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Abstract: Despite a rapid development of Nature-Based Solutions (NBS) for carbon removal in recent
years, the methods for evaluating NBS still have certain gaps. We propose an approach based on a
combination of remote sensing data and meteorological variables to reconstruct the spatiotemporal
variation of net ecosystem exchange from eddy-covariance stations. A Lagrangian particle dispersion
model was used for upscaling satellite images and flux towers. We trained data-driven models based
on kernel methods separately for each selected land-cover class. The results suggest that the proposed
approach to quantifying carbon exchange on a medium-to-large scale by blending eddy covariance
flux data with moderate resolution satellite and weather data provides a set of key advantages over
previously deployed methods: (1) scalability, achieved via the validation design based on a separate
set of eddy covariance stations; (2) high spatial and temporal resolution thanks to the use of Landsat
imagery; and (3) robust and accurate predictions due to improved data quality control, advanced
machine learning techniques, and rigorous validation. The machine learning models yielded high
cross-validation results. Stratification that uses separate Fluxnet stations for each fold of validation
ensures that the models are accurate across the area covered by the Fluxnet sites. Overall, we present
here a globally scaled technology for the land sector based on high resolution remote sensing imagery,
meteorological variables, and direct carbon flux measurements of eddy covariance flux stations.

Keywords: net ecosystem exchange; eddy-covariance; regression; upscaling; data augmentation;
feature selection

1. Introduction

Nature-based solutions (NBS) are increasingly recognized as an essential tool in com-
bating global warming as they remove greenhouse gases (GHG) from the atmosphere [1],
reduce GHG emissions through sustainable land use practices, and store carbon in the
soil and biomass [2]. While NBS are becoming quite advanced and continuously going
through significant developments, the methods for accurately quantifying their result-
ing benefits are still lagging [3]. A vast majority of the existing projects use biometric
soil or tree survey data to estimate carbon stock changes [4]. These methods provide
solid estimates of the sequestered carbon but come with multiple important limitations.
They typically describe either soil layer or partial canopy layer (e.g., above ground), with
time resolution limited to multiple months and years and spatial resolution limited to a
particular plot where such measurements have been performed. As a result of such limita-
tions, these methods may not be best suited for large-scale ongoing NBS quantification [2].
Moreover, the measurements required by these methods for a meaningful time-resolved,
large-scale assessment are expensive and unaffordable for most users.
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A pure modeling approach employing either Earth system models or terrestrial bio-
sphere models has been used as an alternative to direct measurements on a large scale [5,6],
but the spatial resolution of these models is too coarse, while the uncertainty remains high
due to their inability to respond timely to actual changes in the ecosystem. Likewise, satel-
lites that measure carbon dioxide (CO2) concentrations and are used in inverse modeling
to map GHG emission and sequestration [7,8] have coarse spatial resolution and hence
can hardly be used for NBS assessment at the farm or forest stand level. Optical, radar,
and lidar satellites provide a scalable solution for mapping soil carbon [9] and carbon
fluxes at a much finer spatial resolution [10,11] and do have the potential to help large-scale
space- and time-resolved NBS assessments if anchored in accurate ground measurements.
The current remote-sensing-based studies typically use allometric/biometric data for ma-
chine learning (ML) model training [2]. The amount of ground data required for capturing
the landscape heterogeneity and temporal variation is challenging to sustain and scale.
The models thus inherit the disadvantages of the biometric measurements.

There is, however, another potential solution that combines many advantages of the
above methods while overcoming some of their limitations and can result in a high spatial
resolution, scalability to the regional level and practical affordability. This can be achieved
by blending the direct highly time-resolved small-scale observations from the numerous
eddy covariance flux towers [2] and the less direct but large-scale remote sensing methods.
Considerable efforts have been made in this area lately to improve the quantification of
the spatiotemporal CO2 patterns, employing multiple different approaches vs. existing
estimates to help resolve the majority of issues with current carbon accounting methods in
the land sector. For example, [12] evaluate how seven light-use-efficiency (LUE) models
captured the spatiotemporal gross primary productivity (GPP) variations from the LaThuile
FLUXNET dataset. This study used data from 157 eddy covariance (EC) towers located
in the six major terrestrial biomes (evergreen broadleaf forest (EBF), deciduous broadleaf
forest (DBF), mixed forest (MF), evergreen needle leaf forest (ENF), shrubland (SHR), and
grassland (GRA)). None of the seven models matched well with estimated GPP based
on overall EC measurements. The models explained 41–57% GPP variations in the study
sites. Reference [13] evaluated four LUE models for GPP estimation and compared them
with data obtained by EC in 51 sites with diverse vegetation types. The average daily R2

for all models and all sites was about 66%. Reference [14] used three different models to
estimate GPP in a local deciduous forest in the US in combination with flux measurements
and remote sensing data. Comparisons were made yearly, but on average, the correlation
coefficient was much better, at 0.91. Reference [15] used two enhanced vegetation index
(EVI)-based models to estimate the GPP in 15 sites across the USA. The model’s results
vary according to the vegetation; in some cases, coefficients of determination can vary
from 0.27 up to 0.94 for specific sites. Using remote sensing data, disturbance information,
and a support vector regression model, [16] upscaled the CO2 fluxes from a network of
21 EC towers to estimate the regional-scale Alaskan CO2 budget from 2000 to 2011 and
compared the results with an inverse model. The predicted values were consistent with the
field observations (R2 = 0.79 for NEE) and the magnitude of the inverse model. However,
the interannual variations of the results achieved by the remote-sensing-based model and
those of the inverse model were inconsistent and therefore require additional validation.
Reference [17] used three remote sensing data-driven models to evaluate and understand
GPP estimations in 119 EC sites in the northern hemisphere. Considering all the study
sites, the mean R2 was 0.63. However, the values can vary significantly depending on the
model used and the vegetation, and in some cases, they can reach 0.78. Usually, the highest
values were found for deciduous broadleaf and mixed forest. Reference [18] mapped
the soil organic carbon (SOC) in Italy using ground observations and ancillary remote
sensing data. Compared with all observations, the geographically weighted regression
using MODIS normalized difference vegetation index (NDVI) obtained an R2 of 0.45 for
SOC. Reference [19] conducted comprehensive work generalizing and mapping NEE, GPP,
and respiration data for all types of classification as a collaborative FLUXCOM initiative.
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The overall coefficients of determination for GPP and respiration were more than 0.71 and
0.64, respectively, while about 0.48 for NEE.

As seen in the examples above, despite the significant advances in the use of remote
sensing for CO2 flux estimations, the results point to mixed success and lack of consistency,
so there is room for major improvements. The key areas of such improvements include
increasing spatial resolution, capturing temporal variability, improving the data quality
(primarily by reducing uncertainties and increasing consistency) and developing better
algorithms to enable the simultaneous use of multiple relevant parameters and different
spatial and temporal scales. In order to achieve such improvements, we propose to rely
on the significant advances which have been made in recent years in the fields of machine
learning, artificial intelligence, and neural networks to extract patterns and insights from
remote sensing data, processing large volumes of remotely sensed data with minor human
interference [20]. Here, we present the successful use of one such approach for globally
scaled remote-sensing-based carbon accounting models anchored by the direct carbon flux
measurements using eddy covariance flux stations. We use input data on the net ecosystem
exchange (NEE, [21–24]) as targets for the training process and then combine the remote
sensing and meteorological variables [19] as predictors to reproduce variations of NEE on a
daily and monthly scale to demonstrate the increased predictive power of the proposed
approach over more traditional methods.

An overarching goal of this work is to bridge the domains of science and technology
by integrating multi-scale remote sensing and eddy covariance measurements to sup-
port projects aimed at avoiding GHG emissions or to remove CO2 from the atmosphere.
For this purpose, we target the following methodological improvements: (1) increasing
spatial resolution, (2) capturing temporal variability, (3) improving the data quality (pri-
marily by reducing uncertainties and increasing consistency), and (4) developing better
algorithms to enable the simultaneous use of multiple relevant parameters and different
spatial and temporal scales.

2. Data and Methods
2.1. Data
2.1.1. Eddy Covariance Data

The eddy covariance method is a standard method to directly measure fluxes be-
tween ecosystems and the atmosphere by computing the covariance between the vertical
wind velocity and the entity of interest [21,25,26]. Such measurements are made rou-
tinely on all continents [27–29], with many sites linked across a global network called
FLUXNET, dispersed across the world’s climate zones and representative biomes [29–33].
FLUXNET teams standardize the data format, perform uniform quality checks, and use
highly vetted gap-filling and flux partitioning, with the newest product version being the
FLUXNET2015 dataset (we used data for 2000–2014), which includes over 212 sites [32]
(see Figure 1).

We used data from 171 Tier 1 sites with a data policy consistent with the Attribution
4.0 International (CC-BY-4.0) data usage license. Daily net ecosystem exchange (NEE) was
filtered using a variable friction velocity threshold for each year and quality flags indicating
the measured and good quality percentage (data higher than 0.8 were used, indicating
percentage of measured and good quality gap-fill data). The following land-cover classes
based on the International Geosphere-Biosphere Programme (IGBP) classification were
used: cropland (CRO); grassland (GRA), which includes grasslands, closed shrublands
(CSH), and open shrublands (OSH) [34]; evergreen needleleaf forest (ENF); deciduous
broadleaf forest (DBF); evergreen broadleaf forest (EBF); mixed forest (MF); wetland (WET);
and savannas and woody savannas (SAV).
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Figure 1. Locations of all Fluxnet sites.

2.1.2. Remote Sensing Data

We used Landsat surface reflectance (SR) and land surface temperature (LST) as well
as a number of indices derived from the former as the main predicting features for our
machine learning model. Landsat 5, 7, and 8 (TM, ETM+, and OLI respectively) cover
our study period and have a 30 m spatial resolution. USGS provides open access to their
Landsat Collection 2 Level-2 Science Products (L2SP) through Amazon s3 cloud service.
L2SP data are geometrically and atmospherically corrected using the LEDAPS algorithm
for TM and ETM+ and LaSRC for OLI imagery and thus prepared for scientific analyses.
USGS Landsat was accessed from https://registry.opendata.aws/usgs-landsat (accessed
on 1 February 2022) .

We filtered out imagery with cloud cover above 75% of a scene. To ensure consistently
high data quality, we masked out all possible artifacts as marked in the quality assessment
bands provided with the product. We also left out high- to low-confidence clouds and
cloud shadows detected by the CFMask algorithm [35].

We utilized SR from three visible, near-infrared (NIR), and short-wave infrared
(SWIR 1 and SWIR 2) spectral bands (bands 1–5 and 7 for TM and ETM+; and 2–7 for OLI).
These bands are well-suited for assessing vegetation and soil state and, consequently,
together with LST, can serve as accurate predictors of NEE.

In addition, we selected two spectral indices and two tasseled-cap components [36]
to map proxy land surface parameters to predict NEE better. Soil-adjusted vegetation
index (SAVI) and tasseled-cap greenness (TCG) reflect vegetation intensity and chlorophyll
content. In contrast, normalized-difference moisture index (NDMI), normalized difference
vegetation index (NDVI), enhanced vegetation index (EVI), and tasseled-cap wetness (TCW)
reflect moisture content in vegetation in our areas of interest [37,38].

TCG = −0.1603 · blue + 0.2819 · green− 0.4934 · red + 0.7940 · NIR− 0.0002 · SWIR− 0.1446 · SWIR2 (1)

TCW = 0.0315 · blue + 0.2021 · green + 0.3102 · red + 0.1594 · NIR− 0.6806 · SWIR− 0.6109 · SWIR2 (2)

NDMI =
NIR− SWIR
NIR + SWIR

(3)

NDVI =
NIR− red
NIR + red

(4)

https://registry.opendata.aws/usgs-landsat
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SAVI =
NIR− red

NIR + red + 0.5
· 1.5 (5)

EVI = 2.5 · NIR− red
NIR + 6 · red− 7.5 · green + 1

(6)

where blue, green, red, NIR, SWIR, SWIR2 are Landsat spectral bands of the correspond-
ing wavelengths.

2.1.3. Meteorological Data

In addition to the remotely sensed data characterizing the vegetation cover, the per-
formance of NEE is influenced by weather parameters such as temperature, dew-point
temperature, solar radiation, and precipitation. The global dataset AgERA5 was chosen as
the source of this data [39].

This service is based initially on hourly European Centre for Medium-Range Weather
Forecasts Reanalysis version 5 (ECMWF ERA5) data at the surface level, which are avail-
able at 30-km spatial resolution (about 0.28125◦). Data were processed to daily temporal
resolution by summing or averaging depending on a particular parameter and corrected to
a more refined surface description at a 0.1◦ spatial resolution. Aggregated data follow a
local time zone definition and include several major agronomic parameters. The correction
to the 0.1◦ grid was performed by applying grid and variable-specific regression equations
to an ERA5 dataset interpolated at a 0.1◦ grid. The equations were trained on operational
ECMWF’s high-resolution atmospheric model (HRES) data at a 0.1◦ resolution.

The following set of parameters was chosen for our purposes: 24 h mean of 2 m air
temperature (TemperatureAir), 24 h mean dew-point temperature (DewPoint), precipita-
tion flux (sum of total precipitation per day, PrecipitationFlux), and surface solar radiation
downwards (sum of solar radiation per day, Solar). A description of the additional meteo-
rological features generated and used in this work is provided in Section 2.2.2.

2.2. Simulation Experiment

The eddy covariance method measures fluxes integrated over an upwind area of a
specific size, known as a footprint [40,41]. The size of this area depends significantly on
wind speed and direction. The NEE measurements from stations have a half-hour temporal
resolution, which means that the station is sensitive to the area around at a distance that air
mass has passed upstream during a specific half-hour. The linear scale of such an area may
range from hundreds of meters to several kilometers.

Thus, in the case of 30 m resolution remote sensing data, we cannot directly associate
the surface reflectance value in a band’s pixel (or calculated index) with the station inside
and NEE estimation on this station for the specific date. In order to do so, we need to
calculate the relevant weighted footprint [42,43] of the impact area around the station for
the corresponding time scale (daily in our case, see Figure 2). To calculate this footprint,
we used a meteorological model which can reproduce transport processes on a local scale
depending on weather conditions on a given day. For this purpose, we used the Lagrangian
particle dispersion model (LPDM) FLEXPART. We weighted six Landsat-derived spectral
bands and indices and integrated them by a footprint probability density function estimated
using the FLEXPART model in backward mode. There is no need to do such a calculation
for meteorological features, as their spatial resolution is coarser (linear size of gridcell about
9–10 km or 100 km2).
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Figure 2. General flowchart of regression model training process.

2.2.1. Footprint Calculation with LPDM

We used the Lagrangian particle dispersion models (LPDM) FLEXPART [44,45] to
estimate the footprint of Fluxnet stations. In Lagrangian models, individual particle
trajectories (representing air parcel transport) are calculated following a predetermined
atmospheric wind field and other meteorological variables. LPDMs can run forward (source
to a receptor) or backward (receptor to source) modes.

We used the FLEXPART version 8.2, which utilizes National Center for Environmental
Prediction Final (NCEP FNL) operational global meteorological data on a regular latitude–
longitude horizontal grid with 0.25–1.0 degree spatial resolution on hybrid sigma-pressure
vertical levels and temporal resolution of 3–6 h. The model output grid has a spatial
resolution on a latitude–longitude grid with 0.002 degrees (about 150–200 m), and the
smoother result, the model synchronization time step, was 15 s.

We ran the model in a backward mode to obtain the weighted footprint for a spe-
cific station, setting station parameters such as location coordinates and above-ground
height as receptor position. The duration of trajectories was selected corresponding to the
original EC system time scale, which is 30 min for which the residence time is calculated.
Residence time is a regular output parameter of FLEXPART model in the backward mode.
This model setup was run six times a day (i.e., every 4 h) for every station for every date
where satellite images were available to obtain a daily footprint.

One of the regular output parameters of the FLEXPART model in backward mode is
residence time, which is measured in seconds. That gives an understanding of how long
one particle (effective air parcels), or group of particles, has “lived” in a particular grid cell,
which allows us to evaluate the receptor’s sensitivity to the surface grid cells. Thus, the
resulting residence time map can be interpreted as a weighting function (see Figure 3 right
panels), which we need to rely on when processing the remote sensing data.
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Figure 3. Left panels are maps of calculated indices for the same date; right panels are maps of daily
weight functions for different dates.

2.2.2. Feature Generation and Data Augmentation

We selected the resampled, weighted, and aggregated SR and the LST values from
the Landsat bands, indices calculated from these bands, and the set of meteorological
parameters taken from the reanalysis AgERA5 as predictors of a regression model to
predict daily NEE, which is a product from Fluxnet stations (see Section 2.1.1).

In this study, a set of additional features was created to increase the flexibility of the
regression model and expand the interactions between the base predictive features and
the target variable. First, all possible ratios were created between 6 Landsat bands and
LST. Thus, we have five ratios for blue band, four ratios for green band, three ratios for red
band, two ratios for NIR, and one ratio for SWIR1 (e.g., blue/green, blue/red, blue/NIR,
15 features in total). When we computed vice versa, we obtained five ratios for SWIR2,
four ratios for SWIR1, three ratios for NIR, two ratios for red, and one ratio for green (e.g.,
green/blue, red/blue, NIR/blue, 15 features in total). Another set of features is a list of
ratios between bands and LST (blue/LST, green/LST etc. 12 features in total). As a result,
42 features were added to the predictive dataset. Second, from meteorological variables
such as solar radiation, 2 m air temperature, and precipitation flux, additional features
were also created. For solar radiation, cumulative and mean radiation over five different
periods were calculated: four days, one week, two weeks, three weeks, and four weeks
(ten features as a result), which may show delayed phenological effects on sub-seasonal
and seasonal scales. The same set of parameters was prepared for 2 m air temperature. For
precipitation flux, cumulative precipitation for the last one, two, three, four, and five days
was calculated (five features). Thus, 25 more features were added to the base predictive
features. In total, 87 features were prepared for further training.

Another issue in the dataset collection process is the availability of clear-sky obser-
vations from the Landsat constellation. After merging the dates with available satellite
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images and good quality NEE observations, fewer training points remain, mainly due to the
images’ cloud cover and other artifacts. We decided to apply training sample augmentation
techniques to solve this problem.

The procedure for increasing the training sample is based on the assumption that the
surface reflectance on the day of satellite measurements and the neighboring days will be
similar given similar weather conditions. Weather variables, i.e., precipitation, air tempera-
ture, short-wave, and incoming long-wave radiation, were determined using data from local
meteorological measurements at each eddy-covariance station. From these four parameters,
a weather profile was generated for the whole time series of daily NEE estimations, which
was then compared with a similar profile on the day of satellite observations. If the R2

value was greater than 0.9, it was assumed that the day had similar weather conditions,
and images of the original day could be applied to such a day. As a result, we used the
same Landsat scenes for remote sensing parameters at augmented days from the origi-
nal observation date, while applying the weighted footprint function for that specific day.
The time considered in this study was a week before the date of Landsat observation. As a
result, the size of the training sample was increased by about a factor of 3.

2.2.3. Building Regression Model

We used Python as a programming language and performed the calculations on Ama-
zon Web Services (AWS, Seattle, WA, USA). We processed 20,438 Landsat scenes for this
study. Apart from satellite imagery processing, calculations associated with the feature se-
lection process (from a few thousand features) were among the most computationally intensive.

Figure 2 demonstrates the data flow for the dataset creation process. The formulas for
calculating weighted parameter values and a regression model are as follows:

Fj
weighted =

N

∑
i=1

wi ∗ Fj
i (7)

NEE = H(F1
weighted, F2

weighted, · · · , FM
weighted) (8)

where wi—weight value for the i-th grid cell (see Figure 3); Fj
i — value of j-th predictive

feature for i-th grid cell; Fj
weighted—weighted sum for j-th feature; NEE—eddy covariance

data; N—number of grid cells; M—number of features; and H—non-linear operator.
Figure 3 shows an example of original features calculated from Landsat data and

results of LPDM calculations of the footprint for the up-scaling process. The weighted
sum for each parameter may be interpreted as the dot product of the feature and footprint
map. To train the model, we match the resulting input dataset (Table 1) with eddy
covariance data (Table 2).

We selected an algorithm based on the kernel method kernel ridge regression (KRR) [46,47].
This method is similar to the more widely known class of support vector machine (SVM)
methods [48]. However, it uses a different loss function. The KRR method uses linear
least squares with l2-norm regularization, meaning it has scale factor for squared feature
coefficients as an additional term in the loss function. This allows for creating non-linear
dependencies between the features according to the selected kernel and then searching for
the optimal coefficients of these dependencies with control of the regularization process.
The result of solving such a problem is a hyperplane in the multidimensional feature space
that describes the dependencies of the target values on the selected features. This method
works well with small datasets, which is the case in this study and is also faster than the
original support vector regression (SVR).

KRR has three main hyperparameters: α—the regularization parameter of the model
(the higher the value, the stronger the regularization); kernel—kernel interaction between
the features included in the model (see Equations (9) and (10)); γ—internal kernel parameter
(see Equations (9) and (10)).
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k(x, y) = e−γ‖x−y‖1 (9)

k(x, y) = e−γ‖x−y‖2 (10)

where e—exponent; x, y—input vectors; ‖x− y‖1—Manhattan distance between the input
vectors; and ‖x− y‖2—Euclidean distance between the input vectors.

Table 1. Example of the aggregated dataset for each feature for each date. Note that the values are
scaled by 10,000.

Date Blue NDMI SAVI

27 December 2009 344.9 327.6 2314.2
28 December 2009 346.8 345.2 2335.3
29 December 2009 338.3 315.5 2276.5
30 December 2009 342.1 317.5 2289.9
31 December 2009 355.2 355.5 2392.7

1 January 2010 351.3 356.4 2354.5
2 January 2010 349.3 325.1 2346.3
3 January 2010 351.4 361.2 2373.4
4 January 2010 355.4 363.2 2382.4
5 January 2010 352.2 348.9 2367.3

Table 2. Example of “target” NEE from eddy covariance stations for each date.

Date NEE, gC/m2/Day

27 December 2009 −5.77
28 December 2009 −7.43
29 December 2009 −10.24
30 December 2009 −5.49
31 December 2009 −7.83

1 January 2010 −5.47
2 January 2010 −5.24
3 January 2010 −3.87
4 January 2010 −5.52
5 January 2010 −3.45

. . . . . .

Another critical aspect of preparation is the feature selection process. As mentioned in
Section 2.2.2, in addition to the primary remote sensing and weather parameters, 87 addi-
tional features in total were prepared. In addition, we used products between all meteoro-
logical and remote sensing features that led to a few thousand features.

For each IGBP class, a small set of features has to be selected to allow optimal prediction
of NEE at the stations. The exact solution for finding the optimal combination of features
can be obtained by a complete enumeration of all possible variants. The complexity of this
approach is 2n, where n is a number of features, so the approach becomes inapplicable
for a large number of features. The utilities in the package machine learning extensions
(Mlxtend) [49] were used to select the features.

The selection process was divided into two stages. The first stage estimates mutual
information for each feature in the list. A standard method from the scikit-learn library was
used [50], which allows us to reduce the number of features to select. The second step is a
sequential selection of features in the forward mode. That means the model starts to learn
from one feature and sequentially adds features to improve the quality of the model. As a
result of this selection, the feature sets for each IGBP class have been generated, as shown
in Table 3.
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Table 3. Feature sets for predicting NEE for each IGBP class (detailed description in Appendix B).

Land Cover List of Features

DBF

TCG, Cum_Temperature_over_5_3week, blue/green, DewPoint, Solar,
NIR/SWIR1, SWIR2/green, Cum_precipitation_3days,

Cum_Temperature_over_5_2week, Cum_Temperature_over_2_1week,
Cum_Temperature_over_3_3week

GRA

SWIR1/NIR, Cum_Temperature_1week, green/red,
Cum_precipitation_2days, Mean_Solar_2week, Delta_T, red/NIR, LST,

NDVI, red/green, green/NIR, red/blue, SWIR2/SWIR1,
Cum_Solar_4days, blue/NIR, Mean_Solar_4days

CRO

NIR/green, Mean_Solar_4week, Cum_Temperature_over_5_3week,
NIR/SWIR2, DewPoint, blue/green, Cum_Solar_2week,

Cum_Temperature_over_2_3week, SWIR2/NIR,
Mean_Temperature_1week

ENF

Solar, SWIR1/NIR · Cum_Temperature_over_5_4week,
Cum_Temperature_over_3_3week, TemperatureAir,

NIR/SWIR2 ·Mean_Solar_2week, Delta_T, blue/SWIR2,
Cum_Temperature_over_4_3week, NIR/SWIR2 · Solar, NIR · SWIR1,

Cum_Temperature_4days, red/SWIR1

MF TCG · Solar, Delta_T, DewPoint, SWIR2/blue, blue/red,
Cum_precipitation_5days, TCG · DewPoint, NIR/LST · Solar, NIR · Solar

EBF
LST/SWIR2 · Solar, TemperatureAir, NIR/LST,

Cum_precipitation_2days, LST/SWIR2 ·Mean_Solar_1week, Delta_T,
red/SWIR2 ·Mean_Solar_2week

WET

NIR ·Mean_Solar_3week, Delta_T, SWIR1/NIR, SWIR1/green,
Cum_precipitation_3days, green · NIR, NDMI, NIR/SWIR1,
NDVI ·Mean_Solar_4week, TCG · Cum_Temperature_2week,

TCG ·Mean_Temperature_4days, TCG · Cum_Temperature_4days,
NIR/SWIR2, DewPoint, TCG · Cum_Temperature_over_4_2week,

TCG · Cum_Temperature_over_3_2week, green · SWIR1,
TCG · Cum_Temperature_over_2_2week, SWIR2/NIR

SAV
NDVI · Solar, NIR/SWIR2 · Solar, TemperatureAir, green/red, red/green,

Cum_Temperature_over_5_2week, SWIR1/red, SWIR2/SWIR1,
EVI · DewPoint, SWIR1/green

Model training and hyperparameters tuning processes were based on N-fold cross-
validation. In our case, N equals 3, 5, or 7 depending on the size of the available dataset per
IGBP class. The original dataset was divided into N nearly same-sized folds with a unique
set of Fluxnet sites inside. Then, the model was trained on N− 1 folds and validated on the
remaining fold after the procedure was repeated N times with different combinations of
folds. Each fold contains a unique set of stations without overlapping with other folds [51],
which ensures spatial scalability. Thus, N times independent validation was performed
on the sets of stations that were not involved in the training of the model, which ensures
spatial scalability of the model predictions. Similarly to [19], hyperparameters for each
N fold were tuned separately for a fixed set of features. As a result, we have not just one
model per land cover but an ensemble of models with their respective metrics trained on a
different dataset configuration.

2.2.4. Metrics for Accuracy Assessment

Several standard metrics were used to assess the level of accuracy for the trained NEE
estimation model: mean absolute error (MAE), root mean squared error (RMSE), coefficient
of determination (R2), and relative error (RE).
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1
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|yt

i − ȳ|
(13)

where N is the number of observation points to estimate; yt
i and yi are the i-th true and

modeled NEE value respectively; and ȳ is the mean NEE value.

3. Results

As a result of N-fold cross-validation for each land cover (Section 2.2.3), we received
an ensemble of N different models trained on different independent datasets with the same
inputs. Thus, we can use the mean value over the ensemble as a prediction.

First, selected metrics were applied to estimate the model’s accuracy by reproducing
the original daily NEE values and then used to estimate the accuracy of the predicted
NEE behavior. The results of the training and cross-validation experiments based on
independent stations are presented in Table 4. The trained models can adequately reproduce
the behavior of NEE at stations with different land cover (overall mean across land-cover
NEE, R2 > 0.6 with a range of 0.42 to 0.76). The lowest predicted values are for EBFs because
such forests are mostly located in the tropics, where there are few Fluxnet stations, and there
could be problems with cloud conditions during some seasons. The largest variation in error
(standard deviation) is observed for CRO, possibly due to the difference in crop types and
significant local anthropogenic influence on specific fields. An increase or decrease in NEE
can be explained by the state of the biomass and the influence of agricultural management.
Comparisons of observed values and predicted values are shown in Figures 4 and 5.

Table 4. Cross-validation metrics (and standard deviation of the residuals for each metric) for daily
NEE models per land-cover class.

IGBP R2 RMSE, gC/m2/Day RE

CRO 0.73 (0.17) 2.32 (0.67) 0.44 (0.19)
GRA 0.61 (0.04) 0.70 (0.35) 0.60 (0.05)
DBF 0.76 (0.05) 1.64 (0.16) 0.42 (0.04)
ENF 0.62 (0.05) 1.30 (0.22) 0.60 (0.06)
MF 0.55 (0.02) 1.25 (0.18) 0.64 (0.01)
EBF 0.42 (0.06) 1.28 (0.32) 0.73 (0.05)
WET 0.53 (0.06) 1.55 (0.19) 0.64 (0.08)
SAV 0.56 (0.03) 0.68 (0.14) 0.63 (0.02)

To compare monthly NEE, additional daily footprint calculations similar to
Section 2.2.1 were carried out. In this case, the calculation period of one week before
and one week after the available satellite images were selected. Usually, periods of 8 days
are used [19,34], but in our case, we decided to use a similar averaging backward and
forwards. Furthermore, remote sensing data from the original image was used for the
additional dates, but with meteorological variables and weighting functions corresponding
to the actual date. Monthly model NEE data were then calculated for those months where
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it was possible to predict more or equal to 2/3 days of the month. The resulting monthly
NEE was compared with monthly NEE values from stations for which the quality flag was
greater than or equal to 0.8. The results of the comparison are presented in Table 5.

Table 5. Cross-validation metrics for monthly NEE values per land-cover class.

IGBP R2 RMSE, gC/m2/Day

CRO 0.83 1.94
GRA 0.60 0.54
DBF 0.84 1.23
ENF 0.78 0.89
MF 0.70 0.75
EBF 0.70 0.80
WET 0.66 1.25
SAV 0.69 0.49

Figure 4. Scatterplots of observed NEE vs. predicted NEE based on remote sensing and meteorolog-
ical features models per each land cover: cropland (CRO); grassland (GRA); evergreen needleleaf
forest (ENF); deciduous broadleaf forest (DBF); evergreen broadleaf forest (EBF); mixed forest (MF);
wetland (WET); savanna (SAV).
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Figure 5. Cont.
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Figure 5. Time series of observed NEE and the predicted NEE based on remote sensing and meteoro-
logical features models per each land cover: cropland (CRO); grassland (GRA); evergreen needleleaf
forest (ENF); deciduous broadleaf forest (DBF); evergreen broadleaf forest (EBF); mixed forest (MF);
wetland (WET); savanna (SAV).

4. Conclusions

There has been a drastic rise in NBS development in recent years [3]. Although the
methods for evaluating NBS are advancing, there are still certain gaps that need to be
addressed [2]. Previous studies found that most of the current methods for quantifying
NBS benefits use biometric soil or tree survey data to estimate carbon stock changes.
These methods do not enable seamless large-scale assessments, while associated regular
measurements make the methods financially unsustainable for most players in the land
sector. Modeling approaches based on Earth system models or terrestrial biosphere models,
as well as inverse modeling based on CO2 concentrations data, have spatial resolution too
coarse to be used locally. The current remote-sensing-based approaches mainly rely on
allometric data as ground truth and therefore involve challenges with capturing landscape
heterogeneity and temporal variation that negatively impact scalability. As the result
of the analysis from the recent studies, it is fair to say that the approaches based on
observations from eddy covariance towers and remote sensing are the best fit to enable
affordable, high spatial resolution, globally scalable CO2 estimates. We analyzed the studies
representing a vast amount of scientific efforts targeted on these approaches and identified
the significant challenges. Here, we presented an improved approach to quantifying
carbon fluxes by blending eddy covariance data with moderate resolution satellite data
and weather data. Our method (1) is scalable due to the validation design based on a
separate set of eddy covariance stations, (2) features a high spatial and temporal resolution
of the Landsat data and set of meteorological variables, and (3) delivers robust and accurate
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predictions due to improved data quality control, advanced machine learning techniques,
and rigorous validation.

Fluxnet towers are expected to estimate NEE values for homogeneous land covers
that are stable over time. Therefore, in order to apply our method the regions should be
thoroughly controlled for these parameters. In addition, models can only be applied to
the areas with known land cover. Application to areas with different land cover may skew
the results significantly. At the same time, the eddy covariance system captures the net
ecosystem exchange, which accounts for total CO2 fluxes, including those related to the
heterotrophic respiration process. So if the AI remote sensing model was trained with EC
NEE, it consequently accounts for heterotrophic respiration.

In terms of global coverage, it is true that the sites we use may not be representative
for all possible climate zones. However, since we use several validation folds that are
blindly compiled (we do not know which station from which region is in which fold), we
can assume that the regression we have constructed (ensemble of models) may be able to
describe the underlying behavior processes for NEE. Such estimates then can be applied
globally. A exact conclusion can be drawn using new EC data from independent sources
and other climate zones.

Further in the Discussion, we suggest the key reasons for these improvements and
also list our opinion on the current limitations of the proposed approach. Our methodology
employed eddy covariance data from the Fluxnet network. Since the network has a
standardized methodology for data acquisition and processing, we collected a robust and
consistent training dataset, typically unavailable for more traditional carbon accounting
methods based on biomass and soil sampling. The availability of a large amount of
consistent and uniform data allowed for setting a fairly conservative threshold of 80% for
the NEE data coverage and resulted in substantially reduced noise. On the remote sensing
side of the approach, the Landsat archive provided a consistent and robust set of data with
great temporal depth and spatial resolution. The FLEXPART model was instrumental in
mapping the area that contributed to the NEE values captured by flux stations, helping to
match these with remote sensing products better to account for landscape heterogeneity.
Utilization of the KRR and its parameterization tailored to the goals of this study, and strict
feature selection, enabled high prediction accuracy.

Still, the metrics of our regression estimators were not uniform and varied across the
land-cover classes. The R2 for the DBF was the highest, likely due to clear seasonality
patterns and relatively low heterogeneity within the class. The same metric for the EBF
class was the lowest, likely due to other carbon exchange process drivers and lower data
availability due to high cloud cover in tropical regions.

Current results are presented for each land-cover class globally, providing visibility on
the unified, scalable calculation approaches and the global accuracy baselines for various
land covers (Figure 6). Overall, the achieved accuracy was in line with similar studies but
outperformed most of those targeting global geographical coverage (overall land cover
cross-validation R2 = 0.73, RMSE = 1.53 gC/m2/day). Daily data accuracy has the R2 range
between 0.42 for EBF and 0.76 for DBF (monthly data accuracy is between 0.6 for GRA
and 0.84 for DBF). The models have better accuracy in those parts of the world where the
number of stations is higher and, conversely, slightly worse accuracy in areas of lower
station density.

To resolve or minimize these deficiencies and improve accuracy for specific cases
or regions, the current system allows additional training (not a local re-training) in the
presence of the additional local flux observations, as suggested by [2]. Another way to
improve the confidence of model data is to add other multispectral, hyperspectral, and
radar satellite products, e.g., Sentinel-1, 2, or EnMap. It is expected that these new data
streams can improve the accuracy of the daily data slightly but can contribute significantly
to the monthly and annual data improvement.
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Figure 6. Comparison of observed and predicted mean NEE for different land covers in this study.
Error bars of each land cover are the standard deviation of observed and predicted daily NEE.

Finally, since in this study we have trained N independent models for each land
cover (where N = 3, 5, 7). In the future, it may be better to use ensemble predictions to
allow additional characteristics such as mean, median, and standard deviation. These
and other activities are currently in development but not advanced enough to be included
in this manuscript.

Given the urgent need to decarbonize the atmosphere and the critical role of NBS in
doing so, a fusion approach of eddy covariance and remote sensing data proved to be an
efficient and cost-effective solution for quantifying these efforts. We hope our methods
could contribute to mitigating global climate change in a cost-effective and transparent way.
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Appendix A. Input Data Description

Table A1 contains a description of eddy covariance study sites from Fluxnet (2000–2014)
involved in training process (84 stations left after data filtering). The total amount of data
for each land cover was as follows: CRO (948 data points), GRA (803 data points), DBF
(1023 data points), EBF (709 data points), ENF (675 data points), MF (750 data points), WET
(801 data points), and SAV (887 data points).
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Table A1. List of eddy covariance sites after quality control procedure.

Site Code Lat Lon IGBP Start Year End Year

BE-Lon 50.5516 4.7462 CRO 2004 2014
CH-Oe2 47.2864 7.7337 CRO 2004 2014
DE-Geb 51.0997 10.9146 CRO 2001 2014
DE-Kli 50.8931 13.5224 CRO 2004 2014
FR-Gri 48.8442 1.9519 CRO 2004 2014
IT-BCi 40.5237 14.9574 CRO 2004 2014
IT-CA2 42.3772 12.026 CRO 2011 2014

US-ARM 36.6058 −97.4888 CRO 2003 2012
US-CRT 41.6285 −83.3471 CRO 2011 2013
US-Lin 36.3566 −119.0922 CRO 2009 2010
US-Ne1 41.1651 −96.4766 CRO 2001 2013
US-Ne2 41.1649 −96.4701 CRO 2001 2013
US-Ne3 41.1797 −96.4397 CRO 2001 2013
US-Twt 38.1087 −121.6531 CRO 2009 2014
DE-Hai 51.0792 10.4522 DBF 2000 2012
DE-Lnf 51.3282 10.3678 DBF 2002 2012
DK-Sor 55.4859 11.6446 DBF 2000 2014
FR-Fon 48.4764 2.7801 DBF 2005 2014
IT-CA1 42.3804 12.0266 DBF 2011 2014
IT-CA3 42.38 12.0222 DBF 2011 2014
IT-Col 41.8494 13.5881 DBF 2000 2014
IT-Isp 45.8126 8.6336 DBF 2013 2014
IT-PT1 45.2009 9.061 DBF 2002 2004
IT-Ro1 42.4081 11.93 DBF 2000 2008
IT-Ro2 42.3903 11.9209 DBF 2002 2012

US-Ha1 42.5378 −72.1715 DBF 2000 2012
US-Oho 41.5545 −83.8438 DBF 2004 2013
US-UMB 45.5598 −84.7138 DBF 2000 2014
US-UMd 45.5625 −84.6975 DBF 2007 2014
US-WCr 45.8059 −90.0799 DBF 2000 2014
AU-Cum −33.6152 150.7236 EBF 2012 2014
AU-Wac −37.4259 145.1878 EBF 2005 2008
AU-Whr −36.6732 145.0294 EBF 2011 2014
AU-Wom −37.4222 144.0944 EBF 2010 2014
CN-Din 23.1733 112.5361 EBF 2003 2005
FR-Pue 43.7413 3.5957 EBF 2000 2014
IT-Cpz 41.7052 12.3761 EBF 2000 2009

CZ-BK1 49.5021 18.5369 ENF 2004 2014
DE-Obe 50.7867 13.7213 ENF 2008 2014
DE-Tha 50.9626 13.5651 ENF 2000 2014
IT-Ren 46.5869 11.4337 ENF 2000 2013
IT-SRo 43.7279 10.2844 ENF 2000 2012
US-Blo 38.8953 −120.6328 ENF 2000 2007

AU-DaP −14.0633 131.3181 GRA 2007 2013
AU-Stp −17.1507 133.3502 GRA 2008 2014
AU-TTE −22.287 133.64 GRA 2012 2014
CH-Cha 47.2102 8.4104 GRA 2005 2014
CH-Fru 47.1158 8.5378 GRA 2005 2014
CH-Oe1 47.2858 7.7319 GRA 2002 2008
CN-Cng 44.5934 123.5092 GRA 2007 2010
ES-Amo 36.8336 −2.2523 OSH 2007 2012
ES-LJu 36.9266 −2.7521 OSH 2004 2013

US-AR1 36.4267 −99.42 GRA 2009 2012
US-AR2 36.6358 −99.5975 GRA 2009 2012
US-Goo 34.2547 −89.8735 GRA 2002 2006

US-Igreen 41.8406 −88.241 GRA 2004 2011
US-SRC 31.9083 −110.8395 OSH 2008 2014
US-SRG 31.7894 −110.8277 GRA 2008 2014
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Table A1. Cont.

Site code Lat Lon IGBP Start Year End Year

US-Var 38.4133 −120.9508 GRA 2000 2014
US-Whs 31.7438 −110.0522 OSH 2007 2014
US-Wkg 31.7365 −109.9419 GRA 2004 2014
AR-SLu −33.4648 −66.4598 MF 2009 2011
BE-Bra 51.3076 4.5198 MF 2000 2014
BE-Vie 50.3049 5.9981 MF 2000 2014

CA-Gro 48.2167 −82.1556 MF 2003 2014
CH-Lae 47.4783 8.3644 MF 2004 2014
CN-Cha 42.4025 128.0958 MF 2003 2005
US-Syv 46.242 −89.3477 MF 2001 2014

AU-ASM −22.283 133.249 SAV 2010 2014
AU-Ade −13.0769 131.1178 WSA 2007 2009
AU-Cpr −34.0021 140.5891 SAV 2010 2014
AU-Dry −15.2588 132.3706 SAV 2008 2014
AU-Gin −31.3764 115.7138 WSA 2011 2014

AU-How −12.4943 131.1523 WSA 2001 2014
US-SRM 31.8214 −110.8661 WSA 2004 2014
US-Ton 38.4309 −120.966 WSA 2001 2014
AU-Fog −12.5452 131.3072 WET 2006 2008
CN-Ha2 37.6086 101.3269 WET 2003 2005
DE-Spw 51.8922 14.0337 WET 2010 2014
US-Los 46.0827 −89.9792 WET 2000 2014
US-Myb 38.0499 −121.765 WET 2010 2014
US-Tw1 38.1074 −121.6469 WET 2012 2014
US-Tw4 38.1027 −121.6413 WET 2013 2014

For remote sensing data, we processed 20,438 scenes from different Landsat products
(TM, ETM+, and OLI).

Appendix B. Features Description

This section provides definitions for the features used in Table 3.

LST/SWIR2 ·Mean_Solar_1week—LST divided by SWIR2 and multiplied by 1 week mean
solar radiation
LST/SWIR2 · Solar—LST divided by SWIR2 and multiplied by current daily solar radiation
Cum_Solar_2week—2 week cumulative solar radiation
Cum_Solar_4days—4 days cumulative solar radiation
Cum_Temperature_1week—1 week cumulative temperature
Cum_Temperature_4days—4 days cumulative temperature
Cum_Temperature_over_2_1week—1 week cumulative temperature over 2 Celsius degree
Cum_Temperature_over_2_3week—3 week cumulative temperature over 2 Celsius degree
Cum_Temperature_over_3_3week—3 week cumulative temperature over 3 Celsius degree
Cum_Temperature_over_4_3week—week cumulative temperature over 4 Celsius degree
Cum_Temperature_over_5_2week—2 week cumulative temperature over 5 Celsius degree
Cum_Temperature_over_5_3week—3 week cumulative temperature over 5 Celsius degree
Cum_precipitation_2days—2 days cumulative precipitation
Cum_precipitation_3days—3 days cumulative precipitation
Cum_precipitation_5days—5 days cumulative precipitation
Delta_T—difference between current daily temperature and daily dew-point temperature
EVI · DewPoint—EVI multiplied by dew-point temperature
Mean_Solar_2week—2 week averaged solar radiation
Mean_Solar_4days—4 days averaged solar radiation
Mean_Solar_4week—4 week averaged solar radiation
Mean_Temperature_1week—1 week averaged temperature
NDVI · Cum_Solar_3week—NDVI multiplied by 3 week cumulative solar radiation
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NDVI ·Mean_Solar_3week—NDVI multiplied by 3 week averaged solar radiation
NDVI ·Mean_Solar_4week—NDVI multiplied by 4 week averaged solar radiation
NDVI · Solar—NDVI multiplied by current daily solar radiation
TCG · Cum_Solar_3week—TCG multiplied by 3 week cumulative solar radiation
TCG · Cum_Solar_4days—TCG multiplied by 4 days cumulative solar radiation
TCG · DewPoint—TCG multiplied by dew-point temperature
TCG ·Mean_Temperature_2week—TCG multiplied by 2 week averaged temperature
TCG · Solar—TCG multiplied by current daily solar radiation
blue · SWIR—blue multiplied by SWIR
blue/green—blue divided by green
blue/red—blue divided by red
blue/NIR—blue divided by NIR
blue/SWIR2—blue divided by SWIR2
green red—green multiplied by red
green/red—green divided by red
green/NIR—green divided by NIR
red/blue—red divided by blue
red/green—red divided by green
red/NIR—red divided by NIR
red/SWIR—red divided by SWIR
red/SWIR2 · Cum_Solar_2week—red divided by SWIR2 and multiplied by 2 week cumulative
solar radiation
NIR · SWIR—NIR multiplied by SWIR
NIR/LST—NIR divided by LST
NIR/LST · Solar—NIR divided by LST and multiplied by current daily solar radiation
NIR/green—NIR divided by green
NIR/SWIR—NIR divided by SWIR
NIR/SWIR2—NIR divided by SWIR2
NIR/SWIR2 ·Mean_Solar_2week—NIR divided by SWIR2 and multiplied by 2 week aver-
aged solar radiation
NIR/SWIR2 · Solar—NIR divided by SWIR2 and multiplied by current daily solar radiation
NIR · Cum_Solar_3week—NIR multiplied by 3 week cumulative solar radiation
NIR · Solar—NIR multiplied by current daily solar radiation
SWIR/green—SWIR divided by green
SWIR/red—SWIR divided by red
SWIR/NIR—SWIR divided by NIR
SWIR/NIR · Cum_Temperature_over_5_4week—SWIR divided by NIR and multiplied by
4 week cumulative temperature over 5 Celsius degree
SWIR2/blue—SWIR2 divided by blue
SWIR2/green—SWIR2 divided by green
SWIR2/NIR—SWIR2 divided by NIR
SWIR2/SWIR—SWIR2 divided by SWIR
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