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97403, USA

2Department of Physiology and Howard Hughes Medical Institute, University of California San 
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Abstract

The mouse, as a model organism to study the brain, gives us unprecedented experimental access 

to the mammalian cerebral cortex. By determining the cortex’s cellular composition, revealing the 

interaction between its different components, and systematically perturbing these components, we 

are obtaining mechanistic insight into some of the most basic properties of cortical function. In 

this review, we describe recent advances in our understanding of how circuits of cortical neurons 

implement computations, as revealed by the study of mouse primary visual cortex. Further, we 

discuss how studying the mouse has broadened our understanding of the range of computations 

performed by visual cortex. Finally, we address how future approaches will fulfill the promise of 

the mouse in elucidating fundamental operations of cortex.
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INTRODUCTION

What chiefly distinguishes cerebral cortex from other parts of the central nervous 

system is the great diversity of its cell types and interconnexions. It would be 

astonishing if such a structure did not profoundly modify the response patterns of 

fibres coming into it.

—Hubel & Wiesel (1962, p. 106)

These two prescient sentences at the beginning of Hubel & Wiesel’s (1962) landmark 

publication encapsulate a key question in understanding visual cortex: How do diverse 
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cell types and their connectivity sort out and make sense of the incoming stream of 

visual information? The study of mouse primary visual cortex (V1) has advanced our 

understanding of the relationship between cortical structure and function. How so? Progress 

in biology relies on the discovery of a phenomenon, its quantification and parameterization, 

and its mechanistic understanding. Research on primates and carnivores led to the discovery 

of many fundamental response properties of visual cortex to visual stimuli and allowed 

investigators to precisely quantify these responses relative to the stimulus parameters 

(Gilbert & Wiesel 1990, Hubel & Wiesel 1968, Movshon et al. 1978, Reid et al. 

1991). Furthermore, this quantitative effort has led to models of cortical function that 

made mechanistic predictions (e.g., Carandini & Heeger 1995, Ferster & Miller 2000). 

However, due to the complexity of the mammalian cortex, experimental verification of these 

predictions has been slow and required heroic effort (Malpeli et al. 1981, Priebe & Ferster 

2008, Reid & Alonso 1995, Sillito 1975). As a consequence, our mechanistic understanding 

of cortical vision has lagged substantially relative to the progress made on discovering and 

parameterizing phenomena. How do the different types of cortical neurons each contribute 

to the response of V1 to visual stimuli? What is the role of local recurrent connectivity 

among cortical neurons? How are the results of computations distributed to downstream 

targets to enable visually guided behavior? By using the mouse, we can harness the power 

of molecular biology to selectively record and perturb the activity of the individual cellular 

components of the cortex and provide insight into the cellular mechanisms that enable V1 to 

see.

How appropriate is mouse V1 for studying cortical computations? A number of response 

properties of mouse V1 to visual stimuli and nonvisual variables have been well established 

and parameterized (Ayaz et al. 2013; Niell & Stryker 2008, 2010; Self et al. 2014; Van 

den Bergh et al. 2010). A mechanistic understanding of how the underlying computations 

are implemented provides profound insight into the biology of the mammalian cortex in 

general. Can these findings generalize to V1 of other species? Many fundamental properties 

of visual cortical function originally reported in primates and carnivores are similar in the 

mouse (Niell & Stryker 2008, Van den Bergh et al. 2010). The question of whether those 

computations are implemented by the same mechanisms in mice as they are in the cortex of 

carnivores and primates will have to wait until we can experimentally access the cortex of 

other model organisms as thoroughly as we can access that of the mouse today. However, 

some examples already suggest that at least some of these mechanisms are indeed shared 

across species (Lien & Scanziani 2013, Liu et al. 2011, Priebe & Ferster 2008, Reid & 

Alonso 1995). Clearly, the mouse visual system differs from that of the primate in several 

ways, including low acuity, lack of a fovea, the natural visual environment within which it 

operates, and the repertoire of visually guided behaviors it subserves (Huberman & Niell 

2011, Seabrook et al. 2017). However, even in foveate animals, much of the cortex is 

dedicated to processing vision outside the fovea, and mouse vision shares a strong similarity 

with primate peripheral vision, from the low acuity and rod dominance to behavioral roles 

such as detecting salient stimuli and guiding navigation. We expect that studies of mouse V1 

will reveal canonical principles of visual cortical function and may demonstrate that primate 

specializations represent detailed implementation rather than fundamental differences.
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Finally, the striking similarity between the microcircuit organization across cortical areas 

has long suggested the possibility that the cortical circuit performs a canonical computation 

(Douglas et al. 1989, Miller 2016) shared across modalities and species but that differs based 

on the nature of the input received and the detailed local connectivity of individual neurons. 

Thus, determining how the circuits of mouse V1 implement visual processing could lead to a 

general understanding of how cortex computes.

COMPUTATION OF VISUAL RESPONSE PROPERTIES BY THE CORTICAL 

CIRCUIT

The amount of available data in mouse visual cortex on cell types, including morphology, 

electrophysiological properties, molecular identity, and local and long-range connectivity 

patterns, exceeds that of any other area of mammalian cortex (Gouwens et al. 2019, 

Harris et al. 2019, Jiang et al. 2015, Pfeffer et al. 2013, Tasic et al. 2016). This list of 

parts and their wiring provides the basis for understanding the cellular mechanisms of 

cortical computations and constraining models. In the Supplemental Appendix, we present 

a very brief overview of the anatomical organization of visual cortex (Figure 1), including 

cell types and their connectivity, to provide context for understanding the computations 

performed. Below, we describe how these circuit elements generate a range of visual 

response properties, from orientation selectivity to contextual modulation, beginning with 

the transformation that occurs from the thalamic input to cortical responses in layer 4 (L4).

The Thalamocortical Transformation

As in other mammalian species, most dorsal lateral geniculate nucleus (dLGN) neurons have 

a standard center-surround organization (Figure 2a), with either ON or OFF polarity (i.e., 

responding to increments or decrements of light, respectively) and transient or sustained 

temporal dynamics. A minority of neurons have more diverse response properties (Marshel 

et al. 2012, Piscopo et al. 2013, Zhao et al. 2013), including neurons that prefer stimuli 

moving in a certain direction (direction selectivity). Although such noncanonical responses 

are present in the dLGN of other species, including cat and primate, their proportion is 

greater in the mouse, though still a small fraction of the total dLGN population (Scholl et 

al. 2013). Since the discovery that receptive field (RF) structure in V1 differs from that in 

dLGN, a large effort has gone into understanding the logic of this transformation.

Thalamic convergence and unitary amplitude.—It takes many thalamic afferents 

to fire a cortical neuron. A single thalamic afferent impinging onto L4 excitatory neurons 

triggers a so-called unitary excitatory postsynaptic potential averaging 0.8 mV (Lien & 

Scanziani 2018) [ranging from0.1 to 3.4 mV; similar to that observed in rat somatosensory 

cortex (Bruno & Sakmann 2006) and cat visual cortex (Sedigh-Sarvestani et al. 2017)], 

thus too small to depolarize the membrane enough to reach threshold for action potential 

generation. As a consequence, the activation of L4 excitatory neurons by a visual stimulus 

must rely on the summed activity of many dLGN neurons. This is an important property 

because it means that a L4 neuron can selectively respond to features of the visual 

environment that are not represented by any of its individual dLGN afferents but are instead 

captured by a conjunction of features in the activity of the dLGN afferents from which it 

Niell and Scanziani Page 3

Annu Rev Neurosci. Author manuscript; available in PMC 2023 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



receives input. In other words, L4 neurons can extract features of the visual environment that 

are not explicitly represented by individual neurons in upstream stages of visual processing. 

It has been estimated that, in response to a visual stimulus, L4 excitatory neurons receive 

the convergent activity of approximately 80 dLGN inputs (Lien & Scanziani 2018, Bruno & 

Sakmann 2006). However, a much smaller number of dLGN inputs, as low as two to six, 

may be sufficient to account for the majority of a cortical neuron’s response (Ringach 2021).

Orientation selectivity.—Neurons in V1 preferentially respond to edges of luminance 

of a particular orientation, a property referred to as orientation selectivity (OS) (Figure 

2b). This property, originally discovered in cat (Ferster & Miller 2000, Hubel & Wiesel 

1962), has been confirmed across mammalian species, including mouse V1 (Niell & Stryker 

2008), and represents one of the most salient differences between the response of dLGN 

and cortical neurons. Because most dLGN neurons do not show a preferential response to 

edges of any particular orientation (Piscopo et al. 2013), most OS responses are most likely 

generated in cortex. Is OS in mouse V1 a property that emerges through the interaction 

between cortical neurons or through the convergence of multiple dLGN afferents onto 

cortical neurons? A number of models have been proposed (Ferster & Miller 2000, Hubel 

& Wiesel 1962), and evidence for the convergence of appropriately aligned dLGN inputs 

was provided by heroic paired recordings in dLGN and cortex of cat (Reid & Alonso 1995). 

However, to directly address this question, one needs to isolate thalamic excitation from 

recurrent cortical excitation, an approach that was pioneered in the cat (Ferster et al. 1996) 

and recently optimized using genetic approaches in the mouse. By performing whole-cell 

recordings from L4 excitatory neurons while optogenetically silencing V1, it is possible to 

directly record thalamic synaptic excitation in isolation (Li et al. 2013, Lien & Scanziani 

2013). This approach revealed that the RF structure generated by the ensemble of dLGN 

afferents converging onto individual L4 excitatory neurons is made of spatially separated 

yet overlapping ON and OFF subregions (Lien & Scanziani 2013). This RF structure likely 

results from the fact that ON- and OFF-centered dLGN neurons with spatially offset RFs 

converge onto individual L4 neurons (Figure 3a), thereby imparting OS (Figure 3b,c). Thus, 

the convergence of dLGN neurons with distinct polarities (either ON or OFF) and distinct 

RF location imparts L4 neurons with the ability to detect a feature of the visual environment 

that is not necessarily captured by any individual dLGN neuron from which they receive 

input.

Pharmacological and genetic manipulations in several mammals, including mice (Sarnaik et 

al. 2014), demonstrate that OS can persist even in the absence of ON inputs from the retina, 

implying that other mechanisms could also contribute to OS, for example, the convergence 

of aligned dLGN inputs of like polarity along the axis of preferred orientation (Chapman et 

al. 1991, Li et al. 2013).

Direction selectivity.—Moving stimuli are particularly salient. The ability of V1 neurons 

to preferentially respond not only to edges of luminance of a specific orientation but 

also to the motion of those edges in a specific direction is another prominent feature 

of cortical responses to visual stimuli (Hubel & Wiesel 1959, 1962). This property is 

referred to as direction selectivity (DS) (Figure 2c), and the underlying mechanisms have 
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intrigued scores of scholars. Like V1 neurons of many mammals, neurons in mouse V1 

also display DS (Niell & Stryker 2008). How does DS emerge in V1? Because motion is 

a process that occurs across space and time, DS requires a comparison across those two 

dimensions (Albrecht & Geisler 1991, DeAngelis et al. 1993, Livingstone 1998, McLean 

& Palmer 1989, Reid et al. 1987, Saul & Humphrey 1992). Using the approach described 

above, namely the optogenetic silencing of V1 to isolate thalamic excitation, it could be 

demonstrated that, in L4 neurons, DS emerges through the convergence of dLGN neurons 

with distinct spatial and temporal RFs (Lien & Scanziani 2018) (Figure 3d). The RF of 

dLGN neurons is characterized not only by its spatial coordinates and polarity (ON or OFF) 

but also by its temporal properties. dLGN neurons can have different response dynamics, 

with some responding transiently to a visual stimulus while others respond in a more 

sustained manner (Lien & Scanziani 2018, Piscopo et al. 2013). The convergence of dLGN 

neurons with spatially offset RFs and with different response dynamics to visual stimuli onto 

individual L4 neurons imparts DS (Figure 3e). This is another clear example of how, by 

combining the response diversity of dLGN neurons, L4 neurons can extract features of the 

environment (e.g., direction of motion) that are not necessarily represented in the activity of 

any of the individual dLGN neurons from which they receive input. DS is further enhanced 

in V1 through the spatial separation of the RFs of excitatory and inhibitory synaptic 

conductances. Electrophysiological recordings from L4 neurons show that, in direction-

selective neurons, the spatial position of a stimulus that triggers maximal excitation is offset 

relative to the position that triggers maximal inhibition (Li et al. 2015). This offset results 

in a delay of inhibition relative to excitation specifically for stimuli moving in the preferred 

direction, thus contributing to the DS of the neuron. Similarly, the spatial position (in terms 

of retinotopic coordinates) of inhibitory neurons that are presynaptic to a direction-selective 

neuron is offset relative to that of its presynaptic excitatory neurons. This spatial offset 

predicts the preferred direction of the direction-selective neuron (Rossi et al. 2020).

A small fraction of dLGN neurons inherit DS from the retina (Piscopo et al. 2013) and 

project across cortical layers (Sun et al. 2016). Do they contribute to DS in V1? Disruption 

of DS in the retina does not affect the overall distribution of direction-selective neurons 

in V1, implying that most DS in V1 is not inherited from the retina (Hillier et al. 2017). 

However, after impairing retinal DS, one observes a reduction in the fraction of L2/3 

neurons whose preferred direction is posterior motion (i.e., the direction of lateral visual 

flow experienced by the mouse as it moves forward in its environment) (Hillier et al. 2017). 

Thus, while the direction preference for most motion directions is computed de novo in V1, 

the sensitivity to posterior motion in L2/3 is in part inherited from the retina (Cruz-Martín et 

al. 2014, Rasmussen et al. 2020).

Computations by Recurrent Excitation

Even though dLGN afferents are the main input from the visual periphery into V1, 

they represent only a minority of the excitatory drive within cortex. Recurrent synaptic 

connections among excitatory neurons are a defining characteristic of the cortical circuit. 

Below we discuss how recurrent excitation shapes the stimulus selectivity and response 

dynamics.
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Functional connectivity among V1 excitatory neurons.—Beyond the general intra- 

and interlaminar connectivity principles (Figure 1b; Supplemental Appendix), what are the 

rules that guide specific connectivity among excitatory neurons in V1, and how do they 

relate to their functional properties? A general principle of connectivity that has emerged 

through many studies is like-to-like (Figure 4a). In L2/3, for example, the probability of 

connection (Cossell et al. 2015, Ko et al. 2011, Lee et al. 2016, Wertz et al. 2015), the 

synapse size (Lee et al. 2016), and the unitary amplitude of connections (Cossell et al. 2015, 

Ko et al. 2011) are all greater among excitatory neurons with similar orientation preference. 

Consistent with this finding, a L2/3 excitatory neuron that receives excitatory input from 

another L2/3 excitatory neuron is more likely to project back to that L2/3 excitatory neuron 

than chance, and these two neurons are more likely than chance to receive a common input 

from a L4 excitatory neuron (Yoshimura et al. 2005). Like-to-like connectivity also occurs 

across layers, with L2/3 neurons being more likely to receive input from L4 neurons tuned 

to the same orientation (Rossi et al. 2020), although some interlaminar input populations 

are tuned for mismatched orientations (Wertz et al. 2015). This rule of connectivity is 

also reflected at the entry point of visual information into V1 where the tuning of the 

dLGN input matches that of recurrent excitation in L4 neurons (Li et al. 2013, Lien & 

Scanziani 2013), and connected L4 neurons are more likely to receive shared input from 

dLGN (Morgenstern et al. 2016). The rules of connectivity also obey general principles 

across cortical space, such that neurons with spatially offset RFs tend to be connected if 

their preferred orientations align with the axis connecting their RFs (Iacaruso et al. 2017, 

Rossi et al. 2020) (Figure 4b), consistent with tuning for extended contours. Thus, the visual 

response properties of V1 excitatory neurons are a key variable in predicting who talks to 

who.

Dynamics of the cortical response: amplification.—While there are no exact 

numbers for the mouse, in other mammals only about 5–20% of excitatory synapses onto 

L4 neurons are of dLGN origin (Ahmed et al. 1994, Garcia-Marin et al. 2019). Consistent 

with this, in mice only 30% or so of visually evoked synaptic excitation of L4 excitatory 

neurons directly originates from dLGN afferents (Li et al. 2013, Lien & Scanziani 2013). 

The remainder of visually evoked excitation (~70%) is mediated by other cortical neurons 

(Li et al. 2013, Lien & Scanziani 2013), most likely L4 neurons, since they excite one 

another through recurrent connections (Seeman et al. 2018) (Figure 4c). The relative fraction 

of afferent thalamic versus recurrent excitation evolves in time after the onset of the visual 

stimulus (Reinhold et al. 2015). Excitation is predominantly thalamic at the beginning of 

the stimulus and shifts toward recurrent after a few tens of milliseconds as L4 excitatory 

neurons begin to fire action potentials in response to the stimulus (Reinhold et al. 2015). 

Visually evoked responses are thus amplified by recurrent connections. Importantly, this 

cortical amplification does not degrade the orientation and direction preference imparted 

by the dLGN input onto L4 neurons (Li et al. 2013, Lien & Scanziani 2013) because, 

as described above, the connectivity pattern among V1 neurons is biased toward neurons 

with similar orientation and direction preferences. Such amplification was one of the first 

proposed canonical cortical computations (Douglas et al. 1989).
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Dynamics of the cortical response: decay time course.—Can recurrent excitation 

sustain visually evoked activity without ongoing thalamic input? Given that shortly after the 

onset of the visual stimulus, recurrent excitation makes up most of the excitation received 

by L4 neurons, one could assume that visually evoked activity may persist for some time 

even without ongoing dLGN input. This is, however, not the case. No matter how strong the 

visual stimulus is and, accordingly, how large the response of V1 to that visual stimulus is, 

silencing of the dLGN input to V1 leads to a fast decay (~10 ms) of the visual response in 

V1 (Reinhold et al. 2015). This fast decay is on the order of magnitude of the membrane 

time constant of a neuron. Thus, despite the strong amplification by recurrent excitation, 

the response of V1 remains tightly linked to the dLGN input. This ensures that temporal 

fluctuations in the response of dLGN neurons to visual stimuli are closely followed by 

temporal fluctuations in V1 activity (Reinhold et al. 2015). Selective amplification thereby 

achieves two functions: amplifying specific features and allowing high temporal fidelity 

(Murphy & Miller 2009). Intracortical inhibition likely plays a key role in the rapid decay of 

visually evoked activity in V1 following the interruption of dLGN input.

Computations Through Cortical Inhibition

Approximately 20% of cortical neurons are inhibitory (Meinecke & Peters 1987), and 

their integration into the cortical circuit ensures that during normal cortical function, 

excitation and inhibition are inseparable—they walk hand in hand. As discussed below, 

the combination of synaptic excitation and inhibition underlies several fundamental cortical 

computations. For an overview of inhibitory circuitry, see the Supplemental Appendix.

Computing with two opposing forces.—Visually evoked activity elicits both 

excitation and inhibition in V1. The recruitment of these two opposing forces already occurs 

in the first steps of cortical processing, because dLGN afferents contact both excitatory and 

PV-expressing inhibitory neurons in V1 (Ji et al. 2016) (Figure 1d). Furthermore, excitation 

by dLGN afferents is stronger onto PV neurons than onto excitatory neurons (Ji et al. 2016). 

As a consequence, even the weakest visual stimuli generate, on average, both excitation and 

inhibition in V1 neurons (Adesnik 2017) (Figure 5a), and as stimulus contrast is increased, 

excitation and inhibition grow approximately proportionally (Adesnik 2017) (Figure 5b). 

Why should the dLGN input to V1 push on both the accelerator and the brake at the same 

time? The functional consequences of the proportionality between excitation and inhibition 

in cortex have been the focus of extensive modeling (Ahmadian et al. 2013, Brunel 2000, 

Sadeh & Clopath 2021, van Vreeswijk & Sompolinsky 1996) and have been discussed in 

more detail elsewhere (Isaacson & Scanziani 2011, Miller 2016). Briefly, a proportional 

increase of inhibition with excitation enables V1 to respond over a wide range of stimulus 

intensities (Liu et al. 2011), remaining sensitive to weak stimuli (in which weak excitation 

is counteracted by only weak inhibition) yet not saturating in response to strong stimuli 

(because strong excitation is counteracted by strong inhibition). Through this proportional 

increase, for example, orientation tuning of a V1 neuron changes little or becomes even 

sharper as stimulus contrast increases (Li et al. 2012) and the inputs of the two eyes sum 

sublinearly in binocular neurons (Longordo et al. 2013). Furthermore, the ability to operate 

with strong excitation without the risk that recurrent excitatory synapses could lead to 

runaway excitation enables cortex to have fast dynamics (Reinhold et al. 2015); to use the 
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analogy of a car, if you want to go fast, you need brakes to stay in control. The divergence 

of feedforward excitation onto excitatory and PV neurons also occurs at the next stage of 

processing, from L4 to L2/3, and here, too, L4 afferents provide stronger excitation onto 

PV neurons as compared to L2/3 excitatory neurons (Adesnik et al. 2012). Furthermore, 

L2/3 excitatory neurons homeostatically regulate the strength of PV-mediated inhibition as 

a function of the magnitude of excitation they receive from L4 (Xue et al. 2014). Thus, the 

divergence of afferent axons onto excitatory and inhibitory neurons ensures proportionality 

between excitation and inhibition and may be a general property of each stage of cortical 

processing (Miller 2016).

In contrast to excitatory neurons, in mouse V1, PV inhibitory neurons tend to be broadly 

tuned for orientation (Kerlin et al. 2010, Liu et al. 2009, Niell & Stryker 2008, Runyan et 

al. 2010), reflecting the fact that they pool inputs relatively nonselectively from the local 

excitatory populations (Bock et al. 2011, Hofer et al. 2011). The result is that PV neurons 

provide untuned inhibition to their targets. PV-mediated inhibition thus reflects population 

activity rather than specific features of the stimulus, going up and down in tandem with 

excitatory neurons. This untuned inhibition is ideally suited to control the gain of V1 

responses relative to the stimulus (Atallah et al. 2012, Lee et al. 2012) (Figure 5c–e), that 

is, to change the magnitude of the response of excitatory neurons without impacting their 

tuning preferences, like turning the volume knob on a stereo. Some PV neurons located 

in L6 extend their axons throughout the depth of the cortex (Bortone et al. 2014), which 

enables them to control the gain of V1 responses across all cortical layers (Atallah et al. 

2012, Lee et al. 2012, Olsen et al. 2012). Untuned inhibition may also mediate divisive 

normalization (Wilson et al. 2012), a proposed canonical computation of cortex (Carandini 

& Heeger 2011). In contrast to PV neurons, other inhibitory neurons are more selective to 

the orientation of the stimulus (Ayzenshtat et al. 2016, Lee et al. 2012, Ma et al. 2010), but 

the mechanism and implications of this are less well understood.

Contextual modulation.—Context is a fundamental attribute to our perception of any 

sensory stimulus, providing meaning in the sensory scene. In the visual world, context refers 

to the visual environment surrounding a stimulus. Psychophysical experiments demonstrate 

that the context of a stimulus influences our perception of that stimulus, including its size, 

color, or contrast (Albright & Stoner 2002). Indeed, much of the computational power of 

cortex in visual processing may arise from such contextual modulation.

Several laboratories have found clear physiological signatures of such perceptual phenomena 

in V1 (Nurminen & Angelucci 2014), and experiments in mouse are contributing to our 

understanding of some of the underlying cellular mechanisms. Stimuli outside of the RF of 

a neuron, i.e., stimuli presented in its surround, while generally unable to elicit a response 

alone (but see below), can, however, modulate the response of the neuron to a stimulus 

placed in its RF. The nature of this modulation is often suppressive, as shown when the 

size of a stimulus is increased to cover both the RF and the surrounding regions, and is 

referred to as surround suppression (Nurminen & Angelucci 2014, Van den Bergh et al. 

2010) (Figure 6a). What accounts for this suppression? Recordings in L2/3 of mouse V1 

have shown that the relationship between excitation and inhibition changes with the size of 

the stimulus or with the position of the stimulus relative to the center of the RF. Inhibition 

Niell and Scanziani Page 8

Annu Rev Neurosci. Author manuscript; available in PMC 2023 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



becomes progressively more prominent relative to excitation as the stimulus size increases or 

as the stimulus is shifted toward the periphery of the RF (Adesnik 2017, Haider et al. 2013). 

What is the cellular basis for this phenomenon? Surround suppression is not only observed 

in excitatory neurons but also in two types of inhibitory neurons: the PV and vasoactive 

intestinal peptide (VIP) cells (Adesnik et al. 2012, Keller et al. 2020a). Remarkably, 

the other main type of inhibitory neuron, the somatostatin (SOM) cell, shows much less 

surround suppression, and the responses of these neurons instead often continue to increase 

with increasing stimulus size (Adesnik et al. 2012, Keller et al. 2020a) (Figure 6a). This 

property of SOM cells, and the fact that SOM cells inhibit all other cell types (Figure 

1c), suggests that SOM cells may actually be a key contributor to surround suppression. 

Indeed, optogenetic silencing of SOM cells strongly diminishes surround suppression, at 

least in L2/3 excitatory neurons (Adesnik et al. 2012). Thus, SOM cells, by lacking surround 

suppression and hence robustly responding to large stimuli, suppress neighboring neurons, 

contributing to their surround suppression (Figure 6b).

It takes time for surround suppression to kick in. The presentation of a large stimulus, 

which covers both the RF and its surround, initially triggers a response in V1 excitatory 

neurons that is similar in magnitude to that of a stimulus that covers just the RF. Several 

tens of milliseconds later, however, the response starts to get suppressed (Self et al. 2014). 

Consistent with the role of SOM cells in surround suppression, their activation by a visual 

stimulus is also delayed (Ma et al. 2010). This delay likely results from the fact that SOM 

cells need repeated activity from their excitatory synaptic input in order to respond because 

their excitatory inputs are facilitating; that is, synaptic excitation starts small and increases 

progressively with repeated activity of the afferents (Karnani et al. 2016). Thus, synaptic 

dynamics of a specific component of the cortical circuit can affect the time course of the 

sensory response in V1.

Why do L2/3 SOM cells have little or no surround suppression? Unlike other L2/3 cell 

types, SOM cells do not receive afferent excitatory input from L4, the main input layer 

to L2/3 (Adesnik et al. 2012). The excitation of SOM cells is in large part provided by 

recurrent axons within L2/3. This property, together with the fact that SOM cells do not 

inhibit one another (Adesnik et al. 2012, Pfeffer et al. 2013) (Figure 1c; see also the section 

on inhibitory circuitry in the Supplemental Appendix), may underlie their ability to integrate 

stimuli that cover large portions of visual space (Figure 6b).

Not all stimuli in the surround are suppressive (Nurminen & Angelucci 2014). A grating 

in the surround of a neuron’s RF whose orientation is orthogonal relative to the orientation 

of the grating in the neuron’s RF (cross-oriented surround) triggers much less surround 

suppression than if its orientation were the same as that in the neuron’s RF (iso-oriented 

surround; as discussed above). This phenomenon may represent the physiological basis for 

the fact that the perception of a stimulus with a cross-oriented surround is more salient 

than the same stimulus with an iso-oriented surround, as demonstrated by many visual 

illusions (Figure 6c). Work in L2/3 of mouse V1 suggests that this contextual modulation 

relies, at least in part, on the reciprocal interaction between two types of inhibitory neurons, 

namely VIP and SOM cells (Keller et al. 2020a). These two neurons have complementary 

responses to iso- and cross-oriented surrounds. On one hand, iso-oriented stimuli elicit 
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strong responses in SOM cells (as mentioned above) but only weak ones in VIP cells (Keller 

et al. 2020a) (Figure 6c). On the other hand, cross-oriented stimuli trigger strong responses 

in VIP cells but poorly stimulate SOM cells (Keller et al. 2020a). Importantly, VIP cells 

are integrated in the cortical circuit in a very particular manner: They preferentially inhibit 

inhibitory neurons rather than excitatory neurons (Pfeffer et al. 2013) (Figure 1c; see also 

the section on cell types and circuit organization in the Supplemental Appendix). Their 

activity thus has a disinhibitory impact on excitatory neurons in V1. Recent experimental 

and modeling approaches suggest that the activation of VIP cells by a cross-oriented 

surround suppresses SOM cells, thereby leading to the relief of excitatory neurons from 

suppression (Keller et al. 2020a). This same disinhibitory circuit has been shown to regulate 

the degree of surround suppression based on the contrast of the stimulus (Millman et al. 

2019) as well as to enhance visual responses based on attentional inputs from cingulate 

cortex (Zhang et al. 2014). Thus, this canonical disinhibitory circuit may represent one of 

the key mechanisms for how context impacts the perception of a stimulus.

Finally, stimuli presented in the surround that would otherwise suppress the response to a 

stimulus in the RF can become excitatory when presented in the absence of a stimulus in the 

RF (Fiorani Júnior et al. 1992, Jones et al. 2001, Rossi et al. 2001, Schnabel et al. 2018, von 

der Heydt et al. 1984). These responses to the surround stimulus alone may represent the 

physiological signature of perceptual completion, that is, they may allow the visual system 

to use context to estimate the nature of a stimulus in the RF when the latter is poorly 

visible or occluded. Work in mouse has shown that the excitation of V1 neurons to stimuli 

presented in the surround alone is mediated by feedback projections originating in higher 

visual areas (HVAs) (Keller et al. 2020b). This is a clear example of how the response of V1 

neurons is shaped not only by the feedforward pathway ascending from the retina and the 

local V1 circuitry but also by feedback projections descending from HVAs.

Sharpening the Receptive Field

Recurrent synaptic excitation among V1 neurons is biased toward neurons with similar 

orientation preferences (see the section titled Functional Connectivity Among V1 Excitatory 

Neurons), yet this bias is by no means absolute. Excitatory neurons in V1 also receive 

many synaptic inputs from excitatory neurons that have different orientation preferences. 

As a consequence, the orientation tuning of synaptic excitation is very broad, in fact 

much broader than the spiking response of the neurons themselves. What accounts for 

this sharpening of the spike response? Whole-cell recordings from mouse V1 neurons have 

demonstrated that at least two factors, spike threshold and broad inhibition, contribute to 

the sharpening (Figure 7). Due to the membrane potential threshold for action potential 

generation, there is a supra-linear relationship between the amplitude of the postsynaptic 

potential and spike frequency. As was shown originally in the cat (Priebe & Ferster 2008), 

this supralinear input-output relationship enables the largest visually evoked excitatory 

postsynaptic potentials to trigger spikes while the smaller ones remain sub-threshold, 

thereby sharpening the orientation tuning of the spike response (Liu et al. 2011) (Figure 

7a). Another important factor in the sharpening of the spike response is the fact that the 

orientation tuning of synaptic inhibition is even broader than that of synaptic excitation. This 

is likely a consequence of the fact that, as discussed above, PV neurons, a main source of 
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inhibition to excitatory neurons, are largely untuned to orientation. With synaptic inhibition 

more broadly tuned than synaptic excitation, the relationship between excitation and 

inhibition changes with the orientation of the stimulus, being biased toward excitation for 

the preferred orientation as compared to flanking orientations (Liu et al. 2011) (Figure 7b). 

Finally, active dendritic conductances also contribute to the sharpening of the orientation 

preferences of V1 neurons. Bursts of local dendritic sodium spikes generated in response 

to stimuli presented at the preferred orientation, but not at flanking orientations, sharpen 

the orientation tuning of the somatic depolarization (Smith et al. 2013) (Figure 7c). Local 

dendritic spikes may be a consequence of the correlated activity of synaptic inputs clustering 

on the dendrites of L2/3 neurons (Iacaruso et al. 2017, Lee et al. 2019). Indeed, inputs with 

overlapping RFs are more likely than chance to be close neighbors on a dendritic branch 

(Iacaruso et al. 2017). Furthermore, while the preferred orientation of inputs does not predict 

their spatial relationship on a dendrite (Chen et al. 2013, Iacaruso et al. 2017), in neurons 

receiving callosal projection from contralateral V1, the orientation preference of those 

callosal inputs correlates with the orientation preference of their noncallosal neighboring 

inputs (Lee et al. 2019). Thus, both synaptic and intrinsic voltage-dependent conductances 

profoundly shape the orientation tuning of the neuron.

Representation of Cortical Computations at the Population Level

The cortical response to visual stimuli has classically been characterized by tuning curves 

or RFs of individual neurons, as discussed in this section. However, the firing of one 

neuron cannot unambiguously convey information about the stimulus. As a simple example, 

a change in firing rate of an orientation-selective cell could result from either a change 

in stimulus contrast or a change in stimulus orientation, thus precluding readout of either 

parameter independently. Information encoding in individual neurons is further confounded 

by the fact that neuronal responses to a given stimulus can be highly variable. However, 

these challenges can be resolved by considering the representation across many neurons 

in the population code. Recent methods for recording large numbers of neurons have thus 

begun to reveal how sensory information is encoded across large populations of neurons 

(Fairhall 2014, Panzeri et al. 2015, Whiteway & Butts 2019).

One important aspect of a population code is how information is distributed across the 

activity of many neurons, in terms of the diversity and overlap of response properties. 

Stringer et al. (2019b) quantitatively assessed the response of tens of thousands of neurons 

to a large battery of natural scene images using two-photon calcium imaging in mouse V1. 

The results demonstrated that responses are distributed across the population according to a 

power law that optimizes efficiency (ability to represent as many stimuli as possible) while 

maintaining smoothness (similar stimuli evoke similar patterns of neural activity). Another 

key question in population coding is the impact of correlations on pooling population 

activity to overcome variability inherent to individual neurons. It has been known for some 

time that the variability in response to a stimulus is often correlated across neurons, as a 

result of multiple factors, including shared input that is not directly related to the stimulus 

(such as behavioral state variables) or fluctuations resulting from local network dynamics 

(Kohn et al. 2016, Engel & Steinmetz 2019, Zohary et al. 1994). These noise correlations 

may or may not limit the amount of information that large populations of neurons can 
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encode, depending on how the correlations are aligned with stimulus coding. From a simple 

perspective, if the correlated variability between neurons results in a pattern of population 

activity that resembles the pattern evoked by a visual feature, then this creates a confound 

in pooling information from those neurons to decode that feature. However, determining 

whether this is in fact the case depends on recording from large numbers of neurons, in order 

to determine how decoding accuracy increases with the number of neurons. This is now 

feasible with two-photon calcium imaging. Rumyantsev et al. (2020) used this approach to 

demonstrate that the ability to decode stimulus orientation increases with pooling neurons up 

to at least 1,000 neurons or beyond, as only 10% of the noise correlation overlapped with 

stimulus coding. Stringer et al. (2019a) used a similar approach and found that information 

does not saturate even up to 20,000 neurons, with the consequence that readout from 

sufficiently large populations in mouse V1 could allow estimation of stimulus orientation to 

significantly less than one degree. Thus, it appears that correlations are distributed across 

neurons in a manner that minimizes the impact on the encoding of visual information 

and that limits on the accuracy of orientation discrimination as measured behaviorally 

[approximately 5 degrees (Glickfeld et al. 2013b)] likely arise downstream of V1.

These large-scale aspects of the cortical computation almost certainly depend on specific 

circuit mechanisms. For example, the distribution of information across neurons in a 

power law described above (Stringer et al. 2019b) likely results from patterns of synaptic 

connectivity that determine the diversity and width of tuning properties. Likewise, the 

correlation structure of population activity may be determined by cell type–specific circuit 

motifs. Indeed, modeling studies have suggested that local inhibition could play an 

important role in limiting correlations generated by local network activity, and in fact 

inhibitory neuron activity is increased in brain states characterized by lower correlations 

(Huang et al. 2019, Stringer et al. 2016). However, we still have little understanding of how 

layer- or cell type–specific interactions shape population codes relative to our understanding 

of single-neuron response properties. Applying the tools available for studying cortical 

computations in mouse at the level of population dynamics is therefore an important 

research direction.

NONVISUAL COMPUTATIONS IN V1

In addition to revealing circuit mechanisms underlying classical aspects of visual processing, 

studies of mouse visual cortex have also led to the discovery of novel aspects of neural 

coding in V1 and particularly the contribution of a wide range of nonvisual factors, 

including movement, navigation, arousal, and vestibular signals (Figure 8). These findings 

suggest that an important property of V1 is the ability to integrate different sources of 

sensory and nonsensory information in order to generate flexible representations of the 

sensory environment to drive appropriate behaviors.

Locomotion and Arousal

Locomotion has a profound impact on mouse V1 (Niell & Stryker 2010), roughly doubling 

the responses to visual stimuli compared to when the animal is stationary (Figure 8a). This 

effect includes a shift in spatial integration by increasing the drive in the classical RF and 
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decreasing the suppressive surround (Ayaz et al. 2013). Interestingly, locomotion alone can 

drive neural activity in V1 even in the absence of a visual stimulus (Keller et al. 2012), with 

a subset of neurons tuned to specific locomotion speeds, as well as differentially combining 

locomotion speed with visual stimuli (Saleem et al. 2013). Besides locomotion, a wide range 

of movements, from facial twitches to operant responses, generate activity in V1 (Musall et 

al. 2019, Stringer et al. 2019c). In fact, the effects of locomotion on V1 are often paralleled 

by general changes in arousal, although the effects are dissociable as well (Vinck et al. 

2015).

At least some of the mechanisms by which locomotion exerts its impact rely on cholinergic 

neurons in the basal forebrain that project to V1 (Lee et al. 2014). By receiving input from 

the mesencephalic motor region, which encodes running speed, the basal forebrain is well 

poised to send locomotion signals to V1. Through the release of acetylcholine onto VIP 

neurons, locomotion likely engages a disinhibitory circuit involving the suppression of SOM 

neurons, as described above in the section titled Contextual Modulation (Fu et al. 2014). 

Measurement of the activity of three inhibitory neurons subtypes, however, along with 

computational modeling (Dipoppa et al. 2018), suggests that locomotion likely modulates 

multiple aspects of the cortical circuit rather than acting through a single mechanism.

Movement-Based Visual Computations

Locomotor signals represent at least two aspects of behavior: (a) the overall behavioral 

state (e.g., stationary versus moving, unalert versus aroused), which may serve as a global 

control and act through neuromodulatory mechanisms, and (b) the detailed structure of the 

movements themselves. The latter may serve to account for the effect of movement on the 

visual input itself. Indeed, the largest source of visual motion on the retina is generated 

by self-motion, i.e., the motion of the head and eyes relative to the visual scene, rather 

than by objects in the visual scene. Incorporating movement information can enable an 

organism to more accurately reconstruct the visual scene by correcting for self-motion, 

as well as by enabling the extraction of additional features such as depth through motion 

parallax (Leopold & Park 2020, Parker et al. 2020). Consistent with these roles, neurons 

in rat V1 encode a representation of the three-dimensional rotation of the head in space 

(Guitchounts et al. 2020). Likewise, the speed and direction of movement play predictive 

roles in processing visual inputs in V1, resulting in mismatch signals when the visual input 

does not correspond to that expected during locomotion (Leinweber et al. 2017). These 

predictive signals arise from anterior cingulate and secondary motor cortex, and their impact 

on V1 is retinotopically specific. Contextual signals, including locomotion and visuo-motor 

mismatch, are delivered to V1 from pulvinar as well (Roth et al. 2016).

Vestibular signals are another important source of information about head movements 

relative to the visual scene, and they strongly modulate V1 activity across all layers (Bouvier 

et al. 2020, Vélez-Fort et al. 2018) (Figure 8b). Furthermore, L6 excitatory neurons sum 

vestibular activity with motion of the visual scene to create a representation that integrates 

internal and external motion signals (Vélez-Fort et al. 2018). The impact of vestibular 

signals on V1 neurons across layers switches polarity depending on ambient luminance 

(Bouvier et al. 2020), suppressing activity in the dark and increasing activity in the light. 
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Notably, this suppression in darkness is dependent on SOM inhibitory neurons, again 

implicating this neuron type in subtractively regulating V1 activity (Wilson et al. 2012) 

depending on context. Although some aspects of these movement and head orientation 

signals can be probed in head-fixed conditions as described here, fully elucidating their role 

in vision is likely to require studies under freely moving conditions. This is now facilitated 

by methods to measure head and eye movements, together with neural activity, in naturally 

behaving mice (Meyer et al. 2018, Michaiel et al. 2020) (Figure 8c).

Additional Behavioral Context Representations

Multiple other aspects of behavioral context are also represented in mouse V1. These 

include responses to the timing of an anticipated reward (Shuler & Bear 2006), increased 

response to task-relevant visual stimuli (Poort et al. 2015), responses to other sensory 

modalities (Ibrahim et al. 2016, Iurilli et al. 2012), and firing in specific locations of a 

virtual environment independent of the specific visual input, similar to hippocampal place 

cells (Fiser et al. 2016, Saleem et al. 2018). The specific source of many of these signals 

and the circuit mechanisms that integrate them into V1 processing are beginning to be 

identified (Makino & Komiyama 2015, Roth et al. 2016, Zhang et al. 2014). Furthermore, 

this diversity suggests that their role extends beyond improving the representation of the 

visual scene (as in compensating for self-motion) to include, for example, amplifying 

specific features that are relevant for ongoing behavior.

THE RESULTS OF CORTICAL COMPUTATION: V1 OUTPUTS AND 

BEHAVIOR

The computations performed in V1 only have an impact to the extent their results get 

conveyed to other brain regions. Studying the outputs from V1 can therefore provide key 

insight into its essential functions. V1 neurons project to several cortical and subcortical 

areas. What visual features are encoded in different output cells of V1, and how do these 

relate to their downstream targets and to the behavior these targets mediate?

V1 Output to Higher Visual Areas

In primates, cortical visual processing is organized in a parallel, hierarchical structure: 

V1 projects to a series of higher visual cortical areas that respond successively to more 

complex visual stimuli such as objects in inferior temporal cortex (Nassi & Callaway 2009). 

Similarly, mouse V1 projects to approximately ten retinotopically organized HVAs (Wang 

& Burkhalter 2007). Although these HVAs are not arranged in as clear a hierarchy as they 

are in primates (Nassi & Callaway 2009, Harris et al. 2019), they show some degree of 

specialization for certain properties of visual stimuli (Andermann et al. 2011, Glickfeld & 

Olsen 2017, Juavinett & Callaway 2015, La Chioma et al. 2019, Marshel et al. 2011, Murgas 

et al. 2020, Roth et al. 2012, Sit & Goard 2020). Projections from V1 are often schematized 

as dedicated pathways, yet among all V1 neurons projecting to HVAs, only 25% target a 

single HVA, while 60% target two to three HVAs, and 15% target four or more (Han et 

al. 2018). Still, for neurons targeting multiple HVAs, certain motifs of shared connectivity 

are more frequent than others. Thus, given that information from a given V1 neuron is 

not unspecifically broadcast across all HVAs, we can address how distinct computations 
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performed by distinct V1 neurons contribute to the distinct response properties of their target 

areas.

Two HVAs, one lateral and the other medial relative to V1, called AL (anterolateral) and PM 

(posteromedial), respectively, represent a good example of this approach. The populations 

of V1 neurons that project to AL versus PM are largely distinct, and, interestingly, neurons 

within each population are connected to each other but not to the other population (Kim et 

al. 2018). Furthermore, these two populations differ in their transcriptional profile (Kim et 

al. 2020). Importantly, the response properties of AL- and PM-projecting V1 neurons are 

also different, with neurons projecting to AL preferring high speeds and neurons projecting 

to PM preferring lower-speed visual stimuli (Glickfeld et al. 2013a) (Figure 9a). Because the 

target areas AL and PM as a whole also preferentially respond to high- and low-speed visual 

stimuli, respectively, the unique tuning properties of these areas may, at least in part, be 

inherited from distinct populations of V1 output neurons (Glickfeld et al. 2013a). A similar 

conclusion was made regarding the rostrolateral HVA called RL, which inherits its response 

to directional visual stimuli from a specific set of L2/3 V1 neurons who, themselves, inherit 

this property from directionally selective retinal ganglion cells (Rasmussen et al. 2020). 

Thus, for some response properties, pathway specificity may be maintained all the way from 

the retina to HVAs.

These outputs to HVAs are reciprocal. Neurons in V1 receive feedback from the areas to 

which they project to form loops with cellular, laminar, and functional specificity (D’Souza 

et al. 2016, Marques et al. 2018, Young et al. 2021). These feedback projections modulate 

responses in V1, including amplification of tuning properties and mediating contextual 

modulations (Vangeneugden et al. 2019, Huh et al. 2018, Keller et al. 2020b).

V1 Output to Subcortical Areas and Impact on Behavior

Despite the emphasis on V1 output to the cortical hierarchy, as illustrated by the iconic 

diagram of Felleman & Van Essen (1991), a large fraction of V1 output actually goes to 

subcortical areas as well. This includes projections from L6 neurons to the dLGN and the 

reticular thalamic nucleus (TRN), as well as projections from L5 neurons to higher-order 

thalamus, which may serve as an alternate pathway to the HVAs (Guillery & Sherman 

2002), and to structures associated with behavioral output such as superior colliculus (SC), 

striatum, accessory optic system (AOS), and amygdala. Therefore, even the low-level visual 

representations of V1 may directly impact behavior.

L6 neurons projecting back to the dLGN and the TRN form a functionally distinct 

population, with very sparse firing and high stimulus selectivity, while cortically projecting 

L6 neurons are more broadly responsive (Vélez-Fort et al. 2014) (Figure 9b). Intriguingly, 

these thalamic-projecting neurons also receive most of their input not from the local cortical 

circuit but from higher cortical areas. The exact role of this feedback projection to the 

primary thalamic nucleus from which V1 receives ascending visual information still needs to 

be elucidated. Recent studies show that it contributes to the sharpening of the RF of dLGN 

through surround suppression (Born et al. 2021), most likely through the strong disynaptic 

inhibition mediated by TRN neurons (Olsen et al. 2012).
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Little is known regarding what information is conveyed from V1 to the different subcortical 

targets and how this compares to projections to cortical areas. In L5, neurons projecting to 

SC have, on average, broader tuning and higher contrast sensitivity to drifting gratings than 

do neurons projecting to the striatum, while cortically projecting neurons are intermediate 

between these two (Lur et al. 2016). This suggests that outputs to SC are specialized 

for detection, while those to striatum are specialized for discrimination. However, these 

differences represent more of a bias than a true segregation. Most likely, we have not yet 

determined the stimuli or contexts that best differentiate the response properties between 

these populations of L5 neurons.

SC thus receives two sources of visual information: one directly ascending from the retina 

and the other descending from cortex. Projections from V1 strongly impact visual responses 

in the SC by increasing their gain (Zhao et al. 2014) (Figure 9c). As a consequence, 

this projection potentiates SC-mediated behavior, like the animal freezing in response to a 

flashed stimulus (Liang et al. 2015). The impact that V1 exerts on the SC may also explain 

the impairment in performance of basic tasks, such as detecting the presence of a stimulus or 

detecting the change in orientation of a grating, upon V1 inactivation or lesion (Glickfeld et 

al. 2013b, Prusky & Douglas 2004, Ruediger & Scanziani 2020). This is especially the case 

for low-contrast or high–spatial frequency stimuli, consistent with the modulatory impact of 

V1 on SC.

Through its corticofugal projections to the AOS in the midbrain, a structure that generates 

the optokinetic reflex (OKR) and that, like the SC, receives direct retinal input, V1 can 

directly impact image stabilizing reflexes (Liu et al. 2016). Indeed, V1 not only modulates 

the gain of the OKR but also contributes to its plasticity (Liu et al. 2016). Thus, through the 

projections to both SC and AOS, V1 provides a signal that boosts the ongoing function of 

a retinorecipient subcortical region, allowing for fine-tuning and top-down control of innate 

behaviors.

The functional role of the corticofugal pathway out of V1 to the striatum (Khibnik et al. 

2014) is only beginning to be elucidated. V1 provides a major drive for visual responses in 

this structure (Peters et al. 2021), and specific lesions of this corticofugal pathway show that 

it contributes to the learning speed of simple detection tasks (Ruediger & Scanziani 2020).

In addition to modulating the function of subcortical structures and the behaviors encoded 

in those structures, V1 also likely provides instructive information for behavior. This is 

the case when the animal is trained to discriminate between stimuli rather than to simply 

detect the presence of a stimulus or a sudden change in the visual environment. The ability 

of a mouse to, for example, discriminate between dots moving in different directions 

(Marques et al. 2018) or gratings of different orientations (Poort et al. 2015, Resulaj et 

al. 2018, Wekselblatt et al. 2016) is brought down to chance levels upon V1 inactivation. 

Interestingly, for relatively simple discriminations, like the ability to discriminate between 

gratings with large differences in orientation, even brief time windows of activity in V1, 

during which most neurons fire either no or one action potential, are sufficient for the animal 

to perform well above chance (Resulaj et al. 2018). In addition, activation of appropriate 

ensembles of neurons in V1, using holographic optogenetic stimulation, is sufficient to 
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elicit appropriate behavioral responses in such orientation tasks (Carrillo-Reid et al. 2019, 

Marshel et al. 2019). Some of these behavioral roles may be mediated through V1’s 

projections to higher visual areas in the cortical visual pathway. However, at least in one 

behavioral paradigm, a specific subcortical output pathway from V1 providing instructive 

information to downstream targets has been identified: L5 neurons projecting to the pons, 

but not striatum, are necessary for eyeblink conditioning (Tang & Higley 2020). In contrast 

to the SC- and AOS-dependent behaviors described above, V1 is the primary source of 

visual input for eyeblink conditioning, and the L5 neurons encode both the behavior output 

and sensory information. Thus, V1 subcortical output can actually directly mediate, rather 

than just modulate, visually driven behavior.

The most essential role of V1 in behavior may be to enable learning and flexible processing 

of visual information based on experience. Training on visual behaviors induces changes in 

responses of V1 neurons, including stimulus selectivity (Poort et al. 2015), and association 

with reward and location (Pakan et al. 2018). Furthermore, training in a reaching task 

increases glutamate receptor levels in V1 (Roth et al. 2020), particularly when the training 

was performed in the light and, therefore, was presumably visually guided. These changes 

may refine the representation of the visual scene to better discriminate relevant stimuli or 

represent the engram of learned visual stimuli. Alternately, these changes may not encode 

visual information, per se, but the association of visual stimuli with the context that evoked 

them.

OUTLOOK

The techniques available for use in mouse have enabled cellular and molecular approaches 

to be applied to system-level phenomena. This research has been extremely successful in 

answering long-standing questions and has led to the discovery of general principles, such as 

how diverse inputs are combined to generate new representations, canonical excitatory and 

inhibitory circuit motifs, and how information is selectively routed to downstream targets.

However, there are still major gaps in our understanding of cortical function as highlighted 

by the fact that many structural properties of cortex remain unaccounted for relative to 

the function they may implement: Why do cortical neurons receive such a large number 

of synapses? Why does cortex need multiple layers and so many cell types? Why are 

cortical areas that perform apparently different functions such as sensation, motor actions, or 

executive functions structurally so similar? Or are they? In these respects, it seems that the 

potential power of the mouse in addressing the circuit basis of cortical computation has not 

yet been fulfilled.

Beyond technical limitations, there are also conceptual reasons why progress on the big 

picture may feel limited. Is there a canonical computation performed by cortex, such as 

predictive coding or Bayesian inference? We still lack a compelling framework regarding 

cortical function that can guide future research. Without guiding principles, even the most 

accurate descriptions of cortical properties, while captivating to a biologist’s mind, lack 

explanatory power. As stated by Barlow, “A wing would be a most mystifying structure 

if one did not know that birds flew…. Without knowing this, and without understanding 
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something of the principles of flight, a more detailed examination of the wing itself would 

probably be unrewarding” (Barlow 1961, p. 217).

The discoveries of Hubel & Wiesel (1962), demonstrating that V1 extracts specific features 

of the visual scene, e.g., the orientation of edges, have led to the influential hypothesis that 

subsequent stages iterate this process, leading to high-level representations of ethologically 

relevant stimuli, e.g., faces. However, visual cortex function is likely more than extracting 

specific features of the visual world. First, as mentioned above, simple circuits of neurons 

can extract these features, leaving the role of many elements of the cortical network 

unaccounted for. Second, neurons receive a large number of inputs that are tuned for features 

that are not matched to their preferred features (Cossell et al. 2015), and it is not clear 

how these would contribute in a simple feature extraction framework. Critically, even our 

knowledge of the specific visual features captured by a given neuron does not predict its 

responses to a range of visual scenes (de Vries et al. 2020). Finally, repeated presentation 

of the same visual scene leads to responses that vary from trial to trial due to unaccounted 

variables beyond the visual stimulus (Busse et al. 2017, Engel & Steinmetz 2019).

The explanatory gap between the feature extraction framework and the organization of 

cortical circuits may result from the fact that we are only probing a narrow region of the 

parameter space within which cortex generally operates. A key feature that is missing in 

simplified stimulus paradigms is context, within both the visual scene and the animal’s 

interaction with the scene. As discussed above, cortical circuits not only compute the 

classical RF but also embed that response within the ongoing visual and behavioral context. 

In this view, the classic RF is a low-level representation of a higher-dimensional response 

to a range of image structures and behavioral associations. Two neurons may respond 

similarly when probed by gratings (their classical RF) but dramatically differently when 

probed by images with that same feature in different contexts, like visual scenes in a 

natural environment. Furthermore, even passive viewing of natural stimuli lacks much of the 

richness of what visual cortex experiences when an animal moves through its environment, 

including motion, vestibular and other sensory cues, and predictive signals based on 

the animal’s experience and intentions. Current approaches in mouse to study cortical 

processing in rich visual environments, with both virtual reality and natural behavioral 

paradigms such as hunting or escape behaviors (Hoy et al. 2016, Vale et al. 2017), while 

maintaining a detailed characterization of behavioral variables (Meyer et al. 2018, Michaiel 

et al. 2020) (Figure 8c), may allow us to address these issues and lead to a broader 

understanding of cortical function.

An alternative way to understand what V1 contributes to brain function may be to determine 

its impact on subcortical targets. Many vertebrates go on with their lives without much 

cortex to speak of and have been successful at it for eons, yet the brain of mammals 

dedicates a lot of space to this structure. What does cortex add to the subcortical lizard 

brain? The cortex, through its exquisite ability to extract specific features of the sensory 

world, to learn and to predict, may modulate innate behaviors according to prevailing 

conditions and experience, as discussed above in the section titled V1 Output to Subcortical 

Areas and Impact on Behavior. This would expand the behavioral repertoire encoded in 

subcortical structures, a possibility already recognized more than a century ago by Edinger 
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(1908, pp. 453–54): “In mammals we meet a brain which has so large a neoencephalon 

(neocortex) that we may well expect a subordination of reflexes and instincts to associative 

and intelligent actions.” Techniques that are available for use in the mouse to study multiple 

brain areas, and the cell type–specific connections between them, are providing us with the 

tools to test this hypothesis directly.

CONCLUSION

A tremendous benefit of studying mouse visual cortex has been a shift in how we approach 

cortical processing, from spike trains and tuning curves in isolation to the cell types and 

interconnexions raised in Hubel & Wiesel’s original paper quoted in the Introduction. At 

the same time, there has been a broadening in the scope of study, from examining V1 and 

the cortical hierarchy in isolation to exploring connectivity and functional interactions with 

other brain regions, and from studying low-level visual features in isolation to incorporating 

a range of contextual factors. As a result of these studies, we have gained detailed insight 

into how cortical circuits mediate a range of visual computations, but this has also revealed 

the gaps in our knowledge and opened new directions of inquiry. We are now looking 

forward to the next decade where the mechanistic understanding of computations performed 

in V1 can be extended into an integrated view of how cortex functions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We thank members of the Niell and Scanziani labs for many useful discussions. This work was supported 
by National Institutes of Health grants R01NS118461 and R34NS111669 (to C.M.N.) and R01EY025668 and 
U19NS107613 (to M.S.).

LITERATURE CITED

Adesnik H 2017. Synaptic mechanisms of feature coding in the visual cortex of awake mice. Neuron 
95(5):1147–59.e4 [PubMed: 28858618] 

Adesnik H, Bruns W, Taniguchi H, Huang ZJ, Scanziani M. 2012. A neural circuit for spatial 
summation in visual cortex. Nature 490(7419):226–31 [PubMed: 23060193] 

Ahmadian Y, Rubin DB, Miller KD. 2013. Analysis of the stabilized supralinear network. Neural 
Comput 25(8):1994–2037 [PubMed: 23663149] 

Ahmed B, Anderson JC, Douglas RJ, Martin KA, Nelson JC. 1994. Polyneuronal innervation of spiny 
stellate neurons in cat visual cortex. J. Comp. Neurol 341(1):39–49 [PubMed: 8006222] 

Albrecht DG, Geisler WS. 1991. Motion selectivity and the contrast-response function of simple cells 
in the visual cortex. Vis. Neurosci 7(6):531–46 [PubMed: 1772804] 

Albright TD, Stoner GR. 2002. Contextual influences on visual processing. Annu. Rev. Neurosci 
25:339–79 [PubMed: 12052913] 

Andermann ML, Kerlin AM, Roumis DK, Glickfeld LL, Reid RC. 2011. Functional specialization of 
mouse higher visual cortical areas. Neuron 72(6):1025–39 [PubMed: 22196337] 

Atallah BV, Bruns W, Carandini M, Scanziani M. 2012. Parvalbumin-expressing interneurons linearly 
transform cortical responses to visual stimuli. Neuron 73(1):159–70 [PubMed: 22243754] 

Ayaz A, Saleem AB, Schölvinck ML, Carandini M. 2013. Locomotion controls spatial integration in 
mouse visual cortex. Curr. Biol 23(10):890–94 [PubMed: 23664971] 

Niell and Scanziani Page 19

Annu Rev Neurosci. Author manuscript; available in PMC 2023 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ayzenshtat I, Karnani MM, Jackson J, Yuste R. 2016. Cortical control of spatial resolution by VIP+ 

interneurons. J. Neurosci 36(45):11498–509 [PubMed: 27911754] 

Barlow HB. 1961. Possible principles underlying the transformations of sensory messages. In Sensory 
Communication, ed. WA Rosenblith, pp. 217–34. Cambridge, MA: MIT Press

Bock DD, Lee W-CA, Kerlin AM, Andermann ML, Hood G, et al. 2011. Network anatomy and in vivo 
physiology of visual cortical neurons. Nature 471(7337):177–82 [PubMed: 21390124] 

Born G, Schneider FA, Erisken S, Klein A, Lao CL, et al. 2021. Corticothalamic feedback sculpts 
visual spatial integration in mouse thalamus. bioRxiv 104000. 10.1101/2020.05.19.104000

Bortone DS, Olsen SR, Scanziani M. 2014. Translaminar inhibitory cells recruited by layer 6 
corticothalamic neurons suppress visual cortex. Neuron 82(2):474–85 [PubMed: 24656931] 

Bouvier G, Senzai Y, Scanziani M. 2020. Head movements control the activity of primary visual cortex 
in a luminance-dependent manner. Neuron 108:500–11.e5 [PubMed: 32783882] 

Brunel N 2000. Dynamics of sparsely connected networks of excitatory and inhibitory spiking 
neurons. J. Comput. Neurosci 8(3):183–208 [PubMed: 10809012] 

Bruno RM, Sakmann B. 2006. Cortex is driven by weak but synchronously active thalamocortical 
synapses. Science 312(5780):1622–27 [PubMed: 16778049] 

Busse L, Cardin JA, Chiappe ME, Halassa MM, McGinley MJ, et al. 2017. Sensation during active 
behaviors. J. Neurosci 37(45):10826–34 [PubMed: 29118211] 

Carandini M, Heeger DJ. 1995. Summation and division in V1 simple cells. In The Neurobiology of 
Computation, ed. Bower JM, pp. 59–65. Boston, MA: Springer

Carandini M, Heeger DJ. 2011. Normalization as a canonical neural computation. Nat. Rev. Neurosci 
13(1):51–62 [PubMed: 22108672] 

Carrillo-Reid L, Han S, Yang W, Akrouh A, Yuste R. 2019. Controlling visually guided behavior by 
holographic recalling of cortical ensembles. Cell 178(2):447–57.e5 [PubMed: 31257030] 

Chapman B, Zahs KR, Stryker MP. 1991. Relation of cortical cell orientation selectivity to alignment 
of receptive fields of the geniculocortical afferents that arborize within a single orientation column 
in ferret visual cortex. J. Neurosci 11(5):1347–58 [PubMed: 2027051] 

Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL, et al. 2013. Ultrasensitive fluorescent proteins 
for imaging neuronal activity. Nature 499(7458):295–300 [PubMed: 23868258] 

Cossell L, Iacaruso MF, Muir DR, Houlton R, Sader EN, et al. 2015. Functional organization 
of excitatory synaptic strength in primary visual cortex. Nature 518(7539):399–403 [PubMed: 
25652823] 

Cruz-Martín A, El-Danaf RN, Osakada F, Sriram B, Dhande OS, et al. 2014. A dedicated circuit links 
direction-selective retinal ganglion cells to the primary visual cortex. Nature 507(7492):358–61 
[PubMed: 24572358] 

de Vries SEJ, Lecoq JA, Buice MA, Groblewski PA, Ocker GK, et al. 2020. A large-scale standardized 
physiological survey reveals functional organization of the mouse visual cortex. Nat. Neurosci 
23(1):138–51 [PubMed: 31844315] 

DeAngelis GC, Ohzawa I, Freeman RD. 1993. Spatiotemporal organization of simple-cell receptive 
fields in the cat’s striate cortex. II. Linearity of temporal and spatial summation. J. Neurophysiol 
69(4):1118–35 [PubMed: 8492152] 

Dipoppa M, Ranson A, Krumin M, Pachitariu M, Carandini M, Harris KD. 2018. Vision and 
locomotion shape the interactions between neuron types in mouse visual cortex. Neuron 
98(3):602–15 [PubMed: 29656873] 

Douglas RJ, Martin KAC, Whitteridge D. 1989. A canonical microcircuit for neocortex. Neural 
Comput 1:480–88

D’Souza RD, Meier AM, Bista P, Wang Q, Burkhalter A. 2016. Recruitment of inhibition and 
excitation across mouse visual cortex depends on the hierarchy of interconnecting areas. eLife 
5:e19332 [PubMed: 27669144] 

Edinger L 1908. The relations of comparative anatomy to comparative psychology. J. Comp. Neurol. 
Psychol 18:437–57

Engel TA, Steinmetz NA. 2019. New perspectives on dimensionality and variability from large-scale 
cortical dynamics. Curr. Opin. Neurobiol 58:181–90 [PubMed: 31585331] 

Niell and Scanziani Page 20

Annu Rev Neurosci. Author manuscript; available in PMC 2023 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fairhall A 2014. The receptive field is dead. Long live the receptive field? Curr. Opin. Neurobiol 
25:ix–xii [PubMed: 24618227] 

Felleman DJ, Van Essen DC. 1991. Distributed hierarchical processing in the primate cerebral cortex. 
Cereb. Cortex 1(1):1–47 [PubMed: 1822724] 

Ferster D, Chung S, Wheat H. 1996. Orientation selectivity of thalamic input to simple cells of cat 
visual cortex. Nature 380(6571):249–52 [PubMed: 8637573] 

Ferster D, Miller KD. 2000. Neural mechanisms of orientation selectivity in the visual cortex. Annu. 
Rev. Neurosci 23:441–71 [PubMed: 10845071] 

Fiorani Júnior M, Rosa MG, Gattass R, Rocha-Miranda CE. 1992. Dynamic surrounds of receptive 
fields in primate striate cortex: a physiological basis for perceptual completion? PNAS 
89(18):8547–51 [PubMed: 1528860] 

Fiser A, Mahringer D, Oyibo HK, Petersen AV, Leinweber M, Keller GB. 2016. Experience-dependent 
spatial expectations in mouse visual cortex. Nat. Neurosci 19(12):1658–64 [PubMed: 27618309] 

Fu Y, Tucciarone JM, Espinosa JS, Sheng N, Darcy DP, et al. 2014. A cortical circuit for gain control 
by behavioral state. Cell 156(6):1139–52 [PubMed: 24630718] 

Garcia-Marin V, Kelly JG, Hawken MJ. 2019. Major feedforward thalamic input into layer 4C of 
primary visual cortex in primate. Cereb. Cortex 29(1):134–49 [PubMed: 29190326] 

Gilbert CD, Wiesel TN. 1990. The influence of contextual stimuli on the orientation selectivity of cells 
in primary visual cortex of the cat. Vision Res 30(11):1689–701 [PubMed: 2288084] 

Glickfeld LL, Andermann ML, Bonin V, Reid RC. 2013a. Cortico-cortical projections in mouse visual 
cortex are functionally target specific. Nat. Neurosci 16(2):219–26 [PubMed: 23292681] 

Glickfeld LL, Histed MH, Maunsell JHR. 2013b. Mouse primary visual cortex is used to detect both 
orientation and contrast changes. J. Neurosci 33(50):19416–22 [PubMed: 24336708] 

Glickfeld LL, Olsen SR. 2017. Higher-order areas of the mouse visual cortex. Annu. Rev. Vis. Sci 
3:251–73 [PubMed: 28746815] 

Gouwens NW, Sorensen SA, Berg J, Lee C, Jarsky T, et al. 2019. Classification of electrophysiological 
and morphological neuron types in the mouse visual cortex. Nat. Neurosci 22(7):1182–95 
[PubMed: 31209381] 

Guillery RW, Sherman SM. 2002. Thalamic relay functions and their role in corticocortical 
communication: generalizations from the visual system. Neuron 33(2):163–75 [PubMed: 
11804565] 

Guitchounts G, Masís J, Wolff SBE, Cox D. 2020. Encoding of 3D head orienting movements in the 
primary visual cortex. Neuron 108:512–25.e4 [PubMed: 32783881] 

Haider B, Häusser M, Carandini M. 2013. Inhibition dominates sensory responses in the awake cortex. 
Nature 493(7430):97–100 [PubMed: 23172139] 

Han Y, Kebschull JM, Campbell RAA, Cowan D, Imhof F, et al. 2018. The logic of single-cell 
projections from visual cortex. Nature 556(7699):51–56 [PubMed: 29590093] 

Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H, et al. 2019. Hierarchical organization of 
cortical and thalamic connectivity. Nature 575(7781):195–202 [PubMed: 31666704] 

Hillier D, Fiscella M, Drinnenberg A, Trenholm S, Rompani SB, et al. 2017. Causal evidence for 
retina-dependent and -independent visual motion computations in mouse cortex. Nat. Neurosci 
20(7):960–68 [PubMed: 28530661] 

Hofer SB, Ko H, Pichler B, Vogelstein J, Ros H, et al. 2011. Differential connectivity and response 
dynamics of excitatory and inhibitory neurons in visual cortex. Nat. Neurosci 14(8):1045–52 
[PubMed: 21765421] 

Hoy JL, Yavorska I, Wehr M, Niell CM. 2016. Vision drives accurate approach behavior during prey 
capture in laboratory mice. Curr. Biol 26(22):3046–52 [PubMed: 27773567] 

Huang C, Ruff DA, Pyle R, Rosenbaum R, Cohen MR, Doiron B. 2019. Circuit models of 
low-dimensional shared variability in cortical networks. Neuron 101(2):337–48.e4 [PubMed: 
30581012] 

Hubel DH, Wiesel TN. 1959. Receptive fields of single neurones in the cat’s striate cortex. J. Physiol 
148:574–91 [PubMed: 14403679] 

Niell and Scanziani Page 21

Annu Rev Neurosci. Author manuscript; available in PMC 2023 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the 
cat’s visual cortex. J. Physiol 160(1):106–54 [PubMed: 14449617] 

Hubel DH, Wiesel TN. 1968. Receptive fields and functional architecture of monkey striate cortex. J. 
Physiol 195(1):215–43 [PubMed: 4966457] 

Huberman AD, Niell CM. 2011. What can mice tell us about how vision works? Trends Neurosci 
34(9):464–73 [PubMed: 21840069] 

Huh CYL, Peach JP, Bennett C, Vega RM, Hestrin S. 2018. Feature-specific organization of feedback 
pathways in mouse visual cortex. Curr. Biol 28(1):114–20.e5 [PubMed: 29276127] 

Iacaruso MF, Gasler IT, Hofer SB. 2017. Synaptic organization of visual space in primary visual 
cortex. Nature 547(7664):449–52 [PubMed: 28700575] 

Ibrahim LA, Mesik L, Ji X-Y, Fang Q, Li H-F, et al. 2016. Cross-modality sharpening of visual 
cortical processing through layer-1-mediated inhibition and disinhibition. Neuron 89(5):1031–45 
[PubMed: 26898778] 

Isaacson JS, Scanziani M. 2011. How inhibition shapes cortical activity. Neuron 72(2):231–43 
[PubMed: 22017986] 

Iurilli G, Ghezzi D, Olcese U, Lassi G, Nazzaro C, et al. 2012. Sound-driven synaptic inhibition in 
primary visual cortex. Neuron 73(4):814–28 [PubMed: 22365553] 

Ji X-Y, Zingg B, Mesik L, Xiao Z, Zhang LI, Tao HW. 2016. Thalamocortical innervation pattern in 
mouse auditory and visual cortex: laminar and cell-type specificity. Cereb. Cortex 26(6):2612–25 
[PubMed: 25979090] 

Jiang X, Shen S, Cadwell CR, Berens P, Sinz F, et al. 2015. Principles of connectivity among 
morphologically defined cell types in adult neocortex. Science 350(6264):aac9462

Jones HE, Grieve KL, Wang W, Sillito AM. 2001. Surround suppression in primate V1. J. 
Neurophysiol 86(4):2011–28 [PubMed: 11600658] 

Juavinett AL, Callaway EM. 2015. Pattern and component motion responses in mouse visual cortical 
areas. Curr. Biol 25(13):1759–64 [PubMed: 26073133] 

Karnani MM, Jackson J, Ayzenshtat I, Tucciarone J, Manoocheri K, et al. 2016. Cooperative 
subnetworks of molecularly similar interneurons in mouse neocortex. Neuron 90(1):86–100 
[PubMed: 27021171] 

Keller AJ, Dipoppa M, Roth MM, Caudill MS, Ingrosso A, et al. 2020a. A disinhibitory circuit for 
contextual modulation in primary visual cortex. Neuron 108:1181–93.e8 [PubMed: 33301712] 

Keller AJ, Roth MM, Scanziani M. 2020b. Feedback generates a second receptive field in neurons of 
the visual cortex. Nature 582(7813):545–49 [PubMed: 32499655] 

Keller GB, Bonhoeffer T, Hübener M. 2012. Sensorimotor mismatch signals in primary visual cortex 
of the behaving mouse. Neuron 74(5):809–15 [PubMed: 22681686] 

Kerlin AM, Andermann ML, Berezovskii VK, Reid RC. 2010. Broadly tuned response properties 
of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67(5):858–71 [PubMed: 
20826316] 

Khibnik LA, Tritsch NX, Sabatini BL. 2014. A direct projection from mouse primary visual cortex to 
dorsomedial striatum. PLoS One 9(8):e104501 [PubMed: 25141172] 

Kim EJ, Zhang Z, Huang L, Ito-Cole T, Jacobs MW, et al. 2020. Extraction of distinct neuronal 
cell types from within a genetically continuous population. Neuron 107(2):274–82.e6 [PubMed: 
32396852] 

Kim M-H, Znamenskiy P, Iacaruso MF, Mrsic-Flogel TD. 2018. Segregated subnetworks of 
intracortical projection neurons in primary visual cortex. Neuron 100(6):1313–21.e6 [PubMed: 
30415996] 

Ko H, Hofer SB, Pichler B, Buchanan KA, Sjöström PJ, Mrsic-Flogel TD. 2011. Functional specificity 
of local synaptic connections in neocortical networks. Nature 473(7345):87–91 [PubMed: 
21478872] 

Kohn A, Coen-Cagli R, Kanitscheider I, Pouget A. 2016. Correlations and neuronal population 
information. Annu. Rev. Neurosci 39:237–56 [PubMed: 27145916] 

La Chioma A, Bonhoeffer T, Hübener M. 2019. Area-specific mapping of binocular disparity across 
mouse visual cortex. Curr. Biol 29(17):2954–60.e5 [PubMed: 31422884] 

Niell and Scanziani Page 22

Annu Rev Neurosci. Author manuscript; available in PMC 2023 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lee AM, Hoy JL, Bonci A, Wilbrecht L, Stryker MP, Niell CM. 2014. Identification of a brainstem 
circuit regulating visual cortical state in parallel with locomotion. Neuron 83(2):455–66 [PubMed: 
25033185] 

Lee K-S, Vandemark K, Mezey D, Shultz N, Fitzpatrick D. 2019. Functional synaptic architecture of 
callosal inputs in mouse primary visual cortex. Neuron 101(3):421–28.e5 [PubMed: 30658859] 

Lee S, Hjerling-Leffler J, Zagha E, Fishell G, Rudy B. 2010. The largest group of superficial 
neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J. Neurosci 
30(50):16796–808 [PubMed: 21159951] 

Lee S-H, Kwan AC, Zhang S, Phoumthipphavong V, Flannery JG, et al. 2012. Activation of specific 
interneurons improves V1 feature selectivity and visual perception. Nature 488:379–83 [PubMed: 
22878719] 

Lee W-CA, Bonin V, Reed M, Graham BJ, Hood G, et al. 2016. Anatomy and function of an excitatory 
network in the visual cortex. Nature 532:370–74 [PubMed: 27018655] 

Leinweber M, Ward DR, Sobczak JM, Attinger A, Keller GB. 2017. A sensorimotor circuit in mouse 
cortex for visual flow predictions. Neuron 95:1420–32.e5 [PubMed: 28910624] 

Leopold DA, Park SH. 2020. Studying the visual brain in its natural rhythm. Neuroimage 216:116790 
[PubMed: 32278093] 

Li Y-T, Ibrahim LA, Liu B-H, Zhang LI, Tao HW. 2013. Linear transformation of thalamocortical 
input by intracortical excitation. Nat. Neurosci 16(9):1324–30 [PubMed: 23933750] 

Li Y-T, Liu B-H, Chou X-L, Zhang LI, Tao HW. 2015. Strengthening of direction selectivity by 
broadly tuned and spatiotemporally slightly offset inhibition in mouse visual cortex. Cereb. Cortex 
25(9):2466–77 [PubMed: 24654259] 

Li Y-T, Ma W-P, Li L-Y, Ibrahim LA, Wang S-Z, Tao HW. 2012. Broadening of inhibitory tuning 
underlies contrast-dependent sharpening of orientation selectivity in mouse visual cortex. J. 
Neurosci 32(46):16466–77 [PubMed: 23152629] 

Liang F, Xiong XR, Zingg B, Ji X-Y, Zhang LI, Tao HW. 2015. Sensory cortical control of a visually 
induced arrest behavior via corticotectal projections. Neuron 86(3):755–67 [PubMed: 25913860] 

Lien AD, Scanziani M. 2013. Tuned thalamic excitation is amplified by visual cortical circuits. Nat. 
Neurosci 16(9):1315–23 [PubMed: 23933748] 

Lien AD, Scanziani M. 2018. Cortical direction selectivity emerges at convergence of thalamic 
synapses. Nature 558(7708):80–86 [PubMed: 29795349] 

Liu B-H, Huberman AD, Scanziani M. 2016. Cortico-fugal output from visual cortex promotes 
plasticity of innate motor behaviour. Nature 538(7625):383–87 [PubMed: 27732573] 

Liu B-H, Li P, Li Y-T, Sun YJ, Yanagawa Y, et al. 2009. Visual receptive field structure of cortical 
inhibitory neurons revealed by two-photon imaging guided recording. J. Neurosci 29(34):10520–
32 [PubMed: 19710305] 

Liu B-H, Li Y-T, Ma W-P, Pan C-J, Zhang LI, Tao HW. 2011. Broad inhibition sharpens orientation 
selectivity by expanding input dynamic range in mouse simple cells. Neuron 71(3):542–54 
[PubMed: 21835349] 

Livingstone MS. 1998. Mechanisms of direction selectivity in macaque V1. Neuron 20(3):509–26 
[PubMed: 9539125] 

Longordo F, To M-S, Ikeda K, Stuart GJ. 2013. Sublinear integration underlies binocular processing in 
primary visual cortex. Nat. Neurosci 16(6):714–23 [PubMed: 23644484] 

Lur G, Vinck MA, Tang L, Cardin JA, Higley MJ. 2016. Projection-specific visual feature encoding by 
layer 5 cortical subnetworks. Cell Rep 14(11):2538–45 [PubMed: 26972011] 

Ma W-P, Liu B-H, Li Y-T, Huang ZJ, Zhang LI, Tao HW. 2010. Visual representations by cortical 
somatostatin inhibitory neurons—selective but with weak and delayed responses. J. Neurosci 
30(43):14371–79 [PubMed: 20980594] 

Makino H, Komiyama T. 2015. Learning enhances the relative impact of top-down processing in the 
visual cortex. Nat. Neurosci 18(8):1116–22 [PubMed: 26167904] 

Malpeli JG, Schiller PH, Colby CL. 1981. Response properties of single cells in monkey striate 
cortex during reversible inactivation of individual lateral geniculate laminae. J. Neurophysiol 
46(5):1102–19 [PubMed: 7299449] 

Niell and Scanziani Page 23

Annu Rev Neurosci. Author manuscript; available in PMC 2023 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Marques T, Summers MT, Fioreze G, Fridman M, Dias RF, et al. 2018. A role for mouse primary 
visual cortex in motion perception. Curr. Biol 28(11):1703–13.e6 [PubMed: 29779878] 

Marshel JH, Garrett ME, Nauhaus I, Callaway EM. 2011. Functional specialization of seven mouse 
visual cortical areas. Neuron 72(6):1040–54 [PubMed: 22196338] 

Marshel JH, Kaye AP, Nauhaus I, Callaway EM. 2012. Anterior-posterior direction opponency in the 
superficial mouse lateral geniculate nucleus. Neuron 76(4):713–20 [PubMed: 23177957] 

Marshel JH, Kim YS, Machado TA, Quirin S, Benson B, et al. 2019. Cortical layer-specific critical 
dynamics triggering perception. Science 365(6453):eaaw5202

McLean J, Palmer LA. 1989. Contribution of linear spatiotemporal receptive field structure to velocity 
selectivity of simple cells in area 17 of cat. Vision Res 29(6):675–79 [PubMed: 2626824] 

Meinecke DL, Peters A. 1987. GABA immunoreactive neurons in rat visual cortex. J. Comp. Neurol 
261(3):388–404 [PubMed: 3301920] 

Meyer AF, Poort J, O’Keefe J, Sahani M, Linden JF. 2018. A head-mounted camera system integrates 
detailed behavioral monitoring with multichannel electrophysiology in freely moving mice. 
Neuron 100(1):46–60.e7 [PubMed: 30308171] 

Michaiel AM, Abe ET, Niell CM. 2020. Dynamics of gaze control during prey capture in freely 
moving mice. eLife 9:e57458 [PubMed: 32706335] 

Miller KD. 2016. Canonical computations of cerebral cortex. Curr. Opin. Neurobiol 37:75–84 
[PubMed: 26868041] 

Millman DJ, Ocker GK, Caldejon S, Kato I, Larkin JD, et al. 2019. VIP interneurons selectively 
enhance weak but behaviorally-relevant stimuli. bioRxiv 858001. 10.1101/858001

Morgenstern NA, Bourg J, Petreanu L. 2016. Multilaminar networks of cortical neurons integrate 
common inputs from sensory thalamus. Nat. Neurosci 19(8):1034–40 [PubMed: 27376765] 

Movshon JA, Thompson ID, Tolhurst DJ. 1978. Spatial summation in the receptive fields of simple 
cells in the cat’s striate cortex. J. Physiol 283:53–77 [PubMed: 722589] 

Murgas KA, Wilson AM, Michael V, Glickfeld LL. 2020. Unique spatial integration in mouse primary 
visual cortex and higher visual areas. J. Neurosci 40(9):1862–73 [PubMed: 31949109] 

Murphy BK, Miller KD. 2009. Balanced amplification: a new mechanism of selective amplification of 
neural activity patterns. Neuron 61(4):635–48 [PubMed: 19249282] 

Musall S, Kaufman MT, Juavinett AL, Gluf S, Churchland AK. 2019. Single-trial neural dynamics are 
dominated by richly varied movements. Nat. Neurosci 22(10):1677–86 [PubMed: 31551604] 

Nassi JJ, Callaway EM. 2009. Parallel processing strategies of the primate visual system. Nat. Rev. 
Neurosci 10(5):360–72 [PubMed: 19352403] 

Niell CM, Stryker MP. 2008. Highly selective receptive fields in mouse visual cortex. J. Neurosci 
28(30):7520–36 [PubMed: 18650330] 

Niell CM, Stryker MP. 2010. Modulation of visual responses by behavioral state in mouse visual 
cortex. Neuron 65(4):472–79 [PubMed: 20188652] 

Nurminen L, Angelucci A. 2014. Multiple components of surround modulation in primary visual 
cortex: multiple neural circuits with multiple functions? Vision Res 104:47–56 [PubMed: 
25204770] 

Olsen SR, Bortone DS, Adesnik H, Scanziani M. 2012. Gain control by layer six in cortical circuits of 
vision. Nature 483(7387):47–52 [PubMed: 22367547] 

Pakan JMP, Currie SP, Fischer L, Rochefort NL. 2018. The impact of visual cues, reward, and motor 
feedback on the representation of behaviorally relevant spatial locations in primary visual cortex. 
Cell Rep 24(10):2521–28 [PubMed: 30184487] 

Panzeri S, Macke JH, Gross J, Kayser C. 2015. Neural population coding: combining insights from 
microscopic and mass signals. Trends Cogn. Sci 19(3):162–72 [PubMed: 25670005] 

Parker PRL, Brown MA, Smear MC, Niell CM. 2020. Movement-related signals in sensory areas: 
roles in natural behavior. Trends Neurosci 43(8):581–95 [PubMed: 32580899] 

Peters AJ, Fabre JMJ, Steinmetz NA, Harris KD, Carandini M. 2021. Striatal activity topographically 
reflects cortical activity. Nature 591(7850):420–25 [PubMed: 33473213] 

Niell and Scanziani Page 24

Annu Rev Neurosci. Author manuscript; available in PMC 2023 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. 2013. Inhibition of inhibition in visual cortex: 
the logic of connections between molecularly distinct interneurons. Nat. Neurosci 16(8):1068–76 
[PubMed: 23817549] 

Piscopo DM, El-Danaf RN, Huberman AD, Niell CM. 2013. Diverse visual features encoded in mouse 
lateral geniculate nucleus. J. Neurosci 33(11):4642–56 [PubMed: 23486939] 

Poort J, Khan AG, Pachitariu M, Nemri A, Orsolic I, et al. 2015. Learning enhances sensory and 
multiple non-sensory representations in primary visual cortex. Neuron 86(6):1478–90 [PubMed: 
26051421] 

Priebe NJ, Ferster D. 2008. Inhibition, spike threshold, and stimulus selectivity in primary visual 
cortex. Neuron 57(4):482–97 [PubMed: 18304479] 

Prusky GT, Douglas RM. 2004. Characterization of mouse cortical spatial vision. Vision Res 
(28):3411–18 [PubMed: 15536009] 

Rasmussen R, Matsumoto A, Dahlstrup Sietam M, Yonehara K. 2020. A segregated cortical stream for 
retinal direction selectivity. Nat. Commun 11(1):831 [PubMed: 32047156] 

Reid RC, Alonso JM. 1995. Specificity of monosynaptic connections from thalamus to visual cortex. 
Nature 378(6554):281–84 [PubMed: 7477347] 

Reid RC, Soodak RE, Shapley RM. 1987. Linear mechanisms of directional selectivity in simple cells 
of cat striate cortex. PNAS 84(23):8740–44 [PubMed: 3479811] 

Reid RC, Soodak RE, Shapley RM. 1991. Directional selectivity and spatiotemporal structure of 
receptive fields of simple cells in cat striate cortex. J. Neurophysiol 66(2):505–29 [PubMed: 
1774584] 

Reinhold K, Lien AD, Scanziani M. 2015. Distinct recurrent versus afferent dynamics in cortical 
visual processing. Nat. Neurosci 18(12):1789–97 [PubMed: 26502263] 

Resulaj A, Ruediger S, Olsen SR, Scanziani M. 2018. First spikes in visual cortex enable perceptual 
discrimination. eLife 7:e34044 [PubMed: 29659352] 

Ringach DL. 2021. Sparse thalamocortical convergence. Curr. Biol In press

Rossi AF, Desimone R, Ungerleider LG. 2001. Contextual modulation in primary visual cortex of 
macaques. J. Neurosci 21(5):1698–709 [PubMed: 11222659] 

Rossi LF, Harris KD, Carandini M. 2020. Spatial connectivity matches direction selectivity in visual 
cortex. Nature 588(7839):648–52 [PubMed: 33177719] 

Roth MM, Dahmen JC, Muir DR, Imhof F, Martini FJ, Hofer SB. 2016. Thalamic nuclei convey 
diverse contextual information to layer 1 of visual cortex. Nat. Neurosci 19(2):299–307 
[PubMed: 26691828] 

Roth MM, Helmchen F, Kampa BM. 2012. Distinct functional properties of primary and posteromedial 
visual area of mouse neocortex. J. Neurosci 32(28):9716–26 [PubMed: 22787057] 

Roth RH, Cudmore RH, Tan HL, Hong I, Zhang Y, Huganir RL. 2020. Cortical synaptic AMPA 
receptor plasticity during motor learning. Neuron 105(5):895–908.e5 [PubMed: 31901303] 

Ruediger S, Scanziani M. 2020. Learning speed and detection sensitivity controlled by distinct cortico-
fugal neurons in visual cortex. eLife 9:e59247 [PubMed: 33284107] 

Rumyantsev OI, Lecoq JA, Hernandez O, Zhang Y, Savall J, et al. 2020. Fundamental bounds on the 
fidelity of sensory cortical coding. Nature 580(7801):100–105 [PubMed: 32238928] 

Runyan CA, Schummers J, Van Wart A, Kuhlman SJ, Wilson NR, et al. 2010. Response features of 
parvalbumin-expressing interneurons suggest precise roles for subtypes of inhibition in visual 
cortex. Neuron 67(5):847–57 [PubMed: 20826315] 

Sadeh S, Clopath C. 2021. Inhibitory stabilization and cortical computation. Nat. Rev. Neurosci 
22(1):21–37 [PubMed: 33177630] 

Saleem AB, Ayaz A, Jeffery KJ, Harris KD, Carandini M. 2013. Integration of visual motion and 
locomotion in mouse visual cortex. Nat. Neurosci 16(12):1864–69 [PubMed: 24185423] 

Saleem AB, Diamanti EM, Fournier J, Harris KD, Carandini M. 2018. Coherent encoding 
of subjective spatial position in visual cortex and hippocampus. Nature 562(7725):124–27 
[PubMed: 30202092] 

Niell and Scanziani Page 25

Annu Rev Neurosci. Author manuscript; available in PMC 2023 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sarnaik R, Chen H, Liu X, Cang J. 2014. Genetic disruption of the On visual pathway affects 
cortical orientation selectivity and contrast sensitivity in mice. J. Neurophysiol 111(11):2276–86 
[PubMed: 24598523] 

Saul AB, Humphrey AL. 1992. Evidence of input from lagged cells in the lateral geniculate nucleus to 
simple cells in cortical area 17 of the cat. J. Neurophysiol 68(4):1190–208 [PubMed: 1432077] 

Schnabel UH, Bossens C, Lorteije JAM, Self MW, Op de Beeck H, Roelfsema PR. 2018. Figure-
ground perception in the awake mouse and neuronal activity elicited by figure-ground stimuli in 
primary visual cortex. Sci. Rep 8(1):17800 [PubMed: 30542060] 

Scholl B, Tan AYY, Corey J, Priebe NJ. 2013. Emergence of orientation selectivity in the mammalian 
visual pathway. J. Neurosci 33(26):10616–24 [PubMed: 23804085] 

Seabrook TA, Burbridge TJ, Crair MC, Huberman AD. 2017. Architecture, function, and assembly of 
the mouse visual system. Annu. Rev. Neurosci 40:499–538 [PubMed: 28772103] 

Sedigh-Sarvestani M, Vigeland L, Fernandez-Lamo I, Taylor MM, Palmer LA, Contreras D. 2017. 
Intracellular, in vivo, dynamics of thalamocortical synapses in visual cortex. J. Neurosci 
37(21):5250–62 [PubMed: 28438969] 

Seeman SC, Campagnola L, Davoudian PA, Hoggarth A, Hage TA, et al. 2018. Sparse recurrent 
excitatory connectivity in the microcircuit of the adult mouse and human cortex. eLife 7:e37349 
[PubMed: 30256194] 

Self MW, Lorteije JAM, Vangeneugden J, van Beest EH, Grigore ME, et al. 2014. Orientation-tuned 
surround suppression in mouse visual cortex. J. Neurosci 34(28):9290–304 [PubMed: 25009262] 

Shuler MG, Bear MF. 2006. Reward timing in the primary visual cortex. Science 311(5767):1606–9 
[PubMed: 16543459] 

Sillito AM. 1975. The contribution of inhibitory mechanisms to the receptive field properties of 
neurones in the striate cortex of the cat. J. Physiol 250(2):305–29 [PubMed: 1177144] 

Sit KK, Goard MJ. 2020. Distributed and retinotopically asymmetric processing of coherent motion in 
mouse visual cortex. Nat. Commun 11(1):3565 [PubMed: 32678087] 

Smith SL, Smith IT, Branco T, Häusser M. 2013. Dendritic spikes enhance stimulus selectivity in 
cortical neurons in vivo. Nature 503(7474):115–20 [PubMed: 24162850] 

Stringer C, Michaelos M, Pachitariu M. 2019a. High precision coding in visual cortex. bioRxiv 
679324. 10.1101/679324

Stringer C, Pachitariu M, Steinmetz N, Carandini M, Harris KD. 2019b. High-dimensional geometry 
of population responses in visual cortex. Nature 571(7765):361–65 [PubMed: 31243367] 

Stringer C, Pachitariu M, Steinmetz N, Okun M, Bartho P, et al. 2016. Inhibitory control of correlated 
intrinsic variability in cortical networks. eLife 5:e19695 [PubMed: 27926356] 

Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD. 2019c. Spontaneous 
behaviors drive multidimensional, brainwide activity. Science 364(6437):eaav7893

Sun W, Tan Z, Mensh BD, Ji N. 2016. Thalamus provides layer 4 of primary visual cortex with 
orientation- and direction-tuned inputs. Nat. Neurosci 19(2):308–15 [PubMed: 26691829] 

Tang L, Higley MJ. 2020. Layer 5 circuits in V1 differentially control visuomotor behavior. Neuron 
105(2):346–54.e5 [PubMed: 31757603] 

Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, et al. 2016. Adult mouse cortical cell taxonomy 
revealed by single cell transcriptomics. Nat. Neurosci 19(2):335–46 [PubMed: 26727548] 

Vale R, Evans DA, Branco T. 2017. Rapid spatial learning controls instinctive defensive behavior in 
mice. Curr. Biol 27(9):1342–49 [PubMed: 28416117] 

Van den Bergh G, Zhang B, Arckens L, Chino YM. 2010. Receptive-field properties of V1 and V2 
neurons in mice and macaque monkeys. J. Comp. Neurol 518(11):2051–70 [PubMed: 20394058] 

van Vreeswijk C, Sompolinsky H. 1996. Chaos in neuronal networks with balanced excitatory and 
inhibitory activity. Science 274(5293):1724–26 [PubMed: 8939866] 

Vangeneugden J, van Beest EH, Cohen MX, Lorteije JAM, Mukherjee S, et al. 2019. Activity in lateral 
visual areas contributes to surround suppression in awake mouse V1. Curr. Biol 29(24):4268–
75.e7 [PubMed: 31786063] 

Niell and Scanziani Page 26

Annu Rev Neurosci. Author manuscript; available in PMC 2023 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Vélez-Fort M, Bracey EF, Keshavarzi S, Rousseau CV, Cossell L, et al. 2018. A circuit for integration 
of head- and visual-motion signals in layer 6 of mouse primary visual cortex. Neuron 98(1):179–
91.e6 [PubMed: 29551490] 

Vélez-Fort M, Rousseau CV, Niedworok CJ, Wickersham IR, Rancz EA, et al. 2014. The stimulus 
selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying 
visual processing. Neuron 83(6):1431–43 [PubMed: 25175879] 

Vinck M, Batista-Brito R, Knoblich U, Cardin JA. 2015. Arousal and locomotion make distinct 
contributions to cortical activity patterns and visual encoding. Neuron 86(3):740–54 [PubMed: 
25892300] 

von der Heydt R, Peterhans E, Baumgartner G. 1984. Illusory contours and cortical neuron responses. 
Science 224(4654):1260–62 [PubMed: 6539501] 

Wang Q, Burkhalter A. 2007. Area map of mouse visual cortex. J. Comp. Neurol 502(3):339–57 
[PubMed: 17366604] 

Wekselblatt JB, Flister ED, Piscopo DM, Niell CM. 2016. Large-scale imaging of cortical dynamics 
during sensory perception and behavior. J. Neurophysiol 115(6):2852–66 [PubMed: 26912600] 

Wertz A, Trenholm S, Yonehara K, Hillier D, Raics Z, et al. 2015. Single-cell-initiated monosynaptic 
tracing reveals layer-specific cortical network modules. Science 349(6243):70–74 [PubMed: 
26138975] 

Whiteway MR, Butts DA. 2019. The quest for interpretable models of neural population activity. Curr. 
Opin. Neurobiol 58:86–93 [PubMed: 31426024] 

Wilson NR, Runyan CA, Wang FL, Sur M. 2012. Division and subtraction by distinct cortical 
inhibitory networks in vivo. Nature 488(7411):343–48 [PubMed: 22878717] 

Xue M, Atallah BV, Scanziani M. 2014. Equalizing excitation-inhibition ratios across visual cortical 
neurons. Nature 511(7511):596–600 [PubMed: 25043046] 

Yoshimura Y, Dantzker JLM, Callaway EM. 2005. Excitatory cortical neurons form fine-scale 
functional networks. Nature 433(7028):868–73 [PubMed: 15729343] 

Young H, Belbut B, Baeta M, Petreanu L. 2021. Laminar-specific cortico-cortical loops in mouse 
visual cortex. eLife 10:e59551 [PubMed: 33522479] 

Zhang S, Xu M, Kamigaki T, Hoang Do JP, Chang W-C, et al. 2014. Selective attention. Long-range 
and local circuits for top-down modulation of visual cortex processing. Science 345(6197):660–
65 [PubMed: 25104383] 

Zhao X, Chen H, Liu X, Cang J. 2013. Orientation-selective responses in the mouse lateral geniculate 
nucleus. J. Neurosci 33(31):12751–63 [PubMed: 23904611] 

Zhao X, Liu M, Cang J. 2014. Visual cortex modulates the magnitude but not the selectivity of 
looming-evoked responses in the superior colliculus of awake mice. Neuron 84(1):202–13 
[PubMed: 25220812] 

Zohary E, Shadlen MN, Newsome WT. 1994. Correlated neuronal discharge rate and its implications 
for psychophysical performance. Nature 370(6485):140–43 [PubMed: 8022482] 

Niell and Scanziani Page 27

Annu Rev Neurosci. Author manuscript; available in PMC 2023 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FUTURE ISSUES

1. What are the similarities and differences in anatomical and functional 

organization between primary visual cortex (V1) and other cortical areas, 

as well as between mouse V1 and primate V1? Are there fundamental 

differences in the computations being performed or primarily specializations 

within a shared architecture?

2. Why are there so many types of excitatory and inhibitory neurons, even 

within the broad categories described here? Does each have its own role, such 

as in the wide diversity of retinal ganglion cells? Or do subtypes represent 

variations on a theme, such as a violin and a viola, which are functionally 

similar but tuned to a different parameter range?

3. What is the role of layers? Do layers represent multiple stages of processing, 

or do they primarily serve to segregate different input and output pathways?

4. Does thalamic input only ignite layer 4? Or is the input to other layers also 

sufficient to drive activity that can propagate through the circuit?

5. What does recurrent amplification do? Can it be tuned based on context?

6. To what extent do visual context and behavioral (nonvisual) context share 

common circuit mechanisms?

7. Do nonvisual signals change the tuning of neurons for visual features (e.g., 

preferred orientation) or simply act as multiplicative or additive factors to dial 

the response to these features up or down?

8. How separate are the circuits within V1 that eventually lead to distinct output 

pathways? Are there dedicated pathways through the cortical circuit, or do 

output neurons selectively integrate responses from a pool of multipurpose 

representations?

9. V1 receives many inputs beyond the dorsal lateral geniculate nucleus, 

including higher-order visual thalamus, higher visual cortical areas, and 

nonvisual cortical areas such as other sensory and associational cortices. How 

do these inputs contribute to the computations performed by V1?
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Figure 1. 
Canonical circuits of mouse visual cortex. (a) Overlay of V1 and higher visual areas on the 

mouse brain showing location and relative size. (b) Summary of layer-specific excitatory 

connectivity. V1 outputs project to higher visual areas and other cortical regions as well 

as many subcortical targets, including structures involved in behavioral output such as 

superior colliculus and basal ganglia. Panel b adapted from Ji et al. (2016), Jiang et al. 

(2015), Morgenstern et al. (2016), and Seeman et al. (2018). (c) Summary of inhibitory 

connectivity motifs. Panel c adapted from Karnani et al. (2016), Lee et al. (2010), and 

Pfeffer et al. (2013). (d) Thalamocortical input targets both excitatory neurons and PV-

positive inhibitory neurons. Panel d adapted from Ji et al. (2016), Jiang et al. (2015), and 

Seeman et al. (2018). See the Supplemental Appendix for further overview of anatomical 

circuit organization. Abbreviations: dLGN, dorsal lateral geniculate nucleus; E, excitatory; 

L, layer; PV, parvalbumin; SOM, somatostatin; V1, primary visual cortex; VIP, vasoactive 

intestinal peptide.
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Figure 2. 
Overview of classical visual response properties. (a) Response of ON sustained (top) and 

OFF transient (bottom) center-surround neurons. (b) Response of an orientation-selective 

neuron preferring vertical orientation. (c) Response of a direction-selective neuron preferring 

rightward motion.
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Figure 3. 
The emergence of orientation and direction selectivity in L4. (a) L4 neurons receive spatially 

offset ON versus OFF input from dLGN, which imparts OS. (b) To optimally activate a L4 

neuron, the dark portion of an edge needs to cover the OFF region and the bright portion 

the ON region, a configuration that occurs if the main axis of the edge is perpendicular 

to the axis that connects the center of the ON and the OFF subregions of the RF. Any 

other orientation of the edge would produce a suboptimal excitation of the L4 neuron. 

As a grating drifts across the RF, it produces alternating optimal (t1) and suboptimal (t2) 

excitation. (c) Examination of the peak excitation across orientations reveals an orientation 

tuning curve. Panels a–c adapted from Lien & Scanziani (2013). (d) Direction-selective 

L4 neurons receive spatially offset transient versus sustained input from dLGN. (e, left) A 

visual stimulus moving in the preferred direction will first cross the RF of the dLGN neuron 

with a sustained response and then the RF of the dLGN neuron with a transient response. 

By doing so, the excitation produced by these two inputs will sum optimally. (Right) When 

the stimulus moves in the opposite direction, the transient response will have already largely 

subsided by the time the stimulus crosses the RF of the dLGN neuron with a sustained 

response, leading to less summation. Panels d and e adapted from Lien & Scanziani (2018). 
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Abbreviations: dLGN, dorsal lateral geniculate nucleus; DS, direction selectivity; L, layer; 

OS, orientation selectivity; RF, receptive field; S, sustained; T, transient.
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Figure 4. 
Recurrent excitatory connectivity. (a) Connectivity within the cortical circuit is primarily 

like to like, with preferential (though not exclusive) connections between neurons tuned 

to similar orientations. This applies to both feedforward connectivity from L4 to L2/3 

and recurrent connectivity within L2/3. Panel a adapted from Ko et al. (2011), Lee et al. 

(2016), Lien & Scanziani (2013), Morgenstern et al. (2016), Rossi et al. (2020), Wertz et al. 

(2015), and Yoshimura et al. (2005). (b) The spatial organization of connectivity is coaxial, 

whereby a neuron (red) tends to receive input from neurons (green) with similar orientation 

preference and whose location, in retinotopic coordinates, is along the axis of their preferred 

orientation. Panel b adapted from Iacaruso et al. (2017) and Rossi et al. (2020). (c) Recurrent 

cortical excitation is larger than incoming thalamic excitation but is matched in tuning, 

resulting in cortical amplification (total excitation). Panel c adapted from Li et al. (2013) and 

Lien & Scanziani (2013, 2018). Abbreviations: dLGN, dorsal lateral geniculate nucleus; L, 

layer.
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Figure 5. 
Gain control through feedforward inhibition. (a) Stimuli of increasing contrast elicit larger 

synaptic depolarization of the membrane potential (Vm) and higher spike frequencies, yet 

the underlying synaptic excitatory (E) and inhibitory (I) currents increase proportionally, 

and even the weakest contrasts elicit both excitation and inhibition. (b) The change in 

spike rate (top) and excitatory and inhibitory currents (bottom) as a function of contrast. 

The proportional increase of excitation and inhibition prevents runaway excitation as 

stimulus contrast increases. Panels a and b adapted from Adesnik (2017). (c) Increasing 

stimulus contrast results in a multiplicative increase in response of excitatory neurons (E 

response) across the orientation tuning curve while leaving selectivity unchanged, i.e., a gain 

change. (d) Parvalbumin (PV) inhibitory neurons pool excitatory inputs tuned to different 

orientations, resulting in nonselective orientation tuning. Panel d adapted from Bock et 

al. (2011). (e) The response of excitatory neurons to stimuli of different orientations is 

modulated by the activity of PV neurons. Because PV neurons are reciprocally connected 

with the local excitatory population, their activity can provide multiplicative gain control 

that mimics the effects of varying contrast. Panel e adapted from Atallah et al. (2012).
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Figure 6. 
Inhibitory circuits for contextual modulation. (a) In contrast to excitatory (E) neurons, 

the response of somatostatin (SOM) neurons continues to increase up to a plateau with 

stimulus size. (b) SOM neurons receive input across a large area and do not inhibit each 

other. As a consequence, their response increases, leading to increasing responses with 

stimulus size. By inhibiting nearby excitatory neurons when large stimuli are presented, 

SOM neurons mediate surround suppression. Panels a and b adapted from Adesnik et al. 

(2012). (c–e) Contextual modulation depends on properties of the stimulus in the surround. 

An iso-oriented surround suppresses the response, while a cross-oriented surround increases 

the response. This gives rise to the illusory perception that the central grating contrast in 

panel d is greater than in panel c. The disinhibitory circuit from vasoactive intestinal peptide 

(VIP) neurons onto SOM neurons mediates this context dependence, as the activation of 

VIP neurons in the cross-oriented condition inhibits the surround suppression that would 

otherwise be provided by SOM neurons. Panels c–e adapted from Keller et al. (2020a).
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Figure 7. 
Mechanisms for sharpening response selectivity. (a) The membrane potential threshold for 

spike generation implies that even stimuli that elicit a significant depolarization may not 

elicit spiking, thereby sharpening the response to optimal stimuli. This is demonstrated in 

the temporal response to drifting gratings of varying orientation (left) and the corresponding 

orientation tuning curves (right) for membrane potential (top) and spikes (bottom). Panel 

a adapted from Liu et al. (2011). (b) The tuning of inhibitory synaptic conductances is 

broader than that of excitatory (E) synaptic conductances (top). The relative dominance 

of inhibition at nonpreferred orientations suppresses responses at these orientations and 

sharpens selectivity (bottom). Panel b adapted from Liu et al. (2011). (c) Visual input at the 

preferred orientation elicits dendritic bursts (top). This leads to greater orientation selectivity 

relative to when active conductances underlying dendritic bursts are suppressed (bottom). 

Panel c adapted from Smith et al. (2013).
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Figure 8. 
Nonvisual signals in primary visual cortex (V1). (a) The orientation tuning curve 

measured in head-fixed mice on a spherical treadmill shows a multiplicative increase (gain 

modulation) when the animal is moving versus stationary. Panel a adapted from Niell & 

Stryker (2010). (b) L6 neurons respond to vestibular input from rotation (top) and the 

corresponding rotation of the visual scene (middle), which summate and result in a signal 

representing head direction (bottom). Panel b adapted from Vélez-Fort et al. (2018). (c) 

Combining rich quantification of eye and body movements with neural recordings during 

ethological behavior, for example, cricket hunting, may allow investigation of visual and 

nonvisual signals in a natural context. Panel c adapted from Meyer et al. (2018) and 

Michaiel et al. (2020).
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Figure 9. 
Selectivity and impact of V1 outputs. (a) Two populations of V1 neurons (red, blue) 

projecting to different higher visual areas, AL and PM, have different speed tuning. Panel 

a adapted from Glickfeld et al. (2013a). (b) L6 neurons projecting to dLGN (CThal) have 

sparse and highly selective responses to orientation relative to L6 neurons that project 

within cortex (CC). Panel b adapted from Vélez-Fort et al. (2014). (c) L5 neurons that 

project to SC boost the amplitude of response to a looming visual stimulus relative to 

the retinal input alone, suggesting a role in modulating innate behavior. Panel c adapted 

from Zhao et al. (2014). Abbreviations: AL, anterolateral; CC, corticocortical; CThal, 

corticothalamic; dLGN, dorsal lateral geniculate nucleus; L, layer; PM, posteromedial; SC, 

superior colliculus; V1, primary visual cortex.
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