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Abstract

Most people have or will experience traumatic stress at some time over the lifespan, but only a 

subset of traumatized individuals develop post-traumatic stress disorder (PTSD). Clinical research 

supports high rates of traumatic brain injury (TBI)-PTSD comorbidity and demonstrates TBI as a 

significant predictor of the development of PTSD. Biological factors impacted following brain 

injury that may contribute to increased PTSD risk are unknown. Heightened stress reactivity and 

dysregulated hypothalamic-pituitary-adrenal (HPA) axis function are common to both TBI and 

PTSD, and affect amygdalar structure and function, which is implicated in PTSD. In this review, 

we summarize a growing body of literature that shows HPA axis dysregulation, as well as 

enhanced fear and amygdalar function after TBI. We present the hypothesis that altered stress 

reactivity as a result of brain injury impacts the amygdala and defense systems to be vulnerable to 

increased fear and PTSD development from traumatic stress. Identifying biological mechanisms 

that underlie this vulnerability, such as dysregulated HPA axis function, may lead to better targeted 

treatments and preventive measures to support psychological health after TBI.
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Introduction

Stress is a multidimensional construct that is typically used to define an organism’s response 

to a threat. The stress response is highly conserved to indicate that the stress process 

successfully guides survival in many organisms. For example, soldiers exposed to combat 

stress are often confronted by true and anticipated threats to survival, including injuries such 

as traumatic brain injury (TBI). TBI or a history of TBI can affect subsequent response to 

stress that may lead to neuroendocrine abnormalities as well as neuropsychiatric 

comorbidities. In the class of trauma and stressor-related disorders, post-traumatic stress 

disorder (PTSD) is a debilitating and complex disorder that sometimes manifests following a 
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traumatic event (American Psychiatric Association 2013). TBI and PTSD are often 

comorbid although PTSD is not a requisite sequela of TBI (Molaie and Maguire 2018).

PTSD is a complex condition that develops after a traumatic stressor. In addition to stressor 

exposure, PTSD symptoms are defined in clusters that include: (1) intrusion symptoms (e.g., 

intrusive re-experiencing of the event in the form of nightmares and flashbacks, with an 

exaggerated response to trauma-related reminders and cues); (2) avoidance (e.g., avoidance 

of stimuli or thoughts associated with the trauma); (3) negative alterations in cognition and 

mood; and (4) changes in arousal or reactivity (e.g., exaggerated startle response, increased 

physiological arousal, and sustained preparedness for an instant alarm response); (American 

Psychiatric Association 2013). One study reported that approximately 20% to 30% of 

individuals exposed to traumatic stressors will develop PTSD (Breslau et al. 1991), with a 

lifetime prevalence of about 7% in the general population (Fairbank et al. 1995, Kessler et 

al. 2005). This risk is significantly greater in those that have sustained a TBI. In one study, a 

military survey of soldiers returning from Iraq reported 44% of troops who had sustained 

mild TBIs with loss of consciousness screened positive for PTSD compared to 16% who 

sustained only bodily injury (Hoge et al. 2008). Moreover, a recent study of veterans 

returning from Iraq or Afghanistan found significant main effects of mild TBI on self-report 

questionnaires measuring PTSD symptoms (Undurti et al. 2018). We still do not have a clear 

biological basis for understanding the full complexity of PTSD. The discordance between 

populations of people exposed to a traumatic event that develop PTSD and those that do not, 

suggests differences in vulnerability and/or resilience, with TBI as a strong predictor of 

PTSD development.

Research studies suggest that PTSD is related to a complex dysregulation of the 

hypothalamic-pituitary-adrenal (HPA) axis and its end product cortisol (humans) or 

corticosterone (rodents; Steudte-Schmiedgen et al. 2015). A general hypocortisolism in 

PTSD patients has been reported in most studies (Meewisse et al. 2007, Morris et al. 2012). 

Research on cortisol stress reactivity has also revealed mixed results: while some studies 

found PTSD patients to exhibit an exaggerated cortisol response to a variety of acute 

stressors (Bremner et al. 2003, Elzinga et al. 2003), others have not replicated this 

association (Simeon et al. 2007). In addition to studies suggesting HPA dysfunctions 

specifically related to PTSD, there is increasing evidence that trauma exposure per se might 

be related to altered HPA function. Specifically, traumatized individuals exhibit lower basal 

cortisol levels (Morris et al. 2012) and diminished cortisol stress reactivity to psychosocial 

stress (Elzinga et al. 2008, Lovallo et al. 2012).

In this review, we discuss neuroendocrine stress reactivity in the context of TBI and PTSD. 

In the literature, there are patterns of alterations in neuroendocrine function and stress 

reactivity in both TBI and PTSD that may have overlapping neural substrates. Here we 

introduce the HPA axis and review clinical and preclinical findings that demonstrate HPA 

alterations after TBI and in PTSD patients. We then discuss the amygdala as a candidate 

limbic structure that is sensitive to stress, TBI, and implicated in fear and PTSD. We propose 

the hypothesis that TBI may lead to a vulnerability for subsequent PTSD development by 

way of dysregulated neuroendocrine and amygdalar activity.
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Stress and the HPA axis

The HPA axis is activated in response to stressful systemic and /or psychogenic stimuli that 

potentially disrupt homeostasis. It is well established (Herman et al. 2003) that the HPA 

response to a stressor involves an immediate surge of adrenocorticotropic hormone (ACTH) 

release from the pituitary, and the subsequent secretion of corticosteroids from the adrenal 

cortex that, in turn, generate a shut-off negative feedback signal. The ACTH surge is 

initiated by hypophysiotropic neurons in the medial parvocellullar division of the 

paraventricular hypothalamic nucleus (PVN) that produce corticotropic releasing hormone 

(CRH), among other ACTH-releasing factors. The medial PVN receives synaptic 

innervation via neurons projecting from various central nervous system (CNS) structures 

(e.g., the limbic brain regions and brainstem), which evoke rapid activation of the HPA axis. 

Termination of the HPA stress response is mediated by glucocorticoid negative feedback. 

Glucocorticoid (and mineralocorticoid) receptors are abundantly expressed in the forebrain 

(i.e. hippocampus, prefrontal cortex, and amgydala; Diorio et al. 1993, Herman 1993, Akana 

et al. 2001).

Forebrain glucocorticoid receptors are essential for negative feedback regulation of the HPA 

axis, in particular glucocorticoid feedback inhibition of acute psychogenic stress responses 

(Furay et al. 2008). The rapid action of glucocorticoids is triggered by the activation of 

membrane-associated receptors and non-genomic signaling mechanisms (de Kloet 2000, 

Tasker et al. 2006, Haller et al. 2008). Evidence indicates that glucocorticoids activate 

divergent G-protein signaling pathways that act in a synapse-specific manner to suppress 

excitatory synaptic glutamate inputs and facilitate inhibitory synaptic GABA inputs to PVN 

neurons(Miklos and Kovacs 2002, Di et al. 2009). Local GABAergic PVN-projecting 

neurons can be either activated or inhibited by glutamatergic or GABAergic afferent 

innervation from upstream limbic or cortical regions that are stress responsive and regulate 

the HPA axis (e.g., ventral subiculum, medial prefrontal cortex, amygdaloid nuclei, and 

lateral septum; Cullinan et al. 2008).

Stress Reactivity in TBI

Altered activity of the HPA axis after TBI has been demonstrated both clinically (Cernak et 

al. 1999, Benvenga et al. 2000, Cohan et al. 2005, Agha et al. 2007) and experimentally 

(Shohami et al. 1995, Roe et al. 1998, Grundy et al. 2001, Gottesfeld et al. 2002, McCullers 

et al. 2002). These reports all point to baseline neuroendocrine dysfunction after TBI. A 

more recent study demonstrated heightened stress responsiveness during the first two weeks 

after mild fluid percussion injury (FPI) in rats (Griesbach et al. 2011). Another recent study, 

in male and female mice at 7–10 days after mild blast-induced TBI (mbTBI), showed that 

whereas the HPA response to stress was affected in both sexes, the profile of reactivity 

differed in the first week after injury (Russell et al. 2018). Males exposed to mbTBI had 

increased restraint-induced serum CORT but attenuated restraint-induced CRH 

immunoreactivity in the PVN, while females showed an opposite response, with attenuated 

restraint-induced CORT and enhanced restraint-induced CRH immunoreactivity in the PVN. 

The investigators concluded that mbTBI appears to disrupt limbic pathways involved in HPA 
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axis stress reactivity in males, while producing a sex-dependent link to stress dysregulation 

of pre-autonomic neurons in females (Russell et al. 2018).

In contrast to the earlier reports of baseline neuroendocrine dysfunction after TBI cited 

above, we have demonstrated that TBI, produced by mild or moderate lateral controlled 

cortical impact (CCI) in rodents, causes long-term dysregulation of the neuroendocrine 

stress response (Taylor et al. 2006, 2008). The patterns of the neuroendocrine dysregulation 

differed depending upon the severity of the CCI: the initially blunted CORT response to 

restraint stress at 7 days after mild CCI transitioned to an enhanced response at 34 and 70 

days, while at these later time points after moderate CCI the restraint-induced CORT 

response was blunted (Fig. 1, Taylor et al. 2008). We further demonstrated that the 

attenuated HPA stress response at 28 days after moderate CCI is mediated by enhanced 

glucocorticoid (i.e. dexamethasone) negative feedback control of the HPA axis (Taylor et al. 

2010). Subsequently we showed that attenuation of the stress-induced CORT response after 

moderate CCI is mediated by the inhibitory actions of both glucocorticoid receptors and 

GABA, with a loss of inhibitory neurons within brain regions with neural pathways affecting 

limbic stress-integrative pathways (Taylor et al. 2013). Our long-term findings after 

moderate CCI have been confirmed in another rat model at 2 months after diffuse TBI 

induced by midline fluid percussion injury: resting plasma CORT levels were decreased and 

the CORT response to restraint stress was blunted (Rowe et al. 2016). It was also reported in 

the same study that there were no concomitant changes in testosterone levels but that there 

was altered complexity of neuron processes in the PVN without any neuropathology or 

astrocytosis. Taken together, work from our lab and others has supported baseline and stress 

induced neuroendocrine dysfunction in various models of experimental TBI that may be 

severity-dependent.

Stress Reactivity in PTSD

Clinical studies have supported alterations in stress induced HPA axis function in PTSD 

populations. A recent clinical study found that attenuated cortisol secretion is a risk marker 

for subsequent development of PTSD symptomatology in response to trauma during military 

deployment (Steudte-Schmiedgen et al. 2015). Briefly, male soldiers were examined before 

deployment to Afghanistan and at a 12-month post-deployment follow-up, using hair 

cortisol concentrations (HCC) for baseline activity and salivary cortisol for stress reactivity, 

measured by the Trier Social Stress Test (TSST). The results showed that lower HCC and 

lower cortisol stress reactivity were predictive of a greater increase in PTSD 

symptomatology in soldiers who had experienced new-onset traumatic events. These 

findings suggest a two-stage process of endocrine alterations in response to traumatic stress: 

first, trauma exposure may result in a long-term dose-dependent cortisol attenuation, which, 

upon exposure to additional traumatic events may predispose to development of PTSD 

(Steudte-Schmiedgen et al. 2015). Interestingly, another study found that despite an increase 

in subjective stress perception during the TSST, a cohort of female PTSD patients had a 

blunted cortisol response compared to healthy controls (Zaba et al. 2015). Hypo-responsive 

TSST cortisol was replicated in a separate study of female PTSD patients (Wichmann et al. 

2017). Other studies have shown enhanced cortisol negative feedback inhibition in clinical 

PTSD (Yehuda et al. 1995, 1996, 2004). Additional biological factors, such as genetic 
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variation, have been shown to contribute to attenuated HPA activity and may also mediate 

the risk of developing PTSD symptoms in response to trauma (Kolassa and Elbert 2007, 

Bomyea et al. 2012, Zoladz and Diamond 2013).

Stress reactivity and the amygdala

Of particular relevance to implications for neuroendocrine dysfunction in PTSD following 

TBI is the amygdala, a limbic structure that shows increased patterns of plasticity in 

response to stress. The amygdala is a phylogenetically old limbic brain structure, that is 

involved in the encoding and processing of emotionally salient information (LeDoux 2003), 

and HPA axis excitation (Herman et al. 2005). While the hippocampus and medial prefrontal 

cortex (mPFC) display dendritic atrophy following stressor exposure (Watanabe et al. 1992, 

Magarinos and McEwen 1995, 2001, Wellman 2001, Cook and Wellman 2004, Brown et al. 

2005, Izquierdo et al. 2006), repeated stress causes dendritic hypertrophy within the 

amygdala (Vyas et al. 2002, Vyas et al. 2004), with extended durations of stress showing 

enhanced synaptic connectivity (Vyas et al. 2006). Chronic stress also induces 

neurophysiological changes in amygdalar principal neurons, including hyperexcitability in 

the lateral amygdala (Rosenkranz et al. 2010). These stress-induced structural and 

physiological changes correspond to changes in emotionally-laden behavior including 

increases in anxiety-like behaviors (Vyas et al. 2002), facilitated acquisition of fear learning 

(Conrad et al. 1999, Hoffman et al. 2010), and resistance to fear extinction (Izquierdo et al. 

2006, Hoffman et al. 2014), and reconsolidation (Hoffman et al. 2015), all of which are 

phenotypic of PTSD. In contrast to the dynamic nature of structural changes observed within 

hippocampus and mPFC, the dendritic hypertrophy within the amygdala tends to be 

persistent and does not recover within the same timeframe (21d; Vyas et al. 2004). 

Furthermore, it has been shown that animals given time to recover (7d) following chronic 

stress show enhanced fear memories compared to nonstressed controls (McGuire et al. 

2010). These consequences could be portrayed as maladaptive plasticity when considering 

the role of these observed changes within the amygdala in the development of cognitive and 

emotional psychiatric conditions including PTSD.

Recent research using animal models of TBI are beginning to reveal structural and 

functional changes in the amygdala as a result of injury. We recently showed dendritic 

hypertrophy in excitatory neurons within the basolateral amygdala (BLA) following a single 

midline FPI (Hoffman et al. 2017). This BLA dendritic hypertrophy was observed within 

one day following FPI that persisted for at least 28 days. It is unknown whether these effects 

were due to TBI enhanced stress reactivity and glucocorticoid release to indirectly impact 

amygdalar structural plasticity, or by another mechanism as a result of TBI. Another study 

assessed functional alterations in the BLA after CCI in rats (Almeida-Suhett et al. 2014). 

CCI led to a reduced GABAergic inhibition, and increased BLA excitability that was 

associated with increased anxiety-like behavior (Almeida-Suhett et al. 2014). These studies 

demonstrate increased amygdalar plasticity after TBI that may reflect vulnerability for 

enhanced fear following subsequent stressor exposure.

The amygdala is sensitive to stress and it is well known that the BLA complex is a key locus 

of plasticity for the formation of fear memories (Fanselow and LeDoux 1999), which is 

Hoffman and Taylor Page 5

Behav Pharmacol. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



thought to be the basis for traumatic memory formation in PTSD. The lateral subdivision 

(lateral amygdala, LA), which receives direct cortical and thalamic sensory input, is known 

as the sensory interface of the amygdala and is required for auditory fear conditioning 

(LeDoux et al. 1990). The basal amygdala (BA) receives inputs from the LA as well as the 

hippocampus and PFC to integrate contextual and higher order information (Orsini et al. 

2011). The BLA then projects to the output center of the amygdala, the central amygdala 

(CEA), which sends inhibitory projections to the hypothalamus, locus coeruleus, and 

periaqueductal gray (PAG) to coordinate HPA axis activation, sympathetic activation, and 

defensive behavioral responding (freezing), respectively, in response to threat detection 

(LeDoux et al. 1988, LeDoux 2000, 2007). While the amygdala has been relatively 

understudied in TBI research, recent data from our lab and others have begun to show TBI-

induced changes in amygdalar structure and function towards enhanced excitatory processes 

and increased plasticity (Reger et al. 2012, Almeida-Suhett et al. 2014, Zuckerman et al. 

2016, Hoffman et al. 2017). Specifically, we have reported that 48h after FPI, rats displayed 

increased fear learning to both contextual and discrete cues (Reger et al. 2012). These 

enhanced fear memories were associated with increased N-methyl-D-aspartate (NMDA) 

receptor expression in the BLA (Reger et al. 2012). NMDA receptors in the BLA are 

necessary for fear conditioning (Miserendino et al. 1990, Fanselow and Kim 1994). The 

neural circuits necessary for encoding adaptive auditory fear memories are vulnerable to 

disruption after TBI and may lead to increases in fear learning and expression.

Fear conditioning as a model to study PTSD

Pavlovian fear conditioning is widely used to study fear learning and memory in basic 

neuroscience research. In widely used rodent models of fear conditioning, an innocuous 

stimulus (conditional stimulus, CS), such as a novel environment (context) and/or an 

auditory cue is paired with an aversive stimulus (unconditional stimulus, US), such as a 

footshock, which promotes natural defensive responses. Following paired CS-US 

presentation, both the context and CS alone will elicit a learned, conditional response (CR, 

freezing). Fear conditioning has proven to be a useful tool to study the mechanisms of basic 

associative learning and memory processes. In addition, fear conditioning is a useful model 

to study disordered function of highly conserved defense systems such as in anxiety and 

stress related disorders like PTSD by teasing out differences in adaptive and maladaptive 

fear responses. For example, increases in expression of learned fear may reflect a 

maladaptive response if it is disproportionate to the severity of a threat (Rau et al. 2005, 

Poulos et al. 2014, 2015, Perusini et al. 2016). These inappropriate fear responses can 

interfere with behaviors that serve other adaptive functions that promote survival (e.g. 

feeding, mating, etc., Fanselow 1994). Furthermore, fear that generalizes outside of the 

context of the initial trauma or to novel stimuli is commonly seen in clinical PTSD and in 

rodent models of PTSD (Hoffman et al. 2014, Dunsmoor and Paz 2015, Dymond et al. 

2015). Analogous to exposure therapy in humans, a common PTSD treatment approach, fear 

extinction occurs with repeated unreinforced CS presentations that result in a new, inhibitory 

memory trace, or a CS-no US association. One challenge with PTSD populations is the 

relapse of symptoms between extinction sessions, i.e., fear responding recovers between 

exposure therapy sessions and outside the therapy context (discussed in Hamner et al. 2004). 
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Enhanced fear learning, fear generalization, and deficits in fear extinction can be used to 

model these distinct aspects and analogs of clinical PTSD and may be useful to determine in 

prospective preclinical research to identify potential risk factors for comorbid TBI and 

PTSD.

Fear conditioning has also been employed in human research settings. In healthy and clinical 

populations alike, human fear conditioning research has helped our understanding of 

emotion and defense processing as well as extinction (Sehlmeyer et al. 2009, Hartley and 

Phelps 2010). Furthermore, when used with modern neuroimaging or peripheral endocrine 

manipulations, we gain understanding of the biological mechanisms that underlie threat 

processing and human fear and anxiety. In humans, CSs tend to be visual stimuli paired with 

US noxious stimuli such as shock, loud noise, or air blast (Sehlmeyer et al. 2009). Fear 

conditioning training itself may serve as the stressor exposure in rodent models of PTSD that 

aim to explore and test potential mechanisms and treatments. However, in clinical PTSD 

populations, controlled fear conditioning studies in humans can shed light on changes in 

subjectively learned and physiological threat processing, extinction and generalization 

differences, and/or HPA function such as negative feedback via the dexamethasone 

suppression test (Jovanovic et al. 2011, Michopoulos et al. 2017).

Neuroendocrine basis of exaggerated fear in PTSD

HPA axis function has been postulated to underlie the etiology of PTSD following trauma 

exposure. Furthermore, homeostatic regulators such as glucocorticoids have been proposed 

as promising biomarkers for stress susceptibility and resilience (Daskalakis et al. 2016). In 

animal models, prior stressor exposure leads to enhanced or sensitized subsequent fear 

learning (Rau et al. 2005, Hoffman et al. 2014), supportive of maladaptive exaggerated fear, 

a PTSD-like phenotype. One recent study demonstrated that exaggerated fear to a single trial 

of fear conditioning is dependent on stress-induced CORT release during a prior traumatic 

experience (Perusini et al. 2016). In that study when metyrapone, a CORT synthesis blocker, 

was given prior to traumatic stressor exposure (15 random footshocks), there was a dose-

dependent reduction in newly learned fear to a mild stressor (1 footshock). When CORT was 

co-administered with metyrapone prior to the trauma, the enhanced fear phenotype was 

rescued, indicating the requirement of trauma-induced glucocorticoid release to influence 

subsequent exaggerated fear. More specifically, CORT action on BLA glucocorticoid 

receptors (GRs) is shown to be required for the induction of PTSD-phenotype. In another 

experiment, mifepristone, a GR antagonist was delivered directly into the BLA via cannula 

infusion prior to the 15-footshock trauma. Mifepristone-treated rats displayed normal levels 

of fear learning to the single shock mild stressor (Perusini et al. 2016). Additionally, another 

study showed a life-long upregulation of BLA GRs when the 15-shock trauma was 

administered in early life (Poulos et al. 2014). Recent clinical studies also support changes 

in cortisol suppression during fear conditioning and extinction with the dexamethasone 

suppression test in PTSD patients (Jovanovic et al. 2011, Michopoulos et al. 2017). These 

studies showed that HPA suppression via dexamethasone both reduced exaggerated fear 

potentiated startle (Jovanovic et al. 2011), and facilitated fear extinction (Michopoulos et al. 

2017) in PTSD patients. Taken together, these studies demonstrate the dependence and 
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influence of neuroendocrine HPA axis function on the amygdala in the development of 

exaggerated fear phenotypes observed in rodent models and in clinical PTSD.

Stress reactivity in TBI, implications for cormorbid PTSD

The current review synthesizes an emerging body of literature identifying a potential link 

between neuroendocrine disruption commonly observed after TBI and its potential influence 

on promoting a vulnerability to development of PTSD. Both TBI and stressor exposure via 

glucocorticoids increase amygdalar structural and functional plasticity. Stress sensitivity in 

emotional centers in the brain, such as the amygdala, promote exaggerated fear and 

defensive behaviors. Neuroendocrine effects after TBI tend to mimic those that are observed 

in PTSD patient populations. The integration of these findings leads us to hypothesize that 

TBI effects on neuroendocrine and amygdalar function may underlie a vulnerability to 

development of PTSD following subsequent trauma or stressor exposure. Future studies 

designed to systematically test the causal link between TBI neuroendocrine dysfunction on 

amygdala-dependent fear memories will shed light on this relationship.

Most people have experienced or will experience traumatic stress at some time over the 

lifespan, but only a subset of traumatized individuals develop PTSD. Clinical research 

supports high rates of TBI-PTSD comorbidity and demonstrate TBI as a significant predictor 

of PTSD development. Identifying biological mechanisms that underlie this vulnerability, 

such as dysregulated HPA axis function, may lead to better targeted treatments and 

preventive measures to support psychological health after TBI.
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Figure 1. 
Effect of mild and moderate CCI and sham injury on HPA responsiveness to 30-min restraint 

stress on days 7, 34, and 70 post-injury. On days 7 and 34, tail vein samples were collected 

for plasma corticosterone (mean ± SEM) at baseline (time=0) and at 30, 60 and 90 min after 

stress onset. On day 70, trunk blood was obtained at the end of the 30-min stress period. a, 

p<0.01; b, p<0.05; c, p<0.05; d, p<0.05; e, p<.0001; f, p<0.05; g, p<0.01; h, p<0.05, for 
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groups with similar letters.**, p<0.01; ***, p<0.001, for the bracketed groups. Adapted from 

(Taylor et al. 2008)
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