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C A N C E R

Single-cell analysis of human basal cell carcinoma 
reveals novel regulators of tumor growth and the  
tumor microenvironment
Christian F. Guerrero-Juarez1,2,3,4†, Gun Ho Lee5†‡, Yingzi Liu1,3, Shuxiong Wang2,3, 
Matthew Karikomi2, Yutong Sha2, Rachel Y. Chow1, Tuyen T. L. Nguyen1, Venus Sosa Iglesias1, 
Sumaira Aasi5, Michael L. Drummond1, Qing Nie1,2,3,4, Kavita Sarin5*, Scott X. Atwood1,3,4,6,7*

How basal cell carcinoma (BCC) interacts with its tumor microenvironment to promote growth is unclear. We use 
singe-cell RNA sequencing to define the human BCC ecosystem and discriminate between normal and malignant 
epithelial cells. We identify spatial biomarkers of tumors and their surrounding stroma that reinforce the hetero-
geneity of each tissue type. Combining pseudotime, RNA velocity–PAGA, cellular entropy, and regulon analysis in 
stromal cells reveals a cancer-specific rewiring of fibroblasts, where STAT1, TGF-, and inflammatory signals 
induce a noncanonical WNT5A program that maintains the stromal inflammatory state. Cell-cell communication 
modeling suggests that tumors respond to the sudden burst of fibroblast-specific inflammatory signaling path-
ways by producing heat shock proteins, whose expression we validated in situ. Last, dose-dependent treatment 
with an HSP70 inhibitor suppresses in vitro vismodegib-resistant BCC cell growth, Hedgehog signaling, and in vivo 
tumor growth in a BCC mouse model, validating HSP70’s essential role in tumor growth and reinforcing the critical 
nature of tumor microenvironment cross-talk in BCC progression.

INTRODUCTION
Basal cell carcinoma (BCC) is a locally invasive skin cancer and the 
most common human cancer worldwide with an estimated lifetime 
risk between 20 and 30% and increasing incidence rates in a number 
of regions including North America, Europe, Asia, and Australia (1). 
BCCs originate from inappropriate activation of the Hedgehog (HH) 
signaling pathway, in which secreted HH ligand binds the choles-
terol transporter patched homologue 1 (PTCH1) and negates PTCH1-
mediated suppression of the G protein–coupled receptor Smoothened 
(SMO). SMO then activates the GLI (glioma-associated oncogene 
homolog) family of transcription factors (TFs) to promote prolifer-
ation and tumor growth. Although the mortality rate for BCC is low, 
the large affected patient population imposes substantial morbidity 
and cost (1).

Although surgery remains the gold standard of therapy for BCC 
(2), it is not a practical option for tumors on cosmetically sensitive 
body parts or for metastatic disease. SMO inhibitors, vismodegib 
and sonidegib, have emerged as promising treatments for advanced 
disease, with a response rate of around 30% in metastatic BCC and 
45% in locally advanced BCC (2). However, SMO mutations driving 
drug resistance are common, and up to 21% of patients treated with 
vismodegib were found to undergo tumor regrowth during treatment 

(3). Additional pathways that contribute to BCC drug resistance include 
phosphatidylinositol 3-kinase (PI3K)/MTOR (Mammalian target of 
rapamycin) (4, 5), WNT (6), aPKC / (7), NOTCH1 (8), RAS/MAPK 
(9, 10), and activation of MRTF (11, 12), to name a few. New thera-
peutic options are needed to treat advanced BCC.

How stroma interacts with and promotes the growth of BCCs 
is unclear. Upon hierarchical clustering of cancer-associated FIB 
(CAF) markers in BCC, squamous cell carcinoma, and melanoma, 
three distinct subgroups can be stratified, each corresponding to the 
specific cancer type (13). Specifically, BCC CAFs are notable for their high 
expression of platelet-derived growth factor receptor  (PDGFR), 
S100A4, and TWIST. Within different histopathologic subtypes of 
BCCs, the tumor-to-stroma ratio is significantly divergent, with 
infiltrative BCCs presenting the lowest ratio (14). Genes coding 
for extracellular matrix (ECM) components are also up-regulated 
in BCCs, suggesting a tumor-induced remodeling of the stromal 
matrix (15). In addition, expression of stromal proteins has been 
shown to predict the aggressiveness of BCCs (16) and distinguish 
between infiltrative BCC and desmoplastic trichoepithelioma (17). 
Together, these studies show that expressed factors in BCC stroma 
can play important roles in tumor growth, angiogenesis, and metas-
tasis. Defining BCC-stroma interactions may be a vital, yet under-
studied, part of tumor progression and result in more efficacious 
therapies.

Single-cell RNA sequencing (scRNA-seq) technologies allow the 
analysis of intrasample heterogeneity, tumor/sample microenviron-
ment, pathogenic pathways, and cell-cell interactions in oncogenic 
contexts (18). Using this technology, we define BCC cellular hetero-
geneity, cell-cell interactions, and novel active pathways in BCC. We 
differentiate between malignant and normal epithelia, identify a 
stromal inflammatory response driven by WNT5A, characterize a 
subgroup of BCC keratinocytes that overexpress heat shock pro-
teins, and provide data supporting the heat shock protein (HSP) 
pathway as a potential novel therapeutic target for BCC.

1Department of Developmental and Cell Biology, University of California, Irvine, 
Irvine, CA 92697, USA. 2Department of Mathematics, University of California, Irvine, 
Irvine, CA 92697, USA. 3NSF-Simons Center for Multiscale Cell Fate Research, Uni-
versity of California, Irvine, Irvine, CA 92697, USA. 4Center for Complex Biological 
Systems, University of California, Irvine, Irvine, CA 92697, USA. 5Department of 
Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA. 
6Department of Dermatology, University of California, Irvine, Irvine, CA 92697, USA. 
7Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, 
CA 92697, USA.
*Corresponding author. Email: satwood@uci.edu (S.X.A.); ksarin@stanford.edu (K.S.)
†These authors contributed equally to this work.
‡Present address: Department of Dermatology, Harvard Medical School, Boston, 
MA 02115, USA.

Copyright © 2022 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
License 4.0 (CC BY).

mailto:satwood@uci.edu
mailto:ksarin@stanford.edu


Guerrero-Juarez et al., Sci. Adv. 8, eabm7981 (2022)     10 June 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 17

RESULTS
Resolving the cellular ecosystem of human BCC
To resolve the cellular ecosystem of human BCCs, we sorted viable, 
single cells in toto from primary human BCC surgical discards 
(n = 4), including peritumor skin (PTS) tissues (n = 2), and subject-
ed them to 3′-droplet–enabled scRNA-seq (Fig. 1A and fig. 1A) (19). 
The primary BCC subtypes considered in this study included super-
ficial, nodular, and infiltrative BCC (ID: BCC-I; k = 9837 cells); 
superficial and nodular BCC (ID: BCC-II; k = 11,724 cells); 
unknown/“hybrid” BCC (ID: BCC-III; k = 6712 cells); and infiltrative 
with perineural invasion BCC (ID: BCC-IV; k  =  8569 cells). PTS 
tissues constituted skin directly adjacent to BCC lesions. In total, we 
processed 56,162 raw single cells (kPTS = 17,727 versus kBCC = 38,435). 
After putative doublet/multiplet removal and quality control filter-
ing of individual libraries (fig. S1B and tables S1 to S3), 52,966 “valid” 
cells remained (kPTS = 16,903 versus kBCC = 37,667). To resolve the 
cellular diversity present in individual tumors and enable down-
stream query and comparative gene expression analyses, we processed 
and characterized individual BCCs using Seurat (20) and visualized 
the inferred putative cell types in two-dimensional space. We iden-
tified 10 coarse-grained cell types based on bona fide biomarkers, 
which included MKI67+ proliferative epithelial cells, KRT14+ basal 
epithelial/tumor cells, terminally differentiated IVL+ keratinocytes, 
AZPG+ appendage-associated cells, PDGFRA+ fibroblastic cells, RGS5+ 
FIB-like cells, TIE1+ endothelial cells, PROX1+ lymphatic endothelial 
cells, MLANA+ melanocytic cells, and immune cells identified by 
expression of PTPRC (Fig. 1B). We did not confidently identify cell 
clusters with gene expression signatures enriched in Stratum spinosum 
keratinocytes or Schwann/neural-like cells (fig. S2).

To identify putative malignant tumor cells present in primary 
BCC samples, we subjected the KRT14+ epithelial/tumor cells to 
InferCNV analysis (InferCNV of the Trinity CTAT Project; https://
github.com/broadinstitute/inferCNV). We observed aberrant ge-
nomic profiles, associated with chromosome duplication (red) and 
deletion (blue), in KRT14+ epithelial cells from BCC-I, BCC-II, and 
BCC-IV donors when compared to their counterpart nonepithelial, 
nonimmune internal reference cells (Fig. 1C). BCC-III did not display 
significant aberrant genomic structure changes when compared to 
other BCC subtypes. Rather, its profile resembled more those from 
nonappendage, KRT14+ epithelial cells present in the PTS samples 
(fig. S3), suggesting that some tumors do not have significant copy 
number variations driving tumor growth. Although InferCNV in-
ferred aberrant genomic changes in KRT14+ epithelial cells, it can-
not identify individual malignant cells.

When integrating both BCC and PTS datasets using Seurat, we 
noticed independent clustering of BCC KRT14+ epithelial/tumor 
cells from PTS, with further inter-BCC partitioning (fig. S4A). Un-
like KRT14+ epithelial/tumor cells, all other nonepithelial cell types 
did not drift or cluster independently from each other regardless 
of donor. The high BCC tumor heterogeneity is in congruence with 
other reports indicating a high degree of transcriptome-driven epi-
thelial, intertumoral heterogeneity in other human cancers, includ-
ing melanoma and squamous cell carcinoma (21, 22). To determine 
an alternative approach to identify BCC-associated KRT14+ epithelial/
tumor cell states that significantly differ from PTS, we compared 
Seurat-based integration with four distinct yet widely popular clus-
tering methodologies, including SCTransform (23), LIGER (24), 
Harmony (25), and scMC (26) (Fig. 1D and fig. S4). All algorithms 
clustered nonepithelial cells together, irrespective of condition or 

donor. However, Seurat, SCTransform, LIGER, and Harmony clus-
tered epithelial cells indistinctly, irrespective of condition or donor, 
whereas clustering with Seurat was driven entirely by donor, making 
it difficult to identify and interpret BCC-specific epithelial cell types 
or states (fig. S4). In sharp contrast, scMC clustered BCC and PTS 
epithelial cells distinctly while maintaining clustering of transcrip-
tionally similar cell types (Fig. 1D). As scMC retains biological 
variation while removing technical variation associated with each 
sample, we therefore used the resultant scMC-corrected BCC-PTS 
data for downstream query and comparative analysis.

scMC maintained the same 10 distinct cell types found by inde-
pendent BCC clustering with Seurat (Fig. 1, E to G). Quantification 
of each coarse-grained cell type partitioned by condition and donor 
revealed relative cell type frequency similarities across BCC and 
PTS (Fig. 1F). Non-PTS KRT14+ epithelial/tumor cells uniquely ex-
pressed known BCC-associated gene biomarkers including BCAM 
and EPCAM (Fig.  1H) (27). KRT14+ epithelial/tumor cells from 
BCC-III showed a “hybrid” position where many cells significantly 
overlapped with the PTS samples, whereas other cells uniquely clus-
tered singly, matching our previous observations with InferCNV 
analyses (Fig. 1, C and D). In sum, our benchmarking approach and 
comparative scRNA-seq clustering analyses resolved the distinct 
cellular landscape of human BCCs and revealed major KRT14+ epi-
thelial cell type differences compared to PTS, suggesting a high level of 
inter- and intratumor transcriptional heterogeneity between human 
BCC samples.

Defining normal versus malignant epithelial cells
To define the epithelial/tumor cellular landscape of human BCC and 
PTS samples, we subclustered 30,058 KRT14+ epithelial-derived cells 
(kPTS = 5146 versus kBCC = 24,872) and identified 15 coarse-grained 
epithelial cell clusters, all defined by expression of unique gene bio-
markers (Fig. 2, A to C). Three of the subpopulations (IFE I to III) 
appear to be normal epithelia and make up nearly all the PTS sam-
ples and a small proportion of the BCC samples, whereas the rest of 
the cells cluster uniquely to the BCC-associated samples (BAS I to 
XII). This is distinct from what was found in squamous cell carcino-
ma, where most tumor keratinocytes were indistinguishable from 
normal keratinocytes except for the presence of a small population 
of tumor-specific keratinocytes (22). Whether the overlap in nor-
mal and tumor keratinocytes in squamous cell carcinoma is due to 
the clustering algorithm used, inter-/intratumoral heterogeneity, or 
a large proportion of normal keratinocytes in the tumor samples is 
unclear. To explore their gene expression profile and spatial archi-
tecture, we spatially resolved select gene products, including KRT15 
(BAS II), LHX2 (BAS IV), and ACTA2 (BAS XI). KRT15 marked a 
subset of KRT14high tumor nests (Fig. 2D), LHX2 marked the nucleus 
of cells along the outer periphery of KRT14high tumor nests (Fig. 2E), 
and ACTA2 marked the outer periphery of KRT14low tumor nests 
(Fig.  2F). LHX2 is significantly expressed in bulk-level RNA-seq 
data from vismodegib-sensitive and vismodegib-resistant advanced 
BCC tumors compared to normal skin with ACTA2 showing tumor- 
specific variability and KRT15 not showing significance (28), rein-
forcing the heterogeneity of BCC tumors and highlighting how 
single-cell data can resolve significantly expressed genes that are 
otherwise averaged out in bulk-level RNA-seq studies.

We next defined the identity of “transformed” cells by scoring 
individual KRT14+ cells with a previously defined BCC-associated 
gene expression profile that includes coexpression of EPCAM, BCAM, 

https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
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Fig. 1. Cellular characterization of human BCC subtypes using scRNA-seq. (A) Schematic representation of in toto epithelial and stromal tissue isolation and process-
ing from human PTS and BCC tissues for 3′-droplet–enabled single-cell RNA sequencing (scRNA-seq). (B) Two-dimensional clustering of single cells isolated from individ-
ual human BCC subtypes. IDs represent subtype and donor. BCC subtypes are color-coded on the basis of subtype and donor and include the following: superficial, 
nodular, and infiltrative (BCC-I); superficial and nodular (BCC-II); unknown/“hybrid” (BCC-III); and infiltrative with perineural invasion (BCC-IV). Ten distinct meta-clusters 
are identified at distinct proportions across BCC subtypes and annotated with their putative identities. The putative identity of each cell meta-cluster is defined on the 
bottom and color-coded accordingly. (C) Copy number variant analysis of putative malignant epithelial cells with InferCNV. Blue indicates low modified expression, cor-
responding to genomic loss; red indicates high modified gene expression, corresponding to genomic gain. Internal reference cells refer to nonepithelial, nonimmune 
control cells. Observations refer to putative malignant epithelial cells. Genomic regions (chromosomes) are labeled and color-coded. (D) Clustering of corrected and inte-
grated PTS and BCC datasets is grouped by condition and donor using scMC. Conditions and donor are labeled and color-coded. (E) Two-dimensional clustering reveals 
cellular heterogeneity of integrated human PTS and BCC datasets. Ten distinct metaclusters are identified at various proportions across BCC subtypes and annotated with 
their putative cell type identities. The putative identity of each cell meta-cluster is defined on the right and color-coded accordingly per cell type. (F) Proportion of cell 
types grouped by condition. (G and H) Feature plots showing bona fide genes (G) and BCC-specific epithelial markers (H). Gray, low normalized gene expression based 
on normalized counts; black, high normalized gene expression based on normalized counts.
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Fig. 2. Comparison of epithelial cells reveals regulators of malignancy in human BCC. (A and B) Clustering of 30,058 corrected KRT14+ epithelial cells from human 
PTS and BCC subtypes grouped by condition and donor. Fifteen putative KRT14+ epithelial cell identities, including 1 proliferating epithelial and 3 interfollicular epitheli-
al cells, and 11 basal/basaloid epithelial cells were identified and defined. PTS/BCC agglomerative clustering shows relationships between KRT14+ epithelial cells. Cells are 
color-coded accordingly. (C) Dot plot of top two marker genes identified by differential gene expression among epithelial cells. Gray, low average gene expression; 
purple, high average gene expression. Size of circle represents the percentage of cells expressing gene markers of interest. (D to F) Protein immunostaining of select 
BCC–epithelial cell markers shows cluster specificity and distinct spatial localization in human primary clinical tumors. Inset shows magnified area of BCC nest. White 
arrows point at epithelial cells expressing KRT14. Yellow arrows point at epithelial cells coexpressing protein of interest and KRT14. Tissues were counterstained with 
DAPI. Scale bars, 100 m. (G to I) Heatmap of condition and donor-specific active gene regulatory networks demonstrates differentially active FOX, HOX, and SOX regu-
lons in BCC epithelial cells compared to PTS (Z score > 0). Yellow, low regulon activity; blue, high regulon activity; white, absent regulon activity.
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and TP63 (27, 29). When grouped by condition and qualitatively 
and quantitatively evaluated, we observed that most of the BCC-
associated cells expressed some of these markers, but not all three. 
Of interest, EPCAM and BCAM were rather unique to BCC, where-
as TP63 was lowly expressed in PTS samples, a similar pattern to 
bulk-level RNA-seq data where EPCAM and BCAM showed signif-
icant expression in BCC tumors and TP63 was significant in only a 
subset of tumors (28). Canonical HH target genes such as PTCH1, 
GLI1, and GLI2 were not reliable markers of BCC-associated cells, 
likely due to their lower expression levels and the limitations of the 
10X Genomics platform—which relies on the chemistry used and 
mainly capturing highly expressing mRNAs. To develop a better 
measure of transformation, we identified prominent gene expres-
sion differences between BCC and PTS epithelial cells (fig. S5A). 
This approach led to the identification of LGALS1 as a gene that is 
highly up-regulated in BCC epithelial cells (fig. S5B). LGALS1 has 
been previously implicated in pancreatic ductal adenocarcinoma 
(30), clear cell renal cell carcinoma (31), cervical cancer (32), and 
malignant melanomas (33). However, to our knowledge, it has not 
been previously implicated in BCC biology or previously identified 
as a marker of BCCs and is not significantly enriched in bulk-level 
RNA-seq data of BCC (28). We conducted a similar approach to 
identify genes associated with the different BCC samples in our 
cohort of donors. We identified MYLK, CALM5, SCGB2A2, and 
KRT19 as highly expressed within each tumor sample (fig. S5C), all 
of whom are not significantly enriched in bulk-level RNA-seq of 
BCC (28).

To identify BCC-specific gene regulators (regulons) that may be 
driving condition-specific gene expression changes in the different 
epithelial-derived cell populations, we performed gene regulatory 
network (GRN) analysis using pySCENIC (34) and identified sig-
nificantly active regulons specific to BCC subtypes in our cohort of 
donors (Fig. 2, G to I). In addition to identifying active regulons 
known to be implicated in the initiation and progression of BCC, 
including as GLI1Reg(+) and GLI2Reg(+) (fig. S5, D to F), we identi-
fied several classes of regulons of particular interest that include the 
FOX, HOX, and SOX family of TFs (Fig. 2, G to I). FOX TFs, which 
are highly active in BCC-IV, have been implicated in HH signaling 
in other systems. For instance, FOXC1, which is active in BCC-I, 
can activate SMO-independent HH signaling in basal-like breast 
cancer, suggesting that it may regulate BCC drug resistance (35). 
The HOX TFs, which are highly active in BCC-II, are main players 
in murine digit patterning, where HOX TFs can activate Shh tran-
scription, with Shh protein establishing additional Hox expression 
zones (36). However, the interplay between HOX TFs and HH 
signaling in cancer is unclear. Last, the SOX TFs, which are highly 
active in BCC-IV, have several known family members with con-
nections to BCC, including SOX2 (37) and SOX9 (38). These results 
suggest that there are specific regulons that are active in BCC-associated 
epithelial cells whose activity differs between BCC subtypes, reinforcing 
the heterogeneity of BCC and which may be important in BCC biology.

We were interested in using scRNA-seq data to determine whether 
we could resolve genes or gene-specific loci identified in other bulk-
level genomic or transcriptomic studies with individual cells within 
the BCC macroenvironment. As a proof of principle, we used our 
human BCC scRNA-seq data and overlaid expression of genes asso-
ciated with BCC risk loci identified via GWAS (genome-wide associ-
ation study) in BCC (fig. S6) (39). We successfully identified several 
differentially expressed genes that were associated with specific BCC 

risk loci and that were expressed only in BCC-IV epithelial cells, in-
cluding BNC2, CUX1, ZBTB10, and CASC15, whereas other genes 
showed broader expression across cell types in both normal and tumor 
cells, such as LPP, PLIN2, HLA-B, and NEU1. We also used a similar 
approach to identify significantly enriched vismodegib-resistant genes 
from bulk-level RNA-seq analysis of advanced BCC (28) that are 
expressed only in BCC epithelial cells (fig. S7, A and B). We found a 
cohort of genes that were nonspecific and had broad expression 
in other cell types in both normal and tumor contexts, including 
SLC39A14 and DUSP10. In contrast, other genes displayed unique 
expression in BCC-IV epithelial cells, including FBN3 and SH3GL3 
(fig. S7C). This approach could enable the identification of genes 
specific to certain BCC subtypes or BCC epithelial subclusters.

RNA velocity analyses show distinct cellular dynamics in BCC
As BCCs display both inter- and intratumor heterogeneity, we per-
formed RNA velocity analysis using scVelo (40) to better estimate 
and generalize transient cell states within KRT14+ epithelial cells 
through dynamical modeling. Coupling RNA velocity vectors with 
Markovnikov root and terminal states demonstrates that superficial 
and nodular (BCC-I); superficial, nodular, and infiltrative (BCC-II); 
and the unknown/“hybrid” subtype BCC (BCC-III) velocity vectors 
point toward a terminal state associated with high levels of BCC-
associated signature genes and high in HH and WNT pathway genes 
(fig. S8, A to C). In contrast, the infiltrative with perineural invasion 
BCC (BCC-IV) displayed vectors pointing away from a region high 
in HH genes (fig. S8D). Velocities derived from cells with a clear 
high late differentiation gene signature (41) in BCC-I and BCC-II 
suggest a potential dedifferentiation fate choice of late differentia-
tion epithelial cells in favor of a more basal-like fate in BCC (fig. S8, 
A and B), in contrast to normal epithelia that display velocities 
going toward the high late differentiation gene signature (fig. S8C). 
These results may reflect distinct tumor states that are also seen as a 
consequence of drug treatment (6, 42).

FIB heterogeneity and function in human BCC
Recent studies have identified a large degree of functional heteroge-
neity in fibroblasts (FIBs) and fibroblast-like (FIB-like) cells across 
different states and conditions in human (21, 22, 43) and mouse 
(44, 45) skin tissues with important biological relevance in homeo-
stasis, injury-mediated repair and regeneration, disease, and cancer. 
To discern whether cellular and spatial FIB or FIB-like heterogene-
ity exists in human BCC and PTS regions, we subclustered FIB and 
FIB-like cells based on expression of PDGFRA and RGS5, yielding a 
total of 7080 cells (kPTS = 1305 versus kBCC = 5775) (Fig. 3, A and B). 
Both cell types were collectively positive for ECM proteins DCN 
and LUM. This subclustering approach led to the identification of 
four coarse-grained FIB populations, and two FIB-like populations, 
all defined by differential expression of unique gene biomarkers 
(Fig. 3, B to D).

To explore their gene expression profile and spatial architecture 
in human BCC, we spatially resolved their distribution in situ using 
RNA in situ hybridization or protein immunostaining coupled with 
high-resolution confocal imaging. Cluster 1 fibroblasts (FIB I) rep-
resent ~8% of all FIBs analyzed and collectively express ASPN (Fig. 3E). 
ASPN overexpression has been shown to lead to cancer progression 
and enhanced metastasis, and its expression is similar in mesen-
chymal stromal cells and CAFs (46). In situ, ASPN+ FIBs appeared 
ubiquitously yet sparsely throughout the dermis (Fig. 3E). Cluster 2 
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Fig. 3. Analysis of stromal cells highlights FIB and FIB-like cell heterogeneity in human BCC. (A) Clustering of 7080 corrected FIB/FIB-like (FIB/FIB-like) cells from 
human PTS and BCC subtypes grouped by condition and subtype. Four putative PDGFRA+ FIB and two putative RGS5+ FIB-like cell identities were identified and defined. 
(B and C) Quantification and agglomerative clustering of FIB/FIB-like cells. Bar graph represents cell average per donor per cluster ± SEM. Unpaired Student’s two-tailed 
t test. n.s., not significant. (D) Dot plots of canonical/marker genes in FIB/FIB-like cells. Blue, low-average gene expression; red, high-average gene expression. (E to 
H) Feature plots and in situ RNA/protein staining show FIB marker specificity/distinct spatial localization in human primary clinical tumors. Inset shows magnified area in 
BCC nests. White arrows point at FIBs expressing gene/protein of interest. Tissues were counterstained with KRT14 (RNA/protein) and DAPI. Scale bars, 100 m. (I) Pseudo-bulk 
dot plots of ECM remodeling genes. Red, low-average gene expression; blue, high-average gene expression. Size of circle, percentage of expressing cells. (J) Heatmap of 
differentially expressed genes in FIB IV cells. Yellow, down-regulated genes; red, up-regulated genes. (K and L) Gene expression (K) and cellular density (L) plots of 
TMEM119, WNT5A, or TMEM119;WNT5A cells. Purple, low cellular density; yellow, high cellular density. (M) RNA in situ hybridization of WNT5A in human primary clinical 
tumors. Inset shows magnified area of BCC cells. White arrows point at WNT5A+ FIBs. Tissues were counterstained with KRT14 and DAPI. Scale bars, 100 m. (N and 
O) Heatmap showing active regulons in FIB/FIB-like cells (Z score > 0). Yellow, low regulon activity; blue, high regulon activity; white, absent regulon activity. Regulon 
activity was used for dimensionality reduction in a two-dimensional embedding. White arrows mark BCC-specific FIBs (IV). Purple, low regulon activity; yellow, high regulon 
activity; density plots, AUC distribution per regulon.
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FIBs (FIB II) represent ~8% of all FIBs and collectively express 
CLIC2 (Fig. 3F). In situ, CLIC2+ FIBs are located sparsely surround-
ing KRT14+ tumor cell nests (Fig. 3F). Cluster 3 FIBs (FIB III) rep-
resented ~32% of all FIBs and collectively express CEMIP (Fig. 3G). 
In colorectal cancer, hypoxia-mediated overexpression of CEMIP 
in submucosa epithelial cells leads to eventual enhanced cell migra-
tion status (47). In addition, CEMIP+ FIBs surround KRT14+ tumor 
cell nests (Fig. 3G). Last, cluster 4 FIBs (FIB IV) represent ~28% 
of all FIBs and robustly express TMEM119 (Fig. 3H). TMEM119 is 
up-regulated in osteosarcoma cells, and its overexpression is associ-
ated with increased tumor size, clinical stage, distant metastasis, and 
poor prognosis (48). Most of the TMEM119+ FIBs appeared to 
be positioned peripherally and juxtaposed to KRT14+ tumor nests 
(Fig. 3H), to a greater extent than those observed for CLIC2+ and 
CEMIP+ FIBs or sparse ASPN+ FIBs (Fig. 3, E to G). We also iden-
tified two types of RGS5+ FIB-like cells, expressing ACTA2 (~3%) 
and NEU4 (~21%). Quantification of cells from each putative FIB 
and FIB-like subtype partitioned by condition revealed similar cell 
type frequencies across BCC and PTS samples, with the exception of 
TMEM119+ FIBs, which appeared slightly expanded in BCC com-
pared to PTS (Fig. 3B). Our in situ imaging analysis suggests that 
TMEM119+ FIBs segregate distinctly across KRT14+ tumor nests in 
terms of both position and density, further reinforcing the notion 
that significant intertumoral FIB heterogeneity exists in human BCC 
and that this particular population may be functionally and struc-
turally positioned to support tumoral growth and progression.

We then examined genes coding for ECM-related proteins and 
compared their expression profiles between conditions to approx-
imate the level of ECM remodeling in BCC compared to PTS. In 
general, we identified prominent changes in extent and expression 
of genes coding for various collagens, including COL1A1, COL1A2, 
COL3A1, COL4A1, COL4A2, COL5A1, COL5A2, COL5A3, COL6A1, 
COL6A2, COL6A3, COL8A1, COL12A1, COL14A1, and COL16A1 
(Fig. 3I). Analogous to collagen-coding genes, other ECM-related 
protein-coding genes, including FN1, SPARC, TIMP1, TIMP2, MMP2, 
MMP9, MMP10, and MMP12, were also enriched in BCC com-
pared to PTS stroma (Fig. 3I). The expression of these ECM-related 
coding genes was not restricted to individual FIB subsets, but rather 
represents a pan-BCC ECM-related remodeling gene profile. This 
comparative analysis suggests a large degree of ECM-related re-
modeling in BCCs compared to PTS that is likely driven by expres-
sion of collagen- and metalloproteinase-coding genes.

Rewiring FIBs to a reactive stroma state
Because TMEM119+ FIBs segregated distinctly across KRT14+ tu-
mor nests and were significantly higher in proportion in BCC sam-
ples, we wondered whether they may have a unique gene expression 
profile that may functionally support tumoral growth and progres-
sion. To shed light on this notion, we performed differential gene 
expression analysis on cluster 4 FIBs across BCC and PTS condi-
tions using a modified version of DEseq2 specifically tailored for 
single-cell analysis (49). This analysis led to the identification of 16 
genes differentially up-regulated in PTS cluster 4 FIBs and 50 genes 
differentially up-regulated in BCC cluster 4 TMEM119+ FIBs 
(Fig. 3J). One particular gene, WNT5A, was overexpressed in BCCs 
and coexpressed with TMEM119, and its RNA localization showed 
a similar pattern of distribution to TMEM119 protein expression 
(Fig. 3, H and K to M). WNT5A has emerged as an important 
molecule involved in cancer progression, and recent studies have 

demonstrated that WNT5A regulates cancer cell invasion, metasta-
sis, metabolism, and inflammation (50). Hence, our results suggest 
a potential functional signaling network of TMEM119+ FIBs with 
KRT14+ tumor cells driven through paracrine noncanonical WNT 
signaling.

To identify BCC-specific regulons that may be driving condition-
specific gene expression changes in the different FIB populations, 
including TMEM119+ FIBs, we performed GRN analysis with 
pySCENIC and identified significantly active regulons that were specific 
to each FIB/FIB-like cluster in BCCs but not in PTS (Fig. 3N). The 
top five regulons active in TMEM119+ FIBs included ATF6BReg(+), 
ETV1Reg(+), STAT1Reg(+), STAT2Reg(+), and THAP11Reg(+) 
(Fig. 3O). Our single-cell GRN analysis suggests that there are spe-
cific regulons that are active in FIB and FIB-like cells, and they dif-
fer significantly in activity and regulation of specific targets between 
BCC and PTS. Furthermore, we found that the STAT1Reg(+) regu-
lon may be involved in the upstream regulation of the noncanon-
ical WNT ligand WNT5A (Fig. 3O).

Our analysis in stroma identified a large degree of cellular FIB 
and FIB-like heterogeneity in human BCC and PTS at gene expres-
sion and regulon levels. To determine whether these cells exist on a 
continuum or have distinct cellular states, we calculated the cellular 
entropy (, energy associated with cellular transitions) of BCC and 
PTS FIB/FIB-like cells using cellular entropy estimator (CEE) (51) 
and visualized their individual CEE scores on three-dimensional 
Waddington energy landscapes (Fig. 4, A and B). Our results indi-
cated that BCC FIB populations have lower overall entropy than those 
of PTS and that TMEM119+ FIBs show the most stability (Fig. 4C), 
suggesting that FIB I to III may display higher likelihoods of transi-
tion to those FIBs that are most juxtaposed to BCC tumor nests 
(FIB IV). We followed up our analysis with unbiased RNA dynamics–
PAGA analyses (40, 52). These complimentary approaches revealed 
two distinct initial/root states with distinct associated developmen-
tal trajectories between BCC and PTS. Focusing on FIBs cells only, 
PTS FIBs bifurcated toward WNT5A+ or ASPN+ termini from a 
common CEMIP+ FIB origin (Fig. 4, D and E). In sharp contrast, 
BCC FIBs followed a unilateral trajectory, emanating mainly from 
ASPN+ FIBs and culminating in TMEM119+ FIBs (Fig. 4, F and G). 
These observations suggest that a “rewiring” of the tumor stroma 
may take place to fuel FIBs toward a TMEM119+/WNT5A+ state to 
support tumor growth.

To identify candidate TFs involved in the acquisition of a 
TMEM119+/WNT5A+ state, we extracted FIBs represented in this 
trajectory, tree-aligned them in pseudotime with Monocle2 (53), and 
performed scEpath analysis (54) to identify significant, pseudotime- 
dependent TFs ( = 0.05). We identified a total of 69 pseudotime- 
dependent differentially expressed TFs in PTS (​​ → V ​​PTS, Trajectory 1) and 
225 TFs in BCC (​​ → V ​​BCC, Trajectory 1) along trajectory 1 (Fig. 4, H and I). 
We compared and contrasted TFs from both trajectories by parti-
tioning TFs into groups displaying average TF dynamics, which led 
to the identification of several genes uniquely present in the BCC 
trajectory (Fig. 4J). Of interest, STAT1, and to a lesser extent TBX15 
and ATF7, demonstrated pseudo-dependent expression late in the 
trajectory in BCC compared to PTS toward TMEM119+ FIBs. Other 
TFs displayed early pseudo-dependent trajectories and were shut 
down in TMEM119+ FIBs, such as FOSB in BCC and NFKB1 in PTS 
(Fig. 4J). To gain a broader view of these TFs and identify major 
pathways in each trajectory compartment, we performed Gene 
Ontology (GO) analysis on the pseudotime-dependent TFs (Fig. 4K). 
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Fig. 4. RNA dynamics analyses reveal differential stromal developmental trajectories in human BCC. (A and B) Three-dimensional Waddington energy (i.e., entropy) 
landscape of human PTS and BCC. Blue, low entropy; blue, high entropy. (C) Quantification of cellular energy. Color of circles corresponds to distinct FIB/FIB-like clusters. 
Dashed lines connect FIB/FIB-like clusters and are color-coded on the basis of type of condition (i.e., PTS versus BCC). (D to G) Modeling of initial states in FIB/FIB-like cells 
suggests distinct developmental trajectories in PTS and BCC stroma. Arrows representing direction of cells’ flow of PAGA-velocity graph were projected as vector field on 
a two-dimensional embedding. In PTS, bidirectional path of FIBs is represented by trajectory 1 (​​ → V ​​PTS, Trajectory 1) and 2 (​​ → V ​​PTS, Trajectory 2). In BCC, unidirectional path of FIBs 
is represented by trajectory 1 (​​ → V ​​BCC, Trajectory 1). (H and I) Rolling-wave plots identify pseudo-dependent TFs overexpressed in PTS (H) and BCC (I) along developmental 
trajectory 1 and grouped depending on their dynamics (k = 3 in PTS; k = 4 in BCC). Pseudotime levels are based on normalized counts. Blue, down-regulated TFs; red, 
up-regulated TFs. (J) Comparison of significant pseudo-dependent TFs overexpressed in PTS and BCC developmental trajectories in specific groups. TF dynamics are 
color-coded on the basis of condition. (K) Significant pathway ontologies associated with PTS and BCC FIB developmental trajectory 1 (Padj < 0.05). Specific pathway 
ontologies in BCC are color-coded on the basis of significance. Adjusted P value scale shown on the right is based on a rainbow scale. Purple, low significance; red, high 
significance. (L) TGF-, inflammation, and noncanonical WNT pathway scores based on normalized counts overlaid on two-dimensional embedding with RNA velocity 
streams reveal specific pathway programs associated with PTS and BCC stromal developmental trajectory 1. Yellow, low score; black, high score.
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Among these, we found pathways related to transforming growth 
factor– (TGF-) and inflammation to be significantly expressed. 
We overlaid these GO terms as a GO biomarker score onto two- 
dimensional embedding to determine whether their expression was 
closely associated with the rewiring of tumor stroma and overlaid 
an RNA velocity stream to visualize and match the movement of the 
cells with their corresponding GOs (Fig. 4L). ASPN+ FIBs appear to 
go through a TGF-+ inflammation state in BCC, but not PTS, be-
fore reaching a final reactive stroma status composed of ncWNT 
signaling–active FIBs—a region high in WNT5A ligand. These re-
sults suggest that ASPN+ FIBs are responding to an inflamed micro-
environment in BCC and that rewiring of the stroma could arise 
from inflammatory signals, possibly due to cross-talk with immune 
cells that have invaded the dermis during BCC progression.

Inflammatory signaling pathways are active in BCC stroma
How FIB state changes and BCC tumor growth influence each other 
is unclear. To identify signaling differences between the BCC and 
PTS microenvironments, we probed the human BCC FIB-epithelial 
interactome by modeling single cell-cell interactions among KRT14+ 
epithelial/tumor and FIB/FIB-like cells using CellChat (55). We iden-
tified 25 significant signaling pathways active in the stroma-epithelial 
axis (Fig. 5A). Although most pathways showed signaling activity in 
both PTS and BCC, GRN (Progranulin), PSAP (Prosaposin), TGF-, 
and WNT pathways were inactive in BCC, whereas insulin-like growth 
factor (IGF), melanocyte release inhibiting factor (MIF), NT (Neuro-
trophin), PDGF, tumor necrosis factor (TNF), and ncWNT pathways 
were inactive in PTS (Fig. 5, A and B). The pathways were subdivided 
into functional signaling relationships between epithelial-derived cells 
and FIBs, which resulted in four clusters that show similar activities 
(Fig. 5C). We then identified differentially regulated signaling path-
way ligands and receptors between BCC and PTS by comparing 
the communication probabilities from cell-cell groups. This ap-
proach identified ncWNT as a major signaling pathway highly ac-
tive in BCC compared to PTS (Fig. 5, D and E). The expression of 
WNT5A ligand in PTS FIBs was not significant compared to BCC—
with no relative contribution from any ligand-receptor pairs. In sharp 
contrast, ncWNT signaling was highly active in BCC and mainly 
driven by WNT5A ligand to Frizzled receptors FZD6, FZD7, and 
FZD10, the latter representing autocrine communication between 
FIBs (Fig. 5, D and E). A closer look at the probability of cross-talk 
of WNT5A to its receptor shows significant cross-talk to FZD6 in all 
the BAS clusters, whereas FZD7 cross-talk occurs in a subset of BAS 
clusters (Fig. 5E). In congruence with these observations, we detect 
significant increases in WNT5A expression and a subset of FZD re-
ceptors in vismodegib-resistant bulk-level RNA-seq data (fig. S9A), 
and our single-cell expression data show WNT5A largely originating 
from FIB and immune cells and likely interacting with FZD6 and 
FZD7 in the BAS clusters, differentiating epithelia, endothelium, 
and lymphatic cells (fig. S9, B and C). We also detect tumor-specific 
in situ expression of FZD7 adjacent to WNT5A+ FIBs (fig. S10), sug-
gesting that the cells are in the right location to interact.

WNT5A is a known driver of proinflammatory responses, in-
cluding CXCL, interferon-I (IFN-I), interleukin 6 (IL6), and TNF 
(56, 57). CXCL signaling is contained within FIBs in PTS but ex-
pands to the BAS cell clusters in BCC (Fig. 5F); IL6 signaling shows 
greater cross-talk in BCC compared to PTS (Fig. 5G); IFN-I signal-
ing is contained within epithelia in PTS but expands to FIBs in 
BCC (Fig.  5H); and TNF signaling is exclusive to BCC (Fig.  5I). 

TNF auto- and paracrine signaling originates from cycling epitheli-
al cells in BCC, signals to other epithelial cells and FIBs, and is an 
activator of WNT5A (58). Together, these results suggest that acute 
inflammatory signals may be linked to WNT5A activation, which in 
turn may maintain a proinflammatory state and act as a major in-
flammatory and stress signaling hub center in BCC stroma.

Heat shock proteins regulate BCC growth
Our BCC FIB-epithelial interactome modeling revealed an inflam-
matory and stress signaling hub in BCC stroma. To determine how 
a proinflammatory response from FIBs may influence tumor growth 
and progression, we looked for relevant differentially expressed genes 
in BCC versus PTS epithelia and found HSP genes up-regulated in 
BCC compared to PTS epithelia (Fig. 6A). Their expression levels 
are largely not significant in bulk-level RNA-seq of vismodegib- 
resistant BCC compared to normal skin (fig. S11, A and B), reinforc-
ing the advantage of gene expression at single-cell resolution. HSPs 
are an adaptive response to cellular stress and inflammation and 
have been strongly implicated in cancer development and progres-
sion (59). We identified eight HSP70-coding family genes that were 
significantly up-regulated in BCC compared to PTS epithelial cells, 
including HSP12A2, HSPA13, HSPA1A, HSPA1B, HSPA1L, HSPA6, 
HSPA8, and HSPA9 (Fig. 6A and fig. S11, A and B). We then spa-
tially resolved the expression of HSP70 in situ using protein immu-
nostaining coupled with high-resolution confocal imaging. We found 
that KRT14+ BCC nests expressed cytoplasmic HSP70, with seldom 
interfollicular epithelial epithelial cells and nonepithelial cells ex-
pressing the protein (Fig. 6B and fig. S11, C and D). A primary 
infiltrative BCC with perineural invasion demonstrated nuclear ex-
pression of HSP70 (fig. S11D).

To determine whether HSPs are important for BCC cell growth, 
we used the HSP70 inhibitor Ver155008 on the vismodegib-resistant 
murine BCC cell line ASZ001 (12, 60) and observed decreased 
protein expression of Hsp70 and a dosage-dependent inhibition of 
ASZ001 cell proliferation (Fig. 6, C and D). Two other HSP family 
inhibitors, KNK437 (pan-HSP inhibitor that includes HSP70) and 
ganetespib (HSP90 inhibitor), also showed a dosage-dependent 
inhibition of ASZ001 cell proliferation (fig. S11, E and F). HSP90 
genes are also significantly enriched in our single-cell data, but not 
in bulk-level RNA-seq (fig. S10, A and B), suggesting that some 
BCC tumor cells may use HSPs as a general mechanism to promote 
tumor cell growth. Ver155008 treatment resulted in a decrease 
in Gli1 expression, a downstream HH target gene, at both RNA and 
protein levels (Fig. 6, E and F), suggesting that HSP70 may be a 
novel HH pathway regulator. HSP70 inhibition affected both prolif-
eration and survival of the vismodegib-resistant BCC cells as deter-
mined by Mki67 and Casp3 staining quantification (Fig. 6, G and H). 
Last, we aimed to determine the role of HSPs on BCCs in vivo using 
the BCC mouse model Gli1-CreERT2;Ptch1fl/fl (61). We induced 
Gli1-CreERT2;Ptch1fl/fl mice with tamoxifen for three consecutive days 
to generate BCC microtumors, followed by intraperitoneal injection 
with vehicle control or Ver155008 daily for 7 days (Fig. 6I). Histo-
logical staining of the dorsal skin of Ver155008-treated mice showed 
significant reduction in microtumor area compared to vehicle-
treated controls (Fig. 6J). Our in vitro and in vivo studies help to 
reconcile our scRNA-seq analysis and identify HSPs, particularly 
HSP70 family members, as potential new regulators of BCC tumor 
growth and HH signaling and may offer a novel therapeutic venue 
for the treatment of BCCs.
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Fig. 5. Epithelial-FIB communication modules in human BCC. (A) Heatmap of active signaling pathways in epithelial-FIB cross-talk from human PTS and BCC samples. Blue, 
active signaling pathway; red, inactive signaling pathway. (B) Ranking of active signaling pathways in PTS and BCC based on their overall information flow within the inferred 
cellular networks. Signaling pathways are colored according to condition where they are enriched, whereas those in black are enriched equally across conditions. (C) Joint 
clustering of active signaling pathways from PTS and BCC into a shared two-dimensional manifold according to their functional signaling relationship similarity (k = 4). 
Circles represent PTS signaling pathways; squares represent BCC signaling pathways. Each shape represents the communication network of one signaling pathway. A mag-
nified view of each cluster with labeled active signaling pathways is shown on the right. (D) Circle plots show ncWNT signaling in sending and receiving cells. Nodes are colored 
similarly as senders. Size of cell clusters is representative of the number of active cells in signaling network. ncWNT is active in BCC but not in PTS. Cell types participating in 
signaling pathway network are labeled. Bar graphs show relative contribution of specific ligand-receptor pairs for ncWNT signaling in BCC. WNT5A ligand is the only active 
ligand in the ncWNT signaling network. (E) Dot plots show cross-talk probability between FIBs (senders) and epithelial cells (receivers) via ncWNT signaling. Blue, low cross-talk 
probability; red, high cross-talk probability. Size of circle represents the percentage of cells with high cross-talk probability. Ligands are colored aqua blue; receptors are colored 
magenta. (F to I) Circle plots and network centrality analysis for CXCL (F), IL6 (G), IFN-I (H), and TNF (I) signaling. Only cell clusters participating in signaling network are labeled. 
Inactive pathway indicates that the pathway is not active. Heatmaps represent network centrality. White, low importance; green, high importance.
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DISCUSSION
Functional heterogeneity in human BCC has largely been explored 
using bulk-level genomic and transcriptomic studies where it was 
difficult to separate out distinct cell types and clonality within tumors 
and their unique contributions to BCC pathogenesis (28, 62, 63). 
Using single-cell technologies, we identified the milieu of cell types 
and states that make up BCC and found that bulk-level studies can 
provide complementary datasets but often lead to identification of 
significant genes that are nonspecific and broadly expressed across 
different cell types due to the heterogeneity of normal and cancer-
ous cells in biopsy samples (figs. S6 and S7). When analyzed at the 
single-cell level, we found additional BCC biomarkers that better 

define BCCs and label tumors from specific donors that further 
highlight the heterogeneity of this disease. We also identified spatial 
heterogeneity in FIBs that led to an oncogenic trajectory favoring 
TMEM119+/WNT5A+ reactive stroma and inflammatory signals that 
create a burst of cell-cell cross-talk between FIBs and BCC epithelial 
cell clusters. Last, our results suggest that BCC tumors may respond 
to inflammatory signals from the stroma by expressing HSPs and 
that HSP inhibitors may serve as an effective therapeutic strategy to 
suppress HH signaling and tumor growth.

Our efforts to distinguish between malignant and normal cells 
between and within biopsy samples to create a more nuanced BCC 
gene signature highlighted the importance of integration benchmarking. 

Fig. 6. Heat shock proteins are prominent regulators of BCC. (A) Heatmap of pseudo-bulk HSP70-coding gene expression in human PTS versus BCC epithelial cells. 
(B) In situ expression of HSP70 protein shows distinct spatial localization in human primary clinical tumors. Inset shows magnified area in BCC nest. White arrows point at 
HSP70+ epithelial cells in BCC nest. Scale bars, 100 m. (C) Western blot and quantification of RFI (Relative Fluorescence Intensity) against Hsp70 in ASZ001 murine cells 
treated with HSP inhibitor Ver155008. -Actin served as loading control. Mann-Whitney test (**P = 0.007). (D to F) HSP inhibitor Ver155008 negatively affects growth of 
ASZ001 murine cells (D) (two-way ANOVA test; ****P < 0.0001) and down-regulates Gli1 mRNA (E) and protein expression (F) in vitro in a concentration-dependent manner 
(unpaired Student’s two-tailed t test with Welch’s correction; *P < 0.05 and ***P < 0.001). Tubb served as loading control. Experiments were repeated at least three times, 
and data are represented as the means ± SEM. (G and H) HSP inhibitor Ver155008 significantly induces apoptosis via Casp3 (H) and negatively affects proliferation (G) via 
Mki67 in ASZ001 murine cells in vitro in a concentration-dependent manner. Bar graphs represent the mean of nine replicate wells ± SEM. Unpaired Student’s two-tailed 
t test (*P < 0.05 and **P < 0.01). (I) Schematic representation of microtumor development and HSP inhibitor treatment in Gli1-CreERT2;Ptch1fl/fl mice. Ver155008- and vehicle-
treated dorsal skin tissues were collected and assessed for microtumors. (J) H&E of Ver155008- and vehicle-treated Gli1-CreERT2;Ptch1fl/fl mouse dorsal skin tissues. Scale bars, 
100 m. Quantification of microtumor surface area in vehicle- and Ver155008-treated Gli1-CreERT2;Ptch1fl/fl mouse dorsal skin tissues. Bars represent average individual micro-
tumor area ± SEM. Surface area decreased in a concentration-dependent manner compared to vehicle-treated control mice. Unpaired Student’s two-tailed t test (*P < 0.05).
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Although no algorithm is unflawed (64), we demonstrated that use 
of benchmark integration using several different methods increases 
user confidence in clustering of the underlying data. BCCs are highly 
heterogeneous and have the highest mutation frequency out of all 
cancers (62), making integration of multiple samples difficult. All 
five clustering algorithms we used (Seurat, SCTransform, LIGER, 
Harmony, and scMC) showed remarkable efficiency in correctly 
clustering nonepithelial cell types with low mutational burden 
(Fig. 1, C to E, and fig. S4), but epithelial cells with higher mutational 
burden showed significant batch effects in clustering. In our experi-
ence, Seurat, SCTransform, LIGER, and Harmony could not distin-
guish between normal and malignant cells, often separating donor 
samples from each other regardless of origin. However, scMC—and 
pySCENIC via regulon activity (fig. S5, D and E) (34)—clustered 
normal and malignant epithelial cells distinctly while maintaining 
cohesion within each condition (Fig. 1D), likely due to its ability to 
learn a shared reduced dimensional embedding of cells to retain 
biological variation while removing technical variation associated 
with each sample (26).

Despite the difficulty in integrating epithelial cells, stromal cell 
states displayed remarkable cohesion between PTS and BCC sam-
ples. Four FIB states and two FIB-like states were found in both nor-
mal and malignant samples, suggesting that CAFs may be an active 
state of normal tissue-resident FIBs and that cancer-specific stro-
mal states do not occur in BCC. However, there is a large degree of 
active remodeling that occurs in BCC stroma, likely driven mainly 
by collagen and metalloproteinase gene products (Fig. 3I). Further-
more, joined RNA velocity–PAGA analysis suggests that highly 
inflamed stroma expressing TGF- and IL genes, classic activators 
of CAFs (65), give rise to reactive stroma highlighted by WNT5A+ 
FIBs (Fig. 4L). This cancer-specific rewiring of the stroma goes from 
an ASPN+ state (FIB I) to a CLIC2+ (FIB II) and CEMIP+ (FIB III) 
state found sparingly around KRT14+ tumor nests, before reaching 
the TMEM119+/WNT5A+ state (FIB IV) that surrounds KRT14+ 
tumor nests at a relatively high density compared to the other three 
FIB states (Fig. 3, E to H and M). TGFB1 and general inflammatory 
genes are expressed throughout the first three FIB populations and 
may provide a mechanism of activation to the WNT5A+ state, while 
WNT5A may reinforce this signaling as it is a known driver of 
proinflammatory signals to induce an immune response (56, 57). 
Stromal rewiring driven by inflammation and CAFs are promising 
therapeutic targets (65), and our GRN analysis suggests that the 
JAK-STAT pathway may regulate WNT5A expression (Fig. 5, N 
and O), opening up the possibility for JAK-STAT inhibitors in 
treating BCC patients (66).

How CAFs and general FIB inflammation affect BCC tumor 
growth is unclear. Our CellChat inferred signaling results suggest a 
burst of signaling between FIBs and BAS clusters involving CXCL, 
IL6, IFN-1, and TNF pathways (Fig. 5, F to I). WNT5A is a known 
driver of each of these pathways (56, 57), and TGF-1 and inflam-
matory signals like IL6 and TNF are known activators of CAFs and 
WNT5A in particular (65). With this influx of inflammatory signals, 
BCCs may respond by up-regulating HSPs as a protection mechanism 
(59), although this mechanism may be indirect given that WNT5A 
treatment in combination with HH ligand does not significantly af-
fect HSP70 protein levels (fig. 11G). HSPs are known to have signif-
icant roles in DNA repair mechanisms to maintain genome stability 
and integrity, a process that is heavily intertwined with inflamma-
tion (67). Cancers live on a “double-edged sword” where they need 

enough genomic instability to thrive, but not too much instability to 
adversely alter successful replication (68). Cancer-specific HSP ex-
pression may help maintain the genomic instability balance to pro-
mote tumor growth, which may explain our results that show that 
HSP inhibitors are effective at suppressing BCC growth. Although 
HSP inhibitors, especially HSP90 inhibitors, have general cytotox-
icity issues as all tissues require continuous molecular chaperone 
activity to ensure proper folding of essential proteins (69), HSP70 
inhibitors may provide a useful alternative route to therapy as 
Hsp70 knockout mice are healthy (70), the protein is dispensable 
for growth of nontransformed cells (71), and HSP70 inhibition 
shows distinct effects compared to HSP90 inhibitors (72). Our data 
suggest that short-term HSP70 inhibitor treatment may be better 
tolerated systemically in the Gli1-CreERT2;Ptch1fl/fl murine model 
(Fig. 6J), and BCCs have the advantage of topical treatment that 
may allow better toleration to toxic compounds (73). In addition, 
HSP inhibition may be more effective with combinatorial treat-
ment, a likely future direction, as evidenced by ongoing clinical trials 
in several cancer types (74).

Overall, our findings illustrate the heterogeneity and dynamic 
nature of the BCC cellular ecosystem. The signaling relationships 
between BCC epithelial cells and FIBs revealed a WNT5A-mediated 
inflammatory signature that led to the discovery of an HSP-specific 
protective mechanism that is necessary to maintain tumor growth. 
Further characterizing these types of responses may provide addi-
tional mechanistic insight into the complicated cross-talk between 
the tumor and its microenvironment and provide additional avenues 
for therapeutic suppression of skin cancer.

MATERIALS AND METHODS
Ethics statements
Human clinical studies were approved by the Ethics Committee and 
Institutional Review Board of Stanford University Hospital (Palo Alto, 
California, USA). We certify that all applicable institutional regula-
tions concerning the ethical use of information and samples from 
human volunteers were strictly followed in this work. Each subject 
provided written informed consent. All animal studies were per-
formed in strict adherence to the Institutional Animal Care and 
Use Committee (IACUC) guidelines of the University of California, 
Irvine (AUP-21-006).

Human samples
A total of six surgically discarded human tissues (BCC, n = 4; PTS, 
n = 2) were obtained from excisional biopsy specimens at Stanford 
University Hospital (Palo Alto, California, USA). BCCs were clas-
sified into superficial, nodular, and infiltrative BCC (ID: BCC-I); 
superficial and nodular BCC (ID: BCC-II); unknown/“hybrid” (ID: 
BCC-III); and infiltrative with perineural invasion BCC (ID: BCC-IV) 
subtypes by a board-certified dermatopathologist. All data collection 
and anonymous analysis were approved by the Institutional Review 
Board of Stanford University Hospital.

Mice
The following mice were used in this study: Gli1-CreERT2 (JAX #007913) 
and Ptch1fl/fl (JAX #012457) (61). Gli1-CreERT2;Ptch1fl/fl mice were 
genotyped by polymerase chain reaction (PCR). Briefly, genomic 
DNA was collected from mouse toes and lysed in DirectPCR lysis 
reagent as per the manufacturer’s protocol (Fisher Scientific). 
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Genomic DNA was amplified using Taq polymerase (Apex), and 
products were resolved on a 2% agarose gel (Apex). The following 
primers were used: CreER, 3′-CATGCTTCATCGTCGGTCC-5′ 
(forward) and 3′-GATCATCAGCTACACCAGAG-5′ (reverse); 
Ptch1, 3′-AGTGCGTGACACAGATCAGC-5′ (forward) and 
3′-CCCAATTACCCATCCTTCCT-5′ (reverse).

Microtumor induction and drug treatment
Microtumors were induced in the skin of 6-week-old Gli1- 
CreERT2;Ptch1fl/fl mice (of indiscriminate gender), by administering 
100 l of tamoxifen (10 mg/ml; Sigma-Aldrich) intraperitoneally 
for three consecutive days. Five weeks later, mice were treated with 
either dimethyl sulfoxide (DMSO; vehicle) or Ver155008 (16 mg/kg) 
intraperitoneally for seven consecutive days. The final volume of all 
injections was 100 l. At the end of treatment, mice were sacrificed, 
and dorsal skin were collected, fixed in 4% paraformaldehyde, im-
mersed in 30% sucrose, and frozen in Tissue-Tek OCT (Optimal 
Cutting Temperature) compound (Sakura, Japan). Samples were 
cryosectioned at 14 m. Unless otherwise noted, at least five mice 
were used for each treatment condition.

Microtumor assessment
Frozen mouse dorsal skin tissues were cryosectioned at 14 m and 
stained with hematoxylin and eosin (H&E) (Thermo Fisher Scien-
tific). Images were taken at ×200 magnification on an AmScope mi-
croscope with an AmScope MU500B digital camera. Microtumor 
size was assessed as the sum of total microtumor area and as average 
size per microtumor and quantified using FIJI software (75). Statisti-
cal analysis was performed using GraphPad Prism, and application 
of Student’s two-tailed t test was used to dictate statistical signifi-
cance (*P < 0.05).

Histology and immunohistochemistry
Discarded human tumor skin tissues were processed at the Depart-
ment of Pathology at Stanford University and sectioned at a thick-
ness of 5 m. Immunostaining was performed on paraffin sections. 
Heat-based antigen retrieval was performed when necessary. Tissue 
sections were blocked in either 3% bovine serum albumin (BSA) 
or 3% donkey serum. The following primary antibodies were used: 
rabbit anti-CLIC2 (Abcam; 1:50), rabbit anti-CEMIP (Proteintech; 
1:100), rabbit anti-TMEM119 (Proteintech; 1:50), chicken anti- 
KRT14 (BioLegend; 1:1000), mouse anti-LHX2 (Santa Cruz Biotech-
nology; 1:50), rabbit anti-ACTA2 (Abcam; 1:250), mouse anti-KRT15 
(Santa Cruz Biotechnology; 1:50), rabbit anti-HSP70 (Proteintech; 
1:100), rabbit anti-CASP3 (R&D Systems; 1:1000), and rabbit anti- 
MKI67 (Abcam; 1:1000). Secondary chicken (Abcam), rabbit (Life 
Technologies), and mouse (Life Technologies) were used at a 
concentration of 1:1000. Sections were counterstained with 4′,6- 
diamidino-2-phenylindole (DAPI) (Vector Laboratories). Images 
were acquired on an Olympus FV3000 confocal laser scanning 
microscope.
Histology and hematoxylin and eosin staining
OCT-embedded skin tissues of DMSO vehicle control or 
Ver155008-treated mice were cryosectioned at a thickness of 10 m 
using the CryoStar NX50 cryostat (Thermo Fisher Scientific). Cryo-
sections were incubated at 55°C for 10 min, washed in phosphate- 
buffered saline (PBS) before performing a standardized H&E staining 
protocol using Gill’s 3 formulation Hematoxylin (Thermo Fisher 
Scientific) and Eosin Y at pH 4.7 (Thermo Fisher Scientific) for 

counterstaining and clearing of the stain with xylene-based solutions, 
and mounted with a toluene-based mounting medium (Permount, 
Fisher Scientific). Images were acquired with the 10× objective on 
an AmScope bright-field microscope with a MU500B digital camera.
RNA in situ hybridization
Frozen tissue sections were processed for RNA in situ hybridization 
using the RNAscope Multiplex Fluorescent Detection Kit v2 [323100, 
Advanced Cell Diagnostics (ACD)] as per the manufacturer’s pro-
tocol. The following ACD probes were used in this study: Human 
(Hs): ASPN (402731-C2), KRT14 (813871), WNT5A (316791-C2), 
and FZD7 (414061-C4). Slides were counterstained with DAPI (Vec-
tor Laboratories). Images were acquired on an Olympus FV3000 
confocal laser scanning microscope.
Cell culture and growth assay
Vismodegib-resistant murine BCC ASZ001 cells were grown in 
154CF medium containing chelated 2% fetal bovine serum (FBS; 
Life Technologies), 1% penicillin-streptomycin (Life Technologies), 
and 0.07 mM CaCl2 (Life Technologies). NIH 3T3 cells were grown 
in Dulbecco’s modified Eagle’s medium (Life Technologies) contain-
ing 10% FBS (Life Technologies) and 1% penicillin-streptomycin 
(Life Technologies) and were incubated in a water-jacketed incuba-
tor at 37°C with 5% CO2 output. Cells were seeded at a density of 
1000 cells per well into 96-well flat-bottom plates. After 24 hours, 
cells were treated with DMSO (vehicle control) or varying concen-
trations of Ver155008 (MedChemExpress), KNK437 (Thermo Fisher 
Scientific), or ganetespib (Thermo Fisher Scientific) consecutively 
for 2, 4, and 6 days. Growth assay was performed with MTT 3-(4,5-
(dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) (Sigma-
Aldrich) as per the manufacturer’s protocol. Proliferation (MKI67) 
and apoptosis (CASP3) were determined by immunostaining fixed 
cells at the indicated time points. Unless otherwise noted, experiments 
were repeated at least three times, and data are represented as the 
mean of nine replicate wells ± SEM. Statistical analysis was performed 
using GraphPad Prism, and application of Student’s two-tailed t test 
and two-way analysis of variance (ANOVA) test was used to dictate sig-
nificance (*P < 0.05, **P < 0.01, and ***P < 0.001; n.s., not significant).
Cell culture and treatments
NIH 3T3 cells were seeded to confluence, serum-starved, or serum- 
starved in 1:100 SHH-N conditioned medium with DMSO (vehicle 
control) or Ver155008 (MedChemExpress) at various concentrations 
for 24 hours. RNA was isolated using the Direct-zol RNA MiniPrep 
Plus (ZYMO Research). Quantitative reverse transcription PCR was 
performed using the iTaq Univer SYBR Green 1-Step Kit (Bio-Rad) 
on the StepOnePlus Real-time PCR System (Applied Biosystems). 
The fold change in mRNA expression of the HH target gene Gli1 
was measured using Ct analysis with Gapdh as an internal 
control gene. The following primers were used: Gli1, 5′-GCAG-
GTGTGAGGCCAGGTAGTGACGATG-3′ (forward) and 5′- 
CGCGGGCAGCACTGAGGACTTGTC-3′ (reverse); Gapdh, 
5′-AATGAATACGGCTACAGCAACAGGGTG-3′ (forward) and 5′- 
AATTGTGAGGGAGATGCTCAGTGTTGGG (reverse). Vismodegib- 
resistant murine BCC ASZ001 cells were grown in 154CF/PRF 
(Thermo Fisher Scientific) medium containing 2% FBS (Life 
Technologies/GIBCO; 10437028), both heat-inactivated and chelated, 
0.07 mM CaCl2, and 1% penicillin-streptomycin (Life Technologies/
GIBCO) until confluent in six-well plates. Cells were then treated 
with either SHH-N conditioned medium or SHH-N conditioned 
medium in combination with Wnt5a recombinant protein (200 ng/
ml; R&D Systems) for 24 hours or with single treatment of vehicle 
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control (DMSO) or Ver155008 (25 M) inhibitor for 24 hours. Un-
less otherwise noted, experiments were repeated at least three times, 
and data are represented as the mean of triplicates ± SEM. Statistical 
analysis was performed using GraphPad Prism, and application of 
Student’s two-tailed t test was used to dictate statistical significance 
(*P < 0.05, **P < 0.01, and ***P < 0.001).
Protein immunoblotting
Protein extraction was performed in control- and 24-hour–treated 
vismodegib-resistant murine BCC ASZ001 cells grown in six-well 
plates using 250 l of 2× SDS loading buffer (100 mM tris-HCl, 1 M 
dithiothreitol, 4% SDS, and 0.2% bromophenol blue) and by shak-
ing for 30 min at 250 rpm at 4°C. Denatured proteins (10 l) were 
ran in a Mini-PROTEAN TGX precasted SDS-PAGE gel (Bio-Rad) 
with 4 to 20% polyacrylamide gradient and bis-acrylamide cross-linker 
and blotted onto a nitrocellulose membrane (0.45 m; Prometheus). 
Membranes were probed with primary antibodies [1:1000 in 5% 
skimmed milk in TBST (tris-buffered saline and Tween 20)] over-
night at 4°C. The following primary antibodies were used: rabbit anti-
Hsp70 (Proteintech), mouse anti–-actin (BioTechne), and mouse 
-tubulin [E7, DSHB (Developmental Studies Hybridoma Bank)]. 
Fluorescence bands were visualized using an Odyssey CLx Li-Cor 
imaging system by incubating for 1 hour at room temperature with 
conjugated secondary antibodies. The following secondary conjugated 
antibodies were used: donkey anti-rabbit Alexa Fluor 680 (1:5000 in 
5% skimmed milk in TBST; The Jackson Laboratory) or donkey anti-
mouse Alexa Fluor 790 (1:5000 in 5% skimmed milk in TBST; The 
Jackson Laboratory). The relative fluorescence intensity of proteins 
of interest was quantified using FIJI software (75) and normalized to 
a housekeeping protein (-actin or -tubulin). Statistical analysis was 
performed using GraphPad Prism, and application of Mann-Whitney 
test was used to dictate statistical significance (*P < 0.05 and **P < 0.01).
Cell isolation and 3′-droplet–enabled scRNA-seq
Adjacent peritumor and tumor skin specimens were surgically 
excised from human donors at Stanford University Hospital (Palo 
Alto, CA, USA) and immediately shipped to University of California, 
Irvine (Irvine, CA, USA). Within 24 hours, excised tissues were 
minced and incubated in a dispase II (Sigma-Aldrich) and collagen
ase IV (Sigma-Aldrich) solution overnight at 4°C. Cells were incu-
bated in 0.25% trypsin-EDTA for 15 min at 37°C and quenched with 
chelated FBS. Cells were passed through a 40-m filter and centrifuged 
at 1500 rpm for 5 min, and the pellet was resuspended in keratinocyte 
serum-free medium supplemented with Epidermal Growth Factor 
1-53 and Bovine Pituitary Extract (Life Technologies; 17005042). 
After isolation, cells were resuspended in PBS free of Ca2

+ and Mg2
+ 

and 1% BSA and stained with SYTOX Blue Dead Cell Stain (Thermo 
Fisher Scientific). Samples were bulk-sorted at 4°C on a BD FACSAria 
Fusion using a 100-m nozzle (20 PSI) at a flow rate of 2.0 with a 
maximum threshold of 3000 events per second. After exclusion of 
debris and singlet/doublet discrimination, cells were gated on via-
bility. Live cells were resuspended in 0.04% UltraPure BSA (Sigma- 
Aldrich) and counted using the automated cell counter Countess 
(Thermo Fisher Scientific). Cells were captured using Chromium 
(10X Genomics). GEM (Gel Bead-In EMulsions) generation, barcod-
ing, post–GEM-RT (reverse transcription) cleanup, complementary 
DNA (cDNA) amplification, and cDNA library construction were 
performed using Single-Cell 3′ v2 chemistry (10X Genomics). 
cDNA libraries were sequenced on an Illumina HiSeq4000 platform 
(Illumina) [one lane, 100 PE (Paired End)]. Cell counting, suspen-
sion, GEM generation, barcoding, post–GEM-RT cleanup, cDNA 

amplification, library preparation, quality control, and sequencing 
were performed at the Genomics High Throughput Sequencing 
facility at the University of California, Irvine.
3′-Droplet–enabled scRNA-seq raw data processing
Transcripts were aligned to the human reference genome (GRCH38/
transcriptome) using Cell Ranger (version 2.1.0). Sequencing metrics 
for each library are as follows: (PTS-I) Sequencing metrics: ~264,949,873 
total number of reads and ~98.7% valid barcodes; mapping metrics: 
~93.1% reads mapped to genome, ~91.0% reads mapped confidently 
to genome, and ~71.1% reads mapped confidently to transcriptome; 
cell metrics: ~7164 estimated number of cells, ~92.9% fraction 
reads in cells, ~36,983 mean reads per cell, ~2382 median genes per 
cell, ~21,853 total genes detected, ~9238 median UMI (unique 
molecular identifier) counts per cell. (PTS-II) Sequencing metrics: 
~317,022,706 total number of reads and ~98.7% valid barcodes; 
mapping metrics: ~93.1% reads mapped to genome, ~91.0% reads 
mapped confidently to genome, and ~71.1% reads mapped confi-
dently to transcriptome; cell metrics: ~7164 estimated number 
of cells, ~92.9% fraction reads in cells, ~36,983 mean reads per 
cell, ~2382 median genes per cell, ~21,853 total genes detected, and 
~9238 median UMI counts per cell. (BCC-I) Sequencing metrics: 
~170,434,662 total number of reads and ~98.5% valid barcodes; 
mapping metrics: ~91.3% reads mapped to genome, ~89.0% reads 
mapped confidently to genome, and ~67.6% reads mapped confi-
dently to transcriptome; cell metrics: ~10,025 estimated number of 
cells, ~90.2% fraction reads in cells, ~17,000 mean reads per cell, 
~2484 median genes per cell, ~22,986 total genes detected, ~6618 median 
UMI counts per cell. (BCC-II) Sequencing metrics: ~128,178,058 
total number of reads and ~98.5% valid barcodes; mapping metrics: 
~92.8% reads mapped to genome, ~90.6% reads mapped confidently 
to genome, and ~70.4% reads mapped confidently to transcriptome; 
cell metrics: ~12,487 estimated number of cells, ~86.8% fraction 
reads in cells, ~10,264 mean reads per cell, ~1708 median genes per 
cell, ~22,737 total genes detected, and ~4361 median UMI counts 
per cell. (BCC-III) Sequencing metrics: ~335,812,707 total number 
of reads and ~98.3% valid barcodes; mapping metrics: ~87.5% reads 
mapped to genome, ~84.8% reads mapped confidently to genome, 
and ~65.7% reads mapped confidently to transcriptome; cell metrics: 
~7094 estimated number of cells, ~82.6% fraction reads in cells, 
~47,337 mean reads per cell, ~2315 median genes per cell, ~23,364 
total genes detected, and ~8292 median UMI counts per cell. (BCC-
IV) Sequencing metrics: ~277,281,459 total number of reads and 
~98.6% valid barcodes; mapping metrics: ~93.2% reads mapped to 
genome, ~90.6% reads mapped confidently to genome, and ~62.6% 
reads mapped confidently to transcriptome; cell metrics: ~8829 es-
timated number of cells, ~88.8% fraction reads in cells, ~31,405 mean 
reads per cell, ~1983 median genes per cell, ~23,362 total genes de-
tected, and ~5516 median UMI counts per cell.
Doublet/multiplet simulation and low-quality cell pruning
Putative doublets/multiplets were simulated with Single-Cell Re-
mover of Doublets (Scrublet) (version 0.2.1) (76) using raw count 
matrices. The number of neighbors used to construct the KNN (K 
Nearest Neighbors) classifier of observed transcriptomes and simu-
lated doublets/multiplets was set as default. The doublet/multiplet 
score threshold was adjusted manually as suggested by the developer. 
Briefly, digital matrices for putative singlets were used for low-quality 
cell pruning using a user-defined pipeline. Viable singlets were kept 
and used for downstream query and comparative analyses if and 
only if they met the following collective quality control criteria: (i) 
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350 < genes/cell < 5000; (ii) cells contained no more than 10% of 
mitochondrial gene expression; (iii) cells were not identified as out-
liers (P = 1 × 10−3) (77).
Data processing and benchmarking of  
3′-droplet–enabled scRNA-seq
Processing of individual datasets. Preprocessed digital matrices from 
individual tumor datasets were processed using Seurat (version 4.0.1). 
Seurat objects were created and log-normalized with a scale factor 
of 10,000. Variable features were identified using vst with top 2000 
features. Data were scaled, and metadata variables, including mito-
chondrial gene expression, were regressed. Principal components 
analysis was calculated using variable features identified using a com-
bination of heuristic and statistical approaches. Individual datasets 
were visualized using a two-dimensional embedding.

Benchmarking of integrated datasets. Individual datasets from 
PTS and BCC were processed for integration, downstream analyses, or 
visualization with Seurat (version 3.0.0900) (20), Single-Cell Trans-
form (version 0.3.2) (23), LIGER (version 2.0.1) (78), Harmony (ver-
sion 0.1.0) (25), or scMC (version 1.0.0) (26) as suggested by each 
developer with minor modifications to source code. Of note, cells 
from PTS scoring high for appendage-related genes (79) were ex-
cluded from integration and anchoring, as well as from downstream 
query and comparative analyses.
Statistical analyses
Statistical analysis was performed using GraphPad Prism Software 
(v5.02). Differences between groups were assessed using unpaired 
Student’s two-tailed t test, unpaired Student’s two-tailed t test with 
Welch’s correction, two-way ANOVA test, or Mann-Whitney test. 
A P value smaller than 0.05 was considered statistically significant.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abm7981

View/request a protocol for this paper from Bio-protocol.
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