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Abstract: Lung ultrasound comets are “comet-tail” artifacts appearing in lung ultrasound 

images. They are particularly useful in detecting several lung pathologies and may indicate the 

amount of extravascular lung water. However, the comets are not always well defined and large 

variations in the counting results exist between observers. This study uses a convolutional neural 

network to quantify these lung ultrasound comets on a 4,864-image clinical lung ultrasound 

dataset labeled by the authors. The neural network counted the number of comets correctly on 

43.4% of the images and has an intraclass correlation (ICC) of 0.791 with respect to human 

counting on the test set. The ICC level indicates a higher correlation level than previously 

reported ICC between human observers. The neural network was then deployed and applied to a 

clinical 6,272-image dataset. The correlation between the automated comet counts and the 

clinical parameters was examined. The comet counts correlate positively with the diastolic blood 

pressure (p=0.047, r=0.448), negatively with ejection fraction (p=0.061, r=-0.513), and 

negatively with BMI (p=0.009, r=-0.566). The neural network can be alternatively formulated as 

a diagnostic test for comet-positive images with 80.8% accuracy. The results could potentially be 

improved with a larger dataset and a refined approach to the neural networks used.    
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1. Introduction 
Lung ultrasound comets, or “B-Lines”, are “comet-tail” artifacts that emanate from the lung 

surface [1]. Various lung ultrasound findings are receiving increasing attention for detecting or 

ruling out several lung pathologies [2–6]. In particular, observations of lung ultrasound comets 

have been related to the presence of extravascular lung water [1]. Recent evidence further 

suggests that these comet artifacts may useful in evaluating pulmonary edema [7–10] and have 

the potential to predict patient outcomes [7]. These ultasound findings may be partcicularly 

helpful in the end stage renal disease setting where patients suffer from fluid overload and 

pulmonary edema [7,9].  

The current practice of identifying lung ultrasound comets, which involves physicians observing 

still ultrasound images, has two major limitations. The number and location of lung comets can 

vary during the time span of an ultrasound motion picture (cine) loop [11], meaning that the 

identification of comets from a single image is likely not representative of the region imaged [9]. 

In addition, the evaluation of lung comets can vary from observer to observer and between initial 

interpretation and reinterpretation by a single observer [12].  

Initial steps have been taken to address the limitations by adopting an automated computer 

algorithm with varied degree of clinical success [9,13–16]. These previous approaches assume 

lung comets are pure line features and apply line detection methods on the ultrasound images. 

Traditional filtering and feature extraction methods were used on some of these approaches 

[9,13,14]. These methods do not sufficiently differentiate B-lines from the other line-type 

artifacts in the images. More recently, B-line detection has been formulated as an inverse 

problem [15,16]. The approach by Anantrasirichai et al. [16] has shown significant promise with 

a reported F1-score of 0.94 for individual comets in a 100-image pediatric ultrasound image set 

acquired from array transducers, but it is unclear how the approach will perform when extended 

to adult ultrasound images or when applied to images acquired by single element transducers. 

Artificial neural networks are well established and have been successfully adapted for computer 

vision and classification in machine learning [17]. Unlike traditional image processing methods, 

neural networks would not assume lung comets as lines and hidden features from an observer 

may be extracted. With adequate training data support, artificial neural networks can yield a 

satisfactory level of accuracy in classification of images. Training these networks often require 

high-performance GPUs but interpretation can be computationally inexpensive. Because the 

accuracy of a neural network model can be determined by comparison of the output of the neural 

network with the observed findings by human, the performance of the algorithm can be 

evaluated using the human observations as the reference. 

Our goal is to guide patient diagnosis and quantify lung edema by applying real-time lung comet 

quantification using machine learning with a portable low-cost USB ultrasound probe in a point-

of-care setting. This study is the initial step towards our goal. In this pilot study, we used a 

convolutional neural network as the primary algorithm to identify lung ultrasound comets to 

evaluate the use of neural networks in future lung ultrasound comet studies.   
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2. Methods 
The data was collected under our institutional review board (IRB) approved study HUM 79017 

in 2013-14 with informed consent from the subjects. A database of lung ultrasound images along 

with their comet counts were constructed from the collected data. The lung ultrasound 

measurements were performed using a commercially available USB-based portable transducer 

with single element mechanical scanning (7.5 MHz, small parts probe, Interson Corporation, 

Pleasanton, CA). Ultrasound scanning was performed through the intercostal (IC) spaces in the 

anterior and lateral chest for the right and left hemi-thorax using data collection methods 

previously reported [7,9]. Uniform gain and power settings were used throughout the ultrasound 

image acquisition. The database was then used for training and testing the performance of the 

neural network models. The accuracy of comet count was used as the primary measure of 

performance of the system; in addition, the ability of the system to classify an ultrasound image 

as “negative, mild, or severe” was used as another measure of performance. The neural network 

is also deployed on a small scale of clinical data to establish its clinical significance. The clinical 

dataset is composed of 152 lung ultrasound loops with 32 frames each, for a total 4864 images. 

These cine loops were obtained under the protocol documented in our previous paper.[9] The 

original study involved 20 stable hemodialysis patients, 17 men and 3 women, with two sessions 

of scans before and after the patients undergo dialysis. Each set of scan contains 12 to 32 

loops.[9] The methods documented below covers the construction of the database, the structure 

of the neural network, the considerations to address overfitting, and the computing environment. 

2.1 Database Construction 

The 152 cine loops were randomly selected from a pool of more than 500 loops, composed of the 

first to thirteenth cine loop from each scan session. Locations #1-13 were chosen because these 

loops were found to be relatively comet rich. A total of 4864 ultrasound images were obtained 

during the above process. These images are then randomly pooled into three sets: a training set 

(3584 images, 73.7%), a cross-validation set (640 images, 13.2%) and a test set (640 images, 

13.2%).  

The images were imported into an in-house GUI for data collection and were labeled per the 

number of comets present. The region of interest (ROI), recycled from our previous study [9], 

defines a 10 millimeter region just below the lung border, where the lung comets are typically 

present. The available labels for each image ranges are every integer between 0 and 6, for a total 

of seven available labels because 6 is the observed maximum number of comets present in the 

image database. Due to the author’s intention of performing a feasibility study, the lung comets 

were not segmented and labeled individually; instead, the images were labeled with the number 

of comets present in the ROI stored as the label. The observer had no knowledge of the clinical 

parameters of the subject, the comet counts from the previous study, or which set the image 

would fall into. The ROI was stored instead of the whole picture because the ROI is the most 

comet rich and the number of pixels contained in the ROI (410×256) is much smaller than the 

whole image (2048×256). The ROI was then rescaled to a resolution of 128×128 for a further 
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reduction in dimensionality of input. The comets are seen in the original image as 5-10 pixels 

long and hundreds of pixels wide according to the observer, so they can still be seen after 

resizing. All images are in grayscale. A workflow of the labeling process is available in Fig. 1. 

 

Fig. 1. Dataset Generation. Step 1: Manually count the number of comets present in the ROI of the image 

(example image: 3 comets). The three comets are shown with a white text overlay. Step 2: Choose the 

label corresponding to the number of comets present (example image: 3). Step 3: Save the rescaled 

image with the label.  

2.2 Structure of the Neural Network 

The architecture of a basic convolutional neural network can contain three types of layers: 

convolutional layers, pooling layers, and fully connected layers. The convolutional layer uses a 

small kernel and extracts features from a larger image. The number of convolutional layers tends 

to increase with the depth of the neural network. The pooling layer effectively down-samples an 

image and decreases its size. The fully connected layer computes its results from all the 

parameters from the previous layers and is often used for categorization purposes. An activation 

function can appear along with these layers above to regulate the output of these layers and apply 

nonlinearity to their output. 

1   2    3 

Pleural line 
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This neural network was constructed with considerations of a relatively high dimension of input 

and a small size of the training set. Rectified linear units (ReLU) were chosen as the activation 

functions for the neurons due to a reported faster training speed and the ability to prevent 

overfitting [18]. Overlapping average pooling with a window size of 3×3 and stride 2 was used 

across all layers except for the first layer, which uses max pooling of the same window size. This 

pooling scheme generated the highest accuracy on the validation set. 

The final neural network contains four convolutional layers and a fully connected layer. Each of 

the four convolutional layers has kernels of size 5×5 with non-decreasing data depths of 16, 32, 

64, and 128. The output of each convolutional layer is rectified by a ReLU unit and accompanied 

by a pooling layer. The fully connected layer contains a softmax regression layer for final 

classification. The input of this neural network is 16384-dimensional (128×128); the output is a 

single label for the number of comets present in the image. The network contains 5.3×105 

parameters in total. The overall structure of the neural network can be found in Fig. 2. 

During evaluation, the neural network is evaluated five times and the most common result was 

used as the output. 

 

Fig. 2. Structure of the Convolutional Neural Network. The neural network consists of four convolutional 

layers and a fully connected layer. All convolutional kernels are 5×5. Each convolutional layer is 

accompanied by an overlapping average pooling layer. The fully connected layer routes to one of the 

possible comet counts in 0 to 6. 

2.3 Considerations to Address Overfitting 

Although the network is relatively small with 5.3×105 parameters, overfitting is still a big 

concern since the number of parameters overwhelm the number of training samples. Two 

measures were taken to address the potential of overfitting: data augmentation and dropout.  

Data augmentation creates unobserved data from observed data and can reduce the chance of 

overfitting [19,20]. To artificially increase the size of the dataset, two kinds of data augmentation 

were used. First, the images are flipped to double the size of the training set. The second kind of 

data augmentation involves moving the ROI. The ROI of each image is moved up and down by 

5% and 10% of the length of the ROI (410 pixels), as shown in Fig. 3. The augmented training 

set was therefore 10 times the original size of the training set, but the inter-dependency of the 
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training samples was increased. 

 

Fig. 3. Data Augmentation by Moving ROI and Flipping. “+” denotes moving down and “-” denotes moving 

up. Images shown are extracted from the ROI in Fig. 1. 

Dropout involves dropping out the neuron in the network when the probability output of the 

neuron decreases below a certain level [21,22]. The effective number of parameters within a 

neural network is reduced when dropout is introduced. In this neural network, a dropout level of 

0.25 is used across the third and fourth convolutional layers.  

The training of the neural network was conducted using MATLAB 2016b (Natick, MA) with 

MatConvNet [23] beta 20. A standard mini-batch stochastic gradient descent with momentum 

was used as the minimization algorithm. The batch size was 256. The final network was trained 

on an Intel Xeon E3-1241 v3 with NVIDIA Quadro K620 GPU with 2GB graphical memory. 

The training speed on GPU was about two hours. The output of the neural network was exported 

as plain text files and analyzed using OriginPro (OriginLab, Northampton, MA), SPSS (IBM, 

Armonk, NY) and R [24].  

3. Results 
Training and testing of the neural network was performed on a 4,864-image dataset obtained by 

the authors under IRB approval. Overfitting was well controlled with the measures taken as 

written in the methods section. The neural network counted the number of comets the same as 

the observer (“true value”) in 43.4% of the images. Beyond the correctly identified images, there 

are another 40.8% of images with an identified comet number of true value ± 1. The 

measurement of intraclass correlation (ICC) for observer difference reveals that the agreement 

between the human-identified comet counts and the output of the neural network is excellent [25] 

(ICC=0.791). Our reported ICC value is based on absolute agreement. This ICC value is superior 

to the ICC (0.586-0.676) of a single person identifying a single set of lung ultrasound images 

twice as reported by Gullett et al. [12]. A Bland-Altman plot for comparing the observer against 
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the neural network for the test set is available in Fig. 4. The Bland-Altman plot confirms a 

relatively low variation between the comet counts identified by hand and by the neural network.  

 

Fig. 4. Bland-Altman Plot for Test Set. Size of circle denotes sample count. Most samples are centered 

around the Differences = 0 line, meaning that the human observer agrees well with the neural network. 

The results are then rearranged for assessing the diagnostic value of the neural network. 

Researchers have used different standards for categorizing the severity of the presence of the 

lung ultrasound comets. Frassi et al. [2] have reported that the presence of 30 comets (at 28 scan 

sites, average 1.07 comets/image) indicates a severe condition; Gullett et al. [12] used 3 comets 

per image as the threshold for a comet-positive image. We will use the latter threshold to 

determine if an image is comet positive because of our own associated clinical findings. Using 

this designation, the neural network can categorize 80.8% of images correctly on the test set with 

a retrained network. From the confusion matrix shown in Table 1, we achieved a precision of 

73.1% and recall of 62.7%. The corresponding F1-score is 0.675. 

The neural network was then deployed on a larger level of analysis using the exact same dataset 

as in our previous paper [9]. This 196-loop clinical dataset includes scan location 1-4 of all 

subjects. A summary of the clinical parameters and demographics is available in Table 2. This 

dataset has a partial overlap with the trained data. The neural network saw 67 out of 196 loops 

(34.2%) in training, validation, or test set, while the rest 129 (65.8%) are new to the network. We 
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selected this dataset to serve as cross-verification with respect to our previous results despite an 

optimal clinical set would have no overlap with the data used in the neural network. 

   Test   

 

True 

 

- + 

- 389 47 

+ 76 128 

Table 1. Breakdown of accuracy in categorization of degree of comets present. 80.8% images were 

categorized correctly. The precision is 73.1% and recall is 62.7%. The F1-score is 0.675. 

Clinical Parameter Range (Mean ± SD) 

Age (years) 53±14 

Weight (kg) 96±24 

BMI 31.5±7.6 

Male Sex % 85% (17/20) 

Diabetes % 55% (11/20) 

Hypertension Documented % 95% (19/20) 

Congestive Heart Failure Documented % 5% (1/20) 

Coronary Artery Disease Documented % 20% (4/20) 

Diastolic Blood Pressure (mmHg) 75±11 

Systolic Blood Pressure (mmHg) 134±29 

Ejection Fraction % 51±17 

Table 2. Clinical parameters and demographics of the patients 

The comet counts by the neural network, averaged to patient level, are analyzed against a series 

of clinical parameters using linear regression. The comet count exhibits a positive correlation 

(p=0.047, r=0.448) with respect to diastolic blood pressure and a near-significant negative 

correlation (p=0.061, r=-0.513) with the ejection fraction, as both were confirmed by Weitzel et 

al. [9]. In the meantime, the patients with a higher BMI (p=0.009, r=-0.566) were found to have 

fewer comets. The systolic blood pressure (p=0.371), final blood volume change (p=0.468), and 

age (p=0.575) were not found to be significant contributors to comet count. We found similar 

relationships with respect to the number of positive comet images for each patient, especially in 
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diastolic blood pressure (p=0.041, r=0.460) and ejection fraction (p=0.090, r=-0.470). A 

summary of the results is available in Table 3 and Fig. 5.  

Clinical 

Parameter Unit Range R-value 

p-value 

(Count) Sig. 

p-value 

(Comet+) Sig. 

Diastolic BP mmHg 75±11 0.448 0.047 * 0.041 * 

Systolic BP mmHg 134±29 0.211 0.370 NS 0.446 NS 

Final %BV Percent -8.5±4.7 -0.172 0.468 NS 0.511 NS 

EF % Percent 51±17 -0.513 0.061 NS 0.090 NS 

Subject Age years 53±14 -0.133 0.575 NS 0.441 NS 

Subject BMI kg/m2 31.5±7.6 -0.566 0.009 ** 0.149 NS 

Table 3. Linear regression of comet count (Count) and number of comet positive images (Comet+) versus 

relevant clinical parameters. BP: Blood pressure. %BV: Percent blood volume. EF: Ejection fraction. BMI: 

body mass index. 

Significance levels (Sig.): NS - not significant. * - p<0.05. ** - p<0.01. *** - p<0.001 

 
(a) BMI      (b) EF 

 

(c) Diastolic BP  

Fig. 5. (a) Linear Regression of BMI (p=0.009, r=-0.566), (b) Diastolic Blood Pressure (p=0.047, r=0.448), 

and (c) Ejection Fraction (p=0.061, r=-0.513) against Comet Count 
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Relationship between comet counts and achieved amount of ultrafiltration (UF) is reported in 

Fig. 6. Achieved UF, which is positively correlated with body weight, can be seen to be firstly 

positively correlated with comet count. The correlation then reaches a plateau and drops 

negative. Our hypothesis with respect to this behavior can be seen in the discussion section. 

 

Fig. 6. Left: a quadratic fit of the amount of ultrafiltration (UF), in liters, achieved with respect to the comet 

count. They are initially positively correlated until it quickly drops off. The p-value shown is the p-value of 

the leading quadratic term. The quadratic fit is statistically significant. Right: The amount of UF achieved 

positively correlates with the body weight of the subject in kilograms (p=0.009).  

 

Fig. 7. Comparison of Categorized Comet Severity for New Data. 0=Negative, 1=Mild, 2=Severe. Both 

measures agree on the “comet-dense” nature of the first loop with 20/32 (62.5%) agreement on frames. 

Both measures find the second loop to be “comet mild”, with 16/32 (50.0%) agreement on frames. No 

severe misidentification happened in either loop. On a loop level: 

Loop 1: Hand 0 (-) / 11 (+) / 21 (++) vs Neural network 0 (-) / 13 (+) / 19 (++) 

Loop 2: Hand 12 (-) / 20 (+) / 0 (++) vs Neural network 18 (-) / 14 (+) / 0 (++) 

As a proof of concept for clinical use, two de novo ultrasound loops are randomly selected from 

the rest of the 500 loops detailed above and fed into the neural network. The comet counts were 

also identified by hand. The categorized severity of comets was compared between the output of 

the neural network and hand counting and the results can be seen in Fig. 7. The agreement is 

62.5% on the first loop and 50% on the second loop. On a loop level, hand counting indicated 11 

(kg) (L) 
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(+) and 21 (++) frames compared to 13 (+) and 19 (++) frames from the neural network for the 

first loop, both confirming that the first loop is comet dense. The second loop has 12 (-) and 20 

(+) when counted by hand and 18 (-) and 14 (+) frames when counted by neural network, 

suggesting a comet mild loop. There is no severe misidentification in either loop; the indicated 

clinical outcome is similar. 

4. Discussion 
The lung comet dataset labeled in this study is the largest to date by an order of magnitude 

compared to the 50-100 images used in existing studies [13,16]. The database contains images 

collected from a mechanically scanned single-element transducer, which is representative in a 

point-of-care and telehealth ultrasound setting, although low cost array imaging systems capable 

of higher image quality were introduced by Phillips in 2015 and have been evolving. This neural 

network is a promising approach since it has reasonable accuracy and a low number of 

parameters. The lower number of parameters leads to increased practicality of implementation 

since this translates into less computational time and computing power requirements as discussed 

below. The 43.4% absolute accuracy means that in 43.4% of the images, the neural network 

identified the same number of lung comets as the observer. Despite an apparently low 43.4% 

absolute accuracy in the test set, the neural network reached a 0.791 absolute ICC, which 

indicates a low deviation from the true comet count if the comet count may be incorrect in 

absolute measures. This ICC suggests a higher level of agreement of comet counting between 

human observers in this study and neural network than that of a single observer counting the 

comets twice as reported in the literature [12]. The excellent ICC level reveals the potential of 

using neural network as the “gold standard” in identifying lung comets. In addition, the neural 

network can still use more training samples and the accuracy and ICC can be further increased 

with more data. We decided to limit the current study to 4,896 images because of time 

limitations for the investigators in labeling the images to train the algorithm. With increased data, 

and additional time resources, a larger neural network may be used to train on the available data, 

which may further increase the accuracy. However, the accuracy will be limited by the intrinsic 

variations in comet counting by human. We conjecture that further studies using a combination 

of lung ultrasound and other available clinical information, such as CT information and patient’s 

medical history, may allow greater pace to be made in improving accuracy within diagnostic 

tolerance. 

Categorizing the ultrasound images into comet negative and positive adds a layer of 

supplemental information that may be diagnostically relevant in assessing pulmonary edema. In 

clinical practice, the presence or absence of comets may be helpful in determining when a patient 

it at the ideal fluid status (aka “dry weight”), or these categories may relate to how far a patient is 

from their dry weight. 

In the clinical dataset, the clinical findings agree well with our previous results. As in our 

previous study [9], these neural network findings also suggest that a higher diastolic blood 

pressure and a lower ejection fraction are correlated with higher comet counts. Patients with fluid 
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overload generally present with a higher blood pressure, and the excess fluid may manifest itself 

with increased fluid in the lungs and corresponding higher number of comets seen on ultrasound 

scans. Likewise, a low ejection fraction may be accompanied by excess lung edema and more 

comets. We hypothesize that the observation of higher BMI being associated with lower comet 

counts may be attributed to attenuation of the ultrasound signal by adipose tissue. This 

hypothesis requires further study but is supported by the following. The number of comets is 

expected to increase with the obtained ultrafiltration (UF) amount, i.e. water obtained during 

dialysis sessions; this behavior can be seen initially but quickly decreases with increased UF 

amount, which is positively correlated with the body weight of the subjects. This observation 

suggests difficulty for the neural network, and potentially for the observer, to see comets in 

overweight patients. All these observations are suggestive and require further investigation. 

Potential future deployment will likely benefit from the relatively low number of parameters that 

this neural network possesses. With the current structure and its 5.3×105 parameters, this neural 

network requires little computing power. A test on an Intel i5-6260U computer reveals that the 

comet identification and clinical classification of a full loop (32 frames) takes 0.11-0.12 seconds. 

The requirement for memory and storage is on the order of megabytes. These low requirements 

ensure that most current computing systems will be able to handle this neural network and real-

time comet identification is feasible. If deployed on a cloud level, this neural network will 

require a very small amount of network data transmission, which makes it suitable for potential 

use in telehealth and Internet applications. A fully automated comet identification system can 

incorporate another module with automatic ROI identification using either image processing or 

neural network methods. A fully-automated system adds little tie and effort to the current clinical 

practice of lung comet identification, potentially be less burdensome than manual comet 

counting, and has great potential to be a clinical diagnostic tool for lung water assessment. 

While this neural network exhibits many promising characteristics, there are some limitations 

exist that require further study. 

First, the size of the database contains 4864 ultrasound images. It is the largest lung comet 

database to date but is still comparatively small compared to a big database such as ImageNet. 

The number of parameters still overwhelms the number of training samples. The distribution of 

the comet counts in the database is also somewhat uneven. The distribution of the number of 

images with respect to its labels (“comet counts”) are attached in Table 4.  

Label 
(Count) 

# 
Images  

Percentage 
(%) 

0 748 15.4 
1 1248 25.7 
2 1225 25.2 
3 883 18.2 
4 471 9.7 
5 201 4.1 
6 88 1.8 

Table 4. Distribution of comet count in the comet database. 
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Second, the neural network has performed reasonably well on the images with low or medium 

comet counts (0-3, 48.3% correct) but disagreed with reference measures on the images with 

high comet counts (4-6, 19.4% correct). This is mainly due to the scarcity of supporting samples 

in the training set for comet-rich samples. In fact, it is very difficult for an artificial neural 

network to learn from a small pool of samples [26]. Collecting and using more data in a larger 

database can mitigate the low accuracy on comet-rich samples. With a much larger database, 

there would be enough comet-rich samples to train from; the samples can also be randomly 

pooled at a loop-level instead of an image-level during data split to make the training set and the 

test set more independent of each other. In this way, loop-level information can be generated and 

compared to clinical data. A further expansion for future studies would be to obtain lung 

ultrasound scans from a wide range of patients and pool the data on a patient level. 

Third, the database was labeled by a single observer. Thus, the neural network behaves like this 

observer and contains this observer’s subjective tendencies. The comet counting is also subject to 

observer fluctuations as suggested in a prior publication [12]. Because of the inherent difficulties 

and visual variations in identifying comets, a training set with input from multiple observers will 

help reduce subjectivity. Ideally, a pool of physicians will be recruited to perform comet 

identification in future studies so that the inter-observer variation can be minimized; this too will 

be the subject of future studies.  

Finally, the approach to neural network learning, in this case, can also be refined. Instead of 

labeling the ultrasound image, individual comets can be labeled along with information on their 

positions. The neural network can then be tuned to learn from individual comets and identify the 

comets individually when deployed. This approach can potentially reveal information on the 

position of the comets and track their movement. A subset of neural networks called U-Net [27] 

have been applied to biomedical imaging and we are actively pursuing this path. 

5. Conclusion 

Although increasing evidence suggests that lung ultrasound comets may be clinically valuable in 

assessing pulmonary edema, the objective quantification of these comets has been very 

challenging. We performed a pilot study to test the feasibility of using a neural network system 

to perform lung ultrasound counting. A corresponding database of 4,896 ultrasound images was 

built for this system as the learning source. This machine learning system achieved a 43.4% 

accuracy in absolute measures and a 0.791 absolute ICC. The apparent low absolute accuracy is 

reflective of the low inter-measurement agreement of the comet count by a single observer re-

reading the same frames. The high ICC level indicates substantial agreement of the neural 

network algorithm with the comet quantity as counted by a human. With the same sets of 

parameters, the system categorized 80.8% of the images correctly for the severity of the lung 

ultrasound comets when divided into a positive and a negative group. With a relatively low 

number of parameters, this neural network approach shows significant potential in medical 

decision support systems while requiring only modest computing power. The potential clinical 
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utility of the neural network for lung comet assessment was illustrated by showing correlation 

between comet count and diastolic blood pressure as well as ejection fraction. Future work on 

this neural network will involve using more data to improve accuracy, tracking the movement of 

the comets, testing inter-observer variation, and assessing clinical parameters, to further test the 

capabilities of neural networks in quantifying lung ultrasound comets. 
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