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ABSTRACT OF THE DISSERTATION

Pixel-Level Prediction: Models and Applications

By

Shu Kong

Doctor of Philosophy in Computer Science
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Prof. Charless C. Fowlkes, Chair

Pixel-level prediction enables visual understanding at finer granularity, such as segmenting

all the persons and vehicles and estimating their 3D shapes as well as distances from the

camera. It distinguishes itself from image-level prediction, which is relatively coarse such as

simply telling an image of a person from that of a car.

The solutions to pixel-level prediction are core to many real-world applications, spanning a

variety of vision tasks from the low-level vision like image deblurring, to the mid- and high-

level such as understanding scene geometry and all the objects’ 3D shape and motion. It has

been greatly advanced since the past decade and fostering new challenges and opportunities,

owing to the fast development of hardware, the availability of large-scale dataset, and the

resurgence of deep convolutional neural networks.

In this thesis, we study pixel-level prediction with new algorithms, innovative model ar-

chitectures, and novel applications. We begin with training convolutional neural networks

(CNN) for different pixel-level prediction tasks, and demonstrate that CNN acts as a uni-

fied framework. Within the framework, we propose novel modules to encode perceptual or

cognitive principles, such as 1) objects appearing larger when closer to the camera, and 2)
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cognitive mechanism allowing one for perceiving the world with dynamical attention. We

show the proposed modules not only achieve the state-of-the-art performance on different

tasks, but also enables dynamic and parsimonious computation.

As the dataset for per-pixel labeling tasks requires painstaking per-pixel annotations, we

propose the Predictive Filter Flow (PFF) framework to train over simulated images for

image reconstruction tasks. PFF generates per-pixel kernels for warping the input towards

the output, thus has better interpretability w.r.t decision making. We further present its

multigrid extension (dubbed mgPFF) to train over unconstrained videos. We show successful

applications of mgPFF to visual tracking and flow learning, as well as a unique interactive

application for photo editing.
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Chapter 1

Introduction

Computer vision has been greatly advanced in the past decade. One evidence is that many

image-level prediction tasks are nearly solved, such as image classification that distinguishes

an image of person from that of a car. This is largely owing to the fast development of

hardware enabling high-performance computation, the availability of big data allowing for

learning powerful models, and the resurgence of deep convolutional neural networks providing

tremendous learning capacity. At the same time, these factors also open up research in pixel-

level prediction, which offers the opportunity for finer-grained visual understanding, such as

segmenting all the persons and vehicles and estimating their 3D shapes as well as motions

and distance from one another.

Pixel-level prediction is more challenging than image classification problems since it requires

substantial attention to both image details at pixel level and holistic image understanding;

yet it is of great significance because of its core role in various real-world applications. To

understand its significance, in the following, we first present some applications linking some

pixel-level prediction tasks, divided by the “level”∗. Then, we introduce the state-of-the-art

practice to approach pixel-level vision problems, before giving an overview of our work and

∗Traditionally, computer vision has three stages: 1) the low level vision for image-to-image transform,
like image deblurring; 2) the mid-level about image-to-features computation, such as grouping pixels into
segments; and 3) the high-level meaning feature-to-analysis, e.g., semantic segmentation. However, such
division is largely blurred nowadays, especially when many pixel-level tasks can be approached by training
a supervised model with sufficient annotated dataset.
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contributions in the thesis.

1.1 Pixel-Level Prediction and Applications

Low-level vision includes the general category of image reconstruction, which predicts every

pixel directly based on the input image, aiming at obtaining high-quality reconstructed im-

age from a low-quality input image. The low-quality of images arises from the imperfection

of real-world images. Practical engineering trade-offs entail that consumer photos are often

blurry due to low-light, camera shake or object motion, limited in resolution and further

degraded by image compression artifacts introduced for the sake of affordable transmission

and storage. Scientific applications such as microscopy or astronomy, which push the funda-

mental physical limitations of light, lenses and sensors, face similar challenges. Recovering

high-quality images from degraded measurements has been a long-standing problem for im-

age analysis and spans a range of tasks such as blind-image deblurring [21, 182, 81, 295],

compression artifact reduction [298, 216], and single image super-resolution [258, 363]. So-

lutions to image reconstruction problems not only improve people’s daily life (e.g., improved

photography by cellphones), but also boost scientific research, e.g., through enhancing the

microscopic images in biology and medical science.

The mid- and high-level computer vision also contain many pixel-level prediction prob-

lems, such as semantic segmentation that classifies every pixel into one of defined categories,

monocular depth estimation that predicts distance to the camera for each pixel of the single

input image, surface normal estimation that explains the 3D shape of the scene or object,

optical flow estimation that tells how each pixel evolves over time, and so forth. These

tasks are important components in autonomous vehicle, assistive robotics for the elderly and

spacecraft autonomy, through helping the robots move around freely and safely. In AR/VR

and gaming, they can help enhance visualization by understanding and augmenting the scene
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geometry. They can also play an important role in video editing and summarization, surveil-

lance and security. For example, through visual grounding that localizes the object or video

frames with a referring expressions (e.g., short natural language phrase and NLP sentence),

one can answer questions like “the moment when the new couple are kissing at the wedding”,

or “the moment when the man in yellow shirt appeared yesterday around the hall”. Last

but not the least, solutions to these generic pixel-level prediction vision tasks can accelerate

scientific research, such as predicting pixel identities to group them into neurons for studying

brain connectomics, segmenting and counting C. elegans nematodes for studying lifespan,

healthspan, and hypothesis testing of genetic interactions with aging.

Realizing the importance and broad impact of pixel-level prediction vision, we introduce the

nowadays’ practice for providing state-of-the-art solutions to these tasks.

1.2 Learning based Method for Pixel-Level Prediction

As mentioned earlier, pixel-level prediction vision has been greatly advanced thanks to the

development of hardware (espeically GPU), availability of large-scale annotated dataset, and

the resurgence of deep convolutional neural networks (CNN). In particular, these factors lay

the ground for supervised learning CNN models at scale. Though we note that supervised

training CNN is only one of many learning based methods, it achieves the state-of-the-art

performance in almost all the pixel-level prediction tasks. Therefore, we focus on CNN

models for learning and briefly review the history and components.

Learning based methods essentially learn a mapping function, or a model, that maps input

image into the output space defined by the task, fulfilling pixel-level prediction. As we

know, pixels exist altogether in a local neighborhood and thus are not i.i.d. For better pixel

level prediction, it is a common practice to design mechanisms for encoding informative
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connections among pixels [192, 224, 60, 274, 143, 371, 28, 372]. The convolution operation

achieves this by convolving every patch with kernels in a dense manner, to make predictions

for the pixel centered at the patch [78]. The kernels are the parameters to be learned.

We can see that the function should have enough capacity for good mapping from the raw

input images into the desired output [124]. In terms of learning, one would also require the

function to generalize to unseen data and avoid overfitting the training data. In this sense, the

more data, the more sensible regularization and the larger capacity of the model we can have,

the better model we can learn: fitting the training data sufficiently and generalizing to unseen

data well. Among various learning models, the convolutional neural networks (CNN) shows

excellent performance, not only having sufficient capacities [15], but also being regularized

well for generalization from its convolutional locality property, weight sharing [190], weight

decay [180], and so on. To understand the evolvement of CNN and gain a better view how

other important factors developed over time related to CNN (e.g., data scale and learning

protocols), we briefly dive into these aspects individually as below, which motivate our

research included in this thesis.

1.2.1 Model architecture

Convolutional Neural Networks (CNN) appeared decades ago. LeCun et al. for the first

time show the success of applying CNN to the real-world problem, hand-written digit recog-

nition [193], which was then widely used in U.S. Postal Service. CNN became a principled

model since its great success in natural image classification. In 2012, Krizhevsky et al.

published the seminal work [179] that trains a CNN model (so-called AlexNet to mark the

milestone in literature) on ImageNet dataset [63], remarkably outperforming all the others

in the image classification challenge. In brief, AlexNet stacks multiple types of layers to form

a deep architecture, and train the whole model with the classifiers in an end-to-end manner:

the convolutional layers computing over local patches in a dense way to save computation
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and avoid overfitting; the non-linear transform layers as Rectified Linear Unit (ReLU) [247]

which eases the overall training through error-backpropagation; the local-contrast normal-

ization layers for scale the intermediate features values into a more stable range; the pooling

layers that reduce computation and enable large receptive field for long-range pixel com-

putation; and fully connected layers that project the intermediate features into the output

space and thus for the final classification.

After AlexNet, many other model architectures have been designed that show success in

image classification tasks. We review only a few architectures, while many more are available

in literature but not covered in this thesis. Following AlexNet, VGG was proposed that stacks

small 3x3 convolution kernels for more convolution layers [304], outperforming AlexNet in

image classification on ImageNet dataset. It showed that large convolutional kernels are

not critical, and the local-contrast normalization layers are not necessary for better training

through normalizing features. Some later research shows the convolution kernels can be

decomposed even further into smaller ones like 2x3 or 1x3 [314, 313]. Network-in-networks

(NIN) shows deep models are better [210], and the fully-connected layers are not critical as

used in AlexNet. ResNet [115] and DenseNet [129] are proposed that show skip-connections

are important in learning very deep models, through enabling more reliable gradient back-

propagation, achieving the state-of-the-art in image classification on ImageNet dataset with

fewer computation FLOPS than VGG. More recently, researchers realize hand-designing the

model architectures is not optimal for specific tasks [392]. Therefore there emerges a research

direction called Neural Architecture Search (NAS) that trains over dataset for building better

models in terms of performance [392], though other recent research shows the model with

NAS overfits the target task easily and lacks generalization [174].

At the same time, with the inspiration of the architecture design for image classification,

researchers began to modify CNN for dense prediction, i.e., pixel-level prediction. The

modifications usually focus on the pooling layers in CNN. As we know, the pooling layers
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are important that pool the intermediate feature maps spatially into low-resolution ones,

reducing computation and memory cost and also allows for capturing holistic information

from long-range connections. However, pooling layers make the output size much smaller

than the input image. For example, if the CNN model contains five non-overlapping pooling

layers with 2x2 strides, the direct output is 25 = 32 times smaller in resolution than the

input.

Therefore, to increase the output resolution, some work proposes various techniques to im-

prove the output resolution, while keeping low memory cost and computation and allowing

for large receptive field to capture long-range information. For example, the Fully Convolu-

tional Networks (FCN) [221] replaced the fully connected layers as used in VGG, and add

upsampling layers to increase the output resolution. The upsampling layers can be either the

simplistic bilinear interpolation which is differentiable for training using back-propagation,

or a parametric layer with learnable weights. To make the receptive field even larger, re-

searchers begin to utilize the dilated convolution, or atrous convolution, which convolves

the input with kernels skipping input values and thus capture longer range of pixels [368].

Moreover, the U-shape architecture [285] is proposed that include an encoder, which acts

like a standard ResNet or VGG, and a decoder which has skip connections to the encoder

layers and upsampling layers, both help produce high-resolution output and boost gradient

descent within the deep model during training.

Besides the micro building blocks, there are macro strategies, like the multi-scale [32] that

process the input image at different scales and merge the multiple output towards a single one

for better per-pixel prediction [356, 99, 45], and the multi-stream which incorporates another

small but full-resolution network to provide more precise complement/residual prediction on

every pixel [269, 164, 168].

With all the aforementioned development in CNN for per-pixel predictions, one can train
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the CNN models for solving specific tasks, with dataset and the choice of loss functions.

We dive into training in Chpater 2, and next, review the learning protocols which make the

whole training procedure faster, more reliable, and more stable.

1.2.2 Learning protocols

In the learning world, research in optimization is of great value [29], especially in training

CNN models which are effective in solving complex problems but are nonlinear in nature

and containing huge number of parameters (in the scale of 107). Therefore, high-order

optimization algorithms like Newton’s method are unlikely to be used; instead the first-

order optimization methods are widely studied and used in CNN training.

Training the deep CNN models is commonly done through back-propagation [287], i.e., back-

propagating the errors through gradient from the loss function to all the layers and update

the layers’ weight accordingly. Therefore, the requirement for back-propagation or end-to-

end training is that all layers have to be “differentiable†”. As training CNN models involves

large-scale training set, it is impossible to feed all the training data into the model at the

same time. Therefore in practice, small, random mini-batches of data are fetched and fed

into the model for training, and the Stochastic Gradient Descent (SGD) optimization is

widely used in large-scale learning [27].

Many variants of SGD algorithms are studied in literature. Such research work can be cate-

gorized into two approaches: (1) adaptive learning rate schemes, such as AdaGrad [73] and

Adam [156], and (2) accelerated schemes, such as heavy-ball and Nesterov momentum [311].

In practice, the combination of these attempts usually lead to stable learning and fast con-

vergence [72], and thus is widely adopted in practice, embedded in deep learning toolboxes.

We do not dive in the learning protocols any further as this is not the focus of this thesis.

†Technically speaking, models we typically train are “differentiable almost everywhere”. For example,
the derivative of ReLU is not defined at 0.
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However, we would like to introduce and acknowledge some deep learning toolboxes that

help us carry out our research, serving as an optimization package.

Before describing the toolboxes, we would like to mention normalization techniques along

with optimization. Because normalization typically serve the purpose of making CNN models

more amenable to optimization, allowing the training of very deep models without the use

of careful initialization schemes [304, 375], customized nonlinear activation functions [158],

or other more tricks [357].

Normalization for Optimization

Normalization methods commonly perform as individual layers. Among these methods, the

Batch Normalization is perhaps the best known in recent literature, since it is the very first

published method that show a sensible normalization can greatly boost the training, with

demonstration of more stable training, faster convergence, better performance, etc [137].

In brief, to normalize intermediate features during training, Batch Normalization learns

a “global mean” and “standard variance” accumulated over time, uses them to normalize

spatial features within each training batch, which goes through mean subtraction and stan-

dard variance division using statistics of this training batch. As Batch Normalization comes

with mini-batches during training, the batch size matters. If the batch size is 1, meaning

using a single data sample at each time for updating the CNN parameters, it boils down

to instance normalization [324], which is shown very effective in transferring the styles of

an image independently, but less effective in other more domains. Group Normalization is

another normalization method proposed to deal with small batch size [353], which could

happen in training CNN with large input images, e.g., when one GPU can only hold one

high-resolution image and its deep features. However, if the batch size is very large with the

support of multi-gpu configurations, Ghost Batch Normalization is proposed to bridge the

feature statistical gaps between mini-batches distributed in different machines [120]. In this
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thesis, we present research with training over medium-size data, so we do not face problems

in small size or large size. Interested readers are referred to these papers for more details of

different normalization methods.

Software and Toolbox

As deep learning has become so influential nowadays [191], there emerge many excellent

toolboxes that highly wrap useful techniques, layers, optimizers for easy use in training cus-

tomized models on novel dataset. Projects presented herein benefit from multiple toolboxes

we would like to acknowledge. They are Decaf [67], Theano [317], MatConvNet [326], Ten-

sorflow [1] and PyTorch [260]. We also note other great open-source packages, but we do

not introduce them one by one while encourage interested readers to refer to them.

1.3 Data and supervision

Data with annotations are required for learning-based methods as the annotations provide

the supervision for training. However, the overwhelming significance of data scale has been

gradually revealed in recent years.

This can also date back to the very success of training AlexNet on the ImageNet dataset.

Some follow-up research work, which aims at scrutinizing AlexNet, find that: 1) truncated

CNN model can act as a better feature extraction than hand-designed visual features (e.g.,

SIFT [224], HOG [60]); 2) such learning-based features can be directly transferred to other

tasks [67, 296], even though the new task has totally different domain statistics [169, 162]. 3)

such pre-trained features or models can act as loss functions or metric functions [194, 380].

Because of these findings, it is a common practice to fine-tune ImageNet-pretrained model

to train for other tasks, as well as for pixel-level prediction tasks [45, 74]. All these advances
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are due to the large-scale data used for training the initial model.

This is especially verified by recent research that the data scale is more important than

what was thought a decade ago [97, 57, 246, 309, 250]: larger-scale dataset help learn better

features, more robust and more generalizable, which can be transferred to diverse data

domains for various applications.

1.3.1 Data Acquisition Dilemma and Solutions

Understanding the overwhelming significance of data scale in the deep learning era, one

would annotate large-scale data for a curate training set to train the CNN models. While

this is sometimes easy, most of the time it is very difficult, expensive in terms of human

effort,

For some tasks, one can easily download large amount of images from the internet (e.g.,

flickr [170] and instagram [228]), along with the search keyword, or the tags or even the

comments from users. By doing so, it shows that such web-scale dataset can remarkably

boost the performance of specific tasks. For example, Krause et al. show that training over

web-scale noisy bird dataset can outperform the state-of-the-art easily [178]. Mahajan et al.

shows by training over web-scale data with only loose annotations from the user tags, one

can obtain an even better model than the ImageNet pretrained model, in terms of image

classification and model generalization [228]. Murray et al. download from professional

photography website million of images and their comments, and train a model for image

aesthetic estimation [246].

For other tasks, annotating the data for a training set is hard: time-consuming, expensive,

and requires expertise. For example, annotating image aesthetics and the attributes takes

moderate time and labor force [170]; but per-pixel annotation in autonomous driving scenario

is very expensive. For Kitti [96] and Cityscapes [57], which include detailed annotations
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of every pixel, it takes one annotator almost three hours to annotate a single image. In

other cases, annotating requires domain expertise, which ordinary people rarely have. For

example, annotating pollen grain species (both modern and fossilized ones) for automated

fine-grained identification [231, 169], annotating the C. elegans mask in microscope and their

age for automated analysis system also requires expert knowledge [51, 265]. For some other

tasks, it is impossible to annotate data for ground-truth. For example, optical flow requires

pixel-level correspondence between two video frames; but annotating all pixel in a video is

prohibitively time-consuming. For outdoor depth annotation, the LiDAR sensor can only

provide the uncalibrated true depth in a very sparse way [97]; the kinect sensor can only

return true depth on some surfaces, not possible in face of glasses or mirrors [75]; the surface

normal generated from the depth annotation is inevitably noisy and inaccurate [116].

Fortunately, in some scenarios, we can synthesize data to create a training set. It is worth not-

ing that synthetic data have different domain distributions, so that the domain gap becomes

a serious problem and motivate the study of domain adaptation in the community [257, 319].

We note that, for low-level vision tasks like learning to estimate optical flow, models trained

over such synthetic datasets often generalize very well to real-world images [236, 71]. To

leverage both synthetic data and the small annotated real-world data, one can achieve even

better performance on various vision tasks, especially those requiring pixel-level predictions.

For example, by synthesizing scene images (outdoor or indoor) and their semantic segment

masks, depth and normals at pixel level, one can train a better model that generalizes to

real-world images [307, 382, 286]. As another example, one can also synthesize human poses

using 3D human models [25], or background [325]; by doing so we can generate large-scale

training data for human keypoint detection and thus for human pose estimation.

To attack the challenges of data annotation and collection, the community witnesses other

efforts. Among them, self-supervised learning methods show great promise in training

model with the supervision provided by the data itself, without any manual supervision.
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Self-supervised methods can exploit unlimited real-world data, and do not have much do-

main discrepancy (unlike synthetic vs. real-world domains). There are some attempts in

self-supervised learning, such as training the model for un-shuffling image patches or im-

age jigsaw [65], image/video colorization [378, 66, 333], predicting the temporal order of

frames [241, 345], learning for image inpainting [262], learning to predict image rotation [100],

learning to reconstruct frames for pixel correspondence [168, 339], learning with multi-modal

signals for cross supervision [6, 256, 255, 153, 254], learning to mimic the offline algorithms

output (e.g., disparity [149], tracker [337], etc.).

1.4 Contributions

We briefly summarize the main contributions, which will be elaborated in the next section

that outlines the thesis.

We study pixel-level prediction with new algorithms, innovative model architectures, and

novel applications. We begin with training convolutional neural networks (CNN) for dif-

ferent pixel-level prediction tasks, and demonstrate that CNN acts as a unified framework.

Within the framework, we propose novel modules to encode perceptual or cognitive prin-

ciples, such as 1) objects appearing larger when closer to the camera, and 2) cognitive

mechanism allowing one for perceiving the world with dynamical attention. We show the

proposed modules not only achieve the state-of-the-art performance on different tasks, but

also enables dynamic and parsimonious computation.

As the dataset for per-pixel labeling tasks requires painstaking per-pixel annotations, we

propose the Predictive Filter Flow (PFF) framework to train over simulated images for

image reconstruction tasks. PFF generates per-pixel kernels for warping the input towards

the output, thus has better interpretability w.r.t decision making. We further present its

12



multigrid extension (dubbed mgPFF) to train over unconstrained videos. We show successful

applications of mgPFF to visual tracking, flow learning and interactive photo editing.

1.5 Thesis Organization

Before concluding this Chapter 1 as an introduction and history survey, we now give an

overview of the thesis with the subsequent chapters. The introductory paragraphs of each

chapter provide more detailed outlines.

Chapter 2

We describe some fundamental pixel-level computer vision tasks in this chapter, with some

proposed loss functions and the trained models as a baseline. Through the effort, we show

the CNN model acts as a unified architecture for learning to solve pixel-level prediction

problems. For the different tasks, with respect to the model architecture, the last layer and

the loss function are what one should pay attention to most. We show with experimental

results, and thus solicit more sensible loss functions in practice. This chapter comes as a

part of our published paper [165].

Chapter 3

We introduces our novel depth-aware gating module to encode the empirical observation that

objects appear larger in size when closer to the camera, while smaller when further away. To

study this module, we specifically apply it to semantic segmentation that classifies each pixel

into one of pre-defined categories. We show this module improves semantic segmentation

performance notably, especially over perspective images (e.g., images from large field-of-view

camera). This study also demonstrates the benefit of using one task (depth estimation) to
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help with the other (semantic segmentation). Moreover, we propose to refine the semantic

segmentation results along with updating the depth estimate in a recurrent way. We show

such a practice leads to even better performance in semantic segmentation. This chapter is

based on our published paper [167].

Chapter 4

We extend the previous depth-aware gating module to a more general one, called Pixel-wise

Attentional Gating (PAG), which learns to assign a pooling size at each pixel for dynamic

aggregating contextual information, showing better performance in not only semantic seg-

mentation, but also many others include boundary detection, monocular depth estimation

and surface normal estimation. Furthermore, we apply PAG to the CNN model’s compu-

tation graph, and demonstrate that PAG allows for dynamic computation at each pixel,

achieving better performance in all these tasks with a fixed computation budget (measured

by FLOPS) than other baselines, such as a truncated model, layer-wise skipping model, etc.

This chapter comes as a part of our published paper [165].

Chapter 5

We present a different high-level methodology called pixel embedding, projecting every pixel

into an embedding space in which one can group pixels into meaningful regions. We apply

our pixel embedding model to object instance segmentation, achieving remarkably better

performance than other state-of-the-art methods in detecting object proposals with limited

number of proposal candidates. We demonstrate our method, through other published work

built over the idea of pixel embedding or inspired directly by our method, is very promising

in segmenting biological matters, like C. elegans [181], bacteria [181], neurons [197], cells [43],

etc. We also test it on other tasks, and show it can act as an auxiliary practice for seman-

tic segmentation and boundary detection. This chapter comes as a part of our published
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paper [166].

Chapter 6

We introduces the Predictive Filter Flow (PFF) framework that learns to predict per-pixel

kernels used for warping input image patches centered at each pixel towards the output

pixels. Moreover, we train PFF models over simulated data, though it can be also trained

with supervision from manual annotations, and demonstrate a notable success in the world

of self-supervised learning. It is worth noting that PFF not only regularizes the output by

the input itself, but also explicitly explains how the output pixels are generated from the

input image; therefore we see PFF has better interpretability in terms of decision making.

We demonstrate its effectiveness through a series of image reconstruction tasks, including

non-uniform blur removal, single-image super-resolution, and JPEG compression artifact

reduction. Besides, we also attempt to train it in an unsupervised way, i.e., even without

simulation, and demonstrate the promise of using it in biological and medical image en-

hancement, in which an interpretable algorithm is much favored over blackbox models, e.g.,

an output directly from a CNN model is assumed to be the enhanced image. This chapter

is based on our submitted paper [164].

Chapter 7

We extend the PFF idea to learning over unconstrained videos in a self-supervised way.

The key idea is to train PFF models, taking as input two frames and generating per-pixel

kernels for each frame to reconstruct the other frames. The only supervision is from the

temporal coherence of videos. To process video frames and output high-resolution filter

flows, we adopt a multigrid strategy, so we name our framework multigrid PFF (mgPFF).

We demonstrate mgPFF learns to capture pixel correspondence, which can be directly used

for tracking objects through propagating masks while also allowing for tracking every pixels
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along time. We show mgPFF reconstructs consecutive frames almost perfectly, and has

the power to warp one image towards another. This strong ability of reconstruction and

fast computing speed enable a novel interactive photo editing application, i.e., transplanting

visual content (say a nose of one person) to a target image (e.g., the face of another person)

while keeping the harmony of the target image. This chapter is based on our submitted

paper [168].

Chapter 8

This is the last chapter of this thesis. We revisit our contributions and outline directions for

future research.
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Chapter 2

Learning for Pixel-level Prediction

Figure 2.1: Visualization of some pixel-level prediction tasks. Given the images shown in
first row, these tasks require per-pixel prediction for boundary, semantic segmentation, depth
estimation and surface normal estimation, as shown in the second row. As we can see, these
per-pixel prediction problems are ubiquitous, as agnostic to scene styles and image content.
Our learning based models with the CNN architecture perform well in solving these tasks,
as visualized in the third row.

The development of deep convolutional neural networks (CNN) has allowed remarkable

progress in wide range of image pixel-labeling tasks such as boundary detection [232, 358,

161], semantic segmentation [166, 167, 45], monocular depth estimation [167, 200, 188, 219,

75], and surface normal estimation [336, 17, 74]. Figure 2.1 depicts visualizations for these

tasks, with the results by our baseline models presented in this chapter soon.

As the focus of this thesis is about studying learning-based methods for solving pixel-level

prediction vision tasks, we present in this chapter some fundamental pixel-level prediction

problems, and introduce how we train the unified convolutional neural networks (CNN) over

annotated datasets. In this sense, this chapter serves as a technical introduction. Therefore,
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Figure 2.2: Extending the U-shape architecture as shown in (a) enables finer-grained predic-
tion, while with computation overhead. (b) adds in skip connections for better training and
is widely adopted in pixel-level prediction tasks. (c) adds in another stream which is of full
resolution for fine pixel level predictions, but demands more computation cost and memory
utilization.

we start with CNN architecture design and implementation details, then describe novel

objective functions for training.

2.1 Learning with Unified Framework

There are many learning based methods in the community of machine learning and computer

vision. Convolutional neural networks (CNN) have become one of the best choice as it is

elegant in architecture design, easy to train, fast in computation and prototyping, and able

to achieve state-of-the-art performance by leveraging large-scale annotated dataset. Now

we choose CNN architecture as the unified framework, train the models for some per-level

prediction tasks as a review on the technical background.

As we know, per-pixel labeling tasks require pixel-level predictions; so it is desired that

the output from the CNN models are of high-resolution, or even with the same size as the
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input. However, CNN architectures contain some pooling operations (either pooling layers

or convolution layers with strides) to reduce memory cost and capture spatially long-range

information. For example, the ResNet architecture [115] contains five 2×2 pooling layers,

meaning that the output is 25 = 32 smaller than the input in resolution. We can clearly

see a dilemma caused by the two combating aspects. To solve this discrepancy, the first

remedy is to upsample the output by removing some pooling layers. Following [45, 167], we

increase the output resolution of ResNet by removing the top global 7×7 pooling layer and

the last two 2×2 pooling layers, replacing them with atrous convolution with dilation rate

2 and 4, respectively, to maintain the same spatial sampling rate. Then such modifications

produce output at 1/8 the input resolution. Moreover, we find it better to include another

convolutional layer(s) after upsampling, smoothing the output and reducing the grid effects.

As a second improvement, the U-architecture is widely adopted that treats normal CNN

model as an encoder, and adds in a decoder to enlarge the output progressively towards

a full-resolution output. Within the U-shape architecture, there are skip connections and

upsampling layers to ensure the smooth (anti-aliasing) operation, and boost gradient flow

for more effective training.

The encoder architecture is typically based on existing CNN models for image classification

which makes it possible to initialize with weights that have been pre-trained (e.g., using

ImageNet). It has systematically studied and in literature various CNN architectures, in

terms of comparisons w.r.t performance and computation FLOPS. Though they achieve

different performance, ResNet [115] is shown to be one of the top-performing one, achieving

quite good performance and stable across different vision tasks. Therefore, we choose in this

thesis the ResNet as encoder, which is also pre-trained on ImageNet [63].

Besides upsampling layers, it is also common to apply skip connection formulated as convo-

lution layers to bridge long-range layers, through layer concatenation or sum without further
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parameters to train. This is helpful in multiple aspects, such as better backpropagating

the gradient from very top layers to bottom ones [115, 365, 195], using low-level features to

smoothen the high-level layers’ upsampled output [99, 285, 101], allowing for intermediate

loss [195, 211], etc.

Note that the U-shape architecture may still be far from sufficient to deal with grid/aliasing

effect induced by upsampling (e.g., bilinear interpolation). As the third improvement, we

also consider a full-resolution stream to augment the output from the U-net [164, 269, 168].

We note this is quite useful in high-precision output especially on the boundaries, but the

computation burden becomes expensive in both wall-clock time and memory usage.

Note that we adopt the ResNet architecture as our basic degin throughout this thesis, but the

exact ResNet-based models in the rest chapters vary slightly depending on the specific tasks.

In this chapter, we simply train the modified ResNet model (with the first improvement

only) without U-shape structure. This model produces 8x smaller output in resolution. We

postpone other macro design choices until the last two chapters, which demand high-precision

reconstruction at pixel level.

2.2 Example Problems with Loss Function for Training

We train the CNN model for the following four pixel-level prediction tasks. Besides describing

each task briefly, we include the loss functions used for training, some of which are novel

ones proposed by us. We analyze why these new loss functions are better than other widely

used in literature.
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Semantic Segmentation

Semantic segmentation refers to the process of linking each pixel in an image to a class

label. The class label can be person, vehicle, building, trees, etc. Essentially, we can think

of semantic segmentation as image classification at pixel level. As semantic segmentation

groups pixels according to the class label for understanding where and what in the image, it

becomes very useful in applications like autonomous vehicles, human-computer interaction,

robotics, and photo editing/creativity tools. It also enables applications requiring counting,

e.g., the number of people at a metro entry for security and surveillance, the nematodes in

biological images for accelerated analysis, etc.

For semantic segmentation, we, and others in literature, commonly train a CNN model using

cross-entropy loss as in [45, 167]:

`semantic = −
∑
i

K∑
c

1[yi=c] · log(Ci) (2.1)

where Ci is the class prediction (from a softmax transform) at pixel i, and yi is the ground-

truth class label.

Boundary Detection

The great importance of boundary detection as an early stage for more complicated image

processing or computer vision tasks is known since many years [42, 98, 234, 7]. Boundary

detection complements image segmentation in that: image segmentation fails to provide

accurate information about the shape and the position of the objects in the image, while

boundary can accurately determine object contours.

We train a base model using (binary) logistic loss. Following [358, 232, 166], we include

four prediction branches at macro building blocks in ResNet [115] and a final fusion layer.

21



Therefore, we have five losses in total. To handle class imbalance (more than 80% pixels are

non-boundaries), we utilize a weighted loss accumulated over the prediction losses given by:

`boundary =
∑
b∈B

(
− β

∑
j∈Y+

log(P (yj = 1|θb))− (1− β)
∑
j∈Y−

log(P (yj = 0|θb))
)

(2.2)

where b indexes the branches, β = |Y−|/|Y−∪Y+|, and Y+ and Y− denote the set of boundary

and non-boundary annotations, respectively.

Monocular Depth Estimation

Monocular depth estimation is to estimate per-pixel depth to the camera for the single 2D

image. It is a crucial step in scene reconstruction, 3D object recognition, segmentation

and detection. While depth estimation can be done with stereo camera or the light-field,

or sensors like LiDAR for outdoor or kinect for indoor, monocular depth estimation can

augment sparse sensor data (e.g., from LiDAR) and occluded regions where stereo/ligh-field

cannot capture. Moreover, the model learned for monocular depth estimation can also be

used as initialized model for downstream tasks [149].

For monocular depth estimation, we use combined L2 and L1 losses to compare the predicted

and ground-truth depth maps D and D̂ on a log scale:

`depth =
∑
i=1

‖ log(Di)− log(D̂i)‖2
2 + γ‖ log(Di)− log(D̂i)‖1 (2.3)

where γ = 2 controls the relative importance of the two losses. This mixed loss penalizes

large errors quadratically (the L2 term) while still assuring a non-vanishing gradient that

continues to drive down small errors (the L1 term). The idea behind our loss is similar to

the reverse Huber loss as used in [188], which in fact can be understood as concatenation

of truncated L2 and L1 loss. However, the reverse Huber loss requires specifying a hyper-

22



parameter for the boundary between L2 and L1; we find our mixed loss is robust and performs

well with γ ∈ [1, 5].

We note that there are other loss functions transforming the depth regression problem into

a classification problem, and show better results [90, 64]. We do not explore the technical

details specific to monocular depth estimation, but focus on generalization of the unified

framework.

Surface Normal Estimation

In computer vision or graphics, surface normal, or normal for short, to a surface at a point is

a vector perpendicular to the tangent plane of the surface at this point. The normal is often

used in 3D computer graphics to determine a surface’s orientation toward a light source for

flat shading; or in robotics to determine the angle for a robot to approach to an object.

Strictly speaking, surface normal is the derivative of depth at each pixel, and given a perfect

depth map, one can derive the surface normal of the scene or object. However, depth maps

are not perfect and often come with holes (missing values due to sensor limitations) [116],

so we would like to learn to predict per-pixel normal over a single image. Moreover, it also

shows surface normal is “easier” to predict through learning [370], thus has the potential to

boost other tasks.

To predict surface normals, we insert a final L2 normalization layer so that predicted normals

have unit Euclidean length. In the literature, cosine distance is often used in the loss function

to train the model (implemented with inner product), while performance metrics for normal

estimation measure the angular difference between prediction n and the target normal n̂

[88, 75]. We note that this discrepancy is largely overlooked in literature. To address this,

we propose to incorporate inverse cosine distance along with cosine distance as our objective
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Figure 2.3: Comparison of cosine loss and
inverse cosine loss. Inverse cosine loss has a
constant gradient, while the gradient of the
widely used cosine loss decreases as the pre-
diction errors become small, preventing fur-
ther model refinement.

function:

`normal =
∑
i

−nTi n̂i + λ cos−1(nTi n̂i) (2.4)

where λ controls the importance of the two part and we set λ = 4 throughout our exper-

iments. Fig. 2.3 compares the curves of the two losses, and we can clearly see that the

inverse cosine loss always produces meaningful gradients, whereas the popular cosine loss

has “vanishing gradient” issue when prediction errors become small (analogous to the mixed

L1/L2 loss for depth).

2.3 Experimental Result

We train the CNN models for these tasks over some public benchmark datasets. We now

describe the datasets, and then show the training models and some quantitative results with

brief comparison to baselines with our novel loss functions, as well as the state-of-the-art.

Finally, we visualize the results and understand the limitations, which motivate our research

in next chapters.
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2.3.1 Datasets

BSDS500 [7] is the most popular dataset for boundary detection. It provides a standard

split [7, 358] of 300 train images and 200 test images.

NYUv2 [301] consists of 1,449 RGB-D indoor scene images of the resolution 640×480 which

include color and pixel-wise depth obtained by a Kinect sensor. We use the ground-truth

segmentation into 40 classes provided in [105] and a standard train/test split into 795 and

654 images, respectively. For surface normal estimation, we compute the normal as target

from depth using the method in [301] by fitting least-squares planes to neighboring sets of

points in the point cloud.

Stanford-2D-3D [9] contains 1,559 RGB panoramic images with depths, surface normal and

semantic annotations covering six large-scale indoor areas from three different buildings. We

use area 3 and 4 as a validation set (489 panoramas) and the remaining four areas for training

(1,070 panoramas). The panoramas are very large (2,048×4,096) and contain black void

regions at top and bottom due to the spherical panoramic topology. We rescale them by 0.5

and crop out the central two-thirds (y ∈ [160, 863]) resulting in final images of size 704×2,048-

pixels. We randomly crop out sub-images of 704×704 resolution for training. Note that the

surface normals in panoramic images are relative to the global coordinate system which

cannot be determined from the image alone. Thus we transformed this global normal into

local normal specified relative to the camera viewing direction (details in appendix). Note

that such relative normals are also useful in scene understanding and reconstruction.

Cityscapes [57] contains high-quality pixel-level annotations of images collected in street

scenes from 50 different cities. We use the standard split of training set (2,975 images) and

validation set (500 images) for testing, respectively, labeled for 19 semantic classes as well

as depth obtained by disparity. The images are of high resolution (1,024×2,048), and we

randomly crop out sub-images of 800×800 resolution during training.
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Table 2.1: Benchmark comparison of our baseline model with state-of-the-art methods We
report the standard F-measure at Optimal Dataset Scale (odsF), Optimal Image Scale (oisF),
and the Average Precision (AP) for boundary detection.

methods odsF oisF AP
baseline 0.790 0.806 0.826
HED [358] 0.780 0.790 0.834
COB [232] 0.793 0.820 0.859
LEP [248] 0.757 0.793 0.828
MCG [8] 0.747 0.779 0.759
MShift [56] 0.601 0.644 0.493
gPb-UCM [7] 0.726 0.760 0.727
NCut [299] 0.641 0.674 0.447
EGB [80] 0.636 0.674 0.581

2.3.2 Results

We evaluate the trained baseline models for different tasks over different datasets. The goal

of these experiments is to establish:

1. the baseline model achieves comparable performance to the state-of-the-art methods

on diverse tasks;

2. (ablation) study on our designed loss functions that perform better than the popular

ones used in literature.

2.3.3 Comprehensive Benchmark Comparison

We carry out experimental comparisons with a few state-of-the-art methods, demonstrating

that our baselines achieve comparable results. We will show more results in the rest chapters

for detailed analysis of our specific methods for specific tasks.

Taking boundary detection as the first task, we quantitatively compare our model to COB [232],

HED [358], LEP [248], UCM [7], NCuts [299], EGB [80], MCG [8] and the mean shift (MShift)

algorithm [56]. Fig. 2.1 shows comparison to all the methods, demonstrating our model
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Table 2.2: Semantic segmentation is measured by Intersection over Union (IoU), pixel accu-
racy (acc), and iIoU that leverages the size of segments w.r.t categories. Results marked by
† are from our trained models with the released code.

NYUv2 [301] Stanford-2D-3D [9] Cityscapes [301]

methods/metrics IoU pixel acc. IoU pixel acc. IoU iIoU

baseline 42.1 71.1 79.5 92.1 73.8 54.7

DeepLab [45] — — 69.8† 88.0† 71.4 51.6

Table 2.3: Depth estimation is measured by standard threshold accuracy, i.e. the percentage

(%) of predicted pixel depths di s.t. δ = max(di
d̂i
, d̂i
di

) < τ , where τ = {1.25, 1.252, 1.253}.
Methods with ∗ use ∼100k extra images to train.

NYUv2 [301] Stanford-2D-3D [9] Cityscapes [301]

methods/metric (δ < τ) 1.25 1.252 1.253 1.25 1.252 1.253 1.25 1.252 1.253

baseline 71.1 93.2 98.5 73.1 92.1 97.5 29.0 53.8 75.8

Eigen∗ [75] 61.4 88.8 97.2 — — — — — —
Eigen∗ [74] 76.9 95.0 98.8 — — — — — —

achieves comparable performance to the state-of-the-art methods. Note that our model has

the same backbone architecture of HED [358], indicating our implementation is correct. Our

model performs on par with COB [232], which also has the same backbone architecture but

uses auxiliary losses for oriented boundary detection. Note that it is possible to surpass

human performance with sophisticated techniques [161], but we don’t pursue this as it is out

the scope of this thesis.

Table 2.2, 2.3 and 2.4 show the comprehensive comparisons on the tasks of semantic segmen-

tation, monocular depth and surface normal estimation, respectively. Our baseline models

achieve performance on par with recent methods for all tasks. For depth and surface normal

estimation tasks, our baseline models also perform very well. This is notable since we don’t

leverage multi-task learning (unlike Eigen [74]) and do not use extra images to augment

training set (unlike most methods for depth estimation using ∼100k extra images to aug-

ment the training set as shown in Table 2.3). We attribute this to the carefully designed

losses for depth and surface normal estimation.

27



Table 2.4: Surface normal estimation is measured by mean angular error and the percentage
of prediction error within t◦ degree where t = {11.25, 22.50, 30.00}. Smaller ang. err. mean
better performance as marked by ↓.

NYUv2 [301] Stanford-2D-3D [9]

methods/metrics ang. err.↓ 11.25◦ 22.50◦ 30.00◦ ang. err.↓ 11.25◦ 22.50◦ 30.00◦

baseline 22.3 34.4 62.5 74.4 19.0 51.5 68.6 76.3

Eigen [74] 22.2 38.6 64.0 73.9 — — — —

Table 2.5: Study of loss functions and PAG unit for monocular depth estimation on NYUv2
dataset. Our MP@Res5 model is the base model, unless specified, all the models are trained
with softmax weighted average in the MultiPool module. The performance is measured
by standard threshold accuracy, i.e. the percentage of predicted pixel depths di s.t. δ =

max(di
d̂i
, d̂i
di

) < τ , where τ = {1.25, 1.252, 1.253}.

metrics L2 loss L1 loss L1+L2 loss L1+L2 loss
1.25 0.737 0.743 0.745 0.751
1.252 0.939 0.942 0.944 0.944
1.253 0.986 0.987 0.988 0.988

Then, we study the loss function mixing L1 and L2. We train the models using different

loss functions, and report the results in Table 2.5. It’s clear to see the mixed L1 and L2 loss

leads to the best performance, especially on the metric of < 1.25, focusing on the range of

small prediction errors where L2 loss alone is unable to provide a meaningful gradient.

In Table 2.6, we compare the results from models trained with different loss functions. We

can see the combination of cosine distance loss and the inverse cosine loss achieves the best

performance. From the table, we clearly see that the improvement on metric 11.25◦ is more

remarkable, which focuses on small prediction errors. This is because the combined loss

function provides meaningful gradient “everywhere”, whereas the cosine distance loss alone

has “vanishing gradient” issue when the prediction errors become small.

2.3.4 Qualitative Visualization

We briefly visualize the prediction and attentional maps in Figure 2.1, the very beginning

of this chapter. From the figure, we can have a sense on how well the baseline models
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Table 2.6: Study of the loss functions for surface normal estimation over NYUv2 dataset.
Performance is measured by mean angular error (ang. err.) and the portion of prediction
error within t◦ degree where t = {11.25, 22.50, 30.00}. Smaller ang. err. means better
performance as marked by ↓.

metrics cosine distance (−nT n̂) inverse cosine (cos−1 nT n̂) cosine and inverse cosine
ang. err.↓ 23.3462 23.1191 22.7170

11.25◦ 0.3163 0.3279 0.3382
22.50◦ 0.5995 0.6093 0.6195
30.00◦ 0.7240 0.7302 0.7383

Figure 2.4: Visualization of some failure cases in semantic segmentation, such as the messy
predictions in the Cityscapes image and the “holes” on the wall in Stanford-2D-3D image.
We note the model fails more easily in such perspective images, where both small and large
objects exist in a single image. This observation motivates us to investigate how to better
exploit contextual information for each pixel.

performance, and where they fail. To have a closer look at the failure cases, we show two

examples from semantic segmentation in Figure 2.4. From the two perspective images, we

can see the model easily fail when both small and large objects exist in the image. This makes

sense as objects of varying sizes pose challenges to the model which uses the same receptive

field for every pixel. Therefore we hypothesize that pixels from different objects should have

different pooling sizes, i.e., receptive fields, to better aggregate contextual information for

better prediction. To this end, we introduce our next chapter for how to allocate dynamic
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receptive field to each pixel.
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Chapter 3

Depth-aware Gating for Contextual

Pooling

Objects may appear at arbitrary scales in perspective images of a scene, posing a challenge

for recognition systems that process images at a fixed resolution, see Figure 2.4 in Chapter 2.

In this chapter, we propose a depth-aware gating module that adaptively selects the pooling

field size in a convolutional network architecture according to the object scale (inversely

proportional to the depth) so that small details are preserved for distant objects while

larger receptive fields are used for those nearby. The depth gating signal is provided by

stereo disparity or estimated directly from monocular input. We integrate this depth-aware

gating into a recurrent convolutional neural network to perform semantic segmentation.

Our recurrent module iteratively refines the segmentation results, leveraging the depth and

semantic predictions from the previous iterations.

Through extensive experiments on four popular large-scale RGB-D datasets, we demonstrate

this approach achieves competitive semantic segmentation performance with a model which

is substantially more compact. We carry out extensive analysis of this architecture including

variants that operate on monocular RGB but use depth as side-information during training,

unsupervised gating as a generic attentional mechanism, and multi-resolution gating. We

find that gated pooling for joint semantic segmentation and depth yields state-of-the-art
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Figure 3.1: Upper: depth-aware gating spatially modulates the selected pooling scale using
a depth map predicted from monocular input. In the chapter, we also evaluate related
architectures where scene depth is provided directly at test time as a gating signal, and
where spatially adaptive attentional gating is learned without any depth supervision. Lower:
example ground-truth compared to predictions with and without the depth gating module.
Rectangles overlayed on the image indicate pooling field sizes which are adapted based
on the local depth estimate. We quantize the depth map into five discrete scales in our
experiments. Using depth-gated pooling yields more accurate segment label predictions by
avoiding pooling across small multiple distant objects while simultaneously allowing using
sufficiently large pooling fields for nearby objects.

results for quantitative monocular depth estimation.

3.1 Background

An intrinsic challenge of parsing rich scenes is understanding object layout relative to the

camera. Roughly speaking, the scales of the objects in the image frame are inversely pro-
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portional to the distance to the camera. Humans easily recognize objects even when they

range over many octaves of spatial resolution, e.g., the cars near the camera in urban scene

can appear a dozen times larger than those at distance as shown by the lower panel in Fig-

ure 3.1. However, the huge range and arbitrary scale at which objects appear pose difficulties

for machine image understanding. Although individual local features (e.g., in a deep neural

network) can exhibit some degree of scale-invariance, it is not obvious this invariance covers

the range scale variation that exists in images.

In this chapter, we investigate how cues to perspective geometry conveyed by image content

(estimated from stereo disparity, or measured directly via specialized sensors) might be

exploited to improve recognition and scene understanding. We focus specifically on the task

of semantic segmentation which seeks to produce per-pixel category labels.

One straightforward approach is to stack the depth map with RGB image as a four-channel

input tensor which can then be processed using standard architectures. In practice, this

RGB-D input has not proven successful and sometimes even results in worse performance [113,

225]. We conjecture including depth as a per-pixel input doesn’t adequately address scale-

invariance in learning; such models lack an explicit mechanism to generalize to depths not

observed during training and hence still require training examples with object instances at

many different scales to learn a multiscale appearance model.

Instead, our method takes inspiration from the work of [184], who propose using depth

estimates to rescale local image patches to a pre-defined canonical depth prior to analysis. For

patches contained within a fronto-parallel surface, this can provide true depth-invariance over

a range of scales (limited by sensor resolution for small objects) while effectively augmenting

the training data available for the canonical depth. Rather than rescaling the input image,

we propose a depth gating module that adaptively selects pooling field sizes over higher-level

feature activation layers in a convolutional neural network (CNN). Adaptive pooling works
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with a more abstract notion of scale than standard multiscale image pyramids which operate

on input pixels. This gating mechanism allows spatially varying processing over the visual

field which can capture context for semantic segmentation that is not too large or small,

but “just right”, maintaining details for objects at distance while simultaneously using much

larger receptive fields for objects near the camera. This gating architecture is trained with

a loss that encourages selection of target pooling scales derived from “ground-truth” depth

but at test time makes accurate inferences about scene depth using only monocular cues.

Inspired by studies of human visual processing (e.g., [54]) that suggest dynamic allocation

of computation depending on the task and image content (background clutter, occlusion,

object scale), we propose embedding gated pooling inside a recurrent refinement module

that takes initial estimates of high-level scene semantics as a top-down signal to reprocess

feed-forward representations and refine the final scene segmentation (similar to the recurrent

module proposed in [20] for human pose). This provides a simple implementation of “Biased

Competition Theory” [19] which allows top-down feedback to suppress irrelevant stimuli

or incorrect interpretations, an effect we observe qualitatively in our recurrent model near

object boundaries and in cluttered regions with many small objects.

We train this recurrent adaptive pooling CNN architecture end-to-end and evaluate its per-

formance on several scene parsing datasets. The monocular depth estimates produced by

our gating channel yield state-of-the-art performance on the NYU-depth-v2 benchmark [301].

We also find that using this gating signal to modulate pooling inside the recurrent refinement

architecture results in improved semantic segmentation performance over fixed multiresolu-

tion pooling. We also compare to gating models trained without depth supervision where the

gating signal acts as a generic attentional signal that modulates spatially adaptive pooling.

While this works well, we find that depth supervision results in best performance. The result-

ing system matches state-of-the-art segmentation performance on four large-scale datasets

using a model which, thanks to recurrent computation, is substantially more compact than
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many existing approaches.

3.2 Related work

Starting from the “fully convolutional” architecture of [221], there has been a flurry of re-

cent work exploring CNN architectures for semantic segmentation and other pixel-labeling

tasks [166]. The seminal DeepLab [45] model modifies the very deep residual neural net-

work [115] for semantic segmentation using dilated or atrous convolution operators to main-

tain spatial resolution in high-level feature maps. To leverage features conveying finer gran-

ularity lower in the CNN hierarchy, it has proven useful to combine features across mul-

tiple layers (see e.g., FCN [221], LRR [99] and RefineNet [208]). To simultaneously cover

larger fields-of-view and incorporate more contextual information, [385] concatenates features

pooled over different scales.

Starting from the work of [122, 289], estimating depth from (monocular) scene semantics

has been examined in a variety of indoor and outdoor settings (see e.g., [196]). Accurate

monocular depth estimation using a multiscale deep CNN architecture was demonstrated by

[75] using a geometrically inspired regression loss. Follow-on work [74] showed that depth,

surface orientation and semantic labeling predictions can benefit each other in a multi-task

setting using a shared network model for feature extraction.

The role of perspective geometry and geometric context in object detection was emphasized

by a line of work starting with [123] and others (e.g., [18]) and has played an increasingly

important role, particularly for scene understanding in urban environments [95]. We were

inspired by [184], who showed reliable depth recovery from image patches (i.e., without

vanishing point estimation) and that the resulting depths could be used to estimate object

scale and improve segmentation in turn. Chen et al. [47] used an attention gating mechanism
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to combine predictions from CNN branches run on rescaled images (multi-resolution), a

natural but computationally expensive approach that we compare experimentally to our

proposal (multi-pool).

Finally, there have been a number of proposals to carry out high-level recognition tasks

such as human pose estimation [202, 20] and semantic segmentation [284] using recurrent

or iterative processing. As pixel-wise labelling tasks are essentially a structured prediction

problem, there has also been a related line of work that aims to embed unrolled conditional

random fields or mean shift into differentiable CNN architectures to allow for more tractable

learning and inference (e.g., [386, 166]).

3.3 Depth-aware Gating Module

Our depth-aware gating module utilizes estimated depth at each image location as a proxy

for object scale in order to select the appropriate spatial extent over which to pool features.

Informally speaking, for a given object category (e.g., cars) the size of an object in the image

is inversely proportional to the distance from the camera. Thus, if a region of an image has

a larger depth values, the windows over which features are pooled (pooling field size) should

be smaller in order to avoid pooling responses over many small objects and capture details

needed to precisely segment small objects. For regions with small depth values, the same

object will appear much larger and the pooling field size should be scaled up in a covariant

manner to capture sufficient contextual appearance information in the vicinity of the object.

This depth-aware gating can readily utilize depth maps derived from stereo disparity or

specialized time-of-flight sensors. Such depth maps typically contain missing data and mea-

surement noise due to oblique view angle, reflective surface and occlusion boundary. While

these estimates can be improved using more extensive off-line processing (e.g., [307]), in our
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Figure 3.2: The input to our recurrent module is the concatenation (denoted by �) of the
feature map from an intermediate layer of the feed-forward pathway with the prior recur-
rent prediction. Our recurrent module utilizes depth-aware gating which carries out both
depth regression and quantized prediction. Updated depth predictions at each iteration gate
pooling fields used for semantic segmentation. This recurrent update of depth estimation
increases the flexibility and representation power of our system yielding improved segmenta-
tion. We illustrate the prediction prior to, and after two recurrent iterations for a particular
image and visualize the difference in predictions between consecutive iterations which yield
small but notable gains as measured by average intersection-over-union (IoU) benchmark
performance.

experiments we use these “raw” measurements. When depth measurements are not available,

the depth-aware gating can instead exploit depth estimated directly from monocular cues.

The upper panel of Figure 3.1 illustrates the architecture of our depth-aware gating module

using monocular depth predictions derived from the same front-end feature extractor.

Regardless of the source of the depth map, we quantize the depth into a discrete set of

predicted scales (5 in our experiments). The scale prediction at each image location is then

used to multiplicatively gate between a set of feature maps computed with corresponding

pooling regions and summed to produce the final feature representation for classification [170,
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163]. In the depth gating module, we use atrous convolution with different dilation rates to

produce the desired pooling field size on each branch.

When training a monocular depth prediction branch, we quantize the ground-truth depth

and treat it as a five-way classification using a softmax loss. For the purpose of quantitatively

evaluating the accuracy of such monocular depth prediction, we also train a depth regressor

over the input feature of the module using a simple Euclidean loss for the depth map D in

log-space:

`depthReg(D,D
∗) =

1

|M |
∑

(i,j)∈M

‖ log(Dij)− log(Dij)
∗‖22,

where D∗ is the ground-truth depth. Since our “ground-truth” depth may have missing

entries, we only compute the loss over pixels inside a mask M which indicates locations with

valid ground-truth depth. For benchmarking we convert the log-depth predictions back to

depths using an element-wise exponential. Although more specific depth-oriented losses have

been explored [75, 74], we show in experiment that this simplistic Euclidean loss on log-depth

achieves state-of-the-art monocular depth estimation when combined with our architecture

for semantic segmentation.

In our experiments, we evaluate models based on RGB-D images (where the depth channel

is used for gating) and on RGB images using the monocular depth estimation branch. We

also evaluated a variant which is trained monocularly (without the depth loss) where the

gating can be viewed as a generic attentional mechanism. In general, we find that using

predicted (monocular) depth to gate segmentation feature maps yields better performance

than models using the ground-truth depth input. This is a surprising, but desirable outcome,

as it avoids the need for extra sensor hardware and/or additional computation for refining

depth estimates from multiple video frames (e.g., [307]).
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3.4 Recurrent Refinement Module

It is natural that scene semantics and depth may be helpful in inferring each other. To

achieve this, our recurrent refinement module takes as input feature maps extracted from a

feed-forward CNN model along with current segmentation predictions available from previous

iterations of the recurrent module. These are concatenated into a single feature map. This

allows the recurrent module to provide an anytime segmentation prediction which can be

dynamically refined in future iterations. The recurrent refinement module has multiple

convolution layers, each of which is followed by a ReLU and batch normalization layers. We

also use depth-aware gating in the recurrent module, allowing the refined depth output to

serve as a top-down signal for use in refining the segmentation (as shown in experiments

below). Figure 3.2 depicts our final recurrent architecture using the depth-aware gating

module inside.

For a semantic segmentation problem with K semantic classes, we use a K-way softmax

classifier on individual pixels to train our network. Our final multi-task learning objective

function utilizes multiple losses weighted by hyperparameters:

` =
L∑
l=0

(λs`
l
segCls + λr`

l
depthReg + λc`

l
depthCls), (3.1)

where L means we unroll the recurrent module into L loops and l = 0 denotes the prediction

from the feed-forward pathway. The three losses `lsegCls, `
l
depthReg and `ldepthCls correspond

to the semantic segmentation, depth regression and quantized depth classification loss at

iteration l, respectively. We train our system in a stage-wise procedure by varying the

hyper-parameters λs, λr and λc, as detailed in Section 3.5, culminating in end-to-end training

using the full objective. As our primary task is improving semantic segmentation, in the

final training stage we optimize only `lsegCls and drop the depth side-information (setting

λr = 0 and λc = 0).
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3.5 Implementation

We implement our model with the MatConvNet toolbox [326] and train using SGD on a

single Titan X GPU. We use the pre-trained ResNet50 and ResNet101 models [115] as the

backbone of our models∗. To increase the output resolution of ResNet, like [45], we remove

the top global 7 × 7 pooling layer and the last two 2 × 2 pooling layers. Instead we apply

atrous convolution with dilation rate 2 and 4, respectively to maintain a spatial sampling

rate which is of 1/8 resolution to the original image size (rather than 1/32 resolution if all

pooling layers are kept). To obtain a final full resolution segmentation prediction, we simply

apply bilinear interpolation on the softmax class scores to upsample the output by a factor

of eight.

We train our models in a stage-wise procedure. First, we train a feed-forward baseline model

for segmentation. The feed-forward module is similar to DeepLab [45], but we add two

additional 3× 3-kernel layers (without atrous convolution) on top of the ResNet backbone.

Starting from this baseline, we train depth estimation branch and replace the second 3 ×

3-kernel layer with the depth prediction and depth-aware gating module. We train the

recurrent refinement module (containing the depth-aware gating), unrolling one layer at a

time, and fine-tune the whole system using the objective function of Eq. 3.1.

We augment the training set using random data transforms. Specifically, we use random

scaling by s ∈ [0.5, 2], in-plate rotation by degrees in [−10◦, 10◦], random left-right flip with

0.5 probability, random crop with sizes around 700× 700 divisible by 8, and color jittering.

Note that when scaling the image by s, we also divide the depth values by s. All these data

transforms can be performed in-place with minimal computational cost.

Throughout training, we set batch size to one where the batch is a single input image (or

a crop of a very high-resolution image). Due to this small batch size, we freeze the batch

∗Code and models are available here: http://www.ics.uci.edu/~skong2/recurrentDepthSeg.
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normalization in ResNet backbone during training, using the same constant global moments

in both training and testing. We use the “poly” learning rate policy [45] with a base learning

rate of 2.5e− 4 scaled as a function of iteration by (1− iter
maxiter

)0.9.

3.6 Experiments

To show the effectiveness of our approach, we carry out comprehensive experiments on four

large-scale RGB-D datasets (introduced below). We start with a quantitative evaluation

of our monocular depth predictions, which achieve state-of-the-art performance. We then

compare our complete model with the existing methods for semantic segmentation on these

datasets, followed by ablation experiments to determine whether our depth-aware gating

module improves semantic segmentation, validate the benefit of our recurrent module, and

compare among using ground-truth depth, predicted depth, and unsupervised attentional

gating. Finally, we show some qualitative results.

3.6.1 Datasets and Benchmarks

For our primary task of semantic segmentation, we use the standard Intersection-over-Union

(IoU) criteria to measure the performance. We also report the per-pixel prediction accuracy

for the first three datasets to facilitate comparison to existing approaches.

NYUD-depth-v2 [301] consists of 1,449 RGB-D indoor scene images of the resolution

640× 480 which include color and pixel-wise depth obtained by a Kinect sensor. We use the

ground-truth segmentation into 40 classes provided in [105] and a standard train/test split

into 795 and 654 images respectively.

SUN-RGBD [307] is an extension of NYUD-depth-v2 [301], containing 5,285 training im-

ages and 5,050 testing images. It provides pixel labelling masks for 37 classes, and depth
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Table 3.1: Depth prediction on NYU-depth-v2 dataset.

Metric
δ <

Ladicky
[184]

Liu
[219]

Eigen
[75]

Eigen
[74]

Laina
[188]

Ours Ours
-blur

1.25 0.542 0.614 0.614 0.769 0.811 0.809 0.816
1.252 0.829 0.883 0.888 0.950 0.953 0.945 0.950
1.253 0.940 0.971 0.972 0.988 0.988 0.986 0.989

maps using different depth cameras. While this dataset provides refined depth maps (ex-

ploiting depth from the neighborhood video frames), the ground-truth depth maps still have

significant noisy/mislabled depth (examples can be found in our supplemental material).

Cityscapes [57] contains high quality pixel-level annotations of images collected in street

scenes from 50 different cities. The training, validation, and test sets contain 2,975, 500, and

1,525 images respectively labeled for 19 semantic classes. The images of Cityscapes are of

high resolution (1024×2048), which makes training challenging due to limited GPU memory.

We randomly crop out sub-images of 800× 800 resolution for training.

Stanford-2D-3D [9] contains 1,559 panoramas as well as depth and semantic annotations

covering six large-scale indoor areas from three different buildings. We use area 3 and 4 as a

validation set (489 panoramas) and the remaining four areas for training (1,070 panoramas).

The panoramas are very large (2048×4096) and contain black void regions at top and bottom

due to the spherical panoramic topology. For the task of semantic segmentation, we rescale

them by 0.5 and crop out the central two-thirds (y ∈ [160, 863]) resulting in final images of

size 704× 2048-pixels.

3.6.2 Depth Prediction

In developing our approach, accurate depth prediction was not the primary goal, but rather

generating a quantized gating signal to select the pooling field size. However, to validate

our depth prediction, we also trained a depth regressor over the segmentation backbone

42



Figure 3.3: Examples of monocular depth predictions. First row: the input RGB image;
second row: ground-truth; third row: our result. In our visualizations, all depth maps use
the same fixed (absolute) colormap to represent metric depth.

and compared the resulting predictions with previous work. We evaluated our model on

NYU-depth-v2 dataset, on which a variety of depth prediction methods have been tested.

We report performance using the standard threshold accuracy metrics, i.e., the percentage

of predicted pixel depths di s.t. δ = max( di
d∗i
,
d∗i
di

) < τ , evaluated at multiple thresholds

τ = {1.25, 1.252, 1.253}.

Table 3.1 provides a quantitative comparison of our predictions with several published meth-

ods. We can see our model trained with the Euclidean loss on log-depth is quite competitive

and achieves significantly better performance in the δ < 1.25 metric. This simplistic loss

compares well to, e.g., [74] who develop a scale-invariant loss and use first-order matching

term which compares image gradients of the prediction with the ground-truth, and [188] who

develop a set of sophisticated upsampling layers over a ResNet50 model.

In Figure 3.3, we visualize our estimated depth maps on the NYU-depth-v2 dataset†. Vi-

sually, we can see our predicted depth maps tend to be noticeably less smooth than true

depth. Inspired by [74] who advocate modeling smoothness in the local prediction, we also

†We also evaluate our depth prediction on SUN-RGBD dataset, and achieve 0.754, 0.899 and 0.961 by
the three threshold metrics. As SUN-RGBD is an extension of NYU-depth-v2 dataset, it has similar data
statistics resulting in similar prediction performance. Examples of depth prediction on SUN-RGBD dataset
can be found in the supplementary material.
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apply Gaussian smoothing on our predicted depth map. This simple post-process is suffi-

cient to outperform the state-of-the-art. We attribute the success of our depth estimator

to two factors. First, we use a deeper architecture (ResNet50) than that in [74] which has

generally been shown to improve performance on a variety vision tasks as reported in liter-

ature. Second, we train our depth prediction branch jointly with features used for semantic

segmentation. This is essentially a multi-task problem and the supervision provided by se-

mantic segmentation may understandably help depth prediction, explaining why our blurred

predictions are as good or better than a similar ResNet50-based approach which utilized a

set of sophisticated upsampling layers [188].

3.6.3 Semantic Segmentation

To validate the proposed depth-aware gating module and the recurrent refinement module, we

evaluate several variants over our baseline model. We list the performance details in the first

group of rows in Table 3.2. The results are consistent across models trained independently

on the four datasets. Adding depth maps for gating feature pooling brings noticeable boost

in segmentation performance, with greatest improvements especially on the large-perspective

datasets Cityscapes and Stanford-2D-3D.

Interestingly, we achieve slightly better performance using the predicted depth map rather

than the provided ground-truth depth. We attribute this to three explanations. Firstly, the

predicted depth is smooth without holes or invalid entries. When using raw depth, say on

Cityscapes and Stanford-2D-3D‡, we assign equal weight on the missing entries so that the

gating actually averages the information at different scales. This average pooling might be

harmful in some cases such as a very small object at a distance. Secondly, the predicted

depth maps show some object-aware patterns (e.g., car region shown in the visualization in

Figure 3.7), which might be helpful for class-specific segmentation. Thirdly, the model is

‡NYU-depth-v2 and SUN-RGBD datasets provide improved depth maps without invalid entries.
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trained end-to-end so co-adaption of the depth prediction and segmentation branches may

increase the overall representation power and flexibility of the whole model, benefiting the

final predictions.

Table 3.2 also shows the benefit of the recurrent refinement module as shown by improved

performance from baseline to loop1 and loop2. Equipped with depth in the recurrent mod-

ule, the improvement is more notable. As with the pure feed-forward model, using predicted

depth maps in the recurrent module yields slight gains over the ground-truth depth. We ob-

serve that performance improves using a depth 2 unrolling (third group of rows in Table 3.2)

but saturates/converges after two iterations.

In comparing with state-of-the-art methods, we follow common practice of augmenting im-

ages at test time by running the model on flipped and rescaled variants and average the

class scores to produce the final segmentation output (compare loop2 and loop2 (test-aug)).

We can see our model performs on par or better than recently published results listed in

Table 3.2.

Note that for NYU-depth-v2 and SUN-RGBD, our backbone architecture is ResNet50,

whereas RefineNet reports the results using a much deeper models (ResNet101 and ResNet152)

which typically outperform shallower networks in vision tasks. For the Cityscapes, we also

submitted our final result for held-out benchmark images which were evaluated by the

Cityscapes benchmark server. Our model achieves IoU 0.782, on par with the best published

result, IoU 0.784, by PSPNet.§ We did not perform any extensive performance tuning and

only utilized the fine-annotation training images for training (without the twenty thousand

coarse-annotation images and the validation set). We also didn’t utilize any post-processing

(such as the widely used fully-connected CRF [175] which typical yields additional perfor-

mance increments).

§We compare to performance using train only rather than train+val which improved PSPNet performance
to 0.813.
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Figure 3.4: Performance comparisons across gating architectures including tied vs untied pa-
rameters across different branches, averaging vs gating branch predictions, using monocular
predicted vs ground-truth depth for the gating signal, gating pooling region size (MultiPool)
or rescaling input image (MultiScale), and gating without depth supervision during training
(attention).

One key advantage of recurrent refinement is that it allows richer computation (and bet-

ter performance) without additional model parameters. Our ResNet50 model (used on the

NYU-depth-v2 dataset) is relatively compact (221MB) compared to RefineNet-Res101 which

achieves similar performance but is nearly double the size (426MB). Our model architecture

is similar to DeepLab which also adopts pyramid atrous convolution at multiple scales of

inputs (but simply averages output feature maps without any depth-guided adaptive pool-

ing). However, the final DeepLab model utilizes an ensemble which yields a much larger

model (530MB). PSPNet concatenates the intermediate features into 4,096 dimension before

classification while our model operates on small 512-dimension feature maps.

3.6.4 Analysis of Gating Architectures Alternatives

We discuss the important question of whether depth-aware gating is really responsible for

improved performance over baseline, or if gains are simply attributable to training a larger,
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richer architecture. We also contrast our approach to a number of related proposals in the

literature. We summarize our experiments exploring these alternatives in Figure 3.4 (more

details can be found in supplementary material).

We use the term MultiPool to denote the family of models (like our proposed model) which

process the input image at a single fixed scale, but perform pooling at multiple convolutional

dilate rate at high level layers. For a multi-pool architecture, we may choose to learn inde-

pendent untied weights across the scale-specific branches or use the same tied weights. As

an alternative to our gating function, which selects a spatially varying weighted combination

of the scale-specific branches, we can simply average the branches (identical at all spatial

locations).

We can contrast MultiPool with the MultiScale approach, which combines representations

or predictions from multiple branches where each branch is applied to a scaled version of the

input image¶. Many have adopted this strategy as a test time heuristic to boost performance

by simply running the same model (tied) on different scaled versions of the input and then

averaging the predictions. Others, such as DeepLab [45], train multiple (untied) models and

use the average ensemble output.

In practice, we found that both MultiPool and MultiScale architectures outperform baseline

and achieve similar performance. While MultiScale processing is conceptually appealing,

it has a substantial computational overhead relative to MultiPool processing (where early

computation is shared among branches). As a result, it was not feasible to train untied Mul-

tiScale models end-to-end on a single GPU memory constraints. As a result, we found that

the untied, depth-gated model performed the best (and was adopted in our final approach).

Finally, we explored use of the gated pooling where the gating was trained without the

¶The roots of this idea can be traced back to early work on scale-space for edge detection (see, e.g.
[23, 214])
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depth loss. We refer to this as an attention model after the work of [47]. The attention

model achieves surprisingly good performance, even outperform gating using ground-truth

depth. We show the learned attention map in Figure 3.5, which behaves quite differently

from depth gating. Instead, the gating signal appears to encode the distance from object

boundaries. We hypothesize this selection mechanism serves to avoid pooling features across

different semantic segments while still utilizing large pooling regions within each region. Our

fine-tuned model using predicted depth-gating (instead of ground-truth depth) likely benefits

from this adaption.

3.6.5 Qualitative Results

In Figures 3.6 and 3.7, we depict several randomly selected examples from the test set of

NYU-depth-v2, Cityscapes and Stanford-2D-3D. We visualize both the segmentation results

and the depth maps updated across multiple recurrent iterations. Interestingly, the depth

maps on Cityscapes and Stanford-2D-3D change more noticeably than those on NYU-depth-

v2 dataset. In Cityscapes, regions in the predicted depth map corresponding to objects, such

as the car, are grouped together and disparity estimates on texture-less regions such as the

street surface improve across iterations, while in Stanford-2D-3D, depth estimate for adap-

tation suggests that the recurrent module is performing coarse-to-fine segmentation (where

later iterations shift towards a smaller pooling regions as semantic confidence increases).

Gains for the NYU-depth-v2 data are less apparent. We conjecture this is because images

in NYU-depth-v2 are more varied in overall layout and often have less texture and fewer

objects from which the model can infer semantics and subsequently depth. In all datasets,

we can see that our model is able to exploit recurrence to correct misclassified regions/pixels

“in the loop”, visually demonstrating the effectiveness of the recurrent refinement module.
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3.7 Conclusion and Discussion

In this chapter, we have proposed a depth-aware gating module that uses depth estimates

to adaptively modify the pooling field size at a high level layer of neural network for better

segmentation performance. The adaptive pooling can use large pooling fields to include

more contextual information for labeling large nearby objects, while maintaining fine-scale

detail for objects further from the camera. While our model can utilize stereo disparity

directly, we find that using such data to train a depth predictor which is subsequently used

for adaptation at test-time in place of stereo ultimately yields better performance. We also

demonstrate the utility of performing recurrent refinement which yields improved prediction

accuracy for semantic segmentation without adding additional model parameters.

We envision that the recurrent refinement module can capture object shape priors, contour

smoothness and region continuity. However, our current approach converges after a few iter-

ations and performance saturates. This leaves open future work in exploring other training

objectives that might push the recurrent computation towards producing more varied out-

puts. This might be further enriched in the setting of video where the recurrent component

could be extended to incorporate memory of previous frames.
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Figure 3.5: Visualization of the attention maps on random images from Cityscapes and
Stanford-2D-3D. The raw disparity/depth maps and the quantized versions are also shown
for reference. Though we train the attention branch with randomly initialized weights, we
can see that the learned attention maps capture some depth information as well as encoding
distance to object boundaries.
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Figure 3.6: Visualization of the output on NYU-depth-v2. We show four randomly selected
testing images with ground-truth and predicted disparity (first row), quantized disparity
(second row) and segmentation (third row) at each iteration of the recurrent computation.

Figure 3.7: Visualization of randomly selected validation images from Cityscapes and
Stanford-2D-3D with the segmentation output and the predicted quantized disparity at
each iteration of the recurrent loop. We depict “ground-truth” continuous and quantized
disparity beneath the input image. Our monocular disparity estimate makes predictions for
reflective surfaces where stereo fails and recurrent iteration further improves estimates, par-
ticularly for featureless areas such as the pavement. Note that Cityscapes shows disparity
while Stanford-2D-3D shows depth so the colormaps are reversed.
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Chapter 4

Pixel-wise Attentional Gating for

Dynamic Computation

In this chapter, we extend the depth-aware gating module to a more general one, called

Pixel-wise Attentional Gating unit (PAG). PAG learns to allocate per-pixel computation

route without heuristical supervision. As a benefit, PAG enables not only spatially dynamic

computation for pooling contextual information at each pixel, but also allows for parsimo-

nious computation.

PAG is a generic, architecture-independent, problem-agnostic mechanism that can be readily

“plugged in” to an existing model with fine-tuning. We utilize PAG in two ways: 1) learning

spatially varying pooling fields that improve model performance without the extra computa-

tion cost associated with multi-scale pooling, and 2) learning a dynamic computation policy

for each pixel to decrease total computation while maintaining accuracy.

We extensively evaluate PAG on a variety of per-pixel labeling tasks, including semantic

segmentation, boundary detection, monocular depth and surface normal estimation. We

demonstrate that PAG allows competitive or state-of-the-art performance on these tasks.

Our experiments show that PAG learns dynamic spatial allocation of computation over the

input image which provides better performance trade-offs compared to related approaches
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(e.g., truncating deep models or dynamically skipping whole layers). Generally, we observe

PAG can reduce computation by 10% without noticeable loss in accuracy and performance

degrades gracefully when imposing stronger computational constraints.

4.1 Background

The development of deep convolutional neural networks (CNN) has allowed remarkable

progress in wide range of image pixel-labeling tasks such as boundary detection [232, 358,

161], semantic segmentation [165, 167, 45], monocular depth estimation [167, 200, 188, 219,

75], and surface normal estimation [336, 17, 74]. Architectures that enable training of in-

creasingly deeper networks have resulted in corresponding improvements in prediction accu-

racy [304, 115]. However, with great depth comes great computational burden. This hinders

deployment of such deep models in applications such as mobile and robotics, which have

significant power constraints and real-time processing requirements.

To make deep models more practically applicable, a flurry of recent work has focused on

reducing these storage and computational costs [108, 242, 135, 230, 40, 163]. Static offline

techniques like network distillation [117], pruning [242], and model compression [40] take a

trained network as input and synthesize a new network that approximates the same function-

ality with reduced memory footprint and test-time execution cost. Our approach is inspired

by a complementary family of techniques that learn to vary the network computation depth

adaptively, depending on the input data [327, 354, 341, 83].

In this chapter, we study the problem of achieving parsimonious inference for per-pixel

labeling tasks with a deep CNN model under limited computational budget. For image clas-

sification, dynamic allocation of computational “attention” can be interpreted as expending

more computation on ambiguous images (e.g., [327, 354, 341]) or limiting processing to infor-
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Figure 4.1: Pixel-wise Attentional Gating units (PAG) achieve parsimonious inference by
learning a dynamic computation path for each pixel under limited computation budget.
The “ponder cost” maps shown in the last row provide a visualization of the amount of
computation allocated to each location (generated by accumulating binary masks from PAG
units across all layers). We apply PAG to a variety of per-pixel labeling tasks (boundary
detection, semantic segmentation, monocular geometry) and evaluate over diverse image
datasets (indoor/outdoor scenes, narrow/wide field-of-view).

mative image regions (e.g., [83]). However, understanding the role of dynamic computation

in pixel labeling tasks has not been explored. Pixel-level labeling requires analyzing fine-

grained image details and making predictions at every spatial location, so it is not obvious

that dynamically allocating computation to different image regions is useful. Unlike clas-

sification, labeling locally uninformative regions would seem to demand more computation

rather than less (e.g., to incorporate long-range context).

To explore these questions, we introduce a Pixel-wise Attentional Gating (PAG) unit that

selects a sparse subset of spatial locations to process based on the input feature map. We

utilize the Gumbel sampling trick [104, 142, 227] to allow differentiable, end-to-end latent

training of PAG units inserted across multiple computational blocks of a given task-specific

architecture. We exploit this generic PAG unit in two ways: bypassing sequential (residual)

processing layers and dynamically selecting between multiple parallel network branches.

Dynamic computation depth: Inserting PAG at multiple layers of a Residual Network enables

learning a dynamic, feed-forward computation path for each pixel that is conditional on the

input image. We introduce a sparsity hyperparameter that provides control over the average
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total and per-layer computation per-pixel. For a fixed computational budget, we show this

dynamic, per-pixel gating outperforms architectures that meet the budget by using a smaller

number of fixed layers or that learn to dynamically bypass whole layers (Section 4.3.3).

Dynamic spatial pooling: We exploit PAG to dynamically select the extent of pooling regions

at each spatial image location. Previous work has demonstrated the benefits of averaging

features from multiple pooling scales using either learned weights [45], or spatially varying

weights based on attention [47] or scene depth [167]. However, such multi-scale pooling

requires substantially more computation. We show the proposed PAG unit can learn to

select appropriate spatially-varying pooling, outperforming the recent work of [167] without

the computational burden of multiple parallel branches (Section 4.3.4).

We carry out an extensive evaluation of pixel-wise attentional gating over diverse datasets for

a variety of per-pixel labeling tasks including boundary detection, semantic segmentation,

monocular depth estimation and surface normal estimation (see Fig. 4.1). We demonstrate

that PAG helps deliver state-of-the-art performance on these tasks by dynamically allocating

computation. In general, we observe that the introduction of PAG units can reduce total

computation by 10% without noticeable drop in accuracy and shows graceful degradation in

performance even with substantial budget constraints (e.g., a 30% budget cut).

To summarize our primary contribution: (1) we introduce a pixel-wise attentional gating

unit which is problem-agnostic, architecture-independent and provides a simple method to

allow user-specified control computational parsimony with standard training techniques; (2)

we investigate the role of dynamic computation in pixel-labeling tasks and demonstrate

improved prediction performance while maintaining or reducing overall compute cost.
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4.2 Related Work on Dynamic and Spatially Varying Computation

Deep CNN models with residual or “skip” connections have yielded substantial performance

improvements with increased depth [115, 129], but also introduced redundant parameters

and computation [108, 242]. In interpreting the success of residual networks (ResNet) [115],

it has been suggested that ResNet can be seen as an ensemble of many small networks [328],

each defined by a path through the network topology. This is supported by the observation

that ResNet still performs well even when some layers are removed after training [130, 83].

This indicates it may be possible to reduce test-time computation by dynamically choosing

only a subset of these paths to evaluate [327, 354, 341, 83].

This can be achieved by learning a halting policy that stops computation after evaluation

of a particular layer [83], or a more flexible routing policy trained through reinforcement

learning [354, 341]. Our method is most closely related to [327], which utilizes the “Gumbel

sampling trick” [104, 142, 227] to learn binary gating that determines whether each layer

is computed. The Gumbel sampling technique allows one to perform gradient descent on

models that include a discrete argmax operation without resorting to approximation by

softmax or reinforcement learning techniques.

The PerforatedCNN [84] demonstrated that convolution operations could be accelerated

by learning static masks that skip computation at a subset of spatial positions. This was

used in [83] to achieve spatially varying dynamic depth. Our approach is simpler (it uses a

simple sparsity regularization to directly control amount per-pixel or per-layer computation

rather than ponder cost) and more flexible (allowing more flexible routing policies than early

halting∗).

Finally, our use of dynamic computation to choose between branches is related to [167],

∗Results in [354, 341] suggest general routing offers better performance than truncating computation at
a particular depth.
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which improves semantic segmentation by fusing features from multiple branches with various

pooling sizes using a spatially varying weighted average. Unlike [45, 47, 167] which require

computing the outputs of parallel pooling branches, our PAG-based learns to select a pooling

size for each spatial location and only computes the necessary pooled features. This is similar

in spirit to the work of [297], which demonstrated that sparsely-gated mixture-of-experts can

dramatically increase model capacity using multi-branch configuration with only minor losses

in computational efficiency.

4.3 Pixel-wise Attentional Gating

We first describe our design of Pixel-wise Attentional Gating (PAG) unit and its relation

to the ResNet architecture [115]. Then, we elaborate how we exploit the Gumbel sampling

technique to make learning PAG differentiable even when generating binary masks. Finally

we describe how the PAG unit can be used to perform parsimonious inference by (1) selecting

the subset of layers in the computational path for each spatial location, and (2) selecting the

correct pooling size at each spatial location.

4.3.1 Plug-in PAG inside a Residual Block

Consider a block that computes output O using a residual update Z = F(I) to some input

I. To reduce computation, one can learn a gating function G(I) that selects a subset of

spatial locations (pixels) to process conditional on the input. We represent the output of G

as a binary spatial mask G which is replicated along feature channel dimension as needed
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to match dimension of O and I. The spatially gated residual update can be written as:

G =G(I)

O =Ḡ� I + G� (FG(I) + I)

=I + G�FG(I)

(4.1)

where � is element-wise product, Ḡ = 1 −G, and the notation FG indicates that we only

evaluate F at the locations specified by G. An alternative to spatially varying computation

is for the gating function to predict a single binary value that determines whether or not the

residual is calculated at this layer [327] in which case FG is only computed if G = 1.

Both pixel-wise and layer-wise gating have the intrinsic limitation that the gating function G

must be evaluated prior to F . To overcome this limitation we integrate the gating function

more carefully within the ResNet block. We demonstrate our approach in the equations

below, comparing a standard residual block (left) and a PAG residual block (right) with

corresponding illustrations in Fig. 4.2.

X =F1(I)

Y =F2(X)

Z =F3(Y)

O =I + Z

X =F1(I), G = G(I)

Y =F2
G(X)

Z =F3
G(Ḡ�X + G�Y)

O =I + Z

(4.2)

The transformation functions F ’s consist of convolution, batch normalization [137] and

ReLU [247] layers. As seen from the right set of equations, our design advocates computing

the gating mask on the input I to the current building block in parallel with X = FX(I).

ResNet adopts bottleneck structure so the first transformation F1 performs dimensionality

reduction with a set of 1×1 kernels, F2 utilizes 3×3 kernels, and F3 is another transform

with 1×1 kernels that restores dimensionality. As a result, the most costly computation is
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Figure 4.2: (a) A standard residual block. (b) Pixel-wise Attentional Gating unit (PAG) inte-
grated into a residual block. Boxes/arrows denote activations/computations. G is a sparse, binary
map that modulates what processing applied to each spatial location. “�” means the perforated
convolution [84], which assembles only active pixels for computation.

in the second transformation F2 which is mitigated by gating the computation. We show in

our ablation study (Section 4.5.1) that for per-pixel labeling tasks, this design outperforms

layer-wise gating.

4.3.2 Learning Discrete Attention Maps

The key to the proposed PAG is the gating function G that produces a discrete (binary)

mask which allows for reduced computation. However, producing the binary mask using

hard thresholding is non-differentiable, and thus cannot be simply incorporated in CNN

where gradient descent is used for training. To bridge the gap, we exploit the Gumbel-Max

trick [104] and its recent continuous relaxation [227, 142].

A random variable m follows a Gumbel distribution if m ≡ − log(− log(u)), where u is a

sample from the uniform distribution u ∼ U [0, 1]. Let g be a discrete random variable with

probabilities P (g = k) ∝ ak, and let {mk}k=1,...,K be a sequence of i.i.d. Gumbel random

variables. Then we can sample from the discrete variable with:

g = argmax
k=1,...,K

(logαk +mk) (4.3)

The drawback of this approach is that the argmax operation is not continuous when map-

ping the Gumbel samples to the realizations of discrete distribution. To address this issue,

a continuous relaxation the Gumbel Sampling Trick, proposed in [227, 142], replaces the
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argmax operation with a softmax. Using a one-hot vector g = [g1, . . . , gK ] to encode g, a

sample from the Gumbel softmax relaxation can be expressed by the vector:

g =softmax((log(α + m))/τ) (4.4)

where α = [α1, . . . , αK ], m = [m1, . . . ,mK ], and τ is the “temperature” parameter. In

the limit as τ → 0, the softmax function approaches the argmax function and Eq. (4.4)

becomes equivalent to the discrete sampler. Since the softmax function is differentiable and

m contains i.i.d Gumbel random variables which are independent to input activation α, we

can easily propagate gradients to the probability vector α, which is treated as the gating

mask for a single pixel in the per-pixel labeling tasks.

As suggested in [327], we employ the straight-through version [227] of Eq. (4.4) during

training. In particular, for the forward pass, we use discrete samples from Eq. (4.3), but

during the backwards pass, we compute the gradient of the softmax relaxation in Eq. (4.4).

Based on our empirical observation as well as that reported in [227], such greedy straight-

through estimator performs slightly better than strictly following Eq. (4.4), even though

there is a mismatch between forward and backward pass. In our work, we initialize τ = 1

and decrease it to 0.1 gradually during training. We find this works even better than training

with a constant small τ .

4.3.3 Dynamic Per-Pixel Computation Routing

By stacking multiple PAG residual blocks, we can construct a model in which the subset

of layers used to a compute an output varies for each spatial location based the collection

of binary masks. We allow the user to specify the computational budget in terms of a

target sparsity ρ. For a binary mask G ∈ {0, 1}H×W , we compute the empirical sparsity

g = 1
H∗W

∑H,W
h,w Gh,w (smaller values indicate sparser computation) and measure how well it
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matches the target ρ using the KL divergence:

KL(ρ‖g) ≡ ρ log(
ρ

g
) + (1− ρ) log(

1− ρ
1− g

) (4.5)

To train the model, we jointly minimize the sum of a task-specific loss `task and the per-layer

sparsity loss summed over all layers of interest:

` = `task + λ
L∑
l=1

KL(ρ‖gl) (4.6)

where l indexes one of L layers which have PAG inserted for parsimonious computation

and λ controls the weight for the constraints. In our experiments we set λ = 10−4 but

found performance is stable over a wide range of penalties (λ ∈ [10−5, 10−2]). To visualize

the spatial distribution of computation, we accumulate the binary gating masks from all

to produce a “ponder map”. This reveals that trained models do not allocate computation

uniformly, but instead responds to image content (e.g. focusing computation on boundaries

between objects where semantic labels, depths or surface normals undergo sharp changes).

An alternative to per-layer sparsity is to compute the total sparsity g = 1
L

∑L
l=1 gl and

penalize g with KL(ρ‖g). However, training in this way does not effectively learn dynamic

computational paths and results in trivial, non-dynamic solutions, e.g. completely skipping

a subset of layers and always using the remaining ones. Similar phenomenon is reported

in [327]. In training models we typically start from a pre-trained model and insert sparsity

constraints layer-by-layer. We found this incremental construction produces better diversity

in the PAG computation paths. We also observe that when targeting reduced computation

budget, fine-tuning a model which has already been trained with larger ρ consistently brings

better performance than fine-tuning a pre-trained model directly with a small ρ.
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Figure 4.3: PAG-based MultiPool module learns to select the pooling size for each spatial location
so that contextual information can be better aggregated. This can be implemented efficiently using
perforated convolution [84], denoted by �, which assembles only active pixels for computation in
each pooling branch and thus avoids computing all pooled versions.

4.3.4 Dynamic Spatial Pooling

In pixel-labeling tasks, the ideal spatial support for analyzing a pixel can vary over the

visual field in order to simultaneously maintain fine-grained details and capture context.

This suggests an adaptive pooling mechanism at pixel level, or multi-scale pooling module

(MultiPool) that chooses the appropriate pooling size for each pixel (see e.g., [167]). Given

a collection of P pooled feature maps {Mi}i=1,...,P computed with different pooling sizes,

we can generate a MultiPool feature map O =
∑

i Wi �Mi, where {Wi}i=1,...,P are spatial

selection masks, and � indicates element-wise product between Wi and each channel of

Mi. We utilize the PAG to select the “correct” pooling region at each spatial location by

applying Eq. (4.4). This MultiPool module, illustrated in Fig. 4.3, can be inserted in place

of regular pooling with little computational overhead and learned in a latent manner using

the task-specific loss (no additional sparsity loss).

We implement pooling using a set of 3×3-kernels applied at a set of user-specified dilation

rates ([0, 1, 2, 4, 6, 8, 10]) [368]. A dilation rate of 0 means the input feature is simply copied

into the output feature map. In our experiments, we observe that only a small portion

of pixels are exactly copied for the final representation without being fed into any multi-

pooling branches. Note that in Fig. 4.3, a multiplicative gating operation is shown for

clarity, but an efficient implementation would utilize masking to directly select pixels in a
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matrix multiplication implementation of the convolutional layers in GPU or FPGA kernel [50,

253]. Our MultiPool module is thus distinct from [167] which use weighted averages over all

intermediate feature activations from all branches for the final feature representation. Our

approach selects a single pooling size for each pixel and hence does not require overhead of

computing all branches.

4.4 Implementation and Training

As our PAG unit is agnostic to network architectures, the implementation is exactly the

same as what described in Chapter 2.2. We briefly review the implementation here.

We utilize ResNet [115] pre-trained on ImageNet [63] as the base model. We follow [45, 167]

and increase the output resolution of ResNet by removing the top global 7×7 pooling layer

and the last two 2×2 pooling layers, replacing them with atrous convolution with dilation

rate 2 and 4, respectively, to maintain a spatial sampling rate. Such a modification thus

outputs predictions at 1/8 the input resolution. Rather than up-sampling the output (or

downsampling the ground-truth) 8× for benchmarking [45, 167], we find it better to apply

a deconvolution/upsampling layer followed by two or more convolutional layers before the

final output. However, in [46], it trains with upsampled logits (the final output) with intact

ground-truth annotation.

We augment the training sets with random left-right flips and random crops with 20-pixel

margin and of size divisible by 8. When training the model, we fix the batch normalization,

using the same constant global moments in both training and testing. This modification

does not impact the performance and allows a batch size of one during training (a single

input image per batch). We use the “poly” learning rate policy [45] with a base learning rate

of 0.0002 scaled as a function of iteration by (1− iter
maxiter

)0.9. We adopt a stage-wise training
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Table 4.1: Ablation study for where to insert the PAG-based MultiPool module. Experiments
are from boundary detection and semantic segmentation on BSDS500 and NYUv2 dataset,
measured by F -score (Fbnd.) and IoU(IoUseg.) respectively. Numbers are in % (higher is
better).

metrics base. Res3 Res4 Res5 Res6 Res4-5 Res3-5 Res4-6 Res5-6 Res3-6

Fbnd. 79.00 79.19 79.19 79.14 — 79.18 79.07 — — —

IoUseg. 42.05 44.13 45.67 46.52 45.99 45.48 44.83 44.97 46.44 44.02

strategy over all tasks, i.e. training a base model, adding PAG-based MultiPool, inserting

PAG for dynamic computation layer by layer, and finally decreasing ρ to achieve target

computational budget. Since our goal is to explore computational parsimony in per-pixel

labeling tasks, we implement our models without “bells and whistles”, e.g. no utilization of

ensembles, no CRF as post-processing, and no external training data. We implement our

approach using the toolbox MatConvNet [326], and train using SGD on a single Titan X

GPU†.

4.5 Experiments

To evaluate our method based on PAG, we choose datasets that span a variety of per-

pixel labeling tasks, including boundary detection, semantic segmentation, depth and surface

normal estimation. As we have described the details of the tasks, datasets and loss functions

in Chapter 2.2, we do not reiterate these in this chapter.

4.5.1 Analysis of Pixel-wise Attentional Gating

We evaluate different configurations of PAG on the BSDS500 and NYUv2 datasets for bound-

ary detection and semantic segmentation (similar observations hold on other tasks, see ap-

pendix). The goal of these experiments is to establish:

†As MatConvNet itself does not provide perforated convolution, we release the code and models imple-
mented with multiplicative gating at https://github.com/aimerykong/Pixel-Attentional-Gating .
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Table 4.2: Computational parsimony compared with truncated ResNet and models learn-
ing to drop/skip whole layers. Evaluation is performed on NYUv2 dataset for semantic
segmentation.

hyper param. FLOPs consumption truncated layer-skipping MP@Res5 (PAG)

ρ 1e10 % IoU acc. IoU acc. IoU acc.

ρ = 0.5 6.29 67.69 36.30 67.36 37.78 67.31 40.89 69.44

ρ = 0.7 8.27 86.20 37.69 67.44 39.84 69.00 43.61 71.41

ρ = 0.9 8.95 93.36 40.29 69.66 41.27 70.01 45.75 72.93

ρ = 1.0 9.63 100.00 — — — — 46.52 73.50

1. whether our base model is comparable to state-of-the-art methods;

2. where to insert the PAG-based MultiPool module for the best performance;

3. how our PAG-based method for computational parsimony impacts performance, and

how it performs compared with other related methods, e.g. truncated ResNet and

methods learning to skip/drop layers.

Base models: We train our base models as described in Section 4.4 without PAG units

(the same as described in Chapter 2). The performance of our base model is on-par with

state-of-the-art systems, achieving IoU=42.05% on NYUv2 for semantic segmentation (Re-

fineNet [208] achieves IoU=44.5 with multi-resolution input), and F = 0.79 on BSDS500 for

boundary detection (HED [358] achieves F = 0.78). More comprehensive comparisons with

other related methods are shown later in Section 4.5.2.

MultiPool: Table 4.1 explores the effect of inserting the MultiPool operation at different

layers in the base model. In Table 4.1, Res6 means that we insert MultiPool module in the

additional convolutional layers above the ResNet50 base. For boundary detection, we do

not initialize more convolutional layers above the backbone, so there is no Res6. For both

tasks, we observe that including a PAG-based MultiPool module improves performance, but

including more than one MultiPool module does not offer further improvements. We find

inserting MultiPool module at second last macro residual block (Res4 or Res5 depending on
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task) yields the largest gain.

For semantic segmentation, our MultiPool module also outperforms the weighted pooling in

[167], which uses the same ResNet50 backbone. We conjecture this is due to three reasons.

First, we apply the deconvolutional layer way before the last convolutional layer for softmax

input as explained in Section 4.4. This increase resolution that enables the model to see

better the fine details. Additionally, our set of pooling regions includes finer scales (rather

than using powers of 2). Finally, the results in Table 4.3 show that PAG with binary masks

performs slightly better (IoU=46.5 vs. IoU=46.3) than the (softmax) weighted average

operation used in [167].

Computation-Performance Tradeoffs: Lastly, we evaluate how our dynamic parsimo-

nious computation setup impacts performance and compare with other baselines. We show

results on semantic segmentation on NYUv2 dataset in Table 4.2, comparing different base-

lines and our models with MultiPool at macro block Res5, MP@Res5 (PAG) for short, which

are trained with different target computational budgets (specified by ρ). The “truncated”

baseline means we simple remove top layers of ResNet to save computation, while “layer-

skipping” is an implementation of [327] that learns to dynamically skip a subset of layer.

For fair comparison, we insert MultiPool module at the top of both baselines. These results

clearly suggest that the PAG approach outperforms the two baselines, demonstrating that

learning dynamic computation path at the pixel level is helpful for per-pixel labeling tasks.

Fig. 4.4 (a) shows that as we decrease the computation budget, the performance of the PAG-

based method degrades gracefully even as the amount of computation is scaled back to 70%,

merely inducing 2.4% performance degradation (F score of 0.773 compared to the full model

F = 0.792). Table 4.2 highlights the comparison to truncation and layer-skipping models

adjusted to match the same computational budget as PAG. For these approaches, perfor-

mance decays much more sharply with decreasing budget. These results also highlight that
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Figure 4.4: (a) Performance vs. computation budget (controlled by sparsity ρ) for boundary
detection and segmentation tasks, % indicate computational savings relative to non-gated
model. (b) Benchmark comparison of our PAG Multi-pool (MP@Res4) with state-of-the-art
methods for boundary detection.

Figure 4.5: Visualization of sparse binary attention maps at each layer for boundary detec-
tion, together with the output and ponder map accumulating all binary maps. PAG-based
MultiPool module is inserted at layer Res4-2, which is not included in the ponder map.

the target sparsity parameter ρ provides tight control over the actual average computation

of the model.

Fig. 4.5 shows example binary masks at each layer for boundary detection (more results

can be found in the appendix), as well as the final output and ponder map which shows

cumulative computation per pixel. We observe qualitatively that the model learns to allocate

more computation around boundaries, which aligns well with how humans perform boundary

annotation.

4.5.2 Comprehensive Benchmark Comparison

We now compare our models under different degrees of computational parsimony (ρ =

0.5, 0.7, 0.9, 1.0) with other state-of-the-art systems for pixel labeling.
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Taking boundary detection as the first task, we quantitatively compare our model to COB [232],

HED [358], LEP [248], UCM [7], NCuts [299], EGB [80], MCG [8] and the mean shift (MShift)

algorithm [56]. Fig. 4.4 (b) shows comparison to all the methods (PR curves in appendix),

demonstrating our model achieves state-of-the-art performance. Note that our model has

the same backbone architecture of HED [358], but outperforms it with our MultiPool module

which increases receptive fields at higher levels. Our model performs on par with COB [232],

which uses auxiliary losses for oriented boundary detection. Note that it is possible to sur-

pass human performance with sophisticated techniques [161], but we don’t pursue this as it

is out the scope of this thesis.

Table 4.3, 4.4 and 4.5 show the comprehensive comparisons on the tasks of semantic seg-

mentation, monocular depth and surface normal estimation, respectively. In addition to

comparing with state-of-the-art methods, we also show the result of MultiPool module with

softmax weighted average operation, termed by MP@Res5 (w-Avg.). Interestingly, Multi-

Pool performs slightly better when equipped with PAG than the weighted average fusion.

We attribute this to the facts that, longer training has been done in the stage-wise training

strategy, and PAG unit also constrains the information flow to train specific branches.

Our baseline model achieves performance on par with recent methods for all tasks. When

inserting the MultiPool module, we improve even further and surpass the compared methods

for most tasks and datasets. In particular, on datasets with large perspective images, i.e.

Stanford-2D-3D and Cityscapes, the MultiPool module shows greater improvement. Reduc-

ing the computation 20-30% only yields a performance drop of 3-5% across most tasks and

benchmarks.

For depth and surface normal estimation tasks, our baseline models also perform very well.

This is notable since we don’t leverage multi-task learning (unlike Eigen [74]) and do not

use extra images to augment training set (unlike most methods for depth estimation using
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Table 4.3: Semantic segmentation is measured by Intersection over Union (IoU), pixel accu-
racy (acc), and iIoU that leverages the size of segments w.r.t categories. Results marked by
† are from our trained models with the released code.

NYUv2 [301] Stanford-2D-3D [9] Cityscapes [301]

methods/metrics IoU pixel acc. IoU pixel acc. IoU iIoU

baseline 42.1 71.1 79.5 92.1 73.8 54.7
MP@Res5 (w-Avg.) 46.3 73.4 83.7 93.6 75.8 56.9
MP@Res5 (PAG) 46.5 73.5 83.7 93.7 75.7 55.8

MP@Res5 (ρ = 0.9) 45.8 72.9 82.8 93.3 75.0 55.4
MP@Res5 (ρ = 0.7) 43.6 71.4 82.4 93.2 72.6 55.1
MP@Res5 (ρ = 0.5) 40.9 69.4 81.8 92.9 70.8 53.2

PerspectiveParsing [167] 44.5 72.1 76.5 91.0 75.4 56.8
DeepLab [45] — — 69.8† 88.0† 71.4 51.6
LRR [99] — — — — 70.0 48.0
PSPNet [385] — — 67.4† 87.6† 78.7 60.4
RefineNet-Res50 [208] 43.8 — — — — —
RefineNet-Res152 [208] 46.5 73.6 — — — —

∼100k extra images to augment the training set as shown in Table 4.4). We attribute this

to the combination of the proposed PAG MultiPool and carefully designed losses for depth

and surface normal estimation.

4.5.3 Qualitative Visualization

We visualize the prediction and attentional maps in Fig. 4.6 for the four datasets, respec-

tively. As we notice that the binary attention maps are similar w.r.t sparse property, we

squeeze over macro building blocks (Res) the attention maps for visualization, as well as the

overall ponder map. From the figures, we can see our models allocate more computation on

the regions/pixels which are likely the sharp change region, e.g. boundary between semantic

segments, regions between two depth layer, places around normal changes like between wall

and ceiling.
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Table 4.4: Depth estimation is measured by standard threshold accuracy, i.e. the percentage

(%) of predicted pixel depths di s.t. δ = max(di
d̂i
, d̂i
di

) < τ , where τ = {1.25, 1.252, 1.253}.
Methods with ∗ use ∼100k extra images to train.

NYUv2 [301] Stanford-2D-3D [9] Cityscapes [301]

methods/metric (δ < τ) 1.25 1.252 1.253 1.25 1.252 1.253 1.25 1.252 1.253

baseline 71.1 93.2 98.5 73.1 92.1 97.5 29.0 53.8 75.8
MP@Res5 (w-Avg.) 74.5 94.4 98.8 77.5 94.1 97.9 33.7 65.9 76.9
MP@Res5 (PAG) 75.1 94.4 98.8 77.6 94.1 97.9 34.6 66.2 77.2

MultiPool (ρ = 0.9) 74.5 94.4 98.8 77.3 93.9 97.8 34.5 65.7 76.9
MultiPool (ρ = 0.7) 71.0 93.3 98.5 75.4 92.8 97.6 32.0 63.5 75.8
MultiPool (ρ = 0.5) 67.3 91.0 97.7 72.7 91.3 97.1 28.7 58.7 71.6

Liu [188] 61.4 88.3 97.1 — — — — — —
Ladicky∗ [184] 54.2 82.9 94.0 — — — — — —
Eigen∗ [75] 61.4 88.8 97.2 — — — — — —
Eigen∗ [74] 76.9 95.0 98.8 — — — — — —
Laina∗ [188] 81.1 95.3 98.8 — — — — — —

Table 4.5: Surface normal estimation is measured by mean angular error and the percentage
of prediction error within t◦ degree where t = {11.25, 22.50, 30.00}. Smaller ang. err. mean
better performance as marked by ↓.

NYUv2 [301] Stanford-2D-3D [9]

methods/metrics ang. err.↓ 11.25◦ 22.50◦ 30.00◦ ang. err.↓ 11.25◦ 22.50◦ 30.00◦

baseline 22.3 34.4 62.5 74.4 19.0 51.5 68.6 76.3
MP@Res5 (w-Avg.) 21.9 35.9 63.8 75.3 16.5 58.2 74.2 80.4
MP@Res5 (PAG) 21.7 36.1 64.2 75.5 16.5 58.3 74.2 80.4

MP@Res5 (ρ = 0.9) 21.9 35.9 63.9 75.4 16.7 57.5 73.7 80.1
MP@Res5 (ρ = 0.7) 22.5 34.7 62.5 74.1 17.0 56.5 73.1 79.7
MP@Res5 (ρ = 0.5) 23.6 31.9 59.7 71.8 17.7 54.7 71.4 78.5

Fouhey [88] 35.3 16.4 36.6 48.2 — — — —
Ladicky [186] 35.5 24.0 45.6 55.9 — — — —
Wang [336] 28.8 35.2 57.1 65.5 — — — —
Eigen [74] 22.2 38.6 64.0 73.9 — — — —

4.6 Conclusion and Future Work

In this chapter, we have studied the problem of parsimonious inference for pixel labeling

tasks under limited computation budget with a deep CNN network. To achieve this, we

propose a Pixel-wise Attentional Gating unit (PAG) that learns to generate sparse binary

masks that control computation at each layer on a per-pixel basis. Our approach differs
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Figure 4.6: Visualization of semantic segmentation, monocular depth and surface normal
estimation over the three datasets. Besides the overall ponder map, we also show the partial
ponder map for each macro residual block by squeezing the sparse binary attentional maps.
Random images are chosen from the three datasets, and results are warped for visualization.

from previous approaches in demonstrating improved performance on pixel labeling tasks

using spatially varying computation trained with simple task-specific loss. This makes our

approach a good candidate for general use as it is task and architecture agnostic and avoids

more complicated reinforcement learning-style approaches, instead relying a simple, easy-to-

set sparsity target that correlates closely with empirical computational cost. While our PAG

is based on a generic attention mechanism, we anticipate future work might explore further

improvements that integrate task-driven constraints to achieve further savings.
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Chapter 5

Pixel Embedding for Instance Grouping

We introduce a differentiable, end-to-end trainable framework for solving pixel-level group-

ing problems such as instance segmentation consisting of two novel components. First, we

regress pixels into a hyper-spherical embedding space so that pixels from the same group

have high cosine similarity while those from different groups have similarity below a speci-

fied margin. We analyze the choice of embedding dimension and margin, relating them to

theoretical results on the problem of distributing points uniformly on the sphere. Second,

to group instances, we utilize a variant of mean-shift clustering, implemented as a recurrent

neural network parameterized by kernel bandwidth. This recurrent grouping module is dif-

ferentiable, enjoys convergent dynamics and probabilistic interpretability. Backpropagating

the group-weighted loss through this module allows learning to focus on only correcting em-

bedding errors that won’t be resolved during subsequent clustering. Our framework, while

conceptually simple and theoretically abundant, is also practically effective and computa-

tionally efficient. We demonstrate substantial improvements over state-of-the-art instance

segmentation for object proposal generation, as well as demonstrating the benefits of group-

ing loss for classification tasks such as boundary detection and semantic segmentation.
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5.1 Background

The successes of deep convolutional neural nets (CNNs) at image classification has spawned a

flurry of work in computer vision on adapting these models to pixel-level image understanding

tasks, such as boundary detection [7, 358, 232], semantic segmentation [221, 45, 167], optical

flow [349, 71], and pose estimation [346, 36]. The key ideas that have enabled this adaption

thus far are: (1) deconvolution schemes that allow for upsampling coarse pooled feature maps

to make detailed predictions at the spatial resolution of individual pixels [358, 99], (2) skip

connections and hyper-columns which concatenate representations across multi-resolution

feature maps [111, 44], (3) atrous convolution which allows efficient computation with large

receptive fields while maintaining spatial resolution [45, 167], and (4) fully convolutional

operation which handles variable sized input images.

In contrast, there has been less innovation in the development of specialized loss functions for

training. Pixel-level labeling tasks fall into the category of structured output prediction [13],

where the model outputs a structured object (e.g., a whole image parse) rather than a scalar

or categorical variable. However, most CNN pixel-labeling architectures are simply trained

with loss functions that decompose into a simple (weighted) sum of classification or regression

losses over individual pixel labels.

The need to address the output space structure is more apparent when considering prob-

lems where the set of output labels isn’t fixed. Our motivating example is object instance

segmentation, where the model generates a collection of segments corresponding to object

instances. This problem can’t be treated as k-way classification since the number of objects

isn’t known in advance. Further, the loss should be invariant to permutations of the instance

labels within the same semantic category.

As a result, most recent successful approaches to instance segmentation have adopted more
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Figure 5.1: Our framework embeds pixels into a hyper-sphere where recurrent mean-shift dynamics
groups pixels into a variable number of object instances. Here we visualize random projections of
a 64-dim embeddings into 3-dimensions.

heuristic approaches that first use an object detector to enumerate candidate instances and

then perform pixel-level segmentation of each instance [206, 59, 204, 205, 10]. Alternately

one can generate generic proposal segments and then label each one with a semantic de-

tector [110, 48, 111, 58, 322, 114]. In either case the detection and segmentation steps can

both be mapped to standard binary classification losses. While effective, these approaches

are somewhat unsatisfying since: (1) they rely on the object detector and non-maximum

suppression heuristics to accurately “count” the number of instances, (2) they are difficult

to train in an end-to-end manner since the interface between instance segmentation and de-

tection is non-differentiable, and (3) they underperform in cluttered scenes as the assignment

of pixels to detections is carried out independently for each detection∗.

Here we propose to directly tackle the instance grouping problem in a unified architecture by

training a model that labels pixels with unit-length vectors that live in some fixed-dimension

embedding space (Fig. 5.1). Unlike k-way classification where the target vectors for each pixel

∗This is less a problem for object proposals that are jointly estimated by bottom-up segmentation (e.g.,
MCG [270] and COB [232]). However, such generic proposal generation is not informed by the top-down
semantics.
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are specified in advance (i.e., one-hot vectors at the vertices of a k-1 dimensional simplex)

we allow each instance to be labeled with an arbitrary embedding vector on the sphere.

Our loss function simply enforces the constraint that the embedding vectors used to label

different instances are far apart. Since neither the number of labels, nor the target label

vectors are specified in advance, we can’t use standard soft-max thresholding to produce a

discrete labeling. Instead, we utilize a variant of mean-shift clustering which can be viewed

as a recurrent network whose fixed point identifies a small, discrete set of instance label

vectors and concurrently labels each pixel with one of the vectors from this set.

This framework is largely agnostic to the underlying CNN architecture and can be applied

to a range of low, mid and high level visual tasks. Specifically, we carry out experiments

showing how this method can be used for boundary detection, object proposal generation

and semantic instance segmentation. Even when a task can be modeled by a binary pixel

classification loss (e.g., boundary detection) we find that the grouping loss guides the model

towards higher-quality feature representations that yield superior performance to classifica-

tion loss alone. The model really shines for instance segmentation, where we demonstrate a

substantial boost in object proposal generation (improving the state-of-the-art average recall

for 10 proposals per image from 0.56 to 0.77). To summarize our contributions: (1) we intro-

duce a simple, easily interpreted end-to-end model for pixel-level instance labeling which is

widely applicable and highly effective, (2) we provide theoretical analysis that offers guide-

lines on setting hyperparameters, and (3) benchmark results show substantial improvements

over existing approaches.

5.2 Related Work

Common approaches to instance segmentation first generate region proposals or class-agnostic

bounding boxes, segment the foreground objects within each proposal and classify the objects
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in the bounding box [366, 185, 110, 48, 59, 205, 114]. [204] introduce a fully convolutional

approach that includes bounding box proposal generation in end-to-end training. Recently,

“box-free” methods [266, 267, 206, 127] avoid some limitations of box proposals (e.g. for

wiry or articulated objects). They commonly use Faster RCNN [279] to produce “centered-

ness” score on each pixel and then predict binary instance masks and class labels. Other

approaches have been explored for modeling joint segmentation and instance labeling jointly

in a combinatorial framework (e.g., [157]) but typically don’t address end-to-end learning.

Alternately, recurrent models that sequentially produce a list of instances [284, 278] offer

another approach to address variable sized output structures in a unified manner.

The most closely related to ours is the associative embedding work of [249], which demon-

strated strong results for grouping multi-person keypoints, and unpublished work from [79]

on metric learning for instance segmentation. Our approach extends on these ideas substan-

tially by integrating recurrent mean-shift to directly generate the final instances (rather than

heuristic decoding or thresholding distance to seed proposals). There is also an important

and interesting connection to work that has used embedding to separate instances where

the embedding is directly learned using a supervised regression loss rather than a pairwise

associative loss. [305] train a regressor that predicts the distance to the contour center-

line for boundary detection, while [12] predict the distance transform of the instance masks

which is then post-processed with watershed transform to generate segments. [322] predict

an embedding based on scene depth and direction towards the instance center (like Hough

voting).

Finally, we note that these ideas are related to work on using embedding for solving pairwise

clustering problems. For example, normalized cuts clusters embedding vectors given by

the eigenvectors of the normalized graph Laplacian [299] and the spatial gradient of these

embedding vectors was used in [7] as a feature for boundary detection. Rather than learning

pairwise similarity from data and then embedding prior to clustering (e.g., [229]), we use
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a pairwise loss but learn the embedding directly. Our recurrent mean-shift grouping is

reminiscent of other efforts that use unrolled implementations of iterative algorithms such as

CRF inference [386] or bilateral filtering [140, 92]. Unlike general RNNs [22, 259] which are

often difficult to train, our recurrent model has fixed parameters that assure interpretable

convergent dynamics and meaningful gradients during learning.

5.3 Pairwise Loss for Pixel Embeddings

In this section we introduce and analyze the loss we use for learning pixel embeddings.

This problem is broadly related to supervised distance metric learning [348, 171, 173] and

clustering [172] but adapted to the specifics of instance labeling where the embedding vectors

are treated as labels for a variable number of objects in each image.

Our goal is to learn a mapping from an input image to a set of D-dimensional embedding

vectors (one for each pixel). Let xi,xj ∈ RD be the embeddings of pixels i and j respectively

with corresponding labels yi and yj that denote ground-truth instance-level semantic labels

(e.g., car.1 and car.2). We will measure the similarity of the embedding vectors using the

cosine similarity, been scaled and offset to lie in the interval [0, 1] for notational convenience:

sij =
1

2

(
1 +

xTi xj
‖xi‖2‖xj‖2

)
(5.1)

In the discussion that follows we think of the similarity in terms of the inner product between

the projected embedding vectors (e.g., xi
‖xi‖) which live on the surface of a (D−1) dimensional

sphere. Other common similarity metrics utilize Euclidean distance with a squared expo-

nential kernel or sigmoid function [249, 79]. We prefer the cosine metric since it is invariant

to the scale of the embedding vectors, decoupling the loss from model design choices such as

weight decay or regularization that limit the dynamic range of Euclidean distances.
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Figure 5.2: Loss as a function
of calibrated similarity score
Eq. 5.1 with α = 0.5. The gra-
dient is constant, limiting the ef-
fect of noisy ground-truth labels
(i.e., near an object boundary)

Our goal is to learn an embedding so that pixels with the same label (positive pairs with

yi = yj) have the same embedding (i.e. sij = 1). To avoid a trivial solution where all

the embedding vectors are the same, we impose the additional constraint that pairs from

different instances (negative pairs with yi 6= yj) are placed far apart. To provide additional

flexibility, we include a weight wi in the definition of the loss which specifies the importance

of a given pixel. The total loss over all pairs and training images is:

` =
M∑
k=1

Nk∑
i,j=1

wki w
k
j

Nk

(
1{yi=yj}(1− sij) + 1{yi 6=yj}[sij − α]+

)
(5.2)

where Nk is the number of pixels in the k-th image (M images in total), and wki is the pixel

pair weight associated with pixel i in image k. The hyper-parameter α controls the maximum

margin for negative pairs of pixels, incurring a penalty if the embeddings for pixels belonging

to the same group have an angular separation of less than cos−1(α). Positive pairs pay a

penalty if they have a similarity less than 1. Fig. 5.2 shows a graph of the loss function.

[351] argue that the constant slope of the margin loss is more robust, e.g., than squared loss.

We carry out a simple theoretical analysis which provides a guide for setting the weights wi

and margin hyperparameter α in the loss function. Proofs can be found in the appendix.
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5.3.1 Instance-aware Pixel Weighting

We first examine the role of embedding dimension and instance size on the training loss.

Proposition 5.1. For n vectors {x1, . . . ,xn}, the total intra-pixel similarity is bounded as∑
i 6=j xTi xj ≥ −

∑n
i=1 ‖xi‖2

2. In particular, for n vectors on the hypersphere where ‖xi‖2 = 1,

we have
∑

i 6=j xTi xj ≥ −n.

This proposition indicates that the total cosine similarity (and hence the loss) for a set of

embedding vectors has a constant lower bound that does not depend on the dimension of

the embedding space (a feature lacking in Euclidean embeddings). In particular, this type of

analysis suggests a natural choice of pixel weighting wi. Suppose a training example contains

Q instances and Iq denotes the set of pixels belonging to a particular ground-truth instance

q. We can write

‖
Q∑
q=1

∑
i∈Iq

wixi‖2 =

Q∑
q=1

‖
∑
i∈Iq

wixi‖2+

∑
p 6=q

(∑
i∈Ip

wixi
)T (∑

j∈Iq

wjxj
)

where the first term on the r.h.s. corresponds to contributions to the loss function for positive

pairs while the second corresponds to contributions from negative pairs. Setting wi = 1
|Iq | for

pixels i belonging to ground-truth instance q assures that each instance contributes equally

to the loss independent of size. Furthermore, when the embedding dimension D ≥ Q, we can

simply embed the data so that the instance means µk = 1
|Iq |
∑

i∈Iq xi are along orthogonal

axes on the sphere. This zeros out the second term on the r.h.s., leaving only the first term

which is bounded 0 ≤
∑Q

q=1

∥∥∥ 1
|Iq |
∑

i∈Iq xi

∥∥∥2

≤ Q, and translates to corresponding upper

and lower bounds on the loss that are independent of the number of pixels and embedding

dimension (so long as D ≥ Q).

Pairwise weighting schemes have been shown important empirically [79] and class imbalance
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can have a substantial effect on the performance of different architectures (see e.g., [212]).

While other work has advocated online bootstrapping methods for hard-pixel mining or mini-

batch selection [222, 170, 300, 355], our approach is much simpler. Guided by this result

we simply use uniform random sampling of pixels during training, appropriately weighted

by instance size in order to estimate the loss.

5.3.2 Margin Selection

To analyze the appropriate margin, let’s first consider the problem of distributing labels

for different instances as far apart as possible on a 3D sphere, sometimes referred to as

Tammes’s problem, or the hard-spheres problem [288]. This can be formalized as maximizing

the smallest distance among n points on a sphere: max
xi∈R3

min
i 6=j
‖xi − xj‖2. Asymptotic results

in [106] provide the following proposition (see proof in the appendix):

Proposition 5.2. Given N vectors {x1, . . . ,xn} on a 2-sphere, i.e. xi ∈ R3, ‖xi‖2 = 1,∀i =

1 . . . n, choosing α ≤ 1−
(

2π√
3N

)
, guarantees that [sij−α]+ ≥ 0 for some pair i 6= j. Choosing

α > 1− 1
4

((
8π√
3N

) 1
2 −CN− 2

3

)2

, guarantees the existence of an embedding with [sij−α]+ = 0

for all pairs i 6= j.

Proposition 5.2 gives the maximum margin for a separation of n groups of pixels in a three

dimensional embedding space (sphere). For example, if an image has at most {4, 5, 6, 7}

instances, α can be set as small as {0.093, 0.274, 0.395, 0.482}, respectively.

For points in a higher dimension embedding space, it is a non-trivial problem to establish a

tight analytic bound for the margin α. Despite its simple description, distributing n points

on a (D − 1)-dimensional hypersphere is considered a serious mathematical challenge for

which there is no general solutions [288, 223]. We adopt a safe (trivial) strategy. For n

instances embedded in n/2 dimensions one can use value of α = 0.5 which allows for zero

loss by placing a pair of groups antipodally along each of the n/2 orthogonal axes. We adopt
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Figure 5.3: Recurrent mean shift grouping module is unrolled during training.

this setting for the majority of experiments in the paper where the embedding dimension is

set to 64.

5.4 Recurrent Mean-Shift Grouping

While we can directly train a model to predict embeddings as described in the previous

section, it is not clear how to generate the final instance segmentation from the resulting

(imperfect) embeddings. One can utilize heuristic post-processing [62] or utilize clustering

algorithms that estimate the number of instances [206], but these are not differentiable

and thus unsatisfying. Instead, we introduce a mean-shift grouping model (Fig. 5.3) which

operates recurrently on the embedding space in order to congeal the embedding vectors into

a small number of instance labels.

Mean-shift and closely related algorithms [91, 49, 55, 56] use kernel density estimation to

approximate the probability density from a set of samples and then perform clustering on the

input data by assigning or moving each sample to the nearest mode (local maxima). From

our perspective, the advantages of this approach are (1) the final instance labels (modes) live

in the same embedding space as the initial data, (2) the recurrent dynamics of the clustering

process depend smoothing on the input allowing for easy backpropagation, (3) the behavior

depends on a single parameter, the kernel bandwidth, which is easily interpretable and can

be related to the margin used for the embedding loss.
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5.4.1 Mean Shift Clustering

A common choice for non-parametric density estimation is to use the isotropic multivariate

normal kernel K(x,xi) = (2π)−D/2 exp
(
− δ2

2
‖x − xi‖2

2

)
and approximate the data density

non-parametrically as p(x) = 1
N

∑
K(x, xi). Since our embedding vectors are unit norm, we

instead use the von Mises-Fisher distribution which is the natural extension of the multivari-

ate normal to the hypersphere [85, 16, 233, 159], and is given by K(x,xi) ∝ exp(δxTxi). The

kernel bandwidth, δ determines the smoothness of the kernel density estimate and is closely

related to the margin used for learning the embedding space. While it is straightforward to

learn δ during training, we instead set it to satisfy 1
δ

= 1−α
3

throughout our experiments,

such that the cluster separation (margin) in the learned embedding space is three standard

deviations.

We formulate the mean shift algorithm in a matrix form. Let X ∈ RD×N denote the stacked

N pixel embedding vectors of an image. The kernel matrix is given by K = exp(δXTX) ∈

RN×N . Let D = diag(KT1) denote the diagonal matrix of total affinities, referred to as

the degree when K is viewed as a weighted graph adjacency matrix. At each iteration, we

compute the mean shift M = XKD−1 −X, which is the difference vector between X and

the kernel weighted average of X. We then modify the embedding vectors by moving them

in the mean shift direction with step size η:

X←X + η(XKD−1 −X)

←X(ηKD−1 + (1− η)I)

(5.3)

Note that unlike standard mean-shift mode finding, we recompute K at each iteration. These

update dynamics are termed the explicit-η method and were analyzed by [39]. When η = 1

and the kernel is Gaussian, this is also referred to as Gaussian Blurring Mean Shift (GBMS)

and has been shown to have cubic convergence [39] under appropriate conditions. Unlike deep
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Figure 5.4: Demonstration of mean-shift grouping on a synthetic image and with ground-
truth instance identities (left panel). Right panel: the pixel embedding visualization at
3-dimensional embedding sphere (upper row) and after 10 iterations of recurrent mean-shift
grouping (bottom row).

RNNs, the parameters of our recurrent module are not learned and the forward dynamics are

convergent under general conditions. In practice, we do not observe issues with exploding

or vanishing gradients during back-propagation through a finite number of iterations †.

Fig. 5.4 demonstrates a toy example of applying the method to perform digit instance seg-

mentation on synthetic images from MNIST [193]. We learn 3-dimensional embedding in

order to visualize the results before and after the mean shift grouping module. From the

figure, we can see the mean shift grouping transforms the initial embedding vectors to yield

a small set of instance labels which are distinct (for negative pairs) and compact (for positive

pairs).

†Some intuition about stability may be gained by noting that the eigenvalues of KD−1 lie in the interval
[0, 1], but we have not been able to prove useful corresponding bounds on the spectrum of the Jacobian.
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5.4.2 End-to-end training

It’s straightforward to compute the derivatives of the recurrent mean shift grouping module

w.r.t X based on the the chain rule so our whole system is end-to-end trainable through

back-propagation. Details about the derivative computation can be found in the appendix.

To understand the benefit of end-to-end training, we visualize the embedding gradient with

and without the grouping module (Fig. 5.5). Interestingly, we observe that the gradient

backpropagated through mean shift focuses on fixing the embedding in uncertain regions,

e.g. instance boundaries, while suggesting small magnitude updates for those errors which

will be easily fixed by the mean-shift iteration.

While we could simply apply the pairwise embedding loss to the final output of the mean-shift

grouping, in practice we accumulate the loss over all iterations (including the initial embed-

ding regression). We unroll the recurrent grouping module into T loops, and accumulate the

same loss function at the unrolled loop-t:

`t =
M∑
k=1

∑
i,j∈Sk

wki w
k
j

|Sk|

(
1{yi=yj}(1− stij) + 1{yi 6=yj}[s

t
ij − α]+

)
` =

T∑
t=1

`t

5.5 Experiments

We now describe experiments in training our framework to deal a variety of pixel-labeling

problems, including boundary detection, object proposal detection, semantic segmentation

and instance-level semantic segmentation.
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5.5.1 Tasks, Datasets and Implementation

We illustrate the advantages of the proposed modules on several large-scale datasets. First,

to illustrate the ability of the instance-aware weighting and uniform sampling mechanism to

handle imbalanced data and low embedding dimension, we use the BSDS500 [7] dataset to

train a boundary detector for boundary detection (> 90% pixels are non-boundary pixels).

We train with the standard split [7, 358], using 300 train-val images to train our model based

on ResNet50 [115] and evaluate on the remaining 200 test images. Second, to explore instance

segmentation and object proposal generation, we use PASCAL VOC 2012 dataset [77] with

additional instance mask annotations provided by [109]. This provides 10,582 and 1,449

images for training and evaluation, respectively.

We implement our approach using the toolbox MatConvNet [326], and train using SGD

on a single Titan X GPU. ‡. To compute calibrated cosine similarity, we utilize an L2-

normalization layer before matrix multiplication [163], which also contains random sampling

with a hyper-parameter to control the ratio of pixels to be sampled for an image. In practice,

we observe that performance does not depend strongly on this ratio and hence set it based

on available (GPU) memory.

While our modules are architecture agnostic, we use the ResNet50 and ResNet101 mod-

els [115] pre-trained over ImageNet [63] as the backbone. Similar to [45], we increase the

output resolution of ResNet by removing the top global 7 × 7 pooling layer and the last

two 2× 2 pooling layers, replacing them with atrous convolution with dilation rate 2 and 4,

respectively to maintain a spatial sampling rate. Our model thus outputs predictions at 1/8

the input resolution which are upsampled for benchmarking.

We augment the training set using random scaling by s ∈ [0.5, 1.5], in-plane rotation by

‡The code and trained models can be found at https://github.com/aimerykong/Recurrent-Pixel-
Embedding-for-Instance-Grouping
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[−10◦, 10◦] degrees, random left-right flips, random crops with 20-pixel margin and of size

divisible by 8, and color jittering. When training the model, we fix the batch normalization

in ResNet backbone, using the same constant global moments in both training and testing.

Throughout training, we set batch size to one where the batch is a single input image. We

use the “poly” learning rate policy [45] with a base learning rate of 2.5e − 4 scaled as a

function of iteration by (1− iter
maxiter

)0.9.

5.5.2 Boundary Detection

For boundary detection, we first train a model to group the pixels into boundary or non-

boundary groups. Similar to COB [232] and HED [358], we include multiple branches over

ResBlock 2, 3, 4, 5 for training. Since the number of instances labels is 2, we learn a simple

3-dimensional embedding space which has the advantage of easy visualization as an RGB

image. Fig. 5.7 shows the resulting embeddings in the first row of each panel. Note that

even though we didn’t utilize mean-shift grouping, the trained embedding already produces

compact clusters. To compare quantitatively to the state-of-the-art, we learn a fusion layer

that combines predictions from multiple levels of the feature hierarchy fine-tuned with a

logistic loss to match the binary output. Fig. 5.7 shows the results in the second row.

Interestingly, we can see that the fine-tuned model embeddings encode not only boundary

presence/absence but also the orientation and signed distance to nearby boundaries.

Quantitatively, we compare our model to COB [232], HED [358], CEDN [362], LEP [248],

UCM [7], ISCRA [280], NCuts [299], EGB [80], and the original mean shift (MShift) seg-

mentation algorithm [56]. Fig. 5.6 shows standard benchmark precision-recall for all the

methods, demonstrating our model achieves state-of-the-art performance. Note that our

model has the same architecture of COB [232] except with a different loss functions and no

explicit branches to compute boundary orientation. Our embedding loss by naturally pushes

boundary pixel embeddings to be similar which is also the desirable property for detecting
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boundaries using logistic loss. Note that it is possible to surpass human performance with

several sophisticated techniques [161], we don’t pursue this as it is out the scope of this

paper.

5.5.3 Object Proposal Detection

Object proposals are an integral part of current object detection and semantic segmentation

pipelines [279, 114], as they provide a reduced search space of locations, scales and shapes

for subsequent recognition. State-of-the-art methods usually involve training models that

output large numbers of proposals, particularly those based on bounding boxes. Here we

demonstrate that by training our framework with 64-dimensional embedding space on the

object instance level annotations, we are able to produce very high quality object proposals

by grouping the pixels into instances. It is worth noting that due to the nature of our

grouping module, far fewer number of proposals are produced with much higher quality. We

compare against the most recent techniques including POISE [133], LPO [177], CPMC [38],

GOP [176], SeSe [323], GLS [275], RIGOR [132].

Fig. 5.8 shows the Average Recall (AR) [125] with respect to the number of object proposals§.

Our model performs remarkably well compared to other methods, achieving high average

recall of ground-truth objects with two orders of magnitude fewer proposals. We also plot

the curves for SharpMask [266] and DeepMask [267] using the proposals released by the

authors. Despite only training on PASCAL, we outperform these models which were trained

on the much larger COCO dataset [213]. In Table 5.1 we report the total average recall

at IoU= 0.5 for some recently proposed proposal detection methods, including unpublished

work inst-DML [79] which is similar in spirit to our model but learns a Euclidean distance

based metric to group pixels. We can clearly see that our method achieves significantly

§Our basic model produces ∼ 10 proposals per image. In order to plot a curve for our model for larger
numbers of proposals, we run the mean shift grouping with multiple smaller bandwidth parameters, pool
the results, and remove redundant proposals.
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#prop. SCG [270] MCG [270] COB [232] inst-DML [79] Ours
10 - - - 0.558 0.769
60 0.624 0.652 0.738 0.667 0.814

Table 5.1: Object proposal detection on PASCAL VOC 2012 validation set measured by
total Average Recall (AR) at IoU=0.50 and various number of proposals per image.

better results than existing methods.

5.5.4 Semantic Instance Detection

As a final test of our method, we also train it to produce semantic labels which are combined

with our instance proposal method to recognize the detected proposals.

For semantic segmentation which is a k-way classification problem, we train a model using

cross-entropy loss alongside our embedding loss. Similar to our proposal detection model,

we use a 64-dimension embedding space on top of DeepLab-v3 [46] as our base model. While

there are more complex methods in literature such as PSPNet [385] and which augment

training with additional data (e.g., COCO [213] or JFT-300M dataset [309]) and utilize

ensembles and post-processing, we focus on a simple experiment training the base model

with/without the proposed pixel pair embedding loss to demonstrate the effectiveness.

In addition to reporting mean intersection over union (mIoU) over all classes, we also com-

puted mIoU restricted to a narrow band of pixels around the ground-truth boundaries.

This partition into figure/boundary/background is sometimes referred to as a tri-map in

the matting literature and has been previously utilized in analyzing semantic segmentation

performance [160, 45, 99]. Fig. 5.9 shows the mIoU as a function of the width of the tri-map

boundary zone. This demonstrates that with embedding loss yields performance gains over

cross-entropy primarily far from ground-truth boundaries where it successfully fills in holes

in the segments output (see also qualitative results in Fig. 5.10). This is in spirit similar to

the model in [112], which considers local consistency to improve spatial precision. However,
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our uniform sampling allows for long-range interactions between pixels.

To label detected instances with semantic labels, we use the semantic segmentation model

described above to generate labels and then use a simple voting strategy to transfer these

predictions to the instance proposals. In order to produce a final confidence score associ-

ated with each proposed object, we train a linear regressor to score each object instance

based on its morphology (e.g., size, connectedness) and the consistency w.r.t. the semantic

segmentation prediction. We note this is substantially simpler than approaches based, e.g.

on Faster-RCNN [279] which use much richer convolutional features to rescore segmented

instances [114].

Comparison of instance detection performance are displayed in Table 5.2. We use a standard

IoU threshold of 0.5 to identify true positives, unless an ground-truth instance has already

been detected by a higher scoring proposal in which case it is a false positive. We report

the average precision per-class as well as the average all classes (as in [109]). Our approach

yields competitive performance on VOC validation despite our simple re-scoring. Among

the competing methods, the one closest to our model is inst-DML [79], that learns Euclidean

distance based metric with logistic loss. The inst-DML approach relies on generating pixel

seeds to derive instance masks. The pixel seeds may fail to correctly detect thin structures

which perhaps explains why this method performs 10x worse than our method on the bike

category. In contrast, our mean-shift grouping approach doesn’t make strong assumptions

about the object shape or topology.

For visualization purposes, we generate three random matrices projections of the 64-dimensional

embedding and display them in the spatial domain as RGB images. Fig. 5.11 shows the em-

bedding visualization, as well as predicted semantic segmentation and instance-level segmen-

tation. From the visualization, we can see the instance-level semantic segmentation outputs

complete object instances even though semantic segmentation results are noisy, such as the
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bike in the first image in Fig. 5.11. The instance embedding provides important details that

resolve both inter- and intra-class instance overlap which are not emphasized in the semantic

segmentation loss.

5.6 Conclusion and Future Work

We have presented an end-to-end trainable framework for solving pixel-labeling vision prob-

lems based on two novel contributions: a pixel-pairwise loss based on spherical max-margin

embedding and a variant of mean shift grouping embedded in a recurrent architecture. These

two components mesh closely to provide a framework for robustly recognizing variable num-

bers of instances without requiring heuristic post-processing or hyperparameter tuning to

account for widely varying instance size or class-imbalance. The approach is simple and

amenable to theoretical analysis, and when coupled with standard architectures yields in-

stance proposal generation which substantially outperforms state-of-the-art. Our experi-

ments demonstrate the potential for instance embedding and open many opportunities for

future work including learn-able variants of mean-shift grouping, extension to other pixel-

level domains such as encoding surface shape, depth and figure-ground and multi-task em-

beddings.
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Figure 5.5: To analyze the recurrent mean shift grouping module, we compare the embed-
ding vector gradients with and without one loop of grouping. The length of arrows in the
projection demonstrates the gradient magnitude, which are also depicted in maps as the sec-
ond column. Backpropagating the loss through the grouping module serves to focus updates
on embeddings of ambiguous pixels near boundaries while ignoring pixels with small errors
which will be corrected by the subsequent grouping process.
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Figure 5.6: Boundary detection performance on BSDS500
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Figure 5.7: Visualization of boundary detection embeddings. We show the 3D embedding
as RGB images (more examples in appendix). The upper and lower row in the right panel
show embedding vectors at different layers from the model before and after fine-tuning
using logistic loss. After fine-tuning not only predict the boundary pixels, but also encode
boundary orientation and signed distance to the boundary, similar to supervised embedding
approaches [305, 322, 12]

Figure 5.8: Segmented object proposals evaluation on PASCAL VOC 2012 validation set
measured by Average Recall (AR) at IoU from 0.5 to 0.95 and step size as 0.5. We also
include the curve for our method at IoU=0.5.
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Figure 5.9: Semantic segmentation performance as a function of distance from ground-truth
object boundaries comparing a baseline model trained with cross-entropy loss versus a model
which also includes embedding loss.

Figure 5.10: The proposed embedding loss improves semantic segmentation by forcing the
pixel feature vectors to be similar within the segments. Randomly selected images from
PASCAL VOC2012 validation set.
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Figure 5.11: Visualization of generic/instance-level semantic segmentation on random PAS-
CAL VOC 2012 validation images.
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Chapter 6

Image Reconstruction with Simulated

Data

We propose a simple, interpretable framework for solving a wide range of image reconstruc-

tion problems such as denoising and deconvolution. Given a single corrupted input image,

the model synthesizes a spatially varying linear filter which, when applied to the input image,

reconstructs the desired output. The model parameters are learned through supervised or

self-supervised training over pairs of clean images and their corrupted counterparts through

simulation. We test this model on three tasks: non-uniform motion blur removal, lossy-

compression artifact reduction and single image super resolution. We demonstrate that our

model performs substantially better or on-par compared to the state-of-the-art methods on

all the three tasks, and is significantly faster than optimization-based approaches to decon-

volution. Unlike models that directly predict output pixel values or residuals, the predicted

filter flow regularizes the output with the input image itself, and is controllable and in-

terpretable, which we demonstrate by visualizing the space of predicted filters for different

tasks.
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Figure 6.1: Overview of the proposed Predictive Filter Flow which is readily applicable
to various low-level vision problems, yielding state-of-the-art performance for non-uniform
motion blur removal, compression artifact reduction and single image super-resolution. Given
a single corrupted image, a two-stream CNN analyzes the image and synthesizes the weights
of spatially-varying linear filters at each pixel. The per-pixel filter is then convolved with
the corresponding local region to produce a deblurred/denoised pixel prediction. The whole
framework is end-to-end trainable in a self-supervised way for the three aforementioned
tasks where corrupted images can be simulated automatically. The predicted filters are
easily constrained for different tasks and interpretable (here visualized in the center column
by the mean flow displacement, see Fig. 6.6).

6.1 Background

Real-world images are seldom perfect. Practical engineering trade-offs entail that consumer

photos are often blurry due to low-light, camera shake or object motion, limited in res-

olution and further degraded by image compression artifacts introduced for the sake of

affordable transmission and storage. Scientific applications such as microscopy or astron-

omy, which push the fundamental physical limitations of light, lenses and sensors, face sim-

ilar challenges. Recovering high-quality images from degraded measurements has been a

long-standing problem for image analysis and spans a range of tasks such as blind-image

deblurring [21, 182, 81, 295], compression artifact reduction [298, 216], and single image

super-resolution [258, 363].

Such image reconstruction tasks can be viewed mathematically as inverse problems [316, 150],
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which are typically ill-posed and massively under-constrained. Many contemporary tech-

niques to inverse problems have focused on regularization techniques which are amenable

to computational optimization. While such approaches are interpretable as Bayesian esti-

mators with particular choice of priors, they are often computationally expensive in prac-

tice [81, 295, 393, 11, 147]. Alternately, data-driven methods based on training deep con-

volutional neural networks yield fast inference but lack interpretability and guarantees of

robustness [310, 383]. In this paper, we propose a new framework called Predictive Filter

Flow that retains interpretability and control over the resulting reconstruction while allow-

ing fast inference. The proposed framework is directly applicable to a variety of low-level

computer vision problems involving local pixel transformations.

As the name suggests, our approach is built on the notion of Filter Flow introduced by

Seitz and Baker [293]. In filter flow, pixels in a local neighborhood of the input image

are linearly combined to reconstruct the center pixel in the output image. However, unlike

convolution, the filter weights are allowed to vary from one spatial location to the next.

Filter flows are a flexible class of image transformations that can model a wide range of

imaging effects (including optical flow, lighting changes, non-uniform blur, non-parametric

distortion). The original work on filter flow [293] focused on the problem of estimating

an appropriately regularized/constrained flow between a given pair of images. This yielded

convex but impractically large optimization problems (e.g., hours of computation to compute

a single flow [276]). Instead of solving for an optimal filter flow, we propose to directly predict

a filter flow given an input image using a convolutional neural net (CNN) to regress the filter

weights. Using a CNN to directly predict a well regularized solution is orders of magnitude

faster than expensive iterative optimization.

Fig. 6.1 provides an illustration of our overall framework. Instead of estimating the flow be-

tween a pair of input images, we focus on applications where the model predicts both the flow

and the transformed image. This can be viewed as “blind” filter flow estimation, in analogy
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with blind deconvolution. During training, we use a loss defined over the transformed image

(rather than the predicted flow). This is closely related to so-called self-supervised techniques

that learn to predict optical flow and depth from unlabeled video data [93, 101, 144]. Specif-

ically, for the reconstruction tasks we consider such as single image super-resolution, the

forward degradation process can be easily simulated to generate a large quantity of training

data without manual collection or annotation.

The lack of interpretability in deep image-to-image regression models makes it hard to pro-

vide guarantees of robustness in the presence of adversarial input [183], and confer reliability

needed for researchers in biology and medical science [217]. Predictive filter flow differs

from other CNN-based approaches in this regard since the intermediate filter flows are inter-

pretable and transparent [329, 70, 215], providing an explicit description of how the input

is transformed into output [240, 251, 148]. It is also straightforward to inject constraints on

the reconstruction (e.g., local brightness conservation) which would be nearly impossible to

guarantee for deep image-to-image regression models.

To evaluate our model, we carry out extensive experiments on three different low-level vision

tasks: non-uniform motion blur removal, JPEG compression artifact reduction and single

image super-resolution. We show that our model achieves substantially better or on-part

performance compared to the state-of-the-art methods. We also visualize the predicted

filters which reveals filtering operators reminiscent of classic unsharp masking filters and

anisotropic diffusion along boundaries.

To summarize our contribution: (1) we propose a novel, end-to-end trainable, learning frame-

work for solving various low-level image reconstruction tasks; (2) we show this framework

is highly interpretable and controllable, enabling direct post-hoc analysis of how the re-

constructed image is generated from the degraded input; (3) we show experimentally that

predictive filter flow achieves better or on-par performance than the state-of-the-art methods

101



on the three different tasks, non-uniform motion blur removal, compression artifact reduction

and single image super-resolution.

6.2 Related Work

Our work is inspired by filter flow [293], which is an optimization based method for finding a

linear transformation relating nearby pixel values in a pair of images. By imposing additional

constraints on certain structural properties of these filters, it serves as a general framework for

understanding a wide variety of low-level vision problems. However, filter flow as originally

formulated has some obvious shortcomings. First, it requires a set of constraints based on

prior knowledge to produce good results. It is not always straightforward to model or even

come up with such knowledge-based constraints helpful for prediction. Second, solving for

an optimal filter flow is compute-intensive; it takes up to 20 hours to compute over a pair of

500×500 images [293, 276]. We address these by directly predicting flows from images. We

leverage predictive filter flow for targeting three specific image reconstruction tasks which

can be framed as performing spatially variant filtering over local image patches.

There are several recent works embracing the similar technical idea of predicting spatially

variant filters. Zhang et al. train recurrent networks to produce spatially variant kernels [376]

for image deblur in a fully supervised fashion. Wang et al. train a CNN model for dy-

namic computation inside the model with segmentation probability maps for image super-

resolution [342]. The most similar to our work are [240] and [251], which predict per-pixel

kernels for burst denoising and video frame interpolation, respectively. Both of them produce

per-pixel, per-frame kernels conditioning on two or more frames as input. Our model goes

beyond this by predicting the per-pixel filters conditioned on a single corrupted image and

demonstrating that reconstruction with predicted per-pixel filters performs across a wider

range tasks.
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Non-Uniform Blind Motion Blur Removal is an extremely challenging yet practically

significant task of removing blur caused by object motion or camera shake on a blurry

photo. The blur kernel is unknown and may vary over the image. Recent methods estimate

blur kernels locally at patch level, and adopt an optimization method for deblurring the

patches [310, 11]. Other works [350, 126, 310] leverage prior information about smooth

motion by selecting from a predefine discretized set of linear blur kernels. These methods are

computationally expensive as an iterative solver is required for deconvolution after estimating

the blur kernel [52] while deep learning approaches have difficulties generalizing well to novel

motion kernels [359, 310, 126, 291].

Compression Artifact Reduction is of significance as lossy image compression is ubiqui-

tous for reducing the size of images transmitted over the web and recorded on data storage

media. However, high compression rates come with visual artifacts that degrade the im-

age quality and thus user experience. Among various compression algorithms, JPEG has

become the most widely accepted standard in lossy image compression with several (non-

invertible) transforms [334], i.e., downsampling and DCT quantization. Removing artifacts

from jpeg compression can be viewed as a practical variant of natural image denoising prob-

lems [31, 139]. Recent methods based on deep convolutional neural networks trained to

take as input the compressed image and output the denoised image directly achieve good

performance [68, 312, 41].

Single Image Super-Resolution aims at recovering a high-resolution image from a single

low-resolution image. This problem is inherently ill-posed as a multiplicity of solutions exists

for any given low-resolution input. Many methods adopt an example-based strategy [361]

requiring an optimization solver, others are based on deep convolutional neural nets [69, 194]

which achieve the state-of-the-art and real-time performance. The deep learning methods

take as input the low-resolution image (usually upsampled one using bicubic interpolation),

and produce residual maps added with input image for the final high-resolution output.
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6.3 Predictive Filter Flow

Filter flow models image transformations I1 → I2 as a linear mapping where each output

pixel only depends on a local neighborhood of the input. Find such a flow can be framed as

solving a constrained linear system

I2 = TI1, T ∈ Γ. (6.1)

where T is a matrix whose rows act separately on a vectorized version of the source image

I1. For the model (6.1) to make sense, T ∈ Γ must serve as a placeholder for the entire

set of additional constraints on the operator which enables a unique solution that satisfies

our expectations for particular problems of interest. For example, standard convolution

corresponds to T being a circulant matrix whose rows are cyclic permutations of a single set

of filter weights which are typically constrained to have compact localized non-zero support.

For a theoretical perspective, Filter Flow model is simple and elegant, but directly solving it

is intractable for image sizes we typically encounter in practice, particularly when the filters

are allowed to vary spatially.

6.3.1 Learning to predict filter flow

Instead of optimizing over T directly, we seek for a learnable function fw(·) parameterized

by w that predicts the transformation T̂ specific to image I1 taken as input:

I2 ≈ T̂I1, T̂ ≡ fw(I1), (6.2)

We call this model Predictive Filter Flow. Manually designing such a function fw(·) isn’t

feasible in general, therefore we learn a specific fw under the assumption that I1, I2 are drawn

from some fixed joint distribution.
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Given sampled image pairs, {(Ii1, Ii2)}Ni=1, we seek parameters w to minimize the difference

between a recovered image Î2 and the real one I2 measured by the loss `:

min
w

N∑
i=1

`(Ii2 − fw(Ii1) · Ii1) +R(fw(Ii1)) (6.3)

In practice, we enforce hard constraints via our choice of the architecture/functional form of

f along with soft-constraints via additional regularization term R, as detailed below. There

are a range of possible choices for measuring the difference between two images (including

e.g., adversarial losses [194]). In our experiments, we simply use the robust L1 norm to

measure the pixel-level difference.

Filter locality In principle, each pixel output I2 in Eq. 6.3 can depend on all input pixels I1.

We introduce the structural constraint that each output pixel only depends on a correspond-

ing local neighborhood of the input. The size of this neighborhood is thus a hyper-parameter

of the model. We note that while the predicted filter flow T̂ acts locally, the output of local

filter flow within a patch is determined with global context captured by large receptive fields

in the predictor fw(·).

In practice, we implement this constraint with the “im2col” operation which vectorizes the

local neighborhood patch centered at each pixel and computes the inner product of this

vector with the corresponding predicted filter. Note that the im2col operation and the

follow-up inner product are highly optimized for available hardware architectures in most

deep learning libraries, exactly the same used in modern convolution operation; thus our

model is quite efficient in computation. For example, if the filter size is 20×20, the last

layer of the CNN model fw(·) outputs a three-dimensional array with a channel dimension

of 400, which is comparable in size to feature activations at a single layer of typical CNN

architectures [179, 304, 115]. Note that, in image debluring, the per-pixel filter size is largely

independent to the blur kernel size — our model learns to reconstruct pixels with even bigger
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receptive field telling it how to reconstruct the pixels with limited budget (i.e., neighborhood

size specified by the per-pixel filter size).

Other filter constraints Various priori constraints on the filter flow T̂ ≡ fw(I1) can be

added easily to enable better model training. For example, if smoothness is desired, an L2

regularization on the (1st order or 2nd order) derivative of the filter flow maps can be inserted

during training; if sparsity is desired, an L1 regularization on the filter flows can be added

easily. In literature of image deblur/denoising, the sum-to-one and non-negative constraints

are usually exploited corresponding to a reasonable assumption that blurring an image with

a slowly varying kernel does not change the overall brightness [128, 14]. In our work, we add

these constraints on the filters for the task of non-uniform motion blur removal. This can be

easily done by inserting a softmax transform across channels of the predicted filter weights.

For other tasks, we simply let the model output free-form filters with no further constraints

on the weights, so that it is able to enhance over block effects (e.g., in JPEG compressed

images).

Self-Supervision Though the proposed framework for training Predictive Filter Flow re-

quires paired inputs and target outputs, we note that generating training data for many

reconstruction tasks can be accomplished automatically without manual labeling. Given a

pool of high quality images, we can automatically generate low-resolution, blurred or JPEG

degraded counterparts to use in training (see Section 6.4). This can also be generalized to

so-called self-supervised training for predicting flows between video frames or stereo pairs.

6.3.2 Model Architecture and Training

Our basic framework is largely agnostic to the choice of architectures, learning method,

and loss functions. In our experiments, we utilize to a two-stream architecture as shown

in Fig. 6.1. The first stream is a simple ResNet18 [115] network with 3×3 convolutional
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Figure 6.2: Visual comparison of our method (PFF ) to [Sun, et al.] [310] and patch-optim
[Bahat, et al.] [11] on testing images released by [11]. Please be guided with the strong
edges in the filter flow maps to compare visual details in the deblurred images by different
methods. Also note that the bottom two rows display images from the real-world, meaning
they are not synthesized and there is no blur ground-truth. Best view in color and zoom-in.

layers, skip connections [115], pooling layers and upsampling layers; the second stream is a

shallow but full-resolution network with no pooling. The first stream has larger receptive

fields for estimating per-pixel filters by considering long-range contextual information, while

the second stream keeps same resolution as input image that helps compensate the aliasing

effect [377] caused by the (un)pooling operation in the first stream. Batch normalization [137]

is also inserted between a convolution layer and ReLU [247]. The Predictive Filter Flow

is self-supervised so we could generate an unlimited amount of image pairs for training

large models. However, we find a small ResNet18-based model trained over moderate-scale
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training set performs quite well. Since our architecture is different from other feed-forward

image-to-image regression CNNs, we also report the baseline performance of the two-stream

architecture trained to directly predict the image rather than the filter coefficients.

For training, we crop 64×64-resolution patches to form a batch of size 56. Since the model

adapts to patch boundary effects seen during training, at test time we apply it to non-

overlapping tiles of the input image; as a benefit, this makes our approach very amenable

to parallelization. Moreover, we note that the model is fully convolutional so it could be

trained over larger patches to avoid boundary effects and applied to arbitrary size inputs.

We use ADAM optimization method during training [156], with initial learning 0.0005 and

coefficients 0.9 and 0.999 for computing running averages of gradient and its square. As for

the training loss, we simply use the `1-norm loss measuring absolute difference over pixel

intensities. We train our model from scratch using PyTorch [260] on a single NVIDIA TITAN

X GPU, and terminate after several hundred epochs (100K update iteration)∗.

6.4 Experiments

We evaluate the proposed Predictive Filter Flow framework (PFF) on three low-level vision

tasks: non-uniform motion blur removal, JPEG compression artifact reduction and single

image super-resolution. We first describe the datasets and evaluation metrics, and then com-

pare with state-of-the-art methods on the three tasks in separate subsections, respectively.

6.4.1 Datasets and Metrics

We train all our models from scratch without pre-training on ImageNet [? ]. For image

super-resolution, we follow standard practice in the literature of using the 800 HR images

∗Each model is trained within 2 days. The code and models can be found in
https://github.com/aimerykong/predictive-filter-flow
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Table 6.1: Comparison on motion blur removal over the non-uniform motion blur dataset [11].
Moderate/large blur are from motion up to 16/38 pixels. For the two metrics, the larger
value means better performance of the model.

Moderate Blur

metric [360] [310] [11] CNN PFF

PSNR 22.88 24.14 24.87 24.29 25.18
SSIM 0.68 0.714 0.743 0.708 0.767

Large Blur

metric [360] [310] [11] CNN PFF

PSNR 20.47 20.84 22.01 20.87 22.12
SSIM 0.54 0.56 0.624 0.539 0.617

in the DIV2K dataset [5] to train our model. For the other two tasks, we additionally

include the BSDS500 training set [234] to train the models (1,200 training images in total).

We evaluate each model over different datasets specific to the task. Concretely, we test

our model for non-uniform motion blur removal over the dataset introduced in [11], which

contains large motion blur up to 38 pixels. We evaluate over the classic LIVE1 dataset [344]

for JPEG compression artifacts reduction; Set5 [24], Set14 [373] and Urban [131] for single

image super-resolution.

To quantitatively measure performance, we use Peak-Signal-to-Noise-Ratio (PSNR) and

Structural Similarity Index (SSIM) [344] between the output quality image and the orig-

inal image (over the RGB for image deblurring task and the Y channel in YCbCr color space

for the other two tasks). This is a standard practice in literature of the three tasks for

quantitatively measuring the recovered image quality.

6.4.2 Non-Uniform Motion Blur Removal

To train models for non-uniform motion blur removal, we generate the 64×64-resolution

blurry patches from clear ones using random linear kernels [310], which are of size 30×30

and have motion vector with random orientation in [0, 180◦] degrees and random length in
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Figure 6.3: Visual comparison of our methods (PFF and CNN). Strong edges in the expected
flow map (right) highlight areas where most apparent artifacts are removed. Best viewed in
color and zoomed-in.

[1, 30] pixels. We set the predicted filter size to be 17×17 so the model outputs 17×17=289

filter weights at each image location. Note that we generate training pairs on the fly during

training, so our model can deal with a wide range of motion blurs. This is advantageous over

methods in [310, 11] which require a predefined set of blur kernels used for deconvolution

through some offline algorithm.

In Table 6.1, we list the comparison with the state-of-the-art methods over the released test

set by [11]. There are two subsets in the dataset, one with moderate motion blur and the

other with large blur. We also report our CNN models based on the proposed two-stream

architecture that outputs the quality images directly by taking as input the blurry ones.

Our CNN model outperforms the one in [310] which trains a CNN for predicting the blur

kernel over a patch, but carries out non-blind deconvolution with the estimated kernel for
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the final quality image. We attribute our better performance to two reasons. First, our CNN

model learns a direct inverse mapping from blurry patch to its clear counterpart based on

the learned image distribution, whereas [310] only estimates the blur kernel for the patch

and uses an offline optimization for non-blind deblurring, resulting in some artifacts such as

ringing. Second, our CNN architecture is higher fidelity than the one used in [310], as ours

outputs full-resolution result and learns internally to minimize artifacts, e.g., aliasing and

ringing effect.

From the table, we can see our PFF model outperforms all the other methods by a fair

margin. To understand where our model performs better, we visualize the qualitative results

in Fig. 6.2, along with the filter flow maps as output from PFF. We can’t easily visualize

the 289 dimensional filters. However, since the predicted weights T̂ are positive and L1

normalized, we can treat them as a distribution which we summarize by computing the

expected flow vector vx(i, j)
vy(i, j)

 =
∑
x,y

T̂ij,xy

x− i
y − j


where ij is a particular output pixel and xy indexes the input pixels. This can be interpreted

as the optical flow (delta filter) which most closely approximates the predicted filter flow.

We use the the color legend shown in top-left of Fig. 6.6.

The last two rows of Fig. 6.2 show the results over real-world blurry images for which there

is no “blur-free” ground-truth. We can clearly see that images produced by PFF have less

artifacts such as ringing artifacts around sharp edges [310, 11]. Interestingly, from the filter

flow maps, we can see that the expected flow vectors are large near high contrast boundaries

and smaller in regions that are already in sharp focus or which are uniform in color.

Although we define the filter size as 17×17, which is much smaller than the maximum shift

in the largest blur (up to 30 pixels), our model still handles large motion blur and performs
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Table 6.2: Comparison on JPEG compression artifact reduction over LIVE1 dataset [344].
PSNR and SSIM are used as metrics listed on two rows respectively in each macro row grid
(the larger the better).

QF JPEG SA-DCT AR-CNN L4 CAS-CNN MWCNN PFF
[87] [68] [312] [41] [220]

10
27.77 28.65 29.13 29.08 29.44 29.69 29.82
0.791 0.809 0.823 0.824 0.833 0.825 0.836

20
30.07 30.81 31.40 31.42 31.70 32.04 32.14
0.868 0.878 0.890 0.890 0.895 0.889 0.905

40
32.35 32.99 33.63 33.77 34.10 34.45 34.67
0.917 0.940 0.931 — 0.937 0.930 0.949

better than [11]. While this is owing to the fact that the model is trained to reconstruct

pixels with limited budget (the filter size), we assume it should be possible to utilize larger

filter sizes but we did not observe further improvements when training models to synthesize

larger per-pixel kernels. This suggests that a larger blurry dataset is needed to validate this

point in future work.

We also considered an iterative variant of our model in which we feed the resulting deblurred

image back as input to the model. However, we found relatively little improvement with

additional iterations (results shown in the supplementary material). We conjecture that,

although the model was trained with a wide range of blurred examples, the statistics of the

transformed image from the first iteration are sufficiently different than the blurred training

inputs. One solution could be inserting adversarial loss to push the model to generate more

fine-grained textures (as done in [194] for image super-resolution).

6.4.3 JPEG Compression Artifact Reduction

Similar to training for image deblurring, we generate JPEG compressed image patches from

original non-compressed ones on the fly during training. This can be easily done using JPEG

compression function by varying the quality factor (QF) of interest.

In Table 6.2, we list the performance of our model and compare to the state-of-the-art
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methods. We note that our final PFF achieves the best among all the methods. Our CNN

baseline model also achieves on-par performance with state-of-the-art, though we do not show

in the table, we draw the performance under the ablation study in Fig. 6.4. Specifically, we

study how our model trained with single or a mixed QFs affect the performance when tested

on image compressed with a range of different QFs. We plot the detailed performances

of our CNN and PFF in terms of absolute measurements by PSNR and SSIM, and their

performance gains of reconstructed images compared to the JPEG compressed image.

We can see that, though a model trained with QF=10 overfits the dataset, all the other

models achieve generalizable and stable performance. Basically, a model trained on a single

QF brings the largest performance gain over images compressed with the same QF. Moreover,

when our model is trained with mixed quality factors, its performance is quite stable and

competitive with quality-specific models across different compression quality factors. This

shows our model is of practical value in real-world applications.

In Fig. 6.3, we demonstrate qualitative comparison between CNN and PFF. The output filter

flow maps indicate from the colorful edges how the pixels are warped from the neighborhood

in the input image. This also clearly shows where the JPEG image degrades most, e.g.,

the large sky region is quantized by JPEG compression. Though CNN makes the block

effect smooth to some extent, our PFF produces the best visual quality, smoothing the block

artifact while maintaining both high- and low-frequency details.

6.4.4 Single Image Super-Resolution

To generate training image pairs, for each original image, we downsample 1
4
× and upsample

4× again using bicubic interpolation (with anti-aliasing). The 4× upsampled image from

the low-resolution is the input to our model, which is thus expected to learn to sharpen and

interpolate residual detail lost due to the downsampling process.
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PSNR improvements.

SSIM improvements.

Figure 6.4: Performance vs. training data with different compression quality factors mea-
sured by PSNR and SSIM and their performance gains, over the LIVE1 dataset. The original
JPEG compression is plotted for baseline.

From the quantitative comparison listed in Table 6.3, we can see that our PFF model with the

same (un-optimized) architecture used for all tasks achieves comparable performance with

the state-of-the-art methods. While our approach could be combined with other techniques

such self-ensemble [207, 383], multiscale convolution [201] and attentional mechanism [381],

we did not exploit them as it is beyond the scope of this paper. In Fig. 6.5, we compare

visually the outputs of bicubic interpolation, CNN and PFF. We can see from the zoom-

in regions that our PFF model generates sharper boundaries and delivers an anti-aliasing

functionality. The filter flow visualization maps illustrate where the smoothing happens and
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Figure 6.5: Visual comparison of our method (PFF) to CNN, each image is super-resolved
(×4). More results can be found in the supplementary material. Best view in color and
zoom-in.

where sharpening happens (strong colorful edges in the visualization indicate where pixels

undergo larger transformations). In next section, we visualize the per-pixel kernels to provide

a more in-depth analysis.

6.5 Visualization and Analysis

We have explored a number of techniques to visualize the predicted filter flows for different

tasks. First, we ran k-means on predicted filters from the set of test images for each the three

tasks, respectively, to cluster the kernels into K=400 groups. Then we run t-SNE [226] over

the 400 mean filters to display them in the image plane, shown by the scatter plots in top

row of Fig. 6.6. Qualitative inspection shows filters that can be interpreted as performing

translation or integration along lines of different orientation (non-uniform blur), filling in

high-frequency detail (jpeg artifact reduction) and deformed Laplacian-like filters (super-

resolution).

115



T
ab

le
6.

3:
C

om
p

ar
is

on
o
n

si
n

g
le

im
a
g
e

su
p

er
-r

es
ol

u
ti

on
(×

4)
ov

er
th

e
cl

as
si

c
S

et
5

[2
4]

,
S

et
14

[3
73

]
an

d
U

rb
an

[1
31

]
d

at
as

et
s.

T
h

e
m

et
ri

cs
u

se
d

h
er

e
a
re

P
S

N
R

/S
S

IM
(×

1
0−

2
).

B
ic

u
b

ic
K

K
A

+
S

R
C

N
N

S
el

fE
x

R
D

N
+

V
D

S
R

L
a
p

S
R

N
R

C
A

N
M

S
R

N
P
F
F

[1
5
5
]

[3
1
8
]

[6
9
]

[1
3
1
]

[3
8
3
]

[1
5
4
]

[1
8
7
]

[3
8
1
]

[2
0
1
]

(O
u
rs
)

S
et

5
2
8
.4

2
/
8
1
.0

4
2
9
.6

9
/
8
4
.1

9
3
0
.2

8
/
8
6
.0

3
3
0
.4

9
/
8
6
.2

8
3
0
.3

4
/
8
5
.9

3
3
2
.6

1
/
9
0
.0

3
3
1
.3

6
/
8
7
.9

6
3
1
.5

4
/
8
8
.1

1
3
2
.6

3
/
9
0
.0

2
3
2
.0

7
/
8
9
.0

3
3
2
.1

7
/
8
9
.4

6
S

et
1
4

2
6
.0

0
/
7
0
.1

9
2
6
.8

5
/
7
3
.5

2
2
7
.3

2
/
7
4
.9

1
2
7
.5

0
/
7
5
.1

3
2
7
.5

5
/
7
5
.1

1
2
8
.9

2
/
7
8
.9

3
2
8
.1

1
/
7
6
.2

4
2
8
.1

9
/
7
6
.3

5
2
8
.8

7
/
7
8
.8

9
2
8
.6

0
/
7
7
.5

1
2
8
.4

3
/
7
8
.2

1
U

rb
a
n

2
3
.1

4
/
6
5
.7

3
2
4
.2

0
/
7
1
.0

4
2
4
.3

4
/
7
1
.9

5
2
4
.5

2
/
7
2
.2

1
2
4
.8

3
/
7
4
.0

3
2
6
.6

1
/
8
0
.2

8
2
5
.1

8
/
7
5
.4

3
2
5
.2

1
/
7
5
.6

4
2
6
.8

2
/
8
0
.8

7
2
6
.0

4
/
7
8
.9

6
2
5
.3

4
/
7
8
.1

4

116



Figure 6.6: Three row-wise panels: (1) We run K-means (K=400) on all filters synthesized
by the model over the test set, and visualize the 400 centroid kernels using t-SNE on a 2D
plane; (2) top ten principal components of the synthesized filters; (3) visualizing the color
coded filter flow along with input and quality image. Each pixels filter is assigned to the
nearest centroid and the color for the centroid is based on the 2D t-SNE embedding using
the color chart shown at top left.

We also examined the top 10 principal components of the predicted filters (shown in the

second row grid in Fig. 6.6). The 10D principal subspace capture 99.65%, 99.99% and 99.99%

of the filter energy for non-uniform blur, artifact removal and super resolution respectively.

PCA reveals smooth, symmetric harmonic structure for super-resolution with some intriguing

vertical and horizontal features.

Finally, in order to summarize the spatially varying structure of the filters, we use the 2D

t-SNE embedding to assign a color to each centroid (as given by the reference color chart
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shown top-left), and visualize the nearest centroid for the filter at each filter location in the

third row grid in Fig. 6.6. This visualization demonstrates the filters as output by our model

generally vary smoothly over the image with discontinuities along salient edges and textured

regions reminiscent of anisotropic diffusion or bilateral filtering.

In summary, these visualizations provide a transparent view of how each reconstructed pixel

is assembled from the degraded input image. We view this as a notable advantage over other

CNN-based models which simply perform image-to-image regression. Unlike activations of

intermediate layers of a CNN, linear filter weights have a well defined semantics that can be

visualized and analyzed using well developed tools of linear signal processing.

6.6 Conclusion and Future Work

We propose a general, elegant and simple framework, Predictive Filter Flow, which has

direct applications to a broad range of image reconstruction tasks. Our framework generates

space-variant per-pixel filters which are easy to interpret and fast to compute at test time.

Through extensive experiments over three different low-level vision tasks, we demonstrate

this approach outperforms the state-of-the-art methods.

In our experiments, we only train models over patches. However, we believe global image

context is also important for these tasks and is an obvious direction for future work. For

example, the global blur structure conveys information about camera shake; super-resolution

and compression reduction can benefit from long-range interactions to reconstruct high-

frequency detail (as in non-local means). Finally, we expect that the interpretability of

the output will be particularly appealing for interactive and scientific applications such as

medical imaging and biological microscopy where predicted filters could be directly compared

to physical models of the imaging process.
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Chapter 7

Self-Supervised Learning with Videos

We introduce multigrid Predictive Filter Flow (mgPFF), a low-level vision framework for

unsupervised learning on free-form videos. It takes as input a pair of frames and outputs

per-pixel filters to warp one frame to the other. Compared to optical flow, filter flow is

more expressive in handling sub-pixel movement and transparency (e.g., motion blur). We

develop a multigrid coarse-to-fine strategy that avoids the requirement of learning big filters

to capture large displacement. This allows us to train a very compact model that operates

progressively over multiple resolutions with shared weights. Through experiments, we show

mgPFF not only reconstructs frames almost perfectly, but also is readily amendable for

video object segmentation/tracking and long-range flow learning, where it outperforms other

mid-level state-of-the-art by a notable margin. Moreover, we can use the predicted filters

to track the correspondence of individual pixels across time and perform novel interactive

photo editing-by-reconstruction.

7.1 Background

Videos contain rich information for humans to understand the scene and interpret the world.

However, providing detailed per-frame ground-truth labels is challenging for large-scale video

datasets, prompting work on leveraging weak supervision such as video-level labels to learn
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visual features for various tasks [34, 3, 151, 89]. Video constrained to contain primarily ego-

motion has also been leveraged for unsupervised learning of stereo, depth, odometry, and

optical flow [330, 101, 387, 294, 374].

Cognitively, a newborn baby can easily track an object without understanding any high-level

semantics after immersed in the ambient environment for only one month [103, 245, 243, 331].

However, until recently few works have demonstrated effective unsupervised learning on

free-form videos∗. For example, Wei et al. exploit the arrow-of-time property [272, 102] to

learn visual features by predicting frames’ temporal order [345], and show its usefulness in

action classification and video forensic analysis. Vondrick et al. use video colorization as a

proxy task and show that the learned features capture objects and parts that are useful

for tracking [333]. Wang et al. propose to reconstruct mid-level features of frames with cost

volume, and apply the trained model to visual tracking [340].

In this chapter we introduce a low-level vision approach for training on unsupervised, free-

form videos, which we call multigrid Predictive Filter Flow (mgPFF ), as illustrated by the

conceptual flowchart in Fig. 7.1. The mgPFF makes direct, fine-grained predictions of per-

pixel filters, as opposed to per-pixel offsets by optical flow, deciding how to reconstruct a

video frame from pixels in the previous frame. While mgPFF is trained using a simple

photometric reconstruction error and thus expected to perform well in low-level vision tasks

(e.g. , image reconstruction and editing), we find these per-pixel filters can generate flows

that are accurate enough to carry out high-level tasks such as video object segmentation and

tracking.

A popular approach for learning flow from reconstruction in video is to employ the differ-

entiable spatial transform (ST) layer (a.k.a grid sampling) [138]. ST-layer learns to output

∗By “Free-form”, we emphasize videos are unlabled, long (versus short synthetic ones [71, 141]) and
camera-agnostic, and without either structural patterns (e.g., ego-motion [96, 57, 367]) or restricted back-
ground [321, 283].
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per-pixel coordinate offset for sampling pixels with bilinear interpolation, and applies the

transform to reconstructing frames. While it works quite well on global transformation and

has been widely used in unsupervised optical flow learning [281, 141, 238, 144, 343], we

and others observe that unsupervised learning on free-form videos with a simple ST-layer is

challenging. Detlefsen et al. give an excellent explanation on why it is hard to train the ST-

layer [306]. Briefly, training with ST-layer requires the invertibility of the spatial transform

which is not guaranteed during training. Additionally, we note that fixed grids for sampling

(usually 2×2 for bilinear interpolation) typically only provide meaningful gradients once the

predicted flow is nearly correct (i.e. within 1 pixel of the correct flow). This necessitates

the use of spatial smoothness constraint and the multi-scale losses to avoid getting caught

in bad local-minima. We formally study this with experimental comparison between filter

flow and optical flow learning, as detailed in Section 7.2.3 and demonstrated in Fig. 7.2.

Inspired by the conceptual framework Filter Flow [293], we propose to diretly learn per-pixel

filters instead of the per-pixel offset as in the ST-layer. For each output pixel, we predict

the weights of a filter kernel that when applied to the input frame reconstructs the output.

In this sense, we reverse the order of operations from the ST-layer: rather than predicting

an offset and then constructing filter weights (i.e. bilinear kernel), mgPFF directly predicts

filters which can vote for the offset vector. We observe that training mgPFF is substantially

easier since mgPFF provides useful gradient for all possible flow vectors rather than just

those near the current prediction, as verified in Fig. 7.2 and Section 7.2.1.

Since the Filter Flow [293] outputs per-pixel kernels, capturing large displacements with big

kernels is computationally expensive. We address this using a multigrid strategy [320, 107]

to approximate the kernel. Concretely, we run the model over multi-resolution inputs with a

fixed filter size (11×11 used in this work unless specified) and compose the filters generated at

multiple scales to produce the final flow fields, as detailed in Section 7.2.4 and illustrated by

Fig. 7.3. The model thus only outputs 11*11=121 per-pixel filter weights at each resolution
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Figure 7.1: The flowchart of multigrid Predictive Filter Flow framework (mgPFF). Concep-
tually we draw a single scale for demonstrating how we train our model in an unsupervised
way with the photometric reconstruction loss along with constraints imposed on the filter
flow maps. The multigrid strategy is illustrated in Fig. 7.3.

scale (smaller than the channel dimension in modern CNN architectures). We further assume

self-similarity across scales and learn only a single set of shared model weights. This makes

mgPFF quite efficient w.r.t running time and model size. Our final (un-optimized) model is

only 4.6MB in size and takes 0.1sec to process a pair of 256×256-pixel resolution images.

To summarize our contributions: (1) conceptually, we introduce a simple, low-level frame-

work, multigrid Predictive Filter Flow (mgPFF), which allows for unsupervised learning on

free-form videos; (2) technically, we show the filter flow overcomes the limitation of spatial-

transform layer and the multigrid strategy significantly reduces model size; (3) practically,

we show that mgPFF substantially outperforms other mid-level state-of-the-art methods on

frame reconstruction, video object segmentation and tracking.
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7.2 Related Work

Unsupervised Learning for Vision: Our work builds upon a flurry of recent work that

trains visual models without human supervision. A common approach is to leverage the

natural context in images and video for learning the visual features [65, 256, 145, 66, 338,

379, 189, 262, 337, 332, 252, 261], which can be transferred to down-stream tasks. Other

approaches include interaction with an environment to learn visual features [268, 4, 352],

which are useful for robotics. A related but different line of work explores how to learn

geometric properties or cycle consistencies with self-supervision, for example for motion

capture or correspondence [321, 387, 388, 136, 389, 340]. Ours also develop an unsupervised

model, but with the signal from temporal consistency between consecutive frames in free-

form videos, without the requirement of synthetic data [388, 136].

Unsupervised Learning on Free-Form Videos: Though there are many methods for

unsupervised optical flow learning [238, 343] on videos (either synthetic [71, 141] or struc-

tured [57, 96]), there is very few on unsupervised learning over free-form videos: [337] uses

an offline tracker to provide signal to guide feature learning; [345, 241, 82] learn to verify

whether frames come with the correct order, and transfer the feature to action classification;

[261] learns for region segmentation by considering the moving pattern of rigid objects; [333]

learns for video colorization and applies to object tracking; [340] learns dense correspondence

by reconstructing mid-level features and applies the model to visual tracking as well.

Filter Flow [293] is a powerful framework which models a wide range of low-level vision

problems as estimating spatially varying linear filters, including optical flow [282, 239, 369],

deconvolution [198, 264, 119], stereo [290, 237], blur removal [118], etc. However, as it

requires an optimization-based solver, it is very expensive to optimize, demanding several

hours to compute filters for a pair of medium-size images [293, 276]. Therefore, learning to

predict per-pixel kernels attracts more attention, as demonstrated by its applications such as
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stereo [148], frame interpolation [251], burst denoising [240] and image reconstruction [164].

7.2.1 Multigrid PFF

Our multigrid Predictive Filter Flow (mgPFF) is rooted in the Filter Flow framework [293],

which models the image transformations IB → IA as a linear mapping where each pixel in

IA only depends on the local neighborhood centered at same place in IB. Finding such a

flow of per-pixel filter can be framed as solving a constrained linear system:

IA = TB→A · IB, TB→A ∈ Γ. (7.1)

where TB→A is a matrix whose rows act separately on a vectorized version of the source

image IB. TB→A∈Γ serves as a placeholder for the entire set of additional constraints on

the operator which enables a unique solution that satisfies our expectations for particular

problems of interest. For example, standard convolution corresponds to TB→A being a

circulant matrix whose rows are cyclic permutations of a single set of filter weights which

are typically constrained to have compact localized non-zero support. For a theoretical

perspective, Filter Flow expressed in Eq. 7.1 is simple and elegant, but directly solving it is

intractable for image sizes we typically encounter in practice, particularly when the filters

are big and allowed to vary spatially.

7.2.2 Predictive Filter Flow (PFF) on Video

Instead of optimizing over T, some recent work coincidentally proposes the predictive ver-

sion of Filter Flow (PFF) that learns a function fw(·) parameterized by w to generate the

transformation T over input image IB [148, 164]:

IA ≈ TB→A · IB, TB→A ≡ fw(IB). (7.2)
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The function fw(·) is learned with a CNN model under the assumption that (IA, IB) are

drawn from some fixed joint distribution. Therefore, given sampled image pairs, {(IiA, IiB)},

where i = 1, . . . , N , we can learn parameters w that minimize the difference between a

recovered image ÎA and the real one IA measured by some loss `.

In this work, to tailor the PFF idea to unsupervised learning on videos, under the same

assumption that (IA, IB) are drawn from some fixed joint distribution, we can have the

predictable transform TB→A ≡ fw(IB, IA), parametrized by w. To learn the function fw(·),

we use the Charbonnier function [30] to measure the pixel-level reconstruction error averaged

spatially over the image, defined as φ(s) = 1
|I|
∑

i∈I

√
s2
i + 0.0012, and minimize the following

objective function over parameters w through TB→A:

`rec(IB, IA) = φ(IA −TB→A · IB). (7.3)

Note that the above loss can also take image pairs in a reverse order, i.e. φ(IB−TA→B · IA),

where TA→B is generated over the concatenated features in the reversed order by our design,

as demonstrated in Fig. 7.1.

When exploiting the locality constraints (similar to convolution), we implement the operation

TB→A ·IB with the “im2col” function which vectorizes the local neighborhood patch centered

at each pixel and computes its inner product with the corresponding predicted filter. Note

that “im2col” and the follow-up inner product are highly optimized for available hardware

architectures in modern deep learning libraries, exactly the same as convolution operation.

Therefore our model is quite efficient in computation.

7.2.3 Predictive Filter Flow (PFF) vs. Optical Flow

To understand the merits of Predictive Filter Flow compared to standard optical flow with

bilinear interpolation, we carry out a diagnostic comparison which evaluates reconstruction
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Figure 7.2: Comparison between Predictive Filter Flow (PFF) and optical flow,
both of which are trained over the Sintel movie and the optical flow dataset [33]. We evaluate
training with a mix of supervised and unsupervised data controlled by a hyperparameter α
where α=1 is fully-supervised optical flow regression. We note >96% frames are without
flow annotations, while only <4% have ground-truth flows. By varying α, we plot the image
reconstruction error and endpoint error (EPE) in (a) and (b), respectively; and visualize the
flows and reconstructed frames in (c). See details in Section 7.2.3.

and motion estimates at varying levels of supervision. For fair comparison, we choose the

same backbone architecture (a modified ResNet18 [115] as detailed in Section 7.2.6) where

the top layer outputs either per-pixel filters (PFF) or per-pixel offsets (OF) respectively. We

train both models with the self-sueprvised photometric loss φ(·) for frame reconstruction,

without any further regularization terms (e.g. , smoothness and occlusion handling). We

use the optical flow dataset [33] which provides 1,064 frames with ground-truth optical flow

annotations, and split them into our training (574 frames) and testing (490 frames) sets. We
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also extract all frames in the the Sintel movie, exclude the validation frames, and treat them

as unlabeled data (∼17,712 frames). We resize all frames into 64×128, and set the filter size

in PFF as 25×25 with a single scale.

We weigh the relative contribution of the supervised (flow regression) and unsupervised

(frame reconstruction) loss terms with weights α and 1-α repectively. In Fig. 7.2 we plot the

image reconstruction error and endpoint error (EPE) as a function of α. We also depict the

flows generated by PFF and the optical flow model (α=0.5) in Fig. 7.2 (c), along with the

reconstructed frames compared to using the ground-truth flow.

We observe that: (1) PFF has significantly lower reconstruction error compared to OF

across all settings of α. (2) Using large amount of unlabeled video frames improves flow

estimates (e.g., at α=0.5) compared to only using supervised training data (at α=1). (3)

While PFF does not perform as well as flow regression in flow learning with small α, it begins

to outperform optical flow learning when α increases. (4) Visualizing the flows generated

by PFF and optical flow, we see the fixed kernel size automatically regularizes the flow

scale, thus producing sharper boundaries of the flows. These observations demonstrate the

potential of PFF in flow learning and the benefit of frame reconstruction loss to leverage

unsupervised data which will be further highlighted through experiments in Section 7.3.

7.2.4 Multigrid PFF

While the PFF described above is elegant, effective and simple for unsupervised learning over

videos, it faces a substantial challenge that, to capture large displacement, it must predict big

filters to provide large spatial support. To address this problem, we take inspiration from

multigrid which seeks to solve high-dimensional systems of equations using hierarchical,

multiscale discretizations of linear operators [320, 107], to produce a coarse-to-fine series of

smaller, more easily solved problems.
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Figure 7.3: Illustration of how multigrid Predictive Filter Flow (mgPFF) performs progres-
sively by warping images from one to the other at multiple resolution scales from coarse to
fine.

To explain this, mathematically, suppose we have filter flow T in original resolution that

maps from X to Y, i.e. Y = T ·X. Then if resizing X and Y by half, we have

D 1
2
Y =D 1

2
T ·X ≈ (D 1

2
T) · (U2×D 1

2
X), (7.4)

where the upsampling U2× and downsampling D 1
2

operators are approximately inverse to
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each other. Then we write a reduced system:

Y 1
2
≈ (D 1

2
TU2×) · (D 1

2
X) = T 1

2
X 1

2

(7.5)

The above derivation implies we can solve a smaller system for T 1
2

on the input X 1
2
, e.g. ,

an image with half the resolution and then upsample T 1
2

to get an approximate solution to

the original problem.

In practice, to avoid assembling the full resolution T, we always represent it as a composition

of residual transformations at each scale. T = T1 · U2× · T 1
2
. . .U2× · T 1

2L
, where T 1

2l
is

estimated filter flow over frames at resolution scale 1/2l−1. In our work, we set L=5. Each

individual transformation has a fixed filter support (sparse). By construction, the effective

filter “sizes” grow spatially larger as it goes up in the pyramid but the same filter weight is

simply applied to larger area (we use nearest-neighbor upsampling). Then the total number

of filter coefficients to be predicted for the pyramid would be just 4/3 more than just the

finest level (ref. geometric series 4/3 = 1 + 1
22

+ 1
42

+ 1
82

+ . . . ).

Concretely, suppose we need the kernel size as 80×80 to capture large displacement, we can

work on coarse scale of 8× smaller input region with kernel size 11×11, this will reflect on

the original image of receptive field as large as 88×88. But merely working on such coarse

scale introduces checkerboard effect if we resize the filters 8× larger. Therefore, we let the

model progressively generate a series of 11×11 filters at smaller scales of [8×,4×,2×,1×], as

demonstrated by Fig. 7.3. Finally, we can accumulate all the generated filter flows towards

the single map, which can be a long-range flow (studied in Section 7.3.3). We train our

system with the same model at all these scales. We have also trained scale-specific models,

but we do not observe any obvious improvements in our experiments. We conjecture that in

diverse, free-form videos there is substantial self-similarity in the (residual, low-level) flow

across scales.
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We note that coarse-to-fine estimation of residual motion is a classic approach to optical flow

estimation (e.g. , [86]). It has also been used to handle temporal aliasing [302] and acted

as a technique for imposing a prior smoothness constraint [315]. Framing flow as a linear

operator draws a close connection to multigrid methods in numerical analysis [320, 107].

However, in literature there is primarily focused on solving for X where the residuals are

additive, rather than T where the residuals are naturally multiplicative as derived in Eq. 7.5.

7.2.5 Constraints, Regularization and Loss

Training with the photometric loss alone produces almost perfect reconstruction perfor-

mance. But to utilize mgPFF on video segmentation and tracking, we should regularize

training to restrain the reconstruction power and encourage unimodal filter (for offset flow)

with further constraints, as described as below.

Non-negativity and Sum-to-One. With the mgPFF framework, it is straightforward to

impose the non-negativity and sum-to-one constraints by using the softmax layer to output

the per-pixel filters, as softmax operation on the kernels naturally provides a transformation

on the weights into the range of [0,1], and sum-to-one constraint mimics the brightness

constancy assumption [128, 14].

Warping with Flow Vector. To encourage the estimated filter kernels to behave like

optical flow (i.e. a translated delta function) we define a projection of the filter weights on

to the best approximate flow vector by treating the (positive) weights as a distribution and

computing an expectation. Given a filter flow T we define the nearest optical flow as

F(T) ≡

vx(i, j)
vy(i, j)

 =
∑
x,y

Tij,xy

x− i
y − j

 (7.6)

As discussed in Section 7.1 and 7.2.3, directly learning to predict F is difficult but when
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keeping T as an intermediate representation, learning becomes much easier. To force the

predicted T towards a unimodal offset, we add a loss term based on the optical flow F with

grid sampling layer just as done in literature of unsupervised optical flow learning [281, 343,

141]. We denote the loss term `flow(IB, IA), meaning the reconstruction loss computed by

warping with optical flow F(TB→A) from IB to IA.

Forward-Backward Flow Consistency. As we know, there are many solutions to the

reconstruction problem. For more robust learning, we adopt a forward-backward consistency

constraint as below:

`fb(f ,b) ≡ 1

|I|
∑
i∈I

φ(pi − b(f(pi))) (7.7)

where forward and backward flow are f = F(TB→A) and b = F(TA→B), and pi ≡ [xi, yi]
T

is a spatial coordinate at i. Note that this constraint helps address the chicken-and-egg

problem related to optical flow and occlusion [134, 238]. But we do not use it for handling

occlusion with additional thresholding mechanisms. We find it crucial to train the mgPFF

model with this constraint when applying the model later for video segmentation; otherwise

mask pixels would diffuse to the background easily.

Smoothness constraint can be imposed simply through penalizing the norm of the flow

field gradient, i.e. `sm ≡ ‖OF(T)‖1. The smoothness term helps avoid abrupt transitions

on flow field, especially at coarse scales where very few big flows are expected.

Our overall loss for training mgPFF model minimizes the following combination of the terms

across multiple scales l = 1, . . . , L:

min
w

L∑
l=1

`rec(I
l
B, I

l
A) + λflow · `flow(IlB, I

l
A)

+ λfb · `fb(f l,bl) + λsm · `sm(f l)

(7.8)

We set the weights λflow=λfb=λsm=1, as we find the training quite stable over large range
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of choices on these weights. Note that we only write the loss containing flow from B to A;

but in practice we also include those from A to B.

7.2.6 Architecture and Implementation

The mgPFF framework is largely agnostic to the architectures design. In this chapter,

we modify the ResNet18 [115] by removing res4 and res5 (the top 9 residual blocks, see

supplementary material) and reducing the unique channel size from [64, 128, 256, 512] to

[32, 64, 128, 196]. We also add in bilateral connection and upsampling layers to make it a U-

shape [285], whose output is at the original resolution. Furthermore, we build another shallow

stream but in full-resolution manner with batch normalization [137] between a convolution

layer and ReLU layer [247] that learns to take care of aliasing effect caused by (un-)pooling

layers in the first steam. The mgPFF model is very compact that the overall model is

only 4.6MB; it also performs fast that the wall-clock time for processing a pair of 256×256

frames is 0.1 seconds. Note that the two-stream architecture is popular in multiple domain

learning [303], but we note that such design on a single domain was first used in [269] which

is more computationally expensive that the two streams interact along the whole information

flow, while ours is cheaper that they only interact at the top layer. We note that our mgPFF

is also different from FlowNetS and FlowNetC [71] in that, 1) unlike FlowNetS, ours produces

pixel embeddings which could be transferred to downstream tasks (though we do not explore

this under the scope of this thesis); 2) unlike FlowNetC, ours does not have the expensive

correlation layer for cost volume.

7.3 Experiments

We carry out extensive experiments to verify the following:
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7.3.1 Experimental Setup

Dataset. In fact, mgPFF can be trained on any videos owing to its low-level vision nature.

Without introducing any new video datasets, we combine three diverse video datasets avail-

able to public: the whole Sintel movie [199], DAVIS2017 [271] and JHMDB [146]. Therefore,

we construct a training set with a total number of ∼6×104 video frames resized to 256×256-

pixel resolution, among which 17,712 frames are extracted from the Sintel movie. Note that

our compared state-of-the-art methods train over orders magnitude larger dataset as ex-

plained later. For evaluation on tasks of video object segmentation/tracking and long-range

frame reconstruction, we use the DAVIS2017 validation set [271], as done in [333, 340]. In

principle, we could combine more videos to train our mgPFF model; however we observe

that more data does not necessarily improve mgPFF. We conjecture the reason is due to the

low-level nature of our mgPFF approach. This is also noted in [340], which further reports

that fine-tuning on the DAVIS2017 validation set barely improves performance either.

Training. We use ADAM optimization [156] for training our model from scratch (i.e. ran-

dom initialization), with initial learning 0.0005 and coefficients 0.9 and 0.999 for computing

running averages of gradient and its square. We train our model using PyTorch [260] on

a single NVIDIA TITAN X GPU, and terminate after 500K iteration updates†. During

training, we randomly sample frame pairs (resized to 256×256-pixel resolution) within five

consecutive frames. We also augment the training data by randomly flipping and rotating

the frame pairs. After training, we directly evaluate the mgPFF model on the DAVIS2017

validation set for video object segmentation/tracking, long-range frame reconstruction and

photo editing. We note, as also reported by [340], unsupervised fine-tuning specifically on

the validation set does not necessarily improve the performance, due to the low-level nature

of our mgPFF model.

† The code and models can be found in https://github.com/aimerykong/predictive-filter-flow
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It is also worth noting that, in training our mgPFF on the Sintel movie, mgPFF offers

the ability of detecting video shot/transition [26, 94] purely based on the reconstruction

errors between frames. This helps develop a stage-wise training pipeline that we could train

mgPFF first on the whole movie, and then simply threshold the reconstruction errors for

shot detection and get discrete groups for finer training.

Inference. For video object segmentation/tracking, we propagate the binary mask given at

the first frame along the time using the output filter flows by mgPFF. As mgPFF produces

per-pixel kernels indicating a probability (owing to the sum-to-one property) on where to

move, the propagated mask contains continuous values with range [0,1]. We threshold with

0.8 the propagated masks at each tracking update. This helps prevent foreground mask pixels

from diffusing to the background especially at the true boundary. As mask propagation can

also accumulate history masks instead of the only one from the previous frame, we set

the temporal window size K, meaning we warp towards the target frame using previous

K frames. For mgPFF, we find K=3 works the best with an ablation study reported in

Table 7.1 as shown later; the compared methods also adopt different window size K for their

best performance.

Compared methods include the following:

• Identity always copies the mask given at the 1st frame.

• Optical Flow (FlowNet2 [136]): a state-of-the-art method supervised trained for

predicting optical flow. Particularly, for a target frame It, we compute the optical flow

from It−1 to It and warp the mask at It−1 using the flow.

• SIFT Flow [218]: an off-the-shelf tool for estimating dense flow, which is used to

propagate masks similar to the above Optical Flow method.

• ColorPointer [333] is a self-supervised method with the proxy task of video frame
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colorization over the Kinetics dataset [151] (∼9×107 frames). The architecture is based

on 3D ResNet18. We report the results from [333].

• CycleTime [340] is another unsupervised method trained for reconstructing deep fea-

tures with cost volume between frames. It is trained on VLOG dataset [89] (344-hour

recording, ∼3.7×107 frames). We report the results from [340] with the window size

K=7.

• DeepCluster [37] is a self-supervised approach by using a K-means objective to it-

eratively update targets and learn a mapping from images to targets. It is trained

on the ImageNet dataset [63] without using annotations. The trained model with

VGG16 [304] adopts the same inference procedure as CycleTime, with window size

K=7.

• Fully-Supervised Methods serve as reference [364, 35], which are trained specifically

on DAVIS2017 dataset from an ImageNet pre-trained model in a supervised way.

7.3.2 Video Object Segmentation and Tracking

We analyze our model on video object segmentation and tracking over the DAVIS 2017

validation set [271], where the initial segmentation mask is given and the task is to predict

the segmentation in the rest of the video. This is a very challenging task as the videos

contain multiple objects that undergo significant occlusion, deformation and scale change

with clutter background, as shown in Fig. 7.4. We use the provided code and report two

metrics that score segment overlap and boundary accuracy. The Jacaard index J is defined

as the intersection-over-union of the estimated segmentation and the ground-truth mask,

measuring how well the pixels of two masks match [77]. The J recall measures the fraction

of sequences with IoU>0.5. The F-measure denoted by F considers both contour-based

precision and recall that measure the accuracy of the segment contours [235].
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Table 7.1: Tracking Segmentation on the DAVIS2017 validation set. Methods marked with 1st

always use the first frame and its mask (provided) for tracking. The number in bracket indicates
the estimated number of frames used for training.

Method Supervision
J (segments) F (boundaries)
mean↑ recall↑ mean↑ recall↑

OSVOS [35] ImageNet, DAVIS 55.1 60.2 62.1 71.3
MaskTrack [152] ImageNet, DAVIS 51.2 59.7 57.3 65.5
OSVOS-B [35] ImageNet 18.5 15.9 30.0 20.0
MaskTrack-B [152] ImageNet 35.3 37.8 36.4 36.0
OSVOS-M [364] ImageNet 36.4 34.8 39.5 35.3
Identity None 22.1 15.9 23.6 11.7
SIFTflow [218] None 13.0 7.9 15.1 5.5
SIFTflow1st [218] None 33.0 – 35.0 –
FlowNet2 [136] Synthetic 16.7 9.5 19.7 7.6
FlowNet21st [136] Synthetic 26.7 – 25.2 –
DeepCluster1st [37] Self (1.3×106) 37.5 – 33.2 –
ColorPointer [333] Self (9.0×107) 34.6 34.1 32.7 26.8
CycleTime1st [340] Self (3.7×107) 40.1 – 38.3 –
mgPFF (1st only)

Self (6.0×104)

31.6 29.5 36.2 30.8
mgPFF (K=1) 38.9 38.5 41.1 38.6
mgPFF1st (K=1) 41.9 41.4 45.2 43.9
mgPFF1st (K=3) 42.2 41.8 46.9 44.4

We compare our mgPFF with other unsupervised methods as well as some supervised

ones [364, 35] in Table 7.1. As in literature there are methods always using the given

mask at the first frame to aid tracking, we also follow this practice with mgPFF to report

the performance. But before doing so, we ablate how much gain we can get from using only

the given mask for the tracking. To this end, we setup the mgPFF by always propagating

the given mask for tracking, as noted by mgPFF (1st only) in Table 7.1. Surprisingly, this

simple setup works quite well, even surpassing almost all the compared flow-based methods,

e.g. , SIFTflow1st and FlowNet21st, both of which use the given mask at the first frame in

addition to K=7 predicted masks in the past. This suggests the mgPFF is able to capture

long-range flow even though we did not train our model with frames across large intervals.

We explicitly study this long-range flow in Section 7.3.3 quantitatively.

When tracking with the only one previous propagated mask (K=1), our mgPFF outperforms
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Figure 7.4: Visualization of unsupervised learning for video segmentation on DAVIS2017:
soccerball, dog and bear. We show the tracking results with temporal window size K=3 for
soccerball (otherwise it loses track due to heavy occlusion) and K=1 for others. Note that
in soccerball, there are heavy occlusions but our mgPFF model can still track the ball. In
dog, we can see how each pixel moves along with the dog: when the dog turns from right
side to left side, the colors from the neck are propagated for tracking. In bear, we see an
error where the shadow appearing in the bottom of the image is explained by flow from the
bear’s leg.

all the other unsupervised methods, except for CycleTime on the J measure, which is

explicitly trained at patch level thus captures better object segment. When additionally

using the mask given at the first frame for tracking in subsequent frames, mgPFF1st(K=1)

outperforms notably all other unsupervised methods, and our mgPFF1st(K=3) achieves the

best performance. In particular, in terms of the boundary measure, we can see mgPFF

performs significantly better than the other unsupervised methods. This demonstrates the

benefit of propagating masks with fine-grained pixel-level flows instead of flows learned at

patch level through mid-level feature activations [333, 340].

Overall, our mgPFF even outperforms several supervised methods, but only worse than the

first two supervised models in Table 7.1 which are explicitly trained with DAVIS pixel-level

annotations at all training frames. It is also worth noting that our mgPFF model is trained

over two orders magnitude less frames than other unsupervised methods, e.g. , DeepCluster,

ColorPointer and CycleTime. This demonstrates the benefit of the low-vision nature of

mgPFF that it does not demand overly large-scale training data.
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Table 7.2: Long-range flow for frame Reconstruction: We compute the long-range flow
vector from the filter flows by mgPFF on two frames It and It+m, where m=5 or m=10. We
use the flow to warp It towards It+m, and report the averaged pixel difference under the L1

norm between the warped frame and It+m.

method/error↓ m = 5 m = 10
Identity 82.0 97.7
Optical Flow (FlowNet2) [136] 62.4 90.3
CycleTime [340] 60.4 76.4
mgPFF 7.32 8.83

We note that the most recent work [203] achieves the best reported performance by combin-

ing the low-level reconstruction learning (i.e. pixel correspondence as done in our mgPFF)

and mid-level region correspondence learning as done in CycleTime [340], with additional

sophisticated regularization terms. While not aiming at competing with [203], we note our

mgPFF not only complements all the mid-level methods (e.g. CycleTime and its exten-

sion [203]), but also exclusively embraces the benefit from the fine-grained pixel reconstruc-

tion, which can be highlighted by long-range frame reconstruction and interactive photo

editing as demonstrated in the next Section 7.3.3 and 7.3.4.

In Fig. 7.4, we visualize the tracking results and the predicted filter flow (from previous

one frame only). Specifically, we transform the filter flow into the flow vector (Eq. 7.6)

for visualization. As mgPFF performs at pixel level, we are able to visualize the tracking

through more fine-grained details. We paint on the mask with the color chart from optical

flow, and visualize to see how the pixels evolve over time. Interestingly, we can see how

tracking is accomplished in face of heavy occlusion, big deformation and similar background

(see the caption of Fig. 7.4).

7.3.3 Long-Range Frame Reconstruction

We highlight our mgPFF is particularly good at learning long-range flow through the task of

frame reconstruction, as suggested by [340]. To validate this, specifically, given two testing
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Figure 7.5: Long-range frame reconstruction (rightmost column) reflects long-range
flow learning that warps It (1st column) with the coordinate flow (2nd column) which is
transformed from the predicted multigrid filter flow. The target frames It+10 are shown in
the 3rd column.

frames It and It+m distant in time from a video, we predict the filter flow between them, and

then transform the filter flow into offset (i.e. optical flow) according to Eq. 7.6 to indicate

where to copy pixels from It. With the flow, we warp frame It to generate a new frame Ît+m.

Therefore, we round the warped image to the integer values, and compare the averaged pixel

difference under the L1 norm between It and Ît+m in the original [0,255] scale.

We perform this experiment on DAVIS2017 validation set, and report the performance in

Table 7.2, We set the time gap as m=5 or m=10, meaning the pair of testing frames are

m frames apart from each other. In both frame gaps, our mgPFF significantly outperforms

the compared methods, demonstrating the powerfulness of mgPFF in modeling pixel-level

movement, even though our model is trained over frame pairs within 5-frame interval without

seeing any frames far away from 5 frames. In Fig. 7.5, we clearly see that mgPFF performs

quite well visually on long-range frame reconstruction. In the next section, we demonstrate

further its powerfulness in image reconstruction through a novel photo editing application

enabled by mgPFF.
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Figure 7.6: Interactive Photo Editing. We compare mgPFF with two classic blending
algorithms (alpha blending and Poisson blending) and the unsupervised optical flow method.
We can see the self-regularization enables our mgPFF preserve both the structure in the
source image patch and target image style, allowing for more “realistic” restoration. The
upper-left flow maps visualize the optical/filter flows.

7.3.4 Interactive Photo Editing

We use the same trained mgPFF model in the previous section for a novel interactive photo

editing application, which requires blending a source image patch to a target image and

preserving both the source texture/structure and the target image style. We demonstrate this

application in Fig. 7.6, where we transplant a nose from a reference image to the missing nose

part in the Sphinx statue. We compare with alpha blending [273], Poisson blending [263],

the nearest neighbor approach that reconstruct pixels of target patch using all the source

pixels, and the unsupervised optical flow method as trained in Section 7.2.3.

We can see the mgPFF performs quite well in such an interactive photo editing task, trans-
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ferring the structure of the source patch while observing the target style. However, the

optical flow method fails to make visible edits, and the classic blending methods fail to

either adjust the colors or induce artifact colors due to color leakage. It is worth noting

that nearest the neighbor approach also reconstructs the target patch quit well. However it

is slower than mgPFF as it requires iterating over all the source pixels to reconstruct the

target pixel. Moreover nearest-neighbor is too flexible to introduce reasonable diversity; in

contrast, mgPFF uses a little region (defined by the per-pixel kernel size) from source patch

to reconstruct the target pixel which is the centered of the corresponding target patch. This

small yet novel photo editing task benefits from the mgPFF’s reconstruction power, while the

self-regularization (i.e. sum-to-one property) guarantees consistent color, tones and bright-

ness in the reconstruction, fulfilling satisfactory blending with fast computation by a single

forward pass of the mgPFF model (<0.1sec for blending).

7.4 Conclusion

We propose a simple, compact framework for unsupervised learning on free-form videos,

named multigrid Predictive Filter Flow (mgPFF). Through experiments, we show mgPFF

outperforms other state-of-the-art methods notably in video object segmentation under the

unsupervised learning setup; it also exhibits great power in long-range flow learning and

enables a novel photo editing application owing to its reconstruction power. We expect

future research based on mgPFF for, e.g. , flow-based applications, pixel embedding transfer

to downstream tasks, higher-level learning for video understanding, etc.
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Chapter 8

Concluding Remarks

To conclude this thesis, we start with a high-level summary of the major themes and con-

tributions of the thesis. As we realize a plethora of open questions which are raised by, or

simply indicated by, our work, we include more discussions and the literature, and suggest

some directions or topics for future research.

8.1 Summary and Contributions

In previous chapters, we review the literature that advances pixel-level prediction, under-

standing the important ingredients involved in the learning based methods, specifically the

convolutional neural networks (CNN), which achieve state-of-the-art over various per-pixel

vision tasks. Then we show the CNN framework serves as an elegant model for different per-

pixel prediction tasks. We propose several loss functions in training, and show performance

gains over the state-of-the-art.

Since the CNN model directly produces the output in the target space, making itself vul-

nerable to complex tasks, such as segmenting C. elegans worms intersection each other, we

propose the pixel embedding methodology that trains CNN models to project all pixels into

an embedding space, in which pixels become easier to be grouped according to the defined
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metric. We apply the pixel embedding idea to object instance segmentation, and show great

success that it outperforms the state-of-the-art remarkably. Furthermore, we show the metric

learning among pixel pairs enables richer regularization, improving over the direct-prediction

methodology.

Noticing all the aforementioned models are trained in a fully supervised way, i.e., requiring

(manual) annotations for supervision, we study how to relax the annotation level. To this

end, we propose the Predictive Filter Flow (PFF) framework that trains over simulated data.

Specifically, we train for image reconstruction tasks, including single image super-resolution,

non-uniform blur removal and JPEG compression artifacts reduction. We simulate degraded

images through simulation, or off-the-shelf algorithms, so that we form training image pairs.

Besides, PFF learns to output per-pixel kernels which are used to warp input patches centered

at each pixel towards the output pixel. In this sense, PFF has better interpretability as

the decision making process is transparent to users, endowing controllable property to the

system. Just because of the nature of PFF, it also regularizes the output by the input itself,

through warping the input to the output without a blackbox-like transformation. Over the

mentioned image reconstruction tasks, we show PFF achieve better performance than the

state-of-the-art, enjoying better interpretable and controllable properties.

We further extend PFF to the multigrid version (mgPFF) to process high-resolution images

and train over unconstrained videos. As videos has temporal coherency which acts as su-

pervision, we train mgPFF in a fully self-supervised way, taking as input the two frames

nearby temporally, learning to output per-pixel kernels used to warping one frame towards

the other. We show mgPFF not only achieves almost perfect reconstruction between frames,

but also learns to capture pixel correspondence, which can be used for visual tracking and

enables one to track every pixel to understand how the pixels evolves over time. With its

the reconstruction power and self-regularization, we apply it to transplanting image patches

to a target image, and demonstrate an innovative and unique photo editing experience.
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8.2 Suggestions and Future Research

From the proposed depth-aware gating module that improves semantic segmentation, we see

coupling multiple tasks in a smart way may help learning for a particular task. While it

is a well-holden belief that multi-task learning may boost all tasks, recent study finds that

tasks have their own hierarchies, in terms of learning for better performance [66, 370, 308].

Moreover, some tasks are tightly coupled with physical relation or mathematical dependence.

For example, surface normal is the derivative of depth, while curvature is the derivative of

surface normal and second order derivative of depth; instance segments exactly carry the

object boundary, and are over-segments for semantic segmentation. Therefore, the study in

task-wise relationship and how to use such relations for better learning will be a rewarding

research direction.

In the Pixel-wise Attention Module (PAG) study, we show how we can achieve dynamic

computation at pixel level that achieves better performance than other design choices for

pixel-level prediction, while with reduced computation budget measured by FLOPS. How-

ever, we find the computation FLOPS is not tightly coupled with wall-clock time. In other

word, fewer computation FLOPS does not necessarily indicate less computation time. This

is largely due to the highly optimized hardware for specific computations, like CUDA for

matrix multiplication. Recent literature has witnessed different attempts towards real-world

pixel-level predictions, like teacher-student training strategy that trains compact model to

mimic a very deep model [244], multigrid strategy for quickly capture long-range informa-

tion at coarse resolution [384, 277], flow-based idea for fast propagating features used for

prediction [391], and so on. We suggest further investigation in this direction for both real-

time inference and fewer computation FLOPS. This is not only of great interest to industry

requiring real-time calculation, but also significant in computation with green energy [292],

useful for low-power deployment and scientific understanding of information flow in deep
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learning.

The pixel embedding idea proposed in Chapter 5 show very promising results in various

pixel-level prediction/grouping problems. However, through the mentioned limitations of

the method, improving the cost volume in terms of computation and memory consumption

is prerequisite to broad deployment. Luckily, we see some recent literature publishing some

attempts on this, e.g., exploiting locality instead of computing holistic cost volume [43, 197].

Such an improvement enables grouping pixels or voxels into meaningful parts, like neurons

in 3D scanning and cells in 2D image. Therefore, we suggest more endeavor invested in

this direction, learning to embedding pixels into meaningful groups and even better into

hierarchical clusters. At the same time, we note such learning for pixel embedding, as well

as supervised methods presented earlier, requires extensively manual annotations at pixel

level. So we expect more research in unsupervised or self-supervised learning with specific

applications, especially in inter-disciplinary applications.

From the PFF method which has interpretable and controllable advantage over blackbox

mechanism, we expect its more utilizations in broad fields, such as brain imaging registra-

tion [61], the simple image enhancement in biological images and medical images [53, 347,

335, 390]. The barrier is still in how to obtain training data, as we do not have clear images

as target for training. There are some recent work in collecting data through two different

microscopes: one is low-power for low-resolution imaging, the other is energy costly but for

high-resolution imaging. It shows that the image enhancement model can be trained over

with these data pairs [53, 347, 335, 390]. However, we notice that collecting such training

data is also expensive in term of operating complex machines and register the resulting im-

ages from different microscopy techniques. Motivated by this, we would recommend using

generative model and a discriminator loss to reconstruct images, like the preliminary result

we have shown in Chapter 6. Therefore, we expect more fruitful research in this direction in

the near future.
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The multigrid PFF framework (mgPFF) shows exciting and promising results in self-supervised

learning on videos, and broad applications in visual tracking and photo editing. However

we note the mgPFF essentially only learns some low-level features without high-level un-

derstanding of the video frames. Therefore, we recommending more investigation in this

direction with a few suggestions. First, multi-modal signals can be exploited along with

mgPFF learning. Such signals can be audio, captions, LiDAR, GPS, etc. Second, using

some features as input along with RGB frames may also help regularize training and capture

higher level information. Such features can be from a pre-trained model, as a reflection of

knowledge distillation [117]. Third, it may also be valuable to train mgPFF on domain spe-

cific data for particular application, like neuron images for neuron tracing, tissue scanning

for tracking cells, etc.

Beyond purely exploiting temporal consistency knowledge in learning over unconstrained

videos (like our mgPFF), we would also expect learning methods with geometry-aware con-

straints. For example, one can exploit the projective geometry rule to learn both camera

pose and single-image depth [387]. Such camera pose estimation can be used for SLAM,

augmenting pixel-level prediction, and fast rendering predictions at previous frame(s) for

real-time processing in videos. We also expect investigation in how to make use of such self-

supervised trained models in other tasks, through fine-tuning or other formats to regularize

other downstream tasks learning.

Lastly, we have not covered another important venue, leveraging synthetic data with the real-

world data in the domain of interest for pixel-level prediction. As one can render unlimited

synthetic data, it is no reason not to exploit them, optionally combined with small amount

of annotated real-world data, if available. Research in this amounts to domain adaptation,

which aims at closing domain gap. We would like to mention that, the current practice

that using GAN method (e.g., CyCADA [121]) is limited as it only changes color and tones

between images of two domains. It is common that different domains have different stuffs,
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for example it is not possible to render diaper and clothes in the synthetic indoor data, while

these stuffs can be common in real-world scenes. Therefore, we recommend a study in how to

translate images between different domains with a domain-aware zero-out strategy, offering

more interpretable and sensible mechanism in closing domain gaps caused by scene content

instead of the simple low-level differences (say color and tone).
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Appendix A

Appendix to Chapter 3

We analyze the proposed depth-aware gating module with detailed results in Table A.1. We

perform the ablation study on the Cityscapes dataset [57]. Specifically, we train the following

models in order (except the fourth model which learns attention to gate).

1. “baseline” is our DeepLab-like baseline model by training two convolutional (with 3×3

kernels) layers above the ResNet101 backbone.

2. “tied, avg.” is the model we train based on “baseline” by using the same 3×3 kernel but

different dilate rates equal to {1, 2, 4, 8, 16}, respectively. So there are five branches and

each of them has the same kernels which are tied to make processing scale-invariant.

We average the feature maps for the final output prior to classification.

3. “gt-depth, tied, gating” is the model using the ground-truth depth map to select the

branch; the pooling window size is determined according to the ground-truth depth

value.

4. “gt-depth, untied, gating” is the model based on “gt-depth, tied, gating” by unleashing

the tied kernels in the five branches. These untied kernels improve the flexibility and

representation power of the network. Figure A.1 (a) depicts this model.

5. “attention, untied, gating” is an independent model to the previous ones that is trained
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without depth supervision where the gating signal acts as a generic attentional signal

that modulates spatially adaptive pooling. Specifically, we train an attention branch

to produce the soft weight mask after softmax to gate the features from multiple

pooling at different scales. We also adopt untied weights for the scale-specific pooling

branches. The architecture is similar to what depicted in Figure A.1 (b), but without

depth supervision.

6. “pred-depth, untied, gating” is our final model in which we learn a quantized depth

predictor to gate the five branches. This model determines the size of pooling window

based on its predicted depth map. Figure A.1 (b) shows the architecture of this model.

Through Table A.1, we can see that increasing the dilate rate with our model “tied, avg.”

improves the performance noticeably. This is consistent with the observation in [45], in which

the large view-of-field version of DeepLab performs better. The benefit can be explained by

the large dilation rate increasing the size of the receptive field, allowing more contextual

information to be captured at higher levels of the network. With the gating mechanism,

either using ground-truth depth map or the predicted one, the performance is improved

further over non-adaptive pooling. The depth-aware gating module helps determine the

pooling window size wisely, which is better than averaging all branches equally as in our “tied,

avg.” model and DeepLab. Moreover, by unleashing the tied kernels, the “gt-depth untied,

gating” improves over “gt-depth, tied, gating” remarkably. We conjecture that this is because

the untied kernels provide more flexibility to distinguish features at different scales and allow

selection of the appropriate non-invariant features from lower in the network. Interestingly,

the attention-gating model performs well and using the predicted depth map achieves the

best among all these compared models. We attribute this to three reasons. Firstly, the

predicted depth is smooth without holes or invalid entries. When using ground-truth depth

on Cityscapes dataset, we assign equal weight on the missing entries so that the gating

actually averages the information at different scales. This average pooling might be harmful
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Figure A.1: (a) Depth-aware gating module using the ground-truth depth map, and (b)
depth-aware gating module using the predicted depth map. The grids within the feature
map blocks distinguish different pooling field sizes. Here we depict three different pooling
window sizes while in our actual experiments we quantize the depth map into five scale bins.

in some cases such as very small object at distance. This can be taken as complementary

evidence that the blindly averaging all branches achieves inferior performance to using the

depth-aware gating. Secondly, the predicted depth maps have some object-aware pattern

structure, which might be helpful for segmentation. From the visualization shown later in

Figure A.4, we can observe such patterns, e.g. for cars. Thirdly, the depth prediction branch,

as well as the attention branch, generally increases the representation power and flexibility

of the whole model; this can be beneficial for segmentation.

A.1 Results on the SUN-RGBD dataset

In Figure A.2, we show the depth prediction results of several images randomly picked from

the test set of SUN-RGBD dataset. Note that the there are unnatural regions in the ground-

truth depth maps, which are the result of refined depth completion by the algorithm in [307].

Visually, these regions do not always make sense and constitute bad depth completions.

In contrast, our predicted depth maps are much smoother. We also evaluate our depth

prediction on SUN-RGBD dataset, and achieve 0.754, 0.899 and 0.961 by the three threshold

metrics respectively. As SUN-RGBD is an extension of NYU-depth-v2 dataset, it has similar
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Figure A.2: Visualization of images from SUN-RGBD dataset and their ground-truth depth
and our predicted depth on the three rows, respectively. We scale all the depth maps into a
fixed range of [0, 105]. In this sense, the color of the depth maps directly reflect the absolute
physical depth. Note that there are unnatural regions in the ground-truth depth maps, which
have been refined by the algorithm in [307]. Visually, these refined region do not always make
sense and are incorrect depth completions. In contrast, our monocular predictions are quite
smooth.

data statistics resulting in similar prediction performance.

In Figure A.3, we randomly show fourteen images and their segmentation results at loops

of the recurrent refining module. Visually, we can see that the our recurrent module refines

the segmentation result in the loops.

A.2 Visualization on Large Perspective Images

In Figure A.4 and A.5, we visualize more results on Cityscapes and Stanford-2D-3D datasets,

respectively. First, we show the segmentation prediction and the attention map after training

with the unsupervised attentional mechanism in the third column. We can see the attention

map appears to encode the distance from object boundaries. We hypothesize this selection

mechanism serves to avoid pooling features across different semantic segments while still

utilizing large pooling regions within each region. This is understandable and desirable in

practice, as per-pixel feature vectors have different feature statistics for different categories.

Then, we compare the segmentation results and depth estimate for adaptation in the recur-
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Figure A.3: Visualization of the output on SUN-RGBD dataset. We randomly show fourteen
images from validation set with their segmentation output from both feed-forward pathway
and recurrent loops. In the ground-truth segmentation annotation, we can see that there
are many regions (with black color) not annotated.

rent refinement loops (last three columns in Figure A.4 and A.5). We notice that the depth

estimate for adaptation changes remarkably in the loop (the depth module is fine-tuned us-

ing the segmentation loss only in training). While the depth estimate captures some object

shapes in Cityscapes (e.g. car), it becomes more noticeable that the depth prediction helps

the model perform coarse-to-fine refinement in the loop by using smaller receptive fields in

Stanford-2D-3D dataset. We conjecture that this is owing to the top-down signal from the

depth estimate at the previous loop. The recurrent refinement module also fills the holes

in large areas, like light reflection regions on the car in street scene (Cityscapes) and white

board in the second image (row 3 and 4) of panoramic photos (Stanford-2D-3D).
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Figure A.4: Visualization of the results on Cityscapes dataset. For five random images from
the validation set, we show the input perspective street scene photos, ground-truth anno-
tation, raw disparity and the five-scale quantized depth map in the leftmost two columns.
Then, we show the segmentation prediction and the attention map using our unsupervised
attentional mechanism in the third column. In the rest three columns, we show the output
of our depth-aware adaptation within recurrent refinement, from loop-0 to loop-2. Note that
the more yellowish the color is, the closer the object is to camera and the finer scale of the
feature maps the model adopts to process. From the visualization, we can see 1) the atten-
tion map helps the model avoid pooling across semantic segments; 2) the depth-adaptation
in the recurrent refinement loops gradually captures objects like the cars, we attribute this
to to the top-down signal from previous loops.
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Figure A.5: Visualization of the results on Stanford-2D-3D dataset. For six random images
from the validation set, we show the input panorama, ground-truth annotation, raw depth
map and the five-scale quantized depth map in the leftmost two columns. Then, we show the
segmentation prediction and the attention map using our unsupervised attentional mecha-
nism in the third column. In the rest three columns, we show the output of our depth-aware
adaptation within recurrent refinement, from loop-0 to loop-2. Note that the more yellowish
the color is, the further away the object is to camera and the finer scale of the feature maps
the model adopts to process. From the visualization, we can see 1) the attention map helps
the model avoid pooling across semantic segments; 2) the depth-adaptation in the recurrent
refinement loops fulfill coarse-to-fine processing as smaller receptive fields are used, due to
the top-down signal from previous loops.
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Appendix B

Appendix to Chapter 4

In the supplementary material, we first present in detail how to transform the (unpredictable)

global surface normals into (predictable) local normals in panoramic images. We then show

more ablation studies on the loss functions introduced in Chapter 4 and MultiPool module

with/without PAG unit. Finally, we provide more qualitative visualization of the results for

various pixel-labeling tasks, as well as the attentional ponder maps and MultiPool maps.

B.1 Local Surface Normal in Panoramas

Stanford-2D-3D [9] provides cylindrical panoramas with global surface normals, which are in

a global Earth-Centered-Earth-Fixed coordinate system (ECEF). For example, the normals

for a wall have the same direction pointing to the true north. However, such global coordinate

system is impossible to determine from a single image, and thus the global normals are

unpredictable purely based on panoramic image data alone. For this reason, we propose to

transform the global normals into “local normals” which are relative to the camera viewing

direction. We note that such a predictability makes relative normals more useful in scene

understanding and reconstruction.

For a cylindrical panorama, we assume the vertical axis of the panorama is aligned with the
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Figure B.1: An illustration of how to transform global normals into local normals specified
relative to the camera viewing direction. Global normals in Stanford-2D-3D dataset [9] are
in Earth-Centered-Earth-Fixed (ECEF) coordinate system.

global coordinate frame. Given a global normal at a pixel n = [x, y, z]T , we can apply a

rotation matrix R in the horizontal plane (x and y) to obtain its local normal [x′, y′, z]T in

the “camera viewing” coordinate system:


x′

y′

z

 =

R,0

0, 1



x

y

z

 (B.1)

where z is the variable for vertical direction.

We would like to determine the appropriate rotation matrices for all pixels where each pixel

has its own rotation matrix which is controlled by a single signed angle parameter θ. For a

cylindrical panorama, the relative difference in viewing direction between two image locations

is completely specified by their horizontal separation in image coordinates. Therefore, to

determine the set of rotations, we simply need to specify an origin for which the rotation

187



Figure B.2: We draw the color bands on global normal maps to indicate points of the wall
within these bands can be treated as canonical points, whose normals exactly face towards
the camera. For a human annotator, these points can be easily detected by looking at the
shape of the room. Our interface allows an annotator to click a point supposedly within
any one of the bands, and through the coordinate transform, such global normals can be
transformed into predictable, relative normals. The rightmost pie chart provides reference
on the local surface normal relative to the camera viewing direction.

is θ = 0, i.e., a canonical point whose surface normal points exactly to the camera. Given

the rotation matrix for the canonical point, the rotation angle for remaining points can be

calculated as 2π4W
W

, where W is the width of panorama and 4W is the offset from the

target pixel to the canonical pixel (with sign). Fig. B.1 illustrates the principle behind our

methodology.

We note that it is straightforward to identify canonical points manually by choosing a flat

vertical surface (e.g., a wall) and selecting the point on it which is nearest to the camera (e.g.

shape of panoramic topology). An automated method can be built with the same rule based

on semantic annotation and depth map. However, the automated method may suffer from

cluttered scene (e.g. boards and bookcase on the wall), yet such manual annotation enables

us to visualize what the local normals would look like if we clicked the “wrong” points∗. From

the three random panoramic images as shown in Fig. B.2, we can see such canonical points

lie in the color bands (manually drawn for demonstration) noted in the figure. They are

∗Clicking on the “wrong” points will leads to some normals pointing outwards the camera.
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easy to detect by eye based on the warping effect due to panoramic topology. We made an

easy-to-use tool to click a canonical point for each panoramic image. Fig. B.2 demonstrates

the resulting transformed normals after an annotator has clicked on some point in the color

band. We note that annotating each panoramic image costs less than 5 seconds, and it

required less than three hours to carefully annotate all 1,559 panoramas in the dataset. We

also compare the annotation when clicking on different canonical points (at different color

bands) for the same image, and the maximum difference of normals for all spatial locations

is only less than 8◦ degree. This means the annotation is easy and robust. We will release to

public all the transformed local surface normals as an extension to Stanford-2D-3D dataset,

as well as our interactive tool for annotation.

B.2 Further Analysis of Loss Functions and MultiPool Module

In this section, we describe further analysis on the architectural choices of where to insert

the MultiPool module, as well as new loss functions introduced in Chapter 4. We conduct

experiments on BSDS500 [7] and NYUv2 [74] datasets for boundary detection, depth and

surface normal estimation, to complement the analysis in Chapter 4.

B.2.1 Boundary Detection on BSDS500 Dataset

In Fig. B.3, we show the precision-recall curves for boundary detection on BSDS500 dataset [7].

First, Fig. B.3 (a) summarizes our ablation study on where to insert the MultiPool module

to obtain the largest performance gain. We observe that the best performance is achieved

when the MultiPool module is inserted at the fourth macro building block (Res4), i.e. the

second last macro block or the Resnet50 architecture. This supports our conclusion that

MultiPool inserted at the second last macro building block leads to the largest performance

gain.
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Figure B.3: Precision-Recall curves on boundary detection on BSDS500 dataset. (a) Ablation
study. (b) Comparison with state-of-the-art methods.

Moreover, based on the “MultiPool@Res4” model, we gradually insert PAG units for parsi-

monious inference, and decrease the hyper-parameter ρ which controls the sparsity degree

of binary masks (the sparser the masks are, the more parsimonious constraint is imposed).

In particular, note that ρ = 0.5 means ∼30% computation has been saved, at which point

our model achieves F = 0.773, only degrading by 2.4% performance. This shows that the

ResNet50 model has sufficient capacity for boundary detection, and more parsimonious con-

straint does not harm the performance too much. Perhaps due to this reason, the MultiPool

module does not improve performance remarkably for boundary detection.

Finally, by comparing to state-of-the-art methods as shown in Fig. B.3 (b), we note our

“MultiPool@Res4” model outperforms HED [358] which shares the same architecture but

without MultiPool module, and performs similarly with COB [232] which further exploits

auxiliary loss for oriented boundary detection. This validates that the PAG-based MultiPool

module improves performance by providing each pixel the “correct” size of pooling field.
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Table B.1: Ablation study of where to insert the MultiPool module to obtain the largest
performance gain for monocular depth estimation on NYUv2 dataset. All models are evalu-
ated over the standard split of NYUv2 dataset, with L2 loss only, and with softmax weighted
average in the MultiPool module. The performance is measured by standard threshold ac-

curacy, i.e. the percentage of predicted pixel depths di s.t. δ = max(di
d̂i
, d̂i
di

) < τ , where

τ = {1.25, 1.252, 1.253}.

metrics base. MP@Res3 MP@Res4 MP@Res5 MP@Res6 MP@Res3-4 MP@Res5-6

1.25 0.711 0.721 0.726 0.737 0.725 0.726 0.726
1.252 0.932 0.935 0.939 0.939 0.936 0.938 0.939
1.253 0.985 0.986 0.986 0.986 0.985 0.986 0.985

B.2.2 Monocular Depth Estimation on NYUv2 Dataset

We provide complementary ablation study on the task of monocular depth estimation on

NYUv2 dataset.

First, we study where to insert the MultiPool module to obtain the largest performance

gain. We train our base model using L2 loss function only, and insert the MultiPool module

(without PAG but the softmax weighted average operation) at each macro building block

one by one. We list the performance of these models in Table B.1. From the table, we

observe that no matter where to insert the MultiPool module, it consistently improves the

performance; while when MultiPool module is inserted at Res5, which is the second last

macro building block, we obtain the largest performance gain. These observations, along

with what reported in Chapter 4, support our conclusion that one is able to get the best

performance when inserting the MultiPool module at the second last macro building block

of a ResNet model.

B.2.3 Surface Normal Estimation on NYUv2 Dataset

Similar to the ablation study for monocular depth estimation task, we study firstly how the

proposed loss function improves performance, then where to insert the MultiPool module for

the best performance, and lastly performance comparison between PAG-based and weighted-
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Table B.2: Ablation study of at which layer to insert MultiPool module (with softmax
weighted average, w-Avg.) for surface normal estimation on NYUv2 dataset. Performance
is measured by mean angular error (ang. err.) and the portion of prediction error within
t◦ degree where t = {11.25, 22.50, 30.00}. Smaller ang. err. means better performance as
marked by ↓.

metrics base. MP@Res3 MP@Res4 MP@Res5 MP@Res6 MP@Res3-4 MP@Res3-5

ang. err.↓ 22.7170 21.9951 22.5506 21.9556 22.1661 22.5183 22.5051

11.25◦ 0.3382 0.3560 0.3366 0.3567 0.3514 0.3375 0.3389
22.50◦ 0.6195 0.6362 0.6188 0.6374 0.6323 0.6198 0.6209
30.00◦ 0.7383 0.7514 0.7386 0.7526 0.7482 0.7392 0.7394

Table B.3: Comparison of MultiPool module with PAG and softmax weighted average (w-
Avg.) over surface normal estimation on NYUv2 dataset. Performance is measured by
mean angular error (ang. err.) and the portion of prediction error within t◦ degree where
t = {11.25, 22.50, 30.00}. Smaller ang. err. means better performance as marked by ↓.

metrics MP@Res3 (w-Avg.) MP@Res3 (PAG) MP@Res5 (w-Avg.) MP@Res5 (PAG)
ang. err.↓ 21.9951 21.9793 21.9556 21.9226

11.25◦ 0.3560 0.3591 0.3567 0.3587
22.50◦ 0.6362 0.6396 0.6374 0.6384
30.00◦ 0.7514 0.7523 0.7526 0.7532

average MultiPool.

We then study where to insert the MultiPool module to get the best performance in Ta-

ble B.2. Note that, in this ablation study, we didn’t use PAG for binary masks, but instead

using weighted average based on softmax operator. Consistent to previous discovery, when

inserting MultiPool at the second last macro block, we achieve the best performance. In Ta-

ble B.3, we compare the results with PAG-based MultiPool and weighted-average MultiPool.

We conclude with consistent observation that PAG unit does not harm the performance com-

pared to the softmax weighted average fusion, but instead achieves better performance with

the same computation overhead, thanks to the perforated convolution.
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B.3 More Qualitative Visualization

In this section, we visualize more results of boundary detection, semantic segmentation,

monocular depth estimation and surface normal estimation, over the four datasets used

in Chapter 4, BSDS500 (Fig. B.4), NYUv2 (Fig. B.5), Stanford-2D-3D (Fig. B.6) and

Cityscapes (Fig. B.7). In the figures, we show the ponder map for each macro building

block, as well as the overall ponder map. From these ponder maps, we can see our model

learns to dynamically allocate computation at different spatial location, primarily expending

more computation on the regions/pixels which are regions with sharp changes, e.g. bound-

ary between semantic segments, regions between two depth layer, locations around normal

changes like between wall and ceiling. We also show all the binary maps produced by PAG

units in Fig. B.8 over a random image from Stanford2D3D dataset for semantic segmentation,

surface normal estimation and depth estimation.

In Fig. B.9, we visualize the learned binary masks by PerforatedCNN [84] on NYUv2 dataset

for semantic segmentation. We also accumulate all the binary masks towards the ponder

map, from which we can see that the active pixels largely follow uniform distribution. This

is different from what reported in [84] that the masks mainly highlight central region in

image classification, which is due to the fact that images for the classification task mainly

contain object in the central region; whereas for scene images, it is hard for PerforatedCNN

to focus on any specific location of the image. Note again that PerforatedCNN does not

support either dynamic pixel routing or fully convolutional computation, requiring that the

input image have a fixed size in order to learn fixed computation paths over the image. In

contrast, our method is fully convolutional that is able to take as input images of arbitrary

size and perform computing with input-dependent dynamic paths.
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Figure B.4: Visualization on BSDS500 dataset [7] of sparse binary attention maps at each
layer for boundary detection, together with the output and ponder map accumulating all
binary maps. PAG-based MultiPool module is inserted at layer Res4-2, which is not included
in the ponder map.
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Figure B.5: Visualization on NYUv2 dataset [74] for semantic segmentation, depth estima-
tion and surface normal estimation. Besides the overall ponder map, we also show the partial
ponder map for each macro residual block by summing the sparse binary attentional maps.
The MultiPool binary masks are not included in the ponder maps.

195



Figure B.6: Visualization on Stanford2D3D [9] for semantic segmentation, depth estimation
and surface normal estimation. Besides the overall ponder map, we also show the partial
ponder map for each macro residual block by summing the sparse binary attentional maps.
The MultiPool binary masks are not included in the ponder maps.
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Figure B.7: Visualization on Cityscapes dataset [57] for semantic segmentation and depth
estimation. Besides the overall ponder map, we also show the partial ponder map for each
macro residual block by summing the sparse binary attentional maps. The MultiPool binary
masks are not included in the ponder maps.

Figure B.8: Visualization on Stanford2D3D [9] for semantic segmentation, surface normal
estimation and depth estimation. Besides the overall ponder map (accumulated computa-
tion), we show all the binary maps produced by PAG, as well as the one in the MultiPool
module at layer 5-2.
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Figure B.9: Visualization on binary masks trained by PerforatedCNN [84] on NYUv2 dataset
for semantic segmentation. Note that we also insert a MultiPool module at Res5-2 block.
This makes it fair to compare between our method and PerforatedCNN. We also accumulate
all the binary masks towards the ponder map, from which we can see that the active pixels
largely follow uniform distribution. This is different from what reported in [84] that the
masks mainly highlight central region in image classification, which is due to the fact that
images for the classification task mainly contain object in the central region; whereas for
scene images, it is hard for PerforatedCNN to focus on any specific location of the image.
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Appendix C

Appendix to Chapter 5

We provide proofs for the propositions presented in Chapter 5 which provide some analytical

understanding of our proposed objective function, and the mechanism for subsequent pixel

grouping mechanism.

Proposition C.1. For n vectors {x1, . . . ,xn}, the total intra-pixel similarity is bounded as∑
i 6=j xTi xj ≥ −

∑n
i=1 ‖xi‖2

2. In particular, for n vectors on the hypersphere where ‖xi‖2 = 1,

we have
∑

i 6=j xTi xj ≥ −n.

Proof. First note that ‖x1 + · · ·+ xn‖2
2 ≥ 0. We expand the square and collect all the cross

terms so we have
∑

i x
T
i xi+

∑
i 6=j xTi xj ≥ 0. Therefore,

∑
i 6=j xTi xj ≥ −

∑n
i=1 ‖xi‖2

2. When all

the vectors are on the hyper-sphere, i.e. ‖xi‖2 = 1, then
∑

i 6=j xTi xj ≥ −
∑n

i=1 ‖xi‖2
2 = −n.

�

Proposition C.2. If n vectors {x1, . . . ,xn} are distributed on a 2-sphere (i.e. xi ∈ R3

with ‖xi‖2 = 1,∀i = 1 . . . n) then the similarity between any pair is lower-bounded by sij ≥

1−
(

2π√
3n

)
. Therefore, choosing the parameter α in the maximum margin term in objective

function to be less than 1−
(

2π√
3n

)
results in positive loss even for a perfect embedding of n

instances.

We treat all the n vectors as representatives of n different instances in the image and seek
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to minimize pairwise similarity, or equivalently maximize pairwise distance (referred to as

Tammes’s problem, or the hard-spheres problem [288]).

Proof. Let d = max
{xi}

min
i 6=j
‖xi − xj‖2 be the distance between the closest point pair of the

optimally distributed points. Asymptotic results in [106] show that, for some constant C > 0,

( 8π√
3n

) 1
2 − Cn−

2
3 ≤ d ≤

( 8π√
3n

) 1
2

(C.1)

Since ‖xi − xj‖2
2 = 2 − 2xTi xj, we can rewrite this bound in terms of the similarity sij =

1
2

(
1 +

xT
i xj

‖xi‖2‖xj‖2

)
, so that for any i 6= j:

1−
( 2π√

3N

)
≤ sij ≤ 1− 1

4

(( 8π√
3N

) 1
2 − CN−

2
3

)2

(C.2)

Therefore, choosing α ≤ 1 −
(

2π√
3N

)
, guarantees that [sij − α]+ ≥ 0 for some pair i 6= j.

Choosing α > 1 − 1
4

((
8π√
3N

) 1
2 − CN− 2

3

)2

, guarantees the existence of an embedding with

[sij − α]+ = 0. �

C.1 Details of Recurrent Mean Shift Grouping

There are two commonly used multivariate kernels in mean shift algorithm. The first,

Epanechnikov kernel [76, 49], has the following profile

KE(x) =


1
2
c−1
d (d+ 2)(1− ‖x‖2

2), if ‖x‖2 ≤ 1

0, otherwise

(C.3)
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Figure C.1: Distribution of calibrated cosine similarity between pairs of pixels. After 10
iterations of mean-shift grouping. Margin is 0.5 for negative pairs. From the figures, we
believe that the mean shift grouping mechanism forces learning to focus on those pixel pairs
that will not be corrected by mean shift grouping itself if running offline, and thus pushing
down to parameters in the the deep neural network to learn how to correct them during
training.

where cd is the volume of the unit d-dimensional sphere. The standard mean-shift algorithm

computes the gradient of the kernel density estimate given by

p(x) =
1

N

N∑
i=1

KE(
x− xi
b

)

and identifies modes (local maxima) where ∇p(x) = 0. The scale parameter b is known as

the kernel bandwidth and determines the smoothness of the estimator. The gradient of p(x)

can be elegantly computed as the difference between x and the mean of all data points with

‖x− xi‖ ≤ b, hence the name “mean-shift” for performing gradient ascent.

Since the Epanechnikov profile is not differentiable at the boundary, we use the squared

exponential kernel adapted to vectors on the sphere:

K(x,xi) ∝ exp(δ2xTxi) (C.4)

which can be viewed as a natural extension of the Gaussian to spherical data (known as

the von Mises Fisher (vMF) distribution [85, 16, 233, 159]). In our experiments we set the
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bandwidth δ based on the margin α so that 1
δ

= 1−α
3

.

Our proposed algorithm also differs from the standard mean-shift clustering (i.e., [55]) in

that rather than performing gradient ascent on a fixed kernel density estimate p(x), at every

iteration we alternate between updating the embedding vectors {xi} using gradient ascent

on p(x) and re-estimating the density p(x) for the updated vectors. This approach is termed

Gaussian Blurring Mean Shift (GBMS) in [39] and has converge rate guarantees for data

which starts in compact clusters.

In Chapter 5 we visualized embedding vectors after GBMS for specific examples. Figure C.1

shows aggregate statistics over a collection of images (in the experiment of instance seg-

mentation). We plot the distribution of pairwise similarities for positive and negative pairs

during forward propagation through 10 iterations. We can observe that the mean shift mod-

ule produces sharper distributions, driving the similarity between positive pairs to 1 making

it trivial to identify instances.

C.1.1 Gradient Calculation for Recurrent Mean Shift

To backpropagate gradients through an iteration of GBMS, we break the calculation into

a sequence of steps below where we assume the vectors in the data matrix X have already
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been normalized to unit length.

S =XTX

K = exp(δ2S) ,

d =KT1

q =d−1

P = (1− η)I + ηKdiag(q)

Y =XP

(C.5)

where Y is the updated data after one iteration which is subsequently renormalized to

project back onto the sphere. Let ` denote the loss and � denote element-wise product.
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Backpropagation gradients are then given by:

∂`

∂X
= 2X

∂`

∂S

∂`

∂S
= δ2 exp(δ2S)� ∂`

∂K
∂`

∂δ
= 2δ

∑
ij

(
(sij)� exp(δ2sij)�

∂`

∂kij

)
∂`

∂K
= 1

( ∂`
∂d

)T
∂`

∂d
=
∂`

∂q
� (−d−2)

∂`

∂K
= η
( ∂`
∂P

)
(q1T )

∂`

∂q
= η
( ∂`
∂P

)T
K1

∂`

∂X
=

∂`

∂Y
PT

∂`

∂P
= XT ∂`

∂Y

(C.6)

C.1.2 Toy Example of Mean Shift Backpropagation

In Chapter 5 we show examples of the gradient vectors backpropagated through recurrent

mean shift to the initial embedding space. Backpropagation through this fixed model modu-

lates the loss on the learned embedding, increasing the gradient for initial embedding vectors

whose instance membership is ambiguous and decreasing the gradient for embedding vectors

that will be correctly resolved by the recurrent grouping phase.

Figure C.2 shows a toy example highlighting the difference between supervised and un-

supervised clustering. We generate a set of 1-D data points drawn from three Gaussian

distributions with mean and standard deviation as (µ = 3, σ = 0.2), (µ = 4, σ = 0.3) and

(µ = 5, σ = 0.1), respectively, as shown in Figure C.2 (a). We use mean squared error for
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the loss with a fixed linear regressor yi = 0.5 ∗ xi − 0.5 and fixed target labels. The optimal

embedding would set xi = 3 if yi = 1, and xi = 5 if yi = 2. We perform 30 gradient updates

of the embedding vectors xi ← xi−α∇xi` with a step size α as 0.1. We analyze the behavior

of Gaussian Blurring Mean Shift (GBMS) with bandwidth as 0.2.

If running GBMS for unsupervised clustering on these data with the default setting (band-

width is 0.2), we can see they are grouped into three piles, as shown in Figure C.2 (b). If

updating the data using gradient descent without GBMS inserted, we end up with three

visible clusters even though the data move towards the ideal embedding in terms of classifi-

cation. Figure C.2 (c) and (d) depict the trajectories of 100 random data points during the

30 updates and the final result, respectively.

Now we insert the GBMS module to update these data with different loops, and compare

how this effects the performance. We show the updated data distributions and those after

five loops of GBMS grouping in column (e) and (f) of Figure C.2, respectively. We notice

that, with GBMS, all the data are grouped into two clusters; while with GBMS grouping

they become more compact and are located exactly on the “ideal spot” for mapping into

label space (i.e. 3 and 5) and achieving zero loss. On the other hand, we also observe

that, even though these settings incorporates different number of GBMS loops, they achieve

similar visual results in terms of clustering the data. To dive into the subtle difference, we

randomly select 100 data and depict their trajectories in column (g) and (h) of Figure C.2,

using a single loss on top of the last GBMS loop or multiple losses over every GBMS loops,

respectively. We have the following observations:

1. By comparing with Figure C.2 (c), which depicts update trajectories without GBMS,

GBMS module provides larger gradient to update those data further from their “ideal

spot” under both scenarios.

2. From (g), we can see the final data are not updated into tight groups. This is because
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that the updating mechanism only sees data after (some loops of) GBMS, and knows

that these data will be clustered into tight groups through GBMS.

3. A single loss with more loops of GBMS provides greater gradient than that with fewer

loops to update data, as seen in (g).

4. With more losses over every loops of GBMS, the gradients become even larger that the

data are grouped more tightly and more quickly. This is because that the updating

mechanism also incorporates the gradients from the loss over the original data, along

with those through these loops of GBMS.

To summarize, our GBMS based recurrent grouping module indeed provides meaningful gra-

dient during training with back-propagation. With the convergent dynamics of GBMS, our

grouping module becomes especially more powerful in learning to group data with suitable

supervision.

C.2 Additional Boundary Detection Results

We show additional boundary detection results on BSDS500 dataset [7] based on our model

in Figure C.4, C.5, C.6 and C.7. Specifically, besides showing the boundary detection result,

we also show 3-dimensional pixel embeddings as RGB images before and after fine-tuning

using logistic loss. From the consistent colors, we can see (1) our model essentially carries

out binary classification even using the pixel pair embedding loss; (2) after fine-tuning with

logistic loss, our model captures also boundary orientation and signed distance to the bound-

ary. Figure C.3 highlights this observation for an example image containing round objects.

By zooming in one plate, we can observe a “colorful Mobius ring”, indicating the embedding

features for the boundary also capture boundary orientation and the signed distance to the

boundary.
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C.3 Additional Results on Instance-Level Semantic Segmentation

We show more instance-level semantic segmentation results on PASCAL VOC 2012 dataset [77]

based on our model in Figure C.8, C.9 and C.10. As we learn 64-dimensional embedding

(hyper-sphere) space, to visualize the results, we randomly generate three matrices to project

the embeddings to 3-dimension vectors to be treated as RGB images. Besides showing the

randomly projected embedding results, we also visualize the semantic segmentation results

used to product instance-level segmentation. From these figures, we observe the embedding

for background pixels are consistent, as the backgrounds have almost the same color. More-

over, we can see the embeddings (e.g. in Figure C.8, the horses in row-7 and row-13, and

the motorbike in row-14) are able to connect the disconnected regions belonging to the same

instance. Dealing with disconnected regions of one instance is an unsolved problem for many

methods, e.g. [12, 157], yet our approach has no problem with this situation.
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Figure C.2: Trajectory of updating data using back-propagation without mean shift module
(top row), and with the Gaussian Blurring Mean Shift (GBMS). To compare the results, we
vary the number of GBMS loops in the grouping module, and use either a single loss at the
final GBMS loop or multiple losses on all GBMS loops. All the configurations can shift data
towards the “ideal spots” (3 or 5 depending on the label) in terms of the fixed regressor.
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Figure C.3: An image highlighting the structure of the embedding for an image with circular
boundaries. We observe a “Mobius effect” where the embedding encodes both the orientation
and distance to the boundary.
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Figure C.4: Visualization for boundary detection (part-1/5). Images are randomly selected
from BSDS500 test set. For each image, we show the embedding vectors at different layers
from the model before and after fine-tuning using logistic loss. We can see that the boundary
embedding vectors after fine-tuning not only highlights the boundary pixels, but also captures
to some extent the edge orientation and distance from the colors conveyed.
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Figure C.5: Visualization for boundary detection (3/5). Images are randomly selected from
BSDS500 test set. For each image, we show the embedding vectors at different layers from
the model before and after fine-tuning using logistic loss. We can see that the boundary
embedding vectors after fine-tuning not only highlights the boundary pixels, but also captures
to some extent the edge orientation and distance from the colors conveyed.
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Figure C.6: Visualization for boundary detection (4/5). Images are randomly selected from
BSDS500 test set. For each image, we show the embedding vectors at different layers from
the model before and after fine-tuning using logistic loss. We can see that the boundary
embedding vectors after fine-tuning not only highlights the boundary pixels, but also captures
to some extent the edge orientation and distance from the colors conveyed.
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Figure C.7: Visualization for boundary detection (5/5). Images are randomly selected from
BSDS500 test set. For each image, we show the embedding vectors at different layers from
the model before and after fine-tuning using logistic loss. We can see that the boundary
embedding vectors after fine-tuning not only highlights the boundary pixels, but also captures
to some extent the edge orientation and distance from the colors conveyed.
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Figure C.8: Visualization of generic and instance-level semantic segmentation with random
projection of the embedding vectors (part-1/3).
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Figure C.9: Visualization of generic and instance-level semantic segmentation with random
projection of the embedding vectors (part-2/3).
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Figure C.10: Visualization of generic and instance-level semantic segmentation with random
projection of the embedding vectors (part-3/3).
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Appendix D

Appendix to Chapter 6

In the supplementary material, we first show more visualizations to understand the predicted

filter flows, then show if it is possible to refine the results by iteratively feeding deblurred

image to the same model for the task of non-uniform motion blur removal. We finally present

more qualitative results for all the three tasks studied in Chapter 6.

D.1 Visualization of Per-Pixel Loading Factors

As a supplementary visualization to the principal components by PCA shown in Chapter 6,

we can also visualize the per-pixel loading factors corresponding to each principal compo-

nent. We run PCA over testing set and show the first six principal components and the

corresponding per-pixel loading factors as a heatmap in Figure D.1. With this visualiza-

tion technique, we can know what region has higher response to which component kernels.

Moreover, given that the first ten principal components capture ≥ 99% filter energy (stated

in Chapter 6), we expect future work to predict compact per-pixel filters using low-rank

technique, which allows for incorporating long-range pixels through large predictive filters

while with compact features (thus memory consumption is reduced largely).
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Table D.1: Comparison on motion blur removal over the non-uniform motion blur
dataset [11]. PFF+1 means we perform PFF one more time by taking as input the de-
blurred image by the same model.

Moderate Blur

metric [360] [310] [11] CNN PFF PFF+1
PSNR 22.88 24.14 24.87 24.29 25.18 25.07
SSIM 0.68 0.714 0.743 0.708 0.767 0.761

Large Blur

metric [360] [310] [11] CNN PFF PFF+1
PSNR 20.47 20.84 22.01 20.87 22.12 22.00
SSIM 0.54 0.56 0.624 0.539 0.617 0.624

D.2 Iteratively Removing Motion Blur

As the deblurred images are still not perfect, we are interested in studying if we can improve

performance by iteratively running the model, i.e., feeding the deblurred image as input to

the same model one more time to get the result. We denote this method as PFF+1. Not much

surprisingly, we do not observe further improvement as listed in Figure D.1, instead, such a

practice even hurts performance slightly. The qualitative results are shown in Figure D.2,

from which we can see the second run does not generate much change through the filter

flow maps. We believe the reason is that, the deblurred images have different statistics

from the original blurry input, and the model is not trained with such deblurred images.

Therefore, it suggests two natural directions as future work for improving the results, 1)

training explicitly with recurrent loops with multiple losses to improve the performance,

similar to [20, 202, 284, 167], or 2) simultaneously inserting an adversarial loss to force the

model to hallucinate details for realistic output, which can be useful in practice as done

in [194].
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D.3 More Qualitative Results

In Figure D.3, D.4 and D.5, we show more qualitative results for non-uniform motion blur re-

moval, JPEG compression artifact reduction and single image super-resolution, respectively.

From these comparisons and with the guide of filter flow maps, we can see at what regions

our PFF pays attention to and how it outperforms the other methods.
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Figure D.1: We show the original image, low-quality input and the high-quality output by
our model as well as the mean kernel and filter flow maps on the left panel, and the first six
principal components and the corresponding loading factors as heatmap on the right panel.
Best seen in color and zoom-in.
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Figure D.2: We show deblurring results over some random testing images from the dataset
released by [11]. We first feed the blurry images to PFF model, and obtain deblurred images;
then we feed such deblurred images into the same PFF model again to see if this iterative
practice refines the output. However, through the visualization that iteratively running the
model changes very little as seen from the second filter flow maps. This helps qualitatively
explain why iteratively running the model does not improve deblurring performance further.
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Figure D.3: Visual comparison of our method (PFF ) to CNN [Sun, et al.] [310] and patch-
optim [Bahat, et al.] [11] on more testing images released by [11]. Please be guided with
the strong edges in the filter flow maps to compare visual details in the deblurred images by
different methods. The last four rows show real-world blurry images without “ground-truth”
blur. Note that for the last image, there is very large blur caused by the motion of football
players. As our model is not trained on larger kernels which should be able to cover the size
of blur, it does not perform as well as patch-optim [Bahat, et al.] [11]. But it is clear that
our model generates sharp edges in this task. Best view in color and zoom-in.
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Figure D.4: Visual comparison between CNN and our method (PFF ) for JPEG compression
artifact reduction. Here we compress the original images using JPEG method with quality
factor (QF) as 10. Best view in color and zoom-in.
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Figure D.5: Visual comparison between CNN and our method (PFF ) for single image super-
resolution. Here all images are super-resolved by 4× larger. We show in the first column the
results by bicubic interpolation. Best view in color and zoom-in.
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Appendix E

Appendix to Chapter 7

E.1 Appendix

In the appendix, we first show all intermediate results of multigrid Predictive Filter Flow

(mgPFF) from multi-resolution inputs, to have an idea how these outputs look like in terms

of frame reconstruction. Then, we plot the graph visualization of our model architecture with

detailed design of the two stream architecture. Furthermore, we visualize pixel embedding

generated by our architecture to understand what the model learns. Finally, along this

document, we provide some demo videos of the object segmentation/tracking results with

different setup.

E.2 Intermediate Reconstruction by mgPFF

As our mgPFF performs progressively from coarse to fine, it produces the predicted filter

flows and reconstruction frames at each resolution scale. We visualize all the intermediate

results in Fig. E.1. We also accumulate the filter flow maps at all scales and convert it into

the coordinate flow, which can be thought as optical flow. We use this coordinate flow to

warp masks for propagating the track results in our experiments. Please pay attention to

how mgPFF achieves excellent reconstruction results from coarse to fine, like resolving the
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aliasing and block effects, refining reconstruction at finer scales, etc.

E.3 Graph Visualization of mgPFF architecture

In Fig. E.2, we plot the architecture of our model using the HiddenLayer toolbox [2]. As

the visualization is too “long” to display, we chop it into four parts. We modify the

ResNet18 [115] by removing res4 and res5 (the top 9 residual blocks, and reducing the

unique channel size from [64, 128, 256, 512] to [32, 64, 128, 196]. The two macro towers take

the two frames, respectively; in each tower, there are two streams, one is of U-shape [285]

with pooling and upsampling layers to increase the receptive fields, the other is full-resolution

yet shallow in channel depth. The two-stream architecture is popular in multiple domain

learning [303], but we note that such design on a single domain was first used in [269] which

is more computationally expensive that the two streams talk to each other along the whole

network flow; whereas ours is cheaper that they only talk at the top layer. Our mgPFF

is very compact that the overall model size is only 4.6MB; it also performs fast that the

wall-clock time for processing a pair of 256x256 frames is 0.1 seconds.

As we did not search over architecture design in our work, tt is worth exploring other

sophisticated modules to make it more compact for deploying in mobile devices, e.g., using

meta-learning for architecture search [392].

E.4 Pixel Embedding in mgPFF

As our model produces per-image pixel embeddings [249, 166] (the output before “concate-

nation layer” as shown in the architecture Fig. E.2), we are interested in visualizing the pixel

embeddings to see what the model learns. To visualize the pixel embeddings, we use PCA

to project the embedding feature map H×W×D at each resolution/grid into an H×W×3

226



array, and visualize the projection as an RGB image. We also concatenate the embedding

maps at all the resolutions/grids for visualization (with necessary nearest neighbor upsam-

pling). Fig. E.3 lists these visualizations, from which we can see the embedding colors largely

come from the original RGB intensities. We conjecture this is due to two reasons. First,

we use a simplistic photometric loss on the RGB values, this explains why the visualization

colors group the pixels which have similar RGB values in local neighborhood. Second, our

mgPFF by nature is based on low-level vision, i.e., flow field, and in such a way it does not

necessarily depend on mid/high-level understanding of the frames. Therefore, part/instance

grouping does not appear in the embedding visualization, which is shown in mid-level meth-

ods [333, 339]. This suggests further exploration of using other losses and combining other

mid/high-level cues to force the model to learn more abstract features.

E.5 Video Demos

The attached videos demonstrate how mgPFF performs with different setup∗. Note how

it improves performance with different setup in terms of dealing with occlusion and large

displacement.

Among the videos, it is worth noting how far the model can go with tracking correctly.

As we adopt the multigrid computing strategy, the filter of size 11x11 on the coarsest grid

(16x downsample) implies the largest displacement we can represent is D=88. If we simply

warp from the first frame to the tth frame, it only works well when the total displacement is

less that D. This can be seen from video soccerball, K=1, frame-[1] as an example. When

the soccerball moves further than D from its initial location at the first frame, the model

suddenly fails in tracking that the mask is no longer correctly warped. We show the relevant

frames in Fig. E.4. It is clear that not only the tracking is missing, but also the filter flow

∗Here is a Youtube list
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changes abruptly and the reconstruction becomes very different. It turns out that in the

reconstruction, the soccerball’s color is from the grass and tree trunk.

Here is the list of videos with brief description:

1. soccerball, K=3, frame-[1, t− 2, t− 1]: this video shows the results on soccerball from

DAVIS dataset when we feed the first frame-1 and two previous frame (t−2 and

t − 1) to predict the filter flow, warp frame and track the object at current frame-t.

(video url https://youtu.be/M49nLtT1UmY).

2. soccerball, K=3, frame-[t− 3, t− 2, t− 1]: this video shows the results on soccerball

from DAVIS dataset when we feed the previous three frames (t−3, t−2 and t−1)

to predict the filter flow, warp frame and track the object at current frame-t (video url

https://youtu.be/q_FNk-3lh3g).

3. soccerball, K=2, frame-[1, t− 1], this video shows the results on soccerball from DAVIS

dataset when we feed the first frame-1 and one previous frame-(t − 1) to pre-

dict the filter flow, warp frame and track the object. (video url https://youtu.be/

u6IdVS2L7-M).

4. soccerball, K=1, frame-[1], this video shows the results on soccerball from DAVIS

dataset when we feed the first frame only at which the mask is given to pre-

dict the filter flow, warp frame and track the object. (video url https://youtu.

be/vsXZgdR4XEY)

5. soccerball, K=1, frame-[t− 1], this video shows the results on soccerball from DAVIS

dataset when we feed the the previous frame-(t − 1) to predict the filter flow,

warp frame and track the object at current frame-t. (video url https://youtu.be/

8AZ9wPF15QE)
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6. dog, K=3, frame-[1, t− 2, t− 1]: this video shows the results on dog from DAVIS

dataset when we feed the first frame-1 and two previous frame (t− 2 and t− 1)

to predict the filter flow, warp frame and track the object at current frame-t. (video

url https://youtu.be/seg5tFSMFX8).

7. dog, K=3, frame-[t− 3, t− 2, t− 1]: this video shows the results on dog from DAVIS

dataset when we feed the previous three frames (t− 3, t− 2 and t− 1) to predict

the filter flow, warp frame and track the object at current frame-t (video url https:

//youtu.be/BqM4-OctYwA).

8. dog, K=2, frame-[1, t− 1], this video shows the results on dog from DAVIS dataset

when we feed the first frame-1 and one previous frame-(t−1) to predict the filter

flow, warp frame and track the object. (video url https://youtu.be/dOao8qQMsv0).

9. dog, K=1, frame-[1], this video shows the results on dog from DAVIS dataset when we

feed the first frame only at which the mask is given to predict the filter flow, warp

frame and track the object. (video url https://youtu.be/xNMuMlcvfJY)

10. dog, K=1, frame-[t− 1], this video shows the results on dog from DAVIS dataset when

we feed the the previous frame-(t − 1) to predict the filter flow, warp frame and

track the object at current frame-t. (video url https://youtu.be/Yu5amZf1KEc)
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Figure E.1: Visualization of intermediate results at each resolution scale (grid).
Top: we show the predicted filter flows and the reconstruction results from warping A to B,
or B to A. Note how mgPFF resolves the aliasing effect reflected by the blocks in the re-
construction images. Bottom: we accumulate all the filter flows (with necessary upsampling
using nearest neighbor interpolation), and transform into a coordinate flow which can be
thought as optical flow. Then we use the overall flow to warp from one frame to the other.
This introduces some artifacts due to information loss, but the reconstruction appears good
generally, e.g., capturing the bird wings’ movement. In our experiment of tracking, we use
the coordinate flow in the same way to warp the given masks (or the predicted mask at
previous frames) to propagate the track results.
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Figure E.2: Graph visualization of mgPFF architecture using HiddenLayer toolbox [2]. Zoom in
to see clearly.

231



Figure E.3: Visualization of learned pixel embedding: We use PCA to project the pixel
embedding (3D array of size H×W×D) into H×W×3, and visualize it as an RGB image.
Individual embedding map has D = 16 in channel dimension. We also concatenate the pixel
embeddings of all resolutions and apply PCA, in which case D = 16 ∗ 5 = 80. From the
visualization, we can see that the visualization colors largely come from the RGB intensities.
This is largely due to two reasons: 1) the photometric loss we are using during training is
based on RGB intensities, 2) our mgPFF by nature is based on low-level vision that it does
not need understanding of mid/high-level perspective of the frames.
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Figure E.4: How far the model can track the object correctly? As we adopt the multigrid
computing strategy, the filter of size 11x11 on the coarsest grid (16x downsample) implies
the largest displacement we can represent is D=88. If the object moves further than D
from its last location, the model fails in tracking it. This happens at frame-10, in which
we can see that not only the tracking is missing, but also the filter flow changes abruptly
and the reconstruction becomes very different. It turns out that in the reconstruction, the
soccerball’s color is from the grass and tree trunk.

233


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Pixel-Level Prediction and Applications
	Learning based Method for Pixel-Level Prediction
	Model architecture
	Learning protocols

	Data and supervision
	Data Acquisition Dilemma and Solutions

	Contributions
	Thesis Organization

	Learning for Pixel-level Prediction
	Learning with Unified Framework
	Example Problems with Loss Function for Training
	Experimental Result
	Datasets
	Results
	Comprehensive Benchmark Comparison
	Qualitative Visualization


	Depth-aware Gating for Contextual Pooling
	Background
	Related work
	Depth-aware Gating Module
	Recurrent Refinement Module
	Implementation
	Experiments
	Datasets and Benchmarks
	Depth Prediction
	Semantic Segmentation
	Analysis of Gating Architectures Alternatives
	Qualitative Results

	Conclusion and Discussion

	Pixel-wise Attentional Gating for Dynamic Computation
	Background
	Related Work on Dynamic and Spatially Varying Computation
	Pixel-wise Attentional Gating
	Plug-in PAG inside a Residual Block
	Learning Discrete Attention Maps
	Dynamic Per-Pixel Computation Routing
	Dynamic Spatial Pooling

	Implementation and Training
	Experiments
	Analysis of Pixel-wise Attentional Gating
	Comprehensive Benchmark Comparison
	Qualitative Visualization

	Conclusion and Future Work

	Pixel Embedding for Instance Grouping
	Background
	Related Work
	Pairwise Loss for Pixel Embeddings
	Instance-aware Pixel Weighting
	Margin Selection

	Recurrent Mean-Shift Grouping
	Mean Shift Clustering
	End-to-end training

	Experiments
	Tasks, Datasets and Implementation
	Boundary Detection
	Object Proposal Detection
	Semantic Instance Detection

	Conclusion and Future Work

	Image Reconstruction with Simulated Data
	Background
	Related Work
	Predictive Filter Flow
	Learning to predict filter flow
	Model Architecture and Training

	Experiments
	Datasets and Metrics
	Non-Uniform Motion Blur Removal
	JPEG Compression Artifact Reduction
	Single Image Super-Resolution

	Visualization and Analysis
	Conclusion and Future Work

	Self-Supervised Learning with Videos
	Background
	Related Work
	Multigrid PFF
	Predictive Filter Flow (PFF) on Video
	Predictive Filter Flow (PFF) vs. Optical Flow
	Multigrid PFF
	Constraints, Regularization and Loss
	Architecture and Implementation

	Experiments
	Experimental Setup
	Video Object Segmentation and Tracking
	Long-Range Frame Reconstruction
	Interactive Photo Editing

	Conclusion

	Concluding Remarks
	Summary and Contributions
	Suggestions and Future Research

	Bibliography
	Appendix to Chapter 3
	 Results on the SUN-RGBD dataset
	 Visualization on Large Perspective Images

	Appendix to Chapter 4
	Local Surface Normal in Panoramas
	Further Analysis of Loss Functions and MultiPool Module
	Boundary Detection on BSDS500 Dataset
	Monocular Depth Estimation on NYUv2 Dataset
	Surface Normal Estimation on NYUv2 Dataset

	More Qualitative Visualization

	Appendix to Chapter 5
	Details of Recurrent Mean Shift Grouping 
	Gradient Calculation for Recurrent Mean Shift
	Toy Example of Mean Shift Backpropagation

	Additional Boundary Detection Results
	Additional Results on Instance-Level Semantic Segmentation

	Appendix to Chapter 6
	Visualization of Per-Pixel Loading Factors
	Iteratively Removing Motion Blur 
	More Qualitative Results

	Appendix to Chapter 7
	Appendix
	Intermediate Reconstruction by mgPFF
	Graph Visualization of mgPFF architecture
	Pixel Embedding in mgPFF 
	Video Demos




