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Abstract

Zero-Knowledge and Obfuscation

Eric Martin Demer

Zero-Knowledge Protocols and Witness Encryption are usually defined for NP

relations. I show that they can be extended to handle promiseMA relations.

For witness encryption, this simply results in polynomially-longer instances and

witnesses. For zero-knowledge protocols, this may require one additional round

of interaction, since the prover needs to receive an allegedly random string from

the verifier, but the structure of the protocol does not otherwise change, and

soundness holds even if the prover chooses its instance after seeing that allegedly

random string.

It is known that efficient virtual black-box obfuscation of functions is impos-

sible, but there are candidate constructions of indistinguishability obfuscation,

and one can trivially build witness encryption from indistinguishability obfusca-

tion. I show that if witness encryption exists, then there is no virtual black-box

obfuscation of distributions against auxiliary input.

viii



Contents

List of Figures xi

1 Summary of Results 1

2 Zero–knowledge protocols 3
2.1 Giving nothing away . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 The Zero–Knowledge Condition . . . . . . . . . . . . . . . 8
2.1.2 Simulating the Basic Protocol . . . . . . . . . . . . . . . . 10
2.1.3 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Graph Isomorphism . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Zero-Knowledge Protocols . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Hamiltonian Paths . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Hamiltonian Path Without Boxes . . . . . . . . . . . . . . . . . . 31
2.5 Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.1 Naor Commitment . . . . . . . . . . . . . . . . . . . . . . 40
2.5.2 Commitment from Collision-Resistance . . . . . . . . . . . 42
2.5.3 Binding vs Hiding . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Beyond NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Obfuscation 55
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Computability and Complexity Background . . . . . . . . . . . . 62

3.2.1 The Strong Exponential Time Hypothesis . . . . . . . . . 64
3.2.2 k-SAT and NP . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.3 Strong Exponential Time Hypothesis . . . . . . . . . . . . 70

3.3 Uses for a Good Obfuscator . . . . . . . . . . . . . . . . . . . . . 81

ix



3.3.1 Relations Between Primitives . . . . . . . . . . . . . . . . 81
3.3.2 Symmetric and Public-Key Encryption . . . . . . . . . . . 82
3.3.3 Properties for Symmetric Encryption . . . . . . . . . . . . 86
3.3.4 Circuit Obfuscation and Encryption . . . . . . . . . . . . . 87
3.3.5 Pseudorandom Function Families . . . . . . . . . . . . . . 88
3.3.6 Fully Homomorphic Encryption . . . . . . . . . . . . . . . 89
3.3.7 Watermarks . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Possibility and Impossibility . . . . . . . . . . . . . . . . . . . . . 92

4 Joint Selection 96
4.1 On promiseMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 Interactive Protocols . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3 Informal discussion of promiseMA . . . . . . . . . . . . . . . . . . 113
4.4 Joint Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.5 Weak Joint Samplers, NP, and promiseMA . . . . . . . . . . . . . 119
4.6 Constructing strong averaging Samplers . . . . . . . . . . . . . . 126

5 (Im)plausibility 143
5.1 Notation and Definitions: . . . . . . . . . . . . . . . . . . . . . . . 146

Bibliography 171

x



List of Figures

2.1 Graph one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

xi



Chapter 1

Summary of Results

NP relations roughly correspond to types of puzzles, such that whenever there

is a solution, there is a not-too-long solution that is efficiently-and-deterministically

verifiable. The best example of this is probably Sudoku. For that example, the

instances are partially-filled grids, and the witnesses are valid ways of filling in

the empty squares.

For NP relations, Zero-Knowledge Protocols allow one to show that one knows

a solution to an instance, without revealing anything else, and Witness Encryption

allows one to encrypt plaintext messages m using an instance x, producing a

ciphertext c, such that the following hold.

• If there is no witness for x, then the encryption hides everything about m

other than the length of m.
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• Given c and a witness for x, one can efficiently find m.

I show how to extend zero-knowledge protocols and witness encryption from

NP relations to what are called promiseMA relations. These relations allow ran-

domness to be used in determining whether or not something is a witness, rather

than requiring that the verifier be deterministic. The simplest example of this is

probably minesweeper, for which given a fast algorithm that plays the game, one

can efficiently estimate that algorithm’s win probability by having it play a large

number of independent games, but there is no obvious efficient way of determin-

istically estimating that probability. After all, how would one deterministically

choose where to put the mines?

Very roughly, obfuscation means changing a computer program so that the

resulting code does the same thing as the original code, in whatever the relevant

sense may be, but is otherwise unintelligible. It is known that when the thing

the code does is compute a function, there is no close-to-ideal way to obfuscate

code. I show that, if witness encryption exists for all NP relations, then there is

no close-to-ideal way to obfuscate code when the thing the code does is sample

from a distribution.
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Chapter 2

Zero–knowledge protocols

In the following discussions about zero–knowledge protocols, I use the names

Peggy and Victor because Peggy is the Prover and Victor is the Verifier.

Suppose Peggy and Victor both know a pair of networks which differ only

in the labeling of their nodes, and that Peggy knows a bijective correspondence

between the labels that converts the networks to each other. These sorts of net-

works are called graphs, and such correspondences between the labels are called

isomorphisms. Is there some way for Peggy to prove to Victor that she knows an

isomorphism between the two graphs without revealing the isomorphism?

The answer is yes, and the simplest way of doing this is described in the next

section and is also the simplest example of a zero–knowledge proof.

3



Figure 2.1: This is an example of two graphs that are isomorphic.

2.1 Giving nothing away

This section describes proving and verifying the existence of an isomorphism

without conveying extra knowledge.
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The Basic Protocol for Graph Isomorphism

0. An ordered pair of graphs (G0, G1) is common input to Peggy and Victor,

and an isomorphism w between those graphs is an input to just Peggy.

1. Peggy chooses a bit b and lets L be the set of labels for Gb.

2. Peggy lets n be the number of elements of L.

3. Peggy computes a random bijection f : L→ {0, 1, 2, · · · , n− 1}.

4. Peggy relabels Gb by replacing each label x with the new label f(x).

5. Peggy sends the new graph, Gnew, to Victor.

6. Victor chooses a bit c uniformly at random.

7. Victor sends c to Peggy.

8. Peggy sends to Victor a function fsent defined as follows.

If c = b, then fsent = f . If c 6= b then fsent = f ◦ w.

9. If fsent is an isomorphism from Gc to Gnew, then Victor accepts,

else Victor rejects.

As an example, suppose Peggy picks the right of the two networks in figure

2.1. In this case, L = {1, 2, 3, 4, 5, 6, 7, 8} and n = 8.

In this way, Victor becomes half-convinced that Peggy knows an isomorphism

between the graphs, but without learning anything else. The reason why Victor

is only half-convinced is that even when there is no isomorphism between the

graphs, Peggy has a simple strategy which has probability half of getting Victor to

5



accept. By repeating the protocol multiple times, Victor can become increasingly

convinced that the graphs are isomorphic.

There are four conditions for a protocol to be a zero–knowledge protocol.

In the context of graph isomorphism, the term witnesses used below refers to

isomorphisms between the graphs.

Efficiency : The verifier can efficiently do its part of the protocol and, given a

witness, the prover can efficiently do its part of the protocol.

Correctness or Completeness : If the prover knows a witness and follows the

protocol, and the verifier also follows the protocol, then the verifier will accept.

Zero–Knowledge: Even a possibly malicious verifier can’t learn more than that

the prover knows a witness.

Soundness : The basic notion of soundness is, if there does not exist a witness,

then the verifier will have negligible probability of accepting. One frequently also

wants a stronger property called knowledge-soundness, which I go into in section

(2.1.3).

In theoretical cryptography and theoretical computer science, something being

efficient by default means its runtime is bounded by a polynomial in the length

of the input, and that is the meaning used in this exposition.

With respect to the present example basic protocol, because it is simple

enough, efficiency clearly holds, and completeness will clearly hold when c = b.

6



Whether completeness holds when c 6= b is slightly more complex, and it is ad-

dressed as follows. If c 6= b, then

• w is an isomorphism from Gc (the graph Victor chose) to Gb (the graph

Peggy chose).

• f is an isomorphism from Gb to Gnew.

So fsent is an isomorphism from Gc to Gnew, which means Victor accepts. Thus

completeness holds.

In most cases, one can’t have both perfect zero–knowledge and perfect sound-

ness. Instead, these are usually measured with a security parameter, which is

usually denoted k. For example, the verifier might have a 2−k chance of learning

the witness, and the prover might have a 2−k chance of convincing the verifier of

a false statement.

Because the basic protocol does not satisfy soundness (Peggy has a 50% chance

of convincing Victor even when the graphs are not isomorphic) and can be simu-

lated essentially perfectly, I do not have it use a security parameter.

An additional wrinkle here is that, in computational complexity theory, effi-

ciency is generally measured in terms of the length of the input, whereas for a

positive integer L, the number 2L − 1 is only L bits long. For that reason, one

gives unary rather than binary for k. I use overline to denote the unary repre-
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sentation of a natural number, so k is the string of k ones. For example, 6 is the

string 111111.

2.1.1 The Zero–Knowledge Condition

Although the zero–knowledge property was described earlier as the verifier

learns nothing beyond that the prover knows a witness, its formal definitions involve

a simulator for the distribution of the verifier’s views of its interaction with the

prover. Roughly, the zero–knowledge property is that there is an efficient simulator

such that interactions with the real prover are indistinguishable from outputs of

the simulator. To be more specific, about that, I need to give significantly more

explanation.

The instance is what the prover is trying to show something about. For graph

isomorphism, the instance is the ordered pair of graphs (G0, G1). Views are

usually defined as including more than my definition does, but the additional

information does not affect the definition of zero–knowledge protocols. I define

a possibly malicious verifier A’s view of an interaction as consisting of A’s ran-

domness and the sequence of messages sent by the prover. In particular, graph

isomorphism, Victor’s view is the ordered triple (c,Gb, fsent).

The zero–knowledge property requires that the simulator satisfy efficiency and

indistinguishability.
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To describe these requirements, I first note that the zero–knowledge prop-

erty can be either computational or statistical. I begin with computational zero-

knowledge, since it is easier to go from that to statistical zero-knowledge than the

other way around.

Strict efficiency is that the simulator is efficient in the worst-case. Expected

efficiency is that it is infeasible to find an input on which the simulator’s average

runtime is too long.

In the following, g&d stands for generate and distinguish. For a prover P and

a simulator S, computational indistinguishability means there is no feasible team

of adversaries (Ag&d,Aver) such that Prob (Ag&d outputs 1) differs non–negligibly

between the following two experiments.

Real Simulated

Ag&d receives k.

Ag&d chooses an instance x and a
witness w for x and an auxiliary input z.

Let Aver

(
k, x, z

)
interact

Run S
(
k, x, z,Aver

)
.

with P
(
k, x, y

)
.

Send Aver’s view of that Send the output
interaction to Ag&d. of that to Ag&d.

Ag&d outputs a bit.

9



The definition of statistical indistinguishability instead requires that there are

no such adversaries, feasible or otherwise. Similarly, for statistical zero-knowledge,

the definition of expected efficiency is that there are no inputs on which the

simulator’s average runtime is too long. The definition of strict efficiency is the

same for statistical zero-knowledge as it is for computational zero-knowledge.

Importantly, the simulator does not receive a witness. Thus, given an efficient

simulator satisfying a suitable level of indistinguishability, if Victor wanted to use

a run of the protocol as input to some other algorithm, then Victor could just as

well instead use the simulator’s output as the input to the other algorithm.

This section describes the properties that a simulator must satisfy to be a

zero–knowledge simulator. In the next section, I build such a simulator for the

basic protocol.

2.1.2 Simulating the Basic Protocol

In order to build such a simulator for the basic protocol, I start with a pre-

simulator.
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a Pre-simulator for the Basic Protocol

0. An ordered pair of graphs (G0, G1) is common input to the

pre-simulator and Victor,

1. The pre-simulator chooses a bit b uniformly at random, and

lets L be the set of labels for Gb.

2. - 7. These use the pre-simulator instead of Peggy, but are

otherwise the same as 2-7 from the basic protocol.

8. If c = b, then the pre-simulator sends its function f to Victor.

If c 6= b, then the pre-simulator fails.

Efficiency clearly holds, so consider the extent to which the pre-simulator sat-

isfies the zero–knowledge property.

Fix the common input (G0, G1), assume that these graphs are isomorphic, and

let H be a graph that Peggy or the pre-simulator might send to Victor in step

5. Since steps 2 and 3 result in the new labels corresponding to old labels that

are different from each other but otherwise uniformly random, the probability of

Victor receiving H in step 7 depends on neither of the following.

• whether Victor is interacting with Peggy or the pre-simulator

• which graph Peggy or the pre-simulator chose in step 1.

In particular, for each graphH that Victor might receive from the pre-simulator,

Victor is equally likely to receive H from the pre-simulator when b = 0 as Victor

11



is to receive H from the pre-simulator when b = 1. Thus, regardless of which

graph H Victor receives, and which bit c Victor chooses, the pre-simulator has

probability exactly 1/2 of failing. On the other hand, in each of the following

cases,

• Victor interacts with Peggy and b = 0

• Victor interacts with Peggy and b = 1

• Victor interacts with the pre-simulator and c = b

the function, fsent that Victor receives from Peggy is equally likely to be any

of the isomorphisms from Gb to Gnew.

Thus, Victor’s views of his interactions with Peggy are indistinguishable from

his views of his interactions with the pre-simulator conditioned on the pre-simulator

not failing.

12



a Simulator for the Basic Protocol

Receive as input k and the ordered pair of graphs (G0, G1) and the auxiliary

input z and Victor’s algorithm.

Using independent randomness each time, run interactions of Victor’s algo-

rithm with the pre-simulator until getting a run in which the pre-simulator

does not fail.

Output the view from Victor’s algorithm of its interaction with the pre-

simulator in which the pre-simulator did not fail.

Since the probability of the pre-simulator failing is 1/2, the average number of

runs is 2, so the simulator is efficient on average. Furthermore, it follows that the

distribution of the simulator’s outputs is indistinguishable from the distribution

of Victor’s views of his interactions with Peggy.

2.1.3 Soundness

The basic notion of soundness is, if there does not exist a witness, then the ver-

ifier will have negligible probability of accepting. However, like zero–knowledge,

this soundness can also be computational or statistical. When soundness is statis-

tical, protocols as described here are called interactive proofs, and when soundness

is only assumed to be computational, protocols as described here are called inter-

active arguments. For a set Π and a verifier V , a protocol for showing x ∈ Π is

13



computationally sound if and only if there does not exist a feasible adversary A

with non-negligible probability of succeeding in the following.

Soundness Experiment

A receives k

A chooses an instance x

If x ∈ Π then A fails.

(in which case the rest of this does not happen)

Have A interact with V
(
k, x
)
.

If V accepts, then A succeeds, else A fails.

V
(
k, x
)

denotes the verifier with inputs k and x. In other words,

it is not feasible to get the verifier to accept something that is not in Π.

The definition of statistical soundness instead requires that there are no such

adversaries, feasible or otherwise. However, quite often, one wants the verifier to

be convinced not merely that there exists a witness, but that the prover knows

a witness: i.e., one wants knowledge-soundness. To define this, the set Π is not

enough. One instead needs to pick a witness relation, which is a relation R such

that w is a witness for x if and only if xRw. Although, for most natural sets

Π with at least one such R, there is an obvious such R, I am not aware of any

results to the effect that one can generally pick such an R which is canonical in

any sense.

14



One can define strict knowledge-soundness or expected knowledge-soundness.

Similarly to the way that the definition zero-knowledge involves a simulator, the

definition of strict knowledge-soundess involves a witness-extended emulator and

the definition of expected knowledge-soundness involves a knowledge extractor.

The main condition that a witness-extended emulator must satisfy is fairly com-

plicated, and the explanation of why that condition is used is far more complicated,

so I do not give that definition in this exposition. I instead just give the defini-

tion of expected knowledge-soundness. As mentioned, this definition involves a

knowledge-extractor, henceforth called an extractor.

Expected knowledge-soundness requires that the extractor satisfy expected

efficiency and expected knowledge-extraction.

As mentioned before, the knowledge-soundness property can be either compu-

tational or statistical. I begin with computational knowledge-soundness, since it

is easier to go from that to statistical knowledge-soundness than the other way

around.

Expected efficiency is the condition that there is a polynomial poly such that

it is infeasible to find a positive integer T and other inputs to the extractor such

that the extractor’s average runtime on T and those other inputs is greater than

T · poly(`), where ` is the combined length of those other inputs. For a verifier V

and an extractor E , expected knowledge-extraction means no feasible teams of ad-

15



versaries (Agen,Aprv) has non-negligible probability of succeeding in the following

experiment.

Expected knowledge-extraction Experiment

Agen receives k

Agen chooses an instance x and an auxiliary input z and a positive

integer T in unary.

If the probability of Aprv

(
k, x, z

)
convincing V(k, x) is at most

1/T , then the team of adversaries fails. In this case we stop here.

Run E
(
k, x, z,Aprv, T

)
. If it outputs a witness for x, then the

team of adversaries fails, else the team of adversaries succeeds.

The definition of statistical knowledge-soundness still restricts to values of T

such that T can feasibly be produced, but otherwise requires that there are no such

adversaries. i.e., for statistical knowledge-soundness, the probability of convincing

the verifier still can’t be too small, but otherwise one does not restrict to feasible

adversaries.

We say that a protocol is an argument of knowledge if the knowledge extractor

satisfies computational knowledge-soundness. We say that a protocol is a proof of

knowledge if the knowledge extractor satisfies statistical knowledge-soundness.

16



2.1.4 Graph Isomorphism

We describe a sound protocol for Graph Isomorphism. To achieve soundness,

one uses sequential composition.

Statistical Zero-Knowledge Proof-of-Knowledge for Graph Isomorphism

0. k and (G0, G1) are common inputs to the prover and the verifier, and an

isomorphism w between those graphs is an input to just the prover.

1. Run the basic protocol for graph isomorphism k times. If Victor ac-

cepts every time in the basic protocol, then this verifier accepts, otherwise

it rejects.

Since the security parameter k is given in unary and the basic protocol satisfies

efficiency, this protocol also satisfies efficiency. Since the basic protocol satisfies

completeness, this protocol also satisfies completeness.

17



The Simulator

0. Receive as input k and (G0, G1) and an auxiliary input z and Aver.

1. Let z0 be the state in which Aver starts.

2. Produce a sequence of states z1, z2, · · · , zk−1 as follows. Simulate the

basic protocol for graph isomorphism, using as verifier the algorithm that

starts in state zi and ends when the basic protocol ends, and otherwise works

as Aver

(
k, (G0, G1), z

)
.

Let zi+1 be the state that Aver

(
k, (G0, G1), z

)
reaches from zi by following

that simulator’s output.

3. Output the concatenation of the randomness for Aver from each of those

simulations, followed by the sequence of simulated messages from the prover

for those simulations.

To show indistinguishability, one considers the distribution of Simulated and

Real views, denoted distrib0 and distribk, as well as k − 1 hybrids distrib1, · · ·

, distribk−1. The hybrid, distribn, first performs k−n simulated iterations followed

by n iterations that are interactions with the prover.

For each experiment, let pn be Prob (Ag&d outputs 1) in distribn. For positive

integers k, if |p0 − pk| ≥ δ, then the average of p0 − p1, p1 − p2, · · · , pk−1 − pk

has absolute value at least δ/k. So one could distinguish between simulated and

real views of the basic protocol by at least δ/k by having the distinguisher for

18



the basic protocol choose n ∈ {0, 1, · · · , k − 1} uniformly at random and run the

distinguisher for the full protocol on input that is from either distribn or distribn+1.

Incidentally, this application was the original reason for the introduction of

auxiliary input: A malicious verifier for the full protocol might make its behavior

in each execution of the basic protocol depend on its views of the earlier executions

of the basic protocol, so in this case, its views of the earlier executions of the basic

protocol are included in the auxiliary input.

19



Knowledge Extractor

0. Receive as input k and (G0, G1) and an auxiliary input

z and a malicious prover Aprv and an integer T in unary.

1. If T > 2k−1 then the extractor fails.

2. Set B = Aprv(k, (G0, G1), z).

3. Repeat the following up to T · k times:

Start B as if it was interacting with a verifier.

Repeat the following up to k times:

Create a graph Gnew by running B.

Choose a bit c uniformly at random, and send 1− c to B.

Create a function f1−c by running B.

Rewind B to just before 1− c was sent to it.

Send c to B, then create a function fc by running B.

If fc : Gc → Gnew is not an isomorphism,

then go to the next iteration of step 3, else

if f−1
c ◦ f1−c : G1−c → Gc is an isomorphism,

then output it and halt.

4. If step 3 did not find an isomorphism, then the extractor fails.

20



By inspection, one can see that expected efficiency holds. For example, the

extractor runs B at most T · k · k · 3 times. Because k is large, producing a string

whose length exceeds 2k−1 is infeasible, so assume T ≤ 2k−1.

Aside from brief excursions to see what the response of the adversary to the

other bit would have been, and the extractor possibly halting with a witness,

each iteration of step 3 is equivalent to the adversary interacting with an honest

verifier.

Let p be the probability of the malicious prover convincing an honest verifier.

If p < 1/T then the team of adversaries fails in the expected knowledge-extraction

experiment, so assume 1/T ≤ p.

Each time a bit c is chosen in the inner loop, that choice is uniformly at

random, and B is in the same state when it receives 1 − c as when it receives

c. Thus the probability of B outputting an isomorphism from Gd to Gnew when

d = c but not when d = 1− c is at most 1/2. Thus, for each of the at most k · T

iterations of step 3, the probability of the extractor finding an isomorphism is at

least p− 2−k. Since T ≤ 2k−1 and 1/T ≤ p it follows that

2 · 2−k = 2−(k−1) ≤ 1/T ≤ p ∴ p− 2−k ≥ (1/2) · p ≥ (1/2) · (1/T )

21



Thus, the probability that the extractor does not find an isomorphism is at

most (1− (1/2) · (1/T ))T ·k. Using ln(1 + x) < x gives

ln
(
(1− (1/2) · (1/T ))T ·k

)
= ln(1− (1/2) · (1/T )) · T · k

≤ −(1/2) · (1/T ) · T · k

= −(1/2) · k

so (1 − (1/2) · (1/T ))T ·k ≤ e−(1/2)·k. Since e−(1/2)·k is negligible, knowledge-

soundness holds.

2.2 Zero-Knowledge Protocols

The protocol for graph isomorphism can easily be extended to other isomor-

phism problems for which one can do something corresponding to randomly rela-

beling the vertices. However, that is still fairly narrow. Based on certain compu-

tational hardness assumptions, which I will describe later, the notions of compu-

tational zero-knowledge and computational soundness seem to allow one to build

zero-knowledge protocols for every witness relation R such that

• R is decidable in time polynomial in the length of the input
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• there is a polynomial poly such that for all x and w, if xRw then length(w) ≤

poly(length(x)).

The use of polynomial in these conditions is due to the theoretical definition

of efficient as polynomial-time. Such relations are called NP relations, because by

definition, the complexity class NP is the set of decision problems Π such that

there exists such a witness relation R for Π.

As an example, consider the Hamiltonian Path Problem. Given a directed

graph G, does G have a Hamiltonian path, i.e., a path in G that visits each vertex

exactly once?

For this problem, I use the obvious witness relation. The witnesses for a

graph G are the Hamiltonian paths in G. This problem is NP-complete [22],

which roughly means that it is in NP and for each other problem Π in NP, given

an instance x for Π, one can efficiently compute a graph G such that G has a

Hamiltonian path if and only if the answer to x is yes.

Furthermore, by examining the proofs, one sees that for each NP relation R,

one can do this in a way which respects knowledge of witnesses. For any instance

x for R and corresponding graph G, given a witness for x one can efficiently find

a Hamiltonian path in G, and given a Hamiltonian path in G one can efficiently

find a witness for x.
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Thus, a zero-knowledge protocol for the Hamiltonian Path Problem, with the

obvious witness relation, yields a zero-knowledge protocol for every NP relation.

2.2.1 Hamiltonian Paths

Temporarily, assume that the prover can provide the verifier with ideal locked

boxes each containing a bit, such that for each box:

• with the help of the prover, the verifier can learn which bit the box contains

• without the help of the prover, the verifier can’t distinguish boxes containing

0 from boxes containing 1

Once I describe how to use this in basic protocol for the Hamiltonian Path

problem, I will then describe how to replace them with a digital version based on

computational hardness assumptions.
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Basic Protocol with Boxes

0. A graph G is common input to the prover and verifier, and a Hamiltonian

path called witpath in G is an input to just the prover.

1. The prover lets n be the number of vertices.

2. The prover chooses a random bijection

randpath : {0, 1, · · · , n− 1} → {0, 1, · · · , n− 1}.

3. For each u 6= v ∈ {0, 1, · · · , n − 1}, the prover creates a locked box

labeled (u, v). For each m ∈ {0, 1, · · · , n − 2}, the prover puts 1 into the

box (randpath(m), randpath(m+ 1)), and puts 0 into the remaining boxes.

4. The prover sends those locked boxes to the verifier.

5. The verifier chooses a bit c uniformly at random and sends it to the

prover.

6. If c = 1 then the prover sends randpath to the verifier, and helps the

verifier open all the boxes. If they all open to the bits described in step 3,

then the verifier accepts, else the verifier rejects.

If c = 0 then the prover lets V be the set of vertices of G and

f : V → {0, 1 · · · , n− 1} is f(vertex m of witpath) = randpath(m).

The prover sends f to the verifier, and helps the verifier open those boxes

(f(u), f(v)) for which G does not have an edge from u to v. If they all open

to 0, then the verifier accepts, else the verifier rejects.

25



Efficiency clearly holds, and completeness will clearly hold when c = 1. Since

witpath is a path in G, it only goes along G’s edges. Thus, for every ordered pair

of distinct vertices (u, v), if G does not have an edge from u to v, then witpath

does not go directly from u to v. In this case f(u), f(v) will not be consecutive

outputs of randpath, so the (u, v) box will have a 0. Thus completeness will also

hold when c = 0.

The zero-knowledge property is far easier with ideal locked boxes than with the

digital implementation described later. If Aver chooses c = 1, then the simulator

chooses randpath as in step 2 and for each box, tells Aver that the box opened

to the bit as described in step 3. If Aver chooses c = 0, then the simulator

chooses a random bijection f from the vertices of G to {0, 1, 2, · · · , n − 1}, and

for each of the boxes that are to be opened, tells Aver that the box opened to 0.

Indistinguishability holds when witpath does not depend on randpath, because in

that case randpath being uniformly random means that for an honest prover, f

will be uniformly random.

This protocol does not yet satisfy the definition of soundness that one is ul-

timately after, but it does come close in the same way as graph isomorphism.

Given a valid response for c = 1 and a valid response for c = 0, one can easily

find a Hamiltonian path in G. That is because f must send non-edges to pairs
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that randpath does not follow, so f−1 ◦ randpath must be a path that follows G’s

edges.

2.3 Commitment Schemes

The weakest digital version of such locked boxes, is what is called a commitment

scheme. In general, such a protocol consists of a commitment phase followed by

an reveal phase, between two parties, a committer and a receiver. The security

parameter in unary is common input to the parties, and a message m is an input

to just the committer, and at the end, the receiver outputs either a message m̂ or

rejects.

In order to replace the boxes in the above protocol, a commitment scheme

just needs to handle single-bit messages m, so the definitions given here will be

specific to bit commitment. The properties that such a scheme must satisfy are

the following.

Efficiency : The parties can efficiently do their parts of the protocol.

Correctness or Completeness : If the parties both follow the protocol, then the

receiver’s output will be the same as the committer’s input message.

Hiding : Even a possibly malicious receiver can’t learn about m before the

reveal phase.
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Binding : After the commitment phase, even a malicious committer won’t both

be able to reveal a 0 and be able to reveal a 1.

As with the zero-knowledge property, hiding can be either computational or

statistical. Statistical hiding means that for all adversariesA, |p0−p1| is negligible,

where pm is the probability that A(k) outputs 1 between the commitment phase

and the reveal phase when interacting with a committer whose input message is

m. The definition of computational hiding instead only requires this for feasible

adversaries.

For a receiver R, computational binding means that, for all feasible adversaries

A, the probability of A succeeding in the following experiment is negligible.

Binding Experiment

A and R receive k as common input.

A interacts with R in a commitment phase.

b ∈ {0, 1} is chosen, depending on A and A’s state and R’s state, so as

to minimize A’s probability of succeeding in the following, with ties broken

towards 0.

A receives b.

A interacts with R in a reveal phase.

If R outputs b, then A succeeds, else A fails.
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For most natural bit commitment schemes, the definition of binding can be

simplified. Specifically, suppose that reveal is simple, in the following sense.

• During the reveal phase, R is deterministic.

• For each of R’s actions (sending a message or giving an output) during that

phase, R only uses the sequence of messages exchanged prior to that action.

In that case, the committer can easily figure out exactly what such an R would

do in the reveal phase. Thus the reveal phase is, without loss of generality, non-

interactive. For the reveal phase, the committer sends R all at once the sequence

of messages that it would have sent in the interactive reveal phase. For the same

reason, given the transcript of the commitment phase, and an attempted reveal

by the committer, anyone can determine what the the output of receiver would

be. For such bit commitment schemes, the binding property as defined above is

equivalent to it being the case that for all feasible adversaries A, the probability

of A succeeding in the following experiment is negligible.
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Binding Experiment for Simple Reveal

A and R receive k as common input.

A interacts with R in a commitment phase.

A outputs x0 and x1

If the receiver outputs 0 when the committer sends x0, and outputs 1

when x1 is sent, then A succeeds, else A fails.
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The definition of statistical binding requires that the probability of succeeding

be negligible for all adversaries A, rather than just for all feasible adversaries

A. The equivalence of the two definitions for protocols with simple reveal also

holds for statistical binding. Given a bit commitment scheme, one can replace the

locked boxes with commitments to the bits that would’ve been inside those boxes.

2.4 Hamiltonian Path Without Boxes

Basic Protocol for Hamiltonian Path

Instead of putting bits in boxes, the prover commits to bits.

Instead of helping the verifier open boxes, the prover reveals commitments.

Otherwise, this is the same as the Basic Protocol with Boxes.

Efficiency of this protocol follows easily from efficiency of the protocol with boxes

and efficiency of the bit commitment scheme. The same applies to completeness.

If G has fewer than 2 vertices, then it has at most one Hamiltonian path, and

it is trivial to find that path when there is one. Thus, the simulator can just

find that path, halting with output equal to the empty view if there is no such

path, and then use the path it found to honestly prove that it knows such a path.

Accordingly, assume that the graph G always has at least 2 vertices.

Here, establishing the zero-knowledge property is substantially trickier. For

the protocol with boxes, a simulator could just go through the first six steps,
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and wait until it receives the bit c to decide what bits the simulator should say

the opened boxes contained. Although there are more sophisticated notions of

commitment which would allow that to be done via a simulated commitment

phase, the standard notion of commitment does not support that. Instead, one

starts with a pre-simulator, similarly to how to handle the basic protocol for the

graph isomorphism problem.

a Pre-simulator for Hamiltonian Path

0. k and a graph G are common input to the pre-simulator and the verifier.

1. The pre-simulator lets n be the number of vertices.

2. The pre-simulator chooses a random bijection randpath of {0, · · · , n−1}.

3. The pre-simulator chooses a bit b uniformly at random.

4. Using security parameter k, the pre-simulator commits to a bit for each

pair from step 3 of the basic protocol. If b = 1 then those bits are as in that

step. If b = 0 then those bits are all 0.

5. The pre-simulator receives a bit c from the verifier.

6. If c = b then the pre-simulator reveals committed bits as in step 6 of the

basic protocol.

If c 6= b then the pre-simulator fails.

Efficiency of the pre-simulator clearly follows from efficiency of the commit-

ment scheme. As was done for graph isomorphism, one would like to show two

things relevant to the zero-knowledge property.
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• The pre-simulator has a noticeable probability of not failing.

• The verifier’s views of its interactions with an honest prover are indistin-

guishable from the verifier’s views of its interactions with the pre-simulator

conditioned on the pre-simulator not failing.

The difficulty with these is that the hiding property of the commitment scheme

was defined for a single commitment. To deal with this, one shows those properties

via a hybrid argument, by changing one commitment at a time. We call there

hybrids pseudo–pre-simulator, abbreviated to PPS.
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Pseudo–pre-simulator for Hamiltonian Path

0. k and a graph G are common input to PPS and the verifier. PPS also

receives as input a Hamiltonian path witpath in G and a non-negative inte-

ger j.

1. PPS lets n be the number of vertices.

2. PPS chooses a random bijection randpath of {0, · · · , n− 1}.

3. PPS chooses a bit b uniformly at random.

4. If b = 1 then the prover sets L = n − 1, else the prover sets

L = min(n− 1, j).

5. Using security parameter k, for each ordered pair (u, v) of distinct el-

ements of {0, · · · , n − 1}, PPS commits to a bit for that pair. For each

m ∈ {0, · · · , L−1}, the bit is 1 for the pair (randpath(m), randpath(m+1)),

and the bit is 0 for the remaining pairs.

6. and 7. PPS does the same in these steps as the pre-simulator does in

steps 5 and 6 respectively.

By efficiency of the commitment scheme, PPS is efficient. A subscript on PPS

indicates the value of j for PPS.

Observe that the verifier’s view of an interaction with PPS0 is identical to

the verifier’s view of an interaction with the pre-simulator. On the other hand,

the verifier’s view of interactions with PPSn−1 differ from the verifier’s view of
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interactions with an honest prover only in that, independently of the verifier’s

view up to the point at which the prover would reveal committed bits, PPSn−1

has probability 1/2 of failing instead of revealing those bits.

Going from j to j+1 can affect the bit committed for (randpath(j), randpath(j+

1)), but does not affect the bits committed to by the other commitments. This

lets one use the commitment scheme’s hiding property to show that PPS0 is indis-

tinguishable from PPSn−1. To do so, suppose Dzk is a distinguisher for those two

cases and let Dcom be the distinguisher for the commitment scheme that works as

follows.

• Choose j ∈ {0, 1, · · · , n− 2} uniformly at random.

• Have the verifier interact with PPSj, except that if PPSj chooses b = 0,

then for the pair (randpath(j), randpath(j + 1)), use the commitment to an

unknown bit instead of necessarily committing to 0.

• Run Dzk on the verifier’s view of that interaction, and give the same output

as Dzk.

Claim: the amount by which Dzk distinguishes its two cases is n− 1 times the

amount by which Dcom distinguishes commitments to 0 from commitments to 1.

Proof of Claim: For each non-negative integer j, let pj be the probability of

Dzk outputting 1 when its input is a view of an interaction with PPSj. For each
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bit b and j ∈ {0, 1, · · · , n − 2}, when the unknown bit is b and the distinguisher

chooses that j, the probability of Dcom outputting 1 will be pj+b. Thus, the

amount by which Dcom distinguishes commitments to 0 from commitments to 1 is

the absolute value of the average of p0−p1, p1−p2, · · · , pn−2−pn−1. That average

is |p0 − pn−1|/(n − 1), and |p0 − pn−1| is the amount by which Dzk distinguishes

its two cases. 2

Thus, by the commitment scheme’s hiding property, the verifier’s views of its

interactions with PPS using j = 0 are indistinguishable from the verifier’s views

of its interactions with PPS using j = n− 1.

Now, recall the behavior of PPS0 and PPSn−1. The verifier’s view of an in-

teraction with PPS is identical to the verifier’s view of an interaction with the

pre-simulator. The verifier’s view of interactions with PPSn−1 differ from the ver-

ifier’s view of interactions with an honest prover only in that, independently of

the verifier’s view up to the point at which the prover would reveal committed

bits, PPS has probability 1/2 of failing instead of revealing those bits.

Thus probability of the pre-simulator failing differs at most negligibly from

1/2, so for all sufficiently large k, that probability is greater than 1/3. In par-

ticular, the pre-simulator and PPSn−1 both have noticeable probability of not

failing. Since views of interactions with them are indistinguishable, this means

views of interactions with the conditioned on them not failing are also indistin-
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guishable. Furthermore, conditioned on PPSn−1 not failing, the verifier’s view of

interactions with PPSn−1 are identical to the verifier’s views of interactions with

the honest prover. Therefore the verifiers interactions with the honest prover are

indistinguishable from the verifier’s view of interactions with the pre-simulator

conditioned on the pre-simulator not failing.

Lastly, one wants the property which will be used to show that sequential

composition of the basic protocol satisfies soundness.

Let Aprv be a possibly-malicious prover. Interact with it as an honest verifier

until just before the verifier would choose a bit c in step 4. At that point, make a

copy of Aprv, and send c = 1 to one and c = 0 to the other. If the verifier accepts

for both copies, then f−1 ◦ randpath is probably a Hamiltonian path in the graph.

That is formalized as the following claim.

Let f be the function from the c = 0 branch and randpath the path from

the c = 1 branch. The special-soundness error is the probability that the verifier

accepts in both branches, and f−1 ◦ randpath is not a Hamiltonian path in G

Claim 0: The special-soundness error is negligible.

Proof of claim 0: Just before the honest verifier chooses a bit c in step 4, for

each of the pairs (u, v), let ubv be a bit that minimizes the probability that an

honest verifier will accept a reveal of the (u, v) commitment as being to the bit

1− ubv, with ties broken towards 0.
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It is important that one does not need to assume that anyone knows these

bits ubv. Although there are more sophisticated notions of commitment which

would enforce such knowledge, the standard notion of commitment does not nec-

essarily do so. Instead, the bits 1− ubv correspond to the bits b from the binding

experiment.

For the purpose of proving that, I say that Aprv breaks multi-binding if and

only if there is a pair (u, v) such that the verifier accepts a reveal of the (u, v)

commitment as being to 1− ubv is negligible.

Claim 1: The probability that Aprv breaks multi-binding is negligible.

Proof of Claim 1:

Consider the the adversary Acom which works as follows.

• Acom chooses one of the pairs (u, v) uniformly at random.

• HaveAprv interact with an honest verifier, except that the (u, v) commitment

is part of the binding experiment instead of with the verifier.

subclaim: The probability that Aprv breaks multi-binding is negligible is at

most (n · (n − 1))/2 times the probability of Acom succeeding in the binding

experiment.

Proof of subclaim: The commitments and reveals are independent of which

pair (u, v) was chosen by Acom, so the bits ubv are also independent of which pair
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(u, v). Similarly, the bit b for the binding experiment equals 1 − ubv. Since the

reveals are independent of which pair (u, v) was chosen by Acom, the probability

that Acom succeeds in the binding experiment is at least the probability that Aprv

breaks multi-binding divided by the number of pairs (u, v). That number is n

choose 2, which equals (n · (n− 1))/2.2

Thus, by the binding property of the commitment scheme, Claim 1 holds.2

Now, other than when Aprv breaks multi-binding, it can only reveal the com-

mitments to the corresponding bits ubv, and those were determined before the

verifier chose its bit c, even if they are not known. In such cases, the reason-

ing from the boxes protocol works here too. Given a valid response for c = 1

and a valid response for c = 0, one can easily find a Hamiltonian path in G.

That is because f must send non-edges to pairs that randpath does not follow, so

f−1 ◦ randpath must be a path that follows G’s edges. Thus, f−1 ◦ randpath is a

Hamiltonian path in G.

Therefore the special-soundness error is at most the probability that Aprv

breaks multi-binding, which is negligible by Claim 1. This proves Claim 0. 2

Finally, using the pre-simulator and Claim 0, one can build a computational

zero-knowledge argument of knowledge for Hamiltonian Path by sequential com-

position of the basic protocol for Hamiltonian Path, just as was done for Graph

Isomorphism. If the commitment scheme is statistically binding, then this gives a
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computational zero-knowledge proof of knowledge, and if the commitment scheme

is statistically hiding, then this gives a statistical zero-knowledge argument of

knowledge.

2.5 Commitment Schemes

2.5.1 Naor Commitment

The simplest commitment scheme uses a pseudorandom generator, and is due

to [25]. For bit commitment, it uses an efficiently-computable function PRG :

{0, 1}k → {0, 1}3·k such that the outputs of PRG on uniformly random inputs are

computationally indistinguishable from uniformly random elements of {0, 1}3·k.

In other words, one needs that for all feasible functions D : {0, 1}3·k → {0, 1},

when x ∈ {0, 1}k and y ∈ {0, 1}3·k are chosen uniformly at random

|Prob(D(f(x)) = 1)− Prob(D(y) = 1)|

is negligible.

For such a pseudorandom generator PRG, the bit commitment scheme works

as follows, where ⊕ denotes bitwise exlusive-or.

• The receiver chooses r ∈ {0, 1}3·k uniformly at random, and sends r to the

committer.
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• The committer choses x ∈ {0, 1}k uniformly at random.

• If b = 0 then the committer sends PRG(x) to the receiver.

If b = 1 then the committer sends PRG(x)⊕ r to the receiver.

• To reveal the committed bit, the committer sends b and x to the receiver.

• Let y by the value sent by the committer in the commit phase.

If b = 0 and PRG(x) = y then the receiver outputs 0.

If b = 1 and PRG(x)⊕ r = y then the receiver outputs 1.

If neither of those are the case then the receiver rejects.

Efficiency and correctness both clearly hold. This scheme has simple reveal,

so one can use the simpler definition of binding. Suppose

PRG(x0) = y = PRG(x1)⊕ r

In that case, r = PRG(x1) ⊕ PRG(x1) ⊕ r = PRG(x1) ⊕ PRG(x0). However,

there are only 2k possibilities for x0 and for x1, whereas r gets chosen uniformly

at random from a set with 23·k elements. Thus, at most a 2−k fraction of the

possibilities for r are such that there is a way to break binding. Thus this scheme

is statistically binding.

To see that this scheme satisfies computational hiding, note that for r ∈

{0, 1}3·k chosen by the adversary, for x ∈ {0, 1}k and y ∈ {0, 1}3·k chosen uni-
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formly at random, the distribution of PRG(x) is computationally indistinguish-

able from the distribution of y, which is identical to the distribution of y ⊕ r,

which is computationally indistinguishable from the distribution of PRG(x) ⊕ r.

To see the last of those three relations, note that if it would help, the distinguisher

D for PRG could simply start by applying ⊕r to its input.

2.5.2 Commitment from Collision-Resistance

The next-simplest bit-commitment scheme uses a collision-resistant hash fam-

ily. For bit commitment, suppose the receiver can efficiently sample from a dis-

tribution of boolean circuits computing functions from {0, 1}2·k to {0, 1}k such

that, given the circuit H, it is infeasible to find strings x0 and x1 in {0, 1}2·k such

that H(x0) = H(x1) and x0 6= x1. For such a family of circuits, the bit commit-

ment scheme works as follows, where ⊕ denotes exclusive-or and � denotes inner

product modulo 2.

• The receiver samples H from the distribution of circuits, and sends H to

the committer.

• The committer chooses r and x uniformly at random from {0, 1}2·k, and

sends r and H(x) and (r � x)⊕ b to the receiver.

• To reveal the committed bit, the committer sends x to the receiver.

42



• Let r, h, a be the values sent by the committer in the commit phase. If

H(x) = h, then the receiver outputs (r � x)⊕ a, else the receiver rejects.

Efficiency clearly holds. Since (r�x)⊕(r�x)⊕b = b, completeness also holds.

As was the case for the scheme from a pseudorandom generator, this scheme has

simple reveal. For the simpler definition of binding, the adversary succeeding

against this commitment scheme requires that the adversary find a collision for

the circuit H chosen by the receiver. Thus this scheme is computationally binding.

Statistical Hiding: For all elements x0 and x1 of {0, 1}2·k, if x0 6= x1 then

exactly half of the elements r ∈ {0, 1}2·k satisfy r� x0 = r� x1. One can see this

by considering a position i as which x0 differs from x1, fixing the bits of r at all

other positions, and then observing that exactly one of the two possibilities for

the remaining bit of r is such that r � x0 = r � x1. Thus, the family of functions

x 7→ r�x from {0, 1}2·k parameterized by r ∈ {0, 1}2·k is a 2-universal hash family,

as defined in the appendix, which allows the use of the leftover hash lemma, as

stated and proved in the appendix.

Fix the function H chosen by the verifier, and then partition {0, 1}2·k according

to the outputs of H. Since there only 2k outputs, fewer than 2(5/3)·k inputs are in

parts of size less than 2(2/3)·k. Call those parts the small parts and the remaining

parts the large parts, and let W be the union of the large parts. Since there are
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22·k possible inputs, that means a uniformly random input has probability less

than 2−k/3 of being in a small part. In all other cases, the input is in W .

For each non-empty subset S of {0, 1}2·k, let precomS denote the distribution

of (r,H(x), r � x) conditioned on x ∈ S, and let US denote the distribution of

(r,H(x), b) for b ∈ {0, 1} chosen independently and uniformly at random, still

conditioned on x ∈ S. By the leftover hash lemma, for each large piece X , there

is no way to distinguish precomX from US by at least 2−k/3. That is because the

values H(x) will all be the same, so if it would help then a distinguisher could

just start by putting that value in. The distribution precomW is a mixture the

distributions precomX for large parts X , and similarly for UW and the distributions

UX . Thus, by weighting the triangle inequality, there is no way to distinguish

precomW from UW by at least 2−k/3.

Set precom = precom{0,1}2·k and U = U{0,1}2·k . The distribution precom is a

mixture of precomW with another distribution where the weight of the latter is

less than 2−k/3, so there is no way to distinguish precom from precomW by at least

2−k/3. The same applies to U and UW . Thus, by the triangle inequality, there is

no way to distinguish precom from U by at least 3 · 2−k/3.

Now, consider commitments to 0, commitments to 1, and what I’ll call pseudo-

commitments, which are obtained by using U instead of precom. The bit being

committed or pseudo-committed to only affects the last entry of the triple, and
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for the triples from U , the last entry is a bit chosen uniformly and independently

of the other two entries. Thus, for the pseudo-commitments, the bit the bit being

pseudo-committed to does not affect the distribution of outputs.

Furthermore, for each fixed bit being committed or pseudo-committed to, a

distinguisher could start by xor-ing the last entry of the triple with the fixed bit,

so there is no way to distinguish commitments from pseudo-commitments by at

least 3 · 2−k/3. Thus, by the triangle inequality, there is no way to distinguish

commitments to 0 from commitments to 1 by at least 6 · 2−k/3. Therefore, this

commitment scheme is statistically hiding.

2.5.3 Binding vs Hiding

In general, statistical hiding is better. This is because statistically binding

commitments can be stored for a long time and perhaps eventually forced open,

either due to continually increasing computational resources or due to someone

finding a fast attack against the computational assumption. On the other hand,

with statistical hiding, breaking the computational assumption in either of those

two senses, a fast attack or way more computational resources than planned for,

only matters if it happens while the receiver is still ready to accept a reveal of the

commitment. With statistical hiding, the property which can remain relevant for

a longer period of time holds unconditionally.
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However, statistical hiding seems to require either lots of interaction [20] or

stronger computational assumptions [18]. The assumption of a pseudo-random

generator is a minimal assumption for bit commitment [5], even when both hiding

and binding are just computational [19], and gives statistically binding commit-

ments with barely any interaction needed.

2.6 Beyond NP

The construction of zero-knowledge protocols based on reduction to an NP

problem requires that the size of the resulting instance correspond to an upper-

bound on worst-case amount of time needed to check original the witness relation.

For that reason, essentially everything about the protocol grows with that upper

bound, in addition to growing with the security parameter.

[2] gives a way of avoiding this. Given a collision-resistant hash family, it shows

how to construct arguments for which the amount of communication needed and

the verifier’s runtime both only depend on the security parameter and the length

of the instance, whereas the prover is still efficient when additionally given the

witness. [9] shows how to extend those arguments to show quasi-knowledge, in a

sense defined there.

However, these all involve an efficient deterministic algorithm for the witness

relation. What if one only has a randomized algorithm for it?
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For example, suppose that Peggy and Victor like to play m-by-n minesweeper

with i mines, and Peggy claims that she knows a small and fast algorithm which

does very well at the game with those parameters. Given a claimed such algorithm,

one can easily estimate how well it does by simply running it in independent games

with those parameters. However, that involves using randomness to choose where

to put the mines in those runs, so there is not obviously a suitable NP relation. Is

there nonetheless some way for Peggy to convince Victor that she knows a such

an algorithm, without revealing the algorithm to Victor?

Chapter 4 of my thesis resolves this issue by showing how to go from zero-

knowledge protocols for NP relations to zero-knowledge protocols for relations R

such that evaluating xRw uses randomness.
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2.7 Appendix

Let | · |1 denote the `1 norm. In order to show the relevance of the leftover

hash lemma, I begin by showing that the `1-norm bounds the amount by which

finite distributions can be distinguished.

Statistical Distance Claim: For all finite sets S, for all probability distri-

butions X : S → [0, 1] and Y : S → [0, 1], for all possibly-randomized functions

D : S → {0, 1}, we have

|Probx←X(D(x) = 1)− Proby←Y (D(y) = 1)| ≤ 1

2
· |X − Y |1

Definition: For non-empty finite sets A and B, a 2-universal hash family from A

to B consists of a non-empty finite set I and a function H : I ×A→ B such that

for all elements x and y of A, if x 6= y then Probi←I(H(i, x) = H(i, y)) ≤ 1
|B| .

Leftover Hash Lemma: For all non-empty finite sets A and B, for all 2-

universal hash families H : I × A→ B, for all distributions X on A,

1

2
· |p− u|1 <

1

2
·
√
|B| · Prob

x←X ,y←X
(x = y)

where p : I × B → [0, 1] is the distribution of pairs (i,H(i, x)) for i chosen

uniformly from I and x chosen from X , and u : I × B → [0, 1] is the uniform

distribution.

The point of the leftover hash lemma is, if X has significantly more collision-

entropy that the uniform distribution on B, then applying a random member of a
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2-universal hash family to a sample from X produces an element of B that is close

to uniformly random, even given which member of the hash family was applied.

Proof of statistical distance claim. For each s ∈ S, let ds = Prob(D(s) = 1).

One has

Probx←X(D(x) = 1) =
∑
s∈S

(X(s) · ds) =
∑
s∈S

(ds ·X(s))

and similarly Proby←Y (D(y) = 1) =
∑
s∈S

(ds · Y (s)), so

Probx←X(D(x) = 1)− Proby←Y (D(y) = 1) =
∑
s∈S

(ds · (X(s)− Y (s)))

Since each ds is a probability, one has 0 ≤ ds ≤ 1 for all s ∈ S. Fix X and Y . The

values of s such that X(s) = Y (s) are irrelevant, and otherwise one extremizes∑
s∈S

(ds · (X(s)− Y (s))) as follows.

• One minimizes
∑
s∈S

(ds · (X(s)− Y (s))) by setting

ds = 0 when X(s) > Y (s) and ds = 1 when X(x) < Y (s).

• One maximizes
∑
s∈S

(ds · (X(s)− Y (s))) by setting

ds = 1 when X(s) > Y (s) and ds = 0 when X(x) < Y (s).

Thus, when SX = {s ∈ S : X(s) > Y (s)} and SY = {s ∈ S : X(s) < Y (s)},

one has the following bounds.

∑
s∈SY

(X(s)− Y (s)) ≤
∑
s∈S

(ds · (X(s)− Y (s))) ≤
∑
s∈SX

(X(s)− Y (s))
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Now

∑
s∈SY

(X(s)− Y (s)) +
∑
s∈SX

(X(s)− Y (s))

=
∑

s∈SY ∪SX

(X(s)− Y (s))

=
∑
s∈S

(X(s)− Y (s))

=
∑
s∈S

X(s)−
∑
s∈S

Y (s)

= 1− 1 = 0

so
∑
s∈SY

(X(s)− Y (s)) = −
∑
s∈SX

(X(s)− Y (s)). Furthermore, by the choice of SY ,

−
∑
s∈SY

(X(s)− Y (s)) =
∑
s∈SY

−(X(s)− Y (s)) =
∑
s∈SY

|X(s)− Y (s)|

and
∑
s∈SX

(X(s)− Y (s)) =
∑
s∈SX

|X(s)− Y (s)|, so

2 ·
∑
s∈SX

(X(s)− Y (s)) = −
∑
s∈SY

(X(s)− Y (s)) +
∑
s∈SX

(X(s)− Y (s))

=
∑
s∈SY

|X(s)− Y (s)|+
∑
s∈SX

|X(s)− Y (s)|

=
∑

x∈SY ∪SX

|X(s)− Y (s)|

=
∑
x∈S

|X(s)− Y (s)|

= |X − Y |1
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Thus
∑
s∈SX

(X(s)− Y (s)) =
1

2
· |X − Y |1, and

−1

2
· |X − Y |1 ≤

∑
s∈S

(ds · (X(s)− Y (s))) ≤ 1

2
· |X − Y |1

Therefore

|Probx←X(D(x) = 1)− Proby←Y (D(y) = 1)|

=

∣∣∣∣∣∑
s∈S

ds · (X(s)− Y (s))

∣∣∣∣∣ ≤ 1

2
· |X − Y |1

2

Leftover Hash Lemma, restated: If A and B are non-empty finite sets, and

H : I × A→ B is 2-universal hash family, and X is a distribution on A, then

1

2
· |p− u|1 <

1

2
·
√
|B| · Prob

x←X ,y←X
(x = y)

where p : I × B → [0, 1] is the distribution of pairs (i,H(i, x)) for i chosen

uniformly, and x chosen from X , and u : I×B → [0, 1] is the uniform distribution.

The following proof closely tracks the proof from [LHL] of a slightly weaker

version of the statement.

Proof of Leftover Hash Lemma. Regard p and u as vectors in the inner product

space RH×B with the usual inner product, let || · ||2 denote the Euclidean norm,

and set col(X ) = Prob
x←X ,y←X

(x = y). By the Cauchy-Schwarz inequality,

|p− u|1 ≤
√
|I| · |B| · ||p− u||2
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Since p and u are probability vectors, the sum of the entries in p− u is zero, so

p − u is orthogonal to u. Since p = (p − u) + u, by the Pythagorean theorem,

one has ||p− u||2 =
√
||p||22 − ||u||22.

Now, ||u||2
2

= |I| · |B| · 1
(|I|·|B|)2 = 1

|I|·|B| , so

|p− u|1 ≤
√
|I| · |B| · ||p− u||2

=
√
|I| · |B| ·

√
||p||22 − ||u||22

=
√
|I| · |B| ·

√
||p||22 −

1

|I| · |B|

Most of what’s left is bounding ||p||22. Now ||p||22 =
∑

(i,b)∈I×B

(p(i, b))2 is the prob-

ability that two independent samples from p are equal. Thus,

||p||22 = Prob

i← I, x← X

j ← I, y ← X

[
(i,H(i, x)) = (j,H(j, y))

]

= Prob

i← I, x← X

j ← I, y ← X

[
i = j ∧ H(i, x) = H(j, y)

]

52



Split this event into when x = y and when x 6= y . One gets the following

bound for the x = y part of the event.

Prob

i← I, x← X

j ← I, y ← X

[
i = j ∧ H(i, x) = H(j, y) ∧ x = y

]

= Prob

i← I, x← X

j ← I, y ← X

[
i = j ∧ x = y

]

= Prob
i←I,j←I

(i = j) · Prob
x←X ,y←X

(x = y)

=
1

|I|
· col(X)

Bounding the x 6= y part of the event is more complicated.

Prob

i← I, x← X

j ← I, y ← X

[
i = j ∧ H(i, x) = H(j, y) ∧ x 6= y

]

=
1

|I|
· Prob

x← X , y ← X

i← I

[
H(i, x) = H(i, y) ∧ x 6= y

]

By the 2-universality of H, for each fixed x and y, if x 6= y then

Probi←I [H(i, x) = H(i, y)] ≤ 1

|B|

Since X is a distribution on a finite set, that means

Prob

x← X , y ← X

i← I

[
H(i, x) = H(i, y) ∧ x 6= y

]
<

1

|B|
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Thus one gets the following bound for the x 6= y part of the event.

Prob

i← I, x← X

j ← I, y ← X

[
i = j ∧ H(i, x) = H(j, y) ∧ x 6= y

]

=
1

|I|
· Prob

x← X , y ← X

i← I

[
H(i, x) = H(i, y) ∧ x 6= y

]

<
1

|I|
· 1

|B|
=

1

|I| · |B|

Combining the two bounds gives

||p||22 = Prob

i← I, x← X

j ← I, y ← X

[
i = j ∧ H(i, x) = H(j, y)

]
<

col(X)

|I|
+

1

|I| · |B|

Finally, plugging that in to the bound on |p− u|1 gives

|p− u|1 <
√
|I| · |B| ·

√
col(X)

|I|
+

1

|I| · |B|
− 1

|I| · |B|

=
√
|I| · |B| ·

√
col(X)

|I|

=
√
|B| · col(X)

so 1
2
· |p− u|1 < 1

2
·
√
|B| · col(X) = 1

2
·
√
|B| · Prob

x←X ,y←X
(x = y). 2
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Chapter 3

Obfuscation

In 2010, a group of leaders in the field of cryptography collaborated on the

paper On the (Im)possibility of Obfuscating Programs [10], in which they stated

“However, there still remain several important problems in cryptography about

which theory has had little or nothing to say. One such problem is that of program

obfuscation.” (emphasis in original). Theory has since had lots to say on that

problem [13], [1], [6], [12] , but so far nothing on one of the problems posed in [10],

which is whether or not one can obfuscate sampling algorithms. Roughly speaking,

program obfuscation is changing a program’s source code to make the new source

code unintelligible, without affecting the program’s functionality. Ideally, one

would want the new source code to reveal nothing more than what can be learned
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from just querying the functionality: i.e., the new source code should be a virtual

black box which provides just input-output access to the functionality.

In the context of obfuscation, when applied to general programs, the default

functionality of a program P , is the function F given by F (x) = (P (x), t) where t

is a coarse approximation to the amount of time it takes for P to calculate P (x).

One might wonder why the amount of time is involved in the functionality.

There are two reasons for this. The simpler reason is that one would want ob-

fuscations to be relatively efficient. In particular, one would want the obfuscated

program to not take far longer to run than the original program. The more com-

plicated reason is, even when the outputs are actually simple, being sure that the

outputs are simple can be hard.

To illustrate the more complicated reason, suppose one has sets of programs S0

and S1 such that the programs in S0∪S1 run for a long time and the programs in

S0 compute the zero function and the programs in S1 compute a function g such

that all programs which compute g take a long time. To make this consideration

more precise, note the following observations.

1. Obviously, there are extremely-efficient programs that compute the zero

function.

2. With respect to the functionality F0 given by F0(x) = P (x), fulfilling the

virtual black box goal would require that obfuscations of programs in S0 be
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hard to distinguish from obfuscations of other programs that compute the

zero function.

3. In order for the obfuscator to be relatively efficient, obfuscations of programs

from (1) would have to be efficient.

4. By combining observations 2 and 3, obfuscations of programs in S0 would

have to be efficient.

5. By the assumption on S1, obfuscations of programs in S1 can’t be efficient.

6. By running obfuscations of the input program for a moderate amount of

time, one can reliably distinguish programs in S0 from programs in S1.

7. Observation 6 applies even when H is a set for which membership can be

decided by a short program and on input x, the programs Py ∈ S0 ∪ S1 are

“If y ∈ H then output g(x) else output 0.”.

8. Observation 7 applies even then L is a positive integer and H is a set of

binary strings of length L which maximizes size of circuits needed to reliably

distinguish H from its complement.

9. By brute force over the possibilities for H, there is a short program that

decides membership in such an H.
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Thus, with respect to the functionality F0 given by F0(x) = P (x), the existence

of an efficient virtual black box obfuscator would imply that every set can of binary

strings be reliably distinguished from its complement in a moderately-efficient way.

Obfuscation of general programs is not the main focus of cryptographic re-

search on obfuscation. Research has focused primarily on obfuscation of circuits,

since circuits are more restrictive. But a not very long bound on the runtime lets

one convert a program into a circuit and most cryptographic uses of obfuscation

know the security parameter before running the obfuscator and the runtime is

bounded by a function of the security parameter that does not grow very quickly,

and which controls the security level.

One example of using obfuscation for circuits, is witness encryption for NP

relations, a concept I go into in section 3.4 . As far as I am aware, prior

to my thesis, witness encryption has only been defined for NP relations. My

thesis extends the definition of witness encryption to the class called promiseMA,

which is the generalization of NP that allows randomized verifiers. In section 4.5,

I show that given witness encryption for NP, one also gets witness encryption

for promiseMA. Furthermore, I use this result to show that if witness encryption

for NP exists, then the auxiliary input setting does not allow virtual black box

obfuscation of sampling algorithms.
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In the context of obfuscation, when applied to circuits, the default functionality

of a circuit C is the function computed by C. Here, there is to include an amount of

time t as part of the functionality, since circuits can always be evaluated efficiently

given the input and the circuit.

The idea that obfuscation might be possible comes from the following. Prac-

tical experience, in which code tends to naturally become hard to understand

if precautions are not taken against this. Theorems and Conjectures such as

the Rice-Shapiro Theorem [29] and the Strong Exponential Time Hypothesis [7].

Combined these would appear to make looking at the code useless, so as written

in [10] the only useful thing that one can do with a program or circuit is to run it

(on inputs of one’s choice). This is explained in section 2.

[10] proves that nonetheless, efficient virtual black box obfuscation is not pos-

sible, for programs or for circuits. [10] also asks the question of whether virtual

black box obfuscation is possible for sampling algorithms, and that is the focus

of my thesis. Sampling algorithms can similarly be divided into programs and

circuits, although their functionalities are different from the default.

Let F be the default functionality of the program P . As a sampling algorithm,

the functionality of P is the function F̂ given by F̂ (x) is the distribution of F (r)

for r chosen uniformly at random from inputs with the same length as x.
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As a sampling algorithm, the functionality of a circuit C is the distribution of

outputs of C on uniformly random inputs.

In the setting of [10], when defining what it would mean for a candidate ob-

fuscator to be a virtual black-box obfuscator, the distinguisher is given just the

obfuscated code. I do not achieve a result for when the distinguisher is given

just the obfuscated code, but I do achieve a result for the auxiliary-input setting.

This corresponds to the distinguisher having context information, rather than just

being given the obfuscation in a vacuum.

The result is that there is a pair C0, C1 of families of sampling circuits, and an

algorithm auxgen that takes as input the original code and an upper bound on

the lengths of obfuscations of the code, such that (A) and (B) are true.

(A) There is no feasible algorithm D that distinguishes between b = 0 and

b = 1 in the following.

• D chooses a feasible length L

• C is chosen from Cb

• set z = auxgen(C,L)

• D receives z

• D can can request samples from F̂ (C). Each time it does, D receives one

sample from F̂ (C).
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(B) There is an efficient algorithm D that distinguishes between b = 0 and

b = 1 in

• D chooses a feasible length L

• C is chosen from Cb

• set z = auxgen(C,L)

• let C ′ be an obfuscation of C with length at most L

• D receives z

• D receives C ′.

I show that if there are weak obfuscators with respect to the default function-

ality then there are no virtual black box obfuscators against auxiliary input for

sampling algorithms.

3.1 Overview

The two theoretical reasons for thinking that obfuscation might be possible

are the Rice-Shapiro theorem and the Strong Exponential Time Hypothesis. In

section 3.2, I give the Rice-Shapiro theorem, and the computability background

for it. In section 3.2.1, I give the Strong Exponential Time Hypothesis, and the

logical background for it.
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3.2 Computability and Complexity Background

A subset S of N is computably enumerable if and only if there is a Turing

machine M such that for all n ∈ N, M halts on input n if and only if n ∈ S. A

partial function is like a function, but can have inputs for which it is undefined.

(This includes ordinary functions, which do not have any inputs for which they

are undefined.) Let PF(N) be the set of partial functions from N to N. For any

f ∈ PF(N), a Turing machine M computes f if and only if for all n ∈ N,

• if f(n) is defined then, on input n, M halts and its output is f(n)

• if f(n) is undefined then, on input n, M does not halt.

The reason for this concept is that, similarly to the undecidability of the halting

problem, there are computable f ∈ PF(N) such that f cannot be extended to a

computable total function from N to N, so there is no clear way to go from an

arbitrary Turing machine to a total function from N to N. On the other hand, it

should be clear that each Turing machine computes exactly one f ∈ PF(N).

Let CPF(N) (for “computable partial functions”) be the set of f ∈ PF(N) such

that there exists a Turing machine that computes f . For f and g in CPF(N), one

says that f extends g if and only if for all n ∈ N, if g(n) is defined then so is f(n)

and they are equal.

62



Fix a computable enumeration M0,M1,M2,M3, ... of the set of all Turing ma-

chines. For example, one could go first by length and then lexicographically. Let

J : 2CPF(N) → 2N be given by

J(S) = {i ∈ N : Mi’s partial function is in S}

Theorem 3.2.1. [Rice-Shapiro] For all subsets S of CPF(N), if J(S) is com-

putably enumerable then for all f ∈ CPF(N),

f ∈ S ⇐⇒ (∃g ∈ S)
(
f extends g and |{n ∈ N : g(n) exists}| <∞

)
I now describe a relevant consequence of this theorem. For pairs

X = {x0, x1, ..., xL−1}, Y = (y0, y1, ..., yL−1)

such that all variables on the right-hand side are natural numbers and x0 < x1 <

... < xL−1 , one can easily construct a Turing machine, T (g), which computes the

partial function g given by g(xi) = yi for 0 ≤ i < L and g(n) is undefined for all

other inputs. Any reasonable way of choosing such a Turing machine will work.

By the Rice-Shapiro theorem, for all subsets S of CPF(N), if J(S) is computably

enumerable then the following holds.

One can computably enumerate J(S) by halting on the indices i from the

triples X, Y, i such that

• the pair {x0, x1, ..., xL−1} , (y0, y1, ..., yL−1) is as described above
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• the index of T (g) is in S

• Mi halts on all elements of X

• Mi produces and output of yk for input xk.

In particular, one can verify a computable partial function’s membership in

S by just running an algorithm for it, rather than using anything else about the

algorithm’s code.

As an interesting aside, this consequence also has a topological interpretation:

When {undefined} ∪ N is topologized by the basis

{{undefined} ∪ N} ∪ {{n} : n ∈ N}

the computably enumerable subsets of CPF(N) correspond to the computably

enumerable unions of basic open subsets of ({undefined} ∪ N)N.

3.2.1 The Strong Exponential Time Hypothesis

The other theoretical reason for thinking that obfuscation might be possible is

the Strong Exponential Time Hypothesis (SETH). SETH concerns the complexity

of the sequence of problems k-SAT as k goes to infinity, and those problems involve

k-CNF formulas. Accordingly, I start by giving definitions leading up to a pair

of definitions for what a k-CNF formula is, then define the sequence of problems,

k-SAT, then describe what the Strong Exponential Time Hypothesis is.
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k-CNF and k-SAT

A propositional variable is a variable whose universe is {True,False}. This

is also known as a Boolean variable. A literal is a propositional variable or the

negation of a propositional variable. For example, if x is a propositional variable,

then “x” and “¬x” are each literals. The sign of a literal indicates whether the

literal is a propositional variable or the negation of a propositional variable: For

a propositional variable x, x is a positive literal and ¬x is a negative literal.

A clause is a disjunction of one or more literals. The length of a clause is

the number of literals in the clause. For example, if w, x, y, z are propositional

variables, then w ∨ ¬x ∨ y ∨ ¬z is a clause whose length is 4.

CNF is an acronym for conjunctive normal form. A CNF formula is a con-

junction of clauses, for example (a ∨ b ∨ c) ∧ (d ∨ e) ∧ f .

Definition A k-CNF formula is a CNF formula whose clauses each have length

at most k.

If one instead requires the length to always equal k, then some results remains

true, but with altered proofs. I call this the strict definition.

For example, if C0, C1, C2, C3, C4, C5 are clauses whose lengths are each 4,

then C0 ∧C1 ∧C2 ∧C3 ∧C4 ∧C5 is a 4-CNF-formula with six clauses under both

definitions.
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I use n to denote the number of variables in a CNF formula. In this exposition,

I only consider values of k that are at most logarithmic in n, since for such k, unless

one gets much more precise than I will need to get, it barely matters whether one:

(a) uses the strict definition for k-CNF formula

(b) is allowed to repeat propositional variables within a clause

(c) is allowed to repeat clauses within a CNF formula.

The unimportance of (a) is shown by introducing k new variables and the

2k − 1 clauses which rule out all assignments to those variables other than all of

them being false, and putting some of those variables into the clauses that had

fewer than k variables.

For (b), the literals could have the same sign or different signs. In the case of

repeated literals with different signs, such as x ∨ y ∨ ¬x, the clause can just be

deleted: At least one of the literals is always true, so the clause is always true.

Repeated literals with the same sign can trivially be replaced with just a single

occurrence of the literal, such as going from x ∨ y ∨ x to x ∨ y.

Similarly, for (c), repetitions of clauses within a CNF formula can be replaced

with just a single occurrence of the clause, such as going from (w ∨ x)∧ (y ∨ z)∧

(w ∨ x) to (w ∨ x) ∧ (y ∨ z).
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Repetitions as in (b) or (c) can efficiently be eliminated, so they only matter

when the time needed to do so is at least a noticeable fraction of the time needed

to handle the formula that results from eliminating those repetitions.

For the values of k that I consider, the runtimes of the algorithms that I will

refer to and describe are approximately 2c·n for positive constants c, so unless one

gets much more precise than I will need to get, the time needed to eliminate those

repetitions can only matter if there is a positive integer r such that infinitely often,

the total length of the formula is much more than 2n/r. Under those circumstances,

the formula would necessarily be almost entirely repetition, since when neither (b)

nor (c) are allowed, the formulas all have length much less than 2((log(n))3).

Accordingly, in this exposition, for convenience I say that neither (b) nor (c)

are allowed.

Following [11], for a k-CNF formula Φ, I define freq(Φ) as the maximum num-

ber of times a propositional variable occurs in Φ, and I define sol(Φ) to be the the

set of satisfying assignments for Φ: i.e., the set of ways of assigning True or False

to each variable so that Φ comes out as True.

k-SAT is the problem of, given as input a k-CNF-formula Φ, determining

whether or not sol(Φ) has at least one assignment.
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3.2.2 k-SAT and NP

We now discuss k-SAT and its Relation to the Class NP of Decision Problems:

i.e., the Qualitative Hardness of k-SAT. It turns out that for k ≥ 3, the problem

k-SAT, as defined in the preceding section, is one of the hardest of the problems

in the class of decision problems called NP.

Decision problems are problems such that for each input, the output is either

yes or no. NP is the set of decision problems such that whenever the answer is

yes, there is a polynomial-length proof of that which is verifiable in polynomial

time. In other words, NP is the set of decision problems such that there is a

polynomial p and a deterministic algorithm V such that the following hold.

• V takes as input the decision problem’s input (the instance) and an alleged-

proof, and outputs accept or reject.

• On input (x, y), the running time of V is at most p(length(x) + length(y)).

• For every yes instance x, there is at least one alleged-proof y such that

length(y) ≤ p(length(x)) and V (x, y) accepts.

• For every no instance x and every alleged-proof y, V (x, y) rejects.

In some cases, it may be possible to reduce a decision problem L0 to a decision

problem L1. In general, a reduction from a problem L0 to a problem L1 is a way
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of using a solver for L1 to solve L0. In order to give the relationship of k-SAT

to NP, I introduce the most common type of reduction, although this section’s

conclusion applies even to far more restrictive notions of reduction.

A polynomial-time many-one reduction from a decision problem L0 to a deci-

sion problem L1 is a function f such that

• The inputs for f are the same as the inputs for L0.

• f is computable in time bounded by a polynomial in the length of its input.

• For every instance x of L0, then f(x) is an instance of L1 with the same

answer.

The existence of such a function f limits how much harder L0 can be than L1,

since it lets one solve an instance x of L0 by solving the instance f(x) of L1.

For any given notion of reduction, one has the following:

• A decision problem L0 is reducible to a decision problem L1 if and only if

there is a reduction from L0 to L1.

• A decision problem L is NP-hard if and only if every problem in NP is

reducible to L.

• A problem is NP-complete if and only if the problem is in NP and is NP-

hard.
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Recall that k-SAT is the problem of, given as input a k-CNF-formula Φ, de-

termining whether or not sol(Φ) has at least one assignment. Accordingly, for

each k, the problem k-SAT is in NP because V (Φ, y) can simply check whether or

not y is an assignment in sol(Φ). Furthermore, it is known that, for every integer

k ≥ 3, the problem k-SAT is NP-hard.

The NP-hardness of 3-SAT was first shown in [3]. For k0 < k1, the problem

k1-SAT cannot be more than a tiny bit easier than k0-SAT, so k-SAT is also NP-

hard for k > 3. Thus, by definition, given that k-SAT is in NP and it is also

NP-hard for k ≥ 3, therefore the problem k-SAT is NP-complete for k ≥ 3.

Roughly speaking, this means k-SAT for k ≥ 3 are among the hardest problems

in NP.

3.2.3 Strong Exponential Time Hypothesis

The Strong Exponential Time Hypothesis concerns the complexity of solving

k-SAT, and I am going to explain how one arrives at it.

One can trivially solve k-SAT instances in an amount of time that scales

roughly as 2n, by simply trying each of the 2n possible assignments to the vari-

ables. One might wonder: How much faster than that can one solve k-SAT? Well,

somewhat signficant improvements are known. There are known algorithms that

(a) solve 3-SAT in time between 20.3862·n [21] and 20.4118·n [23]
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(b) solve 4-SAT in time between 20.554·n [27] and 20.585·n [24]

(c) for k > 4, solve k-SAT in time 2(1−(µ/k))·n, where µ depends on k and whether

the algorithm can be randomized or must be deterministic.

For part (c), with currently known algorithms [23] , [27], each such µ will be

between 4/3 and 2. The values of µ are far less important than the observation

that the values of 1 − (µ/k) approach 1 as k goes to infinity. One might further

wonder: Can one solve k-SAT in time 2c·n for a universal constant c < 1? SETH

is essentially the hypothesis that the answer to that question is no.

(SETH) The Strong Exponential Time Hypothesis states that solving k-SAT

in time 2ck·n requires that ck go to 1 as k goes to infinity.

Other than [30], I am not aware of any results regarding whether or not the

hypothesis depends on the type of algorithm or depends on whether one requires

for infinitely many n or for all but finitely many n. Accordingly, I am not aware of

any proof of equivalence between the different ways in which one could formalize

SETH.

However, SETH is known to be robust in four ways:

1. If SETH is true, then there is a sequence of constants

d3, d4, d5, ... such that SETH remains true when

restricting to k-SAT instances Φ such that freq(Φ) ≤ dk.

71



2. It does not matter whether one asserts

lim infk→∞ ck = 1 or sup({c3, c4, c5, ...}) = 1 .

3. One can require that, on input Φ, the solver find an assignment

in sol(Φ) whenever that set has at least one assignment.

4. For randomized algorithms, if SETH is true then it remains true when re-

stricting to k-SAT instances Φ such that sol(Φ) has at most one assignment.

Since each clause has at least one variable, a k-SAT instance Φ such that

freq(Φ) ≤ dk has at most dk · n clauses. Thus, it follows from (1) that, if SETH

is true then it remains true when one restricts the number of clauses so that for

each k, the number of clauses is at most linear in n.

The justification of those four claims follows.

Proof of claim (1). For each integer k ≥ 3 and ∆, let ck be such that solving

k-SAT uses time 2ck·n and let ck,∆ be such that solving k-SAT on instances Φ with

freq(Φ) ≤ ∆ uses time 2ck,∆·n. Increasing ∆ only allows more instances, so ck,∆ is

non-decreasing in ∆, which means lim
∆→∞

ck,∆ exists.

Claim (Weird): For all integers k ≥ 3, one has that ck ≤ lim
∆→∞

ck,∆.

The proof of that claim involves the following definition and lemma.

For an algorithm A that produces a finite sequence of outputs, we say A has

delay t if and only if for all inputs to A,
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• A eventually halts

• A takes at most time t between each pair of consecutive events, where the

events are A starting, and A halting, and each time A gives an output

The reference for the following lemma

does not use the strict definition of k-CNF.

Lemma 3.2.1 (Sparsification Lemma (ref [cwcd])). There is a deterministic al-

gorithm A and a function f so that ∀k, ε > 0 and Φ ∈ k -CNF then A(k, ε,Φ)

outputs Φ1, ...,Φs ∈ k -CNF s.t.

1. s ≤ 2ε·n

2. sol(Φ) = ∪i sol(Φi)

3. ∀i freq(Φi) ≤ f(k, ε)

4. each Φi is output with poly(n) delay, although the degree of the polynomial

may depend on k, ε

5. f(k, ε) ∈ poly(1
ε
), but the degree of the polynomial may depend on k

The outputs that A produces do not qualify as k-CNF formulas under the

strict definition. My proof handles going back to the strict definition.
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Proof of Claim: Let A and f be as in the lemma. Fix an integer k ≥ 3 and

a real number 0 < ε < 1, let d = f(k, ε) as in part 3 of the lemma, let n be an

integer such that

2 · k
ε
≤ n (3.1)

and let Φ be an input k-CNF formula that has n variables. Run A(k, ε,Φ), and

for each of its outputs Φi do the following.

A clause if short if it has length < k. We expand the short clauses to have

length k as follows. Split the short clauses in Φi into b ε·n
k
c sets of approximately

equal size, called groups. Call the variables in Φi the old variables. For each group

G, introduce k new variables and the 2k−1 clauses which rule out all assignments

to the new variables other than all of the new variables being false, and add one

or more of the new variables to the clauses in G so that the resulting clauses are

not short.

Let Φ′ be the resulting formula, and note that Φ′ is a k-CNF formula the strict

definition. The formula Φ′ has k new variables for each of the b ε·n
k
c groups, so

since bk · ε·n
k
c ≤ k · ε·n

k
= ε ·n and there are n old variables, Φi has at most (1+ε) ·n

variables.

Since freq(Φi) ≤ d by the choice of d, and each clause has at least one variable,

Φi has at most d · n clauses, so in particular Φi has at most d · n short clauses.
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Since those were split into b ε·n
k
c groups of approximately equal size, each group

has at most d(d · n)
/
b ε·n
k
ce clauses.

Using (3.1) gives that ε·n
k
≥ (ε · 2·k

ε
)/k = 2, then

⌊ε · n
k

⌋
>
ε · n
k
− 1 ≥ ε · n

2 · k

so ⌈
(d · n)

/⌊ε · n
k

⌋⌉
≤
⌈
(d · n)

/( ε · n
2 · k

)⌉
=

⌈
2 · k · d

ε

⌉
<

2 · k · d
ε

+ 1

Thus each group has fewer than 2·k·d
ε

+ 1 clauses. In Φ′, for each group G, each of

the k new variables introduced for G occurs in each of the 2k−1 expanded clauses,

and can occur in any of the at most 2·k·d
ε

clauses obtained from the clauses in G

by adding one or more of the new variables, but can’t occur anywhere else.

Thus, in Φ′, each new variable occurs fewer than 2·k·d
ε

+ 2k times. Also, each

old variable occurs in Φ′ exactly as many times as it occurs in Φ, so by the choice

of d, each old variable occurs in Φ′ at most d times. Since k ≥ 3 and ε < 1, one

has d < 2·k·d
ε

+ 2k, so that means

freq(Φ′) <
2 · k · d

ε
+ 2k

By the construction of Φ′, the set sol(Φ′) is exactly the set of extensions of

assignments in sol(Φi) formed by setting each of the new variables to False. Thus,

sol(Φ′) has the same number of assignments as sol(Φi), and given an element of
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either one can trivially find an element of the other. By part 2 of the sparsification

lemma, every element of sol(Φi) is an element sol(Φ).

Furthermore, again by part 2 of the sparsification lemma 3.2.1, if sol(Φ) has

at least one assignment then at least one of the outputs Φi of the algorithm A is

such that sol(Φi) has at least one assignment. Thus, one can determine whether

or not sol(Φ) has at least one assignment via the following procedure:

• Run the algorithm A on input (k, ε,Φ).

• For that algorithm’s outputs Φi:

– Construct Φ′ from Φi as above.

– If sol(Φ′) has at least one assignment then:

∗ Output yes .

∗ Given an assignment in sol(Φ′), the

restriction of the assignment to the old

variables in Φ′ is an assignment in sol(Φ).

∗ Halt.

• If none of those sets had at least one assignment then output no .

Each Φ′ from this procedure is a k-CNF formula under the strict definition,

and is such that freq(Φ′) < 2·k·d
ε

+ 2k and Φ′ has at most (1 + ε) · n variables. By
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part 4 of the sparsification lemma 3.2.1, generating the formulas Φi takes time at

most poly(n) · 2ε·n although the degree of the polynomial may depend on k and

ε. Nonetheless, as n goes to infinity, that will be much less than 22·ε·n.

Temporarily fix i. Since 2k ≤ n, going from Φi to the corresponding Φ′ takes

at most poly(n) time. Set ∆ = d2·k·d
ε

+ 2ke, so that freq(Φ′) < ∆. The formula Φ′

also has at most (1 + ε) ·n variables, so by the choice of ck,∆, determining whether

or not sol(Φ′) has at least one assignment uses time at most 2ck,∆·(1+ε)·n. Thus the

i-th iteration of the for loop takes time at most poly(n) + 2ck,∆·(1+ε)·n.

Now unfix i. Generating the formulas Φi takes time much less than 22·ε·n as n

goes to infinity, and each of the at most 2ε·n iterations of the for loop takes time at

most poly(n) + 2ck,∆·(1+ε)·n, and the final step would take at most constant time,

so the procedure takes time at most

22·ε·n +
(
2ε·n ·

(
poly(n) + 2ck,∆·(1+ε)·n))+ constant

The value ck,∆ was chosen to be such that solving a specific computational

problem uses time 2ck,∆·n, so 0 ≤ ck,∆. Now, assume that n is sufficiently large. If
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ck,∆ = 0 then

22·ε·n +
(
2ε·n ·

(
poly(n) + 2ck,∆·(1+ε)·n))+ constant

= 22·ε·n +
(
2ε·n ·

(
poly(n) + 20·(1+ε)·n))+ constant

= 22·ε·n + (2ε·n · (poly(n) + 1)) + constant

< 22·ε·n + (2ε·n · 2ε·n) + 22·ε

= 3 · 22·ε·n

< 23·ε·n

≤ 2(3·ε+ck,∆·(1+ε))·n

and if ck,∆ > 0 then

22·ε·n +
(
2ε·n ·

(
poly(n) + 2ck,∆·(1+ε)·n))+ constant

< 22·ε·n +
(
2ε·n · 2 · 2ck,∆·(1+ε)·n)+ constant

<
(
2 · 22·ε·n)+

(
22·ε·n · 2 · 2ck,∆·(1+ε)·n)

< 2 · 22·ε·n · 2 · 2ck,∆·(1+ε)·n

= 22+2·ε·n+ck,∆·(1+ε)·n

bounding the exponent

2 + 2 · ε · n+ ck,∆ · (1 + ε) · n

= (3 · ε+ ck,∆ · (1 + ε)) · n
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Combining the preceding two results gives

22·ε·n +
(
2ε·n ·

(
poly(n) + 2ck,∆·(1+ε)·n))+ constant

< 22+(2·ε·n)+(ck,∆·(1+ε)·n)

< 2((3·ε)+(ck,∆·(1+ε)))·n

In each case,

22·ε·n +
(
2ε·n ·

(
poly(n) + 2ck,∆·(1+ε)·n))+ constant < 2((3·ε)+(ck,∆·(1+ε)))·n

Thus, the procedure I gave determines whether or not sol(Φ) has at least one

assignment in time less than 2((3·ε)+(ck,∆·(1+ε)))·n. This holds for all sufficiently large

n and all n-variable k-CNF formulas Φ, so ck ≤ ((3 · ε) + (ck,∆ · (1 + ε)). In turn,

this proof gives such a ∆ for every real number 0 < ε < 1, so ck ≤ lim sup
∆→∞

ck,∆,

which proves claim Weird. 2

The rest of the proof of (1) is now easy. For each integer k ≥ 3, let dk be

an integer such that ck ≤ ck,dk + (1/k). Thus lim infk→∞ ck = lim infk→∞ ck,dk

and sup({c3, c4, c5, ...}) = sup ({c3,d3 , c4,d4 , c5,d5 , ...}), so if SETH is true then it

remains true when restricting to k-SAT instances Φ such that freq(Φ) ≤ dk. This

completes the proof of (1). 2

Proof of (2). By the definition of k-CNF formula which only requires that the

the clauses have length at most k, one gets that for all integers k0 and k1, if k0 ≤ k1

then all k0-CNF formulas are also k1-CNF formulas, so k0-SAT is no harder than
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k1-SAT. Thus c3, c4, c5, ... is non-decreasing, so lim infk→∞ ck = sup({c3, c4, c5, ...}).

2

Proof of (3). Let Φ0 be the input instance. Determine whether or not Φ0

has a satisfying assignment. If it does not, then there is nothing else to do here,

so assume it does. The formula Φ0 can’t have a pair of length-1 clauses with the

same variable that differ in the literal’s sign, since there would be no way to satisfy

both clauses in such a pair. Set Φ = Φ0. For each variable x such that neither x

nor ¬x is a length-1 clause in the current formula φ:

Determine whether or not Φ ∧ x is satisfiable. If it is, then replace Φ with

Φ ∧ x, else replace Φ with Φ ∧ ¬x.

For each Φ obtained throughout this loop, sol(Φ) ⊆ sol(Φ0). After finishing

the loop, Φ is such that

• for each variable x, Φ has exactly one 1-clause involving x

• the signs of the literals in those 1-clauses

indicate a satisfying assignment for Φ0.

This only involves determining satisfiability n+ 1 times and a trivial amount

of additional work, so it takes only poly(n) · 2ck·n time, which will be much less

than 2(ck+(1/k))·n time when n is sufficiently large. Clearly, adding 1/k to each ck

does not affect whether c3, c4, c5, ... goes to 1.2
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Lastly, the proof of (4) is given by Theorem 1 of [8].

3.3 Uses for a Good Obfuscator

3.3.1 Relations Between Primitives

Below, I discuss the following cryptographic primitives, listed roughly in in-

creasing value. Obfuscation might allow one to advance from less useful primitives

to more useful primitives.

1. symmetric encryption

2. symmetric encryption with three specific properties (to be specified later)

3. pseudorandom function families

4. public-key encryption with one specific property (to be specified later)

5. fully homomorphic encryption.

I omit the adjective secure, because when discussing implications involving

the existence of these and other cryptographic primitives, security is part of the

definitions of these things. I will give the specific properties for (3) and (4) when

I go into more detail on the meaning of (2) and (4).
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It is known that if (1) exists, then so do (2) and (3) [5],[16],[28]. I do not go

over those proofs since they are beyond the scope of this work. On the other hand,

neither the existence of (4) nor the existence of (5) is known to follow from the

existence of (1), and there is a known obstacle to any proof that the existence of

either does follow from (1) [4]. As two examples of how a good-enough obfuscator

could be used, I will show how such an obfuscator could be used to go from (2)

and (3) to (4), and then from (2) and (4) to (5).

3.3.2 Symmetric and Public-Key Encryption

To describe these two types of encryption, I use the characters Alice, Bob, and

Eve, as is traditional in cryptographic literature. These do not necessarily refer to

humans; they can instead be computers. Eve is the eavesdropper. She is listening

in on the communication channel between Alice and Bob.

In cryptography, Kerckchoff’s Principle states that a cryptosystem should be

secure even if Eve knows everything about the system, except for a single secret

parameter, the key. Although the character “Eve” was not used in this context

until much later, this was otherwise stated in an essay published by Auguste

Kerckchoffs in 1883, and is accepted by all modern cryptosystems.
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In symmetric encryption, keys used for encryption and decryption are either

the same or trivially related to each other. This is the paradigm that has been

used for most of human history. For symmetric encryption,

• Alice and Bob already have either a shared key or else one key each.

• Eve knows which of those is the case and knows the lengths of the key(s),

but knows nothing else about the key(s).

• The goal of Alice and Bob is to use their key(s) to get information, such

as a text message, from Bob to Alice in a way which does not let Eve

learn anything useful about that information beyond the length of that

information, such as the number of symbols.

For this, the plaintext is the original message, and the ciphertext is what Alice

sends to Bob over the communication channel that Eve is listening in on. Eve will

see the ciphertext; Alice and Bob want Eve to not learn more about the plaintext

than the plaintext’s length.

By the pigeon-hole principle, most possible plaintexts require sending a number

of symbols that is not much less than the number of symbols in the message.

For this, the pigeons are the possible plaintexts and the holes are the possible

ciphertexts. In particular, hiding significant differences in plaintext length, such
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as the difference between “Hi Alice” and “Hello Alice, Charlie, David, and Fred.

How are you?”, would require corresponding increases in ciphertext length.

Unless there is a limit to plaintext length, no matter how much additional

communication is used to hide differences in plaintext length, there will always be

possible plaintexts with a greater difference between their lengths so that cipher-

text length tends to reveal the difference between those possible plaintexts. This

is why encryption simply makes no attempt at hiding the length of the plaintext.

One extremely simple example, which is far from actually being secure but

nonetheless might convey the idea, is the Caesar cipher. That cipher is almost-

always and most-conveniently described as having the keys be the same and letting

encryption involve adding the key and decryption involve subtracting the key.

This is how encryption with

the Caesar cipher works

when the encryption key is 3.
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It could alternatively be described as having the keys be negatives of each other

modulo 26 (the number of letters in the alphabet) and letting both encryption

and decryption involve adding the relevant key.

The development of fast computers has massively increased the amount of

resources available for Alice and Bob and Eve. Although it might seem as though

those changes should cancel out, an important point is that the number of possible

keys of a given length grows much faster than that length - exponential versus

linear. Thus, it is possible for encryption to be secure even if Eve can find the

keys or key much faster than by just trying each possible key: much faster than

brute force does not necessary mean feasible. This allows for systems which seem

to achieve a more ambitious goal than symmetric encryption.

The more ambitious goal is for Alice and Bob is to use one public key and one

secret key to get information from Bob to Alice in a way which does not let Eve

learn anything useful about that information beyond the length of that informa-

tion. That is, Alice generates a key-pair on her own - an encryption key and a

decryption key - keeps the decryption key for herself (private key), and publishes

the encryption key (public key), which we assume results in both Bob and Eve

learning the encryption key. This concept is called public key encryption. One

reason why public key encryption is useful is it allows other parties besides Bob

to send her encrypted messages. For example, it allows for confidential commu-
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nication between parties who have had no prior contact, such as customers and

online companies.

The first methods that seem to achieve public key encryption were found in

the 1970s. Those methods were based on number theory, specifically modular

arithmetic in the integers, although those are no longer the only methods that

seem to achieve public key encryption. However, it is known that public key

encryption is qualitatively [4] harder than symmetric encryption, and the the

existence of public key encryption is not known to be implied by the existence of

symmetric encryption.

3.3.3 Properties for Symmetric Encryption

As mentioned in 3.1, it is known that if symmetric encryption exists, then so

does symmetric encryption with the following three properties:

• the encryption and decryption keys are the same

• encryption and decryption are non-interactive: i.e., Bob uses the key and an

original message and randomness to compute a ciphertext, then Alice uses

the key and ciphertext to recover the plaintext

• security holds even when Eve gets to see encryptions of plaintexts of her

choice with randomness of her choice.
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3.3.4 Circuit Obfuscation and Encryption

A good-enough circuit obfuscator would enable one to easily go from symmetric

encryption with those properties to public-key encryption. One would:

1. use the same decryption key privkey as used for the symmetric encryption

that one starts with, and set L = length(privkey)

2. find an upper bound B on the number of random bits that the symmetric

encryption might use to encrypt a message whose length is at most L with

a key whose length equals L

3. use as the encryption key an obfuscation of a circuit C where C works as

follows: The circuit C takes as input an ordered pair (m, r) of strings such

that

• length(m) ≤ L

• length(r) = B

and outputs the encryption of m with key privkey using r as randomness.

The last of the three properties from the previous section for the symmetric

encryption is that access to the functionality of such a circuit does not let Eve

break the security of the symmetric encryption. Accordingly, if the obfuscator

does what one might hope it does - roughly, stop the adversary from learning
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more than the adversary could learn from just the functionality - then the public-

key encryption system constructed in this way satisfies the basic notion of security

for public-key encryption.

In order to let a circuit obfuscator suffice, rather than requiring a program

obfuscator, the public-key encryption constructed in this way only directly works

for messages that are not very long. However, this issue of only working for short

messages issue applies to essentially every construction of public key encryption

that I am aware of. Furthermore, this issue has a generic solution called hybrid

encryption, which combines public key encryption with symmetric encryption.

Specifically, it uses the public key encryption to encrypt a key for symmetric

encryption, and use symmetric encryption with that key on the actual message.

Fortunately, symmetric encryption is not limited to messages which are not very

long.

3.3.5 Pseudorandom Function Families

Roughly speaking, Pseudorandom function families (PRFs) are functions

F : K×X → Y such that K is non-empty and for prfkey chosen at random from

K, the function f : X → Y given by f(x) = F (prfkey, x) looks like a random

function X → Y to someone who does not know prfkey. Namely, for prfkey
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chosen uniformly at random from K, Eve should not be able to tell the difference

between receiving the following two things:

(1) the outputs F (prfkey, x) for inputs x ∈ X of her choice

versus

(2) The outputs of the following procedure applied to inputs of her choice,

where Q is initially empty:

• receive x ∈ X as input

• if x is the left entry of an ordered pair in Q, then output that pair’s right

entry.

• Otherwise, choose y uniformly at random from Y , add (x, y) to Q, and

output y.

In other words, (2) outputs random elements of Y except that it outputs the

same element when given the same input. It is known that if symmetric encryption

exists, then so do pseudorandom function families.

3.3.6 Fully Homomorphic Encryption

Given that symmetric encryption implies pseudorandom function families, a

good-enough obfuscator could be used again to make the public-key encryption

be fully homomorphic. For the following, note that ciphertext means the result
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of encrypting. In order to be fully homomorphic, an encryption scheme should

come with an efficient algorithm that, given encryptions of bits x and y, computes

encryptions of ¬x and x ∧ y.

Since all boolean operations can be expressed in terms of ¬ and ∧, such an

algorithm suffices to be able to compute encryptions of the outputs of arbitrary

circuits given encryptions of their inputs. Given a pseudorandom function family

f and a public key encryption scheme and a good-enough obfuscator, the fully

homomorphic encryption scheme works as follows:

1. Every plaintext is a bit.

2. The private key privkey is the same as in the starting public key encryption.

3. Find an upper bound B0 on the number of random bits that the original

decryption algorithm might use and an upper bound B1 on the number of

random bits that the original encryption algorithm might use.

4. Let ĈT be a set that includes every possible ciphertext for the original

encryption scheme, and set X = CT×CT×{0, 1}.

5. Let F : K ×X → {0, 1}2·B0+B1 be a pseudorandom function family.

6. Choose a key prfkey for F , and let f be given by f(x) = F (prfkey, x). The

public key is an ordered pair (pub, obf), where pub is the public key for
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the starting public key encryption, and obf is an obfuscation of the circuit

that takes as input ciphertexts x and y for 1-bit plaintexts and a bit b, and

outputs the result of encrypting
(x’s plaintext) ∧ (y’s plaintext) if b = 1

¬(x’s plaintext) if b = 0

with privkey with f((x, y, b)) as randomness.

Since F is a pseudorandom function family, Eve should not be able to tell the

difference between receiving

(1) the outputs of one of those circuits on inputs of her choice

versus

(2) The outputs of the following procedure on inputs of her choice, where the

set Q is empty before Eve provides inputs.

• Receive a triple (x, y, b) as input from Eve.

• If that triple is the left entry of an ordered pair in Q, then output the right

entry of that ordered pair.

• Otherwise, let z be the result of encrypting
(x’s plaintext) ∧ (y’s plaintext) if b = 1

¬(x’s plaintext) if b = 0

with privkey, add ((x, y, b), z) to Q, and output z.
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Thus, a good-enough obfuscator can be used to go from symmetric encryption

to fully homomorphic encryption.

3.3.7 Watermarks

Another use of a sufficiently-good obfsucator would be to create watermarks

for software. This means producing many different versions of the same software,

with only tiny changes in functionality. Then, if an adversary gets a few of these

versions and makes a version with approximately the same functionality, and the

original producer subsequently receives that version, then the original producer

can identify one of the versions it produced as having been used by the adversary.

Even when the adversary gets more than one version, the original producer cannot

necessarily expect to identify more than one version as received by the adversary,

since the adversary could just ignore all but one of its versions.

3.4 Possibility and Impossibility

When attempted in practice, program obfuscation is generally done heuristi-

cally, with neither a theoretical basis nor a formalized security goal. I believe its

first theoretical treatment was [10], which proved that there is no efficient virtual

black box obfuscator. As a result, that paper proposes two alternative notions,
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one of which is called indistinguishability obfuscation, and the other of which is

obfuscation for sampling algorithms instead of for functions. For virtual black

box obfuscation, one wanted the new source code to reveal nothing more than

what can be learned from just querying the functionality: i.e., the new source

code should be a virtual black box which provides just input-output access to the

functionality.

For indistinguishability obfuscation of circuits, one instead wants that for all

circuits C0 and C1, if C0 and C1 have the same size and compute the same function

then obfuscations of C0 are computationally indistinguishable from obfuscations of

C1. There are candidate constructions for such obfusctors [1], and such obfuscators

suffice for a huge number of cryptographic tasks [14]. One of those tasks is witness

encryption, which works as follows.

Witness encryption schemes consist of an encryption algorithm and a decryp-

tion algorithm. However, unlike public key encryption, which also has a key gen-

eration algorithm, a witness encryption scheme is traditionally for an NP verifier

V . The encryption algorithm takes an input

• the security parameter (the parameter which controls the security level)

• the message m

• an instance x for the verifier V .
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It produces a ciphertext. The decryption algorithm takes as input

• the ciphertext

• a possible witness y.

We require that if V (x, y) accepts, then the decryption algorithm outputs the

message m. The security property is, if x is a no instance, then encryptions of

different messages with the same length are computationally indistinguishable.

Indistinguishability obfuscation of circuits easily suffices to build a witness

encryption scheme for an NP relation V . Let p be a polynomial such that the

following hold.

• V takes as input the decision problem’s input (the instance) and an alleged-

proof, and outputs accept or reject.

• On input (x, y), the running time of V is at most p(length(x) + length(y)).

• For every yes instance x, there is at least one alleged-proof y such that

length(y) ≤ p(length(x)) and V (x, y) accepts.

• For every no instance x, and every alleged-proof y then V (x, y) rejects.

Given indistinguishability obfuscation for circuits, on instance x and message

m, the encryption algorithm sets Lx = length(x) and Lm = length(m), and

outputs an indistinguishability obfuscation of the circuit that works as follows.
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• Take as input a string y of length at most p(Lx).

• Run V (x, y) for up to p(Lx + length(y)) time.

• If V accepts within that time, then output 1 followed by m, else output the

string of Lm + 1 zeros.

The decryption algorithm simply runs the ciphertext on the possible witness

y. If x is a no instance, then the functions computed by the circuits which are

to be obfuscated do not depend on the message m, so security for the witness

encryption scheme follows from security for the indistinguishability obfuscation.
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Chapter 4

Joint Selection

In this chapter I discuss of Joint Selection Random Samples for Zero-Knowledge

Protocols and Other Cryptographic Schemes and Protocols.

In cryptography, NP relations typically appear as the subject of two types of

protocols: Arguments and Witness Encryption. In turn, there is a whole gamut

of properties that cryptographic arguments may have. These include

succinct non− interactive

witness− indistinguishable strongly − witness− indistinguishable

zero− knowledge proof

of knowledge

The properties witness-indistinguishable and zero-knowledge themselves each

come in a hierarchy of at least 3 different flavors: computational, statistical, and
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perfect. The concept of witness encryption was introduced far more recently. Its

candidate constructions are based generally on indistinguishability obfuscation,

or specifically on graded encoding systems.

We give a transformation which shows that, at the cost of at most 1 additional

message, most such protocols can also be made to work for relations with random-

ized verifiers. In particular, we do not use an extra round for witness encryption:

Otherwise, the result would not be a witness encryption scheme.

4.1 On promiseMA

Suppose Alice claims to have a circuit that does surprisingly well at Minesweeper

with specific parameters: for example, m-by-n boards with j mines. Can Alice

prove that without revealing her circuit?

The natural approach here is zero-knowledge protocols. However, such proto-

cols for NP relations do not directly suffice: NP verifiers must be deterministic,

whereas even if the input circuit is deterministic, the only obvious efficient way

of estimating its probability of winning the minesweeper game is using random-

ness to sample mine placements and running the input circuit on the sampled

mine placements. Thus, to handle this situation, one presumably needs to allow

randomized verifiers.
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The generalization of NP to randomized verifiers for languages is called MA,

which is short for Merlin-Arthur. It requires that for each string in the language,

there is a polynomial-length proof (provided by Merlin) such that the verifier

(Arthur) has probability at least 2/3 of accepting, whereas for each string that’s

not in the language, no matter what alleged-proof Merlin provides, Arthur has

probability at most 1/3 of accepting.

One might ask, why 1/3 and 2/3? The answer to that has two parts. One

part is, one needs a gap. For example, there’s no obvious feasible way of distin-

guishing a verifier has probability 1/2 − 2− input length of accepting from a verifier

has probability 1/2 + 2− input length of accepting.

The other part is, 1/3, 2/3 is the simplest pair of distinct fractions between

0 and 1. Which such pair is used does not affect MA, for the same reason as

it does not affect BPP. As long as the thresholds differ noticeably, one can use

Chebyshev’s inequality to get that the acceptance fraction over a large-enough

but still easily doable number of independent trials is likely to differ from the

verifier’s true acceptance probability by less than half the difference between the

thresholds, and then use a Chernoff bound to get that a majority vote of accep-

tance fractions generated independently in that way has at most an exponentially

small probability of being wrong.
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A significant issue is, NP is syntactic, whereas MA is not obviously syntactic.

Every NP language has a verifier that is obviously a verifier for a NP language,

since one can hardcode a polynomial and have the verifier reject the alleged-

witness is too long or the original verifier would take too long. One does not

obviously have anything similar for MA. How can one alter a randomized verifier

so that it’s clear that there are no instances for which the new verifier’s maximum

acceptance probability (over the space of alleged-witnesses) is between the two

thresholds, without changing the language defined by the verifier?

This issue leads to the notion of promise problems. We note that our definitions

very closely follow [26]. By a string, I mean finite-length binary string. With that

meaning, {0, 1}∗ is the set of all strings.

Definition 4.1.1. Promise problems are pairs (ΠY ,ΠN) such that ΠY and ΠN

are each sets of strings and ΠY ∩ ΠN = {} .

The idea behind that name is, the solver is promised that the input is in

ΠY ∪ ΠN .

Definition 4.1.2. A total probabilistic algorithm M solves a promise problem

(ΠY ,ΠN) with thresholds 0 < plow < phigh < 1 if and only if for all x ∈ {0, 1}∗
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both the following hold:

x ∈ ΠY ⇒ Prob(M(x) accepts) > phigh

x ∈ ΠN ⇒ Prob(M(x) accepts) < plow

It is important that, the acceptance probability for inputs which do not satisfy

the promise (i.e., x such that x 6∈ ΠY ∪ ΠN) can be anything. Promise-relations,

and algorithms for them, are defined similarly.

Definition 4.1.3. Promise relations are pairs (RY , RN) such that RY and RN

are each sets of ordered pairs of strings and RY ∩RN = {} .

Definition 4.1.4. A total probabilistic algorithm M solves a promise relation

(RY , RN) with thresholds 0 < plow < phigh < 1 if and only if for all (x, y) ∈

{0, 1}∗ × {0, 1}∗ both the following hold:

(x, y) ∈ RY ⇒ Prob(M(x, y) accepts) > phigh

(x, y) ∈ RN ⇒ Prob(M(x, y) accepts) < plow

For the same reason as BPP, although whether-or-not a specific algorithm

solves a promise problem depends on the thresholds, whether-or-not there is a

polynomial-time algorithm that solves the promise-problem does not depend on

the thresholds.

Now, the definition of promiseMA relations comes with the same unimportant

ambiguity as the definition of NP relations. Does one force the promise-relation
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to output zero when the alleged witness is too long, or instead have a separate

polynomial length bound to get a corresponding promiseMA problem? To simplify

presentation, I use the former approach:

Definition 4.1.5. A promiseMA relation is a promise-relation (RY , RN) such that

(RY , RN) is solvable in polynomial time and there is a polynomial p such that for

all x ∈ {0, 1}∗ and y ∈ {0, 1}∗, if p(length(x)) < length(y) then (x, y) ∈ RN .

Definition 4.1.6. Given a promiseMA relation (RY , RN), the induced promise

problem in promiseMA is the promise problem (ΠY ,ΠN) given by

x ∈ ΠY ⇐⇒ (∃y)((x, y) ∈ RN)

x ∈ ΠN ⇐⇒ (∀y)((x, y) ∈ RN).

My approach to going from handling NP relations to handling promiseMA

relations consists of giving something which is close-enough to a reduction from

promiseMA promise-relations to NP relations.

In the following, k is the security parameter in unary. Roughly, for a promiseMA

promise-relation (RY , RN), we want an NP relationRNP and polynomials proverLen

and verifierLen and efficient deterministic algorithms

• convert instance

• forward witness transfer
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• backward witness transfer

Such that

• convert instance takes as input k and 3 more strings

• forward witness transfer and backward witness transfer

each take as input k and 4 more strings

• length(forward witness transfer (k, x, α, β, y)) may depend on length(y), but

does not otherwise depend on y

• for all strings x and z, and all but an exponentially-small fraction of the el-

ements β in {0, 1}verifierLen(length(x)), and all strings α ∈ {0, 1}proverLen(length(x))

if (convert instance (k, x, α, β, z)) ∈ RNP

then (x, backward witness transfer (k, x, α, β, z)) 6∈ RN .

• for all elements (x,w) of RY , for all β ∈ {0, 1}verifierLen(length(x)), a majority

of the elements α ∈ {0, 1}proverLen(length(x)) are such that

(convert instance (k, x, α, β), forward witness transfer (k, x, α, β, w))

is in RNP .

The roughly is because proverLen and verifierLen just need to be efficiently-enough

computable and bounded by a polynomial rather than actually being polynomials.
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The for all strings x condition is soundness: Most likely, any witness for the

NP relation can be used to get something that is close to being a witness for the

promiseMA promise-relation.

The for all elements (x,w) of RY condition provides completeness and part of

security: The prover can try as many candidate αs as the prover wants.

The length condition provides the rest of security: The length of the RNP

witness does not reveal any more than the length of the (RY , RN) witness.

Note that achieving perfect completeness for ZK protocols in strict polyno-

mial time requires promiseBPP = promiseZPP, so it would be difficult to prove

that such completeness can be achieved. For a promiseBPP statement, one can

simulate an interactive proof of the statement and an interactive proof of the

statement’s negation, with the alleged-witness being empty. If either prover times

out or either verifier rejects, then one can safely answer in the other direction.

4.2 Interactive Protocols

This section tracks [26] quite closely. An interactive protocol consists of two

possibly-randomized algorithms that compute the next-message function of the

(honest) parties in the protocol. Specifically, A(x, a, γ) denotes the next message

sent by party A when x is the list of public inputs, a is the list of A’s private

inputs, and γ is the list of messages exchanged so far. There are two special
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messages, accept and reject, which immediately halt the interaction. We say that

party A (resp. party B) is probabilistic polynomial-time (PPT) if the runtime of

its next-message function is bounded above by a polynomial in the number of bits

used to write out A’s (resp. B’s) sequence of inputs.

For an interactive protocol 〈A,B〉, we write 〈A(a), B(b)〉(x) to denote the

random process obtained by having A and B interact where x is the list of common

inputs, a is A’s list of private inputs, b is B’s list of private inputs, and the coin

tosses of A and B are independent.

We say 〈A,B〉 is polynomially bounded if and only if there is a polynomial

in the number of bits used to write out the public input such that for all lists

a, b of private inputs for A,B respectively, the total length of all messages ex-

changed in 〈A(a), B(b)〉(x) is at most that polynomial with probability 1. More-

over, if B∗ is any interactive algorithm, then A will immediately halt and reject in

〈A(a), B∗(b)〉(x) if the total length of the messages ever exceeds that polynomial,

and similarly for B interacting with any A∗.

Let transcript(〈A(a), B(b)〉(x) denote (γ0, γ1, ..., γt), where the γs are the mes-

sages exchanged (including a final accept/reject). We write viewA(〈A(a), B(b)〉(x))

to the transcript concatenated with A’s randomness, that is (γ0, γ1, ..., γt, r) where

r is A’s randomness. We define viewB(〈A(a), B(b)〉(x)) similarly, using B’s ran-

domness rather that A’s randomness.
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The number of rounds in an interactive protocol is the total number of mes-

sages exchanged between A and B, not including a final accept/reject. We call

the protocol 〈A,B〉 public coin if each message sent by B is simply the output of

B’s coin-tosses (independent of its history) except for a final accept/reject which

B computes as a deterministic function of the transcript.

So as to simplify references to other algorithms in the definitions related to

interactive proofs and interactive arguments, I start with the following definitions

and notational notes.

Definition 4.2.1. ({0, 1}∗)∗ is the set of finite-length sequences of strings.

Σ is the set {0, 1}∗ ∪ {accept, reject}, and Σ∗ is the set of finite sequences of

elements of Σ.

Definition 4.2.2. For all non-negative integers n, unary(n) is the string of n

ones.

Notation: k is the security parameter.

Definition 4.2.3. Given sequences of sets X0, X1, · · · , Xm−1 and Y0, Y1, · · · , Yn−1,

A : X0 ×X1 × ...×Xm−1
krand→ Y0 × Y1 × ...× Yn−1

denotes that A is a possibly-randomized algorithm with m +1 inputs (when not

including its own randomness) and n outputs, where its first m inputs are from
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the corresponding Xs, its m-th input is unary(k), and each output is in the

corresponding Y . When I refer to the inputs of such an algorithm, by default, the

randomness is not included.

Notation: When I specify the randomness used, that randomness will be be-

tween a semi-colon and the closing parenthesis. The absence of a semi-colon in my

functional notation for algorithms indicates that the randomness is independent

of everything else.

For example, if A generates exactly one

random bit and outputs exactly that bit, then

Prob [A(unary(k); 0) = 1] , Prob [A(unary(k)) = 1] , Prob [A(unary(k); 1) = 1]

are 0 , 1/2 , 1 respectively.

Suppression of Security Parameter: I will omit the unary(k) s from my

expressions. For example, when m = 1, I would write A(x; r) or A(x), rather than

A(x, unary(k); r) or A(x, unary(k)).

Definition 4.2.4. We write ε : {0, 1, 2, 3, ...} → [0, 1] for negligible function.

The definition of negligible function is that f : N → [0, 1] is negligible if

and only if for all natural numbers c, for all sufficiently large n, f(n) < n−c.

However, similarly to most other results in cryptography, the results in this thesis

apply to any definition of negligible that satisfies sufficient closure properties. For
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example, one might use 2−(log(n))c instead of n−c, or instead require that there

exists a positive integer c such that for all sufficiently large n, f(n) ≤ 2−(n1/c).

Definition 4.2.5. For interactive algorithms P and V , we say that 〈P, V 〉 is an

efficient-prover interactive proof system for a promise-relation (RY , RN) if and

only if there is a negligible function ε such that the following conditions all hold.

• Efficiency: 〈P, V 〉 is polynomially bounded and P and V are both efficient

• Completeness: For all strings x and w, if (x,w) ∈ RY then with probability

at least 1− ε(k), V accepts in 〈P (w), V 〉(x).

• Statistical Soundness: For every algorithm P ∗ that can interact with V while

taking no private inputs, if x is in the no set of the promise problem induced

by (RY , RN) then V accepts in 〈P ∗, V 〉(x) with probability at most ε(k).

Definition 4.2.6. I define efficient-prover interactive argument systems as above,

but with the statistical soundness bullet replaced with the following:

Computational Soundness : For every one-private-input feasible algorithm P ∗ that

can interact with V , it is infeasible to find strings x and z such that x is in the no

set of the promise problem induced by (RY , RN) and V accepts in 〈P ∗(z), V 〉(x)

with probability greater than ε(k).
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I note that if one wants a semi-uniform [15] notion, then one could interpret

the infeasible in the above condition as non-uniform with respect to x and uni-

form with respect to z, and interpret all other feasible s as referring to uniform

algorithms.

In any case, an efficient-prover interactive proof system is automatically an

efficient-prover interactive argument system, since any P ∗(z) for violating com-

putational soundness can be turned into an algorithm Q∗ for violating statistical

soundness, by just hard-coding z.

The following definitions use
krand→ from Definition 4.2.3 .

Definition 4.2.7. If 〈P, V 〉 is an efficient-prover interactive argument system for

a promise-relation (RY , RN) and circs is the set of circuits that can interact with

P while taking no private inputs, then an algorithm S : circs×{0, 1}∗ krand→ Σ∗

is a statistical zero-knowledge simulator for 〈P, V 〉 if and only if the following

conditions both hold.

• S is efficient

• Statistical Zero Knowledge: There is a negligible function ε such that for

every circuit V ∗ ∈ circs, for all elements (x,w) of RY , the statistical distance

from the distribution of viewV ∗(〈P (w), V ∗〉(x)) to the distribution sampled

from by S(V ∗, x) is at most ε(k).
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Definition 4.2.8. If 〈P, V 〉 is an efficient-prover interactive argument system for

a promise-relation (RY , RN) and algs is the set of algorithms that can interact

with P while taking exactly one private input, then an algorithm

S : algs×{0, 1}∗ × {0, 1}∗ krand→ Σ∗

is a computational zero-knowledge simulator for 〈P, V 〉 if and only if the following

conditions both hold.

• Relative Efficiency: S is efficient when its input algorithm is an efficient

algorithm, and is feasible when its input algorithm is a feasible algorithm.

• Computational Zero Knowledge: For all feasible algorithms V ∗ ∈ algs, for

all feasible algorithms

D : {0, 1}∗ × {0, 1}∗ × Σ∗
krand→ {0, 1}

there is a negligible function ε such that it is infeasible to find strings x,w,z

such that (x,w) ∈ RY and

|f(viewV ∗(〈P (w), V ∗(z)〉(x))− f(S(V ∗, z, x)| > ε(k)

where f(t) = Prob [D (z, x, t) = 1]

Similarly to the case for computational soundness, one can get a semi-uniform

[15] notion by interpreting the infeasible in the above condition as non-uniform
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with respect to x and w and uniform with respect to z, and interpret all other

feasible s as referring to uniform algorithms.

Definition 4.2.9. If 〈P, V 〉 is an interactive argument for a promise-relation

(RY , RN) and circs is the set of circuits that can interact with V while taking

no private inputs, then an algorithm

E : circs×{0, 1}∗ krand→ Σ∗ × {0, 1}∗

is a statistical witness-extended emulator for 〈P, V 〉 if and only if there is a negli-

gible function ε such that the following conditions all hold.

• E is efficient

• Statistical Emulation: For every circuit P ∗ ∈ circs, for all strings x, the

statistical distance from the distribution of viewP ∗(〈P ∗, V (x)〉) to the dis-

tribution of the left output of E (P ∗, x) is at most ε(k).

• Statistical Witness-Extension: For every circuit P ∗ ∈ circs, for all strings x,

Prob(u,y)←E(P ∗,x) [(x,y) ∈ RN and u is a view in which V accepts] ≤ ε(k).

Definition 4.2.10. If 〈P, V 〉 is an interactive argument for a promise-relation

(RY , RN) and algs is the set of algorithms that can interact with V while taking

exactly one private input, then an algorithm E : algs×{0, 1}∗ × {0, 1}∗ → Σ∗ ×

{0, 1}∗ is a computational witness-extended emulator for 〈P, V 〉 if and only if the

following conditions all hold.
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• Relative Efficiency: E is efficient when its input algorithm is an efficient

algorithm, and is feasible when its input algorithm is a feasible algorithm.

• Computational Emulation:

For all feasible algorithms P ∗ ∈ algs, for all feasible algorithms D : {0, 1}∗×

{0, 1}∗ ×Σ∗
krand→ {0, 1}, there is a negligible function ε such that it is infea-

sible to find strings x and z such that∣∣Prob [D (z, x, viewP ∗(〈P ∗(z), V 〉(x)) = 1]− Prob(u,y)←E(P ∗,z,x) [D(z, x, u) = 1]
∣∣

is greater than ε(k).

• Computational Witness-Extension: For all feasible algorithms P ∗ ∈ algs,

there is a negligible function ε such that it is infeasible to find strings x and

z such that

Prob(u,y)←E(P ∗,z,x) [V accepts in u and (x,y) ∈ RN ] > ε(k).

As before, one can get a semi-uniform [15] notion by interpreting the infeasible

s as non-uniform with respect to x and uniform with respect to z, and all other

feasible s as uniform. That completes the complicated definitions. With them out

of the way, I now give definitions which simply put those concepts together.

Definition 4.2.11. For all promise-relations (RY , RN), the statistical zero knowl-

edge proof (resp. argument) systems for (RY , RN) are the pairs S, 〈P, V 〉 such
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that 〈P, V 〉 is an efficient-prover interactive proof (resp. argument) system for

(RY , RN) and S is a statistical zero-knowledge simulator for 〈P, V 〉.

Definition 4.2.12. Computational zero-knowledge proof (resp. argument) sys-

tems for (RY , RN) are defined using computational zero-knowledge simulators, but

otherwise as in the definition of statistical zero-knowledge proof (resp. argument)

systems.

Definition 4.2.13. For all promise-relations (RY , RN), the proof (resp. argu-

ment) of knowledge systems for (RY , RN) are the pairs 〈P, V 〉, E such that 〈P, V 〉

is an efficient-prover interactive proof (resp. argument) system for (RY , RN) and

E is a statistical (resp. computational) witness-extended emulator for 〈P, V 〉 .

Definition 4.2.14. For all promise-relations (RY , RN), the statistical zero knowl-

edge proof (resp. argument) of knowledge systems for (RY , RN) are the triples

S, 〈P, V 〉, E such that S, 〈P, V 〉 is a statistical zero-knowledge proof (resp. argu-

ment) system and 〈P, V 〉, E is a proof (resp. argument) of knowledge system.

Definition 4.2.15. Computational zero-knowledge proof (resp. argument) of

knowledge systems for (RY , RN) are defined using computational zero-knowledge

simulators, but otherwise as in the definition of statistical zero-knowledge proof

(resp. argument) of knowledge systems.
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There are implications between those properties and flavors. However, we do

not go further into those implications. Instead, we recall that, as long as the prover

is required to be efficient, an NP language is not sufficient for such protocols, since

the completeness condition involves the prover being given a witness, and what

strings are witnesses depends on more than just the language.

Witness Encryption is a far more recent development. The idea is that it is

like public-key encryption, but instead of coming with a specific key generation

algorithm, they let the encryptor use any instance (of, for example, an NP relation)

as a public key , and the corresponding private keys are the witnesses for that

instance. Witness Encryption for NP relations can easily be constructed from

Indistinguishability Obfuscation.

4.3 Informal discussion of promiseMA

Suppose we have fixed an instance x of the problem and a string y that Alice

claims to be a witness for x. Let n be an upper bound on the amount of ran-

domness which the promiseMA verifier might use on (x, y), let S = {0, 1}n, and

let A be the subset of strings in S which cause the promiseMA verifier to accept

(x,w). The promiseMA relation (RY , RN) has the properties: (x, y) ∈ RY when

most elements of S are in A, and (x, y) ∈ RN when most elements of S are not in

A.
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The goal is to distinguish these cases. However, NP verifiers cannot themselves

flip coins, so any randomness for that purpose must be provided as part of their

input. Additionally, the two parties providing that input do not trust each other,

so the procedure must work (with high probability) even when only one of its two

alleged-randomness strings is chosen honestly. That yields the informal problem

we describe next.

Let S be a non-empty finite set, and let A be a subset of S. Suppose Alice

claims that most elements of S are in A, and Bob claims that most elements of S

are not in A. Since S is non-empty and finite, at least one of them is lying.

Suppose Charlie would like to identify one of them as a liar, but S is too large

to brute-force, and Charlie cannot make his own random choices. However, we do

let Charlie take two strings of alleged-randomness; one from Alice and one from

Bob. Charlie wants to use these strings so that he outputs either Alice lied or Bob

lied with the following requirements.

If most elements of S are in A then his probability of outputting Alice lied is

extremely small, and if most elements of S are not in A then his probability of

outputting Bob lied is extremely small.

We would prefer that the alleged-randomness strings Charlie receives be fairly

short, and that Charlie only needs to check a fairly small number of elements
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of S. We will now give a general description, and then a formal definition, for

randomness-efficient samplers.

For that purpose, we do let Charlie use randomness, generated on his own

rather than from Alice/Bob. In this case, by the Chernoff bounds, Charlie can

estimate |A|/|S| with decent accuracy and high probability by just drawing inde-

pendent samples from S. However, that requires a fairly large amount of random-

ness. We would like Charlie to make do with much less, without decreasing his

accuracy too much. That is the basic idea behind randomness efficient-samplers.

4.4 Joint Sampling

We write Zk for the set {0, 1, · · · , k− 1} of integers i such that 0 ≤ i < k, and

S = {0, 1}n is all strings of length n. A collection of strings of length n is then a

subset of S, and can be regarded as a function S → {0, 1}.

Healy’s main theorem yields something which is stronger than what we need

in two ways. It concerns functions

S → [0, 1]

instead of subsets of S. One might think of this as assigning a degree to which a

given string is in the collection. Also, Healy’s theorem allows functions that are
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different for the different output-indices. This motivates the following, which is

based on Definition 2 of [Healy].

Definition 4.4.1. A function

Γ = (Γ0, · · · ,Γk−1) : {0, 1}m → Sk

is a strong (γ, ε)-averaging sampler if the following holds. Given functions f0, f1,

..., fk−1 : S → [0, 1], define F : Sk → [0, 1] by

F (x0, x1, x2, · · · , xk−2, xk−1) = Ei[fi(xi)] =
1

k

k−1∑
i=0

fi(xi)

Then

Pr [|F ◦ Γ− µ| > ε] ≤ γ

where µ = Ex∈Sk [F (x)] is the mean of F . We call m the seed-length of the sampler,

and k is the sample complexity of the sampler.

To show the definition’s similarity to what we described, observe that

|F (Γ(s))− µ| ≤ ε

is equivalent to

|Ei[fi(Γi(s))]− Ei[Es[fi(s)]]| ≤ ε .

Moreover, if all the fi = f this simplifies to

|Ei[f(Γi(s))]− Es[f(s)]| ≤ ε

Next we give similar definitions for the related objects we will be constructing.
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Definition 4.4.2. The set of strings Alice chooses from is A = {0, 1}mA , and the

set of strings Bob chooses from is B = {0, 1}mB .

Definition 4.4.3. A weak (γ, ε)-joint sampler is a function

J = (J0, · · · , Jk−1) : A× B → Sk

such that for all functions f : S → {0, 1}, when F : Sk → [0, 1] is defined by

F (x0, x1, x2, · · · , xk−2, xk−1) = Ei[f(xi)] =
1

k

∑
f(xi)

and µ is the mean of f , we have the following two conditions:

• Bob’s security

Probβ∈B (∃α ∈ A |(F ◦ J)(α, β)− µ| > ε) < γ

This is a formalization of It is unlikely that Bob’s choice of string, β, allows

Alice to chose a string, α, where the mean on the sampler’s outputs differs

from the true mean by more than ε.

• Alice’s security

∀ β ∈ B E(F ◦ J) = µ

where the expectation is over the choice of α ∈ A and i ∈ Zk This is a

formalization of Whatever Bob does, the expected value using the sampler,

over all Alice’s choices of string and index, equals the true mean.
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We call k the sample complexity of the joint sampler.

In what follows, ⊕ can be any binary operation operation on S whose multi-

plication table is a Latin square: i.e., each column and each row has each symbol

exactly once. In particular, ⊕ could be any group multiplication, for example

bitwise exclusive-or.

Theorem 4.4.4. Given γ, ε > 0 and a strong (γ/(2mA), ε)-averaging sampler Γ,

the function

J : S × B → Sk

given by Ji(α, β) = α⊕ Γi(β) is a weak (γ, ε)-joint sampler.

Proof: Suppose µ is the mean of a function f : A → {0, 1}. Fix an element

α ∈ S, and let f̂ : A → [0, 1] be given by f̂(r) = f(α⊕ r). By the assumption on

⊕, r 7→ α⊕ r is a bijection on S. It follows that

Er(f̂(r)) = Er(f(α⊕ r)) = Er(f(r)) = µ

This holds for all α ∈ A, so the probability, over the choice of β, of any particular

α ∈ A being such that

|(F ◦ J)(α, β)− µ| > ε · k

is at most γ/(2mA) by (4.4.1). Therefore, by a union bound, the probability

that there exists an element α ∈ A for which that inequality holds is at most

|A| · γ/(2mA) = γ. Thus Bob’s security holds.
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Now, fix an element β ∈ B, and an integer 0 ≤ j < k. By the assumption on

⊕, r 7→ r ⊕ Γ(β)j is a bijection, so

Er (f (r ⊕ Γ(rb)j)) = Er(f(r)) = µ

Since this holds for all j, the equality will still hold when the expectation is also

over the choice of j. Thus Alice’s security also holds. Therefore J is a weak

(γ, ε)-joint sampler, as claimed.2

4.5 Weak Joint Samplers, NP, and promiseMA

The efficient construction of weak joint samplers with good-enough parameters

already suffices for modifying most schemes for handling NP relations into schemes

for handling promiseMA promise-relations. For 2-party protocols designed for NP

relations, if the following five conditions all apply to each time such a relation is

used then the protocol can be converted to handle promiseMA relations.

• exactly one party will supply a possible witness

• before that party does so, it will know the NP relation and the instance

• if that party is honest, then the possible witness will be a valid witness
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• (even if all strings are valid witnesses,) that party as an adversary can never

gain by making the protocol continue as if the supplied possible witness was

not a valid witness

• if the other party somehow knew that the party referred to in the previous

four bullet points knows a valid witness, then there would be no need for

the latter party to actually supply its witness

Converted protocols created in the manner described in this paper have three

downsides:

1) For each promiseMA relation that does not have perfect completeness, each

party that supplies a possible witness will usually need to be promiseZP: To

continue with the protocol, those parties will need to find a string of a specific

length satisfying a condition that they can efficiently-and-deterministically check,

where if their supplied witness is a valid witness then more than 1/4 of the strings

with the specified length satisfy the condition.

2) For each party, before that party supplies a possible witness for a promiseMA

relation, that party must know a sufficiently long string which the other party

trusts was random conditioned on the promiseMA relation, where the threshold for

sufficiently long is a linear function of the security parameter plus an upper bound

on the length of the instance plus an upper bound on the amount of randomness

that the promiseMA verifier might use.
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3) For each party, if that party supplies any possible witness, then the other

party’s security will be at most statistical (rather than perfect). The conversion

can also be applied to schemes which can tolerate those downsides.

Suppose (RY , RN) is a promiseMA relation. Let p be a polynomial upper-

bound on its witness lengths. As mentioned just after Definition 1.6, and described

in detail below, the conversion consists of applying something like a reduction

from the promiseMA relation to an NP relation. Suppose r ver (x, y, r) is an

algorithm which solves (RY , RN) with thresholds 1/3, 2/3 using at most `(n) bits

of randomness where n is an upper bound on length(x). Suppose we are also given

two polynomially-bounded functions qa, qb : N×N→ N which, when measured by

their inputs (instead of the length of those inputs), are polynomially-bounded and

computable in polynomial time. Finally suppose we have an efficiently-computable

doubly-indexed sequence

Jk,n : An × Bn → (Sn)k(n) n ∈ N

of weak (2−( p(n)+n+k+2), 1/7)-joint samplers where An = {0, 1}qa(n) and Bn =

{0, 1}qb(n) and Sn = {0, 1}`(n) and k(n) is the sample complexity of Jn.

Lemma 4.5.1. The relation RNP defined as follows is an NP relation. Suppose

x, y, α, β are strings. Then (k, x, β)RNP (y, α) if and only if the following two

conditions both hold.
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1) length(x) = n, length(β) = qb(n), length(α) = qa(n)

and length(y) ≤ p(n).

2)
∣∣{i : r ver (x, y, ((Jk,n(α, β))i) = accept}

∣∣ > k(n)/2

i.e. A majority of the coordinates z of Jk,n(α, β) are such that r ver (x, y, z)

accepts

Proof. Since lengths are non-negative and qa is polynomially-bounded, RNP ’s

witness-lengths are bounded by a polynomial in the length of its instances and

the functions Jk,n are efficiently-computable, RNP is also efficiently computable.

2

Now, the thing which is close-enough to a reduction from (RY , RN) to RNP ,

is given by

• proverLen(k, n) = qa(n)

• verifierLen(k, n) = qb(n)

• convert instance (k, x, α, β) = (k, x, β)

• forward witness transfer (k, x, α, β, y) = (y, α)

• backward witness transfer (k, x, α, β, z) = left entry (z)

Let Alice be the party that will supply a possible witness, and let Bob be the

other party. For example, for interactive arguments, Alice is the prover and Bob
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is the verifier, whereas for witness encryption, Bob is the encrypter and Alice is

the decrypter.

Lemma 4.5.2 (Alice has many suitable strings). Suppose x, y, α and β are strings

with `(x) = n, `(y) = p(n), `(α) = qa(n), `(β) = qb(n). Suppose (x, y) ∈ RY ,

then

|{α ∈ A : (k, x, β)RNP (y, α)}| > |A|/4

Proof. By the definition of being a verifier for (RY , RN)

Prr(rand verif (x, y, r) accepts) ≥ 2/3.

Define

W = |{i : 0 ≤ i < k, rand verif (x, y, (Jk,n(α, β))i) accepts}|/k

By (4.4.3) Alice’s security for Jk,n, it follows that

Eα

[
W ] = Prr(rand verif (x, y, r))

Since W ≤ 1, and Eα(W ) ≥ 2/3, then Prα(W > 1/2) > 1/4. Recall that

(k, x, β)RNP (y, α) is the condition W > 1/2, so the result follows. 2

Lemma 4.5.3 (Bob’s security).

Probβ [∃x, y, α ((x, y) ∈ RN and (k, x, β)RNP (y, α))] <
1

2k
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Here x is a string of length at most n, y is a string of length at most p(n), and

α ∈ A.

In other words, it is highly likely that witnesses for RNP are either witnesses

for the promiseMA relation, or strings that together with x make the promise-

relation’s promise fail.

Proof. For x and y as above, if (x, y) ∈ RN then by Bob’s security for the joint

sampler Jk,n, the probability (over the choice of β) of there existing an α such

that (k, x, β)RNP (y, α) is true is at most 2−(p(n)+n+k+2) because Jk,n is a weak

(2−(p(n)+n+k+2), 1/7)-joint sampler. Observe that 2−(p(n)+n+k+2) =
1

2n+1
· 1

2p(n)+1
·

1

2k
. Furthermore, there are fewer than 2n+1 strings of length at most n and there

are fewer than 2p(n)+1 strings of length at most p(n), so the result follows from

the union bound. 2

Thus, we indeed have something resembling a reduction, as described just

after Definition 1.6 . Using this, one converts protocols that satisfy the condi-

tions described at the start of this section and are for NP relations, to handling

promiseMA promise-relations, as follows. Bob receives an upper-bound n on the

length of the promiseMA instance, chooses β ∈ Bn uniformly at random, and

sends β to Alice. Both parties use (k, x, β) as the instance for RNP . Once Alice

receives β and the possible witness y, Alice tries random elements α ∈ An until
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Alice finds a value of α that makes (k, x, β)RNP (y, α) true. When Alice finds such

an α, Alice uses (y, α) as the witness for the NP relation.

We now show that this conversion statistically preserves security, and preserves

completeness when Alice is promiseZP, and preserves efficiency.

To start, note that one of the assumptions was that Alice can never gain by

making the protocol continue as if the supplied possible witness was not a valid

witness. Accordingly, for Bob’s security, we only need the other direction. That di-

rection follows directly from Lemma 5.3 and the choice of backward witness transfer .

We now show efficiency and completeness and Alice’s security.

Since RNP is an NP relation, the only thing which might not be efficient is

Alice finding a string α ∈ An such that

convert instance (k, x, α, β)RNP forward witness transfer (k, x, α, β, w).

However, that is equivalent to (k, x, β)RNP (y, α), so if (x, y) ∈ RY then by

Lemma 5.2 more than 1/4 of the strings in An satisfy that condition, in which

case a promiseZP Alice finds such an α with probability 1, and trying a large num-

ber of independently chosen candidates for α finds a suitable α with probability

exponentially close to 1. Thus efficiency holds.

The original protocol or scheme was assumed able to handle NP relations, and

both parties are using it with the NP relation RNP and instance

convert instance (k, x, α, β). Given a witness y for the promiseMA relation and
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an α as above, forward witness transfer (k, x, α, β, w) will be a witness for RNP .

Thus completeness holds to the extent claimed.

Given any witness y for the promiseMA relation, regardless of which witness y

is, Alice will find a witness for RNP with either with probability 1 or with probabil-

ity exponentially close to 1. Furthermore, by the choice of forward witness transfer ,

although the length of that witness may depend on length(y), the length of the

witness does not otherwise depend on y, so a simulator or reduction can just use

a string of length(y) zeros to find the length of the witness for RNP . Thus Alice’s

security also holds.

4.6 Constructing strong averaging Samplers

This section is devoted to proving the following theorem which is based very

closely on [Healy]’s Theorem 1. The motivation is that in order to facilitate simpler

instantiations which use expander multigraphs rather than restricting to expander

graphs, we want a theorem whose statement covers multigraphs too. We decided

to generalize it further, to possibly time-dependent Markov processes, because the

proof is not significantly harder.

Theorem 4.6.1. Given an integer N > 0 set S = {0, 1, ..., N − 1} and 1 =

(1, ..., 1). Suppose 0 < λ < 1 and M is a possibly time-dependent Markov process
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on S such that for all transition matrices M of M, one has M1 = 1, and for all

v ∈ RN , if 1Tv = 0 then ||Mv|| ≤ λ · ||v||.

Given 0 < ε < 1 and an integer k > 0, and, for 0 ≤ i ≤ k − 1, functions

fi : S → [0, 1], and given x0 define xj = M(xj−1) for 1 ≤ j ≤ k − 1. If x0 is

chosen uniformly from S then

Pr [ |Ei(fi(xi))− Ei(Ex [fi(x)])| ≥ ε] ≤ 2 · exp

(
−ε

2 · (1− λ) · k
4

)

Proof of Theorem (4.6.1). For i ∈ S, set µi = Ex [fi(x)]. Let

C = Ei(fi(xi))− Ei(µi)

Then

Pr [|C| ≥ ε] = Pr [C ≥ ε] + Pr [C ≤ −ε]

We will show

Pr [C ≥ ε] ≤ exp

(
−ε

2 · (1− λ) · k
4

)
By replacing each fi by (1− fi), and applying the same argument, it follows that

Pr [C ≤ −ε] has the same upper bound, and the conclusion then follows.

Introduce a parameter r with

0 < r < 1/2 and exp(r) ≤ 1/
√
λ (4.1)
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then

Ei(fi(xi))− Ei(µi) ≥ ε

⇐⇒ Ei(fi(xi)) ≥ ε+ Ei(µi)

⇐⇒ rk · Ei(fi(xi)) ≥ rk · (ε+ Ei(µi))

⇐⇒ exp

(
r ·

(∑
0≤i<k

fi(xi)

))
≥ exp

(
r ·

(
k · ε+

∑
0≤i<k

µi

))

⇐⇒
∏

0≤i<k

exp
(
r · fi(xi)

)
≥ exp

(
r ·

(
k · ε+

∑
0≤i<k

µi

))

Since exp(t) > 0, we apply Markov’s inequality to the last of the above inequalities

to get

Pr [Ei(fi(xi))− Ei(µi) ≥ ε] (4.2)

≤ E

[ ∏
0≤i<k

exp
(
r · fi(xi)

)]/
exp

(
r ·

(
k · ε+

∑
0≤i<k

µi

))

Accordingly, we now work on getting an upper bound on the expectation

E

[ ∏
0≤i<k

exp
(
r · fi(xi)

)]

Let M1,M2, · · · ,Mk−1 be the first k − 1 transition matrices of M,

and let E0, · · · , Ek−1 be the N ×N diagonal matrices such that

(Ei)j,j = exp(r · fi(j)) (4.3)

Then

E

[ ∏
0≤i<k

exp
(
r · fi(xi)

)]
= 1TEk−1Mk−1Ek−2Mk−2 · · ·E1M1E0

(
1

N
· 1
)
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because the right hand side is a sum of terms. Each term corresponds to a sequence

of possible values for x0, x1, · · · , xk−1, and is the probability of that sequence times∏
0≤i<k

exp
(
r · fi(xi)

)
.

Let M0 be the N ×N matrix whose entries are all 1/N . Then

M0

(
1

N
· 1
)

=
1

N
· (M01) =

1

N
· 1

so

E

[ ∏
0≤i<k

exp
(
r · fi(xi)

)]

= 1TEk−1Mk−1Ek−2Mk−2 · · ·E1M1E0M0

(
1
N
· 1
) (4.4)

We now study the sequence of vectors z0, z1, · · · , zk given inductively by

z0 =
1

N
1 and zi+1 = MiEizi (4.5)

If v ∈ RN and 1Tv = 0 then

||M0v|| =
∣∣∣∣∣∣∣∣ 1

N
· 11Tv

∣∣∣∣∣∣∣∣ = 0 = 0 · ||v|| ≤ λ · ||v||

In other words, M0 satisfies the assumptions on the other Ms, so will be handled

the same way. Given v ∈ RN let vq be the component of v in the direction of

1 ∈ RN then v⊥ = v − vq is the component orthogonal to 1.

We now prove the following lemma related to the zi:

Lemma 4.6.2. Suppose f : S → [0, 1], and M is an N-by-N stochastic matrix

such that,

v ∈ RN and 1Tv = 0 ⇒ ||Mv|| ≤ λ · ‖|v‖
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Let µ = Ex[f(x)], and let E be the N ×N diagonal matrix (E)j,j = exp(r · f(j)).

If 0 < r < log(1/λ)
2

then for z ∈ RN

(i)
∥∥∥(EMzq)

q
∥∥∥ ≤ (1 + (exp(r)− 1) · µ) · ||zq||

(ii)
∣∣∣∣∣∣(EMzq)

⊥
∣∣∣∣∣∣ ≤ exp(r)− 1

2
· ||zq||

(iii)
∣∣∣∣∣∣(EMz⊥

)q∣∣∣∣∣∣ ≤ exp(r)− 1

2
· λ ·

∣∣∣∣z⊥∣∣∣∣
(iv)

∣∣∣∣∣∣(EMz⊥
)⊥∣∣∣∣∣∣ ≤ √λ · ∣∣∣∣z⊥∣∣∣∣

Proof. Given f,M, r and E as above and z ∈ RN . Since zq = c.1 for some scaler

c, and M1 = 1, it follows that Mzq = zq. Then

(EM1)q = (E1)q =
1

N
·
(
1TE1

)
1 = Ex[exp(r · f(x))]1

Using linearity

(EMzq)
q

= Ex[exp(r · f(x))]zq (4.6)

Since exp(r · x) is a convex function of x, on the interval 0 ≤ y ≤ 1 we get

exp(r · y) ≤ 1 + ((exp(r)− 1) · y) (4.7)
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∥∥∥(EMzq)
q
∥∥∥

= ‖Ex[exp(r · f(x))]zq‖ using 4.6

= |Ex[exp(r · f(x))]| · ||zq||

= Ex[exp(r · f(x))] · ||zq||

≤ Ex[1 + ((exp(r)− 1) · f(x)] · ||zq|| using 4.7

= (1 + ((exp(r)− 1) · Ex[f(x)])) · ||zq||

= (1 + ((exp(r)− 1) · µ)) · ||zq||

This proves (i). For (ii), let I be the N -by-N identity matrix. Both maps v 7→ vq

and v 7→ v⊥ are linear and do not increase norm, and (vq)⊥ ≡ 0. So given α

(EMzq)
⊥

= (Ezq)
⊥

= (Ezq)
⊥ − (αIzq)

⊥
+ (αzq)

⊥

= ((Ezq)− (αIzq))
⊥

= ((E − αI) zq)
⊥

We apply this with α = exp(r)+1
2

. From (4.3) we see that the matrix E is diagonal

with entries are between 1 and exp(r). Thus E − αI is diagonal with entries

bounded in absolute value by exp(r)−1
2

. Then

∥∥∥(EMzq)
⊥
∥∥∥ =

∥∥∥((E − αI) zq)
⊥
∥∥∥ ≤ ‖(E − αI) zq‖ ≤ exp(r)− 1

2
· ‖zq‖
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This proves (ii). For (iii), since M is stochastic,
(
Mz⊥

)q
= 0, and

(
EMz⊥

)q
=
(
EMz⊥

)q − (αIMz⊥
)q

+
(
αMz⊥

)q
=
((
EMz⊥

)
−
(
αIMz⊥

))q
=
(
(E − αI)Mz⊥

)q
Substituting for α as above gives

∣∣∣∣∣∣(EMz⊥
)q∣∣∣∣∣∣

=
∣∣∣∣∣∣((E − αI)Mz⊥

)q∣∣∣∣∣∣
≤
∣∣∣∣(E − αI)Mz⊥

∣∣∣∣
≤ exp(r)− 1

2
·
∣∣∣∣Mz⊥

∣∣∣∣
≤ exp(r)− 1

2
· λ ·

∣∣∣∣z⊥∣∣∣∣
This proves (iii). For (iv)

∣∣∣∣∣∣(EMz⊥
)⊥∣∣∣∣∣∣

≤
∣∣∣∣EMz⊥

∣∣∣∣
≤ exp(r) ·

∣∣∣∣Mz⊥
∣∣∣∣

≤ exp(r) · λ ·
∣∣∣∣z⊥∣∣∣∣

≤
√
λ ·
∣∣∣∣z⊥∣∣∣∣

The last step uses exp(r) < 1/
√
λ, completing the proof of (iv).2
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Next we use the above lemma to show that each z⊥i remains short relative to

those zq
j with j < i.

Lemma 4.6.3. If 1 ≤ i ≤ k then
∣∣∣∣z⊥i ∣∣∣∣ ≤ ( exp(r)−1

1−λ

)
·max0≤j<i

∣∣∣∣zq
j

∣∣∣∣.
Proof. Using the definition (4.5)

∣∣∣∣z⊥i+1

∣∣∣∣ =
∣∣∣∣∣∣(EiMizi)

⊥
∣∣∣∣∣∣

=
∣∣∣∣∣∣(EiMi

(
zq
i + z⊥i

))⊥∣∣∣∣∣∣ ∵ zi = zq
i + z⊥i

≤
∣∣∣∣∣∣(EiMiz

q
i)
⊥
∣∣∣∣∣∣+

∣∣∣∣∣∣(EiMiz
⊥
i

)⊥∣∣∣∣∣∣
Thus, by parts (ii) and (iv) of lemma (4.6.2),

∣∣∣∣z⊥i+1

∣∣∣∣ ≤ exp(r)− 1

2
· ||zq

i||+
√
λ
∣∣∣∣z⊥i ∣∣∣∣

By definition (4.5)
∣∣∣∣z⊥0 ∣∣∣∣ =

∣∣∣∣((1/N) · 1)⊥
∣∣∣∣ = 0, so recursively applying the

bound above yields

∣∣∣∣z⊥i+1

∣∣∣∣
≤ exp(r)− 1

2
·

(
i∑

j=0

((√
λ
)j+1

·
∣∣∣∣zq

i−j
∣∣∣∣))

≤ exp(r)− 1

2
·

(
i∑

j=0

(√
λ
)j+1

)
· max

0≤j≤i

∣∣∣∣zq
j

∣∣∣∣
Since 0 < λ < 1,

i∑
j=0

(√
λ
)j+1

≤ 1

1−
√
λ
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so we get ∣∣∣∣z⊥i+1

∣∣∣∣ ≤ exp(r)− 1

2
· 1

1−
√
λ
· max

0≤j≤i

∣∣∣∣zq
j

∣∣∣∣
Finally, again using 0 < λ < 1, we have

1

1−
√
λ

=
1 +
√
λ

1− λ
≤ 2

1− λ

so ∣∣∣∣z⊥i+1

∣∣∣∣ ≤ exp(r)− 1

1− λ
· max

0≤j≤i

∣∣∣∣zq
j

∣∣∣∣
and replacing i with i− 1 yields the claimed result. 2

We now use this lemma to bound the values of ||zq
i||.

Lemma 4.6.4. If 1 ≤ i ≤ k then

||zq
i|| ≤ exp

(
(exp(r)− 1) · µi +

λ · (exp(r)− 1)2

2 · (1− λ)

)
· max

0≤j<i

∣∣∣∣zq
j

∣∣∣∣
Proof. Using the definition (4.5) again

∣∣∣∣zq
i+1

∣∣∣∣ =
∣∣∣∣(EiMizi)

q∣∣∣∣
and using zi = zq

i + z⊥i gives

∣∣∣∣(EiMizi)
q∣∣∣∣ ≤ ∣∣∣∣∣∣(EiMiz

q
i)

q
∣∣∣∣∣∣+

∣∣∣∣∣∣(EiMiz
⊥
i

)q∣∣∣∣∣∣
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So by parts (i) and (iii) of lemma (4.6.2),

∣∣∣∣zq
i+1

∣∣∣∣
≤
∣∣∣∣∣∣(EiMiz

q
i)

q
∣∣∣∣∣∣+

∣∣∣∣∣∣(EiMiz
⊥
i

)q∣∣∣∣∣∣
≤ (1 + ((exp(r)− 1) · µi+1)) · ||zq

i||+
exp(r)− 1

2
· λ ·

∣∣∣∣z⊥i ∣∣∣∣
Using (4.6.3) gives

(1 + ((exp(r)− 1) · µi+1)) · ‖zq
i‖+

exp(r)− 1

2
· λ · exp(r)− 1

1− λ
· max

0≤j<i
‖zq

j‖

Simplifying gives

(1 + (exp(r)− 1) · µi+1) · ‖zq
i‖+

λ · (exp(r)− 1)2

2 · (1− λ)
· max

0≤j<i
‖zq

j‖

≤
(

1 + (exp(r)− 1) · µi+1 +
λ · (exp(r)− 1)2

2 · (1− λ)

)
· max

0≤j≤i
‖zq

j‖

Using the fact that 1 + x ≤ exp(x) we then conclude that

∣∣∣∣zq
i+1

∣∣∣∣ ≤ exp

(
(exp(r)− 1) · µi+1 +

λ · (exp(r)− 1)2

2 · (1− λ)

)
· max

0≤j≤i

∣∣∣∣zq
j

∣∣∣∣
As before, replacing i with i− 1 yields the desired result. 2

To complete the proof of Theorem (4.6.1)

||zq
0|| =

∣∣∣∣∣∣∣∣ 1

N
· 1
∣∣∣∣∣∣∣∣ =

1√
N

Applying (4.6.4) recursively, for 0 ≤ j ≤ k,

∣∣∣∣zq
j

∣∣∣∣ ≤ 1√
N
·

j∏
i=1

exp

(
(exp(r)− 1) · µi +

λ · (exp(r)− 1)2

2 · (1− λ)

)
(4.8)
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By (4.4) and (4.5)

E

[ ∏
0≤i<k

exp
(
r · fi(xi)

)]

= 1TEk−1Mk−1Ek−2Mk−2 · · ·E1M1E0M0

(
1

N
· 1
)

= 1Tzk

= 1Tzq
k

By Cauchy-Schwarz this is bounded above by
√
N · ||zq

k||. Then using (4.8)

√
N · ||zq

k||

≤
k∏
i=1

exp

(
(exp(r)− 1) · µi +

λ · (exp(r)− 1)2

2 · (1− λ)

)

= exp

(
(exp(r)− 1) · µ+

(
λ · (exp(r)− 1)2

2 · (1− λ)
· k
))

where µ =
∑k−1

i=0 µi ≤ k since µi ≤ 1. Since exp(1/2) ≤ 5/3, and exp(r) is convex

for 0 ≤ r ≤ 1/2, it follows that in this range

exp(r)− 1 ≤ 4r/3

Taylor’s formula with remainder says

f ′′(r) = f(0) + rf ′(0) + (r2/2)ξ

where ξ = f ′′(t) for some 0 ≤ t ≤ r. Applying this with f(r) = exp(r) − 1, and

using ξ ≤ 5/3 gives

exp(r)− 1 ≤ r + r2
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Using this gives

√
N · ||zq

k|| ≤ exp

((
r + r2

)
· µ+

(
λ · ((4/3) · r)2

2 · (1− λ)
· k
))

≤ exp

(
r · µ+ r2 · k +

(
r2 · λ

1− λ
· k
))

= exp

(
r · µ+ r2 ·

(
1− λ
1− λ

+
λ

1− λ

)
· k
)

= exp

(
r · µ+ r2 · 1

1− λ
· k
)

= exp

(
r · µ+

r2 · k
1− λ

)

So we have shown

E

[ ∏
0≤i<k

exp
(
r · fi(xi)

)]
≤ exp

(
r · µ+

r2 · k
1− λ

)
(4.9)

Thus by (4.2) and (4.9) we have

Pr

[(∑
0≤i<k

fi(xi)

)
−
∑

0≤i<k

µi ≥ k · ε

]

≤ exp

(
r · µ+

r2 · k
1− λ

)/
exp

(
r ·

(
k · ε+

∑
0≤i<k

µi

))

= exp

(
r · µ+

r2 · k
1− λ

)/
exp(r · (k · ε+ µ))

= exp

(
r · µ+

r2 · k
1− λ

− r · (k · ε+ µ)

)
= exp

((
r2

1− λ
− r · ε

)
· k
)
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Set r = (1 − λ) · (ε/2). Since 0 ≤ ε, λ ≤ 1 it follows that r ≤ 1/2 and

exp(r) < 1/
√
λ so r satisfies (4.1). Substituting this value for r in the above gives

r2

1− λ
− r · ε = ε2

(
(1− λ)/4− 1− λ

2

)
≤ −ε2(1− λ)/4

As mentioned earlier, this theorem’s conclusion now follows by replacing each

fi with 1− fi, applying the same argument, and then applying a union bound. 2

Before we state the relevant corollaries, we recall that finite real symmetric

matrices are all othogonally diagonalizable over the reals.

Corollary 4.6.5. Given an integer N > 0 set S = {0, 1, ..., N − 1} and 1 = 1N .

Suppose λ is a real number such that 0 < λ < 1 and M is a possibly time-

dependent Markov process on S such that for all transition matrices M of M,

one has M is symetric, and M1 = 1, and for all eigenvectors v of M , if 1Tv = 0

then the absolute value of the corresponding eigenvalue is at most λ.

The rest of the statement is as in 4.6.1.

Proof. Note that the only change from the theorem is the assumptions on the

transition matrices M . We show that the assumptions in the corollary imply

the assumptions in the theorem. Let M be a transition matrix for M. Let

e1 = 1/||1||, e2, ..., eN be an orthonormal basis of eigenvectors for M , and let
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λ1, ..., λN be the corresponding eigenvalues so that Mei = λiei. Let v ∈ RN be

such that 1Tv = 0, and let c1, ..., cN be the scalars such that v = c1 ·e1+...+cN ·eN .

Since eT1 v = 0/|1| = 0 and the basis is orthogonal, c1 = 0. Thus v = 0 · e1 + c2 ·

e2 + ...+ cN · eN = c2 · e2 + ...+ cN · eN , so

||Mv|| = ||M (c2 · e2 + ...+ cN · eN)||

= ||c2 ·Me2 + ...+ cN ·MeN ||

= ||c2 · λ2 · e2 + ...+ cN · λN · eN ||

=

√
(c2 · λ2)2 + ...+ (cN · λN)2

≤ λ
√
c2

2 + ...+ c2
N

= λ · ||v||

2

Definition 4.6.6. A frum-graph is an undirected multigraph with finitely many

vertices and edges, that is regular and has more than one vertex and at least one

edge.

Those are the only graphs we will be concerned with.

Definition 4.6.7. Suppose G is a frum-graph. Let 1 be the vector in Rvertices(G)

whose entries are all 1. Let M be the transition matrix for a Morkov process that

is a random walk on G. Then we define λ2(G) to be the maximum absolute value

of an eigenvalue of M for an eigenvector that is not a multiple of 1.
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Corollary 4.6.8. Given an integer N > 1 set S = {0, 1, ..., N − 1}. Suppose

0 < λ < 1 and Gj is a sequence of frum-graphs with vertex set S, and λ2(Gj) ≤ λ

for all j.

Given 0 < ε < 1 and functions fi : S → [0, 1] for 0 ≤ i ≤ k − 1. Choose x0

uniformly from S then choose x1, x2, ..., xk−1 so that xj+1 is a random neighbor of

xj in Gj. Then

Pr [ |Ei(fi(xi))− Ei(Ex [fi(x)])| ≥ ε] ≤ 2 · exp

(
−ε

2 · (1− λ) · k
4

)

Proof. For such N and λ and G, set 1 = 1N , let 0 be the zero vector in RN , and

let M be the possibly-time-dependent Markov process given by for each time j

and state x, the next state is a random neighbor of x in Gj.

Suppose M is a transition matrix ofM. Since the multi-graphs are undirected,

M is symmetric. Suppose 1Tv = 0 and Mv = λv then |λ| ≤ λ2(Gj) because 0 is

the only multiple of 1 that is orthogonal to 1. Thus M satisfies the hypotheses

in 4.6.5. By construction, the choice of x1, x2, ..., xk−1 is equivalent to choosing

them according to M. Thus the conclusion follows from 4.6.5. 2

Definition 4.6.9. Given an integer n > 1 the 8-regular frum-graph G(n) with

vertices (Z/nZ)2 is defined as follows. The vertex (x, y), is connected by an edge

to each of

(x, y ± 2x), (x, y ± (2x+ 1)), (x± 2 y, y), (x± (2y + 1), y)
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Observe that these neighboring vertices might have repetition, in which case there

is more than one edge.

Theorem 4.6.10. λ2(G(n)) ≤ 5·
√

2
8

.

Proof. Theorem 3.1.1 of [31] applies to give the result. See also 1.2.7 and 1.3.1 in

the same paper. 2

Let G = G(n) be the 8-regular frum graph. For u, v ∈ G let E(u, v) be the

number of edges with endpoints u and v. In order to perform a random walk on

G the edges coming out of a vertex in G are labelled by elements of L = {0, 1}3

using a labelling function

nbhr : L× vertices(G)→ vertices(G)

such that

|{s ∈ L : nbhr(s, u) = v}| = E(u, v)

Define

Γ = (Γ0, · · · ,Γk−1) : {0, 1}(2n) ×
k−1∏
i=1

Li →
(
{0, 1}2n

)k
where L = Li as follows. Then

Γ0 : {0, 1}(2n) ×
k−1∏
i=1

Li → {0, 1}(2n)

is projection onto the first factor. Moreover Γ0,Γ1, · · · ,Γk−1 is a random walk on

G starting at the output of Γ0, and Γi+1 takes one step in the direction given by

Li+1, thus Γi+1 = nbhr(Li+1,Γi)
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Corollary 4.6.11. Γ defined above is a strong (γ, ε)-averaging sampler where

γ = 2 exp

(
−ε2

(
1− 5

√
2

8

)
k
/

4

)

Proof. Consider the constant sequence of frum graphs G0, G1, ..., Gk−2 that are all

equal to G. For a random input, Γ’s output is chosen as described in Corollary 5.8

with this sequence of frum-graphs. Then, by Theorem 5.9, the conclusion follows

by setting λ = 5·
√

2
8

in Corollary 5.8 . 2
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Chapter 5

(Im)plausibility

The paper On the (Im)possibility of Obfuscating Programs [3] considers formal

definitions of what program obfuscation might mean, and defines what it means

for an algorithm to be a virtual black box obfuscator. It nicely, though informally,

summarizes that definition as

Definition 5.0.1. O is an obfuscator if and only if it is an efficient, probabilistic

compiler that takes as input a program (or circuit) P and produces a new program

O(P ) satisfying the following two conditions:

• functionality: O(P ) computes the same function as P

• virtual black box property: Anything that can be efficiently computed from

O(P ) can be efficiently computed given oracle access to P .
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The paper then proves the following pair of results.

Theorem 5.0.1. ( 3.10 [3]) If one-way functions exist, then there exists an un-

obfuscatable circuit ensemble.

Lemma 5.0.2. (3.8 [3]) If efficient circuit obfuscators exist, then one-way func-

tions exist.

This rules out such obfuscation even if it’s supposed to be just for circuits.

Circuits can be thought of as programs with fixed-length inputs whose runtime

does not depend on their input. [3] also discusses the analogous problems for

sampling obfuscators. For those, the corresponding informal summary of their

definition is

Definition 5.0.3. O is an efficient sampling obfuscator if it is an (efficient, prob-

abilistic) compiler that takes as input a program (or circuit) P and produces a

new program O(P ) satisfying the following two conditions:

• functionality: O(P ) samples from the same distribution as P when both are

run on uniformly random inputs.

• virtual black box property Anything that can be efficiently computed from

O(P ) can be efficiently computed given sampling access to P - i.e., the

ability to obtain, upon request, independent and uniform random samples

from the distribution defined by P .
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In [3], Proposition 6.7 rules out a quite strong notion of sampling obfuscation

for circuits assuming the existence of one-way functions, and Proposition 6.4 shows

that if a fairly weak notion of sampling obfuscation is possible for circuits then

promiseSZK 6⊆ promiseBPP .

In this thesis, I show that witness encryption - a special case of obfuscation

for functions - implies an analogue for sampling algorithms of Theorem 3.10 in

[3], in the auxiliary input setting.

This is a negative result so, as in [3], to make it stronger, it applies even

to the obfuscation of just circuits rather than more general programs. In fact,

this negative result also applies to approximate sampling obfuscators - i.e., when

O(C) samples from a distribution that is approximately 〈〈C〉〉. Below I present

an informal summary of my result.

Theorem 5.0.2. (Informal) If one-way functions exist and there is a witness en-

cryption scheme for NP relations, then there is an efficiently-sampleable ensemble

of sampling circuits and a predicate Pred on such circuits and an auxiliary-input

generator such that

(1) the auxiliary-input generator takes as input the sampling circuit and a pos-

itive integer L

(2) the auxiliary-input generator runs in time poly(security parameter, L)
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(3) given such auxiliary input and sampling access to the circuit, it is infeasible

to guess Pred with probability non-negligibly better than 1/2

(4) against adversaries that know the auxiliary-input, such sampling circuits

cannot be obfuscated into circuits of size at most L, even if the obfuscator

also knows the auxiliary-input and only needs to hide Pred and only needs

to approximately preserve the distribution and can be inefficient

5.1 Notation and Definitions:

Definition 5.1.1. If X and Y are sets then F(X, Y ) is the set of all functions

f : X → Y .

The security parameter is K, and k is the string of k ones. If C is a circuit

with m input bits then 〈〈C〉〉 is the distribution on {0, 1}∗ obtained by evaluating

C on m uniform and independent random bits, and 〈〈C〉〉 being an oracle means

the oracle takes no input and returns a sample from 〈〈C〉〉 that is independent

of everything before the query. In particular, when queried more than once, its

responses are independent of each other.

Definition 5.1.2. A circuit C1 is an ε-sampler for another circuit C0 if the sta-

tistical distance between 〈〈C1〉〉 and 〈〈C0〉〉 is at most ε.

When we refer to an algorithm, by default, the algorithm may be randomized.
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Definition 5.1.3. Given ε : {0, 1, 2, 3, ...} → [0, 1], an ε-approximate sampling

obfuscator is an algorithm O such that the following holds for all feasible-size

circuits C, and all k

(1) (arity and number of outputs) O takes exactly two inputs and gives exactly

one output

(2) (polynomial slowdown) There is a 2-variable polynomial p such that with

certainty, O(k, C) is a circuit whose size is at most p(k, size(C))

(3) (approximate functionality) Except with probability at most ε(k), O(k, C)

is an ε(k)-sampler for C

(4) (security) For all feasible adversaries A, there is an efficient simulator S such

that

∣∣Prob
[
A(k,Obf(k, C)) = 1

]
− Prob

[
S〈〈C〉〉(k, size(C)) = 1

]∣∣ < ε(k)

Definition 5.1.4. Approximate sampling obfuscators against auxiliary input are

defined as above, but with condition (4) replaced by

(4′)(security against auxiliary input) For all feasible adversaries A, there is an

efficient simulator S such that it is infeasible to find a string z such that

∣∣Prob
[
A(k,Obf(k, C), z) = 1

]
− Prob

[
S〈〈C〉〉(k, size(C), z) = 1

]∣∣ < ε(k)
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In what follows, h : {0, 1, 2, 3, ...} → {3, 4, 5, 6, ...} can be any function

such that lim
k→∞

h(k) =∞ and h(k) is efficiently computable given k.

Theorem 5.1.5. (Formal) If pseudorandom generators exist, and witness en-

cryption for NP exists, then 1/(h(k))-approximate sampling obfuscators against

auxiliary input do not exist.

To prove this theorem, I show that under its assumptions, there exist ensembles

that are unobfuscatable in a very strong sense.

Theorem 5.1.10. With the assumptions of Theorem 5, there is is a predicate

pred on circuits and a sequence 〈G0,G1,G2, ...〉 of distributions on circuits and

an efficient algorithm auxG taking as input positive integers k, ` in unary and a

circuit C such that the following hold:

• (efficient computability) Given k as input, Gk can be efficiently sampled from.

• (white-box learnability) For all circuits C from
∞⋃
i=0

support(Gi), for all

polynomially–bounded `, for all sufficiently large k, pred(C) is easy to com-

pute given a possible output of auxG(C, `) and any circuit C ′ of bit-length

at most ` that is a 1/(h(k))-sampler for C.

• (black-box unlearnability) For all feasible adversaries A and 1-variable integer-

coefficient polynomials p such that 1 ≤ p(k) for all non-negative integers k,
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max1≤`≤p(k)

∣∣∣ProbC←Gk,z←auxG(C,`)

[
A〈〈C〉〉

(
k, z
)

= pred(C)
]
− 1

2

∣∣∣
is negligible.

Proof. I will show the white-box learnability property for 1/(18 · h(k))-samplers.

The stated results will then follow by replacing the function h with the function

k 7→ max(3, b(h(k))/54c) and, for k such that h(k) < 162, letting pred be trivially

learnable. For example, one way of letting pred be trivial for a given k is having

Gk choose b ∈ {0, 1} uniformly at random and output the sampler that always

outputs b, and pred of such sampling circuits be the bit b.

Having established that change in the statistical distance, I will now assume

that k ≥ 24 and h(k) ≤ k
2·blog2(k)c . Smaller values of k can be handled in the same

way as described above, and if h was too large, then it could be replaced with

min
(
h(k), k

2·blog2(k)c

)
, since making h(k) smaller makes 1/(18 ·h(k)) larger, which

in turn can only make it harder to satisfy white-box learnability.

Note that [17] gives a way to convert pseudorandom generators into pseudoran-

dom function families, and the other part of my thesis gives a way to convert wit-

ness encryption schemes for NP into witness encryption schemes for promiseMA.

Given h and a pseudorandom function family PRFF with input length equal

to output length and a witness encryption scheme for promiseMA, I will exhibit

a predicate and sequence and algorithm as described in the result of taking the

theorem statement and replacing h(k) with 18 · h(k).
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Let {0, 1}≤k/2,{0, 1}≤k be the sets of binary strings whose lengths are less than

or equal to k/2,k respectively, and let

LC : F({0, 1}k, {0, 1}k)→ F({0, 1}≤k/2, {0, 1}≤k)

be the length conversion function defined by (LC(F ))(x) is the first 2 · length(x)

bits of F (x||1||0m), where || denotes string concatenation and 0m is the string of

m = k − (len(x) + 1) zeros.

Given a circuit F : {0, 1}k → {0, 1}k and a bit b, we generate a sampling

circuit Cb(F ) in Gk as follows. Later, F will be chosen according to the PRFF.

The circuit Cb(F ) has b and LC(F ) encoded in an efficient and efficiently-

recoverable way that does not affect the outputs. This is analogous to putting a

comment in computer code, but needs to be done for circuits. For example, one

could repeatedly apply x ∧ x or x ∨ x to the first input, according to whether a

0 or 1 is to be represented. The circuit samples an integer L in [1, h(k)− 1] such

that each integer has probability greater than 1
h(k)−2

of being chosen (i.e., close

to uniformly). If k/2 < L · blog2(k)c then the circuit outputs the empty string.

Otherwise, the circuit then chooses an element r ∈ {0, 1}L·blog2(k)c uniformly at

random and outputs the ordered pair (r, (LC(F ))(r)).

The predicate pred is given by the following: If an ordered pair (b,LC(F )) is

encoded in the input circuit in the efficiently-recoverable way used for the previous

paragraph, then output b, else output 0.
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The distribution Gk is sampled from as follows. Choose F according to the

PRFF with security parameter k, choose a bit b uniformly at random and output

Cb(F ). The algorithm auxG consists of at most four steps.

• Step 0: Using the recovery procedure for how (b,LC(F )) would be encoded

into Cb(F ), attempt to recover a bit b and a circuit

F̂ : {0, 1}≤k/2 → {0, 1}≤k

from the input circuit C. If that failed or 2(h(k)−1)·blog2(k)c ≤ `, then output

the empty string and halt.

• Step 1: Let L be the least integer in [1, h(k) − 1] such that ` < 2L·blog2(k)c,

and set rLen = L · blog2(k)c.

• Step 2: For each string r ∈ {0, 1}rLen, set truevaluer = F̂ (r). Let V0 be the

circuit that works as follows.

(1) receive as input a circuit O(C) of bit-length at most `

(2) Choose 5400 · 8rLen inputs to O(C) independently and uniformly at

random.

(3) Evaluate O(C) at those inputs.
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(4) For each string r ∈ {0, 1}rLen, let guessr ∈ {0, 1}2·rLen maximize the

number of times that step (4) produced (r, guessr), with ties broken

lexicographically.

(5) If at least half of the strings r ∈ {0, 1}rLen are such that guessr =

truevaluer, then accept, else reject.

• Step 3: Using the witness encryption scheme, output a witness encryption

of b under the promiseMA relation whose YES set is

{〈V, y〉 : V (y) accepts with probability at least 2/3}

and whose NO set is

{〈V, y〉 : V (y) accepts with probability at most 1/3},

where the instance is V0.

We now check Efficient Computability. In the definition of Cb(F ), rejection

sampling with 2 · dlog2(h(k))e+ 2 attempts has probability at most 1
2·(h(k))2 of not

producing an integer in [1, h(k)−1], so outputting 1 in that case gives an efficient

way of sampling L which is close-enough to uniform. Also, we gave an example

of a suitable encoding of bits into circuits. Thus, pred can be made efficient and

given k as input, Gk can be efficiently sampled from. For all values of L and rLen
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that step 1 of auxG can choose 2rLen ≤ ` · k because

rLen = L · blog2(k)c

= (L− 1) · blog2(k)c+ blog2(k)c

Recall that L is minimal subject to ` < 2L·blog2(k)c so 2(L−1)·blog2(k)c ≤ `. Combining

with 2blog2(k)c ≤ k gives the result. In particular, 5400 · 8rLen ≤ 5400 · (` · k)3 =

5400 · `3 · k3, so given ` as input, step 2 of auxG can build V0 efficiently. Thus

auxG is also efficient.

Next we check White-Box Learnability. For this, the learning algorithm is:

If the obfuscated circuit C ′ is too large to be a witness for the auxiliary in-

formation z, then output ⊥, else output the result of decrypting that auxiliary

information with C ′ as alleged-witness.

Fix a circuit C from
∞⋃
i=0

support(Gi) and a positive integer ` and a possible

output z of auxG(C, `) and a circuit C ′ of bit-length at most ` that is a 1/(h(k))-

approximate sampler for C.

The goal here is showing that V0 accepts C ′ with probability strictly greater

than 2/3, since that means decrypting the auxiliary information with C ′ will yield

the value of the predicate.

Let LC(F ) be as in the construction of C, let L be as in step 1 of auxG,

and let pL be the probability of the circuit C choosing that value of L from
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[1, h(k) − 1]. By the construction of the sampling circuits, 1
h(k)−2

< pL, so 1
3
≤

h(k)
h(k)−2

= h(k) · 1
h(k)−2

< pL < h(k) · pL

Let lowprobofgood be the set of all strings r ∈ {0, 1}rLen such that C ′ has prob-

ability at most 2·pL/(3·2rLen) of outputting (r, (LC(F ))(r)), and let highprobofbad

be the set of strings r ∈ {0, 1}rLen such that C ′ has probability at least pL/(3·2rLen)

of outputting a pair (r, y) with y 6= (LC(F ))(r). For each r ∈ {0, 1}rLen, the

circuit C has probability pL/(3 · 2rLen) of outputting (r, (LC(F ))(r)) and prob-

ability zero of outputting a pair (r, y) with y 6= (LC(F ))(r). Thus, each ele-

ment of lowprobofgood∪ highprobofbad corresponds to a term with value at least

pL/(3·2rLen) in the expression for the statistical distance between 〈〈C〉〉 and 〈〈C ′〉〉,

with B denoting the cardinality of that union, one has the following.

(1/2) ·B · pL/(3 · 2rLen) ≤ 1/(54 · h(k))

Using this gives

(B · 3)/(2rLen) ≤ (B · 9 · h(k) · pL)/(2rLen) ≤ 1

Hence B ≤ (2rLen)/3.

Thus, lowprobofgood∪ highprobofbad has at most (2rLen)/3 elements. Let

good be the complement of lowprobofgood∪ highprobofbad, set q = pL/(3 ·2rLen),

let N be a positive integer which is at least 200/(q3), and temporarily fix r ∈ good.

A random output of C ′ has probability greater than 2 · q of being (r, (LC(F ))(r)),
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and probability less than q of being an ordered pair (r, y) with y 6= (LC(F ))(r).

Call the former the good pairs and the latter the bad pairs. Consider the standard

deviations of fraction of of good pairs and the fraction of bad pairs when taking

N independent samples from C ′. Those are each at most
√

2 · q/
√
N .

√
2 · q/

√
N =

√
(2 · q)/N ≤

√
(2 · q)/(200/(q3)) =

√
(q2)/100 = q/10

so by Chebyshev’s inequality and a union bound, the probability of the number

of good pairs being at most the number of bad pairs is at most 2 · 1/(52), which

is strictly less than 1/12.

Now, unfix r. At least a 2/3 fraction of the strings r ∈ {0, 1}rLen are in Good,

and the value 1/2 is 3/12 away from the value 2/3, so when taking N independent

samples from C ′, the probability that a majority of the strings r ∈ {0, 1}rLen have

more good pairs than bad pairs is strictly greater than 2/3. Thus, all that’s left

is checking that the number of samples V0 takes from C ′ is at least 200/(q3).

200

q3
=

200

(pL/(3 · 2rLen))3

=
5400 · 8rLen

p3
L

≤ 5400 · 8rLen

13

= 5400 · 8rLen

Therefore white-box learnability holds.
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Lastly we check Black-Box Unlearnability. Suppose that A is an adversary

against black-box unlearnability and p is a 1-variable polynomial. As preparation

towards defining such adversaries in the normal sense, we give algorithms Bprf and

Bwitenc that take a unary-encoded positive integer ` as an additional input and

are otherwise adversaries against the PRFF and the witness encryption scheme

respectively.

Both algorithms Bprf and Bwitenc, when simulating A
(
k, z
)
, respond to the or-

acle queries from A
(
k, z
)

in a similar way to Cb(F̂ ), but using LC(O) rather than

LC of a function given by a circuit. In the definition of black-box unlearnability,

those queries would be responded to by 〈〈C〉〉.

The algorithm Bprf works as follows. Let O be the oracle of Bprf . Then O is

either a member of the PRFF or a truly random function. Let F̂ = LC(O), and

choose a bit b uniformly at random. If

2(h(k)−1)·blog2(k)c ≤ `

then Bprf outputs zero and halts. Otherwise, Bprf runs steps 1 and 2 and 3 of

auxG, which produces an output of z. Next, Bprf simulates and gives the same

output as A
(
k, z
)
.

The algorithm Bwitenc works as follows. Simulate a random function O :

{0, 1}k → {0, 1}k. Let F̂ = LC(O), and choose a bit b uniformly at random.

If there is an integer L as in step 1 of auxG, then run step 1, otherwise set
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rLen = 0. After that, Bwitenc runs step 2 of auxG, chooses a bit b′ independently

and uniformly at random, and submits to its challenger

• as instance the circuit V0

• as left plaintext the bit b

• as right plaintext the bit b′.

The challenger produces a response of z then Bwitenc simulates A
(
k, z
)
. At

the end of that simulation, if the output of A
(
k, z
)

is b then Bwitenc outputs 1 else

Bwitenc outputs 0.

Next we define some experiments, each of which returns a value of true or

false.

Exptlearn,`: Choose C ← Gk and z ← auxG(C, `) and then run A〈〈C〉〉
(
k, z
)
.

The outcome is True if and only if the output of A is pred(C).

Exptpseudo
prf,` : Choose O ← PRFF, and run BOprf(k, `). The outcome is True if

and only if the output of Bprf is 1.

Expttruerand
prf,` : Choose O ← F({0, 1}k, {0, 1}k), and run BOprf(k, `). The outcome

is True if and only if the output of Bprf is 1.

For the next two experiments the parameter side can be left or right.

Exptside
witenc,`: Run Bwitenc(k, `) with the challenger encrypting the side plaintext.

The outcome is True if and only if the output of Bwitenc is 1.
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Exptside
unbounded,`: Run Bwitenc(k, `) with the challenger encrypting the side plain-

text. The outcome is True if and only if the instance that Bwitenc submitted to

the challenger was a NO instance and the output of Bwitenc is 1.

The definition of black-box unlearnability requires ` ≤ p(k). Since h is ω(1),

we have p(k) < 2(h(k)−1)·blog2(k)c for all sufficiently large k. Thus, in the rest of this

proof, we assume ` < 2(h(k)−1)·blog2(k)c.

For such `, if F is the oracle of Bprf then for each value of b, the algorithm

Bprf chooses z from the same distribution as auxG(Cb(F )), the distribution of the

responses by Bprf to the oracle queries of A is 〈〈Cb(F )〉〉, and pred(Cb(F )) = b.

Thus, Prob [Exptlearn] = Prob
[
Exptpseudo

prf

]
. Furthermore, Prob

[
Expttruerand

prf

]
=

Prob
[
Exptleft

witenc

]
. On the other hand

Prob
[
Exptright

witenc

]
= 1/2

since for this experiment, none of O, k, ` depends on b. Thus, by the triangle

inequality, ∣∣Prob [Exptlearn]− 1
2

∣∣
≤
∣∣∣Prob

[
Exptpseudo

prf

]
− Prob

[
Expttruerand

prf

]∣∣∣
+
∣∣∣Prob

[
Exptleft

witenc

]
− Prob

[
Exptright

witenc

]∣∣∣
(5.1)

The term ∣∣∣Prob
[
Exptpseudo

prf

]
− Prob

[
Expttruerand

prf

]∣∣∣
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is the analogue, for algorithms that take ` as an additional input, of the advantage

of Bprf against the PRFF. However,

∣∣∣Prob
[
Exptleft

witenc

]
− Prob

[
Exptright

witenc

]∣∣∣
is not quite the analogue, for algorithms that take ` as an additional input, of the

advantage of Bwitenc against the witness encryption scheme.

The issue specific to witenc is that we have not yet handled the possibility of

the instance not being in the NO set of the promiseMA relation. The other issue

is that, in actual attacks on the PRFF and the witness encryption scheme, there

will not be an input `. We will handle the witenc-specific issue by by giving an

upper bound on the probability of the instance not being in the NO set of the

promiseMA relation, and will handle the other issue after that.

To start, note that the rLen used by Bwitenc depends only on k and h(k) and

`. If the adversary used randomness to choose `, then rLen might depend on that

randomness because rLen can depend on `, but rLen otherwise does not depend

on any randomness. Towards that end, we define a function as follows.

If rver ∈ {0, 1}`·5400·8rLen
and C is a circuit of bit-length at most ` then

guessed func (rver, C) : {0, 1}rLen → {0, 1}2·rLen

is the function given by

guessed func (rver, C)(r) = guessr
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where guessr would be produced by running (1),(2),(3),(4), and (5) from step 2

of auxG, with O(C) = C and randomness equal to rver.

If the promiseMA instance that Bwitenc submits to the challenger is not a NO

instance, then there exists

(*) a circuit C of bit-length at most ` such that more than 1/3 of the strings

rver ∈ {0, 1}`·5400·8rLen
are such that guessed func (rver, C) agrees with LC applied

to the function being simulated by Bwitenc on at least half of the inputs from

{0, 1}rLen.

There are 2(2·rLen ·2rLen) functions from {0, 1}rLen to {0, 1}2·rLen, and each of

those functions is equally likely to be the restriction to {0, 1}rLen of LC of the

function being simulated by Bwitenc.

On the other hand:

• There are less than 2`+1 circuits of bit-length at most `

• For each of the 2rLen elements of {0, 1}rLen, there are 2 ways to choose an element

of {=, 6=}.

• For each integer in
[
0,
(
2rLen

)
/2
]
, there are at most 22·rLen ·(2rLen)/2 sequences of

elements of {0, 1}rLen such that the length of the sequence is the integer.

There are β = 2(2·rLen ·2rLen) equally likely possibilities for LC applied to the

function being simulated by Bwitenc. For any fixed rver ∈ {0, 1}`·5400·8rLen
, the
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number of these β possibilities such that there is a circuit as in (*) is less than

α = 2(`+1)+(2rLen)+(2·rLen ·(2rLen)/2)

Using that `+ 1 ≤ 2rLen easily gives

`+ 1 + 2rLen +
(
2 · rLen ·

(
2rLen

)
/2
)
≤ (2 + rLen) · 2rLen

Since rLen = L·blog2(k)c and L is a positive integer and k ≥ 16, one has rLen ≥ 4,

so

(2 + rLen) · 2rLen ≤ (3/2) · rLen ·2rLen

Observe that rLen ≥ 4 and rLen = L · blog2(k)c ≥ blog2(k)c so 2rLen ≥ k/2 so

log2 β − log2 α ≥ k

It follows that for any fixed rver ∈ {0, 1}`·5400·8rLen
, the probability, over the

choice by Bwitenc of the function it simulates, that there exists a circuit as in

(*), is at most 1/(2k). By averaging, this 1/(2k) bound continues to hold when

rver ∈ {0, 1}`·5400·8rLen
is chosen at random rather than fixed beforehand. Thus, by

averaging again, it follows that the probability is at most

3/(2k) (5.2)

that, over the choice by Bwitenc of the function it simulates, that for at least 1/3

of the strings rver ∈ {0, 1}`·5400·8rLen
there is a circuit as in (*).
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Therefore, the probability of the promiseMA instance that Bwitenc submits to

the challenger not being a NO instance, is at most 3/(2k). That will be the upper

bound on pinvalid for the witenc case, which we define as part of showing how to

remove ` from the inputs.

By (5.1), if
∣∣Prob [Exptlearn]− 1

2

∣∣ is non-negligible, then either

∣∣∣Prob
[
Exptpseudo

prf

]
− Prob

[
Expttruerand

prf

]∣∣∣
is non-negligible or

∣∣∣Prob
[
Exptleft

witenc

]
− Prob

[
Exptright

witenc

]∣∣∣
is non-negligible, or both. We handle those two cases together, by considering

interaction between a two-input adversary B that outputs True or False and one

of an ordered pair of feasible environments Envleft,Envright , where there is also

a predicate Valid on such interactions, but Valid does not even need to be com-

putable.

We define four algorithms B
(
k, `
)

and Envleft and Envright and Valid as follows.

Case prf To show that the absolute difference of the prf probabilities is neg-

ligible:

Envleft: Choose O ← PRFF and act as O.

Envright: Choose O ← F({0, 1}k, {0, 1}k) and act as O.
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B sends queries to the Env, rather submitting queries to an oracle, and other-

wise acts as Bprf .

Valid always outputs True.

Case witenc To show that the absolute difference of the witenc probabilities

is negligible:

Envleft,Envright are the challengers for Bwitenc that encrypt the left,right plain-

text respectively.

B = Bwitenc

Valid is true if and only if the instance submitted to the Env was a NO instance.

For both cases, set

pinvalid = max
1≤`≤p(k)

∑
side∈{left,right}

1− Prob[Valid]

and for each choice of side from {left, right}, let B
(
k, `
)
↔ Envside denote the

experiment B
(
k, `
)

interacts with Envside if B
(
k, `
)

outputs 1 then the outcome

is True else the outcome is False.

Let B
(
k, `
) v↔ Envside denote B

(
k, `
)
↔ Envside ∧ Valid . We will define

B̂
(
k
)

later. Once we do, let B
(
k
)
↔ Envleft and B

(
k
) v↔ Envright denote the

analogous experiments for B̂
(
k
)

rather than B
(
k, `
)
.
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For case prf, since Valid is always true. Let

β = max1≤`≤p(k)

∣∣∣Prob
[
Exptpseudo

prf

]
− Prob

[
Expttruerand

prf

]∣∣∣
= max1≤`≤p(k)

∣∣Prob
[
B
(
k, `
)
↔ Envleft

]
− Prob

[
B
(
k, `
)
↔ Envright

]∣∣
= max1≤`≤p(k)

∣∣∣Prob
[
B
(
k, `
) v↔ Envleft

]
− Prob

[
B
(
k, `
) v↔ Envright

]∣∣∣
For case witenc. Let

γ = max1≤`≤p(k)

∣∣∣Prob
[
Exptleft

witenc

]
− Prob

[
Exptright

witenc

]∣∣∣
= max1≤`≤p(k)

∣∣Prob
[
B
(
k, `
)
↔ Envleft

]
− Prob

[
B
(
k, `
)
↔ Envright

]∣∣
By the upper bound (5.2), for case witenc pinvalid ≤

6

2k
. Thus pinvalid ≤

6

2k
holds

in each case. In each case, let j be an arbitrary positive integer, and suppose k is

such that

1/(kj) < max1≤`≤p(k)

∣∣∣Prob
[
B
(
k, `
) v↔ Envleft

]
− Prob

[
B
(
k, `
) v↔ Envright

]∣∣∣
(5.3)

i.e., that there exists an integer ` ∈ [1, p(k)] such that B
(
k, `
)

validly dis-

tinguishes Envleft from Envright. Let B̂ be the adversary that works as follows,

with N = 250 · p(k) · k3·j. For each integer ` ∈ [1, p(k)], simulate Envleft for N

runs of B
(
k, `
)
↔ Envleft and let qleft

` = y/N , where y is the number of times

B
(
k, `
)
↔ Envleft is true. Similarly define qright

` for B
(
k, `
)
↔ Envright.
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Let ` = ˆ̀ maximize
∣∣∣qleft
` − q

right
`

∣∣∣. If qleft
` = qright

` then output a random bit

and halt. Otherwise, forward messages between B
(
k, ˆ̀
)

and the actual Env, and

let b be the output by B
(
k, ˆ̀
)

.

If b = 0 ⇐⇒ qleft
ˆ̀ < qright

ˆ̀ then output 1 else output 0.

Let Exptwrong guess be the following experiment: Choose side ∈ {left, right}

uniformly at random, run B̂
(
k
)
↔ Envside, and let b be the outcome of that

experiment. If b = 0 ⇐⇒ side = left then the outcome is True, else the outcome

is False.

In what follows ` is an integer in the interval [1, p(k)] and

pleft
` = Prob

[
B
(
k, `
)
↔ Envleft

]
and pright

` = Prob
[
B
(
k, `
)
↔ Envright

]
.

Consider the following three events for runs of Exptwrong guess

• BadEstimateleft: for some `

1

10 · kj
<
∣∣∣qleft
` − p

pseudo
`

∣∣∣
• BadEstimateright: for some `

1

10 · kj
<
∣∣∣qright
` − ptruerand

`

∣∣∣
• GoodL:

6

10 · kj
<
∣∣∣pleft

ˆ̀ − p
right
ˆ̀

∣∣∣
and pleft

ˆ̀ − p
right
ˆ̀ has the same sign as qpseudo

ˆ̀ − qtruerand
ˆ̀ .
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We show that at least one of these three events must occur. Suppose neither

BadEstimateleft nor BadEstimateright occur. Then, since β is the maximum of∣∣∣pleft
` − p

right
`

∣∣∣, by (5.3) it follows that for values ` that maximize
∣∣∣pleft
` − p

right
`

∣∣∣ one

has

10

10 · kj
<
∣∣∣pleft
` − p

right
`

∣∣∣
hence

8

10 · kj
<
∣∣∣qleft
` − q

right
`

∣∣∣ ≤ ∣∣∣qleft
ˆ̀ − q

right
ˆ̀

∣∣∣
so

6

10 · kj
<
∣∣∣pleft

ˆ̀ − p
right
ˆ̀

∣∣∣
Moreover x = qleft

ˆ̀ − q
right
ˆ̀ has the same sign as y = pleft

ˆ̀ − p
right
ˆ̀ , since because

BadEstimatepseudo and BadEstimatetruerand are both false, one has

|x− y| ≤ 2

10 · kj

Fix an integer ` ∈ [1, p(k)], and consider the random variable qleft
` . That

random variable is the average of N = 250 · p(k) · k3·j Bernoulli random vari-

ables. Since Bernoulli random variables have standard deviation at most 1/2, the

standard deviation of qleft
` is at most

1/2√
N

. Thus Prob

[∣∣qleft
` − pleft

`

∣∣ > 1

10 · kj

]
≤(

1/(10 · kj)
(1/2)/(

√
N)

)−2

=
1

10 · p(k) · kj
.

By a union bound, summing over `, this means

Prob [BadEstimateleft] ≤ p(k) · 1

10 · p(k) · kj
=

1

10 · kj
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Similarly,

Prob [BadEstimateleft] ≤
1

10 · kj

The sum of those two bounds is less than 1, so Prob [GoodL] > 0. Since at least

one of those three events must occur,

Prob
(
Exptwrong guess

)
≤ Prob [BadEstimateleft]

+ Prob [BadEstimateright]

+ Prob [GoodL] · Prob
[
Exptwrong guess

∣∣GoodL
]

≤ 2

10 · kj
+ Prob

[
Exptwrong guess

∣∣GoodL
]

(5.4)

Similarly,

Prob [BadEstimatetruerand] ≤ 1

10 · kj

Since k and j are positive integers, 2/(10 · kj) < 1, so

Prob [GoodL] > 0

Since one of the three events BadEstimatepseudo or BadEstimatetruerand or

GoodL must occur,
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Prob
(
Exptwrong guess

)
≤ Prob [BadEstimatepseudo]

+ Prob [BadEstimatetruerand]

+ Prob [GoodL] · Prob
[
Exptwrong guess

∣∣GoodL
]

≤ 2

10 · kj
+ Prob

[
Exptwrong guess

∣∣GoodL
]

(5.5)

For each value `0 that ˆ̀ could take in a run of Exptwrong guess which satisfies

GoodL,

Prob
[
Exptwrong guess

∣∣GoodL∧ˆ̀= `0

]

=
1

2
·
(

Prob

Exptwrong guess

∣∣ GoodL∧

ˆ̀= `0 ∧ x = left



+ Prob

Exptwrong guess

∣∣ GoodL∧

ˆ̀= `0 ∧ x = right

)

=
1

2
·
(

min
(
pleft
`0
, pright

`0

)
+ 1−max

(
pleft
`0
, pright

`0

))
− 1

2
·
(

1 + min
(
pleft
`0
, pright

`0

)
−max

(
pleft
`0
, pright

`0

))
=

1

2
·
(

1−
∣∣∣pleft
`0
− pright

`0

∣∣∣)
≤ 1

2
·
(

1− 6

10 · kj

)
=

1

2
− 3

10 · kj

That holds for all such `0, so

Prob
[
Exptwrong guess

∣∣GoodL
]
≤ 1

2
− 3

10 · kj
.
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Substituting this bound in inequality (5.5) gives

Prob
[
Exptwrong guess

]
≤ 1

2
− 1

10 · kj
(5.6)

and by the definition of Exptwrong guess,

2 · Prob
[
Exptwrong guess

]
(5.7)

= Prob
[
¬
(
B̂
(
k
)
↔ Envleft

)]
+ Prob

[
B̂
(
k
)
↔ Envright

]
=
(

1− Prob
[
B̂
(
k
)
↔ Envleft

])
+ Prob

[
B̂
(
k
)
↔ Envright

]
= 1−

(
Prob

[
B̂
(
k
)
↔ Envleft

]
− Prob

[
B̂
(
k
)
↔ Envright

])
≤ 1−

∣∣∣Prob
[
B̂
(
k
)
↔ Envleft

]
− Prob

[
B̂
(
k
)
↔ Envright

]∣∣∣
so

1

5 · kj
= 2 · 1

10 · kj

≤
∣∣∣Prob

[
B̂
(
k
)
↔ Envleft

]
− Prob

[
B̂
(
k
)
↔ Envright

]∣∣∣
Since pinvalid ≤ 6/(2k), that means

1

5 · kj
− 6

2k
≤
∣∣∣Prob

[
B̂
(
k
) v↔ Envleft

]
− Prob

[
B̂
(
k
) v↔ Envright

]∣∣∣
Now

6

2k
is negligible and

1

5 · kj
is noticeable, so

1

5 · kj
− 6

2k
is noticeable.

Furthermore, B̂ is feasible if A is: Envleft and Envright are efficient, and B̂

simulates polynomially many interactions of them with B
(
k, `
)
, all of which have

` ≤ p(k), and then does a polynomial amount of extra work. Also, B
(
k, `
)

is either
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Bprf

(
k, `
)

or Bwitenc

(
k, `
)
. In turn, by inspection, Bprf and Bwitenc are feasible if

A is.

Thus, by the security of the PRFF and the witness encryption scheme, there

are only finitely many k such that

1

5 · kj
− 6

2k
≤
∣∣∣Prob

[
B̂
(
k
) v↔ Envleft

]
− Prob

[
B̂
(
k
) v↔ Envright

]∣∣∣
Since this inequality holds whenever k satisfies equation (5.3) there are only finitely

many such k. Furthermore, this holds for all positive integers j, so β and γ are

both negligible. Therefore

max1≤`≤p(k)

∣∣∣∣ProbC←Gk,z←auxG(C,`)

[
A〈〈C〉〉(k, z) pred(C)

]
− 1

2

∣∣∣∣
= max1≤`≤p(k)

∣∣∣∣Prob [Exptlearn]− 1

2

∣∣∣∣ = β + γ

is negligible.

This holds for all feasible adversaries A, so black-box unlearnability holds.

This completes the proof. 2
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