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Key Points:10

• We developed a fully-differentiable solver for the Richardson-Richards equation.11

• The constitutive relations are represented by physically constrained neural net-12

works.13

• The framework can be used to extract soil hydraulic properties without assum-14

ing coupling between the constitutive relations.15
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Abstract16

The constitutive relations of the Richardson-Richards equation encode the macroscopic17

properties of soil water retention and conductivity. These soil hydraulic functions are18

commonly represented by models with a handful of parameters. The limited degrees of19

freedom of such soil hydraulic models constrain our ability to extract soil hydraulic prop-20

erties from soil moisture data via inverse modeling. We present a new free-form approach21

to learning the constitutive relations using physically constrained neural networks. We22

implemented the inverse modeling framework in a differentiable modeling framework,23

JAX, to ensure scalability and extensibility. For efficient gradient computations, we im-24

plemented implicit differentiation through a nonlinear solver for the Richardson-Richards25

equation. We tested the framework against synthetic noisy data and demonstrated its26

robustness against varying magnitudes of noise and degrees of freedom of the neural net-27

works. We applied the framework to soil moisture data from an upward infiltration ex-28

periment and demonstrated that the neural network-based approach was better fitted29

to the experimental data than a parametric model and that the framework can learn the30

constitutive relations.31

1 Introduction32

The Richardson-Richards equation (Richardson, 1922; Richards, 1931) serves as33

a fundamental equation to simulate water flow in saturated-unsaturated soils. Therein,34

soil hydraulic properties are expressed as two constitutive relations: 1) the water reten-35

tion curve that relates the volumetric water content to the water potential and 2) the36

unsaturated permeability function (or hydraulic conductivity function) that relates the37

unsaturated permeability to the water potential. The two constitutive relations are called38

soil hydraulic functions and encode the effect of physical, chemical, and biological pro-39

cesses at a pore scale on the state of soils on a larger scale of interest. Hence, the soil40

hydraulic functions are intrinsically scaling relations (Miller et al., 1998). Because it is41

virtually impossible to derive such scaling relations based on first principles in practi-42

cal situations, soil hydraulic functions need to be inferred from observational data.43

Inverse modeling has been employed to estimate soil hydraulic functions from lab-44

oratory and field soil moisture data. In such cases, soil hydraulic functions are expressed45

as parametric models, and the parameters are estimated via inverse modeling. Commonly,46

such parametric models are built on empirical water retention functions, such as the Brooks47

and Corey model (Brooks & Corey, 1964) and the van Genuchten model (van Genuchten,48

1980), combined with physics-based bundle tube models for relative permeability func-49

tions (Burdine, 1953; Mualem, 1976). Although this approach has been widely accepted50

and successful, there is a fundamental limitation to further improve our understanding51

of the constitutive relations. That is, we can only analyze observational data through52

the lens of assumed constitutive relations. When parametric models used for constitu-53

tive relations are insufficient to describe observational data, we only describe its failure54

as a model bias and therefore can get little clue as to how the parametric models are in-55

correct. This limitation is particularly crucial when analyzing soil moisture data collected56

in the field because complicated physical, chemical, and biological processes are not con-57

sidered in commonly used parametric soil hydraulic models. Examples of such processes58

include the effects of hydrophobicity (Vogelmann et al., 2013), rock fragments (Naseri59

et al., 2023), and nonequilibrium flow (H. J. Vogel et al., 2023).60

To extract the constitutive relations in a more flexible manner, Bitterlich et al. (2004)61

proposed a free-form approach, in which they used quadratic B-splines and piecewise cu-62

bic Hermite interpolation to represent soil hydraulic functions. They demonstrated that63

the free-form approach could extract soil hydraulic functions from multi-step outflow ex-64

periments via inverse modeling. Their free-form approach did not have to assume cou-65

pling between water retention functions and relative permeability functions, unlike com-66
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monly used parametric models for soil hydraulic functions. This decoupling can prevent67

errors in water retention functions from propagating into relative permeability functions.68

Subsequently, Iden and Durner (2007) modified the approach of Bitterlich et al. (2004)69

and further demonstrated the advantage of the free-form approach against parametric70

models with a limited number of parameters. Recently, Bandai and Ghezzehei (2021)71

used monotonic neural networks (Daniels & Velikova, 2010) to represent soil hydraulic72

functions as components of physics-informed neural networks and attempted to extract73

the constitutive relations. Although they demonstrated its feasibility against synthetic74

noisy data, their approach has limitations for near saturation conditions. While physics-75

informed neural networks have been improved and applied to many scientific domains,76

their application to realistic problems in vadose zone hydrology appears to be limited77

by the difficulty in training physics-informed neural networks with noisy sparse data (Bandai78

& Ghezzehei, 2022).79

As a robust and scalable free-form approach to extract the constitutive relations80

of the Richardson-Richards equation from soil moisture data, we developed a fully-differentiable81

numerical model of the Richardson-Richards equation using a machine learning library82

JAX (Bradbury et al., 2018). In our differentiable modeling framework, soil hydraulic83

functions are represented by monotonic neural networks, as in Bandai and Ghezzehei (2021),84

but we further imposed additional physical constraints to ensure the robustness of the85

framework near saturation. Also, unlike their physics-informed neural networks approach,86

we used a finite volume method with the Backward Euler method to solve the Richardson-87

Richards equation to guarantee the physical laws, including the conservation of mass and88

the Buckingham-Darcy law. Compared to previous free-form approaches (Bitterlich et89

al., 2004; Iden & Durner, 2007), our inverse modeling approach is scalable and exten-90

sible because of the efficient derivative computation implemented on JAX. We first tested91

the performance of our numerical model written in JAX to solve a forward model by com-92

paring it with a Fortran numerical solver. Then, we built an inverse modeling framework93

to estimate the constitutive relations from soil moisture and tested it against synthetic94

noisy data. We then applied our inverse modeling framework to extract the constitutive95

relations from soil moisture data measured in upward infiltration experiments conducted96

by Sadeghi et al. (2017). Finally, we discuss the challenges and opportunities of the dif-97

ferentiable modeling framework.98

2 Forward modeling99

In this section, we describe the forward modeling approach used to simulate wa-100

ter flow in variably saturated soils and demonstrate its performance. In Section 2.1, we101

first introduce the Richardson-Richards equation and the initial and boundary condi-102

tions used in the study. In Section 2.2, we describe the van Genuchten-Mualem model,103

which we used as a baseline model to provide the constitutive relations (i.e., soil hydraulic104

functions). In Section 2.3, we introduce a machine learning library, JAX, which we used105

to implement the numerical solver. Finally, in Section 2.4, we demonstrate the perfor-106

mance of the JAX-based forward modeling by comparing it to a Fortran-based numer-107

ical solver.108

2.1 Richardson-Richards equation109

One-dimensional water flow in a rigid and isotropic soil can be described by the110

Richardson-Richards equation (Richardson, 1922; Richards, 1931). The mass balance of111

water on a spatial domain Ω := (−Z, 0) leads to112

∂θ

∂t
= −∂q

∂z
for Ω× (0, T ), (1)

where t is the time [T], T is the final time [T], z is the spatial coordinate that is pos-113

itive upward with z = 0 set to the surface of the soil [L], Z is the length of the soil [L],114
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θ is the volumetric water content [L3 L−3], and q is the water flux [L T−1] described by115

the Buckingham-Darcy law (Buckingham, 1907)116

q = −Kkrρg
µ

(
∂ψ

∂z
+ 1

)
, (2)

where K is the permeability [L2], kr is the relative permeability [-], ρ is the density of117

water [M L−3] (= 0.99823×103 [kg m−3]), µ is the dynamic viscosity of water [M L−1
118

T−1] (= 1.0005 × 10−3 [kg m−1 s−1]), g is the gravitational acceleration [M T−2] (=119

9.80665 [m s−2]), and ψ is the water potential [L]. We introduce the hydraulic head h120

[L] as h := ψ + z.121

We consider the following initial and boundary conditions:122

ψ(z, 0) = ψi(z) for z ∈ [−Z, 0] (3)

ψ(−Z, t) = ψlb for t ∈ (0, T ), (4)

q(z, t) = qub for z = 0, t ∈ (0, T ), (5)

where ψi is the initial condition, ψlb is the water potential at the lower boundary, and123

qub is the water flux at the upper boundary. Although we limited our analysis to the ini-124

tial and boundary conditions above, our approach is applicable to other conditions.125

2.2 Soil hydraulic functions126

We need two constitutive relations, θ(ψ) and kr(ψ), to solve the Richardson-Richards127

equation (Equation 1 and Equation 2). These two soil hydraulic functions are referred128

to as the water retention curve and the relative permeability function, respectively. Both129

functions are nonlinear functions of the water potential ψ and represent the macroscopic130

water holding and water transport properties of the soil. Although the two functions can131

exhibit hysteresis under wetting and drying cycles, we neglected the effect of hysteresis132

in this study. We used the van Genuchten-Mualem model (Mualem, 1976; van Genuchten,133

1980) as the baseline model.134

The water retention curve of the van Genuchten-Mualem model is described as135

θ(ψ) = θr + (θs − θr)Se(ψ) for ψ < 0, (6)

θ(ψ) = θs for ψ ≥ 0, (7)

where θr is the residual volumetric water content [L3 L−3], θs is the saturated volumet-136

ric water content [L3 L−3], and Se is the effective saturation [-]137

Se(ψ) :=
θ(ψ)− θr
θs − θr

, (8)

which is parameterized as138

Se(ψ) = (1 + (−αψ)n)−m, (9)

where α [L−1] and n [-] are van Genuchten fitting parameters, and m is defined as m :=139

1−1/n. The relative permeability function is derived from Mualem’s bundle tube model140

(Mualem, 1976), resulting in141

kr(ψ) = Se(ψ)
τ

∫ Se

0
1

ψ(Se)
dSe∫ 1

0
1

ψ(Se)
dSe

2

for ψ < 0, (10)

kr(ψ) = 1.0 for ψ ≥ 0, (11)

where τ is the tortuosity parameter [-]. Substituting the van Genuchten’s water reten-142

tion curve into Se, we obtain the analytical expression of the relative permeability func-143

tion144

kr(ψ) = Se(ψ)
τ (1− (1− Se(ψ)

1/m)m)2 for ψ < 0, (12)

kr(ψ) = 1.0 for ψ ≥ 0. (13)
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2.3 Scientific computing in JAX145

We solved the Richardson-Richards equation (Equation 1 and Equation 2) using146

a finite volume method with the Backward Euler method. The resulting system of non-147

linear equations was solved by the Newton method with Armijo backtracking line search148

(Appendix A). We implemented the numerical method in Python using JAX (Frostig149

et al., 2018; Bradbury et al., 2018). JAX is a machine learning framework supported by150

a machine learning-focused compiler called XLA (Accelerated Linear Algebra). In the151

last few years, JAX has been successfully used in scientific computing in many domains,152

including molecular dynamics (Schoenholz & Cubuk, 2020), fluid mechanics (Kochkov153

et al., 2021; Bezgin et al., 2023), ocean modeling (Häfner et al., 2021), and solid mechan-154

ics (Xue et al., 2023). Scientific computing in JAX has the following distinctive features:155

1. It is possible to implement numerical methods in a high-level, interpreted program-156

ming language, Python, and thus drastically reduce the development cost while157

achieving a high computing performance due to code optimization with the XLA158

compiler.159

2. JAX supports automatic differentiation, which eliminates the need to linearize nu-160

merical models manually for nonlinear solvers.161

3. JAX provides a function vmap, which automatically vectorizes a Python func-162

tion.163

4. XLA automatically compiles Python codes for specific accelerators, including CPUs,164

GPUs, and TPUs, without source code modifications.165

5. JAX supports parallel computation across CPU and GPU cores, although this is166

not yet implemented.167

6. We can capitalize on the extensive JAX ecosystem for machine learning tools and168

other purposes. We used Equinox (Kidger & Garcia, 2021) for handling JAX data169

structures (called Pytrees), Lineax (Rader et al., 2023) for linear solvers, and Op-170

tax (DeepMind et al., 2020) for optimization.171

While JAX has many favorable features for scientific computing, its design also has172

some limitations. First, functions used in JAX need to be pure functions without any173

side effects. Second, JAX does not support dynamically-shaped arrays. Thus, it currently174

appears to be difficult to implement adaptive spatial discretization. Finally, to optimize175

JAX Python codes, we need first to run the codes so that JAX traces the computation176

and XLA optimizes it. When Python codes include native Python for and while loops,177

the compilation takes a long time and often fails. JAX provides structured control flow,178

such as lax.fori loop and lax.while loop, to avoid such compilation issues, but it can179

limit the capability of XLA to optimize the Python codes.180

We refer to our differentiable numerical solver for the Richardson-Richards equa-181

tion in JAX as JAX-Richards. The JAX-Richards approach is distinct from the exist-182

ing unsaturated-saturated solvers, such as HYDRUS (Šimůnek et al., 2016), AmanziATS183

(Coon et al., 2020), PFLOTRAN (Hammond et al., 2014), and CrunchTope (Steefel et184

al., 2015), all of which are implemented in compiled languages Fortran and C++. The185

source code of JAX-Richards is shared through Bandai, Ghezzehei, et al. (2024).186

2.4 Performance187

We investigated the performance of JAX-Richards by comparing it with a Fortran188

program that implemented the same mathematical algorithm. As a benchmark problem,189

we simulated one-dimensional vertical infiltration into a dry homogeneous soil with a length190

of 6.0 m. This benchmark test was used in previous studies (Forsyth et al., 1995; T. Vo-191

gel et al., 1996). We used the van Genuchten-Mualem model for the soil hydraulic func-192

tions, and its parameters are as follows: θr = 0.0, θs = 0.33, α = 1.43 m−1, n = 1.506,193

τ = 0.5, and K = 2.95×10−13 m2. We set the initial water potential as ψi = -7.26139194

–5–



manuscript submitted to Water Resources Research

Table 1. Wall time [s] to solve the benchmark problem 1 (Figure 1) by Fortran, JAX-Richards

on a CPU and a GPU, respectively, for varying numbers of the spatial cells Ns. The number of

time steps was 650.

Ns Fortran JAX-CPU JAX-GPU

60 0.078 0.144 0.859
120 0.264 2.05 1.27
240 1.081 11.1 3.00
480 4.277 59.0 8.17
960 20.646 180 30.9
1920 91.381 516 128

m, corresponding to a volumetric water content θ of 0.1. A constant flux boundary con-195

dition qub = −0.2 m day−1 was applied to the top boundary, while a constant Dirich-196

let boundary condition ψlb = −7.26139 m was used for the lower boundary. The final197

time was set to T = 6.5 days, and a fixed time-stepping of 0.01 days was used. We uni-198

formly discretized the spatial domain and varied the number of cells Ns as follows: Ns =199

60, 120, 240, 480, 960, 1920. Figure 1 shows the volumetric water content θ at t = 0.0, 1.0, 4.0, 6.5200

days for Ns = 120. We verified that the results from the Fortran program and JAX-201

Richards matched up to 14 digits in double precision.202

Table 1 summarizes the performance of the Fortran program and JAX-Richards.203

Here, linear systems were solved by the DGESV routine in LAPACK for Fortran and by204

lx.linear solve (a function in Lineax library to call) for JAX-Richards. We compiled205

the Fortran program with Intel Fortran Compiler Classic 2021.10.0 and ran it on a CPU206

(13th Gen Intel(R) Core(TM) i9-13900H 2.60 GHz). JAX-Richards was optimized by207

XLA during the first runtime. We ran JAX-Richards on the CPU and a GPU (GeForce208

RTX 4070 Laptop) in the Windows Subsystem for Linux Kernel 2. The version of Python209

and JAX was 3.9.18 and 0.4.19, respectively. The wall time in Table 1 is only for the time-210

stepping of the benchmark problem and does not include the time for the compilation211

and the input/output. The result demonstrated that the Fortran program was the fastest,212

although the JAX on the GPU was competitively fast. As the problem size increased,213

the wall time for JAX-Richards on the GPU approached that of the Fortran program.214

This is because for large-scale problems, overhead by Python operations (e.g., data trans-215

fer between the host CPU and the GPU) becomes negligible relative to the cost for ar-216

ray operations, which are efficiently computed on the GPU. In future work, we aim to217

speed up the forward modeling in JAX by implementing variable time steps and paral-218

lel computations across GPU cores.219

3 Inverse modeling220

In this section, we describe a framework to extract the constitutive relations (i.e.,221

soil hydraulic functions) from soil moisture data. Figure 2 shows the overview of the in-222

verse modeling framework. In Section 3.1, we introduce physically constrained neural223

networks as a free-form approach to parameterize the soil hydraulic functions for inverse224

modeling. In Section 3.2, we explain the inverse modeling framework. In Section 3.3, we225

describe implicit differentiation, which enables us to compute derivatives through the non-226

linear solver used to solve the Richardson-Richards equation. In Section 3.4, we show227

the feasibility of the framework against noisy synthetic data. Finally, in Section 3.5, we228

demonstrate the performance of the framework to extract the soil hydraulic functions229

from soil moisture data from upward infiltration experiments conducted by Sadeghi et230

al. (2017).231
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Figure 1. Benchmark problem 1: Infiltration into a homogeneous dry soil. The solution was

obtained with the number of cells Ns = 120.

3.1 Physically constrained neural networks232

We introduce physically constrained neural networks to represent soil hydraulic func-233

tions (Figure 2 (a) and (b)). Assuming there is no hysteresis, we enforced the follow-234

ing physical constraints: (1) water retention curves θ(ψ) and relative permeability func-235

tions kr are monotonically non-decreasing functions of the water potential ψ; (2) 0 ≤236

θ ≤ θs and 0 ≤ kr ≤ 1.0; and (3) θ = θs and kr = 1.0 at saturation (i.e., ψ = 0.0).237

Bandai and Ghezzehei (2021) used monotonic neural networks (Daniels & Velikova, 2010)238

to enforce the monotonicity constraint (constraint (1)), although the other two constraints239

were not met. Below, we describe our modified monotonic neural networks to represent240

soil hydraulic functions satisfying all three physical constraints.241

We used a feedforward neural network with one hidden layer. The input to the neu-242

ral network N is a scalar x, and the output is also a scalar value ŷ:243

ŷ := N (x). (14)

The input variable x is transformed by the composition of affine transformation and non-244

linear activation functions in the following way:245

h := tanh(Whx+ bh),

ŷ := o(Woh+ bo), (15)

where h ∈ Rnh is the vector corresponding to the hidden layer with nh units, Wh ∈246

Rnh×1 and bh ∈ Rnh are weight matrix and bias vector, respectively, for the hidden247

layer, Wo ∈ R1×nh and bo ∈ R are weight matrix and bias vector, respectively, for248

the output layer, o is the output function, which is defined as o(x) := 2σ(x) with σ be-249

ing the sigmoid function for water retention curves and o(x) := 10x for relative perme-250

ability functions. The neural network N was used to represent water retention curves251

θ(ψ) and relative permeability functions kr(ψ) in the following way:252

θ(ψ) = θsNθ(ψ) for ψ < 0, (16)

θ(ψ) = θs for ψ ≥ 0, (17)

–7–
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Parameters Forward Modeling 

Training

(a)

(b)

(c)

(d)

Gradient Loss Function 

Figure 2. The overview of the inverse modeling framework. (a): Physically constrained neu-

ral network for the water retention curve (i.e., the volumetric water content θ with respect to

the water potential ψ). (b): Physically constrained neural network for the relative permeability

function (i.e., the relative permeability kr with respect to the water potential ψ). (c): Forward

modeling to solve the Richardson-Richards equation (Appendix A). The solution for each time

step is iteratively obtained by the Newton method. Here, ψn,k is the water potential at all the

spatial nodes at the nth time step and the kth Newton iteration step. The solution for each time

step was converted into the volumetric water content by the neural network for the water reten-

tion curve and inserted into the loss function as the predicted volumetric water content θ̂. (d):

The gradient of the loss function L is computed by the reverse-mode automatic differentiation

with implicit differentiation, shown as the pink solid arrows. The gradient is used to update the

set of parameters Θ.
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for water retention curves and253

kr(ψ) = Nkr (ψ) for ψ < 0, (18)

kr(ψ) = 1.0 for ψ ≥ 0, (19)

for relative permeability functions. Here, we used the subscript θ and kr to emphasize254

the fact that the soil hydraulic functions do not share a single neural network. Thus, the255

soil hydraulic functions are not coupled, unlike commonly used parametric models like256

the van Genuchten-Mualem model. While not necessary, we used the same number of257

the hidden units nh for both neural networks (i.e., Nθ and Nkr ). We enforced the three258

physical constraints in the following manner. First, we forced the weight parameters Wh259

and Wo to be non-negative to make the neural network monotonically non-decreasing260

function of the input (Daniels & Velikova, 2010), which guarantees that the resulting soil261

hydraulic functions (Equation 16 and Equation 18) are monotonically non-decreasing func-262

tions of the water potential ψ (physical constraint (1)). Second, we set the bias param-263

eters bh and bo to zero vectors to ensure N (0) = 1.0. This setting ensures that the re-264

sulting soil hydraulic functions satisfy the physical constraints (2) and (3), as well as the265

continuity of the soil hydraulic functions at saturation ψ = 0.0, which is critical for solv-266

ing the system of nonlinear equations resulting from the discretization of the Richardson-267

Richards equation.268

3.2 Inverse modeling framework269

Here, we describe the inverse modeling framework used to estimate soil hydraulic270

functions from soil moisture data. We used physically constrained neural networks to271

represent water retention curves θ(ψ) and relative permeability functions kr(ψ). We ini-272

tialized the parameters of the two neural networks Nθ and Nkr by the Xavier initializa-273

tion (Glorot & Bengio, 2010) and assembled all the weight matrices as W := {Wh,θ,Wo,θ,Wh,kr ,Wo,kr}.274

In addition to the neural network parameters W, we also estimated the two physical pa-275

rameters, the saturated volumetric water content θs and the permeability K. Because276

we need to constrain the range of the parameters to prevent the nonlinear solver from277

not converging, we used the following transformations:278

θs = µθs + σθs tanh θ
t
s, (20)

log10K = µlog10K + σlog10K tanhKt, (21)

where µθs and µlog10K are the mean for the saturated water content θs and the perme-279

ability K in log scale, respectively, σθs and σlog10K are half of the range of the saturated280

water content θs and the permeability K in log scale, respectively, θts and Kt are the trans-281

formed physical parameters. While the transformed parameters were initialized to zero,282

the mean and the range values were predetermined based on available prior information.283

Thus, the set of parameters estimated in the inverse modeling framework Θ is the neu-284

ral network parameters W and the transformed physical parameters θts and Kt. The set285

of the parameters Θ = {W, θts,K
t} were simultaneously estimated by minimizing the286

empirical loss function L:287

L(Θ) =
1

Nθ

Nθ∑
i=1

(
θ̂(zi, ti; Θ)− θobs(z

i, ti)

σiθ

)2

, (22)

where θobs(z
i, ti) is the volumetric water content data observed at z = zi and t = ti288

for i = 1, 2, ..., Nθ, θ̂(z
i, ti; Θ) is the predicted volumetric water content at z = zi and289

t = ti for i = 1, 2, ..., Nθ by solving the forward problem given the set of the parame-290

ters Θ, and σiθ is the inverse of the weight for each measurement data θobs(z
i, ti). Com-291

monly, the standard deviation of the measurement error is used for σiθ, which makes the292

minimization problem the maximum likelihood estimation. Unfortunately, however, it293

is also common for the measurement error to be unknown. In the current framework,294

we fixed σiθ rather than estimating them during the inverse modeling.295

–9–



manuscript submitted to Water Resources Research

To minimize the loss function L, we used the Adam optimizer implemented in the296

JAX-based optimization library Optax (DeepMind et al., 2020) with the default param-297

eters (b1 = 0.9, b2 = 0.999, eps = 10−8, eps root = 0.0). We set the learning rate to298

10−2. The number of iterations of the Adam optimizer was determined for each inverse299

problem. To avoid stopping at a bad solution, we additionally ran the Adam optimizer300

to obtain the lowest loss value. The Adam optimizer requires the gradient of the loss func-301

tion with respect to the parameters Θ, which were computed by reverse-mode automatic302

differentiation implemented in JAX with implicit differentiation through the nonlinear303

solver.304

3.3 Implicit differentiation through nonlinear solver305

If we were to naively apply reverse-mode automatic differentiation to the numer-306

ical solver for the Richardson-Richards equation, JAX would need to trace all the New-307

ton iterations and the line searches conducted in the nonlinear solver every time step.308

This would result in a huge computational and memory cost. To avoid this issue, we im-309

plemented implicit differentiation through the nonlinear solver (Griewank & Walther,310

2008). We consider the system of nonlinear equations311

F(x,a) = 0, (23)

where F : Rn×Rp → Rn is the system of nonlinear equations with the solution vector312

x ∈ Rn and the parameter vector a ∈ Rp. In our case, the solution vector x is the so-313

lution of the Richardson-Richards equation for each time step, and the parameter vec-314

tor a corresponds to the set of parameters used for the soil hydraulic functions (i.e., Θ).315

We aim to compute the derivative ∂x
∂a for inverse modeling, where x is implicitly defined316

by the system of nonlinear equations (Equation 23). If we assume that F is continuously317

differentiable and the Jacobian matrix ∂F
∂x is not singular, implicit function theorem leads318

to319

∂F

∂x

∂x

∂a
+
∂F

∂a
= 0, (24)

which results in320

∂x

∂a
= −

[
∂F

∂x

]−1
∂F

∂a
. (25)

While the equation above gives the desired derivative ∂x
∂a , we actually need the Jacobian-321

vector product given a vector v ∈ Rp322

∂x

∂a
v = −

[
∂F

∂x

]−1

u, (26)

where u := ∂F
∂a v can be computed by the Jacobian-vector product of F via automatic323

differentiation. The Jacobian-vector product ∂x
∂av is the solution to the linear system324

∂F

∂x

[
∂x

∂a
v

]
= −u. (27)

The Jacobian-vector product ∂x
∂av was implemented as a custom derivative rule for325

the nonlinear solver by using jax.custom jvp class. While our inverse modeling frame-326

work requires the vector-Jacobian product (wT ∂x
∂a for a vector w ∈ Rn), JAX automat-327

ically derives it from the custom Jacobian-vector product rule, which is further automat-328

ically incorporated into the reverse-mode automatic differentiation (Radul et al., 2023).329

This automation is independent of the type of numerical solvers and loss functions, which330

makes this approach scalable with respect to the development time.331
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Figure 3. Transient upper flux boundary condition used in Benchmark problem 2 for Cub = 3.

The positive and negative values represent evaporation and rainfall, respectively.

3.4 Numerical test against synthetic noisy data332

We tested the inverse modeling framework against noisy synthetic soil moisture data.333

We generated the noisy synthetic data by solving a forward problem given van Genuchten-334

Mualem model parameters (Section 3.4.1). We verified the derivative of the loss func-335

tion against finite difference methods (Section 3.4.2). Then, we applied the inverse mod-336

eling framework to recover the original constitutive relations from the synthetic noisy337

data (Section 3.4.3).338

3.4.1 Generating noisy synthetic data339

We generated synthetic data by solving the one-dimensional Richardson-Richards340

equation (Equation 1 and Equation 2). The soil length is Z = 1.5 m, which was uni-341

formly discretized into 150 cells. We simulated wetting and drying cycles by applying342

a transient upper flux boundary condition as follows:343

qub = qrain for Tub(Cub − 1) ≤ t < Tub(Cub − 1) + Train, (28)

qub = qeva for Tub(Cub − 1) + Train ≤ t < TubCub, (29)

where Tub is the period of the cycle [T], Train is the duration of rainfall in each cycle [T],344

Cub is the number of the cycles. We set qrain = −0.25 m days−1, qeva = 0.005 m days−1,345

Tub = 3.0 days, and Train = 0.25 days. We varied the number of cycles Cub in each346

test conducted later. Figure 3 shows the transient upper flux boundary condition for Cub =347

3. The final time T is T = TubCub, and a fixed time-stepping of 0.01 days was used.348

The other setting is the same as the benchmark problem used for forward modeling (Sec-349

tion 2.4). We added Gaussian noise to the numerical solution to generate noisy synthetic350

data. Figure 4 shows the noisy synthetic data with Cub = 3 with Gaussian noise with351

a standard deviation of 0.005.352
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Figure 4. Noisy synthetic data for Benchmark problem 2. The transient upper flux boundary

condition (Figure 3) was used.

3.4.2 Testing reverse-mode automatic differentiation353

Before we applied the inverse modeling framework to the synthetic noisy data, we354

tested the implementation and performance of reverse-mode automatic differentiation355

with implicit differentiation. We conducted the testing in the parameter space near the356

true solution. To achieve that, we trained the neural networks Nθ and Nkr by the true357

soil hydraulic functions. We ran the Adam optimizer with the default parameters 20,000358

times to obtain the neural network parameters W. We used the true parameters for the359

saturated volumetric water content θs and the permeability K.360

We verified the gradient of the loss function L with respect to the parameters Θ361

computed by reverse-mode automatic differentiation with implicit differentiation by com-362

paring it with first and second order finite difference methods, following Hückelheim et363

al. (2023). As observational soil moisture data θobs, we used the synthetic data with Gaus-364

sian noise with a standard deviation of 0.005 obtained by setting Cub = 3 and sampled365

them at every time step at five different depths (z = −0.1,−0.3,−0.5,−0.7,−0.9 m).366

We set the number of hidden layer units to 10 for both neural networks. We computed367

a directional derivative of the loss function ∇L·v in a random direction v given the pa-368

rameters Θ obtained above. Because the tolerance of the nonlinear solver affects the ac-369

curacy of the gradient by all the methods, we tightened the tolerance of the nonlinear370

solver to τa = 10−12 for this test. Figure 5 demonstrates the trade-off between trun-371

cation errors (for a large step size) and round-off errors (for a small step size) and sug-372

gests that reverse-mode automatic differentiation with implicit differentiation provides373

accurate gradients.374

Next, we evaluated the computational time spent on updating the set of param-375

eters Θ. To investigate the scalability of the framework, we changed the number of units376

in the hidden layer nh to nh = 10, 20, 40, 80, 160 for both neural networks, which led377

to the total neural network parameters NN = 40, 80, 160, 320, 640, respectively. We fixed378

the final simulation time T by setting Cub = 3. The other settings remained the same379

as in the previous test. To demonstrate the efficiency of reverse-mode automatic differ-380

entiation with implicit differentiation, we compared the wall time for updating param-381

–12–



manuscript submitted to Water Resources Research

10−12 10−10 10−8 10−6 10−4 10−2

FD step size

10−20

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

E
rr

or

First Order FD

Second Order FD

First Order Reference

Second Order Reference

Figure 5. Finite difference (FD) test for the reverse-mode automatic differentiation with im-

plicit differentiation. The x-axis is the step of a finite difference method, and the y-axis is the

difference in the computed directional derivatives between the reverse-mode automatic differenti-

ation and first and second order finite difference methods.

NN JAX-CPU-forward JAX-CPU-update JAX-GPU-forward JAX-GPU-update

40 1.65 4.41 1.35 2.34
80 5.59 7.13 1.45 2.61
160 12.0 21.3 1.59 2.63
320 7.27 16.5 1.63 2.88
640 15.6 26.7 1.98 3.28

Table 2. Wall time [s] spent on solving the forward problem and updating the parameters Θ

on the CPU or the GPU for varying numbers of neural network parameters NN .

eters Θ (i.e., solving the forward problem, computing the gradient, and updating the pa-382

rameters Θ) with that for solving the forward problem. Table 2 demonstrates that the383

ratio of the wall time is less than 2 for the GPU. This efficiency was due to the implicit384

differentiation, in which we only need to solve a linear system for each time step dur-385

ing the reverse-mode automatic differentiation, not the system of nonlinear equations386

required to solve the forward problem (pink arrows in Figure 2). We emphasize that this387

would not be the case if we had used a finite difference method to compute the gradi-388

ent because the wall time for updating the parameters in this case would scale with the389

number of parameters. We observed a degraded performance on the CPU to solve the390

forward problem (and thus updating neural network parameters) with an increasing num-391

ber of neural network parameters. Furthermore, we observed a long compilation time392

for the CPU and large variances in the wall time among multiple runs for both solving393

the forward problem and updating the parameters. On the other hand, the GPU’s per-394

formance was consistent regardless of the number of neural network parameters, which395

demonstrates the advantage of using a GPU (He, 2023).396
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3.4.3 Learning constitutive relations397

We applied the inverse modeling framework to extract the constitutive relations398

from the noisy synthetic volumetric water content data. In these numerical experiments,399

we specifically studied the effects of (1) the number of units in the hidden layer, (2) the400

magnitude of the noise in the data, (3) the initialization of the neural network param-401

eters, and (4) the amount of data in time and space. For the first three goals (1, 2, 3),402

we varied the number of units in the hidden layer from 5, 10, 20, 40, and 80 and the mag-403

nitude of the noise by changing the standard deviation of Gaussian noise from 0.005, 0.01404

to 0.02. These simulations were conducted with a fixed data amount (Cub = 3 and five405

locations as above) and three different random seeds to generate different neural network406

initializations, leading to a total of 45 runs. For the last goal (4), we varied the number407

of cycles Cub from one to three and the number of observation locations from one (z =408

−0.5 m), three (z = −0.1,−0.5,−0.9 m), to five (z = −0.1,−0.3,−0.5,−0.7,−0.9 m).409

These simulations were conducted with a fixed magnitude of noise (a standard devia-410

tion of 0.005) and a number of units in the hidden layer (10 units). We initialized the411

transformed physical parameters θts and Kt to zero and set µθs = 0.3, σθs = 0.1, µlog10K =412

−13.0, and σlog10K = 2.0. In the loss function (Equation 22), we set σiθ to the mag-413

nitude of the noise for each case. We ran the Adam optimizer 10,000 times in the nu-414

merical experiments for each case.415

To evaluate the performance of the framework, we computed the relative L2 error416

for the fitted volumetric water content θ̂(zi, ti):417

ϵθ =
1

Nθ

Nθ∑
i=1

(
θ̂(zi, ti)− θtrue(z

i, ti)

θtrue(zi, ti)

)2

, (30)

where θtrue is the true numerical solution used to generate the synthetic noisy data. We418

also evaluated the accuracy of the estimated constitutive relations. To achieve that, we419

evaluated the estimated constitutive relations at ψtest that are uniformly distributed in420

log scale and computed the relative L2 error for the constitutive relations421

ϵcγ =
1

Nγ

∑
ψ∈{ψ∈ψtest|min θtrue≤θ̂(ψ)≤max θtrue}

(
γ̂(ψ)− γ(ψ)

γ(ψ)

)2

, (31)

where γ = θ, log10Kkr, and Nγ is the number of the evaluation points.422

Figure 6 summarizes the performance of the neural network approach with a num-423

ber of hidden units nh being 20 to extract the constitutive relations from the noisy syn-424

thetic soil moisture data at five observation points. We set Cub = 3, and the magni-425

tude of the noise was 0.02. Figure 6 (a) demonstrates that the recovered soil moisture426

dynamics matched very well with the ground truth volumetric water content data. Fig-427

ure 6 (b) and (c) show that the estimated water retention curve and unsaturated per-428

meability function agreed well with the true functions in the range of the data, respec-429

tively. On the other hand, the extrapolation capability of the neural network approach430

was poor. This could be improved by setting the water potential at the dry end (e.g.,431

water potential for oven-dry soils).432

Figure 7 demonstrates that the inverse modeling framework consistently succeeds433

in recovering the constitutive relations regardless of the number of hidden units and the434

magnitude of the noise. Also, the results show that the neural networks were robust against435

noise even when the neural networks had many parameters. The neural networks’ ro-436

bustness against noise is probably due to implicit bias, in which over-parametrized neu-437

ral networks tend to learn a simple structure from data (Chou et al., 2024). This prop-438

erty is not trivial because traditional approaches (e.g., using linear interpolation func-439

tions to represent the constitutive relations) would be overfitted to the noisy data and440

require some regularization techniques.441
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Figure 6. The performance of the neural network approach to extract the constitutive re-

lations in the Richardson-Richards equation from the noisy synthetic soil moisture data. (a):

1:1 comparison between the true and the simulated volumetric water content at all temporal

and spatial points. (b): The estimated water retention curve. (c): The estimated unsaturated

permeability function. The vertical lines in (b) and (c) represent the minimum water potential

observed in the ground truth soil moisture data.
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Figure 7. The effects of the number of hidden units nh and the magnitude of the noise. Each

setting was tested with three different neural network initializations. (a): L2 error for the simu-

lated volumetric water content. (b): L2 error for the water retention curve. (c): L2 error for the

unsaturated permeability function in log scale.
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ent neural network initializations. (a): L2 error for the simulated volumetric water content. (b):

L2 error for the water retention curve. (c): L2 error for the unsaturated permeability function in

log scale.

Figure 8 shows the effect of the amount of data on the performance of the neural442

network approach. For the simulated volumetric water content (Figure 8 (a)) and the443

water retention curve (Figure 8 (b)), the performance consistently improved with the444

amount of data (i.e., higher Cub and the number of observational locations). However,445

we observed the opposite trend for the unsaturated permeability function (Figure 8 (c)).446

We note that we obtained a similar opposite trend for the effect of the magnitude of the447

noise (Figure 7 (c)). Nevertheless, in all cases, the recovered relative permeability func-448

tions were reasonably accurate.449

3.5 Application to upward infiltration experimental data450

Lastly, we applied the inverse modeling framework to the upward infiltration ex-451

periment data conducted by Sadeghi et al. (2017). These investigators packed seven dif-452

ferent oven-dried soils into a rectangular box and induced upward infiltration by con-453

necting the bottom of the box to a constant hydraulic head device. They used a short-454
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wave infrared imaging camera to estimate soil moisture based on a physics-based model455

(Sadeghi et al., 2015). We used the soil moisture data for sandy loam soil (AZ7 soil) to456

demonstrate the feasibility of our inverse modeling framework against real experimen-457

tal data. We selected AZ7 soil because the experimental data show homogeneous upward458

infiltration and are compatible with the one-dimensional Richardson-Richards equation.459

Further details of the experiments can be found in Sadeghi et al. (2017) and Bandai, Sadeghi,460

et al. (2024).461

To extract the constitutive relations from the shortwave infrared based volumet-462

ric water content data, we defined a one-dimensional soil column with a length Z = 0.1463

m, which was uniformly discretized into 100 cells. We used a uniform initial condition464

ψ = −104 m because the soil was initially equilibrated with the laboratory atmosphere.465

We set the lower boundary condition to ψlb = −10−4 m, while we used a zero water466

flux condition for the upper boundary condition because we only used the soil moisture467

data until the water reached the top boundary. Although the top boundary was open468

to the atmosphere, we assumed that the evaporation from the top boundary was neg-469

ligible because the soil was equilibrated with the laboratory air. A constant time step-470

ping ∆t = 1 min was used. We used the soil moisture data collected at eight depths471

(z = −0.085,−0.075,−0.065,−0.055,−0.045,−0.035,−0.025,−0.015 m) as observational472

data.473

We compared the performance of our neural network based approach with that of474

the van Genuchten-Mualem model. As for the neural network approach, we set µθs =475

0.5, σθs = 0.2, µlog10K = −13.0, and σlog10K = 3.0. The number of units in the hid-476

den layer was set to 40, and three different random seeds for neural network initializa-477

tions were used. As for the van Genuchten-Mualem model, there are six parameters: θs,478

θr, α, n, τ , and K. We fixed τ to τ = 0.5. We used the same transformation for θs and479

K as the neural network based approach. For θr, α, and n, we used the following trans-480

formations481

θr = µθr + σθr tanh θ
t
r, (32)

log10 α = µlog10 α + σlog10 α tanhα
t, (33)

log10 n = µlog10 n + σlog10 n tanhn
t, (34)

where µθr is the mean for the θr parameter, µlog10 α and µlog10 n are the mean for the van482

Genuchten parameters α and n in log scale, respectively, σθr is the half of the range of483

the θr parameter, σlog10 α and σlog10 n are the half of the range for the van Genuchten484

parameters α and n in log scale, respectively, θtr, α
t, and nt are the transformed param-485

eters. We used µθr = 0.05, µlog10 α = −0.5, µlog10 n = 0.5, σθr = 0.05, σlog10 α =486

2.5 and σlog10 n = 0.5. Thus, the set of parameters estimated in the inverse modeling487

framework with the van Genuchten-Mualem model is Θ = {θtr, θts, αt, nt,Kt}. Because488

we do not know the measurement error of the soil moisture data, we set σiθ to 0.01 in489

the loss function (Equation 22). We ran the Adam optimizer with the default setting 10,000490

times to minimize the loss function defined for each approach. Although it is known that491

the van Genuchtne-Mualem model may suffer a local minimum of the loss function, we492

used the gradient based method for fair comparison.493

Figure 9 shows the fitted numerical solutions to the soil moisture data from the up-494

ward infiltration experiment for AZ7 soil. The neural network based approach was bet-495

ter fitted to the experimental data than the van Genuchten-Mualem model, particularly496

for dry and wet regimes. The minimized loss function L (Equation 22) was 0.854 and497

2.95 for the neural network approach and the van Genuchten-Mualem model, respectively.498

This result demonstrates the strength of the neural network based approach to fit to the499

data compared to parametric models with few numbers of free parameters.500

Figure 10 shows the estimated constitutive relations from the upward infiltration501

experiment for AZ7 soil. As for the water retention curve (Figure 10 (a)), the neural net-502
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Figure 9. Fitted numerical solutions to the upward infiltration experimental data for AZ7

soil. In the numerical solutions, the constitutive relations are represented by physically con-

strained neural networks (Neural network) or the van Genuchten-Mualem model (VGM model).

work model estimated higher volumetric water content θ given the same water poten-503

tial ψ and the slope of the water retention curve was more gradual than the van Genuchten-504

Mualem model, which led to the gradual increase in the volumetric water content grad-505

ually for dry and wet regimes for the neural network model. We plotted the experimen-506

tal data on the drying branch of the water retention curve for AZ7 soil measured by Tempe507

cells (Soilmoisture Equipment Corp., USA) and WP4-T Dewpoint Potentiameter (ME-508

TER Group, Inc., USA). While the inverse modeling from the upward infiltration data509

extracts the wetting branch of the water retention curve, the estimated water retention510

curve by the neural network approach matched the experimental water retention data511

well from saturated to medium moisture conditions. On the other hand, there is a dis-512

crepancy between the estimated and measured water retention curve for dry conditions.513

This is due to the limited amount of information content in the soil moisture data for514

dry conditions relative to the number of neural network parameters. While there is plenty515

of data at near-zero water content, there is almost no change in the data, and thus, the516

information content is low. We might be able to deal with such low information content517

for dry conditions by adding more physical constraints on the dry end, such as the min-518

imum water potential and the slope of the water retention curve (Tokunaga, 2009). In519

terms of the unsaturated permeability function, Figure 10 (b) shows higher unsaturated520

permeability for dry conditions for the neural network model. This is reasonable because521

water molecules are held by soil mineral surfaces as thin films and continue to flow for522

dry conditions (Tuller et al., 1999).523

To further clarify the ability of neural networks to learn the constitutive relations,524

we plotted the relation between the relative permeability and the saturation defined by525

θ
θs

in Figure 10 (c). The van Genuchten-Mualem model in the plot corresponds to Mualem’s526

bundle tube model (Equation 10). The result shows that the neural network model qual-527

itatively agrees with the van Genuchten-Mualem model for intermediate moisture con-528

ditions, suggesting that the neural network learned Mualem’s bundle tube model. On529

the other hand, in the dry and the wet regimes, we observed a discrepancy between the530
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two models, which demonstrates that Mualem’s bundle tube model is not adequate to531

describe the soil moisture dynamics for wet and dry conditions.532

4 Discussion533

Our work takes a similar approach to that of Bitterlich et al. (2004) and Iden and534

Durner (2007), where they proposed free-form approaches to estimate the constitutive535

relations of the Richardson-Richards equation (i.e., soil hydraulic functions). Compared536

to their studies, however, our inverse modeling framework is scalable and extensible. First,537

our inverse modeling framework can be extended to more complex problems (i.e., multi-538

physics problems) with scalable development costs. Bitterlich et al. (2004) used adjoint539

methods to compute the gradient of a loss function to solve their constrained optimiza-540

tion problem. While adjoint methods give exact derivatives as in automatic differenti-541

ation, the implementation of adjoint methods is problem-dependent, extremely tedious,542

and error-prone for complex problems. This is especially true for the Richardson-Richards543

equation, a time-dependent nonlinear partial differential equation with nonlinear con-544

stitutive relations (Bandai, 2022). Although the automatic implementation of adjoint545

methods exists (Mitusch et al., 2019), its application to complex problems is not straight-546

forward and has not yet been achieved. Our framework uses reverse-mode automatic dif-547

ferentiation with implicit differentiation, which is problem-independent and thus can be548

extensible to more complex problems. Furthermore, the previous free-form approaches549

(Bitterlich et al., 2004; Iden & Durner, 2007) require specific optimization algorithms550

to satisfy the monotonicity constraint for the soil hydraulic functions. On the other hand,551

our monotonic neural network approach automatically satisfies the monotonicity con-552

straint and can use any optimization algorithms available through machine learning li-553

braries, thus reducing the development costs. Second, our framework is scalable with re-554

spect to the number of parameters. In vadose zone studies, including that of Iden and555

Durner (2007), global optimization methods were preferred because it was claimed that556

gradient-based local minimization algorithms suffer from a bad local minimum in objec-557

tive functions (Vrugt et al., 2008). While global optimization methods are powerful for558

small scale problems (e.g., up to 50 parameters), they are not scalable with respect to559

the number of parameters. In contrast, our inverse modeling framework uses a gradient-560

based optimization algorithm with reverse-mode automatic differentiation, which is scal-561

able and thus can incorporate highly parameterized functions, such as neural networks.562

It appears that local optimization algorithms do not suffer from a bad local minimum563

when soil hydraulic functions are parameterized by neural networks, as we demonstrated564

in Section 3.4. While it is widely believed that over-parameterized neural networks do565

not suffer from bad local minimum (Belkin, 2021), it is necessary to investigate whether566

such arguments are true for our application.567

Next, we discuss how our work is related to other physics-informed machine learn-568

ing and differentiable hybrid modeling approaches (Karniadakis et al., 2021; Shen et al.,569

2023). In these approaches, machine learning models (i.e., neural networks) are combined570

with physics-based models through differentiable modeling platforms, such as Tensor-571

Flow (Abadi et al., 2015), PyTorch (Paszke et al., 2019), and JAX (Bradbury et al., 2018),572

all of which support automatic differentiation (Baydin et al., 2018). Physics-based mod-573

els are embedded in different ways, including soft or hard constraints in a loss function574

(Bandai & Ghezzehei, 2021; Lu et al., 2021; Wang et al., 2023) and structural priors (Mitusch575

et al., 2021; Feng et al., 2023; Gaskin et al., 2023). Our approach enforced the Richardson-576

Richards equation as a structural prior and is categorized in the latter group. Unlike en-577

forcing physical models as a soft constraint in a loss function as in physics-informed neu-578

ral network approaches (Bandai & Ghezzehei, 2021), our approach strictly enforces the579

physical laws in the Richardson-Richards equation, the conservation of mass (Equation580

1) and the Buckingham-Darcy law (Equation 2). It is notable that we used neural net-581

works to represent unknown functions in a physics-based model (i.e., soil hydraulic func-582
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Figure 10. The estimated constitutive relations from the upward infiltration experimental

data for AZ7 soil using the physically constrained neural network (Neural network model) and

the van Genuchten-Mualem (VGM model). (a): The estimated water retention curve. The open

and closed circles represent the drying branch of the water retention measurement of AZ7 soil

using Tempe cells and WP-4T Dewpoint Potentiameter, respectively. (b): The estimated unsat-

urated permeability function. (c): The estimated unsaturated permeability with respect to the

saturation.
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tions) as in Mitusch et al. (2021), while other studies used neural networks to estimate583

physical parameters used in embedded physical models, as in Feng et al. (2023) and Gaskin584

et al. (2023). The former approach can be classified as a genre of universal differential585

equations (Rackauckas et al., 2021) and neural differentiation equations (Kidger, 2022).586

While we did not use neural networks to infer physical parameters, as in Feng et al. (2023)587

and Gaskin et al. (2023), such approaches might be more robust than directly training588

the physical parameters (the transformed volumetric water content θts and permeabil-589

ity Kt) via gradient-based algorithms, as we did.590

We must mention the limitations of the current inverse modeling framework. The591

fundamental limitation is the high computational cost to solve the forward problem and592

the optimization problem. As for the forward modeling of the Richardson-Richards equa-593

tion, the computational performance might be improved with more efficient discretiza-594

tion methods, linear solvers with appropriate preconditioners, and nonlinear solvers (Farthing595

& Ogden, 2017). Also, implementing parallel computations across multiple GPU cores596

is a promising approach. To solve the optimization problem more efficiently, we should597

test second-order Newton methods (Isaac et al., 2015; Ghattas & Willcox, 2021; Bandai,598

2022). Another limitation is the ability to handle complicated boundary conditions, such599

as ponding on the soil surface and seepage boundaries. These system-dependent bound-600

ary conditions are unique to vadose zone studies, and we need to test the differentiable601

modeling framework against such situations for practical applications. Finally, the cur-602

rent inverse modeling framework is focused on deterministic parameter estimation, and603

the uncertainty of the estimated parameters has not formally been investigated. For in-604

terested readers, we provide information on the uncertainty of the estimated parame-605

ters obtained by synthetic data with different noise in the supplementary material, where606

we demonstrated that the estimated soil hydraulic functions by the physically constrained607

neural networks were quite consistent regardless of different noises in the data. We note608

that uncertainty quantification of neural networks is challenging because the number of609

parameters is large, which prevents us from employing Markov Chain Monte Carlo ap-610

proaches. In this context, future studies should quantify the uncertainty of parameters611

via scalable approaches, such as the Laplace approximation with a low-rank approxima-612

tion of the Hessian using efficient Hessian-vector product computations (Ghattas & Will-613

cox, 2021).614

We note future opportunities of the inverse modeling framework. We envision that615

our inverse modeling framework can be extended to more complex problems. For exam-616

ple, it would be interesting to apply the current framework to lysimeter data to recover617

surface water flux and estimate the constitutive relations for water and heat transport618

problems. Also, it might be possible to extract the constitutive relations from satellite-619

based soil moisture products using the current framework. Finally, we mention how to620

advance our understanding of the constitutive relations from the learned neural networks.621

One possibility is to use symbolic regression to extract parametric equations from the622

trained neural networks (Kidger, 2022). Another possible approach is to compare the623

trained neural networks with the constitutive relations predicted from pore-scale phys-624

ical models (Tuller et al., 1999; Tuller & Or, 2001). In both cases, our top-down data-625

driven neural network approach provides valuable information on the constitutive rela-626

tions of the Richardson-Richards equation on various scales of interest.627

5 Conclusions628

We developed a new free-form approach to extract the constitutive relations of the629

Richardson-Richards equation from soil moisture data via inverse modeling. We built630

the inverse modeling framework on a machine learning framework called JAX. We tested631

the inverse modeling framework against synthetic noisy data and soil moisture data from632

an upward infiltration experiment. The main conclusions of the study are as follows:633
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1. JAX on a GPU was competitively fast to solve forward problems.634

2. Implicit differentiation through the Newton solver enabled a scalable algorithm635

with respect to the number of neural network parameters.636

3. Synthetic numerical experiments demonstrated the robustness of the framework637

against the noise in the data, the initialization of the neural networks, and the amount638

of available data.639

4. We demonstrated that the neural networks successfully extracted more informa-640

tion on the constitutive relations from the upward infiltration experimental data641

compared to the commonly used parametric models.642

We also discussed the perspectives of the differentiable modeling approach employed in643

the study. We envision that this framework can be extended to other multi-physics prob-644

lems in vadose zone hydrology.645

Appendix A Numerical method646

We solved the Richardson-Richards equation with the initial and boundary con-647

ditions by a finite volume method with the Backward Euler method. For the one-dimensional648

problem, the spatial domain was divided into Ns cells, where a cell Ci for i = 1, ..., Ns649

corresponds to z ∈ [zi−1/2, zi+1/2] with the grid space ∆zi = zi+1/2 − zi−1/2. To ac-650

commodate various boundary conditions, we placed the ghost cell next to each spatial651

boundary, C0 := {z ∈ [−Z − ∆z1,−Z]} and CNs+1 := {z ∈ [0,∆zNs
]}. The soil hy-652

draulic properties of the ghost cells are assumed to be the same those of the cell next653

to the ghost cells. Over each cell, we assumed that the water potential is constant, and654

the volumetric water content and relative permeability are computed by given water re-655

tention curve and relative permeability function from the cell-centered water potential656

ψi for the cell Ci for i = 0, ..., Ns + 1.657

We integrated the mass balance equation (Equation 1) over a cell Ci for i = 1, ..., Ns658

and obtained659 ∫
Ci

∂θ

∂t
dz = q(zi−1/2, t)− q(zi+1/2, t). (A1)

The temporal derivative is approximated by the Backward Euler method. For that pur-660

pose, we introduce the times tn for n = 0, 1, ..., Nt, such that661

0 = t0 < t1 · · · < tn < · · · < tNt = T, (A2)

and the corresponding time steps ∆tn = tn − tn−1 for n = 1, ..., Nt. We represent the662

solution at the time t = tn by a bold symbol with the superscript n, such as ψn = [ψn0 , ψ
n
1 , ..., ψ

n
Ns
, ψnNs+1]

T
663

and θn = [θn0 , θ
n
1 , ..., θ

n
Ns
, θnNs+1]

T . The initial condition was interpolated to obtain ψ0.664

For the time t = tn with n = 1, ..., Nt, we obtain the following non-linear equation for665

i = 1, ..., Ns:666

Fni := (θni − θn−1
i )− ∆tn

∆zi

(
q(zi−1/2, t

n)− q(zi+1/2, t
n)
)
. (A3)

Here, the water flux at the interface is evaluated as follows:667

q(zi−1/2, t
n) = −K̂i−1/2k̂

n
r (zi−1/2, t

n)ρg

µ

(
hi − hi−1

zi − zi−1

)
, (A4)

where the permeability at the internal interface is computed by an inverse distance-weighted668

harmonic mean:669

K̂i−1/2 =
Ki−1Ki(zi − zi−1)

Ki−1∆zi/2 +Ki∆zi−1/2
, (A5)

and the relative permeability is upwinded according to670

k̂nr (zi−1/2, t
n) = knr (zi−1, t

n) if hni−1 > hni , (A6)

k̂nr (zi−1/2, t
n) = knr (zi, t

n) if hni > hni−1. (A7)
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We obtain additional non-linear equations corresponding to the lower and upper bound-671

ary condition. For the lower boundary,672

Fn0 := ψn1/2 − ψlb, (A8)

and for the upper boundary,673

FnNs+1 := q(zNs+1/2, t
n)− qub. (A9)

The interface water potential is computed by a distance-weighted arithmetic mean:674

ψn1/2 =
ψn0∆z1 + ψn1∆z0

z1 − z0
. (A10)

We assemble the non-linear equations as Fn = [Fn0 , F
n
1 , ..., F

n
Ns
, FnNs+1]

T for n =675

1, 2, ..., Nt. The system of non-linear equations Fn was solved by the Newton method.676

Let ψn,k denote the solution at the kth Newton iteration for k = 0, 1, 2, ... with ψn,0 =677

ψn−1. For the kth Newton iteration, the Newton direction dk is determined by solving678

the Newton system:679

F′(ψn,k)dk = −F(ψn,k), (A11)

where the Jacobian matrix F′ := ∂F
∂ψ was computed by analytically or automatic dif-680

ferentiation. The Newton step size is adjusted by Armijo line search:681

ψn,k+1 = ψn,k + λdk, (A12)

with the initial λ = 1, and λ is reduced by a factor 0.5 when the sufficient decrease con-682

dition683

||F(ψn,k+1)|| < (1− cλ)||F(ψn,k)||, (A13)

where c = 10−4, is not met. Here, || · || represents the L∞ norm. The Newton itera-684

tion was terminated when685

||F(ψn,k)|| ≤ τa, (A14)

where τa = 10−8.686

Open Research Section687

The Python and Fortran codes and computational results are available on Bandai,688

Ghezzehei, et al. (2024). The upward infiltration experimental data is available on Bandai689

et al. (2023).690
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