
UC Irvine
ICS Technical Reports

Title
Dead-end driven learning

Permalink
https://escholarship.org/uc/item/29c795mr

Authors
Frost, Daniel
Dechter, Rina

Publication Date
1994-11-22
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/29c795mr
https://escholarship.org
http://www.cdlib.org/


DEAD-END DRIVEN LEARNING

Daniel Frost and Rina Dechter

Departmentof Informationand Computer Science
University of Califomia» Irvine

Technical Report 94-49
November 22, 1994

Z-

C2
ho, If-fj

Abstract

The paper evaluates the effectiveness of learning for speeding up the solution ofconstraint
satisfaction problems. It extends previous work (Dechter 1990) by introducing a new and
powerful variant of learning and by presenting anextensive empirical study on much larger
and more difficult problem instances. Our results show that learning can speed up
backjumping when using either a fixed or dynamic variable ordering. However, the
improvement with a dynamic variable ordering is not as great, and for some classes of
problems learning is helpful only when a limit is placed on the size of new constraints
learned.

Notice: This Materiai
may be protected
by Copyright Law
(Titie17U.S.G.)



To be presenced in
AAAI-94

Dead-end driven learning *

Daniel Frost and Rina Dechter
Dept. of Information and Computer Science

University of California, Irvine, CA 92717
{dfrost,dechter}t§ics.uci.edu

Abstract

The paper evaluates the effectiveness of learning for
speeding up the solution of constraint satisfaction
problems. It extends previous work (Dechter 1990)
by introducing a new and powerful variant of learn
ing and by presenting an extensive empirical study on
much larger and more difficult problem instances. Our
results show that learning can speed up backjumping
when using either a fixed or dynamic variable order
ing. However, the improvement with a dynamic vari
able ordering is not as great, and for some classes of
problems learning is helpful only when a limit is placed
on the size of new constraints learned.

1. Introduction

Our goal in this paper is to study the effect of learn
ing in speeding up the solution of constraint prob
lems. The function of learning in problem solving is
to record in a useful way some information which is
explicated during the search, so that it can be reused
either later on the same problem instance, or on simi
lar instances which arise subsequently. The approach
we take involves a during-search transformation of the
problem representation into one that may be searched
more effectively. This is done by enriching the prob
lem description by new constraints (sometimes called
nogooda), which do not change the set of solutions, but
make certain information explicit. The idea is to learn
from dead-ends; whenever a dead-end is reached we
record a constraint explicated by the dead-end.

This type of learning has been presented in
dependency-directed backtracking strategies in the
TMS community (Stallman & Sussman 1977), and
within intelligent backtracking for Prolog(Bruynooghe
k Pereira 1984). Recently, it was treated more sys
tematically by Dechter (1990) within the constraint
network framework. Different variants of learning were
examined there, while taking into account the trade
off between the overhead of learning and performance

'This work was partially supported by NSF grant IRI-
9157636, by Air Force Office of Scientific Research grant
AFOSR 900136 and by grants from Toshiba of America
and Xerox.

improvement. The results, although preliminary, indi
cated that learning could be cost-effective.

The present study extends (Dechter 1990) in several
ways. First, a new variant of learning, called jump-
back learning, is introduced and is shown empirically
to be superior to other types of learning. Secondly, we
experiment with and without restrictions on the size
of the constraints learned. Thirdly, we use a highly
efficient version of backjumping as a comparison refer
ence. Finally, out experiments use larger and harder
problem instances than previously studied.

2. Definitions and Preliminaries

A Constraint Network consists of a set of n vari
ables, A'i,...,A'n; their respective vadue domains,

and a set of constraints. A constraint

Ci{Xi^,... ,Xi^) is a subset of the Cartesian prod
uct Di, X ... X consisting of all tuples of values
for a subset (A'jj,..., Xi^) of the variables which are
compatible with each other. A softtfion is an assign
ment of values to all the variables such that all the

constraints are satisfied. Sometimes the goal is to find
all solutions; in this paper, however, we focus on the
task of finding one solution, or proving that no solution
exists. A constraint satisfaction problem (CSP) can be
associated with a constraint grapk consisting of a node
for each variable and an arc connecting each pair of
variables that are contained in a constraint. A binary
CSP is one in which each of the constraints involves at
most two variables.

Backjumping
Many algorithms have been proposed for solving CSPs.
See (Dechter 1992; Mackworth 1992) for reviews. One
algorithm that was shown always to dominate naive
backtracking is backjumping (Gaschnig, 1979; Dechter,
1990). Like beurktracking, backjumping considers each
variable in some order eind assigns to each successive
variable a value from its domain which is consistent

with the values assigned to the preceding variables.
When a variable is encountered such that none of its
possible values is consistent with previous assignments
(a situation referred to as a dead-end}, a backjump



a,b,c

(a,x),(a,y

Figure 1: A small CSP. Note that the disallowed pairs
are shown on each arc.

takes place. The idea is to jump back over several
irrelevant variables to a variable which is more directly
responsible for the current conflict. The backjumping
algorithm identities ^ jump'back set, that is, a subset of
the variables preceding the dead-end variable which are
inconsistent with all its values, and continues search
from the last variable in this set. If that variable has
no untried values left, then a pseudo dead-end arises
and further backjumping occurs.

Consider, for instance, the CSP represented by the
graph in Fig. 1. Each node represents a variable that
can take on a value from within the oval, and the bi
nary constreunt between connected variables is speci
fied along the arcs by the disallowed value pairs. If the
variables are ordered Xj.Xa, X4) emd a dead
end is reached at ^4, the backjumping algorithm will
jump back to since X4 is not connected to X3 or
A-z-

The version of backjumping we use here is a combi
nation of Gaschnig's (1979) backjumping and Dechter's
(1990) graph-based backjumping, as proposed by
Prosser (1993). Prosser calls the algorithm conflici-
directed backjumping. In this version, the jump-back
set is created by recording, for each value v of V, the
variable to be instantiated next, the first vjiriable
(relative to the ordering) whose assigned value conflicts
with V = v. The algorithm will be combined with both
fixed and dynamic variable orderings.

Variable Ordering Heuristics
It is well known that variable ordering affects tremen
dously the size of the search space. In previous studies
it has been shown that the min-width ordering is a very
effective fixed ordering (Dechter & Meiri 1989), while
dynamic variable ordering (Haralick k Elliott 1980;
Purdom 1983; Zabih k McAllester 1988) frequently
yields best performance. We incorporate both strate
gies in our experiments.

The mmimum wxdik (MW or min-width) heuristic
(Freuder 1982) orders the variables from last to first
by selecting, at each stage, a variable in the constraint
graph that connects to the minimal number of vari-

ables that have not yet been selected. For instance,
the ordering -Vi, Xs,X2, X3, ^"4 is a min-width order
ing of the graph in Fig. 1.

Dynamic variable ordering (DVO) allows the order
of variables to change during search. The version we
use selects at each point the variable with the smallest
remaining domain size, when only values that are con
sistent with all instantiated variables are considered.
Ties are broken randomly. The variable that partici
pates in the most constraints is selected to be first in
the ordering. If any future variable has an empty do
main, then it is moved to be the next in the ordering,
and a dead-end will occur on that variable. Otherwise,
a variable with the smallest domain size is selected
(similar to unit-propagation in Boolean satisfiability
problems).

3. Learning Algorithms

In a dead-end at Xi, when the current instantiation
5 = (Xi=xi,...,Xi_i=Zi_i) cannot be extended by
any value of X,-, we say that 5 is a confttci set. An op
portunity to learn new constraints is presented when
ever backjumping encounters a dead-end, since haul the
problem included an explicit constraint prohibiting the
dead-end's conflict-set, the dead-end would have been
avoided. To learn at a dead-end, we record a new con
straint which makes explicit an incompatibility among
variable assignments that edready existed, implicitly.
The trade-off involved is in possibly finding out earlier
in the remaining search that a given path cannot lead
to a solution, versus the cost of having to process a
more extensive database of constraints.

There is no point in recording 5 as a constraint at
this stage, because this state will not recur. However, if
5 contains one or more subsets that are also in conflict
with X,-, then recording these smaller conflict sets as
constraints may prove useful in the continued explo
ration of the search space because future states may
contain these subsets.

Different types of learning differ in the way they
identify smaller conflict sets. In (Dechter 1990) learn
ing is characterized as being either deep or shallow.
Deep learning only records minimal conflict sets, that
is, those that do not have subsets which are conflict
sets. Shallow learning allows recording non-minimal
conflict sets as well. Learning can adso be characterized
by order, the maximum constraint size that is recorded.
In (Dechter 1990) experiments were limited to record
ing unary and binary constraints, since constraints in
volving more variables are applicable less frequently,
require more space to store, and are more expensive to
consult.

In this paper we experiment with four types of learn
ing: graph-based shallow learning, value-based shal
low learning, and deep learning, already presented in
(Dechter 1990), as well as a new type, calledjump-back
learning.



In vtdue^based learning all irrelevant variable-
value pairs are removed from the initial conflict set
5. If a variable-value pair Xj = xj doesn't conflict
with any value of the dead-end variable then it is re
dundant and can be eliminated. For instance, if we
try to solve the problem in Fig. 1 with the ordering
(Xi,X2,-.V3,X4,>Y5), after instantiating Xi =a,X-2 =
6, X3 =6, X4 =c, the dead-end at X^ will cause value-
based learning to record (Xi =a,^2 = 6, A'4 = c), since
the pair X3 = 6 is compatible with all values of X^.
Since we can pre-compute in 0{n^k) time a table that
will tell us whether X, = xj conflicts with any value
of each other variable, the complexity of value-based
learning at each dead-end is 0(n).

Graph-based shallow learning is a relaxed ver
sion of value-based learning, where information on con
flicts is derived from the constraint graph alone. This
may be particularly useful on sparse graphs. For in
stance, in Fig. I graph-based shallow learning will
record (Xi = a,X2 = b,X3 = 6, X4 = c) as a conflict
set relative to X3, since all variables are connected to
X5. The complexity of learning at each dead-end here
is 0(n), since each variable is connected to at most
n — 1 other variables.

Jump-back learning uses as the conflict-set the
jump-back set that is explicated by the backjumping
algorithm itself. Recall that conflict-directed back-
jumping examines, starting from the first variable, each
instantiated variable and includes it in the jump-back
set if it conflicts with a value of the current variable
that previously did not conflict with any variable. For
instance in Fig. 1, when using the same ordering and
reaching the dead-end at X5, jump-back learning will
record (Xi =a, X2 = 6) as a new constraint. These two
variables are selected because the algorithm first looks
at Xi =a and notes that it conflicts with ^5 = 2 and
X5 = y. Proceeding to X-2 = b, the conflict with X^^z
is noted. At this point all values of X5 have been ruled
out, and the conflict set is complete. Since the conflict
set is already assembled by the underlying backjump
ing algorithm, the added complexity of computing the
conflict set is constant.

In deep learning all and only minimal conflict sets
are recorded. In Fig. I, deep learning will record two
minimal conflict sets, (Xi = a.Xj = b) and (Xi =
a,X4 = c). Although this form of learning is the
most accurate, its cost is prohibitive and in the worst-
case is exponential in the size of the initial conflict set
(Dechter 1990).

4. Complexity of backtracking with
learning

We will now show that graph-based learning yields
a useful complexity bound on the algorithm perfor
mance, relative to a graph parameter known as w*.
Since graph-based learning is the most conservative
learning aJgorithm (when no order restrictions are im
posed), the bound is applicable to all the variants of

Cross-over value ot C

N ! r=i/9 T = 2/9
25 199 89

50 380 166

75 565 244

100 747 317

150 1100 468

200 1477 621

250 1842 771

Figure 2: Empirically determined vsdues of C that gen
erate 50% solvable CSP instances. AT = 3 for this data.

learning we discuss.
Given a constraint graph and a fixed ordering of the

nodes d, the width of a node is the number of arcs that
connect that node to previous ones, called its parents.
The width of the graph relative to d is the maximum
width of all nodes in the graph. The induced graph is
created by considering each node in the original graph
in order from last to first, and adding arcs connecting
each of its parents to each other parent. The induced
width of an ordering, w*(d), is the width of its induced
graph.
Theorem 1: Let d be an ordering and let w*(d)
be its induced width. Any backtrack algorithm us
ing ordering d and graph-based learning has a space

complexity of 0((nib)'*' '̂'̂ ) and a time complexity of
0((2nJb)'*'*('̂ )).
Proof: Due to graph-based learning there is a one-
to-one correspondence between dead-ends and con
flict sets. It can be shown that backtracking with
graph-based learning along d records conflict-sets of
size w*(d) or less. Therefore the number of dead-ends
is bounded by

w*(d)

'£{".)k' =0((nkr
1=1

This gives the space complexity. Since deciding that a
dead-end occurred requires testing all constraints con
taining the dead-end vuiable and at most w*(d) prior
variables, at most 0(2® '̂'̂ ) constreunts are checked
per dead-end, yielding a time bound of

0((2n;fc)®*(''>).

5. Methodology and Results
The experiments reported in this paper were run on
random instances generated using a four parameter
model: N,K,T and C. The problem instances have
N variables, each having a domain of size K. The
problems we experiment with always start off as bi
nary CSPs, but can become non-binary as constraints
involving more than two variables are added by learn
ing. The parameter T (tightness) specifies a fraction



Statistic Learning
TC I 16,930
DE 156
CPU sees 0.048

NGs
Size

DE

CPU sees
NGs

Size

TC
DE
CPU sees

NGs

Size

274,133
2.777
0.777

303,668
2,205
1.298

30,636

178

0.083

178

11.6

1,340,512
2,833
2.067

2,833
11.2

8,051,435
5,107

11.492

5,107

20.6

this type ot learning
ie-base<l~ Jump-back

29,185 10,203
181 82

0.077 0.032

181 82

6.8 3.5

29,185

181

0.077

181

6.8

1,428,109

2,932
2.183

2,932

10.4

7,111,384
4,512
9.913

4,512
13.6

330,672
1,276
0.667

1,276
5.2

119,642
437

0.367

437

4.6

Deep
117,556

67

0.325

153

3.4

55,771.462
832

78.283

1894

4.4
27,134,341

333

44.788

654

4.2

Figure 3: Detailed results of comparing backjumping with no learning to backjumping with each of four kinds of
learning. T = 1/9 and C is set to the cross-over point. See the text for discussion.

of the value pairs in each constraint that are disal
lowed by the constraint. The incompatible pairs in a
constraint are selected randomly from a uniform distri
bution, but each constraint wilt always have the same
fraction T of such incompatible pairs. T ranges from 0
to 1, with a low value of T, such as 1/9, termed a loose
or relaxed constraint. The fourth parameter, C, speci
fies the number of constraints out of the N *{N —l)/2
possible. Constraints are chosen randomly from a uni
form distribution.

As in previous studies (Cheeseman, Kanefsky, &
Taylor 1991; Mitchell, Selraan, k, Levesque 1992), we
observed that the hardest instances tend to be found

where about half the problems are solvable and half are
not (the "cross-over" point). Most of our experiments
were conducted with instances drawn from this 50%
range; the necessary parameter combinations were de
termined experimentadly (Frost & Dechter 1994) and
are given in Fig. 2.

Results

We first compared the effectiveness of the four learn
ing schemes. Fig. 3 presents a summary of experiments
with sets of problems of several sizes (JV) and number
of values (K). 100 problems in each class were gener
ated and solved by five algorithms: backjumping with
out learning, and then backjumping with each of the
four types of learning. In all cases a min-width vari
able ordering was applied and no bound was placed on
the size of the constraints recorded. For each problem
instance and for each algorithm we recorded the num
ber of consistency checks (CC), the number of (non-
pseudo) dead-en^ (DE)i the CPU time (CPU sees),
the number of new nogoods recorded (NGs), and the
average size of (number of variables in) the learned con
straints. A consistency check is recorded each time the

algorithm checks if the values of two or more variables
are consistent with respect to the constraint between
them. The number of dead-ends is a measure of the size
of the search sp2w:e explicated. All experiments were
run using a single program with as much shared code
and data structures as possible. Therefore we believe
CPU time is a meaningful comparative measure.

This experiment demonstrated that only the new
jumpHback type of learning was effective on these rea
sonably large size problems. Once the superiority of
jump-back learning was established we stopped exper
imenting with other types of learning. In the following
discussion and figures, all references to learning should
be taken to mean jump-back learning.

To determine whether learning would be effective for
CSPs with many variables, in our next set of experi
ments we generated instances from parameters iC= 3,
T = 1/9, N= {25,50,75,100}, and C set to the appro
priate cross-over points. We used backjumping with
a min-width ordering on 200 instances in each cate
gory, both with and without learning. (No limit was
placed on the order of learning.) The mean numbers
of consistency checks, dead-ends, and CPU seconds are
reported in Fig. 4. The results were encouraging; by
all measures learning provided a substantial improve
ment when added to backjumping. (Experiments with
T = 2/9 and T = 3/9, not reported here due to space,
show a similar pattern.) Our only reservation was that
from other work we knew that a dynamic variable or
dering can be a significant improvement over the static
min-width. Would learning be able to improve back-
jumping with DVO?

To find out, we ran another set of experiments, using
the same instances, plus some generated with higher
values of N; this time backjumping used a dynamic
variable ordering. We also experimented with vari-



CPU Mconda

1/9 10»

number of variables (N)

No learning <

number of variables (N)

• Learning 0-

number of variables (N)

Figure 4: Comparison of BJ+MW with and without learning (of unlimited order); K = 3.

ous orders of learning. Recall that in t-order learning,
new constraints are recorded only if they include i or
fewer variables. In (Dechter 1990) experiments were
conducted with first and second order learning. Here,
we tried second-, third-, and fourth-order learning, as
well as learning without restriction on the size of new
constraints. However, only third-order and unlimited-
order learning are reported, due to space constraints,
in Fig. 6.

We make severed observations from these data. First,
learning becomes more effective as the number of vari
ables in the problem increases. With DVO, when
N < 100, the absence or presence of learning, of what
ever order, makes very little difference. With the pow
erful DVO ordering, there are too few dead-ends for
learning to be useful, or for the overhead of learning
to cause problems. As N increases from 100 on up,
learning becomes more effective. For instance, looking
at data for T = 2/9, and comparing CPU time for No
Learning with CPU time for unlimited order learning,
we see improvements at /V = 100 of 1.6 (0.815 / 0.499),
at W= 150 of 6.9 (25.463 / 3.710), and at W= 200 of
7.8 (170.990 / 21.808).

A second observation is that when the individual
constraints are loose (T = 1/9), learning is at best only
slightly helpful and can sometimes deteriorate perfor
mance. The reason is that the conflict-sets with loose
constraints tend to be larger, since each variable in the
conflict set can invalidate (in the case of T= 1/9) only
one value from the dead-end variable's domain.

Thirdly, we note that as the order of learning be
comes higher, the size of the search space decreases
(as measured by the number of dead-ends), but the
amount of work at each node increases, indicated by
the larger count of consistency checks. For instance,
the data for W= 200,r=2/9, show that in going from
third-order learning to unlimited order learning, dead
ends go down slightly while consistency checks increase
by a factor of five. The overall CPU time for the two

versions is almost identical, because in our implemen
tation consistency checking is implemented very effi
ciently. If the cost to perform each consistency check
were higher in relation to the cost to expand the search
to a new node, unlimited learning might require more
CPU time than restricted order learning.

CPU tccondi

number of constraints (C)
No learning > i Third-order learning »•-

Figure 5: BJ-l-DVO without learning and with third-
order learning, for N=300, K=3, T=2/9, and non-50%
values of C. All problems with C < 740 were solvable;
all with C > 1080 hetd no solution.

As expected, learning is more effective on problem
instances that have more dead-ends emd larger search
spaces, where there are more opportunities for each
learned constrsunt to be useful. Comparing the means



T =
1/9 10®

CPU second*

number of variables (N) number of variables (N) number of variables (N)
CPU seconds

T=s
2/9 10®

number of variable* (N)

No learning
number of variables (N) number of variables (N)

Third-Border learning ^ Unlimited order learning e •»

Figure 6: Comparison of BJ+DVO, without learning, and with third-order and unlimited order learning; /C= 3.

of 200 problem instances solved both with and with
out learning can obscure the trend that the improve
ment from learning is generally much greater for the
very hardest instances of the population. For instance,
the data for N = 200, T = 2/9 show that the mean
CPU time for 200 instances is 170.990 without learning
and 21.808 with learning, improving by a factor of 7.8
(170.990 / 21.808). If we just consider the 20 problem
instances out of the 200 which required the most CPU
time to be solved without learning, the mean CPU time
of those 20 instances without leauning is 1107.18, and
72.48 with unlimited order learning. The improvement
for the hardest problems is a factor of 15, about twice
that of the entire sample.

Fig. 5 shows that with large enough N, problems do
not have to be drawn from the 50% satisfiable area in
order to be hard enough for learning to help. Learn
ing was especially valuable on extremely hard solvable
problems generated by slightly underconstrained val
ues for C. For instance, at TV = 300, A'= 3,T=2/9,C=
680, the hardest problem (out of 200 instances) took
47 CPU hours without learning, and under one CPU
minute with learning. The next four hardest problems
took 4% as much CPU time with learning as without.

Controlling the order of learning has a greater im
pact on the constraints recorded as N increases. We

see this in Fig. 7 (drawn from the same set of experi
ments as Fig. 6), where the average constraint size in
creases for unlimited order learning, but not for third-
order. The primary cause of this effect is that learned
non-binary constraints are becoming part of conflict-
sets. The first constraint learned with these parame
ters (particularly = 3) cem have at most three vari
ables in it, one eliminating each value of the dead-end.
Once a 3-variable constraint exists, it may contribute
two variables to a conflict set, and thus a four variable
conflict set can arise. For N^ = 250, the largest conflict
set we observed had 11 elements. Recording such a
constraint is unlikely to be helpful later in the search.

It is worth noting that we did not find the space
requirements of learning to be overwhelming, as has
been reported by some researchers. For instance, the
average problem at AT = 250 and T = 2/9 took about
100 CPU seconds and recorded about 2600 new con

straints (with unlimited order learning). Each con
straint requires fewer than 25 bytes of memory, so the
total added memory is well under one megabyte. We
found that computer memory is not the limiting factor;
time is.



rder 3

KiSTiBSnfiPB

Unlimited order

Learne

16

31

94

383

1,110
2.6

Figure 7: Figures for T = 2/9; learning with BJ+DVO. "Learned" is number of new constraints learned; "Avg.
Size" is the average number of variables in the constraints.

5. Conclusions

We have introduced a new variant of learning, called
jump-back learning, which is more powerful than pre
vious versions. Our experiments show that it is very
effective when augmented on top of an efficient ver
sion of backjumping, resulting in at least an order of
magnitude reduction in CPU time for some problems.

Learning seems to be particularly effective when ap
plied to instances that are large or hard, since it re
quires many dead-ends to be able to augment the ini
tial problem in a significant way. However, on easy
problems with few dead-ends, learning will add tittle if
any cost, thus perhaps making it particularly suitable
for situations in which there is a wide variation in the

hardness of individual problems. In this way learning
is superior to other CSP techniques which modify the
initial problem, such as by enforcing a certain order of
consistency, since the cost will not be incurred on very
easy problems. Moreover, we have shown that the per
formance of any backtracking algorithm with learning,
using a fixed ordering, is bounded by exp(ti;*).

An important parameter when applying learning is
the order, or maximum size of the constraints learned.
With no restriction on the order, it is possible to learn
very large constraints that will be unlikely to prune
the remaining search space. We plan to study the re
lationship between K, the size of the domain, and the
optimal order of learning. Clearly with higher values of
K, the order may need to be higher, especially for loose
constraints, possibly rendering learning less effective.

References

Bruynooghe, M., and Pereira, L. M. 1984. Deduc
tion revision by intelligent backtracking. In Campbell,
J. A., ed., ImpUmeniaiion of Prolog. Ellis Horwood.
194-215.

Cheeseman, P.; Kanefsky, B.; and Taylor, W. M.
1991. Where the rtally hard problems are. In Pro-
cttdings of ike Intemaiional Jotni Conference on Ar
tificial Intelligence, 331-337.

Dechter, R., and Meiri, I. 1989. Experimental evalu
ation of preprocessing techniques in constraint satis

faction problems. In International Joint Conference
on Artificial Intelligence, 271-277.

Dechter, R. 1990. Enhancement Schemes for Con-
strsunt Processing: Backjumping, Learning, and Cut
set Decomposition. Artificial Intelligence 41:27Z-Z12.

Dechter, R. 1992. Constraint networks. In Encyclope
dia of Artificial Intelligence. John Wiley & Sons, 2nd
edition.

Freuder, E. C. 1982. A sufficient condition for
backtrack-free search. JACAf 21(ll):958-965.
Frost, D., and Dechter, R. 1994. Search for the
best constraint satisfaction search. In Proceedings of
the Twelfth National Conference on Artificial Intelli
gence.

Gaschnig, J. 1979. Performance measurement and
analysis of certain search algorithms. Technical Re
port CMU-CS-79-124, Carnegie Mellon University.

Haralick, R. M., and Elliott, G. L. 1980. Increas
ing Tree Search Efficiency for Constraint Satisfaction
Problems. Artificial Intelligence 14:263-313.

Mackworth, A. K. 1992. Constraint satisfaction prob
lems. In Encyclopedia of Artificial Intelligence. John
Wiley & Sons, 2nd edition.

Mitchell, D.; Selman, B.; and Levesque, H. 1992.
Hard and Easy Distributions of SAT Problems. In
Proceedings of the Tenth National Conference on Ar
tificial Intelligence, 459-465.

Prosser, P. 1993. Hybrid Algorithms for the Con
straint Satisfaction Problem. Computational Intelli
gence 9(3):268-299.
Purdom, P. W. 1983. Search Rearrangement Back
tracking and Polynomial Average Time. Artificial In
telligence 21:117-133.

Stallman, R. M., and Sussman, G. S. 1977. Forward
reasoning and dependency-directed backtracking in a
system for computer-aided circuit analysis. Artificial
Intelligence 9:135-196.

Zabih, R., and McAllester, D. 1988. A Rearrange
ment Sesirch Strategy for Determining Prepositional
Satisfiability. In Proceedings of the Seventh National
Conference on Artificial Intelligence, 155-160.




