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EPIGRAPH

The key to artificial intelligence

has always been the representation..

— Jeff Hawkins
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The COVID-19 pandemic has overwhelmed health care systems around the world as a

very serious pulmonary ailment that often leads to coughing. Cough sounds contain underutilized

pulmonary health information that can be analyzed. Using signal analysis methods for audio,

this paper explores the analysis and classification of cough sounds and audio samples from

individuals diagnosed with COVID-19. Using features extracted through signal analysis, a

classifier is developed to evaluate whether an audio sample is likely to have a COVID-19

symptoms. This can potentially be used for remote and early diagnostic efforts to help the world

initiatives tackling this pandemic.
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Chapter 1

Introduction

1.1 COVID-19

COVID-19 is an infectious disease caused by severe acute respiratory syndrome coron-

avirus that starts by infecting the mucous membranes in the throat and moves down the respiratory

tract leading to the lungs, with coughing being a common symptom. Cough sounds contain

underutilized pulmonary health information that can be analyzed. This research focuses on the

auditory effects symptoms of COVID-19 can have on individuals in which the changes can be

detected through analysis of audio recordings of an individual’s coughs and speech. COVID-19

is known to result in a dry cough in 67% of cases and result in phlegm production in 33% of

cases. Detection for these can be learned using machine learning methodologies trained on cough

and speech samples from healthy and sick individuals.

Researchers have hypothesized that analysing the characteristic of a cough’s sound can

have significant value in prognosis as it can indicate the progress of a disease or the effectiveness

of a treatment. Coughs are rapid forced exhalation maneuver that have rich temporal and spectral

representations, varying across different diseases. Coughing is a known symptom in over a 100

diseases and are a direct result of pathophysiological changes due to the disease. As Korpas et al.

[8] show in Figure 1.1 the signature of the cough sounds vary by disease due to the structural

nature of the the tissue and the behavior of the glottis, where the glottis would be affected by the

pathological conditions of the disease, that would lead to certain patterns in the cough sound.
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Based on this motivation, cough sounds and other vocal samples such as ”ahhh” and ”eeee”

audio samples from people diagnosed with COVID-19 were evaluated.

Figure 1.1. Variations of sound recordings of cough sounds from individuals diagnosed with
different conditions, from Korpas et al. [8]

As of May 7th, 2020, over 75,000 deaths in the United States alone have been attributed

to COVID-19 with over 1.2 million confirmed cases across the nation. Through conversations

with medical doctors and certified pulmonologists, it appears that machine-based voice diagnosis

technologies are not an accepted technology in the medical field and may be an overlooked tool

in the continued effort to combat COVID-19.

1.2 Current Medical Testing

As COVID-19 is a pulmonary ailment, with coughing and shortness of breath among

some of its symptoms, it stands to reason that signal analysis of cough sounds from individuals

positively diagnosed with the diseases can lead to the discovery of linear and non-linear features

unique to COVID-19. By combining these analysis with machine learning approaches, a classifier

can be built to help automatically diagnose individuals by analyzing audio samples they provide.

This is done with the hopes that it can grow to be a tool for medical professionals in the field that
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are overworked with limited resources.

Based on consultations from MD’s working in testing centers, the current standard diag-

nosis method for COVID-19 is using a nasopharyngeal swab and performing a PCR molecular

analysis on it to look for COVID-19 markers. It takes between 48 hours to a week to receive

and communicate the results to the individual undergoing the diagnosis. Furthermore, the

nasopharyngeal swab test is known to have a 30% false negative rate while also putting the

doctor conducting the test at risk of contracting the disease. The US is currently estimated to

need to double its current rate of testing at around 1.5 million tests per week, a task that seems

unreachable in the immediate future with the shortage of testing equipment.

1.3 Overview

This thesis will begin with an overlook on initiatives that collected the data needed for

this study and the characteristics of the data collected, then introduce the various signal analysis

techniques used in this study and showcase its immediate results on data. We will than continue

by introducing machine learning classification algorithm for our needs in chapter four. We will

finish with an analysis and discussion of the results of the overall classification algorithm using

the signal processing technique listed.

1.4 Previous Works

Numerous research has been conducted over the past few decades to evaluate whether it

is possible to classify various attributes of coughs such as whether the cough is wet/dry or the

intensity of the cough, through audio analysis of the coughs. Various diseases such as Asthma,

Tuberculosis, Bronchitis, among others, can have very prominent effects on the pulmonary

system and have been shown to be identifiable through signal processing analysis of the sounds

of coughs. Korpas et al. [8] compared cough sounds recorded in a clinical setting with the results

of spirometry tests, a common test used to assess asses a patient’s lungs by measuring how

3



Figure 1.2. Variations of coughs from patients with different pulmonary ailments from Abeyratne
et al.[15]

much air is inhale, is exhaled and how quickly is exhaled. Korpas performed signal processing

operations on the coughs sounds, inspecting the time domain waveforms and frequency domain

periodograms, and concluded that the cough sounds contain separate pieces of information from

the spirometry tests. Even more so, Korpas showed that some drugs administered, specifically a

bronchodilating drug, to patients would alter the spirometry results but leave the cough sound

analysis relatively unchanged.

Abeyratne et al. [15] analyzed and visualized the differences in pneumonia coughs,

asthma coughs, and bronchitis coughs as shown in figure 1.2. Abeyratne et al. used a combination

of time-series statistics, formant-frequency tracking and general temporal-spectral energy-based

features to build a logistic regression model to classify coughs as pneumonia or non-pneumonia.

Their model was able to achieve a sensitivity of 94% and specificity of 75% based on parameters

extracted from the cough sounds alone through non-contact microphones.

In evaluating cough sounds, a part of the challenge of this problem is the lack of agreement

4



between professionals as properties of coughs are not well defined. In a study conducted by

Swarnkar et al. [17] two domain experts were asked to score coughs as wet or dry, the two

experts only agreed on 80% of their cough scores. Note that the accepted approach in research is

to ignore the samples in which the annotators are in disagreement and only evaluate the samples

in which they are in agreement. Swarnkar et al. use a variety of signal processing methods

to look at the cough sounds including analyzing the spectral energy, temporal envelope, and

time-independent waveform statistics such as kurtosis. The authors classified wet and dry coughs

using a Logistic Regression Model and were able to reach a recall of 55% and specificity of 93%

when trained on 536 samples.

A study by Al-khassaweneh and Abdelrahman [1] showed that coughs from asthmatic

patients have different energy signature than coughs from non-asthmatic patients. The authors

used Wigner Distribution functions and Wavelet Packet Transforms to analyze the time-frequency

energy distributions of cough sounds from asthmatic patients and non-asthmatic patients. Their

analysis showed that the coughs from asthmatic patients had a measurably higher energy signa-

tures, especially in the low frequency bins, than the coughs from the non-asthmatic patients.

A summary of the results of various cough classification works is presented in figure 1.1.

Note that in hte table KNN stands for K-nearest neighbors and LRM stands for Logistic regression

model. As COVID-19 is known to cause both wet/dry coughs and lead to many cases that are

asymptomatic, this research will consider multiple methods including Higher order statistics

rather than some of those previously researched methods. For example, spectral and temporal

thresholding explored by Chatrzarrin [7] will likely not be robust enough to detect COVID-19

coughs. Through a body of works [4] it has been shown that speech and vocal audio have

non-linear properties. It was explored in the context of speech synthesis, in which purely linear

methods produced intelligible results but were lacking ”naturalness” in their results [2]; where

”naturalness” in this context relates to the human-like quality of speech rather than robot-like

qualities that are clearly not from a human source. In this research we will be extending the

non-linear perspective in analyzing the naturalness of voice to cough sound sample.

5



Table 1.1. Previous cough classification works showing the classification task, results, partially
or fully automatic, number of coughs in the dataset, and the methods employed.

Cough Classification Works
Publication Task Results Auto Coughs Methods
Al-khassaweneh
[1]

Asthma Sensitivity: 88% Fully 24 Spectral estima-
tion with KNN

Subburaj [12] Intensity Accuracy: 98% Partially 215 Temporal
energy-based
regression

Swarnkar [17] Wet/Dry Sensitivity: 55%
Specificity: 93%

Fully 536 A variety of
features with a
LRM

Chatrzarrin [7] Wet/Dry Sensitivity: 100%
Specificity: 100%

Fully 8 Spectral /
temporal
theresholding

Abeyratne [15] Pneumonia Sensitivity: 80%
Specificity: 73%

Fully 440 A variety of fea-
tures with an
LRM

Botha [6] Tuberculosis Sensitivity: 82%
Specifictity: 95%

Fully 518 Log-spectral
bands with
an LRM and
clinical metrics

Previous work by Shams et al. [13] specifically used higher order statistics to analyse

tracheal breath sounds to detect Obstructive Sleep Apnea (OSA). While not applied to coughs, the

research was able to observe significant differences in the features observed through bispectral

analysis (higher order statistics) between non-OSA individuals and those with sever OSA.

The study explains that spectral features fail to account for nonlinear behavior, resulting from

the turbulence of air in the trachea, in tracheal breath sounds. Further expanding that those

features do not reveal any information on the phase-related characteristics of the signals. The

bispectral analysis is a Higher Order Statistic that reveals nonlinear processes in the signal by

detecting interactions of correlated harmonics in which difference frequencies are coupled, due

to signal deviating from a purely Gaussian model. Bispectral analysis is able to measure both

the amplitude and the phase. This has the added benefit of the analysis being blind to additive

Gaussian noise recorded alongside the non-Gaussian signal, making the approach more robust

6



against background noise in the signal.

A work by Poreva et al. [10], uses bispectral analysis to examine chronic obstructive

pulmonary disease (COPD) evaluating respiratory sounds. COPD is a widespread occupational

disease often due to the exposure to lungs toxic substances in gases and vapors that are in the air

and are due to industrial, technical processes and combustion products, substances contained in

the smoke. By measure the maximum value of the bicoherence coefficient, the authors were able

to perceive a difference between healthy and COPD-sick individuals. Additionally, the authors

noted that evaluating the modulus of skewness coefficient can serve as an additional specifying

characteristics of COPD-sick respiratory signals.

As discussed above, previous research seems to indicate that higher order statistics are

able to capture disease related features in respiratory signals. While bispectral analysis has not

yet been used in a cough classification research, to the knowledge of the author, this study will

be applying bispectral analysis to cough classification of the COVID-19 pulmonary disease.
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Chapter 2

Dataset

2.1 Audio Data

There are a range of sensors utilized by health professionals to measure and extract

information related to a disease’s symptoms for individuals. An investigation by Drugman

et al. [3] explored different sensor options including contact and non-contact microphones,

electrocardiography sensors, chest belts, accelerometers and thermistors placed over under the

patient’s nose. In examining the best sensor to extract information about coughs, Drugman et al

determined that a single non-contact microphone contains significantly more information about

the cough than other sensors. This has the added benefit of making it usable by anyone with a

smartphone as the phone’s microphone can serve as the sensor. Presumably, adding additional

information such as the individuals age and temperature can improve a classifier’s performance

but that is beyond the scope of this study.

2.2 Data Aggregation

As this pandemic has reached international levels, there have come together multiple

initiatives to collect audio data from individuals diagnosed with COVID-19. Initiatives including

Corona Voice Detect and Coughona have built a web landing page in which the page records

the individuals’ voice as it prompts them to cough or utter specific phrases. It further contains a

form in which the individual can report additional metadata about themselves, such as if they
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have a history of smoking, while remaining anonymous.

This study utilizes the data collected in Corona Voice Detect in partnership with voca.ai.

The data is continually being collected, if you or someone you know is positively diagnosed with

COVID-19 please consider filling out the form at https://voca.ai/corona-virus/

The data collected consists of:

• a unique ID for the individual and their device

• the individual’s age

• the individual’s gender

• the individual’s height (optional)

• the individual’s country of residence (optional)

• the individual’s smoking habits (optional)

• the individual’s status, are they in isolation or not (optional)

• the individual’s diagnosis status (optional)

• the individual’s temperature (optional)

• A free-form text of how the individual feels (optional)

• The date and time of the upload (optional)

• Audio recording of the individual coughing three times

• Audio recording of the individual saying ”Ahhh” for as long as they can

• Audio recording of the individual saying ”Eeee” for as long as they can

• Audio recording of the individual saying ”Ohhhh” for as long as they can
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• Audio recording of the individual counting from one to twenty

• Audio recording of the individual saying the alphabet from a to z

• Audio recording of the individual reading a segment from a story

The dataset available as of the time of this writing contains 30 positively diagnosed with

COVID-19 and 1811 not diagnosed with COVID-19. There are further initiatives within clinical

settings in which doctors are keeping close statistics of patients and recording audio samples

from patients daily in a very controlled setting. At the time of this writing, that data is not yet

available and contains confidential private information, and therefore will not be included in this

study. It remains that the results discussed here can be extended or improved by incorporating

that data when it becomes available.

2.3 Data Characteristics

The Corona Voice Detect initiative allows individuals to upload their information and

record their voice without enforcing a controlled setting or verifying that the individual provides

their accurate information. As such, some samples have been discarded as they contain corrupted

entries such as entries without any voice recordings or recordings that are purely noise. Fur-

thermore, not all individuals provided voice samples for all audio samples, namely coughing,

counting, ”ahhh”, ”eeee”, etc., and thus the number of entries for each type of audio sample is

disproportional.

2.3.1 Gender Ratio

Researchers have shown that each gender has a different vocal characteristic that is

dependent on timber and pitch [9]. As such, it may be that biases in gender ratios within our

dataset may hinder our model’s performance and remains as an area for further exploration. The

dataset contains the following ratios:
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Positively diagnosed with COVID-19: Male: 18 , Female: 7

Male to Female ratio: 72% / 28%

Not diagnosed with COVID-19: Male: 1006 , Female: 537

Male to Female ratio: 65.2% / 34.8%

2.3.2 Age Distribution

Research has shown that there are acoustical changes in human voices across different

age groups [14], that vary further between genders. As such, the distribution of ages within

our dataset may affect the performance of our model across input from different age groups.

This should resolve itself with a sufficiently large dataset that contains enough training samples

from each age group. This remains as an area for further exploration. The dataset contains the

following ratios:

Positively diagnosed with COVID-19:

mean: 27.8 , median: 25.0 , standard deviation: 9.5

youngest age: 6, oldest age: 52

Not diagnosed with COVID-19:

mean: 37.3 , median: 33 , standard deviation: 15.8

youngest age: 5 , oldest age: 89

2.3.3 Audio Samples

As we rely on individuals to record themselves in whatever setting they may be and with

no supervision, some of the samples are corrupted and unusable further limiting our training set.

Waveforms of both a healthy and COVID-19 sick individual coughing is visible in figure 2.1.

Waveforms of both a healthy and COVID-19 sick individual saying ”ahhh”, ”eeee” and ”ooo” is

visible in figure 2.2, figure 2.3 and figure 2.4 respectively. A count of each audio sample for the

healthy and COVID-19 sick audio sets is shown in figure 2.5.
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Figure 2.1. Waveform visualization of an audio sample from a healthy (left) and COVID-19
sick (right) coughing three times.

Figure 2.2. Waveform visualization of an audio sample from a healthy (left) and COVID-19
sick (right) saying ”Ahhh”.

Figure 2.3. Waveform visualization of an audio sample from a healthy (left) and COVID-19
sick (right) saying ”Eeee”.
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Figure 2.4. Waveform visualization of an audio sample from a healthy (left) and COVID-19
sick (right) saying ”Oooo”.

Figure 2.5. The counts of audio samples across the different prompts for healthy (left) and
COVID-19 sick (right).
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Chapter 3

Audio Signal Analysis

3.1 Motivation

A common method of modeling vocalisation, and specifically speech, is the linear model

of speech production known also as a source-filter model. This model has not been applied to

cough analysis, as it mostly focuses on the changes in the vocal tract that happen during speech.

We will refer to this model as a general motivation for considering the non-linear aspects of audio

signal that we are considering as a distinguishing feature between COVID-19 sick and normal

general vocal audio samples. In our dataset the sounds include both spoken sounds (alphabet,

numbers), single vowels (ahhh, eee, ooo) and coughs. To focus on the sounds from the lungs and

trachea, we consider the linear source-filter models as a reason to remove spectral information

that is related to resonances of the vocal tract, so we can separate and view the difference in the

sounds originating from the lungs and sounds originating from the vocal cords.

Source-filter model separates the vocal sound into two stages: a sound source that

represents the air flow from the lungs and the flapping of the vocal cords in the case of voiced

speech, which is then shaped or filtered by the resonant properties of the vocal tract. Each

element in this two stage model has its own statistical properties, including spectral shape and

higher-order statistical fine structure. Since most of the changes in the energy of the different

frequency elements is carried out by the vocal tract anterior to the sound source, which in the

case of voiced sounds is the entire supra-glottal vocal tract including parts of the oral cavity and
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the nasal cavity, we can intentionally remove the spectral aspects by normalization of the signal

spectrum.

Common audio analysis methods extract features, such as spectral features, that fail to

account for nonlinear behavior. While previous research on cough classification has primarily

focus on such features, breath sound research has found that higher order statistics come up

with rich features that are also able to detect the phase-related characters. Recent success in

speech synthesis using Neural Networks shows that high quality sounds can be generated by

using non-linear model that is mapping spectral information to sound waveforms, which means

that using higher order statistics we can capture those non-linear properties for a deeper analysis.

Bispectral features were suggested as powerful features for analysis of complex systems, such

as synthesized voice models and breath sounds, as well as other applications such as EEG.

Bispectral analysis has the added benefit of inherently filtering out Guassian noise from the

sample.

Unlike most of the literature on bispectral analysis that only considers the question of

non-linear modeling, we do not assume here necessarily that the differential sounds signatures

of COVID-19 sick sounds to healthy sounds are differences in their non-linearity. Although

intuitively it may be plausible that healthy sounds will have less obstructions in the airflow which

would therefore make it less likely for some coupling or statistical dependencies across frequen-

cies and their respective phases to emerge. Our main motivation in looking into bispectrum is

that by removing the spectral part of the signal we can focus on more subtle sound signatures,

and that the machine learning methods can actually capture the patterns in bispectrum, which

otherwise would be missing if one were only to look at power-spectral or the Fourier Magnitude

of the signal.
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3.2 Signal Analysis

In our approach we consider higher order statistics to evaluate the audio samples to

explore if samples from healthy individuals versus those that are diagnosed with COVID-19 have

a fundamental difference due to non-linear effects on the airway caused by the symptoms. A

core element of this study focuses on the higher order statistical analysis of bispectral. Bispectral

analysis reveals coupling between frequencies by measuring their coupling within the audio

samples. The bispectral analysis does so by evaluating the higher-order correlations of the signal

in the Fourier domain.

3.2.1 Fast Fourier Transformation

In analysing an audio signal y(k), it is first decomposed according to the Fourier trans-

form:

Y (ω) =
∞

∑
k=−∞

y(k)e−ikω

with ω ∈ [−π,π].

The study deals with audio samples with a limited sample rate and as such employs a

discrete Fourier Transformation using the Fast Fourier Transformation. We evaluate the Fast

Fourier Transformation across time by looking at the spectrogram am of the audio samples.

This introduces an additional variable around the window size in the spectrogram am setting

the frequency resolution. spectrogram am of coughs from both healthy and COVID-19 sick

individuals are visible in figure 3.1.

3.2.2 Mel-Frequency Cepstral Analysis

A common feature in audio analysis is the Mel-Frequency Cepstral Analysis (MFCC).

To understand the nature of this representation we need first to explain the concept of cepstrum

and then apply the mel-scale transformation to the frequency dimension. The main motivation in
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Figure 3.1. spectrogram am of coughs from a healthy individual (on the left) and a sick individual
diagnosed with COVID-19 (on the right).

developing this representation is to separate the aspects of vocal tract spectral shape from that of

the excitation signal based on the source-filter model discussed earlier. If we assume that the

speech or vocalisation signal is produced by a periodic excitation of the glottal pulses passing

through a vocal tract, the frequency representation of this model is expressed as multiplication of

the frequency shape of the excitation and the vocal tract as follows:

Y ( f ) = H( f )E( f )

Where H( f ) is the frequency shape of the vocal tract, E( f ) is the frequency analysis of

the excitation and Y ( f ) is the frequency analysis of the resulting vocal signal. An underlying

assumption in cepstral analysis is that the excitation E( f ) contains a lot of spectral details,

namely narrow spectral peaks that originate from the periodicity of the glottal pulse. In contrast,

the shape of vocal tract H( f ) is relatively smooth as it contains broad spectral magnification

regions due to the formant structure of human speech. An idea of separation of these two

components is known as homomorphic processing and it done by taking the log of the absolute

value of the frequency response:

log |Y ( f )|= log |H( f )|+ log |E( f )|
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Y ( f ) can then be separate into the two components E( f ) and H( f ) by performing an

additional step of frequency analysis. Based on the previous assumption that E( f ) contains a lot

of spectral details it will now show through the high frequency elements, whereas H( f ) which is

relatively smooth will show through the low frequency elements

This is easily visible in figure 3.2 showing the mapping of the individual frequencies,

E( f ), as the Harmonics structures mapped to a higher quefrency and the overall trend shape,

H( f ), as the spectral enveloped mapped to the lower quefrency. The frequency analysis of

the original sound signal is known as spectrum whereas the second application of frequency

analysis to the log-spectrum is known as cepstrum. The smooth spectral envelope due to formant

structure on the left permeated by the sharp harmonic structure due to the excitation signal.

When translated once again into frequency domain after doing the log operation, the fast / sharp

harmonic detail are translated to a peak further on the right side of the cepstrum plot, while the

smooth envelope is represented by the left part of the cepstral graph.

Figure 3.2. Diagram showing the mapping from frequency to quefrency in which the individual
harmonic structure is mapped to a high quefrency and the underlying spectral envelope is mapped
to a lower quefrency. [5]

Homomorphic processing allows for a simple separation of the vocal tract components

form the excitation detail. It is important to note that operation is performed on the absolute value
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of the Fourier transform, thus eliminating phase information. The components in cepstral analysis

are known as cepstral coefficients, and since the analysis is done using discrete Fourier transform,

the cepstral coefficients are discrete as well. Taking a limited number of these coefficients

(commonly 20-40 first coefficients) effectively separates the envelope from the excitation.

An additional step in the Mel-Frequency Cepstral Analysis is to show the cepstral analysis

on a Mel-Scale. The Mel-Scale is a transformation of the usual frequency unit of Hertz into a

partially logarithmic scale, based on psychoacoustic human perception of the sensation of the

pitch. Broadly, the Mel-Scale is judged by listeners to be linear up to about 500 Hz, and then

logarithmic for higher frequencies. The mapping of Hz to the Mel-Scale is visible in figure 3.3.

The mapping of Hz to Mel is demonstrated in the following graph:

Figure 3.3. Mapping of Frequency in Hz to Pitch in Mel-Scale [16].

In performing a Mel-Frequency Cepstral Analysis on a discrete signal, the quefrencies

are grouped into critical bands. Critical bands are the psychoacoustic phenomena that refers to

minimal changes frequency that are perceived by humans as two separate tones. This gives the
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Mel warping of the spectral analysis across both the window size and the number of bands when

capturing frequencies of up to 4kHz. A visualization of the mapping of the MFCC’s bands to the

frequencies is visible in figure 3.4.

Figure 3.4. A visualization of 20 critical bands in the Mel-Scale mapped to the frequencies. [11]

3.2.3 Bicoherence and Biphase

In moving past the spectral envelope of the audio signal and into the higher order

statistics of the sound, bispectrum can capture coupling between frequencies. Bispectrum is used

to measure third-order correlations

B(ω1,ω2) = Y (ω1)Y (ω2)Y ∗(ω1 +ω2)

where * denotes the complex conjugate. The bispectral response reveals correlations

between the triple of harmonics [ω1,ω1,ω1 +ω1], [ω2,ω2,ω2 +ω2], [ω1,ω2,ω1 +ω2], and

[ω1,−ω2,ω1−ω2][2]. Rather than evaluating the complex bispectrum, one can take the magni-

tude:

|B(ω1,ω2)|= |Y (ω1)| · |Y (ω2)| · |Y (ω1 +ω2)|
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whereas the biphase evaluates the phase:

6 B(ω1,ω2) = 6 Y (ω1)+ 6 Y (ω2)− 6 Y (ω1 +ω2)

Finally, the bicoherence is the normalized bispectrum:

Bc(ω1,ω2) =
Y (ω1)Y (ω2)Y ∗(ω1 +ω2)√
|Y (ω1)Y (ω2)|2|Y (ω1 +ω2)|2

where the magnitude is in the range [0,1].

Bicoherence, |B(ω1,ω2)|, measures the amount of quadratic phase-coupling that occurs in

the audio signal between any two of its frequency components, due to their nonlinear interactions.

Quadratic phase-coupling is the result of nonlinearity in the signal in which two frequency

components ω1 and ω2, with phases φ1 and φ2 respectively, are simultaneously present in the

signal along with a frequency at ω3 = ω1±ω2 with φ3 = φ1±φ2. Two frequency components ω1

and ω2 are completely phase-coupled when their bicoherence index is 1 and have no quadratic

phase-coupling when their bicoherence index is 0.

Figure 3.5 shows the bicoherence of a cough sound sample from a healthy individual

whereas figure 3.6 shows the bicoherence of a cough sound sample from a sick individual

diagnosed with COVID-19. Similarly figure 3.7 shows the biphase of a cough sound sample

from a healthy individual whereas figure 3.8 shows the biphase of a cough sound sample from a

sick individual diagnosed with COVID-19. A noticeable difference is that the sample from the

sick individual diagnosed with COVID-19 has a significantly higher maximum value in their

bicoherence. While it may be difficult to comment on the biphase, a classification algorithm may

be able to learn to distinguish between the biphase of healthy and COVID-19 sick individuals.
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Figure 3.5. Bicoherence of a cough from a healthy individual in a two dimensional representation
(left) and three dimensional representation (right)

Figure 3.6. Bicoherence of a cough from a sick individual diagnosed with COVID-19 in a two
dimensional representation (left) and three dimensional representation (right)

Figure 3.7. Biphase of a cough from a healthy individual in a two dimensional representation
(left) and three dimensional representation (right)
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Figure 3.8. Biphase of a cough from a sick individual diagnosed with COVID-19 in a two
dimensional representation (left) and three dimensional representation (right)
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Chapter 4

Classification

Classification entails labeling an input cough sound as either healthy (negative) or sick

with COVID-19 (postive). In assigning the label, one needs to keep in mind that the classification

results in truepositives and truenegatives in which cough sounds are labeled correctly, and

f alsepositives and f alsenegatives in which a healthy individual is incorrectly labeled as COVID-

19 sick and a COVID-19 individual is incorrectly labeled as healthy, respectively. These

definitions help us define the following metrics:

Accuracy =
TruePositives+TrueNegatives

TruePositives+TrueNegatives+FalsePositives+FalseNegatives

properly named as it represents us how accurate the labels are.

Precision =
TruePositives

TruePositives+FalsePositives

representing how trustworthy the positive labels are so if a cough sound is labeled as

COVID-19 sick what is the probability that it is indeed correct.

Recall =
TruePositives

TruePositives+FalseNegatives

representing how capable the model is of capturing all of the COVID-19 sick cough
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samples, alternatively representing how many COVID-19 sick coughs it mislabels. Lastly, the

metric

F1−Score =
2∗Recall ∗Precision

Recall +Precision

represents a combination metric of precision and recall, where an F1Score of zero

indicates that the Recall and/or Precision is zero and as the F1Score nears one it indicates that

the classification is nearing perfect Precision and Recall.

Due to the contagious nature of COVID-19, as the virus spreads by respiratory droplets

when someone with the disease coughs, sneezes or talks to another individual six feet away or

less, Accuracy is not the core metric we need to track. The consequences of mislabeling an

individual as healthy can be significant in allowing the disease to continue spreading throughout

the population, as such Recall needs to be the primary metric we examine. Recall can’t be

the sole metric we examine as a perfect recall is possible by simply labeling all individuals as

positive, instead we can use the Accuracy as the secondary metric.

4.1 Methods of Classification

There exist numerous methods of classification, with different methods being more or

less appropriate depending on the nature of the data. In this study we explore Logistic Regression,

Support Vector Machine using a linear kernel, Support Vector Machine using a radial basis

function (RBF), Random Forest, Multilayer Perceptron and Convolutional Neural Network. As

can be seen in figure 4.1 the proper model depends on the dispersion of the two classes. The

bicoherence and biphase output a 63x63 matrix, as we are using a resolution of 128 in our

spectrogram am, the MFCC outputs a 40x301 matrix. The classification models listed, other

than the Convolutional Neural Network, do not work with a matrix and instead perform on a

multidimensional array, as such we flatten our 63x63 matrix into an array of 3,969 and our

40x301 matrix into an array of 12,040.
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Figure 4.1. Classification results of Logistic Regression, Support Vector Machine using a linear
kernel, Support Vector Machine using an RBF kernel, Random Forest and Multilayer Perceptron
for different input data.

4.1.1 Logistic Regression

Logistic Regression is a linear model for classification. The linear model solves for

coefficients w by minimizing the cost function:

min
w,c

1
2

wT w+C
n

∑
i=1

log(e−yi(XT
i w+c)+1)

where y is the label and X is the input. We will be using the scikit-learn implementation

of Logistic Regression.

4.1.2 Support Vector Machines

Support Vector Machine (SVM) is a classification method that solves for a hyperplane

between the two labels by maximizing the margins between the hyperplane and the nearest

samples for each label. As can be seen in figure 4.1, this can behave similarly to Logistic

Regression. In SVM, we can apply an additional kernel to project the data into a higher

dimension where the hyperplane in the higher-dimensional representation is able to better label
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the data. We will be using radial basis function (RBF) kernel in which the kernel is defined as

K(x,x′) = e
||x−x′||2

2σ2

where σ is a free variable and x and x′ are samples from the training dataset. We will use a

scaled σ as 1/(number o f f eatures∗variance o f X) and an auto σ as 1/(number o f f eatures).

We reference the traditional SVM as Linear SVM and the SVM using the RBF kernel as

Non-linear SVM. We will be using the scikit-learn implementation of Support Vector Machine.

4.1.3 Random Forest

Random forest is a classification method that constructs a multitude of decision trees on

different subsets of the training dataset. Each tree uses a sub-sample of the dataset and may use

a subset of the input features. As decision trees tend to over-fit, Random Forest overcomes this

through the randomness of the sub-samples of the training dataset and the randomness of the

subset of the input features for each tree and then averages the final results of the many trees

in the forest to return the final prediction. We will be using the scikit-learn implementation of

Random Forest.

4.1.4 Multilayer Perceptron

The Multilayer Perceptron (MLP) is a an artificial neural networks that adjusts its weights

iteratively to learn to classify the training data. The MLP consists of an input layer followed by a

variable number of layers, known as the depth of the network, in which every layer consists of a

variable number of neurons that are fully connected to the layer before them and after them and

lastly an output layer exists that receives the last hidden layer and outputs the final classification.

The weights of the connection between the neurons are learned iteratively. Each neuron in the

MLP has a non-linear activation function, the study uses a ReLu activation implementation in
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which

f (x) = max(x,0)

.

The neural network iteratively updates its weights by going over all of the training data

numerous times, known as an epoch, minimizing its error and back-propagating the adjustments

to the weights based on a learning rate. We will be using the scikit-learn implementation.

4.1.5 Convolutional Neural Networks

Recent advances in machine learning have led to deep learning in which model learn

parameters in sophisticated architectures. In evaluating an RGB image in a neural network

there are specialized approaches that enable the better processing and modeling of the rgb pixel

matrix. A convolutional neural network applies filters and max pooling operations that are

learned through training to extract features of features required to perform complex operation it

was trained to perform. Figure 4.2 shows a visual diagram of the filter convolutional layer and

max pooling layers in a convolutional neural network. As can be seen in figure 4.2, the layers

are applied to a small subset of pixels from the input image and the operation repeats until the all

the pixels in the input image are considered at least once. In this way, the size and resolution

of the input image directly affects the time required to send the image through the network to

perform the intended operation.

For our application, a convolutional neural network allows us to perform a classification

operation without flattening the input data. This let’s the neural net utilize the additional

localization information across multiple frequency couplings revealed in the bicoherence, biphase

and MFCC, that is lost due to flattening in the other approaches discussed previously. As we

only have a single channel, rather than three channels for RGB pixels, the neural network will

use a single channel. The architecture of the Convolutional Neural Network we utilize is visible

in figure 4.3. The model consists of four Conv2D convolution layers. Each convolutional layer is
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Figure 4.2. A diagram of a convolutional neural network

followed by a pooling layer of MaxPooling2D and the final convolutional layer is followed by a

GlobalAveragePooling2D type. The Max Pooling layers take the maximum size for each window

and the Global Average Pooling layer takes the average which is suitable for feeding into the

final dense output layer. The pooling layers reduce the dimensionality of the model, reducing

the parameters needed to be learned, and therefore reducing the computation requirements. The

dropout layer further reduces the training time while also limiting overfitting. The output layer

has only 2 nodes as it performs the binary classification of COVID-19 sick versus healthy.
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Figure 4.3. A diagram of the architecture of the convolutional neural network
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Chapter 5

Classification Results

The classification methods covered in the previous chapter were applied to the COVID-19

cough dataset. The data was split into an 80/20 split, with 80% of the data used in the training

set and 20% used in the test set. The classification accuracy, precision, recall and f 1− score

are indicated for the classification’s performance on the test set not the training set.

5.1 Bicoherence

The results for the classification performances on the bicoherence are visible in table 5.1.

The bicoherence data used as input is a 63x63 matrix, using a resolution of 128 in the spectrogram

am, that is flattened into an array for Logistic Regression, Random Forest, Multilayer Perceptron

and Support Vector Machines. The Convolutional Neural Network uses the 63x63 matrix as the

direct input.

5.2 Biphase

The results for the classification performances on the biphase are visible in table 5.2. The

biphase data used as input is a 63x63 matrix, using a resolution of 128 in the spectrogram am,

that is flattened into an array for Logistic Regression, Random Forest, Multilayer Perceptron

and Support Vector Machines. The Convolutional Neural Network uses the 63x63 matrix as the

direct input.
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Table 5.1. Bicoherence classification results for different classification methods.

Classification
Method

Accuracy Precision
(Sick/Healthy)

Recall
(Sick/Healthy)

F1-Score
(Sick/Healthy)

Logistic Regres-
sion

65% 40% / 73% 31% / 80% 40% / 68%

Random Forest 71% 100% / 71% 4% / 100% 7% / 83%
Multilayer Per-
ceptron

70% 0% / 70% 0% / 100% 0% / 82%

Support Vector
Machine Linear

64% 39% / 73% 35% / 77% 37% / 75%

Support Vector
Machine Non-
Linear (Auto
Sigma)

71% 55% / 73% 23% / 92% 32% / 81%

Support Vector
Machine Non-
Linear (Scale
Sigma)

65% 42% / 75% 42% / 75% 42% / 75%

Convolutional
Neural Network

70% 70% / 71% 96% / 17% 81% / 28%

5.3 Mel-Frequency Cepstrum

The results for the classification performances on the Mel-Frequencey Cepstrum are

visible in table 5.3. As the lengths of the audio samples varied, all samples were adjusted to

a length of seven seconds. Audio samples longer than seven seconds were cropped at seven

seconds, whereas those shorter than seven seconds were padded with zeros until the seven second

mark. At a resolution of 40 and with a hop length of 512, the MFCC data used as input is a

40x301 matrix that is flattened into an array for Logistic Regression, Random Forest, Multilayer

Perceptron and Support Vector Machines. The Convolutional Neural Network uses the 40x301

matrix as the direct input.
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Table 5.2. Biphase classification results for different classification methods.

Classification
Method

Accuracy Precision
(Sick/Healthy)

Recall
(Sick/Healthy)

F1-Score
(Sick/Healthy)

Logistic Regres-
sion

58% 36% / 72% 44% / 64% 40% / 68%

Random Forest 68% 0% / 49% 0% / 100% 0% / 81%
Multilayer Per-
ceptron

65% 33% / 69% 11% / 90% 17% / 78%

Support Vector
Machine Linear

48% 32% / 69% 56% / 46% 41% / 55%

Support Vec-
tor Machine
Non-Linear

31% 31% / 0% 100% / 0% 48% / 0%

Convolutional
Neural Network

64% 67% / 40% 89% / 14% 77% / 21%

Table 5.3. Mel-Frequency Cepstrum classification results for different classification methods.

Classification
Method

Accuracy Precision
(Sick/Healthy)

Recall
(Sick/Healthy)

F1-Score
(Sick/Healthy)

Logistic Regres-
sion

77% 39% / 88% 50% / 83% 44% / 86%

Random Forest 84% 67% / 85% 22% / 98% 33% / 91%
Multilayer Per-
ceptron

82% 0% / 82% 0% / 100% 0% / 90%

Support Vector
Machine Linear

73% 32% / 83% 44% / 79% 37% / 83%

Support Vector
Machine Non-
Linear (Auto
Sigma)

82% 0% / 82% 0% / 100% 0% / 90%

Support Vector
Machine Non-
Linear (Scale
Sigma)

80% 45% / 89% 50% / 87% 47% / 88%

Convolutional
Neural Network

79% 76% / 79% 43% / 94% 55% / 86%
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Chapter 6

Discussion

In evaluating the results of the classifiers for the different analytic methods, we need

to consider both the recall to understand how many COVID-19 sick diagnosis we are missing

(increasing the risk of those individuals spreading the disease further) and the overall accuracy to

measure how correct it is. In an ideal scenario both the recall and accuracy will be perfect, but in

a less-than-ideal world that we reside in there results of the classifier will need to be properly

incorporated into the overall healthcare workflow.

While this approach is not reliable enough to be the sole diagnosis tool, it offers a non-

invasive immediate diagnosis method that can reach millions of people. Using it as the sole

diagnosis lives us prone to an individual having a false positive result, self isolating for two

weeks and then having the false notion that he or she has built an immunity to the disease. This

would leave the individual vulnerable to contracting the disease later on but not approaching

COVID-19 diagnosis methods due to their false notion and therefore not self-isolating further.

This would further limit the individual’s perception of the reliability of the classifier’s diagnosis

reliability. If the classifier is instead used as a trigger to get further tests at a hospital or testing

center, than it can have a very valuable contribution in helping individuals take knowledgeable

steps to protect themselves and society. Vice versa, it could also be used as a tool to limit testing

- with a high recall rate for sick diagnosis an individual that is classified as healthy could be

guided to not undergo further testing and leave the scarce testing equipment to others that are
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more likely to have the disease.

Note that in the figrues LR stands for Logistic Regression, RF stands for Random Forest,

MLP stands for Multilayer Perceptron, SVM-L stands for Support Vector Machine with Linear

kernel, SVM-NLA stands for Support Vector Machine with RBF kernel and auto gamma, SVM-

NLS stands for Support Vector Machine with RBF kernel and scaled gamma, CNN stands for

Convolutional Neural Network.

6.1 Bicoherence

The Bicoherence analysis using the classification methods in this study, largely tends for

a high recall for the healthy set and a low recall for the COVID-19 sick set as can be seeing in

figure 6.1. The training and testing data are both imbalanced datasets with many more healthy

samples than COVID-19 sick samples. This would largely justify why the healthy recall is so

much higher as it is a much easier task (as there are many more of them). This further highlights

the unique property that the Convolutional Neural Net approach was able to get a flipped result

with a higher recall for the sick set rather than the healthy set.

Using our unique criteria, of wanting to maximize the accuracy but prioritizing a higher

COVID-19 sick recall due the contagious nature of the disease, a shared perspective of the two is

needed to evaluate which classifier works the best. As such, the Convolutional Neural Net seems

to be the best classifier with a high overall accuracy and extremely high COVID-19 sick recall.

6.2 Biphase

The biphase analysis method seems to contain the least usable information as multiple

classifiers end up having a recall of 0 or close to 0 meaning that the classifier optimizes to label the

entire testing set with the same label. It is interesting to note that overall the Logistic Regression

classifier, which is comparatively the simplest classifier, performs the best in maximizing both

recalls.
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Figure 6.1. A plot of the recall score for various classification method for COVID-19 sick and
healthy based on a bicoherence analysis input.

Figure 6.2. A plot of the recall score for various classification method for COVID-19 sick and
the overall accuracy based on a bicoherence analysis input.
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Figure 6.3. A plot of the recall score for various classification method for COVID-19 sick and
healthy based on a biphase analysis input.

When keeping the accuracy in mind the Convolutional Neural Network appears to have

the highest recall and is one of the highest accuracies.

6.3 Mel-Frequency Cepstrum

The MFCC analysis doesn’t seem to have a classifier that performs particularly well for

the COVID-19 sick recall.

When further viewing the accuracy alongside the recall, the Support Vector Machine

with non-linear kernel and scaled gamma performs the best.

6.4 Conclusion

In comparing and contrasting the different analysis methods, it is difficult to set an

objective metric to compare their performance. In trying to evaluate which analysis method had

the most information relevant to our classification task we can evaluate the highest average F1
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Figure 6.4. A plot of the recall score for various classification method for COVID-19 sick and
the overall accuracy based on a biphase analysis input.

Figure 6.5. A plot of the recall score for various classification method for COVID-19 sick and
healthy based on a Mel-Frequency Cepstrum analysis as input.
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Figure 6.6. A plot of the recall score for various classification method for COVID-19 sick and
the overall accuracy based on a Mel-Frequency Cepstrum analysis as input.

score of all the classification methods for the analysis methods. Doing so we get the following

results for the highest F1-score:

Bicoherence analysis using Support Vector Machine: 58%

Biphase analysis using Logistic Regression: 54%

MFCC analysis using Convolutional Neural Network: 70%

It appears that the Mel-Frequency Cepstrum contains the most information and is the

best sole analysis method to utilize for this classification task.

6.5 Future Work

This work has room for improvements in regards to the amount of data, balancing the

datasets and combining the techniques and classifiers to come up with an ensemble method that

performs better. A key area that would improve the performance and generalizability of the
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classifiers is to increase the dataset to increase the training set. With more data we can also get

more meticulous about our training set, narrowing the training to specific audio sample types

(such as only coughs or only ahhs) and incorporating more granular data such as the phase of the

disease (is the individual newly diagnosed or towards the end of the recovery process). Adjusting

for the label imbalance, as there are many more healthy samples then COVID-19 sick samples,

can further improve the performance and a method such as random up-sampling can be utilized.

Another area for further research is doing more granular research on the specific classifiers

used, such as further optimizing the Support Vector Machine’s kernel options, nu values and

gamma values, and experimenting with different architectures for the Convolutional Neural

Network.

In general, this study has revealed that all of the different analysis methods contain some

amount of information towards our target classification task. An improved method can be created

by creating an ensemble of the analysis methods (such as using all bicoherence, biphase and

mfcc simultaneously as the input to the classifier) and of the classifiers (such as defining an

ensemble method that utilizes multiple classifiers and weights their respective results to come up

with the final result).
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