basin.

These four chapters in their totality explore a wide range of observational datasets

gathered from a variety of instrumentation. They incorporate a span of analysis frameworks and

encompasses a wide range of scales and inter-woven processes in the MOC. In Chapter 2 we

use hydrographic observations in the Southwest Pacific basin to constrain estimates of turbulent

mixing with a heat budget and compare it to inferred and in-situ measurements from finescale
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parameterizations and CTD-𝜒pods. Chapter 3 tests a methodology to effectively deploy sensitive

temperature microstructure instrumentation onboard a CTD rosette, quantifies biases in the

measurements, and develops an approach to flag, filter and quality-control spurious measurements

of turbulence. We use unsupervised machine learning to combine hydrographic data and finescale

parameterizations of turbulent mixing to gain insight into the spatial characteristics of biases in

these paramterizations along 15 global sections in Chapter 4. Lastly considering the accumulation

of heat in the deep ocean, Chapter 5 quantifies the role of steric contribution of the deep ocean

below 2000 m in the overall sea level budget in the Southwest Pacific basin using data from Deep

Argo floats. Given the lack of high quality in-situ observations of the deep and abyssal oceans,

investigating these questions and expanding on the results obtained from these studies is critical

to further our understanding of the ocean’s role in today’s rapidly changing climate system.
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Figure 1.1. A schematic diagram of the Upper Cell and Lower Cell of the global MOC in a zonal
mean framework formed in the northern and southern polar seas. The bottom MOC (b-MOC)
cell (blue arrows) shows formation of Antarctic Bottom Water (AABW) near Antarctica, sinking
to abyssal depths and upwelling and entrainment into mid-depths. In the Northern Hemisphere,
formation of North Atlantic Deep Water (NADW) and southward movement (green arrows)
are shown where the entrained AABW and NADW are mixed together and rise to the surface
along isopycnals in a largely adiabatically driven upwelling in the Southern Ocean’s Antarctic
Circulpolar Current (ACC) region. Average neutral density (𝛾𝑛) of the corresponding layers
is labeled and colored contours corresponding to dissolved oxygen concentration relating the
relative age of the waters are also shown. Figure from Marshall & Speer (2012).
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Figure 1.2. A schematic showing the simplified global internal wave energy budget. Included are
the sources of internal wave energy and the pathways of energy transfer until turbulent dissipation.
Figure from Whalen et al. (2020).
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Figure 1.3. The energy budgets are relative to the 1958–1962 base period. The integrated net
radiative imbalance from Allan et al. (65) estimated from the TOA is included in yellow and
is multiplied by 0.93 to be comparable with the ocean energy budget. The TOA radiation is
adjusted to the value of OHC within 2013–2014. The dashed gray lines encompass the 95%
confidence interval. Figure from Cheng et al. (2017).
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Chapter 2

Abyssal Heat Budget in the Southwest
Pacific Basin
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Abstract

The abyssal Southwest Pacific Basin has warmed significantly between 1992-2017,

consistent with warming along the bottom limb of the meridional overturning circulation seen

throughout the global oceans. Here we present a framework for assessing the abyssal heat

budget that includes the time-dependent unsteady effects of decadal warming and direct and

indirect estimates of diapycnal mixing from microscale temperature measurements and finescale

parameterizations. The unsteady terms estimated from the decadal warming rate are shown

to be within a factor of 3 of the steady state terms in the abyssal heat budget for the coldest

portion of the water column and therefore, cannot be ignored. We show that a reduction in

the lateral heat flux for the coldest temperature classes compensated by an increase in warmer

waters advected into the basin has important implications for the heat balance and diffusive

heat fluxes in the basin. Finally, vertical diffusive heat fluxes are estimated in different ways:

using the newly available CTD-mounted microscale temperature measurements, a finescale strain

parameterization, and a vertical kinetic energy parameterization from data along the P06 transect

along 32.5◦S. The unsteady-state abyssal heat budget for the basin shows closure within error

estimates, demonstrating that (i) unsteady terms have become consequential for the heat balance

in the isotherms closest to the ocean bottom and (ii) direct and indirect estimates from full depth

GO-SHIP hydrographic transects averaged over similarly large spatial and temporal scales can

capture the basin-averaged abyssal mixing needed to close the deep overturning circulation.
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2.1 Introduction

The meridional overturning circulation (MOC) regulates global climate through the

exchange and distribution of heat, carbon and nutrients throughout the global oceans (Meehl et

al., 2006). The overturning structure and strength of the deep and bottom cells of the MOC are

set by the balance between surface buoyancy loss at high latitudes that produces deep water, and

diapycnal mixing throughout the global ocean driven by internal wave breaking and geothermal

heating (Nikurashin & Ferrari, 2013; Talley, 2013; MacKinnon et al., 2017a; Lumpkin & Speer,

2007; Marshall & Speer, 2012).

In the Southwest Pacific (SWP) Basin, the bottom limb of the MOC is fed by a mix of

Antarctic Bottom Water (AABW), originating primarily from the Antarctic continental shelf,

and Lower Circumpolar Deep Water (LCDW), primarily made up of deep waters originating

from the North Atlantic that have been modified in the Antarctic Circumpolar Current. The

pathways of bottom water in the SWP Basin have been relatively well observed, with this modified

AABW mixture entering the SWP Basin through an intensified deep western boundary current

(DWBC) south of New Zealand that continues north along the Tonga-Kermadec Ridge (Reid,

1997; Wijffels et al., 2001; Whitworth et al., 1999). The majority of the flow bottlenecks through

the Samoan Passage before filling the entirety of deep North Pacific Ocean (e.g., Roemmich et

al., 1996; Voet et al., 2016).

The inflow of cold deep water is largely balanced by vertical transfer of heat from

above through diapycnal mixing. Direct observations of diapycnal mixing in the deep ocean

are sparse in space and time, despite their critical importance in understanding large-scale

ocean dynamics and closing the ocean heat budget (Waterhouse et al., 2014a; MacKinnon et al.,

2017a). Observations from a pilot program to equip CTD rosettes used on decadally-occupied

GO-SHIP repeat hydrographic sections with 𝜒-pods – self-contained instruments that measure

temperature microstructure and package motion (see Nash et al. submitted) – offer a new means

for estimating deep-ocean mixing. Here we use these CTD 𝜒-pod data collected on the Global
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Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) hydrographic transect P06

to estimate the vertical heat transfer from turbulent mixing into the abyssal ocean.

When assessing the deep ocean heat budget, it is important to note that the deep ocean

is not currently in steady state, but instead has been warming significantly in recent decades.

Below 2000 m, the global oceans have warmed at a rate equivalent to a downward heat flux of

0.065±0.040 Wm−2 over the entire surface of the Earth between the 1990s and 2000s, with the

strongest warming rates found in the Southern Ocean closest to AABW formation sites (Purkey

& Johnson, 2010; Kouketsu, Doi, et al., 2011; Desbruyères et al., 2016). This warming is likely

being driven by a slowdown in AABW production and communicated globally on decadal time

scales by deep planetary waves (Fukasawa et al., 2004; Kouketsu et al., 2009; Masuda et al.,

2010; Purkey & Johnson, 2012a). In the SWP Basin, the deep waters below 4000 m have warmed

at a mean rate of 1.26±0.19 ◦mC yr−1 between the 1990s and 2010s, with a possible stronger

warming rate of 2.0◦mC yr−1 between the 2000s and 2010s (Purkey et al., 2019). Furthermore,

the new Deep Argo array suggests an even larger warming rate of 3◦mC yr−1 between 2014-2019

(G. C. Johnson et al., 2019).

Here, we present an in-depth analysis of the unsteady-state abyssal heat budget of the

Northern half of the SWP Basin between 1992 and 2017 in order to assess our ability to directly

measure all aspects of the local MOC. Using available ship-based hydrographic, mooring and

Deep Argo data within the SWP Basin (Section 2.2), we quantify all terms in the heat budget of

the abyssal ocean to test our current ability to directly monitor the processes controlling the MOC

(Section 2.3). Geostrophic velocity is calculated from four repeat hydrography sections along

32.5◦S in the South Pacific and from velocity measurements in the Samoan Passage (Roemmich

et al., 1996; Rudnick, 1997; Voet et al., 2016) to estimate advective heat flux and compare

this to new estimates of vertical heat flux from both microscale temperature measurements and

finescale parameterizations of eddy diffusivity (𝜅). In Section 2.4 we compare results of the full

unsteady-state heat budget which accounts for the observed warming in the abyssal SWP basin

to a simple steady state heat budget calculation by ignoring the temporal variation which has
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previously been incorporated in various studies (e.g., WHITEHEAD & WORTHINGTON, 1982;

Morris et al., 2001; Heywood et al., 2002). Lastly, in the framework of the abyssal heat budget,

we discuss how changes in advective and diapycnal heat fluxes could drive abyssal warming

by changing the MOC, and how well we can currently monitor and quantify each component

(Section 2.5).

2.2 Data

We use CTD, Lowered Acoustic Doppler Current Profiler (LADCP), and microscale

temperature data collected during one or more of the four occupations of the zonal repeat

hydrographic line P06 across the Pacific at 32.5◦S (Figure 2.1). The line was first occupied

in 1992 as part of the World Ocean Circulation Experiment (WOCE) and repeated in 2003,

2009, and 2017, first under the Climate Variability and Predictability (CLIVAR) program and

later under the Global Ocean-Based Hydrographic Investigations Program (GO-SHIP). Stations

sample from the surface to within 10-20 m of the ocean bottom or to 6000 m depth and are

nominally spaced roughly every 55 km along the section, with closer spacing in regions of rough

topography, trenches and boundary currents.

All four occupations include 2 dbar-binned Temperature (T), Salinity (S) and Pressure (P)

data with accuracy to 0.002◦C, 0.002 PSS-78 and 3 dbar, respectively (Joyce 1991). Salinity data

were calibrated to the International Association of the Physical Sciences of the Oceans (IAPSO)

standard seawater, and any batch-to-batch offsets between standards were applied (Kawano et al.,

2006). All temperature measurements were converted to the International Temperature Scale

(ITS-90) and salinity is given in Practical Salinity Scale 1978 (PSS-78). Potential Temperature

(𝜃) and neutral density (𝛾𝑛) are calculated following Jackett & McDougall (1997).

LADCP data are available for the 2003, 2009 and 2017 occupations, but the 2003 and

2009 data are characterized by high noise owing to only having a downward looking 300kHz

LADCP instrument, while the 2017 occupation had both an upward and downward looking
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LADCP. For this reason, only the LADCP data from the 2017 occupation are used for the finescale

parameterization.

In addition, microstructure measurements of the dissipation rate of temperature variance

(𝜒) were made along the 2017 occupation of the P06 section (Nash et al., submitted). Two 𝜒-pods,

self-contained instruments that measure microscale temperature fluctuations using fast-response

FP07 thermistors sampled at 100 Hz (J. N. Moum & Nash, 2009) were mounted on the outer

ring of the CTD rosette and extended above the top of the cage to avoid influence of the wake

generated by the CTD package. Data were also collected from a downward-looking 𝜒-pod

mounted near the CTD and LADCP head; however measurements from this sensor were often

contaminated (possibly by wake shed from the LADCP head), so are not used here.

Eight months of full depth CTD profiles collected from three Deep Argo floats (Figure

2.1) deployed along the P06 line in 2017 at 168◦W (float ID:6030, WMO ID: 5902528), 160◦W

(float ID:6031, WMO ID: 5902529), and 152◦W (float ID:6032, WMO ID: 5905161) are also

used to assess temporal variability of the geostrophic flow over the abyssal plain. Each float took

full depth profiles every 10 days, sampling continuously in the upper 500 dbar and discretely every

2 dbar to 50 dbar between 500 dbar and the bottom. As seen in Figure 2.1, the floats considered

in this study (Figure 2.1, pink lines) stayed close to the initial deployment location along P06

over the course of the eight-month period, hence the measurement records are considered as

stationary time series here.

Finally, time series of heat and volume transport through the Samoan Passage based on

moored observations between 1992-1994 (Rudnick, 1997) and 2012-2014 (Voet et al., 2016) are

used to estimate deep meridional outflow from the North SWP Basin.

2.3 Methods

We formulate a heat budget for the North SWP Basin. We distinguish the North SWP

Basin from the rest of the SWP Basin as the geographical region north of 32.5◦S. The cold waters

17



considered here are isolated zonally by the Tonga-Kermadec Ridge along its western boundary

and the East Pacific Rise along its eastern flank. The eastern and western sides of the deep basin

are bounded by the 4000-m isobath running along the East Pacific Rise and Tonga-Kermadec

Ridge, the northern edge bounded at 10◦S by Samoan Passage and the P31 zonal hydrographic

section and southern end along the GO-SHIP P06 hydrographic section along 32.5◦S (Figure

2.1).

The unsteady-state abyssal heat budget follows Morris et al. (2001) (Figure 2.2). In this

framework, the time rate of change of heat (Q) and the divergence of advective heat fluxes into a

defined volume are balanced by a diffusive heat flux and geothermal heating:

𝜕𝑄

𝜕𝑡
+∇ · (𝑄®u) = ∇ · (𝜅∇𝑄) (2.1)

where ®u is the 3 dimensional velocity field and 𝜅 is the eddy diffusivity. The first term in Equation

2.1, the unsteady term (𝑄𝑡), is often neglected in abyssal heat budgets; however we will show this

term to be leading order in the coldest temperature classes (that are bounded by isotherms) and

therefore include it here. This term represents the observed abyssal warming.

The heat budget calculation includes 41 isothermal layers (hereafter, layers) (0.6◦C to

1◦C in increments of 0.01◦C) within the deep basin. The spatial extent of each layer is defined

by the climatological position of a top and bottom bounding isotherm from the 1 degree × 1

degree WOCE hydrographic climatology (Gouretski & Koltermann, 2004). First, the WOCE

climatology potential temperature-pressure profiles are interpolated onto a fine (0.01◦C) isotherm

grid between 0.6◦C to 1◦C. The volume (V) and top and bottom isotherm surface area 𝑆𝑡𝑜𝑝

and 𝑆𝑏𝑡𝑚 of each layer can then be calculated by integrating spatially over the North SWP

Basin. Note that the volume (V) and top and bottom surface areas of each layer (i) represent the

”mean” volume and surface area of each of 41 layers over the climatological period of 1980-2004

(Gouretski & Koltermann, 2004). While V is constant in time, below we will introduce a V′ term

(defined as dV/dt) in the heat budget calculation reflecting the observed temporal changes in the

18



volume of each layer in the basin (Figure 2.2).

We integrate Equation 2.1 over the layer volume (V) and expand the terms by applying

divergence theorem to get

∭
𝑉

𝜕𝑄

𝜕𝑡
𝑑𝑥 𝑑𝑦 𝑑𝑧+

∯
𝑆

(𝑄®u) · n̂𝑑𝑆 =
∬

𝑆𝑡𝑜𝑝

𝜅
𝜕𝑄

𝜕𝑧
𝑑𝑆−

∬
𝑆𝑏𝑡𝑚

𝜅
𝜕𝑄

𝜕𝑧
𝑑𝑆−𝑄𝑔 (2.2)

The last term in equation 2.2 is the geothermal heating term (𝑄𝑔) and is defined as 𝑄𝑔

= 𝑄𝑜 × FA × SA, a mean abyssal geothermal heat flux (𝑄𝑜; 0.05 W/m2) times the fraction

area (FA) of the total bottom bounding surface area (SA) of each defined layer in contact with

the bottom. We then separate velocities in equation (2.2) into the vertical velocities (w) and

the horizontal inflow velocity along P06 (𝑢𝑃06) and outflow velocity through Samoan Passage (𝑢𝑠𝑝).

∫
𝑉

𝜕𝑄

𝜕𝑡
𝑑𝑥 𝑑𝑦 𝑑𝑧+

(∫
𝑆𝑠𝑜𝑢𝑡ℎ

−𝑄𝑢P06𝑑𝑆 +
∫
𝑆𝑛𝑜𝑟𝑡ℎ

𝑄𝑢S𝑃𝑑𝑆 +
∫
𝑆𝑡𝑜𝑝

𝑄𝑊𝑎𝑑𝑣𝑑𝑆−
∫
𝑆𝑏𝑡𝑚

𝑄𝑊𝑎𝑑𝑣𝑑𝑆

)
=∫

𝑆𝑡𝑜𝑝

𝜅
𝜕𝑄

𝜕𝑧
𝑑𝑆−

∫
𝑆𝑏𝑡𝑚

𝜅
𝜕𝑄

𝜕𝑧
𝑑𝑆−𝑄𝑔

(2.3)

Using Leibniz rule for the unsteady term in (2.3) whose integral bounds are changing in

time, we can transform using

𝑑

𝑑𝑡

∫ 𝑧2 (𝑡)

𝑧1 (𝑡)
𝑄(𝑧, 𝑡) 𝑑𝑧 =𝑄(𝑧2, 𝑡)

𝜕𝑧2(𝑡)
𝜕𝑡

−𝑄(𝑧1, 𝑡)
𝜕𝑧1(𝑡)
𝜕𝑡

+
∫ 𝑧2

𝑧1

𝜕𝑄

𝜕𝑡
𝑑𝑧 (2.4)
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where 𝑧2 and 𝑧1 are top and bottom bounds of the layer in the vertical. We use the

transformation in Equation (2.4) to split the unsteady term into 3 different terms and substitute

into Equation 2.3 to get

𝑑

𝑑𝑡

∫
𝑉

𝑄 𝑑𝑥 𝑑𝑦 𝑑𝑧−
∫
𝑆𝑡𝑜𝑝

𝑄(𝑧2, 𝑡)
𝜕𝑧

𝜕𝑡
𝑑𝑆 +

∫
𝑆𝑏𝑡𝑚

𝑄(𝑧1, 𝑡)
𝜕𝑧

𝜕𝑡
𝑑𝑆+(∫

𝑆𝑠𝑜𝑢𝑡ℎ

−𝑄𝑢𝑃06𝑑𝑆 +
∫
𝑆𝑛𝑜𝑟𝑡ℎ

𝑄𝑢𝑆𝑃𝑑𝑆 +
∫
𝑆𝑡𝑜𝑝

𝑄𝑤𝑎𝑑𝑣𝑑𝑆−
∫
𝑆𝑏𝑡𝑚

𝑄𝑤𝑎𝑑𝑣𝑑𝑆

)
+𝑄𝑔 =∫

𝑆𝑡𝑜𝑝

𝜅
𝜕𝑄

𝜕𝑧
𝑑𝑆−

∫
𝑆𝑏𝑡𝑚

𝜅
𝜕𝑄

𝜕𝑧
𝑑𝑆.

(2.5)

Further, we replace heat (Q) with 𝜌𝑐𝑝𝜃 where 𝜌, 𝑐𝑝, 𝜃 are the density, heat capacity and

average potential temperature of the layer respectively. Using mass conservation we replace

𝑊𝑎𝑑𝑣𝑡𝑜𝑝 = (𝑈𝑃06 −𝑈𝑆𝑃)𝑖 and 𝑊𝑎𝑑𝑣𝑏𝑡𝑚 = (𝑈𝑃06 −𝑈𝑆𝑃)𝑖−1 corresponding to upward advection

through the top and bottom isotherms respectively, where W and U now represent volume

transports instead of velocities. Further, on solving the integral in term 1 on the LHS of Equation

2.5, it is transformed into the time derivative of the product of two functions that represent

the average temperature and average volume of the layer respectively, where the change in

the volume is due to the movement of the top and bottom bounding isotherms of the layer i.e.

𝜌𝑐𝑝
𝑑
𝑑𝑡
𝜃 (𝑡) ×𝑉 (𝑡). We use the product rule for derivatives to get

𝑉𝜌𝑐𝑝
𝑑𝜃𝑖

𝑑𝑡
+ 𝜌𝑐𝑝𝜃𝑖

(𝑑𝑧
𝑑𝑡

���
𝑡𝑜𝑝
𝑆𝑡𝑜𝑝 −

𝑑𝑧

𝑑𝑡

���
𝑏𝑡𝑚
𝑆𝑏𝑡𝑚

)
−𝜌𝑐𝑝𝜃𝑡𝑜𝑝

𝜕𝑧

𝜕𝑡

���
𝑡𝑜𝑝
𝑆𝑡𝑜𝑝 + 𝜌𝑐𝑝𝜃𝑏𝑡𝑚

𝜕𝑧

𝜕𝑡

���
𝑏𝑡𝑚
𝑆𝑏𝑡𝑚

−𝜌𝑐𝑝𝜃𝑖𝑈𝑃06 + 𝜌𝑐𝑝𝜃𝑖𝑈𝑆𝑃 + 𝜌𝑐𝑝𝜃𝑡𝑜𝑝 (𝑈𝑃06 −𝑈𝑆𝑃)𝑖 − 𝜌𝑐𝑝𝜃𝑏𝑡𝑚 (𝑈𝑃06 −𝑈𝑆𝑃)𝑖−1 +𝑄𝑔 =∫
𝑆𝑡𝑜𝑝

𝜌𝑐𝑝𝜅
𝜕𝜃

𝜕𝑧
𝑑𝑆−

∫
𝑆𝑏𝑡𝑚

𝜌𝑐𝑝𝜅
𝜕𝜃

𝜕𝑧
𝑑𝑆.

(2.6)

We split Term 2 in Equation 2.6 into two terms as follows
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𝑉𝜌𝑐𝑝
𝑑𝜃𝑖

𝑑𝑡
+ 𝜌𝑐𝑝

𝑑𝑧

𝑑𝑡

���
𝑡𝑜𝑝

(
𝜃𝑖 − 𝜃𝑡𝑜𝑝

)
𝑆𝑡𝑜𝑝 − 𝜌𝑐𝑝

𝑑𝑧

𝑑𝑡

���
𝑏𝑡𝑚

(
𝜃𝑖 − 𝜃𝑏𝑡𝑚

)
𝑆𝑏𝑡𝑚−

𝜌𝑐𝑝𝜃𝑖𝑈𝑃06 + 𝜌𝑐𝑝𝜃𝑖𝑈𝑆𝑃 + 𝜌𝑐𝑝𝜃𝑡𝑜𝑝 (𝑈𝑃06 −𝑈𝑆𝑃)𝑖 − 𝜌𝑐𝑝𝜃𝑏𝑡𝑚 (𝑈𝑃06 −𝑈𝑆𝑃)𝑖−1 +𝑄𝑔 =∫
𝑆𝑡𝑜𝑝

𝜌𝑐𝑝𝜅
𝜕𝜃

𝜕𝑧
𝑑𝑆−

∫
𝑆𝑏𝑡𝑚

𝜌𝑐𝑝𝜅
𝜕𝜃

𝜕𝑧
𝑑𝑆

(2.7)

We rearrange the unsteady terms in Equation 2.7 to get

𝑉𝜌𝑐𝑝
𝑑𝜃𝑖

𝑑𝑡
− 𝜌𝑐𝑝

𝑑𝑧

𝑑𝑡

���
𝑡𝑜𝑝

(
𝜃𝑡𝑜𝑝 − 𝜃𝑖

)
𝑆𝑡𝑜𝑝 − 𝜌𝑐𝑝

𝑑𝑧

𝑑𝑡

���
𝑏𝑡𝑚

(
𝜃𝑖 − 𝜃𝑏𝑡𝑚

)
𝑆𝑏𝑡𝑚−

𝜌𝑐𝑝𝜃𝑖𝑈𝑃06 + 𝜌𝑐𝑝𝜃𝑖𝑈𝑆𝑃 + 𝜌𝑐𝑝𝜃𝑡𝑜𝑝 (𝑈𝑃06 −𝑈𝑆𝑃)𝑖 − 𝜌𝑐𝑝𝜃𝑏𝑡𝑚 (𝑈𝑃06 −𝑈𝑆𝑃)𝑖−1 +𝑄𝑔 =∫
𝑆𝑡𝑜𝑝

𝜌𝑐𝑝𝜅
𝜕𝜃

𝜕𝑧
𝑑𝑆−

∫
𝑆𝑏𝑡𝑚

𝜌𝑐𝑝𝜅
𝜕𝜃

𝜕𝑧
𝑑𝑆.

(2.8)

Each term of the abyssal heat budget in Equation (2.8) can now be evaluated within the

North SWP Basin from observational data. From left to right, the first three terms are unsteady

terms representing the energy needed to change the mean temperature within each layer (Term 1;

𝑉𝜌𝑐𝑝
𝑑𝜃𝑖
𝑑𝑡

) and the energy associated with increasing or decreasing the volume of water within

each temperature class through the vertical heave of the upper or lower bounding isotherm (Terms

2 and 3; 𝜌𝑐𝑝 𝑑𝑧𝑑𝑡
��
𝑡𝑜𝑝

(
𝜃𝑡𝑜𝑝 − 𝜃𝑖

)
𝑆𝑡𝑜𝑝 and 𝜌𝑐𝑝 𝑑𝑧𝑑𝑡

��
𝑏𝑡𝑚

(
𝜃𝑖 − 𝜃𝑏𝑡𝑚

)
𝑆𝑏𝑡𝑚). Terms 4-7 of Equation 2.8 are

simply the advective terms accounting for the loss or gain of energy through the horizontal inflow

(term 4; 𝜌𝑐𝑝𝜃𝑖𝑈𝑃06; Section 2.32.3.2), horizontal outflow (Term 5; 𝜌𝑐𝑝𝜃𝑖𝑈𝑆𝑃; Section2.32.3.3),

and vertical upwelling (Terms 6 and 7), estimated using a combination of geostrophic flow from

hydrography and Deep Argo floats and velocity data from moorings. The geothermal heating

(Term 8; 𝑄𝑔; Section2.32.3.5) is estimated assuming a constant heat flux proportional to the

area of the isotherms in contact with the bottom across the abyssal plain. The sum of the left

hand side (LHS) terms is calculated as the inferred vertical diffusive heat flux (Section 2.32.3.6).

Calculated as a residual, this term consists of diapycnal mixing processes as well as contributions
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from errors propagated from measurement error and other unresolved components in the LHS.

We can then compare this to vertical diffusive heat fluxes estimated using 𝜅 derived from the

strain-based parameterization (Gregg, 1989; Whalen, Talley, & MacKinnon, 2012), a VKE-based

parameterization (Thurnherr et al., 2015a), and temperature microstructure measurements from

𝜒-pods (J. N. Moum & Nash, 2009) (Section 2.32.3.7). Further partition of the right hand side

(RHS) term into a decomposition consisting of gradients of diffusivity, stratification and isotherm

area as has been done in some recent studies (e.g., Drake et al., 2020; Spingys et al., 2021) is not

considered here as it deviates from the scope of this study.

2.3.1 Unsteady terms (Equation 2.8 Terms 1-3)

The time derivatives in the unsteady terms ( 𝑑𝜃
𝑑𝑡

and 𝑑𝑧
𝑑𝑡

) are calculated using the linear trend

in potential temperature, 𝜃, and isotherm height, z, using measurements from the 4 occupations

of P06 following Purkey & Johnson (2012a). The 𝜃-depth profiles from the four occupations are

interpolated onto a regularly spaced vertical and horizontal grid. At each horizontal grid point

along the section, the 𝜃-depth profile is also interpolated onto a regular spaced 𝜃-grid and the

isotherm height is calculated as the distance above the bottom along the section. Then, a linear

trend in 𝜃 and isotherm height versus occupation date are found at each horizontal and vertical

grid point. The along-section average of 𝑑𝜃
𝑑𝑡

along isobars and 𝑑𝑧
𝑑𝑡

along isotherms is calculated

and assumed to represent the basin mean (see Purkey & Johnson (2012a) for more details).

2.3.2 Horizontal Heat Transports across P06 (Equation 2.8 Term 4)

The horizontal heat flux into the basin across P06 is calculated from the deep geostrophic

volume transport estimated with corrected reference velocity from the LADCP (Hernández-

Guerra & Talley, 2016) and the observed hydrographic properties along the 4 occupations of

the section. First, geostrophic velocity is estimated between station pairs along P06 using CTD

data linearly interpolated on a 20 m depth grid assuming a level of no motion at 𝛾𝑛 = 28.1 kg

m−3. In the South Pacific, 𝛾𝑛 = 28.1 kg m−3 roughly forms the boundary between southward
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gyre return flow of lighter intermediate and thermocline waters and northward transport of the

denser AABW/LCDW (Ganachaud & Wunsch, 2003).

A velocity correction for the level of no motion assumption at 𝛾𝑛=28.1 kg m−3 was

applied based on LADCP data for stations between 179◦W and 160◦W in the Deep Western

Boundary current where the velocity is unlikely to be zero at 𝛾𝑛 = 28.1 kg m−3 (Whitworth et

al., 1999; Hernández-Guerra & Talley, 2016). The correction was only applied to the 2003,

2009 and 2017 occupations of P06 owing to LADCP data availability. For each occupation,

meridional LADCP velocities were linearly interpolated to the mid-point of station pairs and the

mean and variance of the difference between the initial geostrophic velocity and LADCP velocity

between depths of 2000 m and 5500 m are calculated. The mean offset is applied to all station

pairs where the variance is below 0.07 cm2s−2. This variance cut off corresponds to where the

geostrophic and LADCP velocity profiles were determined to be vertically consistent across all

depths through visual inspection of the profiles.

The net geostrophic transport below deep isotherms into the North SWP Basin across

32.5◦S is calculated by integrating geostrophic velocities (Figure 2.3) from west to east. To do

this, the corrected geostrophic velocities are first linearly interpolated on to a regular potential

temperature grid from 0.6◦C up to 1◦C in 0.01𝑜C layers and linearly interpolated onto an evenly

spaced 0.1◦ longitude grid. Then, transport within each layer is integrated across the basin. The

choice of the 1◦C isotherm as the upper-bound corresponds roughly to 𝛾𝑛 = 28.1 kg m−3, forming

the boundary for the deep northward transport that flows through the Samoan Passage (e.g.,

Roemmich et al., 1996). For comparison, a similar calculation can be done by integrating the

net transport below 𝛾𝑛 = 28.1 kg m−3 from the Tonga-Kermadec Ridge to 130◦W for each year

(Figure 2.4) of the P06 occupation. We use averaged mass transport estimates between 1992 and

2017 to estimate Term 4 in Equation 2.8 in the unsteady-state heat budget calculation.

To capture the variability in the integrated meridional transport across P06, we use

guidance from previous estimates of mass transport variability in the Tonga-Kermadec Trench

region between 178◦W and 168◦W, as well as observed mass transport variability from two
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pairs of Deep Argo floats in the abyssal plain of the SWP Basin east of 168◦W. Whitworth et

al. (1999) estimated a DWBC transport variance of 59% from the mean transport below 3200

m from a mooring time series in the Tonga-Kermadec Ridge region. Inverse model estimates

from Hernández-Guerra & Talley (2016) show transport variance in the DWBC below 𝛾𝑛=28.1

between 25% and 48%. Other studies also show a similarly wide range of basin integrated

northward transport across the P06 section (Wijffels et al., 2001; Mazloff et al., 2010). Since

transport variability on interannual and shorter timescales is largely unknown along the P06

section and has been shown to vary greatly in the DWBC from prior estimates, a factor of 50% of

the net LADCP-referenced geostrophic transports is applied to account for temporal variability

within each temperature bin for each year between 178◦W and 168◦W in the DWBC region.

For assessing temporal variability of transport east of 168◦W, the vertical profiles of

temperature and salinity from three Deep Argo floats are interpolated vertically onto an evenly

spaced 20 dbar vertical grid, and geostrophic transport between pairs of Deep Argo floats are

calculated for pairs that surfaced within a week of each other for the period between October 2017

and June 2018. The temporal variance in the geostrophic transport over the 8-month time series

is assumed to be representative of the expected variance over the full abyssal plain even though

the floats did not fully cover the region. The geostrophic transport from the Deep Argo floats

shows a 29% variation from the mean transport in the eight month period. Therefore, we apply a

29% variance on the mean geostrophic flow in all temperature classes between 0.6◦C and 1◦C

east of 168◦W to account for the variation of geostrophic transport in the abyssal plain region.

The net meridionally integrated transports below 𝛾𝑛 = 28.1 kg m−3 are within 1Sv for the

four P06 occupations as well as within error of previously published estimates for the region

(Whitworth et al., 1999; Wijffels et al., 2001; Hernández-Guerra & Talley, 2016). However, the

application of transport time variances in the DWBC and the abyssal plain as a measure of the

spread aims to account for potential differences in integrated transport resulting from choice of

reference density level in calculating the geostrophic transport as well as other measurement

errors and the overall variability in the circulation on mesoscale and longer timescale. We then
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consider this range of integrated mass transport to calculate horizontal heat transports in each

isotherms between 0.6◦C and 1◦C in the heat budget calculation of the residual estimates of

diffusivity (Section 2.42.3.6).

2.3.3 Horizontal Heat Transports across Samoan Passage (Equation 2.8
Term 5)

To estimate heat fluxes out of the basin, the mean volume transport through the Samoan

Passage is estimated using mooring data from 1992-1994 (Rudnick, 1997) and 2012-2014 (Voet

et al., 2016). No significant reduction in volume transport was observed between the two moored

arrays but the volume of water within the coldest isotherms has changed (Voet et al., 2016).

Therefore, here we use the 2012-2014 mooring array heat outflow for the 2003, 2009 and 2017

budgets and the 1992-1994 heat outflow for the 1992 budget. Outflow volume transports were

interpolated onto the same regular potential temperature grid used for the inflow across P06.

To account for northward flow around the Manihiki Plateau, an additional net transport of 2.7

Sv is distributed within temperature classes between 0.8◦C and 1◦C and added to the budget

calculation for all years following estimates from Roemmich et al. (1996). Our final estimates of

diffusive heat fluxes and diffusivity for these temperature classes are not sensitive to this choice.

2.3.4 Vertical Advection (Equation 2.8 Terms 6-7)

Upward advection, or upwelling, through the top bounding isotherm for each layer is

calculated by solving for w through conservation of mass. To conserve mass within each layer

beginning at the bottom-most isotherm (0.6◦C), the horizontal mass inflow and vertical advection

through the bottom bounding isotherm has to be balanced by an equal horizontal outflow or

vertical outflow through the top bounding isotherm, or a change in the layer volume.

2.3.5 Geothermal Heating (Equation 2.8 Term 8)

The geothermal heating term is calculated as the product of the total surface area of

the isotherm in contact with the bottom in the basin and a constant deep ocean heat flux of
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0.05 W m−2 (Hofmann & Maqueda, 2009). We determine the total surface area of each layer

in the temperature grid in contact with the ocean bottom using the 1◦ latitude x 1◦ longitude

climatological maps of the ocean bottom temperature (Gouretski & Koltermann, 2004)(Figure

2.1). The time dependence of top and bottom surface areas 𝑆𝑡𝑜𝑝 and 𝑆𝑏𝑡𝑚 on the geothermal

heating term is not taken into account in the study since the this term is orders of magnitude less

than the other terms in Equation 2.8 (see Section 2.4) is ultimately negligible in comparison.

2.3.6 Residual Diffusive Heat Fluxes from Basin Heat Budget (Equation
2.8 RHS)

A mean basin-averaged diffusivity (𝜅) can be estimated from the diffusion term (Figure

2.5a) by summing the LHS of Equation 2.8. We estimate the basin-averaged diffusive heat flux

and 𝜅 on each isotherm by solving Equation 2.8 using the surface area of bounding isotherm

(𝑆) and vertical temperature gradient 𝜕𝜃
𝜕𝑧

derived from WOCE-era hydrographic climatology

(Gouretski & Koltermann, 2004) (Figure 2.6). Upper and lower bounds on the basin-wide

diffusivity estimates are made by propagating the transport temporal variability error of 50% (in

the Tonga-Kermadec Ridge region) and 29% (in the abyssal plain) on mass flux along P06 and

through the Samoan Passage for each layer in the heat budget (see Section 2.32.3.2).

2.3.7 Diffusive Heat Fluxes from in-situ Measurements and Parameteri-
zations (Equation 2.8 RHS)

Vertical diffusive heat flux, turbulent dissipation rate (𝜖), and eddy-diffusivity (𝜅) for the

basin are also estimated using a strain parameterization, a VKE based parameterization, and

temperature microstructure profiles from 𝜒-pods along P06.

Strain Based Finescale Parameterization

Finescale parameterizations provide indirect means of estimating turbulent mixing in the

ocean. Shear and strain based parameterizations use internal wave-wave interaction theories

to predict the downscale cascade of energy transfer from larger to smaller scales, resulting
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in turbulence production from breaking internal waves (McComas & Müller, 1981). Vertical

profiles of strain variances are calculated along the P06 section using ship-based CTD data to

estimate the rate of turbulent dissipation (Kunze et al., 2006a; Whalen, Talley, & MacKinnon,

2012; Polzin et al., 2014a) (Figure 2.7a).

Strain variance ⟨𝜉2
𝑧 ⟩ is calculated by integrating the buoyancy-normalized spectra, starting

integration at 𝜆 = 100 m, which is constrained by the segment length (200 m) and avoids

longer wavelength contamination by background stratification (Kunze et al., 2006a), to between

wavelengths of 10 m and 40 m, while also satisfying strain variance ⟨𝜉2
𝑧 ⟩ < 0.2 to avoid

underestimating the variance through oversaturation of the spectrum (Gargett, 1990). We do not

employ the use of shear measurements for the shear-strain parameterization (Kunze et al., 2006a)

in this study due to unusually high noise levels in the deep ocean shear measurements along

this section. Therefore, we apply a constant ratio between shear and strain 𝑅𝜔 = 3 excluding the

mixed layer (see Whalen et al. (2015a) for details). Profiles of 𝜖 and 𝜅 are calculated at each CTD

station along the section from 200-m half-overlapping segments in depth. The parameterization

gives average estimates of diffusivity and kinetic energy dissipation from breaking internal waves

over multiple wave periods and does not account for mixing processes in the boundary layer,

hydraulic jumps, double diffusion or internal wave driven turbulence in regimes with significant

wave-mean flow interaction (Waterman, Polzin, Naveira Garabato, Sheen, Forryan, Garabato, et

al., 2014).

Vertical Kinetic Energy (VKE) Parameterization

In contrast to the shear and strain based methods, the single-parameter VKE parame-

terization (Thurnherr et al., 2015a) is based on an empirical relationship between dissipation

of turbulent kinetic energy and the energy in high-frequency internal waves, which dominate

vertical velocity in the interior ocean (e.g., Eriksen, 1978). Requiring no input beyond vertical

velocity, the VKE scaling between internal-wave energy and dissipation is not consistent with the

latitudinal dependence of the shear/strain methods. Based on the relatively limited application to
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date, the VKE method does not seem to be affected by dataset specific biases that exceed a factor

of 2 that have been reported to affect some applications of the shear/strain method (Polzin et al.,

2014a; Thurnherr et al., 2015a).

Using LADCP velocity data, the vertical fluid velocity (𝑤) is calculated following

Thurnherr (2011) and Fourier transformed to obtain VKE spectra. The scaling between the VKE

spectra and 𝜖 has been further described in the study by Thurnherr et al. (2015a). Estimates of

𝜖 and 𝜅, the latter based on the Osborn (1980a) relationship 𝜅 = Γ𝜖/𝑁2 with constant mixing

efficiency Γ = 0.2 (Gregg et al., 2018) and buoyancy frequency 𝑁 from CTD data, are calculated

at each CTD station along the section and binned in 320-m half-overlapping segments vertically.

Mean profiles and confidence intervals along P06 are computed in the same way as for the strain

parameterization (see Section 2.3.7 Basin Mean Diffusivity Profiles below, Figure 2.7b).

CTD-mounted 𝜒-pod Measurements

High wavenumber temperature gradient fluctuations 𝑑𝑇 ′/𝑑𝑧 measured by the 𝜒-pods

were obtained on each upcast and processed following the methods of Moum and Nash (2009)

and Nash et al. (submitted) to compute the dissipation rate of the temperature variance 𝜒:

𝜒 = 6𝐷𝑇
∫ ∞

0
Ψ𝑇𝑧 (𝑘)𝑑𝑘 (2.9)

where 𝐷𝑇 is the thermal diffusivity and Ψ𝑇𝑧 is the wavenumber spectrum of temperature

gradient fluctuations. In practice, Ψ𝑇𝑧 is not fully resolved by FP07 thermistor measurements,

so assumptions must be made about the shape of the spectrum to compute 𝜒 at moderate TKE

dissipation rates. While Goto et al. (2018a) use a curve-fitting technique to determine 𝜒 from

CTD-mounted sensors, this method requires that the spectral roll-off be resolved and is biased for

𝜖 > 10−8 W/kg. Instead we follow a procedure based on Moum and Nash (2009) that corrects

for unresolved variance in 1-s long spectra by simultaneously determining the 𝜖 and 𝜒 that are

consistent with the resolved part of Ψ𝑇𝑧 . Details of the methodology are provided in Nash et
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al. (submitted), who also outline a means for rejecting data contaminated by the CTD-rosette

wake for profiles collected in moderate sea states and compare these estimates with those from a

free-falling microstructure profiler to demonstrate that the method is not biased. Here we follow

that methodology and use Osborn & Cox (1972a) to calculate the eddy diffusivity of heat 𝜅𝑇

𝜅𝑇 =
𝜒

2
(
𝑑𝑇/𝑑𝑧

)2 , (2.10)

where 𝑑𝑇/𝑑𝑧 is the mean background temperature gradient computed over 10-m scales. The

dissipation rate of kinetic energy is then calculated as

𝜖 =
𝑁2𝜒

2Γ
(
𝑑𝑇/𝑑𝑧

)2 (2.11)

where 𝑁2 is the squared buoyancy frequency and Γ is the mixing efficiency, chosen to be a

constant 0.2. Following Nash et al. (submitted), 𝜒 is computed in 1-s bins, data that are

potentially contaminated by platform-induced noise are rejected, as are data in regions of very

weak stratification where 𝑑𝑇/𝑑𝑧 is less than 10−4 K m−1. Retained data are binned into 200-m

half overlapping segments (Figure 2.7c).

Basin Mean Diffusivity Profiles

We calculate the basin mean diffusivity and 95% bootstrapped confidence intervals for

each parameterization and 𝜒-pod measurements. First, parameterized estimates of diffusivity

along the P06 section along isotherm surfaces are converted to diffusive heat fluxes by multiplying

the diffusivity by the local vertical temperature gradient for a given isotherm 𝑑𝜃
𝑑𝑧

, density (𝜌)

and specific heat (𝑐𝑝). We then take the mean along isotherms to determine the basin mean

diffusive heat flux from each parameterization in order to compare it to the heat budget derived

diffusive heat fluxes (Figure 2.6a). Further, we divide the above diffusive heat fluxes by the

horizontal mean temperature gradient for each isotherm in the SWP Basin determined from a
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hydrographic climatology to calculate the mean diffusivity for the basin (Gouretski & Koltermann,

2004)(Figure 2.6b).

2.4 Results

Each term in the heat budget in the North SWP Basin is examined using the measurements

along P06 section and Samoan Passage and compared to diffusive heat flux and diffusivity

estimates from finescale parameterizations and 𝜒-pod measurements. The occupations of P06

are also used to estimate the variability in the estimates of the diffusive heat flux from the heat

budget owing to the variance in the geostrophic flow across P06, as well as the heat tendency

term due to warming in the abyssal ocean (Equation 2.8).

2.4.1 Unsteady-State Terms

The waters below 0.7◦C have warmed significantly throughout the basin between the

1990s and 2010s and the coldest waters have disappeared, leading to more homogeneous bottom

temperatures throughout the basin (Figure 2.8; Purkey & Johnson (2010); Sloyan et al. (2013);

Purkey et al. (2019); G. C. Johnson et al. (2019). Observations along P06 between 1992 and

2017 show the rate at which the deepest isotherms have fallen in the coldest layers (∼25m/yr at

0.6◦C), which results in a substantial loss in volume of cold water (Figure 2.8b).

In Equation 2.8, this warming is included in the heat budget through three terms. First,

the unsteady warming term 𝑉𝜌𝑐𝑝
𝑑𝜃𝑖
𝑑𝑡

which accounts for increase in heat content of the layer over

time. This term depends on the grid spacing and accounts for the fact that discrete isotherm bins

could experience non-uniform warming that results in changing the mean temperature (𝜃𝑖) of

the water within that bin. Since our isotherm bins are very fine (0.01 ◦C), this term is smaller

compared to the other unsteady terms in our framework (Figure 2.5b).

Second, the effect of deep warming is accounted for in Equation 2.8 through the rate of

change in isotherm volume in the terms 𝜌𝑐𝑝 𝑑𝑧𝑑𝑡
��
𝑡𝑜𝑝

(
𝜃𝑡𝑜𝑝 − 𝜃𝑖

)
𝑆𝑡𝑜𝑝 and 𝜌𝑐𝑝 𝑑𝑧𝑑𝑡

��
𝑏𝑡𝑚

(
𝜃𝑖 − 𝜃𝑏𝑡𝑚

)
𝑆𝑏𝑡𝑚

and represents a basin wide contraction or expansion of the volume of a given isotherm and
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the energy required to warm a given volume of water from a given isotherm by 0.01 ◦C to

move it into the warmer layer. This effect is roughly similar for the top and bottom bounding

isotherms throughout much of the deep ocean and accounts for the bulk of the warming tendency

term (Figure 2.5b, purple). Consequently, the heat tendency term reduces to near-zero as the

basin-wide isotherm contraction goes to zero, representing a steady-state in the warmer isotherm

classes above 0.85◦C.

We have assumed for our calculation that the rate of isotherm heave in the basin observed

along P06 (Figure 2.8b) is representative of the meridional variation in the entire basin. This

is supported by data from GO-SHIP lines P15 and P16, the two meridional sections along the

east and west sides of our study region, showing similar rates since the 1990s (see Purkey et al.

(2019)).

2.4.2 Lateral Transport from Geostrophic Velocities

The structure and magnitude of geostrophic velocity across P06 into the North SWP

Basin is consistent between occupations, with small differences in magnitude and location of the

DWBC (Figure 2.3). We find the highest velocities in the DWBC to occur within the core of

the DWBC with mean velocities between 3 cm s−1 and 10 cm s−1 found below 4000 m between

179◦W and 177◦W. However, structure and location of the DWBC core vary between occupations.

Despite this spatial variability within the DWBC, the integrated northward mass transport across

the North SWP Basin in the four occupations is remarkably similar below 𝛾𝑛= 28.1 kg m−3

with net transport ranging from 14.6×109 kg s−1 to 15.3×109 kg s−1 (Figure 2.4). In all four

occupations, over half of the total transport is found east of 178◦W within the DWBC. Some

southward recirculation is observed to the west adjacent to the DWBC, but overall northward

transport is observed between 170◦W and 140◦W, until the cumulative sum of the transport

becomes constant around 130◦W, where the 𝛾𝑛 = 28.1 kg m−3 isopycnal ”bottoms out” along the

east side of the Basin.

Despite the total northward volume transport staying relatively constant across the four
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occupations of P06 (Figure 2.4), the temperature of the northward flowing waters changed

substantially between occupations. The coldest waters found along 32.5◦S within the North SWP

Basin warmed from 0.6◦C in 1992 to 0.62◦C in 2017 (Figure 2.8).

2.4.3 Residual Diffusivity from Heat Budget

Summing the left hand side of Equation 2.8 gives the vertical diffusion term needed to

close the budget (Figure 2.5a,black). We find that the inferred diffusive heat fluxes below 0.7◦C

increased by around a factor of 3 compared to the steady state diffusive fluxes with the inclusion

of the unsteady terms in Equation 2.8 that are leading order in the coldest part of the water

column (below 0.7◦C).

A reduction in the cross-isotherm upwelling term (not shown) occurs mainly below the

0.75◦C isotherm due to the reduction in volume and heat transport in the coldest layers, which is

indicated by an isotherm heave signal (𝑑ℎ/𝑑𝑡) along the P06 section (Figure 2.8b). Consequently,

this reduction in cross-isotherm upwelling is compensated through an increase in the diffusion

term in those isotherm classes (Figure 2.5a, black). This difference in decreased upwelling

transport and increased downward diffusion is most prominent below 0.65◦C where the bulk

of the warming is concentrated; the contribution of the unsteady terms (Figure 2.5a, purple)

is non-negligible in the three-term balance between steady, unsteady and diffusion terms. The

contribution of the unsteady terms to the increased diffusive heat flux reduces greatly by 0.75◦C

and is virtually the same as would be under a steady-state assumption above 0.8◦C. This is

primarily driven by a gradual minimization of the warming-driven isotherm heave signal of waters

with temperatures greater than 0.75◦C (Figure 2.8b), as shown by persistent isotherm positions

along P06 between 1992 and 2017 (Figure 2.8a). The unsteady state diffusive heat flux and

diffusivity estimates from the heat budget calculation and the associated uncertainties calculated

using the full range of northward heat transport in the SWP basin (see Section 2.32.3.2,2.3.3) lie

within the uncertainty estimates from the finescale VKE and strain parameterizations as well as

𝜒pod observations for most of the temperature classes considered in the budget.
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Steady-State Modification of the Heat Budget

Finally, in addition to formulating the full unsteady-state budget (Equation 2.8), we

consider the effect of neglecting the unsteady-state terms to incorporate the more widely used

framework of a steady-state heat budget (WHITEHEAD & WORTHINGTON, 1982; Hogg et al.,

1982; Polzin et al., 1997; Morris et al., 2001; Heywood et al., 2002). Here we assume zero heat

accumulation within each layer and do not consider the unsteady terms in Equation 2.8. That

is, the heat budget is a balance between only the horizontal advection calculated using mass

and heat transport estimates from individual occupations of the P06 section, vertical upwelling,

geothermal heating, and diapycnal diffusion (Figure 2.2). In order to conserve heat within a layer,

heat entering within a layer must either exit the layer as outflow, upwell by advection or mix

through vertical diffusion. Similar to the unsteady-state heat budget, the diffusive heat flux is in

balance with the advective heat flux without the presence of the unsteady terms.

Despite the diffusive heat term being the same order of magnitude as the advective terms

as well as being notably lesser in magnitude from the unsteady-state derived estimates of diffusive

heat flux in the coldest isotherms below 0.65◦C (Figure 2.6a), the inferred diffusivity remains

well within the error of the unsteady-state estimate accounting for interannual variations in

the advective transport (Figure 2.6, grey shading). The inferred diffusivity profile from both

unsteady-state and steady state heat budgets (Figure 2.6b) show enhancement of turbulent mixing

near the bottom, in line with recent results showing elevated levels of turbulent mixing occurring

near bottom topography (up to ∼10−3 m2s−1 here) in the abyssal basins driven in-part by internal

wave interaction with ocean topography (e.g., Polzin et al., 1997; Ledwell et al., 2000; Waterhouse

et al., 2014a; Mashayek et al., 2017; Drake et al., 2020). Our results also show that variations up

to a factor of 8-10 between steady and unsteady budget estimates are possible when considering

the full range of uncertainty bounds that account for variability in lateral heat transport in the

basin.
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2.4.4 Diffusivity (𝜅) and Dissipation Rate (𝜖) from Finescale Parameteri-
zations and 𝜒-pods

In much of the the SWP Basin’s interior and in regions away from surface and near-bottom

influences, dissipation rates are relatively weak, as measured by 𝜒-pod observations and finescale

parameterizations (Figure 2.7). However, regions of intensified mixing are observed along the

interface between the 1◦C and 1.25◦C which roughly forms the boundary between northward

flowing Circumpolar Deep Water and southward flowing Pacific Deep Water in both the 𝜒-pod

data and finescale estimates. Bottom-intensified mixing is observed along most of the section in

the deep SWP Basin, especially evident in the 𝜒-pod observations that characterize irreversible

mixing and less-so from the internal-wave based parameterizations. Notable are regions around

the East Pacific Rise between 140◦W and 100◦W show high dissipation rates and diffusivities

values along the sloping bottom bathymetry, consistent with enhanced generation and scattering

of internal waves over rough topography (Polzin et al., 1997; Mashayek et al., 2017; Callies et al.,

2018; R. M. Holmes et al., 2018).

The strain and VKE parameterizations show high dissipation rates in patches at mid-

depths, observed also in undulations of isotherms in the middle of the basin away from topography.

Topographic enhancement in dissipation rate is observed in the finescale estimates along the

abrupt topography of the East Pacific Rise region east of 155◦W. These patterns also reveal some

differences between the finescale and temperature microstructure estimates from 𝜒-pods, which

are metrics of slightly different attributes of the flow. First, the overall (median) dissipation

rates from the 𝜒-pods (Figure 2.7c) in the abyssal ocean below 1◦C are slightly higher than the

finescale estimates (Figure 2.7a,b), but have few regions where their means are significantly

different based on bootstrap averages (Figure 2.6b). Second, the range of dissipation estimates

from finescale parameterizations in regions of high dissipation associated with rough topography

is larger than estimates from 𝜒-pods, which likely reflects the fact that the 𝜒-based estimates

have significantly more degrees of freedom in their averages. While the current analysis can not
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completely rule out all possible biases from 𝜒-pod measurements (see Nash et al.,submitted),

the possibility of low-biases in finescale parameterizations (Klymak et al., 2008; Polzin et al.,

1995, 2014a; Waterman, Polzin, Naveira Garabato, Sheen, Forryan, Garabato, et al., 2014) in the

abyssal ocean cannot be overlooked either. Although CTD 𝜒-pod estimates are not significantly

biased compared to direct measurements from shear microstructure (Nash et al., submitted),

a broader evaluation of the differences and biases of the patterns of turbulent dissipation and

amplitude of the energetics exhibited in the abyssal ocean will be the subject of future work and

outside the scope of this study.

Mean diffusivities for the North SWP Basin are derived from estimates of average diffusive

heat flux along the P06 section (Section 2.32.3.6, Figure 2.6a). The basin mean diffusivity

for waters colder than 1◦C calculated from the unsteady-state heat budget agrees within error

estimates with the temperature microstructure estimates(𝜒-pod) for all isotherms colder than 1◦C,

and with the VKE and Strain parameterization for waters warmer than 0.7◦C (Figure 2.6b). The

heat budget, 𝜒-pod and strain parameterized estimates that extend to the bottom show bottom

intensified diffusivity values, decreasing exponentially towards the warmer temperature classes.

The highest diffusivities from the heat budget are around 4.3x10−4 m2s−1 from 2009-2010

and 3.6x10−4 m2s−1 for 1992. The diffusivity estimates from the heat budget fall within 95%

bootstrap confidence intervals of 𝜒-pod as well as the strain and VKE parameterizations. In the

lower water column below 0.7◦C, the budget estimates agree with 𝜒-pod, VKE and the strain

parameterization within error for most of the temperature classes.

2.5 Discussion and Summary

We have demonstrated that the heat fluxes associated with the abyssal limb of the MOC

in the North SWP Basin can be well constrained within uncertainty limits using data from

repeated hydrography sections, mooring arrays and Deep Argo floats. This is shown by the broad

agreement of inferred vertical diffusive heat flux estimates from an unsteady-state heat budget (i.e.
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allowing for temporal changes in temperature, volume and heat storage) to direct measurements

from the CTD-mounted 𝜒-pods and indirect estimates from finescale parameterizations (Figure

2.6). We assess the relative contribution of each term in the heat budget, showing that the heat

budget is primarily a balance between the inflow of cold waters from the south and the vertical

diffusion of heat from above with a small contribution from the unsteady-state warming term.

Of particular importance, direct measurements of terms in the unsteady heat budget (Equation

2.8) allow for evaluation of the assessment of measurement error in each term, a key step as we

continue to develop our global deep ocean observing system.

The hydrographic section (P06) results presented here indicate a steady northward volume

transport along the bottom limb of the MOC in the Southwest Pacific (Figure 2.4) with the

gradual warming and eventual disappearance of the coldest abyssal waters being transported

northward since the 1990s (Figure 2.8). From four repeat occupations of the P06 section between

1992-2017 we estimate that isotherms below 0.65◦C in the SWP basin have been sinking at an

average rate between 10m/yr and 30m/yr within uncertainty bounds, encompassing most of the

abyssal ocean below 4500m in depth. For instance, between 1992 and 2017 the coldest portion of

the SWP basin once consisting of waters colder than 0.6◦C had warmed to ∼0.62◦C, resulting in

an average isotherm heave of more than 1000m in the deepest portion of the basin over the period

(Figure 2.8a). The resulting decrease in the volume of the coldest waters flowing into the basin is

compensated by an increase in volume transport of warmer bottom waters. As the abyssal ocean

is in flux, we show that the unsteady terms in the heat budget calculation are consequential in the

heat balance for the isotherms shrinking in volume. We show that the Unsteady Terms (Section

2.32.3.1) below 0.64◦C are within a factor of 3 of the Steady and Diffusion Terms (Figure 2.5a,

Equation 2.8), which result in an increase by factor of 2-5 in the inferred diffusive heat flux and

diffusivity estimates from steady-state in the bottom-most isotherms. While the unsteady-state

balance regime (primarily below 0.64◦C) occupies a small fraction of the range in temperature

coordinates (as shown in Figure 2.5), it has consequences for large swaths of the abyssal ocean in

the SWP below 4000m (Figure 2.8a). However, these deviations still remain within our overall
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estimates of uncertainty as discussed below.

The largest source of known uncertainty in our budget stems from estimates of total

meridional transport in and out of the basin. GO-SHIP measurements offer decadal snapshots of

the global ocean. However, a large uncertainty of the total annual transport remains due to the

unknown temporal variability in the northward meridional transport. We assessed this variability

with Deep Argo (in the abyssal plain) and other published findings from moorings (in the DWBC

region) in the SWP Basin and incorporated them into the range of uncertainty for the calculated

vertical diffusive heat fluxes that would arise from variations in the northward heat transport

(Figure 2.6). The future implementation of a global array of Deep Argo, complemented with

the continued GO-SHIP cruises, will allow for broader assessment of the interannual to decadal

variability of the deep meridional transport and will greatly reduce the uncertainty spread in the

results as well as better constrain the variability in the MOC (Roemmich et al., 2019).

Further, there are several sources of uncertainty associated with the turbulent heat flux

estimates presented here. Each method used in our comparison has its own intrinsic uncertainties

and limitations. The finescale parameterized estimates are based upon a mathematical framework

that assumes that the downscale cascade of energy from larger to smaller spatial scales is driven

by nonlinear internal wave-wave interactions and results in turbulent dissipation in the ocean.

While some previous studies have pointed to a strong agreement between microstructure and

finescale estimates in the open ocean (Polzin et al., 2014a; Whalen et al., 2015a), others have

provided insight into regions where these parameterizations may be biased, possibly due to

mixing processes other than the cascade of internal wave energy captured by the current state

of finescale parameterizations (Polzin et al., 1995; MacKinnon & Gregg, 2003; Klymak et al.,

2008; Waterman, Polzin, Naveira Garabato, Sheen, Forryan, Garabato, et al., 2014; Ijichi &

Hibiya, 2015). The 𝜒-pod measurements are a more direct estimate of mixing because they are

based on the small scales of turbulence at which irreversible mixing occurs, and hence include

more turbulence-producing phenomenology. However they can be problematic at extremely low

stratification (Nash et al., submitted) and are instantaneous measurements of turbulent events
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and hence can be biased when turbulence is (as typical) lognormally distributed (e.g., Whalen,

2021). Biases in finescale as well as 𝜒-pod estimates could also be introduced in certain regimes

dominated by turbulent mixing driven by advective process such as downslope bottom Ekman

flows near the DWBC are concerned (e.g., Naveira et al., 2019; Spingys et al., 2021). Furthermore,

all methods shown here are subject to the limitation that they represent one snapshot across the

basin, and may not reflect either meridional or temporal variability in turbulence, which is known

to have significant variability in the deep and abyssal ocean (Polzin et al., 1997; Waterhouse et

al., 2014a; MacKinnon et al., 2017a; Kunze, 2017b).

Despite these uncertainties, the agreement in averaged-profile magnitude and structure

between all direct or indirect estimates of turbulence and inverse heat budget estimates is

remarkable. A primary motivation for the global 𝜒-pod program was to provide the first high

resolution maps of turbulence microstructure measurements in the deep ocean. The 75 profiles

shown in Figure 2.7c span a wide swath of varied bottom topography. The section traverses

through a range of regimes that are considered dynamically active sites for turbulent mixing in

the abyssal ocean (e.g., Polzin et al., 1997; Ledwell et al., 2000; Waterhouse et al., 2014a; Ferrari

et al., 2016; Mashayek et al., 2017; Drake et al., 2020) including but not limited to a strong

DWBC on the flanks of the Tonga-Kermadec Ridge, abyssal plains, ridges and seamounts as well

the sloping rough topography of the East Pacific Rise. Additionally, the sheer number of profiles

likely reduces some of the uncertainty associated with poor sampling of episodic turbulence

events (e.g., Whalen, 2021), facilitating robust averaged profiles.

Some error could arise from imposing a basin-wide average temperature gradient

calculated from the WOCE hydrographic climatology to estimate average diffusive heat fluxes

for the basin. Meridional spatial inhomogeneity in the temperature gradient in the basin could

result in significant spatial variations of estimated diffusive heat fluxes and diffusivities. The

temperature gradient regime could be especially different from the mean temperature gradients

in regions of abrupt or steep topography where multiple isotherms slump or intersect within a

short depth range. Furthermore, the vertical temperature gradient is changing in time due to the
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disappearance of some of the coldest isotherms in the basin (Figure 2.8), resulting in a more

thermally uniform abyssal ocean and reduced stratification which in turn has implications for

vertical heat fluxes near the bottom (Zhang et al., 2020).

In this study, we quantified the effect of decadal warming on the heat budget through

three unsteady terms (Section 2.32.3.1) and calculated inverse estimates of diffusive heat flux and

diffusivity in the North SWP Basin (Equation 2.8). Although the unsteady terms are important in

the resulting heat balance for the coldest isotherms that are rapidly warming (Figure 2.5a), the

resultant effect on the diffusive heat flux and diffusivity remains in the envelope of uncertainty

ensuing from temporal variability in the northward abyssal transport (Section 2.32.3.2). However,

we find that high resolution mixing estimates from CTD-𝜒-pods and indirect estimates from

strain and VKE finescale parameterizations agree to within a factor of 3 for all isotherms below

1◦C in the abyssal SWP basin adding confidence to our residual estimates of mixing in the

basin. However,some previous studies (e.g., Katsumata et al., 2021; Huussen et al., 2012)

have also found significant (between factor 8-10) disagreement between large-scale inverse and

finescale parameterized estimates of mixing in the Indian Ocean. This was largely attributed

to discrepancies in the inverse estimates of the strength of the Indian Ocean MOC, perhaps

undersampling of intense mixing events on repeat hydrographic sections that sample a minuscule

volume of the ocean or the inadequacy of finescale parameterizations to capture mixing processes

other than non-linear internal wave-wave interactions. Looking to the future, the commitment of

sustained global measurements of the deep MOC from Deep Argo, GO-SHIP Repeat Hydrography

and moored arrays in DWBCs, coupled with high resolution global measurements of mixing from

instrumentation like the CTD-𝜒-pod, will help close the uncertainty gap as well as advance our

understanding of the mechanisms driving watermass transformation and pathways of overturning

in the abyssal ocean.
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Figure 2.1. Climatological bottom potential temperature (Colorbar; Gouretski and Koltermann,
2004) within the study region of the North Southwest Pacific Basin, defined by the 4000 m isobath
(black contour) to the east and west (green), Samoan Passage and P31 to the north (blue), and
P06 to the south (orange). Location of three Deep Argo floats (pink) used to estimate geostrophic
transport variability across P06 in 2017-2018 are indicated (Section 2.32.3.2).
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Figure 2.2. Schematic of all terms in the heat budget as described by Equation 2.8 showing heat
fluxes in a zonal-mean isotherm framework (three unsteady terms, advective and diffusive flux
terms) associated with meridional flow entering through the P06 section at 32.5◦S and exiting
through the Samoan Passage (SP).
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Figure 2.3. Meridional northward geostrophic velocities (cm/s) referenced to LADCP (b-d)
across the Deep Western Boundary Current in the Tonga-Kermadec Ridge along P06 at 32.5◦S
in 1992 (a), 2003 (b), 2009(c) and 2017 (d) with bottom bathymetry (black) and the mean depth
of 𝛾𝑛=28.1 kg m−3 (dashed black contour).
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Figure 2.4. Eastward integrated net northward mass transport (kg/s) below 𝛾𝑛=28.1 kg m−3

along the 4 occupations of P06 (colors) between the Tonga-Kermadec Ridge (179◦W) and the
East Pacific Rise (130◦W). Accumulated transport from all the four occupations between 179◦W
and 168◦W is shown with the green error bar representing 50% transport variance in the TKR
region. Mean geostrophic transport with one standard deviation of the mean estimated between
∼168◦W and ∼152◦W (Deep Argo Float Pair 1) and ∼160◦W and ∼152◦W (Deep Argo Float
Pair 2) from Deep Argo floats profiles collected between September 2017 and June 2018 are
plotted at 152◦W, offset by the eastward integrated geostrophic transport in 2017 at 168◦W and
160◦W, respectively, to show agreement with hydrography line.
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Figure 2.5. a) Heat balance for each layer between 0.6◦C and 1◦C (in Watts) for the components
of the heat budget in the SWP basin which include Unsteady Terms (Equation 8, Terms 1-3), sum
of the advective and geothermal heat terms, herein Steady Terms (Equation 8, Terms 4-8) and a
Diffusion Term (Equation 8, RHS) calculated using hydrographic data from the P06 section and
mooring data in the Samoan Passage (Equation 2.8), b) Three components of the unsteady term
(blue) as derived in Equation 2.8 along with the total unsteady term (purple) calculated using
isotherm heave (dh/dt) (Figure 5.9b) and warming within the layer.
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Figure 2.6. a) Profiles of basin mean diffusive heat flux [Wm−2] calculated from the residual of
a heat budget calculation of the North SWP Basin (black lines), also showing estimates resulting
from one standard deviation of the meridional mass transport interannual variability along P06
(gray shading). Section-mean vertical profiles of diffusive heat flux calculated from two finescale
parameterizations and a temperature microstructure along P06 are plotted (colors) with 95%
bootstrapped confidence intervals (colored shading) b) Profiles of diffusivity (𝜅) [m2s−1] for the
North SWP Basin calculated from the heat budget-derived mean profiles of diffusive heat flux
as plotted in Figure 5.7a (black) with estimates resulting from one standard deviation of the
meridional mass transport interannual variability along P06 (gray shading). Basin mean vertical
profiles of 𝜅 calculated from two finescale parameterizations and a temperature microstructure
are plotted (colors) with 95% bootstrapped confidence intervals (colored shading).
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Figure 2.7. Dissipation rate (𝜖) [W kg−1] in the SWP Basin along the 2017 occupation of
the P06 section bounded in the east and west by the East Pacific Rise and Tonga Kermadec
Ridge respectively, with bottom bathymetry (black) from a) a strain-only parameterization with a
constant shear to strain ratio, b) a VKE based parameterization and c) temperature microstructure
measurements of CTD-mounted 𝜒-pods along with the 0.65, 0.75, 1, 1.25, 1.5◦C isotherms
contoured in grey lines.
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Figure 2.8. a) Isotherm contours in 1992 (blue) and 2017 (red) along P06 across the SW Pacific
Basin with mean neutral density 𝛾𝑛=28.1 kg m−3 between 1992-2017 (dashed black), b) rate of
isotherm heave 𝑑𝐻/𝑑𝑡(m yr−1) calculated using 4 occupations of P06 between 1992 and 2017
along with 95% confidence intervals (blue shading).
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Chapter 3

Ocean mixing measured by fast-response
thermistors on traditional shipboard
CTDs: sources of uncertainty and bias.
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Abstract

Direct quantification of ocean mixing generally requires measurement of ocean properties

at the O(1 cm) scales on which turbulent energy dissipates. Because the measurement of

temperature gradient is relatively insensitive to vehicle vibration, deep-ocean turbulence data can

be acquired during routine CTD profiling. Here we document the error and bias in estimating

the rate of dissipation of temperature variance 𝜒 from fast-response FP07 thermistors mounted

on a standard shipboard CTD, a system we call the CTD-𝜒pod. The most significant source of

error is associated with the fact that FP07 thermistors resolve only a fraction of the temperature

gradient variance at the 1 m/s profiling speed of typical CTD casts. Assumptions must thus be

made about the wavenumber extent of the temperature gradient spectrum, which scales with

the rate of dissipation of turbulent kinetic energy, a quantity that is not directly measured. In

addition, a means for identifying contaminated data associated with mechanically-generated

turbulence from the package wake is required. Here we utilize observations from a free-falling

microstructure profiler with shear probes to demonstrate the validity of our method of estimating

𝜒 from partially-resolved thermistor data, and to assess uncertainty and bias. We then apply this

methodology to temperature gradient profiles obtained from the CTD-𝜒pod and compare these

to microstructure profiles obtained almost synoptically. CTD-𝜒pod estimates of 𝜒 agree within

95% confidence intervals to the shear-probe microstructure measurements and demonstrate that

the method is not significantly biased. This supports the utility of the measurement as part of the

global repeat hydrography program (GO-SHIP) cruises, during which this type of data has been

acquired over the past few years.
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Significance Statement

Understanding the processes that control the temporal variability and geographic dis-

tribution of ocean mixing is an important community goal towards obtaining more accurate

global climate predictions. Until recently direct observation of deep-ocean mixing has required

special free-falling profiling instruments, and because of this, mixing observations are sparse.

This paper describes a relatively new technique for obtaining ocean mixing by measuring very

small-scale temperature fluctuations during traditional CTD profiling. We show that the method

is not significantly biased, which provides support for making continued observations within the

global repeat hydrography programs.

3.1 Introduction

Diapycnal mixing affects the distribution of heat, salt, and nutrients, maintains the

abyssal overturning circulation (Munk & Wunsch, 1998b), and affects both local and global-scale

dynamics. Because the turbulence that drives mixing occurs at scales that are not resolved in

large-scale and climate models, it must be parameterized using some combination of (i) aspects

of the resolved model physics, (ii) nested higher resolution models that capture the processes

that feed energy to turbulence, or (iii) theoretical formulations that characterize the energy

cascade, such as an internal-wave based parameterization (MacKinnon et al., 2017b). While it is

known that numerical model dynamics are sensitive to the magnitude and distribution of mixing

(Melet et al., 2013b), the actual distribution of mixing is poorly constrained as a result of the

dearth of direct observations (Waterhouse et al., 2014b). Inferred estimates from internal-wave

parameterizations (i.e. Whalen et al., 2015b) suggest mixing to be highly heterogeneous and

time variable (Whalen et al., 2018a). However, questions still remain about the validity of

these internal-wave parameterizations (Waterman, Polzin, Naveira Garabato, Sheen, & Forryan,

2014). A comprehensive set of turbulence measurements that spans relevant dynamical regimes

is needed to constrain mixing and develop more accurate parameterizations for the modeling
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community.

While the earliest observations of ocean mixing come from the measurement of microscale

temperature gradients by Osborn and Cox in the 1970s (Osborn & Cox, 1972a), quantifying deep

ocean mixing has more recently relied on airfoil shear probes to determine the dissipation rate of

turbulent kinetic energy 𝜖 . 𝜖 has become one of the community’s standard measures of ocean

turbulence because of its dynamical importance as the irreversible sink of energy for the internal

wave energy cascade (Gregg, 1987) on both local and global/climate scales (MacKinnon et al.,

2017b). It is computed from the variance of velocity gradient, which has a relatively universal

spectral shape with subranges described by power-law formulations (Figure 3.1). Conveniently,

the amplitude and wavenumber extent of the shear spectrum depends on only one parameter (𝜖),

so microstructure profilers equipped with shear probes can be used to obtain 𝜖 as 𝜖 = 15
2 𝜈(𝑑𝑢/𝑑𝑧)

2

without needing to resolve the entire shear spectrum (Grant et al., 1962; Osborn, 1974); here 𝜈 is

the molecular viscosity and only Taylor’s frozen-flow hypothesis and isotropy have been assumed

(J. Moum et al., 1995). However, the measurement of microscale shear is highly sensitive

to mechanical vibration, so shear-probe estimates require hydrodynamically-quiet free-falling

profilers and have been largely focused on targeted upper-ocean process experiments. As a result,

existing measurements of diapycnal mixing, especially in the deep ocean, are sparse (Waterhouse

et al., 2014b).

In order to obtain a larger quantity of mixing estimates, considerable work has gone

into inferring mixing from measurements made during routine sampling from shipboard CTD

and/or lowered ADCP. One common method is the use of Thorpe scales, where diapycnal mixing

is inferred from adiabatically resorting statically-unstable temperature or density inversions,

assuming that the energy associated with the static instability is that which ultimately supports the

turbulence (Thorpe, 1977; Dillon, 1982). This method can work well when turbulence is energetic

and eddies have large scales; however, in regions of high stratification or weak turbulence, sensor

resolution and noise become more important and control the minimum resolvable 𝜖 (Galbraith &

Kelley, 1996). While some studies indicate relatively good agreement with microstructure and
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other observations, there remain questions about the assumptions and the validity of the method,

which is based on the potential for mixing and not the mixing itself (Mater et al., 2015; Scotti,

2015).

Parameterizations based on large-scale vertical shear and/or strain have also been

developed and applied to estimate diapycnal mixing (Gregg, 1989; Kunze et al., 2006b; Polzin

et al., 2014b; Whalen, Talley, & MacKinnon, 2012; Whalen et al., 2015b). However, they

rely on a series of assumptions about the internal wave energy cascade and its relationship

to turbulence dissipation that may be violated. Numerous studies (i.e., Waterman, Polzin,

Naveira Garabato, Sheen, & Forryan, 2014) have found appreciable uncertainty associated with

these parameterizations, in that there can be substantial regions that are consistently biased, yet

with a sense of bias (i.e., over-predict vs. under-predict) that is not known a priori.

Another means of estimating ocean turbulence has been proposed by Thurnherr et al.

(2015b), who suggested that 𝜖 can be related to the vertical kinetic energy spectrum through a

single parameter. This provides an attractive complement to the shear/strain parameterizations

because it relies on a different set of assumptions, and hence can be used as an additional

mostly-independent estimator of ocean mixing. Indirect metrics, such as measuring the spread of

a passive tracer such as dye, are also an effective constraint on the integrated effect of mixing

(Ledwell et al., 1998b), but these also require substantial observational efforts. However, of the

above methods, only shear probes measure the dissipation rate directly.

Quantifying turbulence directly from moorings or traditional profiling platforms that are

mechanically coupled to the ship is challenging because of vibration and package-motion that

corrupts shear-probe measurements. A number of alternatives have been suggested, ranging

from the use of pitot-static tubes to compute the turbulent velocity spectrum (J. N. Moum, 2015),

optical sensors that capture fluctuations in index of refraction from which density fluctuations are

inferred (M. H. Alford et al., 2006) and acoustical techniques to measure highly-resolved velocity

fields (Shcherbina et al., 2018). Each of these suffers some limitations, ranging from noise,

low-signal level, calibration challenges, failure at high pressures, lack of acoustical scatterers, etc.
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Even shear probes have challenges, because they only provide 𝜖 and not the diapycnal diffusivity

of scalars, 𝐾𝜌, which must be inferred from 𝜖 as 𝐾𝜌 = Γ𝜖/𝑁2 (Osborn, 1980b), where 𝑁2 is the

buoyancy frequency and Γ is a mixing efficiency, assumed to be constant.

3.2 Using 𝜒 and 𝐾𝑇 to quantify ocean mixing

An alternative direct measure of turbulent mixing is obtained from the dissipation rate

of temperature variance, defined as 𝜒 = 𝐷𝑇
〈
|∇𝑇 ′|2

〉
, where ∇𝑇 ′ is the microscale temperature

gradient and 𝐷𝑇 the molecular diffusivity for heat or thermal conductivity (Osborn & Cox,

1972b). By assuming a steady production-dissipation balance in the evolution equation for

turbulent temperature variance, Osborn & Cox (1972b) formulated the eddy diffusivity for heat

as 𝐾𝑇 = 1
2 𝜒/(𝑑𝑇/𝑑𝑧)

2 where 𝑑𝑇/𝑑𝑧 is the background vertical gradient of temperature. This

“Osborn-Cox” formulation for mixing has the advantage that (i) it relies only on temperature

and temperature gradient, the measurement of which is both relatively straightforward and

largely insensitive to platform motion, and (ii) it does not explicitly require assumptions about

Γ. The challenge, however, is that (i) the shape of the temperature gradient spectrum exhibits

considerable variability (Gargett, 1985), (ii) temperature gradient variance extends to very small

scales, so that its spectrum is seldom fully resolved, and (iii) its wavenumber extent does not scale

with 𝜒 but instead depends on 𝜖 (see Figure 3.1) via the Batchelor wavenumber 𝑘𝑏 (Batchelor,

1959; Dillon & Caldwell, 1980):

𝑘𝑏 = [𝜖/(𝜈𝐷2
𝑇 )]1/4. (3.1)

Thus, unless measurements capture the full viscous-diffusive subrange of turbulence (i.e., down

to scales Δ𝑥 ∼ 1/𝑘𝑏 ∼ 1mm) in all three dimensions, assumptions must be made to compute

𝜒. For example, Gargett (1985) demonstrated that spectral shape in the viscous convective and

dissipation subranges of 𝑇 often does not follow a universal form and attributed the deviations

to the anisotropy of geophysical turbulence. This spectral variability has ramifications for the

choice of canonical spectrum used(i.e., Batchelor vs. Kraichnan, see for example Bogucki et al.,
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1997), and for determining the proper choice for “constants” like Batchelor’s 𝑞 that controls the

spectrum’s high-wavenumber extent (Smyth, 1999) and the Obukhov-Corrsin constant 𝐶𝑇 that

controls the amplitude in the inertial subrange (Sreenivasan, 1996). Notwithstanding questions

about the validity of these assumptions, the fundamental parameter controlling the wavenumber

extent of the scalar spectrum is the Batchelor wavenumber 𝑘𝑏. To estimate 𝑘𝑏 when 𝜖 is not

independently measured, we follow Oakey (1982a) and M. Alford & Pinkel (2000) and make

the assumption that 𝐾𝑇 = 𝐾𝜌. While this assumes a statistical equilibrium and relationship

between the turbulence and mixing of a stratified fluid that is seldom achieved, J. Moum & Nash

(2009) and Perlin & Moum (2012) find that the relatively weak dependence on 𝜖 leads to robust

estimates of 𝜒 from moored timeseries. Here we perform a similar set of validations to test these

assumptions with data obtained from lowered CTD rosettes.

Over the past decade, 𝜒pods – self-recording devices that measure temperature variance

using an FP07 thermistor and sensor acceleration (J. Moum & Nash, 2009) – have been mounted

on shipboard CTD rosettes to acquire temperature microstructure data while CTD/LADCP

profiling. In our first deployments from R/V Revelle in Luzon Strait, 2010, the rosette was vaned

and sensors extended from the leading edge of the rosette in order to sample fluid undisturbed by

the rosette itself. While the quality of the data was high, it was cumbersome to vane the ship’s

rosette. To support a broader effort to increase our global database of mixing, the operation was

simplified and 𝜒pods were installed above and at the bottom of the rosette (Fig. 3.2), permitting 𝜒

to be acquired during the standard cross-basin hydrographic lines of the Global Ocean Ship-based

Hydrographic Investigations Program (GO-SHIP) without modifying the rosette. These data

serve 2 purposes. First is to characterize the spatial and temporal distribution of turbulence

at many locations globally, in order to understand the relationship of mixing to the observed

large-scale forcing that could be resolved by models. The second is to determine generalized

relationships between mixing and the local internal wave climate, in order to test the validity of

indirect measures of mixing, such as that used by Kunze et al. (2006a) and Whalen et al. (2015a)

In addition to the data collected by Oregon State University and processed following the
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methods outlined here (i.e. R. Holmes et al., 2016), other groups have also obtained temperature

microstructure from FP07 thermistors during shipboard CTD profiling (Muench et al., 2009;

Wang et al., 2016), but process the data in notably different ways. For example, Goto et al.

(2018b) collected temperature microstructure on 72 traditional casts in the North West Pacific

Ocean and find excellent agreement between these estimates and those made from a traditional

free-fall turbulence profiler for low TKE dissipation rates (𝜖 < 10−8 W/kg). However, their

methodology uses the Maximum Likelihood Estimator (MLE) method of Ruddick et al. (2000),

which requires that the rolloff of the temperature gradient spectrum be captured, a criterion often

not met in the most interesting parts of the ocean where 𝜖 often exceeds 10−7 W/kg.

The goal of this paper is to describe the methods used to compute 𝜒 and 𝐾𝑇 with 𝜒pods

mounted on CTDs (Figure 3.2), such as ones used during GO-SHIP sections. We first describe the

methodology and show an example profile of the data. We then validate the methodology using

profiles of temperature gradient measured by thermistors on Chameleon, OSU’s microstructure

profiler, taken at 0.75◦ N, 110◦ W. Because Chameleon is a loosely tethered profiler equipped

with shear probes (J. Moum et al., 1995), it directly measures 𝜖 (in addition to 𝜒) and allows

us to directly test our assumptions. Specifically, it allows us to determine biases associated

with computing 𝜒 from partially-resolved temperature gradient spectra alone, as compared to

computation that includes 𝜖 , which constrains the wavenumber extent of the scalar spectra as

well as its amplitude. We show that this methodology is a marked improvement over that used by

Ruddick et al. (2000) and Goto et al. (2018b), which is significantly biased for large 𝜖 . Finally, we

apply the methodology to CTD-𝜒pod profiles obtained contemporaneously with microstructure

profiles to verify the method can be applied to temperature gradient obtained during profiling

using a traditional CTD rosette, and describe an example application to one of the GO-SHIP

repeat hydrography lines (P06).
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3.3 Data

3.3.1 EQ14

In Fall 2014, data were collected on the R/V Oceanus during the EQ14 experiment (at

110◦ W, 0.75◦ N) to study equatorial mixing. In this experiment, 35 CTD-𝜒pod profiles were

obtained for calibration purposes within a timeseries of more than 2700 Chameleon profiles.

Chameleon profiles were made to a maximum depth of about 250m, with CTD casts going to

500m or deeper. The EQ14 experiment and results are discussed in more detail in R. Holmes et

al. (2016) and Warner et al. (2018).

3.3.2 P06

Data from the Pacific Ocean zonal repeat hydrographic section P06 across 32.5◦S were

collected on R/V Nathaniel B. Palmer as part of the GO-SHIP program between Sydney (Australia)

and Valparaiso (Chile) in austral Winter 2017 (July-September). A total of 250 CTD 𝜒pod

profiles from two upward-looking and one downward-looking 𝜒pod each, were collected from

the surface to a maximum depth of 6000m (Figure 3.3). The stations were nominally spaced

at 55km (∼0.5◦), with closer spacing in regions of interest such as western and deep western

boundary currents, ridges, trenches and other topography. The results from this hydrographic

section pertaining to abyssal circulation and mixing in the Southwest Pacific (SWP) Basin are

discussed in more detail in Lele et al. (2021). Traditional microstructure data were not acquired

during this section, except for finescale parameterized data.

3.4 Methods

Temperature gradients are rarely resolved at the smallest scales of turbulent mixing; the

fraction of the temperature gradient spectrum resolved depends on the shape and wavenumber

extent of the true spectrum (a function of 𝜖 , the “age” of the turbulence, etc.), the flowspeed past

the sensor (𝑢), and the response of the thermistor. The GE/Thermometrics FP07 thermistors we
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use typically resolve frequencies up to about 𝑓𝑚𝑎𝑥 = 10−25 Hz (Nash et al., 1999). The maximum

resolved wavenumber is then equal to 𝑘𝑚𝑎𝑥 = 𝑓𝑚𝑎𝑥/𝑢, while the wavenumber extent of the true

spectrum varies with 𝑘𝑏 (and 𝜖1/4), and other factors we only partially understand (J. D. Nash &

Moum, 2002; Bogucki et al., 2012). For even relatively weak turbulence characterized by 𝜖 = 10−9

W/kg, only 50% of the temperature gradient variance is captured by integrating spectra to 20 Hz

(assuming ∼1m/s CTD rosette profiling speed, see Gregg, 1999, figure 12, for example). While

methods have been developed to fit the observed temperature gradient spectrum to theoretical

forms (Ruddick et al., 2000), these were developed for slowly-falling profilers in lakes and are

only effective when (1) a large fraction of the temperature gradient spectrum is resolved, and (2)

the time constant of individual thermistors is well-characterized. Goto et al. (2018b) show, for

example, that the MLE method is unbiased only for 𝜖 < 10−8 W/kg), and if the thermistors have

been previously calibrated by empirically adjusting the thermistor double-pole time constant 𝜏 to

minimize the error in 𝜖 obtained from a free-falling profiler (Goto et al., 2016). Unfortunately

the thickness of glass covering the FP07 microbead thermistor varies significantly from sensor to

sensor, such that 𝜏 can vary by 50% between individual thermistors (see Gregg & Meagher, 1980;

J. Nash & Moum, 1999, figure 3.12 and the Appendix for more details). Since 𝜖 scales to the

fourth power of the spectrum’s wavenumber extent, individual thermistor response calibrations

are necessary for such methods to be applied, even for low 𝜖 . At higher dissipation rates sampled

at profiling speeds typical of CTD casts, the MLE method is strongly biased (see Goto et al.,

2018b, and appendix B for details). Because the bias cannot be determined a priori, the MLE

method should be used with caution, and we suggest the following methodology is preferred

because it does not require the spectral peak to be resolved nor does it have a strong 𝜖-dependent

bias.

We first outline our method for estimating 𝜒, which parallels J. Moum & Nash (2009)

and relies on (i) converting temporal gradients to spatial gradients using the instantaneous

flowspeed past the sensor, (ii) defining the relevant values of 𝑁2 and (𝑑𝑇/𝑑𝑧)2 used to relate 𝜒

and 𝜖 , (iii) applying an iterative method to compute 𝜒, and finally (iv) identifying (and rejecting)
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periods where data may be contaminated by the wake of the CTD rosette. We then discuss some

limitations and practical considerations that arise.

3.4.1 Iterative Method for Estimating 𝜒

For each 1-s window, 𝜒 is estimated via the following procedure as outlined in J. Moum

& Nash (2009). For isotropic turbulence,

𝜒 = 6𝐷𝑇
∫ ∞

0
Φ𝑇𝑥 (𝑘)𝑑𝑘 (3.2)

where 𝐷𝑇 is the thermal diffusivity and Φ𝑇𝑥 (𝑘) is the wavenumber spectrum of 𝑑𝑇/𝑑𝑥, computed

from the Fourier transform of windowed and detrended 𝑑𝑇/𝑑𝑡 converted using Taylor’s frozen

flow hypothesis:
𝑑𝑇

𝑑𝑥
=

1
𝑢

𝑑𝑇

𝑑𝑡
(3.3)

where 𝑢 represents the flow speed past the sensor and 𝑥 is a spatial coordinate of the fluid

trajectory relative to the sensor.

We assume 𝐾𝜌 = 𝐾𝑇 and 𝐾𝜌 = Γ𝜖/𝑁2, and the mixing efficiency Γ = 0.2 (J. Moum &

Nash, 2009) to determine 𝜖𝜒 (the dissipation rate inferred from 𝜒) as:

𝜖𝜒 =
𝑁2𝜒

2Γ < 𝑑𝑇/𝑑𝑧 >2 (3.4)

Typical thermistors do not resolve the spectrum out to 𝑘 ≈ 𝑘𝑏, so the measured spectrum

is fit to the Kraichnan form (with 𝑞 = 7) of the theoretical scalar spectrum over the range of

resolved wavenumbers (𝑘𝑚𝑖𝑛 < 𝑘 < 𝑘𝑚𝑎𝑥). The variance between the measured [Φ𝑇𝑥 (𝑘)]𝑜𝑏𝑠 and

theoretical [Φ𝑇𝑥 (𝑘)]𝑡ℎ𝑒𝑜𝑟𝑦 spectra at these wavenumbers is assumed to be equal:

∫ 𝑘𝑚𝑎𝑥

𝑘𝑚𝑖𝑛

[Φ𝑇𝑥 (𝑘)]𝑜𝑏𝑠𝑑𝑘 =
∫ 𝑘𝑚𝑎𝑥

𝑘𝑚𝑖𝑛

[Φ𝑇𝑥 (𝑘)]𝑡ℎ𝑒𝑜𝑟𝑦𝑑𝑘 (3.5)

An iterative procedure is then used to fit and calculate 𝜒 and 𝜖𝜒:
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1. First we estimate 𝜒 based on an initial guess of 𝜖𝜒 = 10−7 W/kg and compute 𝑘𝑏 via eq. 3.1.

We set 𝑘𝑚𝑎𝑥 = 𝑘𝑏/2 or to a wavenumber equivalent to 𝑓𝑚𝑎𝑥 = 7 Hz [i.e., 𝑘𝑚𝑎𝑥 = 2𝜋( 𝑓𝑚𝑎𝑥)/𝑢],

whichever is smaller. In general 𝑓𝑚𝑎𝑥 is the highest frequency that is not attenuated by the

sensor roll-off; we use 𝑓𝑚𝑎𝑥 = 7 Hz based on historical data for these sensors (see Appendix

A for more details).

2. We then use Eq. (3.4) to refine our estimate of 𝜖𝜒 and 𝑘𝑏 and recompute 𝜒 using Eqs. (3.2)

and (3.5).

3. This sequence is repeated and converges after two or three iterations.

We note that this procedure is equivalent to the explicit formulation of (M. Alford & Pinkel,

2000), except we use the Kraichnan theoretical form instead of the Batchelor spectrum for

[Φ𝑇𝑥 (𝑘)]𝑡ℎ𝑒𝑜𝑟𝑦. At wavenumbers below the spectral peak, there is little distinction between the

Kraichnan and Batchelor spectra, so this does not introduce a bias. In this paper we use both 𝜒

and 𝜒𝜒 interchangeably to denote estimates using the above procedure, the latter used for clarity

in section 5 to differentiate it from 𝜒𝜖 , that computed using an independent measure of 𝜖 to

constrain 𝑘𝑏.

3.4.2 CTD-𝜒pod Data Processing

We next review the basic outline for processing each CTD-𝜒pod profile. In contrast to

the moored 𝜒pod (which is self contained with a pressure sensor and pitot-static tube for speed;

J. Moum & Nash, 2009), the CTD-𝜒pod requires pressure measured by the CTD and has no

independent speed measurement other than 𝑑𝑝/𝑑𝑡 from the CTD. The procedure for merging

data sources and computing 𝑁2 and 𝑑𝑇/𝑑𝑧 are as follows:

1. The time offset for the 𝜒pod clock is determined by aligning 𝑑𝑝/𝑑𝑡 from the 24Hz CTD

data (high-pass filtered with a 3 dB point of 25 s) to the time-integrated vertical acceleration

measured by the 𝜒pod. Records are aligned within < 0.5 s so that (i) the correct value
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of 𝑢 is used, and (ii) wake contamination can properly be identified. In the case of the

CTD-𝜒pod we assume 𝑢 is solely due to the vertical motion of the CTD cage so that

𝑢 =𝑊 = 𝑑𝑝/𝑑𝑡.

2. Low-order polynomial calibration coefficients are determined to convert thermistor voltages

from 𝜒pod to ITS90 temperature (as measured by the CTD). Figure 3.3 shows an example

of the aligned and calibrated CTD-𝜒pod time series for one cast. Note the significant

differences in amount of variance associated with the two sensors during down and up

casts. For the upward-mounted sensor (T1), the downcast signal is largely associated

with the CTD wake, as is the upcast for the downward-mounted sensor (T2). Only the

‘clean’ portions of the cast (e.g., the T1 upcast and the T2 downcast) are used in the 𝜒pod

calculations.

3. Buoyancy frequency 𝑁2 and temperature gradient 𝑑𝑇/𝑑𝑧 are computed from 1-m binned

CTD data, and averaged over a scale of 10m.

4. Half-overlapping 1-s windows of data are used to estimate 𝜒 following the methods

described in J. Moum & Nash (2009), as outlined in the previous section.

3.4.3 Identifying wake-contaminated data

Unlike free-falling turbulence profilers, the CTD rosette’s motion is strongly coupled to

the ship and experiences large changes in profiling speed. When sampling in rough seas, ship

roll can be so severe that the rosette changes direction and the thermistors sample eddies from

the rosette’s wake instead of the geophysical turbulence. Even if the rosette doesn’t fully reverse

direction, rapid deceleration can cause fluid from within the cage to be shed ahead of it and be

sampled by the 𝜒-pods. Examples of both types of motions are evident from the pressure and

temperature record shown in Figure 3.4 from P06. Because temperature variance in the wake

(following a slowdown) can be many orders of magnitude greater than our real signals, such time

periods must be identified to avoid bias in estimates of 𝜒.
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Goto et al. (2018b) provide some initial guidance towards defining an objective criterion

for rejecting wake-contaminated 𝜒 data based on CTD fallspeed and comparing to simultaneous

estimates of 𝜒 from their CTD-rosette and a free-falling profiler. In their study, FP07 thermistors

were located at the bottom of the rosette and contaminated 𝜒 was linked to elevated variance in

vertical velocity within the 1-s bins over which 𝜒 was computed. Goto et al. (2018b) propose

rejecting data when the standard deviation of vertical velocity in a 1-s window (𝑊𝑠𝑑) exceeds a

threshold. For their configuration, data in which𝑊𝑠𝑑 > 0.2𝑊 −0.06 m/s are rejected, where𝑊 is

the rosette speed. Based on this, all data for𝑊 < 0.3 m/s are rejected, as are data with𝑊𝑠𝑑 > 0.14

m/s for𝑊 = 1 m/s, typical of our casts. While this appeared successful for their sampling setup,

the criterion they employ does not consider the deterministic motion of the CTD rosette. When

we apply the criterion of Goto et al. (2018b) to the 𝜒-pod CTD we’ve acquired, we find that their

criterion does not always reject data that is clearly within the wake of the CTD during a reversal

of profiling direction. Instead, we use criteria that are related to the longer-timescale variations

in vertical profiling speed (associated with ship roll/heave), and not the sub 1-sec variability of

the rosette.

Figure 3.4 provides an example of how regions of high variance in 𝑑𝑇/𝑑𝑡 (and consequently

𝜒) are related to the rapid deceleration and/or reversal of the CTD rosette, and that this often

lasts for several seconds after such reversals. To identify regions of potential contamination of 𝜒,

we adopt the following procedure.

First, on most CTD-𝜒pod repeat hydrography cruises two upward oriented FP07 sensors

were deployed on either side of the CTD cage to provide simultaneous independent measurement

of 𝑑𝑇/𝑑𝑡. This redundancy provides a straightforward way of detecting events that are clearly

non-geophysical. Similar to our routines for rejecting plankton spikes on shear-probes (J. Moum

et al., 1995), we reject data from a sensor if its 𝜒 estimate exceeds that of the other sensor by

more than a factor of 3; otherwise data from both sensors are averaged. FP07 sensors were also

deployed at the bottom of the CTD Rosette; under moderate ship-heave, data from these sensors

are often contaminated by wake from the CTD rosette and are not used for this analysis.
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Next, depth loops are identified and flagged in the 24Hz CTD data. If the CTD

speed (which is nominally 1 m/s) slows below 0.3 m/s, data are discarded within 2m of the

minimum/maximum extent of the speed drop. For data collected during rough sea-states (eg.

majority of GO-SHIP data), we find that additional thresholding is necessary, and we further reject

data 2 seconds before to 7 seconds after any event when the vertical velocity drops below 0.1m/s,

(i.e., this criterion is applied when the CTD fully reverses direction and for cases bordering on the

“loop” criterion). We note that the above threshold of 0.3 m/s as a low-speed cutoff is consistent

with Goto et al. (2018b)’s𝑊 criterion (and their Fig. 9) but is more stringent because it rejects

data outside of the slowdown interval. An 80-s segment of data from P06 during a moderate

sea-state demonstrates the data retention after the above criteria are applied (Figure 3.4).

Even for profiles significantly affected by ship heave, good segments of data are retained

between most CTD rosette slowdowns and reversals, allowing estimates of 𝜒 to be computed in

nearly every 10-m bin. A typical full profile of 𝜒 obtained during the P06 section is shown in

Figure 3.5 to demonstrate the degree to which surface wave induced ship heave (characterized by

the rosette speed variability) contaminates the temperature gradient data. Note that this includes

the data segment shown in Figure 3.4. Shown is both the retained (blue) and rejected (grey) 1-m

𝜒 estimates to illustrate how the fraction of data rejected increases with the amplitude of the

swell-induced motion. In general we find that rosette motion to be greatest near the ocean surface

and becomes increasingly uncoupled from the ship at deep depths. As a result, our relatively

stringent criteria for rejecting a minimum of 9 seconds of data around each slowdown rejects

a significant fraction of the data, especially above 1500 m water depths in this particular case.

Regardless, more than 75% of the data is retained in a majority of 200m bins below 2000m

(Figure 3.5c). Shallower than 1500 m we retain on average ∼ 50% of the data. During the period

affected by the largest rosette heave (around 200-m depth in this profile), approximately 25% of

the data are retained within the 200m bin.

The retained (1-m) 𝜒 estimates span more than 6 orders of magnitude (from less than 10−12

to 10−6 K2/s) with the majority of the data sampling the relatively quiescent abyss characterized
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by 𝜒 ∼ 10−12−10−10 K2/s (Figure 3.5). As is characteristic of geophysical turbulence in the deep

ocean, a small number of energetic events dominate the mean in each 200-m bin and its bootstrap

confidence interval (black line and pink shading in Fig. 3.5b). As a result, at the 95% confidence

level, the peaks at 1200, 2200 and 3600 m are not statistically different from the slowly varying

background 𝜒. Multiple casts must be averaged together to tease out the dynamics associated

with these peaks.

3.5 Microstructure profiler comparisons

Here we use FP07 thermistor data collected from the free-falling Chameleon during

EQ14 to assess the methodological bias and uncertainty of our computation of 𝜒.

3.5.1 Example Spectra and Fits

Examples of the observed temperature gradient spectra and associated theoretical fits

are shown in Figure 3.6 for regions of high and low 𝜖 . Here, the 𝜒 and associated theoretical

spectra are computed in two ways: (1) the magenta curve is the theoretical Kraichnan spectra for

the values of 𝜒 and 𝜖 as measured by Chameleon’s shear probes, and (2) the dashed black line

represents the curve determined by applying the 𝜒pod method to just the thermistor data for the

same window (i.e., using 𝑘𝑏 computed from 𝜖𝜒 as estimated from equation 3.4). Note that at

lower 𝜖 , 𝑘𝑚𝑎𝑥 is closer to 𝑘𝑏 so the peak of the spectrum is almost resolved and a larger fraction

of spectral variance captured. For higher 𝜖 , less of the spectrum is resolved and the spectral peak

is well above 𝑘𝑚𝑎𝑥 . Even so, the iterative 𝜒pod method gives an accurate estimate of 𝜒. Note that

the lower-wavenumber portions of the fit are within the inertial and viscous-convective subranges

and so the observed spectra and fits match at low 𝑘 . They deviate at the high-wavenumber extent

of the spectrum, set by 𝑘𝑏, which is not used in our computation.
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3.5.2 Direct Test of 𝜒pod Method

We utilize highly-resolved free-falling profiler data from Chameleon (for which both 𝜖

and 𝜒 are measured) to test the assumptions in our method of estimating 𝜒. We first apply the

𝜒pod method to Chameleon’s FP07 thermistor data and compute 𝜒𝑐ℎ𝑎𝑚𝜒 without assuming any a

priori knowledge of 𝜖 (i.e., we use equation 3.4 to compute 𝑘𝑏, yielding the dashed black lines in

Figure 3.6). These estimates are then compared to 𝜒𝑐ℎ𝑎𝑚𝜖 , computed by integrating the theoretical

temperature gradient spectrum where 𝑘𝑏 is computed directly from shear-probe derived 𝜖 (i.e.,

the magenta curve in Figure 3.6). Qualitatively, 𝜒𝑐ℎ𝑎𝑚𝜒 and 𝜒𝑐ℎ𝑎𝑚𝜖 are of similar magnitude and

show similar patterns in both depth and time, as shown by the comparison in Figure 3.7). A

more quantitative comparison (Figure 3.8), shows the two are well-correlated over five orders of

magnitude. The distribution of 𝑙𝑜𝑔10 of the 𝜒 ratios is approximately normal, with a mean of

𝜇 = −0.1 and standard deviation of 𝜎 = 0.51, equivalent to a 20% bias low of 𝜒𝑐ℎ𝑎𝑚𝜒 relative to

𝜒𝑐ℎ𝑎𝑚𝜖 , and a random spread in variability of a factor of 3. The magnitude of the bias increases

slightly at higher values of 𝜖𝑐ℎ𝑎𝑚 (Table 3.1), reaching 40% for −6 < 𝑙𝑜𝑔10 [𝜖𝑐ℎ𝑎𝑚] < −5. The

cause of this bias is unknown, but may be related to the spectrum shifting to higher wavenumbers

at larger 𝜖 .

3.5.3 CTD𝜒pod - Chameleon Comparison

Having demonstrated that the method works using Chameleon data, we now compare 𝜒𝑐𝑡𝑑𝜒

from CTD-mounted 𝜒pods to 𝜒𝑐ℎ𝑎𝑚𝜖 during EQ14. In contrast to the Chameleon data, the CTD

is more strongly coupled to the ship, and therefore subject to vibration, heaving, and artificial

turbulence created by the rosette. A total of 35 CTD-𝜒pod casts were performed, bracketed

with Chameleon profiles immediately before and after. We first compare CTD-𝜒pod profiles to

the mean of the two Chameleon profiles bracketing each cast, both averaged in 5m depth bins

(Figure 3.9). The two are correlated, albeit with considerable scatter. A histogram of the log of

ratios is approximately normal and has a mean of −0.31, indicating a small negative bias. The
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log10 standard deviation of 𝜎 = 0.96 indicates 70% of the profile-to-profile data agree to within

a factor 10, which we do not associate with the 𝜒pod method but rather to natural variability

of ocean turbulence. To illustrate this, histograms of the ratio of 𝜒 from adjacent casts are

computed (Figure 3.10) which show that the variability between CTD 𝜒pod and Chameleon

casts is similar to the natural variability between Chameleon profiles themselves. Our best

inter-platform comparisons between profilers (intended to sample the same physical process)

also find agreement to not better than a factor of 2 (i.e. J. Moum et al., 1995; Perlin & Moum,

2012), but only after considerable averaging. This finding is consistent with the profile-to-profile

variability observed by Goto et al. (2018b), who also found 𝜎 ≈ 1.0 for log10(𝜖𝑛/𝜖𝑛+1) for

neighboring profiles 𝑛 and 𝑛+1 (their figure A1).

Profiles from all CTD-Chameleon pairs averaged in time and 40m depth bins (Figure

3.11) overlap within 95% confidence limits at all depths (in the top 200 m) where there exists

good data for both. Averages of subsets of these profiles that were clustered in position/time (not

shown) also agree well. We conclude that the variability between CTD-𝜒pod and Chameleon

profiles is indistinguishable from natural variability in turbulence levels.

3.6 Discussion

We have presented a methodology for computing 𝜒 from 𝜒pods attached to CTD rosettes,

and have shown that these estimates agree with those obtained using a traditional microstructure

profiler. This methodology can also be applied to other profiling configurations, such as the use

of 𝜒-pods on profiling wirewalkers (J. N. Moum & Nash, 2009) or 𝜒 obtained by measuring

microscale temperature gradient alongside any profiling/lowered CTD. The methodology we

employ differs from that proposed by Goto et al. (2018b) in that we explicitly consider the

CTD-rosette trajectories in identifying wake-contaminated data, and we use the iterative procedure

of J. Moum & Nash (2009) in order to compute unbiased estimates of 𝜒 regardless of the value

of 𝜖 (the Goto et al. (2018b) method is limited to 𝜖 < 10−9m2/s). Our procedure also provides
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estimates of 𝐾𝑇 and 𝜖 ; the accuracy of which is left for a future paper as it involves additional

assumptions about the value of the mixing efficiency Γ. While Γ = 0.2 is commonly assumed (and

is likely representative for the ocean average), its numerical value relevant to the instantaneous

application of equation 3.4 likely has wide variability. Fortunately, the calculations presented in

this paper are not highly sensitive to Γ, since 𝜒 scales to a low power of 𝜖 in our iterative method;

J. Moum & Nash (2009) found a bias in 𝜒 of up to 1.6 for Γ values ranging from 0.1 to 0.35.

The goal of CTD-𝜒pods is to expand the number and spatial coverage of ocean mixing

observations. The census of Waterhouse et al. (2014b) found less than 20 locations where

full-depth microstructure profiles were taken (see their figure 1c), all of which had less than

100 profiles. We have already deployed CTD 𝜒pods during several process experiments and on

several GO-SHIP repeat-hydrography cruises, obtaining more than 1700 full-depth profiles of

𝜒 over a wide range of locations. We plan to continue regular deployment on GO-SHIP and

similar cruises, adding 𝜒 to the suite of variables regularly measured. The expanding database

of mixing measurements from CTD-𝜒pods will also enable testing of other commonly-used

or new mixing parameterizations. This has the potential to be transformative for the field,

allowing the community to develop and test global turbulence parameterizations, use estimates

of turbulence along with the CLIVAR repeat hydrography data for inverse models and water

mass modification calculations, identify hotspots of turbulence to target with future process

experiments, and compare with in-situ chemical and biological measurements made routinely on

repeat hydrography cruises.

3.7 Conclusions

• The 𝜒pod method for estimating 𝜒 was directly applied to temperature gradients measured

by the Chameleon microstructure profiler on > 2700 profiles during the EQ14 cruise. The

estimated 𝜒𝜒 agrees well with 𝜒𝜖 calculated using 𝜖 from Chameleon’s shear probes over a

wide range of magnitudes (Figure 3.8) with little or no bias, demonstrating that the method
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works. This allows us to estimate 𝜒 without concurrent measurements of 𝜖 .

• CTD-𝜒pod profiles were also compared to nearby Chameleon profiles during the cruise.

Variability between CTD-𝜒pod and Chameleon estimates of 𝜒 is indistinguishable from

natural variability between Chameleon profiles. Time-averaged profiles of 𝜒 from both

platforms agree within 95% confidence limits, and no significant bias was detected between

the estimates of 𝜒.

• CTD 𝜒pods were tested on the P06 repeat hydrographic section to collect 250 profiles

along the section from 6000m to the surface. We demonstrate that by incorporating certain

post-processing norms in order to filter erroneous measurements primarily due to the

motion of the CTD rosette and fluctuations in its fallspeed, it is possible to obtain reliable

estimates of turbulent mixing under routine sampling conditions on repeat hydrographic

transects that span a range of ocean sea-states.

• We conclude that estimates of 𝜒 made from the CTD-𝜒pod platform are robust and reliable.
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Appendix A: Thermistor Frequency Response

Prior to 2009, the transfer function for each FP07 thermistor was measured by profiling

adjacent to a thermocouple in Yaquina Bay, OR. However, measuring the transfer function for

each individual thermistor proved too expensive and time-consuming, and since that time a

generic transfer function has been used. Figure 3.12 shows the measured transfer functions for

2008. The majority of the transfer functions are similar for frequencies up to about 10 Hz, and

begin to significantly differ above that. To estimate the potential error in not using a transfer

function, we calculated the % of spectral variance captured for each of the measured functions.

For frequencies up to 7Hz, more than 95% is captured for 88% of the measured functions. If

frequencies up to 15hz are used, more than 95 % variance is captured only 67% of the time.

Using only frequencies up to 7Hz (where the transfer function is equal to or very close to unity)

avoids the issue of the unknown transfer functions.

Appendix B: Test of MLE fitting method

Following Goto et al. (2018b) and others, we have applied the spectral fitting methods of

Ruddick et al. (2000) to our data and compared those to the 𝜒pod method above. Consistent with

the findings of Goto et al. (2018b), the MLE method works well and gives similar results to our

method at true 𝜖 values less than about 10−9, but severely underestimates 𝜒 at larger values of

epsilon, where only a small fraction of the spectrum is resolved (Figure 3.13). At lower profiling

70



Table 3.1. Biases and standard deviations of ratios of 𝑙𝑜𝑔10 [𝜒𝜒/𝜒𝜖 ] for different ranges of 𝜖𝑐ℎ𝑎𝑚.

𝜖𝑐ℎ𝑎𝑚 range bias std.
−9 < 𝜖 < −8 -0.04 0.47
−8 < 𝜖 < −7 -0.15 0.51
−7 < 𝜖 < −6 -0.18 0.54
−6 < 𝜖 < −5 -0.2 0.55

speeds we would expect the MLE method to work better, as more of the spectrum will be resolved

for a given value of 𝜖 . For ocean dissipation rates and speeds typical of GO-SHIP CTD profiling,

we conclude that the MLE method is not effective.

Appendix C: Sensitivity Analysis / Flowspeed Past Sensor

To quantify the potential error in the CTD-𝜒pod calculations from ignoring horizontal

velocities and assuming the flow speed is equal to the vertical speed of the CTD rosette, we

repeated the calculations with constant offsets added to the flowspeed. Note that since the total

magnitude of velocity is used, 𝑑𝑝/𝑑𝑡 is a minimum estimate of the true speed. Adding 0.1(1)m/s

results in a mean percent error of -14(-58) percent (Figure 3.14), small compared the large natural

variability in turbulence and uncertainty in our measurements. Note that increasing the velocity

tends to result in smaller values of 𝜒, since it shifts the spectrum to lower wavenumbers.

We also looked for any systematic biases associated with flowpseed. We found that 𝜒 was

biased high for very small speeds (𝑢 < 25cm/s). This could be associated with contamination by

CTD wake or entrained water when the CTD slows. These values were discarded for our analysis.
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Figure 3.1. Top: Theoretical (Nasmyth) wavenumber spectra for velocity shear, for two different
values of 𝜖 . Lower: Theoretical (Kraichnan) wavenumber spectra for temperature gradient, for two
different values of 𝜖 and 𝜒. Note the amplitudes of temperature gradient spectra depend on both
𝜖 and 𝜒, while the shear spectra depend only on 𝜖 . Diamonds indicate the Batchelor wavenumber
for each, which depends only on 𝜖 . Vertical dashed lines indicate range of wavenumbers used for
𝜒pod fit assuming 𝑢 = 1m/s.
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Figure 3.2. Photos of CTD rosette with 𝜒pods attached. Left shows the open configuration used
during EQ14; right shows the more traditional configuration with a full set of Niskin bottles on
the A16 repeat hydrography line.
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Figure 3.3. Example timeseries from one CTD cast during EQ14. a) CTD pressure. b)
Vertical speed of CTD (𝑑𝑝/𝑑𝑡). c) Vertical and horizontal accelerations measured by 𝜒pod. d)
Temperature from CTD and two 𝜒pod sensors (T1 and T1). T2 is offset slightly for visualization. e)
Temperature derivative 𝑑𝑇/𝑑𝑡 measured by the upward-looking 𝜒pod sensor T1. f) Temperature
derivative 𝑑𝑇/𝑑𝑡 measured by the downward-looking 𝜒pod sensor T2.
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Figure 3.4. An 80-s portion of the P06 station 125 up-cast showing depth vs time (top), the 𝜒pod
time series of 𝑑𝑇/𝑑𝑡 (middle), and the CTD rosette’s profiling speed (bottom); data discarded
because of the potential for contamination from the rosette’s wake is indicated in red. High
variance of temperature gradient occurs for 5-10 s following reversals in the rosette direction
(𝑊 < 0) and during periods of rapid deceleration. The algorithm we apply is fairly conservative,
in that it identifies the period between 7:27:18 and 7:27:37 as potentially contaminated (due to
dips to𝑊 = 0.1 m/s), even though the data during that time period may represent real turbulence
signals.
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Figure 3.5. The full profile from P06 station 125 to illustrate the data retention: a) RMS profiling
speed (with mean removed) of the CTD rosette computed in 50-sec intervals, b) 𝜒 estimates from
the upcast collected from two upward-looking sensors showing the distribution of all of the data
(grey), the retained data (blue), bootstrapped mean profile (black line) and 95% bootstrapped
confidence interval (red shading) computed from the retained data in 200m half-overlapping
segments, c) histogram showing the number of data points retained in each 200m half-overlapping
segment after flagging for potentially contaminated estimates.
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Figure 3.6. Two example temperature gradient spectra from an EQ14 Chameleon profile, for
high (top) and low (bottom) values of 𝜖 . Solid black lines with circles show the observed
temperature-gradient spectra from the thermistor on Chameleon. Dashed black line shows the
fitted theoretical Kraichnan spectra estimated by applying the 𝜒pod method to the thermistor
data only. Magenta line is Kraichnan spectra for Chameleon 𝜒 and 𝜖 measured at the same
depth, using the shear probe data as well. Vertical dashed blue (red) lines indicate the minimum
(maximum) wavenumber used in the 𝜒pod calculation. The Batchelor wavenumber 𝑘𝑏 is also
indicated by the vertical magenta line.
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Figure 3.7. Depth-time plots of 𝑙𝑜𝑔10𝜒 from both methods for EQ14 data. Top: 𝜒pod method
using only FP07 data from Chameleon. Black diamonds indicate casts used for comparison with
CTD-𝜒pod profiles. Bottom: Chameleon measurements using FP07 and shear probe data.
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Figure 3.8. Top: 2D histogram of 𝑙𝑜𝑔10(𝜒) from Chameleon (x-axis) and 𝜒pod method (y-axes).
Values from each profile were averaged in the same 5m depth bins. Bottom: Normalized
histogram of log10 [𝜒𝑐ℎ𝑎𝑚𝜒 /𝜒𝑐ℎ𝑎𝑚𝜖 ]. Vertical dashed line indicates the mean of the distribution.
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Figure 3.9. Left: Scatter plot of 𝜒 from CTD-𝜒pod profiles versus the mean of bracketing
Chameleon profiles. Black dashed line shows 1:1, dashed red lines represent the bounds for
factor-of-ten agreement. Right: Normalized histogram of the log of ratios.
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Figure 3.10. Histogram of 𝑙𝑜𝑔10 of the ratio of 𝜒 for nearby casts. The first set is for the before
(𝜒𝑐ℎ𝑎𝑚
𝜖1 ) and after (𝜒𝑐ℎ𝑎𝑚

𝜖2 ) Chameleon profiles. The 2nd is CTD-𝜒pod profiles (𝜒𝑐𝑡𝑑𝜒 ) versus the
before(𝜒𝑐ℎ𝑎𝑚

𝜖1 ) profiles. The last is CTD-𝜒pod profiles (𝜒𝑐𝑡𝑑𝜒 ) versus the after(𝜒𝑐ℎ𝑎𝑚
𝜖2 ) profiles.

Dashed lines show the medians of each set. Note that bias is small/zero, and the variability
(spread) between CTD/Chameleon is similar to the natural variability between Chameleon
profiles.
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Figure 3.11. Time mean of 𝜒 for all CTD-𝜒pod - Chameleon cast pairs, with 95% bootstrap
confidence intervals.
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Figure 3.12. Measured FP07 thermistor transfer functions from historical database. Vertical
dashed lines show the frequency range used in 𝜒pod method. Dashed blue line is a generic
transfer function found to best represent the bulk of measured transfer functions.
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Figure 3.13. Left: 2D histograms of 𝜒 computed using the iterative 𝜒pod method (top) and the
MLE fit (bottom) versus 𝜒 computed from Chameleon. Note that the MLE method underestimates
𝜒 at larger magnitudes. Right: Histograms of the log of ratios for different ranges of 𝜖 (values in
W/kg). The mean of each distribution is given above.
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Figure 3.14. Histogram of % error for 𝜒 computed with Constant added to fallspeed, in order to
examine sensitivity to fallspeed. Vertical lines indicate the mean of each distribution.
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Chapter 4

Global Patterns of Bias in Ocean Mixing
Parameterization Identified Through Un-
supervised Machine Learning
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Abstract

Turbulent mixing in the ocean is often parameterized in terms of the downscale energy

transfer by internal waves. Expressed in terms of the vertical wavenumber spectrum of oceanic

velocity shear (𝑉2
𝑧 ) and isopycnal strain (𝜁2

𝑧 ), the “finescale parameterization” relies on several

parameters, including key assumptions relating to the spectral properties. Here we use an

unsupervised learning model to identify spatial correlations between embedded parameters

of the finescale parameterization based upon data from 1875 full-depth hydrographic profiles

from 15 sections traversing the global ocean. The clustered patterns along the sections have

marked horizontal and vertical spatial dependence associated with distinct modes of spectral

variation. Two clustered regions are identified where the underlying spectra deviate significantly

from the canonical Garrett-Munk (GM) spectrum, suggesting potential departures from implicit

assumptions about the downscale energy cascade. Spectral composites in these two regions

show intensification of variance in the low and high wavenumber regimes respectively, as well as

distinction in overall spectral levels and geographic prevalence. Furthermore, these clusters are

found to be associated with regions where parameterized estimates of the turbulent dissipation

rate 𝜖 differ significantly (exceeding a factor of 5) from co-located in-situ observations measured

using 𝜒-pod temperature microstructure. Extending the methodology to other hydrographic

datasets has the potential to reveal reasons for this parameterization bias and to identify the

dynamical underpinnings leading to more robust parameterizations of oceanic turbulent mixing.
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4.1 Introduction

Turbulent mixing plays a critical role in the overturning circulation of the global ocean,

driving the vertical and horizontal transport of heat and tracers (Ganachaud & Wunsch, 2000;

Wunsch & Ferrari, 2004). While mixing at the molecular level can be explicitly characterized by

thermodynamic diffusion equations, the observed interior ocean stratification requires vigorous

turbulent mixing that is 10-100 times stronger than that from molecular diffusion alone (e.g.,

Munk, 1966; Bryan, 1987; Talley, 2003; Cimoli et al., 2023), driven primarily through breaking

internal waves (Polzin et al., 1997; Kunze et al., 2006a; Whalen, Talley, & MacKinnon, 2012;

Waterhouse et al., 2014a; MacKinnon et al., 2017a). The strength of this turbulent mixing is

governed by distinct physical and dynamical processes which result in rich geographical patterns

of mixing throughout the global ocean. (Polzin et al., 1997; Naveira Garabato et al., 2004;

Whalen, Talley, & MacKinnon, 2012; Waterhouse et al., 2014a; Whalen et al., 2018b).

Resolving the spatiotemporal patterns of turbulent mixing in the ocean from observations

is significantly challenging owing to the intermittent nature of mixing. At present, the most

accurate estimates of turbulent mixing come from specialized microstructure instrumentation

deployed from ships (Polzin et al., 1997; St. Laurent et al., 2012; Naveira et al., 2019; Lele et

al., 2021), on moorings (J. N. Moum & Nash, 2009), and autonomous platforms (Rudnick et

al., 2013; Johnston & Rudnick, 2015; Shroyer et al., 2016). These microstructure instruments

allow for estimates of kinetic energy dissipation rate (𝜖) and temperature gradient variance (𝜒) by

measuring high frequency velocity and/or temperature gradients. The resolved turbulent gradient

spectra in the inertial subrange of turbulence are then used to compute 𝜖 and 𝜒 (e.g., Oakey,

1982b; Gregg, 1999; Itsweire et al., 1993). However, global microstructure observations have

sparse global spatio-temporal coverage (Waterhouse et al., 2014a).

In response to the low abundance of microstructure observations, the community has

embraced a set of mixing parameterizations based upon internal wave-wave interaction theories

called finescale parameterizations that allow for the estimate of 𝜖 from lower resolution temperature
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and salinity data (Henyey et al., 1986; Gregg, 1989; Polzin et al., 1995). These parameterizations

estimate turbulent dissipation of energy by estimating the rate of downscale energy transfer through

wave-wave interactions by combining the measured internal wave spectral level and theoretical

and empirical models of wave interactions. The applicability of finescale parameterizations on

the more widely available oceanographic ship-based and Argo-based Conductivity Temperature

Depth (CTD) and Lowered Acoustic Doppler Current Profiler (LADCP) data has drastically

increased the spatial coverage of mixing estimates as well as our understanding of the spatial

geography of mixing in the ocean (e.g., Whalen et al., 2015a; Kunze, 2017b) with overall broad

agreement with measurements obtained from microstructure instrumentation (e.g., Polzin et al.,

1995, 2014a; Whalen et al., 2015a; Whalen, 2021) Crucially for our work, the spectral energy

level is estimated by comparing the average spectral level within a limited wavenumber band

to the idealized Garrett-Munk (GM) model (Garrett & Munk, 1972; Munk, 1981). Since the

finescale parameterizations are referenced to the GM model in their formulation of spectral

energy transport through the internal wave vertical wave number space, large departures from the

GM model are susceptible to engendering biased estimates (Polzin et al., 2014a).

Dissipation rates 𝜖 and related eddy diffusivities 𝜅 obtained from finescale parame-

terizations show overall broad agreement with measurements obtained from microstructure

instrumentation (e.g., Polzin et al., 1995, 2014a; Whalen et al., 2015a; Whalen, 2021), however,

some discrepancies and biases have also been previously documented (e.g., MacKinnon &

Gregg, 2003; Waterman, Polzin, Naveira Garabato, Sheen, Forryan, Garabato, et al., 2014). The

underlying assumptions of the parameterizations are violated in many regions of the ocean,

such as in the surface mixed layer, or where turbulent mixing is controlled by double diffusion,

hydraulic jumps and strong wave-mean flow interactions over rough topography (Waterman,

Polzin, Naveira Garabato, Sheen, Forryan, Garabato, et al., 2014; Polzin et al., 2014a). There

are also regions where the parameterized mixing rate does not match observations of turbulent

mixing from microstructure measurements for unclear reasons. A hypothesis considered here is

that deviations of the spectral shape or other properties of the internal wave spectrum from the
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assumed GM form may be relevant (Müller & Liu, 2000; Polzin & Lvov, 2011), or variability in

other individual parameters of the parameterization themselves, based on the local geography,

topographic conditions and the presence of external forcing on the local internal wave field

(Waterman, Polzin, Naveira Garabato, Sheen, Forryan, Garabato, et al., 2014; Chinn et al., 2016;

Pollmann, 2020). Recently, both supervised and unsupervised learning approaches have been

used across a variety of fluid mechanical applications to provide new insight into fundamental

relationships and patterns of variability in our oceans (Giglio et al., 2018; Brunton et al., 2020;

Callaham et al., 2021; Kaiser et al., 2022; Mashayek et al., 2022). In particular, clustering

techniques have proven useful in generating insights and exploring existing oceanographic data,

such as categorizing datasets of temperature-salinity profiles (e.g., Rosso et al., 2020; Jones et

al., 2019; Boehme & Rosso, 2021), classifying global ecological marine provinces (Sonnewald

et al., 2020) and identifying dominant dynamical balances in global ocean circulation models

(Sonnewald et al., 2019).

In this study, we employ unsupervised learning to characterize a parameter-space

associated with large mismatches between finescale and microstructure observations of oceanic

turbulent mixing. Drawing inspiration from unsupervised learning approaches in the spectral

domain applied to earthquakes and astronomical observations (C. W. Johnson et al., 2020; Ivezic

et al., 2014), we use latent features extracted from oceanic shear and strain spectra as well as other

variables (features) used in the formulation of finescale parameterizations to identify regions of

distinct co-variations connected to properties of turbulent mixing in the ocean and underlying

dynamics of internal wave-wave interactions. The curated hydrographic dataset used in the

study is described in Section 4.2, with the underlying principles of finescale parameterizations,

feature development, dimensionality reduction and clustering model laid out in Section 4.3.

Finally, we describe the geography and spatial characteristics of the clustering results and the

interpretation of the results in the context of the underpinning finescale parameterization for

estimating turbulent mixing in the ocean in Sections 5.3 and 5.4.
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4.2 Data

4.2.1 Ship-based Hydrographic Data

The principal data used in this study are 1875 profiles of high quality full-depth CTD and

LADCP data collected along 15 hydrographic sections from around the globe as part of either

the Climate and Ocean Variability, Predictability and Change (CLIVAR) or the Global Ocean

Ship-based Hydrographic Investigations Program (GO-SHIP) programs between the years 2000

and 2021 (Figure ??, Table 4.1). The horizontal station spacing between CTD casts is nominally

55 kilometers, with stations spaced closer in regions of interest (e.g. trenches, rough topography,

boundary current regions). Vertically, the CTD-cast data used here include the profile from

500m down to a maximum depth, usually 6000m or within 10-20m from the seafloor. The top

500m of the profiles are not considered in order to remove the surface mixed layer. Conservative

temperature (𝜃), squared buoyancy frequency (N2), and potential density 𝜌𝜃 are calculated from

the CTD instrumentation using the Gibbs-Seawater Oceanographic Toolbox (McDougall, 2011;

Jackett & McDougall, 1997). The publicly available LADCP data product has an 8-meter vertical

resolution pre-processed using procedures laid out for the GO-SHIP program (Visbeck, 2002;

Thurnherr et al., 2010). The LADCP data product for all 15 sections contains data binned at

a nominal 1-meter resolution and with horizontal (U,V) and vertical component (W) of ocean

velocity from the ocean surface down to the maximum CTD depth. All LADCP data obtained

are co-located with CTD data for each CTD cast along the sections.

4.2.2 Microstructure mixing estimates from CTD-mounted 𝜒-pods

Estimates of 𝜖 from rosette-mounted microstructure 𝜒-pods taken along the P06 section

were obtained from cchdo.edu (see data availability statement). 𝜖 was estimated using the high

wavenumber temperature gradient fluctuations 𝑑𝑇 ′/𝑑𝑧 measured by the 100Hz FP07 thermistor

probe following the methods of J. N. Moum & Nash (2009) and Lele et al. (2021). The data

have all been processed and cleaned including (1) removing any points with platform-induced
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noise, (2) calculating dissipation rates of the temperature variance, 𝜒 in 1-s bins, (3) any data in

regions of very weak stratification where 𝑑𝑇/𝑑𝑧 is less than 10−4 K m−1 were removed, (4) 𝜖 was

calculated from 𝜒 following Osborn & Cox (1972a) and (5) data were binned into 200-m half

overlapping segments, ensuring binned averages comparable binned finescale parameterization

data (see Section 4.3.1).

4.3 Methods

4.3.1 Estimating Mixing from Finescale Parameterizations

Profiles of 𝜖 and 𝜅 are estimated from 1875 CTD stations containing a total of 64816

spectral estimates of internal wave shear ⟨𝑉2
𝑧 ⟩ and strain ⟨𝜁2

𝑧 ⟩ variances using the finescale

parameterization method following Gregg (1989); Henyey et al. (1986); Polzin et al. (1995);

Kunze et al. (2006a). Shear and strain variances are computed from CTD temperature and

salinity and LADCP horizontal velocities profiles along the sections. Variance levels relative

to the canonical Garrett-Munk (GM) spectra (Munk, 1981) are used to relate vertical turbulent

eddy diffusivity (𝜅) to the turbulent kinetic energy dissipation rate 𝜖 via the Osborn (1980a)

relationship 𝜅 = Γ 𝜖

𝑁2 , wherein mixing efficiency Γ considered to be nominally 0.2 (Polzin et al.,

2014a) and N is the buoyancy frequency. This relationship is further broken down as:

𝜅 = 𝜅0𝐸𝑣𝑧ℎ(𝑅𝜔)𝐽 ( 𝑓 /𝑁), (4.1)

with

𝐸𝑣𝑧 =
⟨𝑉2
𝑧 ⟩2

⟨𝑉2
𝑧 ⟩2
𝐺𝑀

(4.2)

ℎ(𝑅𝜔) =
3(𝑅𝜔 +1)

2
√

2𝑅𝜔
√
𝑅𝜔 −1

(4.3)

𝐽 ( 𝑓 /𝑁) = 𝑓 cosh−1(𝑁/ 𝑓 )
𝑓30 cosh−1(𝑁0/ 𝑓30)

(4.4)

where cosh−1 is the inverse hyperbolic cosine function, and constant values 𝜅𝑜 = 5×
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10−6m2s−1, 𝑓30 = 7.292×10−5 rad s−1 and 𝑁0 = 5.2×10−3 rad s−1, where f30, 𝑁𝑜 and 𝜅𝑜 denote

the Coriolis frequency at 30𝑜N latitude, the canonical GM buoyancy frequency and background

diffusivity respectively.

The angle brackets in Equation 4.1 indicate integration of LADCP-derived shear spectra

over a wavenumber band capturing finescale internal wave shear variance (Gregg, 1989; Polzin et

al., 2014a). The factor 𝐽 ( 𝑓 /𝑁) in Equation 4.2 is a latitudinal correction applied to account for

weaker turbulent dissipation rates found near equatorial regions (Henyey et al., 1986; Gregg et

al., 2003), while the factor h(𝑅𝜔) in Equation 4.3 accounts for deviations from the GM spectrum

based on the frequency content of the internal wave field given by 𝑅𝜔, reducing to unity when

𝑅𝜔 is set to the canonical GM value of 3 (Polzin et al., 1995). The dependence on strain (𝜁𝑧) is

introduced in the parameterization through the shear to strain variance ratio 𝑅𝜔 =
⟨𝑉2

𝑧 ⟩
𝑁̄ ⟨𝜁2

𝑧 ⟩
, a measure

of the internal wave fields aspect ratio or frequency content. This, under a monochromatic wave

assumption can be summarized as:

𝜔

𝑓
=

√︂
𝑅𝜔 +1
𝑅𝜔 −1

(4.5)

representing the contribution of near-inertial (𝜔/ 𝑓 ≈ 0) to non-near-inertial internal waves in the

domain.

Profiles of 𝜖 and 𝜅 are calculated at each CTD station along the section from 200 m

half-overlapping segments in depth using the parameterization given by Equation 4.1. It is

important to note however, that these parameterized estimates of diffusivity 𝜅 and dissipation

rate 𝜖 do not sufficiently resolve mixing processes in the boundary layer, hydraulic jumps,

double diffusion or internal wave driven turbulence in regimes with significant wave-mean flow

interaction (Waterman, Polzin, Naveira Garabato, Sheen, Forryan, Garabato, et al., 2014), and

they produce spatially averaged estimates of mixing over multiple wave periods.
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4.3.2 Feature Development

Here, we define and extract features from various attributes of the parameterization, to

examine and understand the patterns of their cross-covariances as they relate to internal-wave

driven mixing in the global ocean using unsupervised machine learning.

Building upon the parameterization in Equation 4.1 as the basis for feature development, we

focus on measured shear and strain spectra which are primary components of the parameterization.

Buoyancy frequency normalized shear [𝜙𝑉𝑧 ] and strain [𝜙𝜁𝑧 ] wavenumber spectra are calculated

from the Fourier transforms of the vertical LADCP and CTD data for shear and strain respectively.

To calculate shear variance ⟨𝑉2
𝑧 ⟩, segments are constructed starting from the bottom in 320m

half-overlapping windows, each tapered with a 10% sine2 window function to obtain its vertical

wavenumber spectra (Kunze et al., 2006a), which are then integrated between wavelengths of

320m and 150m to avoid high wavenumber instrument noise contamination(Kunze et al., 2006a).

Strain is calculated from the buoyancy frequency as 𝜁𝑧 = (𝑁2 − 𝑁̄2)/𝑁2, where the mean

stratification 𝑁2 is determined from quadratic fits to the profile segments (Kunze et al., 2006a).

Further, the strain variance is calculated by integrating the strain power spectrum between

wavelengths of 150m and up to 10m while also satisfying strain variance ⟨𝜉2
𝑧 ⟩ < 0.2 to avoid

underestimating the variance through oversaturation of the spectrum (Gargett, 1990). ⟨𝑉2
𝑧 ⟩ and

⟨𝜉2
𝑧 ⟩ values are then normalized by the integrated GM model spectrum over the same respective

bandwidths to represent the energy density in the internal wave field in the units of the GM

energy density (Gregg & Kunze, 1991; Munk, 1981).

Each GM-normalized shear and strain spectrum is further normalized with its respective

shear and strain variances across the finescale integration band to de-emphasize the known

relationship between internal wave spectral level and stratification (Gregg, 1989; Kunze, 2017a).

Further, we consolidate the dominant types of spectral variability by reducing the dimensionality

of the data using Non-Negative Matrix Factorization (NMF) decomposition (Figure ??; described

further in Section 4.3.2).
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NMF Decomposition of Shear and Strain Spectra

While unsupervised learning could in theory identify clusters in any N-dimensional space,

the quality of the resultant clustering formulation is directly proportional to the number of data

points in the N-dimensional space. It is therefore prudent to introduce a low-rank approximation

of the input N-dimensional space to reduce redundant co-variances in the data. Factor analysis and

principal component analysis (PCA) are two of the many classical methods used to accomplish

the goal of dimensionality reduction and detecting structures among the variables. Often the data

to be analyzed are non-negative, and the low-rank data are further required to be comprised of

non-negative values in order to avoid contradicting physical realities. Therefore, we reduce the

dimensionality of the input spectral data using non-negative matrix factorization (NMF) (Lee

& Seung, 1999; Berry et al., 2007) to decompose high-dimensional spectra of shear and strain

into lower-dimensional latent spectral representations (Figure ??b). These low-dimensional

embeddings (Figure ??c (green box),4.2a-d) are further aggregated into a feature matrix along

with other auxiliary features (Figure 4.2e-g) and are then used as feature inputs to the GMM

model (Section 4.3.2,Figure ??c).

The decomposition aims to approximate the input data matrix X consisting of non-negative

elements, comprised of n individual spectral data points each with m wavenumbers, into a low-rank

non-negative approximation consisting of a latent feature matrix W and corresponding hidden

coefficients H. This can be expressed as: X[𝑛×𝑚] ≈ W[𝑛×𝑝]H[𝑝×𝑚] (Figure ??b). The matrix W

can be regarded as spectral end-members whose linear combinations with the coefficient matrix H

reconstruct the original data matrix X. The quality of the approximation of X is measured using

the Frobenius norm | |𝑋 −𝑊𝐻 | |2
𝐹
=
∑
𝑖 𝑗 (𝑋 −𝑊𝐻)2

𝑖 𝑗
and the optimization algorithm is carried out

using the NMF implementation in the Python library scikit-learn (Pedregosa et al., 2011). In this

study the input data matrix X for both shear and strain spectra consists of n = 67816 total spectra

respectively obtained along the 15 GO-SHIP hydrographic section descibed earlier in Section

4.2.1.
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It is conceivable that the reconstruction of the original spectra gets progressively better

with the increase in the number of NMF components (p) i.e. the addition of more latent

dimensions. In theory, the number of latent dimensions is inversely proportional to the recon-

struction error. Hence 𝑝 = 𝑚 would result in a perfect reconstruction as the additional latent

dimensions could in theory encode more of the information present in the original input matrix

X. However, here we choose 𝑝 = 2, i.e. two latent dimensions to represent high dimensional

(𝑚 = 10) shear and strain spectra as it results in the greatest decrease in the reconstruction

error with respect to the number of latent dimensions while still preserving relevant spectral

characteristics (not shown). Although increasing the number of latent dimensions beyond two

results in a better reconstruction of the original spectral matrix X, it can be counter-productive

from an unsupervised learning standpoint as it can lead to inconsistencies in the final solutions

produced by the clustering model often referred to as the “curse of dimensionality” (Bishop, 2006).

Final Feature Matrix (F)

Two NMF components each of the shear and strain spectra are aggregated into a “feature

matrix” F (Figure ??c) and used as input to an unsupervised learning model (Section 4.3.3). The

sensitivity of the final results (Section 5.3) to the introduction of additional relevant features in

the feature matrix- including the shear variance ⟨𝑉2
𝑧 ⟩, buoyancy frequency [N] and internal wave

aspect ratio 𝑅𝜔, all derived from the parameterization in Equation (4.1) is explored in Section

4.4.3. Note: The primary results discussed hereafter other than those specifically noted, describe

the results of using only the 4 NMF components, two derived from the shear spectra and two

derived from the strain spectra (Figure ??c green box, 4.2a-d).

4.3.3 Unsupervised Learning of Turbulent Mixing Data

An unsupervised machine learning clustering technique is used to identify groups with

similar shear and strain spectra characteristics by applying a Gaussian Mixture Model (GMM)
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framework (e.g., Maze et al., 2017). The algorithm assumes the dataset with D features can

be explained as derived from a mixture of K Gaussian distributions in D dimensions, where

each feature represents a new dimension describing the data. The GMM model computes

the parameters mean 𝜇𝑘 , covariance Σ𝑘 and weights 𝜆𝑘 using the Expectation-Maximization

algorithm in order to maximize the likelihood of the data X belonging to cluster k, denoted by

the conditional probability distribution 𝑝(𝑘 |𝑥). The probability that data X belongs to the 𝑘 𝑡ℎ

component of the mixture of Gaussian distributions is given by:

𝑝
(
𝑘 |𝑥

)
=

𝜆𝑘N(𝑥;𝜇𝑘 ,Σ𝑘 )
Σ𝐾
𝑘=1𝜆𝑘N(𝑥;𝜇𝑘 ,Σ𝑘 )

(4.6)

with the multivariate normal Gaussian distribution given by:

𝑝(𝑥;𝜇𝑘 ,Σ𝑘 ) =
1√︁

2𝜋𝐷 |Σ |
exp

[
− 1

2
(𝑥− 𝜇𝑘 )𝑇Σ−1(𝑥− 𝜇𝑘 )

]
(4.7)

The conditional probability 𝑝(𝑘 |𝑥) in Equation 4.6 over all clusters k equals 1. The GMM

algorithm assigns the cluster label k to the component for which this conditional probability

is maximum i.e. 𝑘 = argmax𝑥 𝑝
(
𝑘 |𝑥

)
. We further mask out data with a maximum conditional

probability less than 70% i.e. 𝑘 = argmax𝑥 [𝑝
(
𝑘 |𝑥

)
> 0.7] (Figure 4.4a, gray) to avoid the

possibility of having cluster labels with similar probability densities potentially near strong eddy

or frontal forcings (Jones et al., 2019).

The choice of the number of clusters is a subjective one, and depends on the desired

application of the clustering problem. The number of optimal clusters can vary widely based on

the criteria used for convergence, tuning and choice of hyperparameters used (such as the type of

covariances), as well as the amount of data and choice of feature inputs given to the clustering

algorithm. Dimensionality reduction for shear and strain spectra using NMF decomposition
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and clustering with the GMM model in this study were implemented using open-source python

machine learning library scikit-learn (Pedregosa et al., 2011). We validate the optimal number of

clusters outputted from the GMM model initialized with a ”full” covariance matrix based on

Akaike and Bayesian information criterion (AIC and BIC) scores (Schwarz G, 1978; Konishi

et al., 2004). The AIC and BIC scores were computed for the entire feature matrix F created

with the entirety of the data collected from 15 sections (not shown) as well random subsets of

it for K=2 to K=14. The scores computed from 50 bootstraps of the random feature matrix

subsets show a minimum between K=7 and K=9 clusters (Figure 4.7, purple shading). This

conclusion is consistent when using a different metric for optimal clustering, the silhouette

coefficient (Rousseeuw, 1987) (not shown). Although we use K=7 as the optimal number of

clusters, the final results described in Section 4 are quantitatively the same, regardless of the

choice of the number of clusters between K=7 and K=9 (Section 4.4.3).

4.4 Results

Seven distinct clusters of data are identified using the GMM model, which we explore to

gain insight into the physical and geographical patterns relevant to turbulent mixing. We also

consider the spatial structure of clusters and their correspondence with patterns of mismatch

between finescale and microstructure-derived estimates to further contextualize the results. The

feature matrix F input to the GMM model is comprised of only the two NMF-components of the

normalized shear spectra and two NMF-components of the normalized strain spectra (Figure ??c,

green box) for approximately 70,000 data points, each representing a 100 m vertical segment of

data collected from 1875 profiles along 15 GO-SHIP sections (Figure 4.2a-d, 4.3a). The GMM

is constrained to 7 clusters, hereafter discussed and referred to by the arbitrarily assigned cluster

number. In terms of relative proportions of the assigned cluster labels- Cluster 5 was the most

prevalent, followed by Clusters 4, 3, 7, 2, 1, and finally 6 (Figure 4.3d).

It is insightful to disentangle and isolate the original raw input data associated with each
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cluster to identify patterns that could potentially be linked to underlying physical mechanisms.

We use the final clustering assignments to construct a composite average of the original ”raw”

shear and strain spectra belonging to each of the 7 clusters prior to any normalization and NMF

decomposition (Section 4.3.2). The spectral data are “raw” in the sense that these spectra are the

basis of the shear and strain variance (⟨𝑉2
𝑧 ⟩, ⟨𝜁2

𝑧 ⟩) calculations in the finescale parameterization

described in Equations 4.1 and 4.2. At the individual level, the spectral energy density of the raw

spectra across all 15 sections span orders of magnitude and appear to have incoherent geographical

distributions and spatial dependence. However, considering the individual spectra combined

with their corresponding clustering labels, we find that the average composite spectra (Figure

4.4 d, e) have distinct spectral shapes and unique slope and roll-off characteristics in vertical

wavenumber space. These perceptible spectral characteristics combined with the cluster spatial

distributions and dependence hint at the potentially differing underlying physical mechanisms

responsible for the non-linear downscale energy transport and turbulent mixing in these regions.

4.4.1 Identification of Non-GM Spectral Conditions & Parameterized
Mixing Bias

The finescale parameterization laid out in Equations 4.1-4.4 aims to represent nonlinear

spectral energy transport in the vertical wavenumber domain based on arguments set forth

by (Garrett & Munk, 1972, 1975, 1979), requiring careful treatment of deviations from this

framework. The intent of parameterization is to encapsulate the non-linear internal wave-wave

interaction within a finite amplitude and vertical length scales not only well-resolved by CTD

and LADCP instrumentation (used for shear and strain calculation) and relatively free from

contamination from instrumental noise or background stratification, but also from the effects

of competing physical and dynamical processes such as near-boundaries mixing, wave-mean

interaction, shear-driven mixing, double diffusion, which could potentially short-circuit the

downscale energy transfer and the basis of the parameterization. In observations (e.g., Gregg &

Kunze, 1991; Polzin et al., 1995; Brink, 1995; Eriksen, 1998), the wavenumber shear spectra at
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smaller wavenumbers (<0.1 cpm) are relatively white (flat) with roughly equal distribution of

shear variance in this regime. The transition to turbulence occurs at length scales greater than 1

cpm governed by non-linear dynamics and shear instability driven non-local energy transport

(Gargett et al., 1981). The finescale parameterization is employed to predict the turbulent

dissipation from energy transport calculated at the intermediate scales (<0.1cpm, Figure 4.4c,

d gray vertical lines). Here, large deviations from GM-model prescriptions can induce biases

in the estimates and are potentially emblematic of additional physical processes at play beyond

wave-wave interactions (Polzin et al., 2014a).

Composite averages of shear and strain spectra computed within each cluster across all 15

sections (Figure 4.4c,d, Supporting Information Figure S3,S4) reveal two clusters (Cluster 1 and

7) with spectral characteristics differing significantly from the other clusters and from GM model

spectra. Average shear spectra in Cluster 1 shows spectral levels comparable to other clusters

but are characterized by a steep (“red”) slope compared to GM, with spectral roll-off at much

lower wavenumbers and larger vertical scales than the other composites. At approximately the

same vertical scales, shear spectra belonging to Cluster 7 show an enhancement in shear spectral

power where the spectra appear ”blue” and roll-off quite steeply after shear-enhanced hump. The

shear-to-strain ratios (𝑅𝜔) implied by the Cluster 1 composite suggest a decrease in 𝑅𝜔 at higher

vertical wavenumbers which could be interpreted as an increased contribution of high-frequency

waves (Equation 4.4). Studies have suggested that this is also possible due to the presence of

quasi-permanent finestructure from rotating stratified turbulence (Polzin et al., 2003; Polzin &

Ferrari, 2004).

The deviation from the assumptions about downscale spectral energy transport across

wavenumbers in the parameterization is explored by comparing the ratio of the finescale

parameterized estimates of turbulent dissipation rate 𝜖 to the concurrent co-located in-situ

microstructure measurements of 𝜖 from CTD-mounted 𝜒-pods (Lele et al., 2021) along the 2017

occupation of the P06 line within each cluster. The ratio of the two different estimates log10
( 𝜖fine
𝜖𝜒pod

)
or the “mixing bias” along the P06 section where positive (negative) values indicate finescale
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over-prediction (under-prediction) compared to measurements from 𝜒−pods (Figure 4.4a). The

clustering from the GMM model together with the mixing bias along the P06 are combined to

produce estimates of average bias for each cluster (Figure 4.4c). The averaged mixing bias and

95% confidence intervals for clusters 2-6 fall well within a factor 5 (Figure 4.3c, dashed black

line). Clusters 1 and 7 however show a high and a low bias respectively with average disagreement

between finescale and 𝜒-pod estimates as large as an order of magnitude along P06. Further, the

averaged spectral properties of the clusters also reveal marked deviations from their respective

canonical GM shear and strain counterparts (Figure 4.4d, e). The inconsistencies between the

rate of downscale energy transfer as prescribed by the GM model (e.g. Cluster 1), and possible

shear-enhancing high-wavenumber energy sources (e.g. Cluster 7), serve as useful indicators of

potential physical-dynamical processes unresolved in the finescale parameterizations.

The formulation of the finescale parameterization in Equation 4.1 states that diffusivity 𝜅

and dissipation rate 𝜖 (through the Osborn relation, Section 4.3.1) are proportional to the total

integrated shear variance from shear spectra ⟨𝑉2
𝑧 ⟩. Considering this relationship between ⟨𝑉2

𝑧 ⟩

and 𝜖 , the mixing biases between finescale parameterized observed along P06 between 𝜖fine and

𝜖𝜒-pod likely occurs as a result of the overestimation (underestimation) of ⟨𝑉2
𝑧 ⟩ in locations where

Cluster 1 (Cluster 7) occur (Figure 4.4f). In the case of Cluster 1, a “redder” than GM-like spectra

(Figure 4.4e, f, pink line) results in an overestimation of shear variance due to the assumed

spectral shape being GM-like, or flat (Figure 4.4f, pink shading). The overestimated shear

variance through the relationship described in Equation 4.1 engenders a highly inflated estimate

of 𝜖fine by almost an order of magnitude (Figure 4.4c). A reverse mechanism occurs in the case

of Cluster 7 in which an increasingly positive slope (“bluer”) compared to the GM-like spectra,

leads to an underestimation of ⟨𝑉2
𝑧 ⟩ and consequently a depressed estimate of 𝜖fine.

Using limited modes of spectral variation through the NMF decomposition along 15

sections as inputs to the GMM model, we isolated two regions where underlying shear and

strain spectra have characteristics to induce biases in parameterized mixing estimates. Spectral

properties obtained in other process-based studies and certain localized environments have
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shown similarities to spectral features we identify here using a global dataset. Several different

physical mechanics have been proposed in which non-white gradient spectra are associated

with physics unresolved or problematic for finescale estimation (Kunze et al., 2002; Klymak

et al., 2008; Polzin & Lvov, 2011; Brink, 1995; Eriksen, 1998). For example, well-resolved

spectra from a study around the Kergulean Plateau region (Waterman et al., 2013; Waterman,

Polzin, Naveira Garabato, Sheen, Forryan, Garabato, et al., 2014) associated with finescale

overestimation, exhibit steeper and rapid roll-offs at lower wavenumber attributed to strong

wave-mean interactions in the region, similar to spectra found in Cluster 1. Similarly, generation

or reflection at boundaries can inject shear at higher wavenumbers with loss of low-wavenumber

energy and gain in high-wavenumber energy (Eriksen, 1985), as seen in composites from Cluster

7. Although diagnosing and interpreting the plethora of possibilities in the physics driving such

peculiarities in the spectral energy transports in wavenumber space is beyond the scope of the

paper- we further aim to prognosticate the spatial structure distribution of regions of potential

finescale mixing bias along these sections.

4.4.2 Geographical Distribution

The spatial distribution of the clusters shows a rich and varied geographical distribution

along the 15 sections considered here (Figure 4.3a). From a high-level perspective, the clustering

reveals a rough dependence on stratification as seen by the alignment in most sections with the

contours of buoyancy frequency along those sections (Figure 4.3a, black lines). Even though the

inputs to the GMM consist of buoyancy-normalized spectral data that have been standardized by

their respective integrated variances in order to diminish the a priori stratification dependence,

the clustering patterns nevertheless reveal an ostensible relationship with buoyancy frequency.

In addition to the geographical cluster assignments by individual sections, more insight

into the distinguishing characteristics of the clustering patterns can be gained by looking at

the spatial variations in probability densities of each cluster vertically (depth and height-above-

bottom) and horizontally (along-section) for each section individually, as well as by computing
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composites encompassing all 15 sections (Figure 4.3 [b-c,e-f] 4.5, 4.6, Supporting Information

Figure S1-S2).

The upper ocean was dominated by clusters 2, 3 and 4, each showing similar vertical

distributions, with some differences in their zonal and meridional distributions. Cluster 2

forms the majority of clusters within the Southern Ocean, as seen by the increase in prevalence

southward of 55𝑜S along S4P, I06 and P16S , and the peak of the latitudinal distribution from the

zonal composite found around 62.5𝑜S (Figure 4.3e). No distinct patterns emerge in the zonal and

meridional distribution of cluster 3 and 4, suggesting minimal geographical precedence (Figure

4.3e, f). In depth, all three clusters become more prevalent closer to the seafloor (Figure 4.3c),

resulting in peaks around 3000m, also reflecting the variations in bathymetry of the sections

(Figure 4.3b). The presence of Cluster 2 in the Southern Ocean and along other sections near the

bottom bathymetry for example, along the P06, P02 and A20 (Supporting Information Figure S2)

is consistent with regions of low stratification and is seen clearly in the contours of buoyancy

frequency along those sections (Figure 4.3a, black lines)

Above the ocean bottom, the analysis found an increase in the relative abundance of

clusters 5 and 6. These two clusters are prominently found in the upper ocean along most sections

between 500m and 2000m. Cluster 6 is the least prominent of the assigned labels and forms only

7.8% of the total assigned clusters, and is mostly found in the upper ocean, typically between

1500m and 2000m in the Atlantic Ocean (e.g., a13, a16n 16s and a10 lines). Cluster 5 is the

second most common upper ocean cluster other than Cluster 1, with no notable zonal preference.

Cluster 1, associated with a more “red” shear spectra, is predominately found in the upper

ocean along most sections, existing primarily between 500-1500m depth (Figure 4.3 b), with

the notable exception in the Ross Sea (S4P) and Gulf of Mexico (A20) which show a second

mid-depth around roughly 4000m (Figure 4.3a, Supporting Information Figure S1). In addition,

the zonal section composite also reveals an increased proportion of Cluster 1 along the Equator,

with a clear peak observed within 5 degrees of the equator. In addition, the cluster is found

most often in the subtropics with it rarely observed at high latitudes (Figure 4.3e). Meridional
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variability in Cluster 1 is observed with a vast preponderance in the Southern Hemisphere’s

subtropical Atlantic and Eastern Pacific (Figure 4.3f).

Cluster 7, associated with a more “blue” shear spectra with enhanced energy at wavenum-

bers between 150-100 m,is distributed in the mid to deep oceans, forms roughly 10.4% of the

total cluster labels along the 15 sections (Figure 4.3d) and is most prevalent above the bottom

bathymetry with a peak around 500m from the bottom bathymetry (Figure 4.3c). Zonally, an

increased proportion of cluster 7 is found in the Southern Ocean, scattered vertically throughout

the sections, with cluster 7s found from the surface all the way down to the bottom topography

(e.g. S4P).

4.4.3 Sensitivity of GMM to Number of Clusters [K] and additional
feature inputs[d]

To test the robustness of the findings discussed above, we explore the sensitivity of this

study to two key analysis choices. First, the effect of constraining the number to cluster to 7 is

tested, and second, the effect of adding additional features to the GMM model is explored.

The analysis was run with a range of fixed number of clusters (K) ranging from 2 to 14.

The optimal number of class labels requires model hyperparameter tuning, and the results are

shown by the BIC scores (Figure 4.7). The BIC score had a minimum at K=7, but with some

ambiguity for K=7-9. Here, we discuss sensitivity of our final results and conclusions to the

clustering produced by the GMM model with the same four spectral inputs inputs, but with K=8

(Labels 0-7) as the optimal number of clusters here. The clustering distribution using K=8 and

four inputs is overall very similar to the distribution with K=7. The additional 8𝑡ℎ class label is

assigned to regions in the upper ocean and seems to split regions assigned to Cluster 1 in Figure

4.3a into two regions with labels 4 and 6 (Supporting Information Figure S5a).

This is further supported by the mean strain and shear spectra calculated from composite

averages of individual cluster labels across the whole dataset (Supporting Information Figure

S5b,c). Clusters 4 and 6 are associated with shear spectra with negative slopes whereas Cluster 5
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(similar to Cluster 7 in Figure 4.3a) has a positive slope. Further, we see a similar association of

finescale biased 𝜖 with regions in Clusters 4 and 6 over-predicting 𝜖 , while regions within Cluster

5 under-predict 𝜖 compared to measurements from 𝜒-pods along the P06 section. Similarly, we

tested K=9 (not shown) and it did not change the key findings of this study. Thus, while minor

qualitative differences are to be expected with clustering assignments for each of the clusters

with the results discussed in Figure 4.3 and 4.4, we do not find any quantitative differences in the

iteration of results discussed above with the final conclusions of the study.

Second, the sensitivity of the final results to the incorporation of additional features

as inputs to the GMM model is explored. The decision boundaries delineating one cluster

from the next in the GMM model is a function of the means and covariances that describe the

multi-dimensional Gaussian distributions. In general, addition or subtraction of feature inputs to

the clustering model, aside from varying the dimensionality of the clustering space, can greatly

affect these means and covariances and as a consequence the delineation and distribution of

individual clusters in space. In an effort to critique the final results as not merely serendipitous

artifacts attributable to the choice of feature inputs, various permutations of feature inputs to the

GMM are explored, all derived from parameters in the finescale parameterizations (Section 3.1,

Equations 1-5). We compare our main results to a GMM run using seven feature inputs consisting

of four shear and strain spectra NMF decompositions, shear variance ⟨𝑉2
𝑧 ⟩, buoyancy frequency

(N) and the internal wave aspect-ratio 𝑅𝜔 (Figure 4.2a-g) with seven output clusters (Labels 0-6).

Compared to the four feature run presented in the main text, the seven feature run produces

clusters that are highly correlated to buoyancy frequency as seen in the alignment with buoyancy

frequency contours along most of the 15 sections (Supporting Information Figure S6a, black solid

lines). The results also show an overall higher posterior probability of clustering assignment

as seen in the reduction in probability mask applied for posterior probabilities less than 70%

(Supporting Information Figure S6a, gray mask). However, computing averaged strain and

shear spectra composites for each cluster as before shows two clusters associated with large

deviations from the GM-model shape (Supporting Information Figure S6b,c, Clusters 2 and
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Cluster 4). Biases in finescale 𝜖 estimates also exist for the same two clusters with regions along

Cluster 4 overpredicting and regions along Cluster 2 underpredicting 𝜖 compared to observations

from 𝜒-pods along the P06 section (Supporting Information Figure S6d). With no significant

quantitative differences in the results relating to the finescale bias, we re-centered the focus of the

main text on describing and discussing the results from the four-feature GMM output (Figure

4.2a-d).

4.5 Conclusions

In this study, we use a novel unsupervised learning approach with a Gaussian Mixture

Model (Jeff A. Bilmes, 1998; Bishop, 2006) to cluster and identify patterns of turbulent mixing-

related features derived from fundamental constituents of finescale parameterizations of internal

wave-driven turbulent mixing in the ocean using a global dataset of ship-based hydrographic CTD

and LADCP data collected on 15 GO-SHIP lines. Using an NMF decomposition of oceanic shear

and strain spectra, we extracted spectral features consisting of encoded information about spectral

level, shapes and slopes (Section 4.3.2,Figure ??,4.2). These features once aggregated into a

feature matrix are clustered using the GMM model into seven different domains characterizing

and delineating their collective variation in the N-dimensional space represented by the extracted

features. The class labels roughly align with stratification in the ocean on average vary with

depth and height-above-bottom across the global ocean. Latitudinal and longitudinal variations

among the clusters are more convoluted.

Further, we explore the implications and potential effects of spectral deviations in

wavenumber space from the canonical Garrett and Munk (GM) internal wave spectrum (Garrett

& Munk, 1972, 1975, 1979), for application of the finescale parameterizations to global data

collected along 15 GO-SHIP sections. We identify the average composite shear and strain

spectra associated with each of the seven clusters revealing two clusters (Cluster 1 and Cluster

7) associated with distinct spectra differing significantly from both the other composites and
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GM model in their wavenumber distribution of shear and strain spectral energy. Since the

wavenumber distribution dictates the rate of energy transport and downscale energy transfer from

large to smaller scales and ultimately to wave-breaking scales, the spectral characteristics within

each cluster are ultimately tied to underlying physical mechanisms at play for turbulent mixing

to occur in those regions. While uncovering the underlying mechanisms at play driving each

cluster’s spectral distribution is beyond the scope of this paper, we explore the robustness of

mixing estimates obtained from finescale parameterizations in these regions further.

Studies have previously found large biases in finescale parameterized estimates where

physical and dynamical environments short-circuit the underlying assumptions of the param-

eterizations, for e.g. regions in the surface mixed layer, near boundaries or where turbulent

mixing is controlled by double diffusion, hydraulic jumps and strong wave-mean flow interactions

over rough topography (Waterman, Polzin, Naveira Garabato, Sheen, Forryan, Garabato, et

al., 2014; Polzin et al., 2014a; MacKinnon & Gregg, 2003). Our analysis is consistent with

prior studies regarding the broad agreement between finescale parameterized and microstructure

estimates of mixing in the open ocean thermocline where the underlying assumptions made in

the parameterizations apply (Polzin et al., 1995, 2014a; Whalen et al., 2015a; Waterman, Polzin,

Naveira Garabato, Sheen, Forryan, Garabato, et al., 2014). However, based on the wavenumber

distribution of global oceanic shear and strain spectra, we provide a rationale behind large biases

in finescale parameterized estimates as well as identify their potential global spatial distribution

based on data along 15 GO-SHIP lines.

Two clusters associated with high and low biased finescale 𝜖 estimates when compared

to co-located temperature microstructure observations from 𝜒-pods along the P06 section were

identified. The clusters are distinct in their spatial distribution along the P06 section. Cluster 1

associated with regions of finescale overestimation is primarily found in the upper ocean between

500 m and 2000 m in depth, while Cluster 7 is linked to regions of finescale underestimation

and is found mostly in the deeper ocean below 3000 m with an increased abundance roughly

500 m-1000 m above the bottom bathymetry (Figure 4.3b,c). Both along the P06 section and
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averaged globally, the two cluster regions consist of roughly 20% of the total clustered data.

More work is needed to further our understanding of the underlying dynamical processes

and the geographical distribution of various flavors of internal wave-wave interactions found

in the ocean. Regardless of the cause, this study has shown caution that must be used when

applying finescale parameterizations ubiquitously throughout the ocean. We show that there are

regions of the ocean where the prevalence of more “red” or more “blue” spectra energy could

lead to biases in estimates of mixing derived from finescale parameterization which assumes

a GM-like universal form for the underlying spectra. This study could serve as a template to

apply unsupervised machine learning approaches to localized process-based hydrographic studies

or in engineering innovative features derived from hydrographic observations in an effort to

understand the geographical and spatial distribution of the underlying dynamics.
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hydrographic lines used in this study (Table 1) can be searched by the line “number” through the
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CCHDO (https://microstructure.ucsd.edu/#/cruise/320620170703) and

(https://microstructure.ucsd.edu/#/cruise/320620170820) respectively.
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Figures and Tables

Figure 4.1. Method schematic shows the locations of the Raw CTD and LADCP data along the
15 GO-SHIP lines in the study which are used to create primary features consisting of spectral
and non-spectral data (see Section 4.3.2). (b) An example showing dimensionality reduction
through NMF decomposition for shear spectra, converting high m dimensional spectra in the
input data matrix X into lower p dimensional spectral features in the form of a latent feature
matrix W and a corresponding hidden coefficient matrix H respectively (see Section 4.3.2). (c)
Two latent spectral features each (p=2) of shear and strain are aggregated into a feature matrix F
(green box, see Section 4.3.2), with additional features (see Section 4.4.3) are used as inputs to
the GMM model to generate cluster mappings for all GO-SHIP sections (Table 4.1).
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Figure 4.2. Example of geographical feature distribution along the P18 section for 7 different
features with normalized magnitudes used for clustering using the GMM model including NMF-1
shear spectra (a), NMF-2 shear spectra (b), NMF-1 strain spectra (c), NMF-2 strain spectra (d),
shear variance ⟨𝑉2

𝑧 ⟩ (e), buoyancy frequency [N] (f) and 𝑅𝜔 (g).
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Figure 4.3. a) Resulting clustering along the 15 GO-SHIP lines produced by the GMM model
with feature matrix based on the NMF features (Figure 4.2a-d). PDF showing the abundance and
variation of individual clusters as a function of depth (b) and height above bottom bathymetry
across all 15 GO-SHIP lines (c). Relative percentage distribution of the seven clusters from
the GMM model with a posterior probability greater than 70% which are considered for the
analysis (d). The zonal (e) and meridional (f) PDF computed from composites of 10 zonal and 5
meridional sections respectively, with the location of CTD stations for the zonal and meridional
sections are shown ( black vertical lines in e and f).
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Figure 4.4. a) Ratio of estimates of turbulent dissipation rate from the finescale parameterization
to measurements from CTD-mounted 𝜒-pods taken concurrently along the P06 section expressed
as log10

( 𝜖fine
𝜖𝜒pod

)
, b) Cluster assignments from the GMM model along the P06 section (same as

Figure 4.3a), c) Mean, 95% confidence intervals and violin plot computed for the ratio log10
( 𝜖fine
𝜖𝜒pod

)
from Figure 4.4a for seven clustered regions shown in Figure 4.4b, d-e). Mean strain and shear
spectra computed as a composite average for the clusters computed using all 15 sections with 99%
confidence intervals using computed using a 𝜒2 distribution (Chatfield et al., 1987) considering
only 1/10𝑡ℎ degrees of freedom for better visibility (color shading). The average GM spectral
levels are shown in the dashed black line, with the integration limits to calculate strain and shear
variance shown by solid gray vertical lines. Slopes for shear spectra roll-offs between 𝑘−1 and
𝑘−4 are shown with high wavenumber asymptote 𝑘−2 representing inertial sub-range in the GM
model, f) Schematic outlining how biases in estimates of turbulent mixing could arise from
spectra deviating from the assumed GM-like shape in the finescale parameterization (Equation
4.1) by either overestimating (Cluster 1) or underestimating (Cluster 7) shear ⟨𝑉2

𝑧 ⟩ and strain
variance ⟨𝜁2

𝑧 ⟩ calculated by integrating the respective spectra in the finescale wavenumber band.
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Figure 4.5. Posterior probabilities (%) 𝑝
(
𝑘 |𝑥

)
of data belonging to each of the clusters (1-7)

as calculated with Equation 4.6 from the GMM model along the I05 section. Final cluster
assignment of a data point belonging to a cluster k as shown in Figure 4.4 is made by computing
𝑘 = argmax𝑥 𝑝

(
𝑘 |𝑥

)
as described in Section 4.3.3 .

116



Figure 4.6. Histogram of the total percent posterior probabilities along the I05 section summed
across all the clusters

∑𝐾
𝑘=1 𝑝

(
𝑘 |𝑥

)
in 10% bins between 40% to 100% (top left). Additionally,

histogram of the percent posterior probabilities in each individual cluster k=1-7 corresponding
to Figure 4.5 are displayed as well. Data displayed in each bin are normalized by number of
datapoints in the 10% bin with the most data.
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Figure 4.7. The BIC scores versus the specified number of clusters, with the means (solid blue
line) and standard deviations (error bars) calculated from 50 random subsets of the data is also
shown with the range of the smallest BIC values (between k=7 and k=9) is indicated (purple
shading)
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Table 4.1. Total number of full-depth profiles for each of the 15 GO-SHIP lines in the study
along with the percentage distribution of each cluster from the GMM model output along a given
line corresponding to results described in the main text and Figure 4.3.

Line Profiles Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

a20 74 2.9 9.4 17.3 28.8 22.8 6.2 12.6
a22 90 1.9 15.2 15.7 28.5 17.1 6.9 14.8
a13 128 10.2 1.5 13.1 19.3 36.5 12.9 6.4
a16n 119 8.5 1.6 12.9 18.5 35.5 15.3 7.8
a16s 111 9.5 2.2 15.0 24.7 27.4 10.6 10.6
i06 56 13.2 22.7 11.4 7.6 33.0 2.5 9.5
i08 114 5.7 12.8 13.7 16.0 34.6 5.2 12.0
i07 110 8.6 2.4 15.4 23.5 31.4 9.0 9.7
p18 209 2.6 2.9 17.5 34.9 19.2 10.5 12.4
p16s 86 8.6 20.5 11.6 14.0 29.8 2.8 12.6
p02 159 9.8 17.6 11.7 14.0 31.1 4.9 10.9
a10 116 16.5 1.6 11.6 17.0 35.7 10.9 6.7
s4p 72 0.5 36.1 11.9 19.6 9.1 3.6 19.2
p06 244 7.9 10.8 12.9 18.5 31.8 7.1 11.0
i05 187 25.3 10.8 9.7 8.2 35.7 3.0 6.3

TOTAL 1875 9.4 9.8 13.4 19.6 29.6 7.8 10.4
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Supporting Figures

120



Figure 4.8. PDF showing the variation of individual clusters along each of the 15 GO-SHIP
sections (See Figure ?? for locations).
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Figure 4.9. PDF showing the variation of individual clusters as a function of depth along each of
the 15 GO-SHIP sections(See Figure ?? for locations).
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Figure 4.10. Individual strain spectra (dashed black) assigned to a given cluster with a posterior
probability greater than 70% (Figure 4.3a) with the mean strain spectra (color) associated with
each cluster (note: mean spectra are the same as Figure 4.4d)
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Figure 4.11. Individual shear spectra (dashed black) assigned to a given cluster with a posterior
probability greater than 70% (Figure ??a) with the mean shear spectra (color) associated with
each cluster (again, mean spectra are the same as Figure 4.4e)
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Figure 4.12. a) Clustering assignments along the 15 GO-SHIP lines produced by the GMM
model using K=8 as the optimal number of clusters with feature matrix based on the NMF
features (Figure 4.2a-d) as discussed in Text S1-S3. b-c) Mean strain and shear spectra computed
as a composite average for the clusters computed using all 15 sections. The average GM spectral
levels are shown in the dashed black line, with the integration limits to calculate strain and shear
variance shown by solid gray vertical lines. Mean and 95% confidence intervals are shown in the
violin plot computed for the ratio of log10

( 𝜖fine
𝜖𝜒pod

)
along P06 (following Figure 4.4c) for the eight

clustered regions shown in panel (a, P06)
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Figure 4.13. a) Resulting clustering along the 15 GO-SHIP lines produced by the GMM model
using K=7 as the optimal number of clusters but with feature matrix based on the NMF spectral
features and three additional features (Figure 4.2a-g) as discussed in Text S4. b-c) Mean strain
and shear spectra computed as a composite average for the clusters computed using all 15 sections.
The average GM spectral levels are shown in the dashed black line, with the integration limits to
calculate strain and shear variance shown by solid gray vertical lines. Mean and 95% confidence
intervals computed for the ratio log10

( 𝜖fine
𝜖𝜒pod

)
from Figure 4.4a for seven clustered regions shown

in panel (a)
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Chapter 5

A Full-Depth Sea Level Rise Budget in the
Southwest Pacific Basin using Deep Argo
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Abstract

The first Deep Argo Pilot array, located in the Southwest Pacific Basin, has collected

nearly 9 years of data offering, for the first time, the ability to characterize deep ocean warming

and steric expansion on spatial and temporal scales never before explored. Here, this novel data

set is used (1) to quantify regional conservative temperature, salinity and density anomalies

with respect to a long-term ship-based oceanographic climatology, (2) to calculate warming

and steric trends over the 9 year period using the Deep Argo array only, and (3) close the 9

year local sea level budget using the observed top to bottom steric expansion calculated from

the Deep Argo floats. Using the 4954 full-depth profiles collected between July 2014 and May

2023 by the 55 Deep Argo floats deployed to date, we find consistent warm anomalies below

2000 m ranging between 11±2 to 34 ±2 m𝑜C at the 95% confidence level, with temperature

anomalies most pronounced (>20 m𝑜C) between 3500 and 5000 m. The temperature trend over

the 9 year period shows a cooling between 2000- 4000 m and a significant warming trend below

4000 m with a maximum rate of 4±0.3 m m𝑜C yr−1 near 5000 m. This warming resulted in a

integrated Steric Sea Level expansion between the bottom and 2000 m of 7.9 ± 1 mm compared

to the climatological era and a trend of 1.3 ± 1.6 mm dec−1 over the 9 year Deep Argo period, a

significant contribution to the local sea level budget. Finally, we examine the ability to close a full

Sea Level Budget with the added contribution of the deep steric changes, to further demonstrate

the value of a truly full-depth Argo array.
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5.1 Introduction

The Earth’s energy is currently out of balance, with the climate system accumulating

0.5-1 W m−2 over the 21st century (Hansen et al., 2011; Von Schuckmann et al., 2016; von

Schuckmann et al., 2022; Trenberth et al., 2014; Llovel et al., 2014). One of the most direct

and well-documented consequences of this energy imbalance is the rise of global mean surface

temperatures and warming in the lower atmosphere (Hansen et al., 2011; Meyer et al, 2014;

Steiner et al., 2020). Although these global mean surface temperatures and atmospheric warming

effects are most perceptible, they account for a small fraction of the Earth’s energy budget. The

oceans accumulate roughly 85% - 90% of the excess warming and therefore play a dominant role

in sequestering the excess heat and mediating the worst effects of rapid atmospheric warming

(Domingues et al., 2008; Levitus et al., 2000, 2005, 2012; Meyer et al, 2014; Cheng et al., 2017;

von Schuckmann et al., 2022). One consequence of the increase in ocean heat content is the rise

in global mean sea level owing to the thermal expansion, accounting for roughly half the observed

sea level rise over the last century (Von Schuckmann et al., 2016). Tide gauge records over the

20th century show an increase in the global mean sea level of roughly 2 mm yr −1 (Church &

White, 2006, 2011; Dangendorf et al., 2017), while satellite altimetric estimates put this figure

around 3.3 ± 0.4 mm yr −1 and show an acceleration during the 20th and 21st centuries (Watson

et al., 2015; Dieng et al., 2015; Chambers et al., 2017; Nerem et al., 2018; Ablain et al., 2015;

Cazenave et al., 2018).

Over the last 50 years, the increase in ocean heat content (OHC) has been most pronounced

in the upper ocean, with the top 2000 m of the ocean absorbing about 90% of the total OHC,

with some evidence of recent acceleration in abyssal warming rates over the last decade

(Von Schuckmann et al., 2016; von Schuckmann et al., 2022). Deep and abyssal ocean warming

or cooling could indicate a shift in the large scale overturning circulation. Observations have

provided some evidence of a decline in Antarctic Bottom Water formation rates around Antarctica

associated with deep ocean warming throughout the Southern Ocean, as well as decadal variability
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in rate and properties of North Atlantic Deep Water (Purkey & Johnson, 2010, 2012b, 2013;

Smeed et al., 2014). Moreover, modeling studies have pointed to a long-term slowdown in the

overturning circulation in both hemispheres with potentially calamitous feedbacks into the global

climate system (Li et al., 2023; Gunn et al., 2023; Ditlevsen & Ditlevsen, 2023).

Although satellite altimetry can monitor the total rate of sea level rise, it is necessary

to understand the components and mechanisms leading to global mean sea level rise and its

variability to better predict future sea level rise, as well as understand and quantify any errors

in the satellite observations (Llovel et al., 2019; Chambers et al., 2017; Cazenave et al., 2018).

Crucially, density-driven volumetric variation (steric variation) from changes in temperature

and salinity changes (thermosteric and halosteric respectively) in the ocean is a significant

contributor to sea level rise and the global sea level budget (Bindoff et al., 2007; Levitus et al.,

2012; Cazenave et al., 2018; Llovel et al., 2019). In-situ hydrographic measurements sampling

the ocean sub-surface are vital to measuring the steric component of sea level rise. For most

of the 20th century, sampling of oceanographic properties was sporadic, with low spatial and

temporal coverage. In the early 2000s, Argo (also referred to as core-Argo) revolutionized our

ability to monitor steric variability in the upper 2000 m, maintaining a fleet of roughly 4000

floats worldwide, allowing for accurate monitoring of temperature and salinity changes on high

temporal (1 month) and spatial (1 deg x 1 deg) resolution around the globe (Roemmich et al.,

2019).

Despite these advances in global ocean observational capabilities in the last few decades,

the deep ocean below 2000 m remains vastly undersampled in comparison. Most ocean

observations including measurements from the core-Argo fleet are limited to the top 2000 m

(Abraham et al., 2013), limiting our understanding of steric changes occurring in the deep

ocean. Deep steric estimates rely on decadal observational programs such as the World Ocean

Circulation Experiment and the Global Ocean Ship-based Hydrographic Investigations Program

(GO-SHIP) (Talley et al., 2016; Gould et al., 2004; Roemmich et al., 2012; Riser et al., 2016).

These hydrographic measurements have shown an increase in deep ocean temperatures in most
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deep ocean basins below 4000 m, contributing to sea level rise estimates at a rate of approximately

1mm dec −1 (Purkey & Johnson, 2010; Purkey et al., 2014; Desbruyères et al., 2016; Purkey

et al., 2019), roughly 10-15% of total steric sea level rise (Von Schuckmann et al., 2016; von

Schuckmann et al., 2022; Llovel et al., 2019). Efforts to infer deep steric changes as a residual in

the sea level budget (sea level anomalies from satellite altimetry minus ocean mass changes from

GRACE satellite data and the steric contribution between the surface and 2000 m from core-Argo

float data) are fraught with errors, bias and uncertainties related to various instrumentation noise

and mapping errors in data products and can lead to contradictory estimates of the deep steric

signal (Dieng et al., 2015; Llovel et al., 2014).

The implementation of a 1250-float Deep Argo Array aims to alleviate obstacles of

data-gathering in the deep and abyssal ocean (G. C. Johnson et al., 2015; Roemmich et al.,

2019). The floats capable of measuring down to 4000 m or 6000 m depending on the model

specifications, can potentially reduce deep steric uncertainty to a fifth of current estimates from

using only hydrographic data. Pilot arrays of Deep Argo floats have been deployed since early

2014 in deep basins around the globe. Initial data at bi-monthly resolution from pilot Deep Argo

arrays deployed in the Southwest Pacific, Argentine and Brazil basins have shown continued

warming in the deepest parts of the basin below 4000 m and have provided warming rates in the

Antarctic Bottom Water layers with a high degree of accuracy(G. C. Johnson et al., 2019, 2020;

G. C. Johnson, 2022).

In this study, we analyze temperature and salinity data below 2000 m from 4954 full-depth

profiles taken by 55 Deep Argo floats in the Southwest Pacific Basin between July 2014 and May

2023 to evaluate the continued deep warming trends in the basin. Further, we extend this analysis

to estimate the total deep steric variability and trend (thermosteric + halosteric), to better assess

the closure of the local sea level budget. Data and methodology used to analyze data from a core

Argo climatology, Deep Argo float data, and satellite-gridded products of sea surface height and

ocean mass are described in Section 5.2. We present the main results in Section 5.3, followed by

a discussion surrounding the results in Section 5.4. These results highlight the consequences

131



of the deep ocean warming and steric sea level rise and demonstrates the value of making high

quality, high resolution measurements of the deep ocean.

5.2 Data and Methods

We use the WOCE hydrographic climatology (Gouretski & Koltermann, 2004) to

determine long-term average temperature and salinity in the basin. The WOCE climatology

represents the averaged properties in the basin over the 1980-2004 time period, using data from

hydrographic observations objectively mapped onto a 1𝑜 × 1𝑜 spatial grid. The deep ocean data

considered here below 2000 m consist of 15 depth levels from 2000 m to a maximum of 5750

m, with a depth-spacing of 250 m. Practical salinity and temperatures in depth for each grid

point 1𝑜 × 1𝑜 are converted to absolute salinity and conservative temperature Θ using TEOS-10

equation of state (Feistel, 2012; McDougall, 2011).

In the Southwest Pacific Basin between latitudes 10𝑜S and 50𝑜S and longitudes 170E𝑜

and 130𝑜W, we consider a total of 55 floats in the region between July 2014 and May 2023

(Figure 5.1, yellow lines). Further, in the spatial regions defined for the Southwest Pacific basin,

we only consider floats with at least one profile deeper than 4000 m in the study. Data from a

total of full-depth downcast 4954 profiles from the 55 floats are used for the analysis. Of the

profiles, 4948 profiles reach 3000 m, 4843 reach 4000 m, 4320 reach down to 5000 m, and

171 profile down to 5750 m and lower (Figure 5.7, purple). The SeaBird Scientific SBE-61

CTD (Conductivity-Temperature-Depth) sensors with accuracy of 0.002psu, 1m𝑜 C and 2dbar,

respectively. Only good quality flag data are considered. The salinity, temperature and pressure

profile data are used to calculate absolute salinity, conservative temperature Θ and depth. The

Deep Argo data is linearly interpolate in latitude, longitude and depth coordinates onto the

WOCE grid. In depth, this results in the float data being mapped onto 15 depth levels with 250 m

vertical spacing.

The temperature anomaly and trend are calculated using all floats in the basin. First,
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the Θ anomalies are calculated as the difference between conservative temperature estimates

along the float location and the WOCE climatology. Second, a linear trend in Θ over the 9 year

float data period is calculated using a least squares fitting procedure following Wunsch (1996)

at each vertical level (e.g. Figure 5.5, 5000 m). Degrees of freedom for computing confidence

limits on Θ anomalies and trends at each vertical level are calculated by assuming statistical

independence between profile data from each float. However, a temporal decorrelation time

scale of 60 days is considered between profiles from the same float such that, if there a total 𝑁60

profiles within a 60-day period, each profile contributes 1/𝑁60 degrees of freedom within that

time frame (G. C. Johnson et al., 2015, 2019).

Following this procedure, the effective degrees of freedom generally decrease with an

increase in depth and vary between 850-750 between 2000 m and 5000 m, a factor of ∼6

reduction, whereas at 5500 m the effective degrees of freedom, reduce by a factor of ∼4 to

around 200 (Figure 5.7. We computed 5–95% confidence intervals (two-tailed 90%) using the

standard deviations (𝜎) and the effective degrees of freedom estimated above assuming Student’s

t-distribution and use the same significance tests to assess confidence intervals throughout the rest

of the study. The reduction in degrees of freedom has negligible (<1%) effect on the estimated

confidence interval as the Student t-distribution score asymptotes to ∼2 for such large values of

degrees of freedom.

Temperature and salinity measurements made by the Deep Argo floats also allow us to

calculate density anomalies at a given vertical level compared to the WOCE climatology allowing

us to estimate the steric changes in the water column for a given depth range. Anomalies of

density (𝜌′) are calculated in the same manner as Θ anomalies described above. The density

anomaly 𝜌′ computed as a function of ocean salinity, temperature and pressure variation is

derived from the Deep Argo and WOCE Climatology profiles at a given location. Following

Gill & Niller (1973) and Tomczak & Godfrey (1994), the steric sea-level anomaly 𝜂𝑠 can be
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computed as:

𝜂𝑠 = − 1
𝜌0

∫ 𝑧1

𝑧2

𝜌′ (5.1)

where 𝜌0 is a reference density and 𝜌′ is the local density anomaly. The expression is vertically

integrated from the maximum local depth 𝑧2 to the top interface (𝑧1, here 2000 m). We use

the Thermodynamic Equation of Seawater (TEOS-10, McDougall (2011) equation of state to

calculate the steric sea level anomaly.

After the steric anomalies with respect to the climatology are calculated at each vertical

level (Figure 5.3b), the anomalies are integrated between the bottom and the top (2000 m) to

calculate the total steric contribution at each location (Figure 5.3b), hereafter referred to as ”deep

steric” anomalies. Since the bottom reference for integrating steric anomalies 𝑧2 varies with

changes in the bottom depth as the float traverses the basin, the total steric anomaly calculated

from Equation 5.1 represents the deep steric contribution below 2000 m at each float location.

Similarly, a least squares fitting is used to find the trend in the integrated deep steric between the

bottom and 2000 m (Figure 5.8). The significance estimate on the trend is calculated similarly as

for the trend inΘ using a Student t-distribution and effective degrees of freedom using a 60-day

decorrelation timescale.

5.2.1 A Local Sea Level Budget using Deep Argo

To evaluate the applicability of using the Deep Argo data to monitor in-situ deep steric

changes on local to regional scales, we select a single 5𝑜 × 5𝑜 box in the Southwest Pacific Basin

with over 5 years of Deep Argo coverage to examine the local sea level budget. The Mean Sea

Level change (MSL) expressed as a function of time t can be written as :

𝑀𝑆𝐿 (𝑡) = 𝑀𝑆𝐿mass(𝑡) +𝑀𝑆𝐿steric(0−2000) (𝑡) +𝑀𝑆𝐿steric(2000−𝑏𝑡𝑚) (𝑡) (5.2)

where 𝑀𝑆𝐿steric(0−2000) (𝑡) represents the steric contribution of the ocean due to density-driven

volumetric changes in the upper 2000 m in the mean sea level, whereas 𝑀𝑆𝐿mass(𝑡) reflects the
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mass anomaly in the region either due to the movement of water into and out of the region or

addition to the ocean mass of the region. 𝑀𝑆𝐿steric(2000−𝑏𝑡𝑚) (𝑡) is the steric contribution below

2000 m, the “deep steric” signal.

The left-hand side of Equation 5.2 can be retrieved through satellite altimetry. We use

monthly gridded sea level anomaly observations from AVISO

(AVISO website https://www.aviso.altimetry.fr/en/data/products/) to estimate 𝑀𝑆𝐿 (𝑡) in the

basin (Figure 5.9, top). The gridded sea surface height product consists of sea surface anomalies

computed with respect to a 20-year reference period (1993-2012) and has an accuracy of ∼1 cm

for measuring Global MSL changes once instrumental and geophysical corrections have been

applied to the dataset (Stammer & Cazenave, 2017; Cazenave et al., 2018).

The time series of variation of ocean mass, 𝑀𝑆𝐿mass(𝑡), is estimated using NASA’s

GRACE data (Tapley et al., 2004) derived from the Jet Propulsion Laboratory (JPL) RL06M

spherical mass concentration block “mascon” solutions (Watkins et al., 2015). The mascon

solutions have shown improvements over spherical harmonic solutions established in the first

decade of GRACE observations.The JPL RL06M uses a-priori constraints in space and time

to estimate global, monthly gravity fields in terms of equal-area 3𝑜×3𝑜 spherical cap mass

concentration functions to minimize the effect of measurement errors resulting improved signal-

to-noise (S/N) ratios (Watkins et al., 2015; Tapley et al., 2019). We use the GRACE mascon

solution in the Southwest Pacific Basin to estimate 𝑀𝑆𝐿mass(𝑡) in Equation 5.2 (Figure 5.9,

bottom). The GRACE data have the largest footprint amongst the gridded data products used here.

Although the mapped product available is of a higher resolution of 0.5𝑜×0.5𝑜, the 3𝑜×3𝑜 mascon

approximately matches the accuracy and native resolution of the GRACE satellites (Wiese et al.,

2016).

Lastly, the upper ocean steric height, 𝑀𝑆𝐿steric(0−2000) (𝑡), is estimated using the Argo

Climatology (Roemmich & Gilson, 2009) which consists of temperature and salinity data from

thousands of core-Argo float profiles, objectively mapped onto a 0.5𝑜 × 0.5𝑜 grid worldwide. We

use temperature and salinity data from the climatology in the basin to estimate the upper ocean
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steric contribution above 2000 m using Equation 5.1 (Figure 5.9, middle).

We test closure of the sea level budget by focusing on a small 5𝑜×5𝑜region within the

Southwest Pacific Basin between 30𝑜S and 35𝑜 and 170𝑜W and 165𝑜W (Figure 5.9, grey box).

We use data from 3 Deep Argo Floats (WMO ID: 5902444, 5902528, 5905760) to calculate the

deep steric anomalies in the 5𝑜×5𝑜 region between the earliest float deployment in Spring 2016

and January 2023. The deep steric anomalies computed using the floats 𝑀𝑆𝐿steric(2000−𝑏𝑡𝑚) (𝑡) can

be combined with the upper ocean steric anomalies from Argo climatology 𝑀𝑆𝐿steric(0−2000) (𝑡),

to compute the full-depth steric anomaly time series between 2016 and 2023 (Figure 5.10, purple

past 2016).

5.3 Results

Antarctic Bottom Water (AABW) fills the majority of the deep ocean volume within the

Southwest Pacific Basin (G. C. Johnson, 2008; Talley et al., 2007). The cold, dense, nutrient rich

AABW layer can often reach from the bottom up to 5000, in the abyssal plains and regions near

the Tonga-Kermadec Trench and Deep Western Boundary Current. As the AABW production

rates decline and the water mass undergoes contraction in various basins (Purkey & Johnson,

2012b), this deepest layer in the basin is increasingly a mix of warmer Circumpolar Deep Water

from the Antarctic Circumpolar Current region. Warmer, saltier waters associated with North

Atlantic Deep Water (NADW) sits above this layer roughly up to a depth of 3500 m (Talley

et al., 2007). Between NADW and 2000 m is a mix of older unventilated Pacific Deep Water

and ventilated intermediate and mode waters. Studies using hydrographic observations have

estimated that the warming trend in the deep and abyssal waters in the basin is transforming the

water mass properties in the basin (Purkey & Johnson, 2010, 2012b), with a rate of isopycnal

heave between 10-25 m yr−1 in the deepest portions of the basin (Lele et al., 2021).
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5.3.1 Θ and Steric Anomaly and Trends in the Basin

Using data from Deep Argo from 4954 profiles from 55 floats between July 2014 and

May 2023 we calculate changes in Θ compared to a long-term WOCE hydrographic climatology

(Gouretski & Koltermann, 2004) (1980-2004, mean 1995). We find statistically significant

warming in the deepest portions of the basin, consistent with findings from previous studies

which use both hydrographic and float data (Purkey & Johnson, 2010; Kouketsu, Kawano, et

al., 2011; Lele et al., 2021). The Θ anomaly reveals that the entire depth range between 2000 m

and bottom is warmer than the climatological era of roughly two to three decades prior. The

warming is most pronounced between 3800 m and 4200 m with Θ anomalies in excess of 30±2.8

m 𝑜C. The warming in the deepest layer at 5750 m is roughly between 12±4 m 𝑜C (Figure 5.4).

The uncertainties are largest near the bottom, where the effective degrees of freedom are smaller

due to fewer total profiles in that depth range (Figure 5.7), as well as between 2000 m - 3000 m,

which corresponds to an increase in vertical temperature gradient associated with the transition

between NADW and other mode and intermediate waters (Talley et al., 2007).

The warming trend between 2014 and 2023 is positive and statistically significant below

4000 m in the basin. The average warming below 4000 m is 2.2 ±0.25 m m𝑜C yr−1 with the

highest rate of temperature increase found near 5000 m of 4.1±0.31 m m𝑜C yr−1 (Figure 5.5,5.6).

Between 5000 m and the bottom the rate of increase in Θ is roughly 3.1 ±0.3 m m𝑜C yr−1 and

is consistent with previous studies which have found similar rate of warming in the abyssal

AABW layers of the Southwest Pacific Basin (Purkey & Johnson, 2010; Purkey et al., 2019;

G. C. Johnson et al., 2019). Although the layers shallower than 4000 m have warmed on average

21 ±3 𝑜C compared to the WOCE climatology period (Figure 5.4), a cooling trend has been

observed by the floats in the 9 year period of -1.2 ±0.28 m m𝑜C yr−1 between 4000 m and 2000

m, with a maximum cooling trend near 2500 m of -1.96 ±0.46 m m𝑜C yr−1 (Figure 5.6). The

accelerated warming in the deep and abyssal waters below 4000 m is associated with isotherm

heaving and the shrinking in the volume of the AABW layer and homogenization of temperature
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and density gradients for much of the basin westward of the East Pacific Rise (∼ 130𝑜W).

We calculate the total steric anomaly integrated between 2000 m and the bottom for

all 4954 profiles and find the average deep steric expansion of 7.9 ± 1 mm compared to the

climatology. The float data indicate that the trend in deep steric contribution to the local sea

level rise budget is 1.3 ± 1.6 mm dec−1 (Figure 5.8). While the data along the float trajectories

show a seasonal dependence to the deep steric variability integrated up to 2000 m (Figure 5.3),

seasonality diminishes considerably below 3500 m and is negligible below 4500 m. Seasonality

in the deep steric signal as well as the total integrated steric signal has a spatial functional

dependence too, where mesoscale eddy activity especially between the Tonga-Kermadec Trend

(179𝑜W) and East Pacific Rise, as well as Ekman pumping within the sub-tropical gyre can

perturb the underlying steric field (Chelton et al., 2011; Hernández-Guerra & Talley, 2016).

Overall, the deep steric trends in the Southwest Pacific basin are robust and statistically significant

over the 9 year period considered here. We also find agreement between our estimates and

previous estimates in the basin using decadal hydrographic surveys (Purkey & Johnson, 2010), in

addition to global mean residual estimates computed using residuals combining satellite altimetry

and gravimetry (Llovel et al., 2019; Cazenave et al., 2018; Horwath et al., 2022).

5.3.2 Sea Level Budget Closure in a 5𝑜 × 5𝑜 Region : A Case for Sus-
tained Deep Argo Measurements

We formulate a local sea level budget in the Southwest Pacific Basin using the sea level

budget equation in Section 5.2.1 (Equation 5.2) in a 5𝑜×5𝑜region between 30𝑜S and 35𝑜 and

170𝑜W and 165𝑜W (Figure 5.9, grey box). We estimate terms in the sea level budget equation

using satellite and gridded data products, with the exception of adding the ”deep steric” signal

measured by Deep Argo floats in the basin. We estimate 𝑀𝑆𝐿 (𝑡), the sea surface anomaly

using AVISO’s gridded sea surface anomaly product, 𝑀𝑆𝐿mass(𝑡) using NASA GRACE JPL

RLM06 mascons solutions (Wiese et al., 2016) and 𝑀𝑆𝐿steric(0−2000) (𝑡) using the Argo climatology

(Roemmich & Gilson, 2009).
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Data from three floats in the region (WMO ID: 5902444, 5902528, 5905760) are used to

estimate 𝑀𝑆𝐿steric(2000−𝑏𝑡𝑚) (𝑡) within the confines of the 5𝑜×5𝑜 region of study. Data prior to 2016

only contain steric contribution from the upper 2000 m estimated from the Argo Climatology.

However, with the additional deep steric information available post-2016, we estimate an average

deep steric contribution from three floats of 7.2mm to the total steric anomaly between 2016 and

2023 (Figure 5.12, purple). The estimates from the 3 floats in the 5𝑜×5𝑜 region are within the

our previously calculated estimates for the basin below 2000 m of 7.9 ± 1 mm (Section 5.3.1)

All terms in Equation 5.2 show a strong seasonal cycle in this region of the subtropical

South Pacific. Amplitudes in sea level anomaly (SLA) are 50 mm or greater in most years.

Steric (0-2000 m), Full Steric (0-5750 m) and GRACE data show roughly similar amplitudes and

seasonal variability of roughly 25-30 mm (Figure 5.11). Next, we determine the value of in-situ

deep steric measurements in the sea level budget by computing the residual between SLA and

the Steric signal (SLA - Deep Argo and SLA - Argo, respectively) which are compared against

satellite-derived GRACE mass anomaly estimates (Figure 5.12). We find that both residual

estimates lead the GRACE signal by 3 months, calculated using a lag correlation between the

two signals (Figure 5.12,a).

A 3-month correction between the GRACE and residual estimates renders a much

better match with the original GRACE and residual data (Figure 5.12,b). With the 3-month

lag-correction, the average yearly amplitude shows a mean absolute difference between GRACE

and SLA - Deep Argo estimates of 3±0.25 over the period between 2016 and 2022, excluding the

the period between June 2017-June 2018 between the GRACE and GRACE-Follow On mission

which render no data, as seen in the GRACE time series (Figure 5.11,5.12). However, as seen in

Figure 5.12, at sub-yearly and inter-monthly time scales the disagreement is larger and could

be due to a variety of factors including different footprints of the satellite data in space and in

time, artifacts of various interpolation and mapping schemes used to create the gridded products

among others.

We find that the residual estimates which incorporate the deep steric anomaly from
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Deep Argo (SLA - Deep Argo, Figure 5.12a,b, blue) explains roughly 5% more variance in

the underlying GRACE signal than the residual without this estimate. While the increase in

explained variance is comparatively modest, we note the small spatial scale of the sea level

budget analysis. Incorporating more float data over a larger spatial scale as well as averaging out

satellite signals from a larger swath of the Southwest Pacific could perhaps yield more favorable

results. Assessing the reasons behind lag in the seasonal signal of GRACE data in the region

compared to the SLA and Steric signals is a potential direction for future analysis. Previous

studies on constraining the global sea level budget (e.g., Chen et al., 2020) have found systematic

phase differences of ∼ 10𝑜 between GRACE and SLA - Steric and have attributed it to artifacts

in the global mean atmospheric mass signal, which need to be removed from both spherical

harmonic and mascon solutions, and can have a notable impact in the overall agreement between

the residual estimates and GRACE data.

5.4 Discussion and Conclusions

Using Deep Argo float data in the Southwest Pacific basin from the past 9 years we find

that the AABW layer in the basin has warmed on average between 12±4 m 𝑜C (Figure 5.4)

compared to the WOCE-era leading to the disappearance of the coldest isotherms and reducing

stratification in abyssal parts of the basin, consistent with other studies that have relied on decadal

hydrographic observations (Purkey & Johnson, 2010; Lele et al., 2021). The data also show

substantial warming at mid-depths between 2000 m - 4000 m with a peak warming 30±2.8 m 𝑜C.

The availability of nearly a decade of full-depth bi-monthly observations spanning the basin with

over 4954 profiles prove valuable in reducing statistical uncertainty, which can often plague the

determination of statistical significance in results from decadal hydrographic observations.

The rate of warming implied by our results is also consistent with the idea of accelerated

warming in the deepest portions of the basin. Hydrographic data collected between the 1990s and

2000s found the warming rate to be roughly 1 m𝑜C yr−1 (Purkey & Johnson, 2010) in the basin,
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which had accelerated to 2 m𝑜C yr−1 in the subsequent decade between 2000s and 2010s (Purkey

et al., 2019). Further more, a similar study conducted using Deep Argo within the basin found

warming rates between 3±1 m𝑜C yr−1 in the bottom water regime below 5000 m (G. C. Johnson

et al., 2019). Here, we find the warming trends to be slightly higher than previously estimated of

3.1 ±0.3 m𝑜C yr−1 below 5000 m peaking at maximum of 4.1 ±0.31 m𝑜C yr−1 and a rate below

4000 m of 2.2 ±0.25 m m𝑜C yr−1.

We note that the using a decadal climatology such as WOCE which uses sparse hydro-

graphical data from ship-based surveys, mapped into an optimally interpolated product can

introduce additional uncertainty and bias in the results. Regions in the basin such as the East

Pacific Rise and the abyssal plains west of the Rise with multiple different repeat hydrographic

lines passing through them (e.g. P06, P15 and P16 and P31), could have much less uncertainty

and better signal-to-noise ratios than large swaths of regions with only one or two decadal

full-depth observations. However, temperature anomalies and trends calculated from thousands

of profiles over almost a decade, as well as agreement with past estimates in the basin, lend

substantial credence to the results presented in this study.

A key advantage of Deep Argo measurements is the ability to make full-depth temperature,

salinity measurements at high temporal resolution which allow for estimation of the full steric

anomaly signal. The data collected from floats in various parts of the basin can provide valuable

in-situ observations at sub-monthly temporal resolution in order to monitor seasonal to interannual

changes and trends in the deep ocean without the need to rely only on decadal repeat hydrographic

observations, as well as reducing statistical uncertainty in these estimates with the sheer number

of total observations collected.

We use the simultaneous temperature and salinity measurements by all the 55 floats in the

basin to compute density anomalies and steric anomalies compared to the WOCE climatological

data, at each each vertical level between 2000 m and 5750 m or the bottom using Equation 5.1

(e.g. Figure 5.3b). Our estimate of deep steric sea level rise of 1.3 ± 1.6 mm dec−1 is robust and

falls within previous estimates in the basin conducted using hydrography, as well as other global
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estimates using residual sea level rise budget calculations (Purkey & Johnson, 2010; Purkey et

al., 2019; Llovel et al., 2019). We also demonstrate a slight improvement in the overall closure of

a local sea level budget estimated within a 5𝑜×5𝑜 region of the basin. Overall, when the vision of

a global Deep Argo array is realized, the data will prove invaluable in providing insights into the

changing abyssal oceans, better inform climate models and future projections of sea level rise.
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Figures

Figure 5.1. (Top) Map of the South Pacifc with the Southwest Pacific Basin highlighted (purple).
(Bottom) The location of 55 Deep Argo floats in the Southwest Pacific Basin used in the study.
Purple marks the location of float profiles shown in Figure 5.2 and 5.3.
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Figure 5.2. a) Conservative Temperature (Θ) anomaly time series at 4000 m and 4500 m
computed with respect to the WOCE hydrographic climatology along the Deep Argo float
trajectory (Figure 5.1, purple), b) Θ anomalies along the float trajectory between 2000 m and the
bottom, also computed referenced to the WOCE climatology. Locations of time series in panel a)
marked by the horizontal dashed line

144



Figure 5.3. Steric Anomaly(2000 m-5750 m) time series (top) and Steric Anomaly along one
Deep Argo float referenced to the WOCE climatology along the float trajectory. Float location in
the basin shown is shown in Figure 5.1 (purple).
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Figure 5.4. Conservative temperature Θ anomaly computed using all Deep Argo profiles in the
basin with 95% confidence intervals (grey shading).
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Figure 5.5. Θ anomaly trend [m𝑜C yr−1] computed at 5000 m using all available Deep Argo
profiles in the basin. The anomaly and confidence intervals are the same as in Figure 5.6.
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Figure 5.6. Θ anomaly trend [m𝑜C yr−1 ] computed between each each vertical depth level
between 2000 m and 5750 m with 95% confidence intervals (purple shading).
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Figure 5.7. Degrees of freedom (blue) and total number of profiles (purple) as a function of
depth used for calculating linear fits versus time as a function of depth (e.g. Figure 5.5,5.6).
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Figure 5.8. Trend in deep steric anomalies [mm yr −1] between 2000 m and 5750 m computed
from data from all Deep Argo profiles used in the study.
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Figure 5.9. Components of the sea level budget in the Southwest Pacific Basin, a) Sea surface
height (SSH) anomalies b) Steric anomalies (0-2000 m) derived from Argo climatology and
c) mass anomalies from NASA GRACE JPL RL06M mascon solutions. The 5𝑜×5𝑜 region
considered for the sea level budget in the study is shown in the grey box.
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Figure 5.10. Steric Anomaly between 0-2000 m calculated from Argo Climatology. We add the
deep steric component using 3 deep Argo floats in the 5x5 region considered in the sea level
budget (Figure 5.9, grey box)
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Figure 5.11. Times series of the components in the sea level budget considered in the study in
the 5x5 degree region of the Southwest Pacific Basin. To consider the contribution of the deep
steric estimates made using Deep Argo to the budget, we only consider the time period beyond
2016 marking the beginning of the float deployment in this 5x5 region.
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Figure 5.12. a) Residuals calculated by taking the difference between sea level anomaly (SLA)
and the full steric signal (Deep Argo 0-5750 m) in blue, residual difference between SLA and the
upper ocean (0-2000 m) steric anomaly from Argo climatology (green) compared to the GRACE
mass anomalies (orange), b) same as a) but with a 3-month lag applied to the GRACE data.

154



Summary and Concluding Statements

Observing and documenting changes in the deep and abyssal oceans, a precursor to

understanding its circulation, dynamics and role in the global climate system has been a grand

challenge since the early days in the field observational physical oceanography. Obtaining reliable

physical measurements from the remote and harsh environment in the abyss poses a significant

logistical and engineering challenge. Despite this, the modern-era of physical oceanography is

blessed with the development of novel instrumentation, data infrastructure, funding resources as

well the collective mental bandwidth of passionate oceanographers world over to make scientific

advances in leaps and bounds in furthering our understanding of the vast unknowns of the abyss.

This thesis is a small scientific endeavor to that end, incorporating observations from

ship-based hydrographic data, novel instrumentation characterizing the nature of turbulence in

the ocean, autonomous float measurements as well as novel machine learning approaches to parse

the wealth of data collected from these instrumentation. In particular, we demonstrate using a

variety of techniques, our current ability to measure and monitor large-scale circulation with

data gathered on ships spanning three decades (Chapter 2), we develop a statistical methodology

to filter our spurious and contaminated data from noisy measurements of oceanic turbulence

from a novel instrumentation deployed on ships (Chapter 3). We use thousands of ship-based

measurements combined with machine learning to identify unique spectral characteristics in

oceanic shear and strain, which induce biases in current mixing parameterizations (Chapter 4),

and finally with the use of data collected by novel Deep Argo autonomous floats, we estimate the

rate of sea level rise and contribution of the deep and abyssal ocean warming to the sea level

budget in the Southwest Pacific (Chapter 5).
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As we attempted to answer some of these questions outlined in the thesis, more unanswered

questions and directions for inquiry have emerged from it. For example, how is the large-scale

circulation and transport of cold, dense waters of Antarctic origin changing in ocean basins

globally and are there better approaches to resolve these changes than through hydrography at

decadal timescales? What is the spatial distribution and geography of mixing in the abyssal ocean

and what are underlying mechanisms and processes in these regions which result in turbulent

mixing? What innovative approaches could be applied to extract and identify signatures and

various forms of internal wave activity in the ocean, how different are deep steric changes in

various deep ocean basins global and what is the rate of increase in heat storage and sea level rise

potential from the deep ocean in areas around the globe?

The future of our further understanding and answers to some of these questions lie in the

rapid innovation in the ocean observing technologies. For example - sensitive instrumentation

such as the 𝜒-Pod deployed on CTD rosettes combined with reliable quality control procedures

has the potential to yield a wealth of high resolution data and engender greater insights into the

spatial distribution of turbulent mixing from the ocean surface to the abyssal bottom boundary

layer. Furthermore, Deep Argo’s expansion from the pilot phase into basins globally will be

critical to obtaining a high resolution mapping of the world’s global deep ocean at monthly to bi-

monthly resolution. Overall, this work reiterates the pivotal role that high quality oceanographic

observations play in furthering our understanding of the deep ocean’s role in modulating the

climate system, and it makes a case for continued sustained observations in the abyss.
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