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Lieb-Robinson bounds, the spectral flow, and stability of the

spectral gap for lattice fermion systems

Bruno Nachtergaele, Robert Sims, and Amanda Young

Abstract. We prove Lieb-Robinson bounds for a general class of lattice ferm-
ion systems. By making use of a suitable conditional expectation onto sub-
algebras of the CAR algebra, we can apply the Lieb-Robinson bounds much
in the same way as for quantum spin systems. We preview how to obtain
the spectral flow automorphisms and to prove stability of the spectral gap for
frustration-free gapped systems satisfying a Local Topological Quantum Order
condition.

1. Introduction

In the past dozen years, a considerable number of mathematical results on
quantum spin systems made use of Lieb-Robinson Bounds [26] in an essential way.
These include extensions of the Lieb-Schultz-Mattis theorem to higher dimensions
[18, 37], the exponential decay of correlations in gapped ground states [36, 20],
Area Laws for the entanglement entropy [19, 9], construction of the spectral flow
and adiabatic theorems [8, 6, 5], stability results for gapped ground states [11, 30]
and more.

It is quite clear that in many cases it should be possible to answer the same
type of questions for lattice fermion systems based on the same principles that apply
to quantum spin systems. Indeed, there are several special cases where the close
analogy between lattice systems of spins and of fermions allowed for the successful
application of Lieb-Robinson bounds. For example, a proof of the quantized Hall
effect for interacting lattice fermions [21, 16], and linear response theory for lattice
fermion systems [13].

In this paper, we discuss several crucial ingredients which enter the proof of
stability for gapped, frustration-free models of lattice fermions. First, we prove a
Lieb-Robinson bound for a general class of models. Variants of this quasi-locality
estimate enter the proof of stability in many different stages. Next, we introduce a
conditional expectation which enables strictly local approximations of quasi-local
observables; this can be seen as an analogue of the normalized partial trace famil-
iar in the context of quantum spin systems. Then, we provide a version of the
martingale method suitable to prove lower bounds for the spectral gap of fermion
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models. Equipped with this, a wealth of potential unperturbed models can be ex-
plored. After giving a few specific classes of gapped fermion models, we overview
the main tool of analysis for stability: the spectral flow. More detailed estimates
and additional results will be provided in forth-coming papers [32, 41].

The methods discussed in this paper can be applied to the Aubry-André model
studied by Mastropietro in a recent series of papers [27, 28, 29]. Both the molec-
ular and the free fermion limit can be shown to be stable under general, uniformly
small, short-range perturbations. This is more general than the class of pertur-
bations studied by Mastropietro, but the general result is weaker. In particular
the renormalization group method of Mastropietro takes into account the quasi-
periodicity of the potential, in a way that allows for an estimate of the correlation
length that is indicative of many-body localization. The details of the interactions
are ignored by the general approach discussed here and adapting the method to
study many-body localization will require further research.

2. Lattice fermion systems

Spinless fermions on a countable set Γ, which is often referred to as ‘the lat-
tice’, are described by the CAR algebra AΓ = CAR(ℓ2(Γ)). AΓ is the C*-algebra
generated by creation and annihilation operators a∗x, ax, x ∈ Γ, which satisfy the
canonical anti-commutation relations, i.e. the CAR:

(2.1) {ax, ay} = {a∗x, a∗y} = 0 and {ax, a∗y} = δx,y1l for any x, y ∈ Γ .

Here {A,B} = AB+BA denotes the anti-commutator of A and B. As is discussed
in detail in [10], this CAR algebra can be represented as the collection of bounded
linear operators over the Hilbert space corresponding to the anti-symmetric Fock
space generated by ℓ2(Γ). Furthermore, we note that spin and/or band indices can

be included in this description by extending Γ, for example, to Γ̃ = Γ× {1, . . . , n}.
For X ⊂ Γ, AX is naturally embedded as a subalgebra of AΓ by identifying

ℓ2(X) with the subspace of ℓ2(Γ) consisting of the functions that vanish on Γ \X .
Let P0(Γ) denote the set of finite subsets of Γ. For any X ∈ P0(Γ), it is useful to
define the parity automorphism of AX , which we denote by ΘX , by setting

(2.2) ΘX(A) = (−1)NXA(−1)NX for any A ∈ AX .

Here NX =
∑

x∈X a∗xax is the local number operator. Using the quasi-local struc-
ture of AΓ, we see that there is a unique automorphism Θ of AΓ for which Θ ↾AX

=
ΘX for any X ∈ P0(Γ). It is clear that Θ

2 = id. The even and odd elements of AΓ

are the eigenvectors of Θ with eigenvalue 1 and −1, respectively. By A+
Γ and A−

Γ ,

we denote the corresponding eigenspaces. Similarly, for any Λ ∈ P0(Γ), we set A+
Λ

and A−
Λ to be the even and odd eigenspaces of ΘΛ on the subalgebra AΛ. Note that

A+
Λ is a C∗-subalgebra of AΛ, but A−

Λ is not a subalgebra. In fact, it is immediate

that (A−
Λ )

2 ⊂ A+
Λ .

A convenient basis for the local subalgebra AΛ is the one consisting of all
monomials. Recall that A ∈ AΛ is a monomial if

(2.3) A =
∏

x∈Λ

Ax with Ax ∈ {1l, ax, a∗x, a∗xax} .

Since each monomial is either even or odd, we conclude that any A ∈ AΛ can be
written as A = A+ + A− where A± ∈ A±

Λ and with each of A+, resp. A−, being
a linear combination of even, resp. odd, monomials. Many of the results we will
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present depend on the support of the observable under consideration. The following
proposition describes some useful commutation properties related to support.

Proposition 2.1. Let X,Y ∈ P0(Γ) with X ∩ Y = ∅.
(i) If A ∈ A+

X and B ∈ AY , then [A,B] = 0. Moreover, if A ∈ AX , B ∈ AY , and

[A,B] = 0, then either A ∈ A+
X or B ∈ A+

Y .

(ii) If A ∈ A−
X and B ∈ A−

Y , then {A,B} = 0. Moreover, if A ∈ AX , B ∈ AY , and

{A,B} = 0, then either A or B is identically zero, or A ∈ A−
X and B ∈ A−

Y .

Proof. The first statements in (i) and (ii) above are easy to check for mono-
mials, and they extend to general observables by linearity. Now, suppose A ∈ AX ,
B ∈ AY , and [A,B] = 0. Using the first part of (i), it is clear that

(2.4) 0 = [A,B] = [A+ +A−, B+ +B−] = [A−, B−] = 2A−B− − {A−, B−}
and therefore, A−B− = 0 by the first part of (ii). The claim now follows by
expanding A− and B− in the monomial basis. Proving the second part of (ii) is
similar. �

An interaction Φ for a system of fermions on Γ is defined similarly to that of
an interaction for a quantum spin system. Specifically, a map Φ : P0(Γ) → AΓ is
an interaction if Φ(X)∗ = Φ(X) ∈ AX for all X ∈ P0(Γ). For the results we are
interested in here, we will restrict our attention to even interactions. An interaction
Φ is said to be even if Φ(X) ∈ A+

X for all X ∈ P0(Γ). As such, each term Φ(X) is
itself a sum of terms of the form

(2.5) a∗Y h(Y, Z)aZ + a∗Zh(Y, Z)aY ,

where Y ∪ Z = X , |Y | + |Z| is even, h(Y, Z) ∈ C, and aY = ay1
· · · ayk

for a
suitable enumeration of Y = {y1, . . . , yk}. This assumption of even interactions
has a physical justification; it follows from the conservation of angular momentum
that the parity of the number of particles with half-integral spin is preserved. In
other words, fermions can only be created or annihilated in an even number at a
time.

Given an interaction Φ and Λ ∈ P0(Γ), a local Hamiltonian HΦ
Λ is defined by

(2.6) HΦ
Λ =

∑

X⊂Λ

Φ(X).

When the interaction Φ is understood, we often drop its dependence in the lo-
cal Hamiltonians. These finite-volume Hamiltonians generate a local Heisenberg
dynamics which is a one-parameter group of automorphisms of AΛ:

(2.7) τΛt (A) = eitHΛAe−itHΛ , t ∈ R, A ∈ AΛ.

If a dynamics τΛt is generated by an even interaction, it leaves A±
Λ invariant. In

the next section we will show that for such dynamics that Lieb-Robinson bounds
identical to the well-known bounds for quantum spin systems hold with essentially
the same proof. One could also consider lattice fermion systems with an infinite
number of bands, but for simplicity we will not do this here. In the finite band case,
it is not a loss of generality to assume that the time-dependence of each interaction
term is continuous in the operator norm, and this allows for a more straightforward
presentation.
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3. Lieb-Robinson bounds

Lieb-Robinson bounds provide an upper bound on the speed of propagation of
disturbances in an extended many-body system. Such bounds can be proved under
quite general conditions on the many-body interactions. In fact, the argument we
describe below applies to time-dependent interactions as well, and so we introduce
this now. Let I ⊂ R be an interval; often I = R, but this is not necessary. An even,
time-dependent interaction Φ is a mapping Φ : P0(Γ)× I → AΓ for which

(3.1) Φ(X, t)∗ = Φ(X, t) ∈ A+
X for all X ∈ P0(Γ) and t ∈ I,

and moreover,

(3.2) t 7→ Φ(X, t) is continuous for each X ∈ P0(Γ) .

Associated to any even, time-dependent interaction Φ and each Λ ∈ P0(Γ),
there is a corresponding finite-volume, time-dependent Hamiltonian

(3.3) HΛ(t) =
∑

X⊂Λ

Φ(X, t) for all t ∈ I .

As is well-known, see e.g. Theorem X.69 in [43], the solution of

(3.4)
d

dt
UΛ(t, s) = −iHΛ(t)UΛ(t, s) with UΛ(s, s) = 1l and s, t ∈ I,

produces a two-parameter family of unitary propagators UΛ(t, s) ∈ AΛ, and in
terms of these unitaries, a co-cycle of automorphisms of AΛ is defined by

(3.5) τΛt,s(A) = UΛ(t, s)
∗AUΛ(t, s) for all A ∈ AΛ and t, s ∈ I .

These automorphisms τΛt,s are commonly referred to as the finite-volume Heisenberg
dynamics associated to Φ, and it is to these dynamics that the Lieb-Robinson
bounds apply. As we previously observed in the time-independent case, since HΛ(t)
in (3.4) is even, UΛ(t, s) is even and so the map τΛt,s leaves A+

Λ and A−
Λ invariant.

Lieb-Robinson bounds are valid for interactions that decay sufficiently fast. A
precise formulation of these bounds requires a notion of distance. For this reason,
we will further assume that the countable set Γ is equipped with a metric d. In
many physically interesting models, Γ = Zν for some integer ν ≥ 1, and we may,
for instance, take d to be the ℓ1-metric.

It is convenient to express the decay of interactions in terms of a function
G : Γ× Γ → (0,∞) with the following properties:

(i) for all x, y ∈ Γ, G(x, y) = G(y, x);
(ii) for all x, y ∈ Γ,

∑

z∈ΓG(x, z)G(z, y) ≤ G(x, y);
(iii) x 7→∑

z∈ΓG(x, z) is a uniformly bounded function on Γ.
We will denote the supremum of the bounded function described in (iii) by ‖G‖.

Given such a function G, we define a set of even interactions, denoted B+
G(I),

for which we can prove a Lieb-Robinson bound: an even interaction Φ belongs to
B+
G(I) if there is a locally integrable function ‖Φ‖G : I → [0,∞) for which

(3.6)
∑

Z∈P0(Γ)
x,y∈Z

‖Φ(Z, t)‖ ≤ ‖Φ‖G(t)G(x, y) for all x, y ∈ Γ and t ∈ I.

Here ‖Φ‖G(t) plays the role of a time-dependent norm on the space of interactions.
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Two further definitions are useful in the statement of the Lieb-Robinson bounds.
For X ⊂ Λ ⊂ Γ, we define a collection of surface sets associated to X in Λ by

(3.7) SΛ(X) = {Z ∈ P0(Λ) : Z ∩X 6= ∅ and Z ∩ (Λ \X) 6= ∅}.

Furthermore, if Φ is a time-dependent interaction, then the Φ-boundary of a set
X ∈ P0(Γ) is defined by

(3.8) ∂ΦX = {x ∈ X | ∃Z ∈ SΓ(X), t ∈ I s.t. x ∈ Z, and Φ(Z, t) 6= 0}.

If Φ is long-range, then it is often the case that ∂ΦX = X , and |∂ΦX | is not a good
measure of surface effects on the dynamics. However, when Φ is finite-range, the
above definition is of more consequence.

Theorem 3.1 (Lieb-Robinson Bound for Fermions). Let Γ be a countable set
equipped with a metric d and a function G satisfying (i) - (iii) above, and let
Φ ∈ B+

G(I). For Λ ∈ P0(Γ), let τ
Λ
t,s be a finite-volume dynamics associated to Φ, as

defined in (3.5). Let X,Y ⊂ Λ with X ∩ Y = ∅.
(i) If A ∈ AX , B ∈ AY , and [A,B] = 0, then

(3.9)
∥

∥

[

τΛt,s(A), B
]∥

∥ ≤ 2‖A‖‖B‖
(

exp

[

2

∫ t

s

‖Φ‖G(r) dr
]

− 1

)

∑

x∈∂ΦX

∑

y∈Y

G(x, y)

for all t, s ∈ I, s ≤ t.
(ii) If A ∈ AX , B ∈ AY , and {A,B} = 0, then for any s ≤ t, one has that
(3.10)
∥

∥

{

τΛt,s(A), B
}∥

∥ ≤ 2‖A‖‖B‖
(

exp

[

2

∫ t

s

‖Φ‖G(r) dr
]

− 1

)

∑

x∈∂ΦX

∑

y∈Y

G(x, y).

A number of remarks are in order.
First, the proof of this theorem mimics techniques that are well-known in the

context of quantum spin systems, i.e. tensor product algebras. In fact, given
Lemma 3.2 and Lemma 3.3, both proved below, the proof of Lieb-Robinson bounds
in both settings proceeds almost identically. This was noted already in [13], where
a variant of Theorem 3.1 (i) is proved along the same lines as what we present here
(see [13][Theorem 5.1-Corollary 5.2(ii)]. It has been known for some time that to
treat odd observables for fermionic systems, one should consider anti-commutators
in addition to commutators. See, e.g., the discussion in [20].

Next, as explained in Proposition 2.1, the assumptions on the observables above
can be re-formulated: for (3.9), one has assumed that either A or B is even, whereas
for (3.10), excepting trivialities, one has assumed that both A and B are odd.

Further, the existence of a function G satisfying properties (i)-(iii) above is,
implicitly, a condition on Γ. In many applications, the function G is defined as a
function of the distance between sites. More precisely, let F : [0,∞) → (0,∞) be a
non-increasing function with the following two properties:

(iv) F is uniformly integrable on Γ, i.e.

(3.11) ‖F‖ = sup
x∈Γ

∑

y∈Γ

F (d(x, y)) <∞,

and



6 B. NACHTERGAELE, R. SIMS, AND A. YOUNG

(v) F satisfies the convolution condition

(3.12) C = sup
x,y∈Γ

∑

z∈Γ

F (d(x, z))F (d(z, y))

F (d(x, y))
<∞.

Any function F as above is called an F -function on Γ. Moreover, it is clear that,
in terms of any such F , we can define a function G with the properties (i)-(iii), by
setting G(x, y) = C−1F (d(x, y)).

For technical estimates, it is often convenient to consider classes of decay
functions on Γ. Note that if F is an F -function on Γ, then for any subadditive
function f : [0,∞) → [0,∞), i.e., f(r + s) ≤ f(r) + f(s) for all r, s ∈ [0,∞),
the function Ff (r) = e−f(r)F (r) also satisfies (iv) and (v) with ‖Ff‖ ≤ ‖F‖ and
Cf ≤ C. Similarly, given G satisfying (i)-(iii) and any g : Γ → (0, 1], the function
Gg(x, y) = g(x)g(y)G(x, y) also satisfies (i)-(iii). In this latter case, the function g
can be used to introduce a spatial dependence in the decay of the interaction.

For Γ = Zν and d(x, y) = |x − y|, i.e. the ℓ1-distance, a typical example of an
F -function is given by

(3.13) F (r) =
1

(1 + r)ν+ǫ

where ǫ > 0 can be arbitrary. In fact, it is clear that this F -function is uniformly
integrable, i.e. (3.11) holds, and moreover, for (3.12) one may take

(3.14) C = 2ν+ǫ‖F‖ .
In combination with f(r) = ar, a > 0, we obtain a useful family of F -functions Fa

given by Fa(r) = e−ar/(1 + r)ν+ǫ.
Before proving Theorem 3.1, we state two simple lemmas. First, in Lemma 3.2

below, we prove a basic estimate for solutions of certain B(H)-valued differential
equations. Next, Lemma 3.3 summarizes an application of Lemma 3.2 demonstrat-
ing a one-step locality estimate for the dynamically evolved quantities of interest.
Theorem 3.1 will then follow by iterating the result from Lemma 3.3.

We start with the following solution estimate.

Lemma 3.2. Let H be a complex Hilbert space, I ⊂ R an interval, and A,B :
I → B(H), be norm continuous with A self-adjoint, i.e. A(t)∗ = A(t) for all t ∈ I.
Then, for any t0 ∈ I, the solution of the initial value problem

(3.15)
d

dt
f(t) = i[A(t), f(t)] +B(t) with f(t0) = f0 ∈ B(H)

satisfies the estimate

(3.16) ‖f(t)‖ ≤ ‖f(t0)‖ +
∫ t+

t−

‖B(s)‖ ds for any t ∈ I.

Here we have set t+ = max{t, t0} and t− = min{t, t0}.
The assumption of norm continuity above is convenient because it guarantees

that the mapping s 7→ ‖B(s)‖ is continuous and thus measurable. A variant of this
result in the case that A and B are merely strongly continuous is proved in [39].

Proof. Since A is self-adjoint, the unitary propagator corresponding to

(3.17)
d

dt
U(t, t0) = iA(t)U(t, t0) with U(t0, t0) = 1l
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is well-defined for any t ∈ I. In this case, the function g : I → B(H) given by

(3.18) g(t) = U(t, t0)g0U(t, t0)
∗

is the unique solution of the initial value problem

(3.19)
d

dt
g(t) = i[A(t), g(t)] with g(t0) = g0 ∈ B(H) .

From this, one readily checks that

(3.20) f(t) = U(t, t0)

(

f0 +

∫ t

t0

U(s, t0)
∗B(s)U(s, t0) ds

)

U(t, t0)
∗

is the unique solution of (3.15) from which (3.16) follows. �

We now use Lemma 3.2 to provide estimates on two families of operators. Let Φ
be an even, time-dependent interaction. For any Λ ∈ P0(Γ), consider the dynamics
τΛt,s on AΛ, as in (3.5) above. Given X ⊂ Λ and any B ∈ AΛ, we define maps

gX,B
t,s , hX,B

t,s : AX → AΛ as follows:

(3.21) gX,B
t,s (A) = [τΛt,s(A), B] and hX,B

t,s (A) = {τΛt,s(A), B} for all A ∈ AX .

Lemma 3.3. Let Φ be an even, time-dependent interaction and take Λ ∈ P0(Γ).

For X ⊂ Λ, A ∈ AX , and s, t ∈ I, with s ≤ t, the mappings gX,B
t,s and hX,B

t,s :
AX → AΛ, defined in (3.21), satisfy the bounds

‖gX,B
t,s (A)‖ ≤ ‖[τXt,s(A), B]‖ + 2‖A‖

∑

Z∈SΛ(X)

∫ t

s

‖gZ,B
r,s (Φ(Z, r))‖ dr(3.22)

‖hX,B
t,s (A)‖ ≤ ‖{τXt,s(A), B}‖+ 2‖A‖

∑

Z∈SΛ(X)

∫ t

s

‖gZ,B
r,s (Φ(Z, r))‖ dr,(3.23)

where τXt,s(A) is the finite-volume dynamics associated to HX(t), see (3.3) and (3.5).

As will be the case in our applications, these bounds are particularly useful
when the first term on the right-hand-sides above vanish.

Proof of Lemma 3.3. Let A ∈ AX , B ∈ AΛ and s ∈ I be fixed. To derive
the two bounds in parallel, define two functions:

(3.24) f1(t) = [τΛt,s ◦ τ̂Xt,s(A), B] and f2(t) = {τΛt,s ◦ τ̂Xt,s(A), B}.
Here, τ̂Xt,s denotes the inverse dynamics of the system restricted to X , i.e.

(3.25) τ̂Xt,s(A) = UX(t, s)AUX(t, s)∗,

which is the inverse of (3.5). One readily checks that for f1:

d

dt
f1(t) = i

[

τΛt,s
([

HΛ(t)−HX(t), τ̂Xt,s(A)
])

, B
]

= i
∑

Z∈SΛ(X)

[[

τΛt,s(Φ(Z, t)), τ
Λ
t,s ◦ τ̂Xt,s(A)

]

, B
]

= i
∑

Z∈SΛ(X)

[

τΛt,s(Φ(Z, t)), f1(t)
]

− i
∑

Z∈SΛ(X)

[

τΛt,s ◦ τ̂Xt,s(A),
[

τΛt,s(Φ(Z, t)), B
]]

.

In the first equality above, we use that the adjoints of the unitary propagators
satisfy the adjoint of (3.4). For the second, we use that supp(τ̂Xt,s(A)) ⊂ X , and for
the final equality we use the Jacobi identity.
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An almost identical calculation for f2(t) gives:

d

dt
f2(t) = i

{

τΛt,s
([

HΛ(t)−HX(t), τ̂Xt,s(A)
])

, B
}

= i
∑

Z∈SΛ(X)

{[

τΛt,s(Φ(Z, t)), τ
Λ
t,s ◦ τ̂Xt,s(A)

]

, B
}

= i
∑

Z∈SΛ(X)

[

τΛt,s(Φ(Z, t)), f2(t)
]

− i
∑

Z∈SΛ(X)

{

τΛt,s ◦ τ̂Xt,s(A),
[

τΛt,s(Φ(Z, t)), B
]}

.

We note that the only change here is that, instead of the Jacobi identity for com-
mutators, we use the following identity which holds for any three elements x, y, z
in an associative algebra:

(3.26) {[x, y], z} − {[z, x], y}+ [{y, z}, x] = 0.

Both differential equations above are of the form required to apply Lemma 3.2.
The claimed bounds follow from this and the substitution A 7→ τXt,s(A). �

We can now present the proof of the Lieb-Robinson bounds for lattice fermions
for which the following notation will be useful: for X,Y ⊂ Γ, set

(3.27) δY (X) =

{

0 if X ∩ Y = ∅
1 if X ∩ Y 6= ∅.

Proof of Theorem 3.1. We first prove (3.9). Lemma 3.3 implies

(3.28) ‖[τΛt,s(A), B]‖ ≤ ‖[τXt,s(A), B]‖ + 2‖A‖
∑

Z∈SΛ(X)

∫ t

s

‖[τΛr,s(Φ(Z, r)), B]‖ dr.

Since the observables A and B have disjoint support and one of them is even, it is
clear that [τXt,s(A), B] = 0. More generally, if A ∈ A+

Z , then τZr,s(A) ∈ A+
Z for all

r, s ∈ I and so the bound ‖[τZr,s(A), B]‖ ≤ 2‖A‖‖B‖δY (Z) follows. In this case, by
iterating (3.28) N ≥ 1 times, we obtain

(3.29) ‖[τΛt,s(A), B]‖ ≤ 2‖A‖‖B‖
(

δY (X) +

N
∑

n=1

an(t)

)

+RN+1(t)

where

an(t) = 2n
∑

Z1∈SΛ(X)

∑

Z2∈SΛ(Z1)

· · ·
∑

Zn∈SΛ(Zn−1)

δY (Zn)

∫ t

s

∫ r1

s

· · ·
∫ rn−1

s

×

×





n
∏

j=1

‖Φ(Zj, rj)‖



 drndrn−1 · · · dr1(3.30)

and

RN+1(t) = 2N+1
∑

Z1∈SΛ(X)

∑

Z2∈SΛ(Z1)

· · ·
∑

ZN+1∈SΛ(ZN )

∫ t

s

∫ r1

s

· · ·
∫ rN

s

×





N
∏

j=1

‖Φ(Zj, rj)‖



 ‖[τΛrN+1,s
(Φ(ZN+1, rN+1)), B]‖drN+1drN · · · dr1.(3.31)
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The remainder term RN+1(t) is estimated as follows. First, we observe that

(3.32) ‖[τΛrN+1,s
(Φ(ZN+1, rN+1)), B]‖ ≤ 2‖B‖ ‖Φ(ZN+1, rN+1)‖ .

Next, we note that the sums above are actually sums over chains of sets Z1, · · ·ZN+1

that satisfy Z1 ∩ ∂ΦX 6= ∅ and Zj ∩ Zj−1 6= ∅ for 2 ≤ j ≤ N + 1. As such, there
are points w1, w2, · · · , wN+1 ∈ Λ with w1 ∈ Z1 ∩ ∂ΦX and wj ∈ Zj ∩ Zj−1 for all
2 ≤ j ≤ N + 1. A simple upper bound on these sums is then obtained by over
counting:
(3.33)

∑

Z1∈SΛ(X)

∑

Z2∈SΛ(Z1)

· · ·
∑

ZN+1∈SΛ(ZN )

∗ ≤
∑

w1∈∂ΦX

∑

w2,...,wN+2∈Λ

∑

Z1,...,ZN+1⊂Λ:

wk,wk+1∈Zk,k=1,...,N+1

∗

where ∗ denotes an arbitrary non-negative quantity. Note that we have also used
that the last set ZN+1 must contain more than one point since ZN+1 ∈ SΛ(ZN ).
Now, from (3.6) we have that

(3.34)
∑

Zk⊂Λ:

wk,wk+1∈Zk

‖Φ(Zk, rk)‖ ≤ ‖Φ‖G(rk)G(wk, wk+1)

holds for each 1 ≤ k ≤ N + 1. We conclude that

RN+1(t) ≤ 2‖B‖2N+1

∫ t

s

· · ·
∫ rN

s

∑

w1∈∂ΦX

∑

w2,...,wN+2∈Λ

∑

Z1,...,ZN+1⊂Λ:

wk,wk+1∈Zk,k=1,...,N+1

×
N+1
∏

j=1

‖Φ(Zj , rj)‖drN+1 · · · dr1

≤ 2‖B‖2N+1

∫ t

s

· · ·
∫ rN

s

∑

w1∈∂ΦX

∑

w2,...,wN+2∈Λ

×
N+1
∏

j=1

‖Φ‖G(rj)G(wj , wj+1)drN+1 · · · dr1

≤ 2‖B‖2N+1
∑

w1∈∂ΦX

∑

wN+2∈Λ

G(w1, wN+2)

×
∫ t

s

· · ·
∫ rN

s

N+1
∏

j=1

‖Φ‖G(rj)drN+1 · · · dr1

≤ 2‖B‖|∂ΦX |‖G‖

(

2
∫ t

s
‖Φ‖G(r) dr

)N+1

(N + 1)!
.

Since ‖Φ‖G(·) is locally integrable on I, this remainder clearly goes to 0 as N → ∞.
A similar estimate can be applied to the terms an(t). Note that these terms

are also sums over chains of sets. However, there is a restriction: only those chains
whose final link Zn satisfies Zn ∩ Y 6= ∅ contribute to the sum. The bound

(3.35) an(t) ≤

(

2
∫ t

s
‖Φ‖G(r) dr

)n

n!

∑

x∈∂ΦX

∑

y∈Y

G(x, y).
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follows as above. Since δY (X) = 0 and n ≥ 1, the bound in (3.9) is now clear.
The proof of (3.10) proceeds similarly. In fact, Lemma 3.3 implies

(3.36) ‖{τΛt,s(A), B}‖ ≤ ‖{τXt,s(A), B}‖+ 2‖A‖
∑

Z∈SΛ(X)

∫ t

s

‖[τΛr,s(Φ(Z, r)), B]‖ dr

Since {A,B} = 0, the first term on the left-hand-side above vanishes. Using (3.28)
to estimate the second term and iterating in exactly the same way as above, yields
(3.10) as claimed. �

Theorem 3.1 gives an estimate of
∥

∥

[

τΛt,s(A), B
]∥

∥ for commuting observables A
and B with disjoint supports. As a function of |t−s|, this estimate grows exponen-
tially and for small |t−s| vanishes linearly. A few additional comments are in order.
First, note that when the supports of A and B have non-empty intersection, in gen-
eral, one cannot expect to improve on the trivial bound:

∥

∥

[

τΛt,s(A), B
]∥

∥ ≤ 2‖A‖‖B‖.
On the other hand, given a lower bound on the distance between the supports of
A and B, and if the interaction is of finite range, a slight modification to the proof
of Theorem 3.1 shows that the behavior for small |t − s| is o(|t − s|n), where n is
the minimum number of interactions terms necessary to connect the supports of
A and B with a chain of sets, see e.g. (3.30). For similar reasons, one can also
show that single-site terms in the Hamiltonian do not contribute to the estimate
of Lieb-Robinson velocity. This can easily be seen using the interaction picture as
is done, e.g., in [38]. Of course, this is not the statement that single-site terms
in the Hamiltonian do not affect the velocity associated to certain time-evolved
observables; rather it is the fact that this general upper bound is insensitive to such
terms. For example, in specific models with a random external field, the speed of
propagation has been shown to vanish [17].

4. Conditional expectation and local approximations

In many applications to quantum spin systems, the commutator estimates pro-
vided by Lieb-Robinson bounds are used to approximate quasi-local observables by
strictly local ones. These local approximations are given by a conditional expecta-
tion with respect to a suitable product state (see, e.g., [12, 34, 35]). In the setting
of lattice fermions, the conditional expectations that come to mind are those with
respect to a product state such as, e.g., the tracial state, which is also the quasi-free
state on AΓ determined by ωtr(axay) = 0, and ωtr(a∗xay) =

1
2δx,y, for all x, y ∈ Γ.

This state has the following product property [1, Theorem 6.12]: for any finite set
of distinct x1, . . . , xk ∈ Γ, and Axi

∈ A{xi}, we have

(4.1) ωtr(Ax1
· · ·Axk

) =
k
∏

i=1

ωtr(Axi
).

It is not difficult to see that for all Λ ∈ P0(Γ), ω
tr restricted to AΛ is the state

of maximal entropy. It was shown in [4][Theorem 4.7] that for each finite X ⊂ Γ,
there is a unique conditional expectation FX : AΓ → AX that leaves ωtr invariant,
meaning

(4.2) ωtr(FX(AB)) = ωtr(FX(A)B), A ∈ AΓ, B ∈ AX .

The same result for arbitrary even product states ω was proved in [3]. The family
of conditional expectations {FX : AΓ → AX | X ∈ P0(Γ)} determined by (4.2),
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satisfies the commuting diagram:

(4.3)

AX∪Y AX

AY AX∩Y

FX

FY FX∩Y

FX∩Y

.

The commutativity of this diagram is the essential property that allows one to use
the maps FX in the same role as the partial trace in the case of of quantum spin
systems. We note however, that for applications one often only needs these relations
for even observables, in which case there are other options for the local algebras
and the conditional expectations. For our purposes, it will be useful to introduce a
slightly different set of conditional expectations, which we will now explain.

Under the isomorphism AΛ
∼= M2|Λ| , ωtr coincides with the normalized trace

on M2|Λ| . For even observables, the conditional expectation acts exactly as in
the situation of spin system. The anticommutation properties of odd observables,
however, introduce a small twist, which implies that the Krauss form of the map
FX contains global operators (see (4.19) below). This creates a complication for
the proof of Lemma 4.3. Therefore, we introduce another family of conditional
expectations which, as we will show, also satisfy a commuting diagram similar to
(4.3), and which coincide with the maps FX on even observables.

The remainder of this section is devoted to describing the conditional expecta-
tions of interest for finite volume systems. Given a C∗-algebra A, and a subalgebra
B of A, by a conditional expectation of A onto B, we mean a unity-preserving, com-
pletely positive map E : A → A with ran(E) = B, such that E(BAC) = BE(A)C
for all A ∈ A and B, C ∈ B. Let X ⊆ Λ ⊂ Γ with X and Λ finite. We will show
that the range of the relevant conditional expectation EΛ

X : AΛ → AΛ is given by
the C∗ -subalgebra:

AΛ
X = {A+BθΛ : A ∈ A+

X , B ∈ A−
X},

where θΛ = (−1)NΛ is the parity operator used to define ΘΛ in (2.2). Since we
only consider Hamiltonians defined by even interactions, in applications it will
be sufficient to only consider the restriction of EΛ

X to A+
Λ . In the restricted case

EΛ
X : A+

Λ → AΛ will be a conditional expectation with range equal to A+
X .

We define EΛ
X by giving its Krauss form. For each site x ∈ Λ, define

(4.4) u(0)x = 1l, u(1)x = a∗x + ax, u(2)x = a∗x − ax, u(3)x = 1l− 2a∗xax.

It follows from the CAR that these are unitary. Clearly, u
(i)
x ∈ A+

{x} for i = 0, 3,

and u
(i)
x ∈ A−

{x} for i = 1, 2. Therefore, u
(i)
x commutes with the elements of AΛ\{x}

for i = 0, 3, and u
(i)
x commutes with A+

Λ\{x} and anti-commutes with A−
Λ\{x} for

i = 1, 2.
For a subset X ⊆ Λ, let IΛ\X = {0, 1, 2, 3}Λ\X and fix an ordering of the sites

of Λ \ X = {x1, . . . , xn}. Then, for each α ∈ IΛ\X define the unitary operator
u(α) ∈ AΛ\X by

(4.5) u(α) = u(α(x1))
x1

· · ·u(α(xn))
xn

.
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We will show that the following unity-preserving, completely positive map EΛ
X :

AΛ → AΛ is the conditional expectation of interest associated with X on Λ:

(4.6) E
Λ
X(A) =

1

4|Λ\X|

∑

α∈IΛ\X

u(α)∗Au(α), A ∈ AΛ.

It is important to notice that the map EΛ
X does not depend on the ordering chosen

for the site in Λ \X . Since the unitaries u
(k)
x , u

(l)
y , x 6= y, k, l ∈ {0, 1, 2, 3}, either

commute or anti-commute, any reordering ũ(α) of u(α) equals either u(α) or −u(α).
Either way, the α-term in (4.6) is not affected.

The first important property for EΛ
X is that

(4.7) E
Λ
X(A) = ωtr(A)1l for all A ∈ AΛ\X .

It is easy to verify that EΛ
Λ\{x}(A) = ωtr(A)1l for a monomial A ∈ A{x}. Using this,

the product property of ωtr given in (4.1), and the CAR it follows that (4.7) holds
for any monomial A ∈ AΛ\X . The property then extends to AΛ\X by linearity.

To establish that EΛ
X is a conditional expectation, it is left to verify that

(4.8) E
Λ
X(BAC) = BE

Λ
X(A)C

for all A ∈ AΛ and B, C ∈ ran(EΛ
X). In the situation that ran(EΛ

X) is a C∗-
subalgebra of AΛ, a theorem by Tomiyama [44] shows that (4.8) is satisfied if EΛ

X

is a norm-1 projection. In the next lemma we establish that Tomiyama’s result
applies to both EΛ

X : AΛ → AΛ and the restriction EΛ
X : A+

Λ → AΛ.

Lemma 4.1. For X, Λ ∈ P0(Γ) with X ⊂ Λ, the map EΛ
X : AΛ → AΛ defined

in (4.6) satisfies
(i) ‖EΛ

X‖ = 1;
(ii) (EΛ

X)2 = EΛ
X ;

(iii) EΛ
X(AΛ) = AΛ

X ;
(iv) EΛ

X(A+
Λ) = A+

Λ .

Proof. Property (i) follows immediately from the fact that EΛ
X is an average

of unitary conjugations.
To prove (ii)-(iv) we consider observables of the form A =

∏

x∈ΛAx where

Ax ∈ A±
{x}, for all x ∈ Λ. We refer to such operators as product observables. Since

the monomials defined in (2.3) satisfy this condition, computing E
Λ
X(A) for product

observables completely describes the map.
By (anti-)commuting the factors Ax, A can be written in the form A = BC

where B and C are product observables in AX and AΛ\X , respectively. Then, using
the CAR:

(4.9) E
Λ
X(A) =

{

B 1
4|Λ\X|

∑

α∈IΛ\X
u(α)∗Cu(α) if B ∈ A+

Λ

B 1
4|Λ\X|

∑

α∈IΛ\X
π(u(α))u(α)∗Cu(α) if B ∈ A−

Λ .

Here, π(u(α)) = ±1 denotes the parity of u(α). For all α ∈ IΛ\X

π(u(α))u(α)∗Cu(α) = u(α)∗CθΛ\Xu(α)θΛ\X ,

so applying (4.7) to (4.9) we find:

(4.10) E
Λ
X(A) =

{

Bωtr(C) if B ∈ A+
Λ

Bωtr(CθΛ\X)θΛ\X if B ∈ A−
Λ .



LIEB-ROBINSON BOUNDS FOR LATTICE FERMION SYSTEMS 13

Applying (4.10) a second time shows (EΛ
X)2(A) = EΛ

X(A) for any product observable
A, and so property (ii) holds. Alternatively, (ii) also follows from the observation
that EΛ

X is defined as the average of the adjoint actions {Adu(α) | α ∈ IΛ\X}, which
form a group.

For property (iii), we see from (4.10) that E
Λ
X(AΛ) ⊆ AΛ

X by noting that
θΛ\X = θXθΛ. The opposite containment follows from observing that

E
Λ
X(A+BθΛ) = A+BθΛ

for any pair of product observables A ∈ A+
X and B ∈ A−

X .

For (iv), if A ∈ A+
Λ then the factors B and C above are either both even or both

odd. If they are both odd, then EΛ
X(A) = 0 since ωtr is zero for odd observables.

It follows that EΛ
X(A+

Λ ) ⊆ A+
X . The opposite containment holds since EΛ

X(A) = A

for all A ∈ A+
X . �

Several comments are in order. First, an important consequence of (4.10) is
that

(4.11) A−
Λ\X ⊆ ker(EΛ

X).

Second, we will want to consider the family of all conditional expectations EΛ
X

such that X ⊆ Λ ∈ P0(Γ). Since the definition of EΛ
X is independent of the ordering

of the sites x ∈ Λ \X , given any two sets Y, Z ⊆ Λ such that Λ \X is the disjoint
union of Λ \ Y and Λ \ Z it immediately follows that

(4.12) E
Λ
X = E

Λ
Y ◦ EΛ

Z = E
Λ
Z ◦ EΛ

Y .

Lemma 4.2. The family of conditional expectations {EΛ
X : X ⊆ Λ ∈ P0(Γ)}

defined as in (4.6) satisfy the following properties:
(i) For any X, Y ⊆ Λ,

(4.13) E
Λ
X ◦ EΛ

Y = E
Λ
X∩Y .

(ii) For any X ⊆ Λ and A ∈ A+
Z and B ∈ A+

Y with Z ∩ Y = ∅,

(4.14) E
Λ
X(AB) = E

Λ
X∪Y (A) · EΛ

X∪Y c(B) = E
Λ
X∪Zc(A) · EΛ

X∪Z(B).

(iii) Given X ⊆ Λ1 ⊆ Λ2 and A ∈ A+
Λ1
,

(4.15) E
Λ1

X (A) = E
Λ2

X (A).

Proof. For (i), since Λ\X is the disjoint union of Λ\(X∪Y ) and Λ\(X∪Y c),
(4.12) implies

(4.16) E
Λ
X = E

Λ
X∪Y c ◦ EΛ

X∪Y .

Analogously, EΛ
Y = EΛ

X∪Y ◦ EΛ
Xc∪Y . Using that EΛ

X∪Y is a projection, we find

E
Λ
X ◦ EΛ

Y = E
Λ
X ◦ EΛ

Xc∪Y .

The result follows from noticing that Λ \ (X ∩Y ) is the disjoint union of Λ \X and
Λ \ (Xc ∪ Y ).
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For (ii), we first use (4.16) to rewrite EX(AB). Then, using the commutation
properties of even observables we find

E
Λ
X(AB) =

1

4|Λ\X|

∑

α∈IXc∩Y c

β∈IXc∩Y

u(β)∗u(α)∗Au(α)Bu(β)

=
1

4|Λ\X|

∑

α∈IXc∩Y c

β∈IXc∩Y

u(α)∗Au(α)u(β)∗Bu(β)

= E
Λ
X∪Y (A) · EΛ

X∪Y c(B).

An analogous argument holds for showing the final equality in (4.14).

Finally, (iii), since A′ = E
Λ1

X (A) ∈ A+
X , and A+

X ⊆ A+
Λ1

⊆ A+
Λ2
, it is clear that

E
Λ2

X (A) = E
Λ2

Λ1
(A′) = A′.

�

Recall that the motivation for introducing these conditional expectations was
to produce local approximations of global observables. Since we consider even inter-
actions, it is sufficient to just localize even observables. The final result we provide
shows that EΛ

X does indeed produce local approximations of even observables.

Lemma 4.3. Let A ∈ A+
Λ , X ⊂ Λ, and ǫ > 0. If ‖[A,B]‖ ≤ ǫ‖B‖ for all

B ∈ AXc , then there exists A′ ∈ A+
X such that ‖A−A′‖ ≤ ǫ.

This lemma is proved by a straightforward estimate using A′ = EΛ
X(A):

(4.17) ‖A− E
Λ
X(A)‖ =

∥

∥

∥

∥

∥

∥

1

4|Λ\X|

∑

α∈IΛ\X

u(α)∗[u(α), A]

∥

∥

∥

∥

∥

∥

.

Since u(α) ∈ AΛ\X and is unitary, for all α ∈ IΛ\X , by the assumption in the
lemma we have the bound

(4.18) ‖[A, u(α)]‖ ≤ ǫ,

which is sufficient to prove lemma.
Since A is even, using the Krauss forms of EΛ

X , see (4.6), and of FΛ
X , see (4.19)

below, one can easily check EΛ
X(A) = FΛ

X(A). Note, however, that the Krauss form
for FΛ

X on all of AΛ involves global operators and, as such, is not suitable for the
above argument. To present a Krauss form for FΛ

X , we first define π(0) = π(3) = 1,
π(1) = π(2) = −1 and for α ∈ IY , π(α) =

∏

y∈Y π(αy), and denote by I±Y the sets

of α ∈ IY for which π(α) = ±1. Then we have

(4.19) F
Λ
X(A) =

1

4|Λ\X|

∑

α∈IΛ\X

ũ(α)∗Aũ(α), A ∈ AΛ,

with

(4.20) ũ(α) =

{

u(α) if α ∈ I+Λ\X

θXu(α) if α ∈ I−Λ\X

.

Clearly, the support of θXu(α) is all of Λ and there is no obvious way to apply a
Lieb-Robinson bound to estimate a commuator with it.
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5. Martingale method for lattice fermions

Before we address the question of stability of a spectral gap in the presence of
perturbations, we would like to demonstrate the existence of a wealth of models for
which one can prove the existence of a spectral gap. These models can then serve
as the ‘unperturbed model.’

As in the situation of quantum spin systems, it is helpful to consider frustration-
free models. Examples of frustration-free fermion models in one dimension are
easily found by making use of the Jordan-Wigner transformation [25], to translate
the abundance of frustration-free quantum spin chains into fermion Hamiltonians.
An example of this type is Kitaev’s Majorana chain [24] and also the path of
frustration-free fermion chains connecting Kitaev’s Majorana chain to a family of
interacting fermion chains introduced by Katsura et al. [23].

In Section 6 we will also introduce a class of frustration-free fermion models in
arbitrary dimension that have a quasi-free ground state and a spectral gap above it.
In the latter case, for the quadratic Hamiltonians associated to these models, one
can often determine a lower bound for the spectral gap by inspection. For models
with interactions of a more general form, however, proving a volume-independent
lower bound for the spectral gap above the ground state is generally a challenging
problem. For spin systems the martingale method has often been applied to es-
tablish a nonzero spectral gap above the ground state energy [15, 33, 7]. In this
section we give a formulation of the method suited for lattice fermions. Although
the tensor product structure of quantum spin systems is not available, under general
conditions, one can still obtain the commutation relations required for the method.
The approach we introduce here was first used in [45].

Let Λ be finite and HΛ ∈ A+
Λ be the lattice fermion Hamiltonian acting on

a fermionic Fock space. Note further that for any self-adjoint, even observable
A ∈ A+

Λ that the spectral projections associated to A also belong to A+
Λ . This

follows immediately from the fact that the spectral projections can be expressed
as a polynomial of A. From this, we conclude that the spectral projections of two
self-adjoint even observables with disjoint support commute.

Now consider an increasing sequence of non-negative Hamiltonians

H0 ≤ H1 ≤ . . . ≤ HN

with H0 = 0, HN = HΛ, and Hn ∈ A+
Λ for all 0 ≤ n ≤ N . More generally, it

is sufficient to consider an increasing, non-negative sequence of Hamiltonians for
which

(5.1) cHN ≤ HΛ − EΛ1l ≤ CHN

where c, C > 0 and EΛ is the ground state energy of HΛ. When the conditions
of the martingale method are met, it produces a lower bound for the spectral gap
above the ground state energy of HN .

To apply the martingale method, it is necessary that the Hamiltonians Hn each
have a non-trivial kernel. Since these Hamiltonians are non-negative and increasing,
the kernels Gn = kerHn form a decreasing sequence of subspaces:

HΛ = G0 ⊃ G1 ⊃ G2 · · · ⊃ GN = ker(HN ).

In order to state the assumptions of the martingale method we define

(5.2) hn = Hn −Hn−1, for n = 1, . . . , N.
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Clearly, (5.2) implies Hn =
∑n

k=1 hk, and Hn is increasing if and only if hk ≥ 0, for
all k = 1, . . . , N . Furthermore, define Gn and gn to be the orthogonal projections
onto kerHn and kerhn, respectively, and let

(5.3) En =











1l−G1 if n = 0

Gn −Gn+1 if 1 ≤ n ≤ N − 1

GN if n = N

.

It is easy to verify that the En are a mutually orthogonal family of orthogonal
projections that form a resolution of the identity, i.e., E∗

n = En, EnEm = δn,mEn,

and
∑N

n=0En = 1l.
Assumptions for the Martingale Method:

(i) There is a constant γ > 0 such that hn ≥ γ(1l− gn) for 1 ≤ n ≤ N .
(ii) There is an integer ℓ ≥ 0 such that whenever 0 ≤ n ≤ N−1 and k 6∈ [n−ℓ, n],

[Ek, gn+1] = 0.
(iii) There exists a positive ǫ < 1/

√
ℓ+ 1, such that Engn+1En ≤ ǫ2En, for

0 ≤ n ≤ N − 1.

Theorem 5.1 (Martingale Method). Suppose that Assumptions (i)–(iii) hold
for a sequence of Hamiltonians Hn, n = 0, . . . , N as described above. If ψ ∈ HΛ

such that GNψ = 0, then

〈ψ,HNψ〉 ≥ γ(1− ǫ
√
1 + ℓ)2‖ψ‖2.

Proof. By assumption ENψ = GNψ = 0. Hence

(5.4) ‖ψ‖2 =
N−1
∑

n=0

‖Enψ‖2.

Given this, for any 0 ≤ n ≤ N − 1, we have that

‖Enψ‖2 = 〈ψ, (1l− gn+1)Enψ〉+ 〈ψ, gn+1Enψ〉

= 〈ψ, (1l− gn+1)Enψ〉+ 〈ψ,
(

n
∑

k=nℓ

Ek

)

gn+1Enψ〉,(5.5)

where we have set nℓ = max(0, n− ℓ). For the last equality above, we inserted the
resolution of the identity, used Assumption (ii), and applied the mutual orthogo-
nality of the projections En. Two applications of the inequality

(5.6) |〈ϕ1, ϕ2〉| ≤
1

2c
‖ϕ1‖2 +

c

2
‖ϕ2‖2, ϕ1, ϕ2 ∈ H, c > 0,

now show that

‖Enψ‖2 ≤ 1

2c1
〈ψ, (1l− gn+1)ψ〉+

c1
2
〈ψ,Enψ〉

+
1

2c2
〈ψ,Engn+1Enψ〉+

c2
2
〈ψ,
(

n
∑

k=nℓ

Ek

)2

ψ〉.

We estimate each of the four terms above as follows. For the first term, we apply
Assumption (i), whereas the second term is immediately combined with the left-
hand-side. With the third term, we use Assumption (iii), and for the fourth term,
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we again use the mutual orthogonality of the En. After some reordering, we have

(5.7) (1− c1
2

− ǫ2

2c2
)‖Enψ‖2 −

c2
2

n
∑

k=nℓ

‖Ekψ‖2 ≤ 1

2c1γ
〈ψ, hn+1ψ〉.

Summing both sides of (5.7) from n = 0, . . . , N − 1, yields

(5.8) 〈ψ,HNψ〉 ≥ 2c1γ

[

1− c1
2

− ǫ2

2c2
− c2(1 + ℓ)

2

]

‖ψ‖2.

Maximizing this lower bound leads to the choice of c1 = 1 − ǫ
√
1 + ℓ and c2 =

ǫ/
√
1 + ℓ. This produces the inequality stated in the theorem. �

6. Discussion: stability, examples, and the spectral flow

Recently, methods were introduced, see e.g. [11, 30], which allow for a proof
of stability for gapped ground states of frustration-free quantum spin systems sat-
isfying a Local Topological Quantum Order (LTQO) condition. Here, the term
stability refers to the property that the there is a lower bound of the spectral gap,
uniform in Λ, for finite-volume Hamiltonians of the form

HΛ(s) =
∑

X⊂Λ

Φ(X) + sΨ(X),

where Ψ is any other short-range interaction and |s| < s0 for some s0 > 0. Roughly
speaking, this LTQO condition on Φ amounts to a precise formulation of the notion
that, in this situation, degenerate ground states cannot be distinguished by local
operations. In a forth-coming work [40], a systematic refinement of these tech-
niques will be presented which generalize previous results. For example, a stability
result for gapped ground state phases of quantum spin models with a spontaneously
broken discrete symmetry is contained in [40].

In this section, we give an indication of how analogous results extend to models
of lattice fermions. More details on this extension will be given in [41]. We begin
by defining general frustration-free fermion models. Next, we give a large class
of examples of gapped, frustration-free fermion which may serve as unperturbed
models for stability results. Then, we introduce several types of symmetry, which
may or may not be broken in a given model, and discuss briefly how the LTQO
condition should be modified in this context. Lastly, we discuss the construction of
the spectral flow automorphism which is main tool of analysis in proofs of stability.

In the same way as for quantum spin systems, an even fermion interaction Φ
on Γ is defined to be frustration-free if Φ is finite-range and for Λ ∈ P0(Γ) we have

(6.1) inf spec(HΛ) =
∑

X⊂Λ

inf spec(Φ(X)).

It is standard to normalize the interactions so that each interaction term is non-
negative, i.e. Φ(X) ≥ 0 for each X ∈ P0(Γ), and further that the ground state
energy of HΛ vanishes. In this case, a ground state eigenvector for HΛ is neces-
sarily in the kernel of each of its terms. Since we do not assume the existence of
simultaneous eigenvectors for other energy values, this set-up does not imply that
the interaction terms commute.

We now consider two classes of gapped frustration-free fermion models with
finite-range interactions. As already indicated in Section 5, a first class of examples
are those one-dimensional fermion systems with finite-range interactions that are
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mapped to a gapped, frustration-free quantum spin chain by the Jordan-Wigner
transformation. Note that even interaction terms Φ([a, b]) ∈ A+

[a,b] are mapped into

Φ̃([a, b]) ∈ Aspin
[a,b]. Here evenness of the interactions is important to preserve its

finite-range property. It also implies a local discrete symmetry for the quantum
spin model; more on this below. The properties of the ground states of such models
can be used to verify the conditions of the martingale method discussed in Section
5. This provides a wide class of gapped fermion systems in one-dimension. Another
approach for constructing frustration-free one-dimensional fermion systems defines
fermionic Matrix Product States using graded vector spaces [14].

A second class of interesting frustration-free fermion models with a spectral gap
is obtained by considering quasi-free systems with two (or more) bands separated by
a gap γ > 0. For clarity, we will use two sets of fermion creation and annihilation
operators {bk, b∗k | k ∈ B} and {cl, c∗l | l ∈ C}, labeled by index sets B and C,
respectively, which together span AΓ, where Γ is a lattice of arbitrary dimension.
These operators are defined as follows. There are two subsets of ℓ2(Γ), {fk|k ∈ B},
and {gl | l ∈ C} such that:

(i) ‖fk‖ = 1, ‖gl‖ = 1, for all k ∈ B and l ∈ C;
(ii) span({fk | k ∈ B} ∪ {gl | l ∈ C}) is dense in ℓ2(Γ);
(iii) 〈fk, gl〉 = 0, for all k ∈ B and l ∈ C;
(iv) there exists R ≥ 0, and xk, yl ∈ Γ, such that supp fk ⊂ Bxk

(R), and
supp gl ⊂ Byl

(R), for all k ∈ B and l ∈ C.
Then, the new creation and annihilation operators are defined by

b∗k =
∑

x∈Γ

fk(x)a
∗
x bk =

∑

x∈Γ

fk(x)ax(6.2)

c∗l =
∑

x∈Γ

gl(x)a
∗
x cl =

∑

x∈Γ

gl(x)ax.(6.3)

Next, define an interaction Φ by setting

(6.4) Φ(Bxk
(R)) = 1l− b∗kbk, Φ(Byl

(R)) = c∗l cl,

and Φ(X) = 0 if X is not a ball of radius R centered at a site xk or yl, for any k ∈ B,
or l ∈ C. In a standard application, the functions fk and gl are the orbitals in the
valence and conduction band, respectively. It is then straightforward to construct
a quasi-free state ωΛ on AΛ satisfying

(6.5) ωΛ(b
∗
kbk) = 1, ωΛ(c

∗
l cl) = 0.

Clearly, the Hamiltonians

(6.6) HΛ =
∑

X∈⊂Λ

Φ(X)

are non-negative. Since (6.5) implies that ωΛ(HΛ) = 0, these models are frustration-
free. The orthogonal complement to the ground state given by ωΛ, is spanned by
the Fock space vectors with at least one hole in the valence band or one particle in
the conduction band. In this case, the gap above the ground state energy is γ = 1.

An interesting class of examples of models of this type are the so-called flat-
band Hamiltonians studied by Mielke and Tasaki [31]. A thorough study of the
conditions under which there exists a spanning set of compactly supported orbitals
for a band structure was recently carried out by Read [42]. He shows that certain
band structures in two or more dimensions, which yield ground states with certain
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types of topological order, cannot be spanned by compactly supported orbitals. It
is also worth noting that if the goal is to show stability of the gap under small
perturbations, one can also deal with some cases in which the bands are spanned
by orbitals that are not compactly supported. If the orbitals are well approximated
by compactly supported functions and the gap is not too small, then one can treat
the error as part of the perturbation.

We now turn to symmetry. In the classification of gapped ground state phases
it is often important to consider symmetries of the model. These may or may not
be spontaneously broken in the ground state. Common examples of the symmetries
we will consider include the following:

(1) Parity of the fermion number: We will always assume that all terms in
the interaction are even: Φ(X) ∈ A+

X . This means that all interaction
terms supported in X ∈ P0(Γ) commute with (−1)NX .

(2) Local symmetries: A local symmetry is described by a representation of
a finite group G consisting of automorphisms, βx

g for g ∈ G, acting on
A{(x,k)|k=1,...,n}, for each x ∈ Γ. This invariance can equivalently be de-
scribed by the commutation of the interaction terms with a unitary rep-
resentation of G: UX(g)Φ(X) = Φ(X)UX(g). The parity of the fermion
number is an example of such a discrete local symmetry.

(3) Translation invariance: Often Γ is a lattice such as L = Zν or L =
Zν/(LZν), or Γ contains a lattice as a factor: Γ = L× Γ1. In either case,
there is a natural action of L on Γ which, for simplicity, we will denote by
addition. Then, L acts on AΓ as a group of translation automorphisms
βx, x ∈ L. Translation invariance of the interaction is then expressed by
βx(Φ(X)) = Φ(X + x).

(4) Space inversion and other lattice symmetries: Besides translations, Γ may
often possess other discrete symmetries, such as inversion (x 7→ −x) or
rotation by certain angles.

(5) Time reversal invariance: If there is a basis in Fock space with respect
to which the matrix of the Hamiltonian is real, meaning that there is
a complex conjugation with which it commutes, we have a symmetry
between the forward and backward dynamics, i.e., τt(β(A)) = β(τ−t(A)),
for the corresponding anti-automorphism.

When the goal is to prove stability of the gapped ground state phases in cases
that allow for a spontaneously broken discrete symmetry, one is led to assume a
slight modification of the LTQO condition introduced in [11]. For example, it no
longer makes sense to assume LTQO for arbitrary local observables; one should
restrict attention to those observables that preserve the symmetry. Mimicking
methods in [40], one can prove that the spectral gap and the structure of the ground
state phases are stable under sufficiently small perturbations of the interaction, if
one additionally assumes that perturbations preserve the symmetry. A precise
statement of this result will appear in [41].

Finally, we turn to the main tool used in the recent proofs of stability of gapped
phases [11, 30], the so-called spectral flow or quasi-adiabatic continuation [22, 8].
To define the spectral flow, consider a one-parameter family of interactions Φs :
P0(Γ) → AΓ, such that for each X ∈ P0(Γ), Φs(X) is differentiable with respect to
s ∈ [0, 1]. In this case, Hamiltonians of the form HΛ(s) =

∑

X⊆ΛΦs(X) are defined

on any finite volume Λ ∈ P0(Γ).
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The situation of interest is where the spectrum of HΛ(s) is composed of two
parts, Σ1(s) and Σ2(s), separated by a gap bounded below by a constant γ > 0,
for all s ∈ [0, 1]. Let P (s) denote the spectral projection of HΛ(s) corresponding to
the set Σ1(s). Due to the spectral gap assumption, general results imply that P (s)
is unitarily equivalent to P (0) for all s ∈ [0, 1], i.e., there exists a curve of unitaries
U(s) satisfying

(6.7) P (s) = U(s)P (0)U(s)∗.

The spectral flow is constructed in terms of a particular choice of unitaries satisfying
(6.7).

As discussed e.g. in [8], one choice for a family of unitaries satisfying (6.7)
is obtained as the solution of the Schrödinger equation for unitaries U(s), with s
playing the role of time. The Hamiltonian for this Schrödinger equation, DΛ(s), is
defined by an expression of the following form:

(6.8) DΛ(s) =

∫ ∞

−∞

τ
HΛ(s)
t (H ′

Λ(s))Wγ(t) dt,

where Wγ(t) ∈ L1(R) is a well-chosen function which decays faster than any power
law as t → ±∞. In terms of the corresponding unitaries, the spectral flow auto-
morphism is then defined as αΛ

s (A) = U(s)∗AU(s) for all A ∈ AΛ.
A crucial technical result, used in all proofs of stability, is the fact that this

spectral flow satisfies a Lieb-Robinson bound with a decay function that is explicit.
Since the Hamiltonian terms corresponding to (6.8) are not strictly local, such an
estimate is not a direct application of known results. With some effort, one can
show that if the family of interactions Φs and Φ′

s decay sufficiently fast (usually
expressed in terms of an F -function that decays at an exponential rate), then DΛ(s)
can be realized as a local Hamiltonian associated to an interaction ΨΛ

(6.9) DΛ(s) =
∑

X⊆Λ

ΨΛ(X, s).

Moreover, there exists an F -function, denoted by FΨ, for which ‖ΨΛ(s)‖FΨ
< ∞

uniformly in the finite volume Λ. As the explicit FΨ decays sub-exponentially, one
obtains Lieb-Robinson bounds, i.e. locality estimates, for the spectral flow that
decay as fast.

In the construction of the interaction ΨΛ(·, s), for fermions, one uses the con-
ditional expectation discussed in Section 4 in combination with the Lieb-Robinson
bounds of Section 3. As far as we are aware, the first use of a conditional expec-
tation to construct an interaction Φ from a set of local Hamiltonians of a quantum
system appeared in [2]. To decompose DΛ(s) into strictly local terms, it is crucial
that the initial interaction terms Φ(X, s) be even. In this case, ΨΛ(·, s) is also even.
Of course, for models with other symmetries, one must check that this localizing
operation preserves the symmetry. Given that this is the case, the proof of stability
then proceeds in the same way as in the case of quantum spin systems. Explicit
estimates and further applications will be given in [41].
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