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Abstract

Objectives

To characterize the paleodiet of individuals from Formative Period (1500 B.C. - A.D. 

400) Atacama Desert sites of Ancachi and Quillagua as a means of understanding the dietary and 

cultural impacts of regional systems of exchange. 

Materials and Methods

Thirty-one bone samples recovered from the cemetery of Ancachi (02QU175) and 

in/around the nearby town of Quillagua, were subject of carbon and nitrogen stable isotope 

analysis and multi-source mixture modeling (FRUITS) of paleodiet. These individuals were 

compared with nearly 200 contemporary individuals from throughout the region to identify 

differences in dietary behaviors.

Results 

80.6% (25/31) of the samples yielded sufficient well-preserved collagen and were 

included in the multi-source mixture model. The FRUITS model, which compared individuals 

with a robust database of available foods from the region, identified a wide diversity of diets in 

the Ancachi/Quillagua area (including both coastal and interior individuals), and, most notably, 

twenty-one individuals who consumed an average of 11.9±1.8% terrestrial animals, 21.2±2.4% 

legumes, and 20.0±4.1% marine fauna, a balanced pattern of protein consumption distinct from 

both the coastal and inland individuals in our larger regional sample. 
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Conclusions

The combination of stable isotope analysis and multi-source mixture modeling permitted 

the characterization of dietary behavior of twenty-five individuals from nodal sites in the 

Atacama Desert, thus enhancing our understanding of the economic and social relationships that 

bound together Formative Period sites, populations, and individuals in this hyperarid region.

Introduction

 The Atacama Desert is located in northern Chile and southern Peru, between ca. 18 and 

30 South. The Atacama is the world’s driest desert, with less than 1 mm/yr falling in the study 

area (Houston 2006), and the region’s aridity seems to have been a persistent feature for 

millennia (Moreno 2009). A recent paleoclimatic study suggests that aridity equal to, if not 

exceeding, those seen in the present prevailed throughout the Holocene, with the exception of a 

somewhat wetter period between 1000-2000 years ago (Maldonado, et al. 2016). In order to 

survive these arid conditions, ancient peoples strategically chose settlement locations on the 

Pacific coast, at oases, in deep quebradas on the western slope of the Andes, and along the Loa 

River, the region’s only persistent river course (Castro, et al. 2016). To supply material needs 

and wants, Atacameños also developed systems of long-distance exchange, through which both 

essential and luxury goods moved (Pimentel 2013). Quillagua and Ancachi, the two localities at 

the heart of this research (Figure 1), are located at a nexus of these trade routes between coastal 

and inland/highland populations, and a variety of sources support the notion that the 

Ancachi/Quillagua area has functioned as a frontier zone between groups living to their east, 

north, and west for much of its inhabited history, from the Formative Period until the 18th 

century A.D. (Agüero et al. 1999, 2001, 2006; Paz Soldán 1878). 
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<Figure 1> 

While borders or frontiers such as that seen at Ancachi/Quillagua are often conceived of 

as limiting the interaction of peoples from surrounding areas, a wealth of social science literature 

sees them instead as zones of cultural transition between the societies that lie on either side 

(Barth 1998, 2000; Newman, 2006; van Dommelen, 1997, 1998; White, 1991). Viewed as such, 

these frontier zones are judged to facilitate, rather than restrict, cross-cultural pollination. Indeed, 

people residing in these zones can become engines of cultural innovation and change. As 

discussed below, the “contact hypothesis”, a sociological precept that describes how perceptions 

and behavior change when groups of people with diverse backgrounds come into close contact, 

provides a powerful lens for understanding the conditions under which cultural change might 

occur.  In this regard, the inhabitants of Ancachi and Quillagua serve as ideal indicators from 

which to develop a better understanding of the movement and exchange of resources within the 

Atacama Desert during the Formative, and the lived consequences of this exchange for their 

behaviors and lifeways.

 The way in which individuals obtain the necessary nutrients to survive is one of the most 

fascinating aspects of human behavior (Schwarcz and Shoeninger 1991), and one of the most 

culturally enmeshed. Indeed, few aspects of human behavior are, simultaneously, as culturally 

bound and situationally responsive as diet, with the consequence that reconstruction of ancient 

dietary practices can offer insights into myriad aspects of ancient life (see, for example, the 

papers in Twiss 2007 [ed.]). The most well-established technique for reconstructing individual-

level ancient human diet is stable isotope analysis, which provides high-fidelity data on long-
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term (decadal) individual consumption patterns (Lee-Thorp 2008). Stable isotope analysis has 

been part of the archaeologist’s toolkit since the last quarter of the 20th century, and it has been 

proven to provide researchers with an accurate method for estimating the dietary composition of 

past people, assuming a series of pre-conditions are met. 

When combined with multi-source mixture modeling (Fernandes et al. 2014), one can use 

stable isotope analysis to develop quantitative and probabilistic estimates of the lived behavior 

(diet) of past societies. In the present case, these techniques allow us to characterize individual-

level diet at Ancachi/Quillagua and identify those persons who appear to have been behaving 

(consuming) in ways not seen elsewhere among their contemporaries or in the broader region. 

Through this process of estimating ancient diet, we contend that we can, in effect, measure the 

effects of interaction patterns in these individuals, and thus gauge the presence and effects of 

ancient frontiers in the archaeological record. 

Materials and Methods 

Cortical bone samples (∼1 g) were obtained from thirty-one individuals from Formative 

Period burials in the tumulus cemetery of Ancachi and from pit/shaft tombs near the modern 

town of Quillagua (Agüero et al. 1999, Agüero and Uribe 2015, Gallardo et al. 1993, Latcham 

1933). For these purposes, we consider the two sites, which sit approximately 10 km apart,  

jointly. The present work adds nineteen individuals to a previously published sample of twelve 

individuals from Ancachi/Quillagua (Pestle et al. 2019). Ultimately, we consider both the 

internal variability and structure of the paleodiet of these individuals and then position them 

against a larger regional sample of nearly 200 previously analyzed individuals from the 

Formative Period (Pestle et al. 2015a, 2015b; Pestle 2017).
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The extraction of collagen and hydroxyapatite from human bone samples was performed 

at the Archaeological Stable Isotope Laboratory at the University of Miami. Each sample was 

individually ground by hand using a ceramic mortar and pestle. Samples were then separated into 

size fractions using geological screens. The collagen extraction protocol used was established by 

Longin (1971) and modified by Pestle (2010). For each bone sample, 0.5 grams of the 0.5-1.0 

mm fraction was weighed and placed in 50 ml centrifuge tubes. The samples were demineralized 

in 30 mL of 0.2 M HCL on a spinning rotator for 24 hours. Samples were then rinsed to neutral 

through a process of centrifugation, decanting, and the addition of 30 mL of distilled water. 

Humic removal was accomplished by adding 30 mL of 0.0625 M NaOH to each sample for 20 

hours. After time elapsed, the samples were again rinsed to neutral. The remaining collagen was 

then gelatinized in 10-3 M HCL at 90°C and filtered using single-use Millipore Steriflip® 

vacuum filters, condensed, frozen, and freeze dried. Start and end weights were recorded and 

used to calculate collagen yield (wt%) for each sample. 

Hydroxyapatite extraction followed a protocol established in Lee-Thorp (1989) and 

Kruger (1991) and modified by Pestle (2010). Approximately 0.1 gram of the 0.125–0.25 mm. 

fraction was placed in a 50 mL centrifuge tube. After weighing, each sample underwent a 24 h 

oxidation of organics using 30 mL of 50% bleach. The bleach treatment was then repeated for an 

additional period for a total of 48 h of treatment. Samples then were rinsed to neutral. The final 

step in the protocol involved the samples undergoing an acid treatment for the removal of labile 

carbonates. This was accomplished by the addition of 30 mL of 0.1 M acetic acid to each 

centrifuge tube for a total of four hours with a 5 min vacuum treatment at the two-hour mark. 

After the acid treatment, each sample was rinsed again to neutral before being placed in a 50°C 
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oven overnight. Start and end weights were recorded for all hydroxyapatite samples and used to 

calculate the weight percent hydroxyapatite yield. 

Collagen and hydroxyapatite isotopic analysis was performed in the Marine Geology and 

Geophysics Stable Isotope Laboratory and the Rosenstiel School of Marine and Atmospheric 

Science at the University of Miami. Collagen samples were packed into tin capsules and 

analyzed using PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20-20 

isotope ratio mass spectrometer (IRMS). This analytical process yields information on elemental 

carbon and nitrogen composition as well as the stable isotopes of carbon and nitrogen (δ13Cco  

and δ15Nco). Hydroxyapatite samples were analyzed using Kiel-IV Carbonate Device coupled to 

a Thermo Finnigan DeltaPlus IRMA, providing the δ13Cap values. Collagen results were 

calibrated using acetanilide and glycine. An in-house carbonate standard calibrated to NBS-19 

was used for hydroxyapatite. Standards were analyzed in every sample set at the beginning and 

end of the run, as well as in-between the analyzed samples to ensure accuracy and instrumental 

stability.

With isotopic data in hand, the FRUITS (Food Reconstruction Using Isotopic Transferred 

Signals) model of Fernandes and colleagues (2014) was used to quantify individual dietary 

composition. This multi-source mixture modeling technique is one of several developed with the 

hope of better bounding estimates of food source contribution. Indeed, recent southern Andean 

attempts (Andrade, et al. 2015; Pestle, et al. 2019; Pestle, et al. 2016; Pestle, et al. 2017) at 

modeling have tended to use this, or similar, Bayesian approaches, which accommodate 

underdetermined systems (those with more than n+1 sources), and also allow for the 

incorporation of priors (Fernandes, et al. 2014; Moore and Semmens 2008; Parnell, et al. 2010). 

These approaches “offer a powerful means to interpret data because they can incorporate prior 
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information, integrate across sources of uncertainty and explicitly compare the strength of 

support for competing models or parameter values,” (Moore and Semmens 2008:471).

In order to generate consumer (human) data for the model, we first determined the 

consumer-foodstuff offset (and error) for δ13Cco  using the method of Pestle and colleagues 

(2015). The offset in δ13Cap was stipulated as 10.1±0.4‰ (Fernandes et al. 2012). Finally, for 

δ15Nco, we employed a trophic fractionation value of 3.6±1.2‰, as recommended by several 

experimental studies of omnivorous animals (Ambrose 2000; DeNiro et al. 1981; Hare et al. 

1991; Howland et al. 2003; Sponheimer et al. 2003; Warinner and Tuross 2009).

Foodweb isotope values comprised the edible portions of eighty-nine archaeological and 

modern Atacameño plants and animals. The decision to restrict the foodweb sample to only those 

generated in the course of our work in the region was due to the isotopic dissimilarity between 

those samples and other previously published values. Any modern data included in this reference 

sample had δ13C values corrected by +1.5‰ to account for recent fossil fuel burning (Keeling et 

al. 1979). Macronutrient composition of each food group was determined by reference to the 

USDA National Nutrient Database for Standard Reference (Agriculture 2013). Elemental 

composition (particularly %C) of each foodstuff/macronutrient group was based on formulae 

provided in Morrison et al. (2000).  Digestibility was determined following Hopkins (1981). All 

nitrogen in bone collagen was stipulated as coming from dietary protein, the carbon in 

hydroxyapatite was stipulated as reflecting all dietary carbon, and the carbon composition of 

bone collagen was set as reflecting a 3:1 ratio of dietary protein to energy (Fernandes et al. 

2012).  Carbon isotope offsets between measured bulk food isotope values and the isotopic 

values of a foodstuff’s fats (bulk-6‰) and carbohydrates (bulk+0.5‰) were based on data from 

Tieszen (1981). The carbon isotope signature of a measured bulk foodstuff’s protein was 
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determined using a mass-balance equation, such that a proportional/weighted average of the δ13C 

of protein and energy (fats and carbohydrates) would equal the measured δ13C bulk value 

(corrected for the concentration of carbon in each macronutrient and foodstuff-appropriate 

macronutrient concentration).

Final food group isotope, macronutrient, and elemental concentration values used in the 

FRUITS simulations are presented in Table 1. We divided the available foodstuffs into five 

groups (C3 plants, C4 plants, legumes, terrestrial animals, and marine animals). Consumption of 

protein was limited to less than 45% of protein as energy (using the FRUITS a priori data 

option), reflecting the upper limit of possible human protein intake (World Health Organization 

2007).  All FRUITS simulations were performed using 10,000 iterations, as recommended by its 

developers.

Results

Sample preservation quality was determined using both chemical (collagen yield) and 

elemental (carbon and nitrogen yield, atomic C/N ratio) data. Only well-preserved (collagen 

yield >0.5 wt%, carbon yield >4.5 wt%, nitrogen yield >0.9 wt%, atomic C/N ratio between 2.9–

3.6) samples were included in FRUITS calculations. Based on the arid environmental conditions 

of the region, samples that met these requirements also were assumed to have acceptable 

hydroxyapatite preservation (the lack of free water making the prospects of dissolution and 

recrystallization unlikely).

<Table 1> 
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As seen in Table 2, 80.6% (25/31) of the samples yielded sufficient well-preserved 

collagen to be considered as reflecting biogenic isotope signatures. The average collagen yield 

for those twenty-five samples was 13.7±5.3 wt%, carbon yield averaged 40.8±1.9 wt%, the 

average nitrogen yield was 14.2±1.0 wt%, making the average atomic C/N ratio 3.4±0.1. 

Elemental values were not recorded for one sample (I-102), but due to its high collagen yield and 

unremarkable (non-outlying) isotope values, we nonetheless included it in later analysis. 

Similarly, sample I-101 had a slightly elevated atomic C:N ratio (3.7), but we retained the 

sample because its carbon and nitrogen yields were within acceptable ranges and it was not an 

isotopic outlier.

<Table 2>

Turning to isotopic results (Table 2), δ13Cco  for the twenty-five well preserved samples 

averaged -15.5±0.9‰ (range -17.1–-13.4‰) and δ13Cap averaged -11.4±0.8‰ (range -13.0–-

9.8‰), which, when combined, yielded an average Δ13Cap-co of 4.2±0.6‰ (range 3.2–5.2‰). 

δ15Nco averaged 17.3±3.0‰, and possessed an immense range of 10.9–25.8‰. To begin with, 

then, there is notable isotopic variation within the sample, particularly in δ15Nco, suggesting 

similar diversity in patterns/sources of protein consumption. 

Based on the results of FRUITS modeling (Table 3), C3 plants were the largest average 

dietary contributor, providing an average of 37.2±4.4% of calories, with a range of 28.5–46.2%. 

In comparison, C4/CAM plants made up an average of only 8.7±1.4% of diet, ranging between 

6.2–13.0%. Turning to dietary protein, terrestrial animals contributed between 5.2–19.8% 

(average 12.0±2.7%), marine animals 19.5±7.0% (range 7.7-41.3%), and legumes 22.5±6.0% 
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(range 10.8–39.2%). It is the variability of these protein sources, each of which show at least 

threefold variability, and in particular that of marine faunal sources (which shows a greater-than 

fivefold difference between minimum and maximum modeled contribution), that is most 

noteworthy. 

<Table 3>

Discussion 

Comparing these results to Formative Period individuals from coastal and interior sites in 

the Atacama (Figure 2), (at least) two distinct dietary regimes are evident among the individuals 

from Ancachi/Quillagua. On the one hand, certain individuals (e.g. J-86 from Quillagua 

[41.3±11.7% marine protein] and L-139 from Ancachi [10.7±7.7% marine]) possess modeled 

diets consistent with either a coastal (high marine protein intake) or interior (heavy terrestrial 

protein reliance) origin. This provides direct testament to the presence in Ancachi/Quillagua of 

people of presumably non-local origin, or at least people who ate in ways consistent with other 

far-removed locales. It is our contention that these individuals came to be buried in 

Ancachi/Quillagua as a consequence of their direct personal movement/involvement in systems 

of regional exchange. Like other Formative Period individuals who we have recovered from 

alongside trade routes through the Atacama (Knudson et al. 2012, Pimenetel et al. 2017, Torres-

Rouff et al. 2012), these individuals were agents (travelers, traders) embedded in these region-

wide systems of exchange.  

<Figure 2> 
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A larger number of the Ancachi individuals (84%, 21/25), however, would appear to have 

consumed a mixed diet (particularly in terms of protein composition/balance) unlike that seen in 

almost any other site in the region (Villa Chuqicamata in the modern city of Calama being the 

only other exception). These individuals consumed an average of 11.9±1.8% terrestrial animals, 

21.2±2.4% legumes, and 20.0±4.1% marine fauna, a balanced pattern of protein consumption 

that is notably distinct from both the coastal and inland individuals in our larger regional sample. 

Since Ancachi/Quillagua were located at a centralized location between coastal and interior 

populations, in a border/frontier space, we contend that the unique dietary pattern seen  in this 

population evince the types of interactions and cultural innovation that only (or most often) occur 

in such border spaces. Individuals of diverse origin and food culture were coming together at 

Ancachi/Quillagua, interacting via meaningful economic and social exchanges, and (one of) the 

products of this interaction was new dietary practices, new cultural forms.

In Sociology, the Contact Hypothesis has been employed for over sixty years as means of 

explaining how attitudes and behaviors can change as a consequence of long-term meaningful 

(equal-status, non-transactional) interaction between groups of distinct interest/origin. While this 

notion was originally developed in the context of racial prejudice reduction in the United States 

of the mid-20th century (Allport 1954), decades of further study has validated its prediction that 

under circumstances of prolonged equal-status co-existence and interaction, common experience 

will shape and sway the opinions and worldview of even the most entrenched actors (Kende et 

al. 2018; Mirwaldt 2010, Pettigrew and Troop 2006, Pettigrew et al. 2011). When these 

interactions extend beyond the transactional, to the kinds of more profound egalitarian 

relationships that emerge when diverse individuals interact and coexist for long periods of times 
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while engaged in mutually-beneficial activities, individuals begin to exhibit real social and 

cultural exchange, and new and hybrid behaviors emerge. 

That a form of eating unlike anything else seen in the Formative Period Atacama would 

emerge in a space like Ancachi and Quillagua would suggest that beyond simply functioning as 

economic nodes, these sites acted as locations of social exchange and interculturation. People 

were not only passing through these spaces in pursuit of material needs, but the positioning of 

these sites as a nexus or node in the Formative Period’s regional exchange network would appear 

to have facilitated the transculturation of individuals involved, and the emergence of new ways 

of eating, if not new ways of living. These processes would likely have been similar/the same 

that produced, for instance, new regional stylistic conventions and symbolic vocabularies during 

the Formative (Castro et al. 2016).

 

Conclusions 

Dietary patterns are fundamental to an individual’s identity, and their reconstruction can 

serve as a powerful tool for understanding past cultural and ethnic differences and identity 

formation. In this present work, stable isotope analysis and multi-source mixture modeling 

permitted the characterization of dietary behavior of twenty-five individuals buried in a region 

thought to be central to a vast regional exchange system. Our results suggest that the diets of 

these Ancachi/Quillagua individuals were strongly influenced by the kind of exchange systems 

that surrounded them in life. One possible explanation for the novel dietary patterns we observed 

is that these systems of economic exchange had fostered meaningful social relationships among 

different cultural groups. Through these interactions, some of the individuals studied here 
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adopted new cultural lifestyles and behaviors, consuming resources from both coastal and 

interior cultural patterns, in an entirely new way of living otherwise not seen in the surrounding 

region. Further analysis of additional human remains recovered from Ancachi/Quillagua 

cemetery should be performed to validate and develop this notion, but based on the data 

presented here, it is clear that something novel, and indeed phenomenal, was taking place in this 

portion of Atacama Desert region more than 2,000 years ago. 
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Figure and Table Captions

Figure 1: Map of study region, with sites mentioned in text noted. 

Figure 2: FRUITS modeled consumption of marine animals and C3 plants for Ancachi/Quillagua 
individuals and comparative interior and coastal populations. 

Table 1: Macronutrient, isotopic, and elemental data for food groups used in FRUITS multi-
source mixture model. 

Table 2: Chemical, elemental, and isotopic data for all Ancachi/Quillagua individuals. 

Table 3: Results of FRUITS multi-source mixture modeling for Ancachi/Quillagua individuals. 
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Figure 1: Map of study region, with sites mentioned in text noted. 
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Figure 2: FRUITS modeled consumption of marine animals and C3 plants for Ancachi/Quillagua individuals 
and comparative interior and coastal populations. 
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Macronutrient concentration (%) %C Tissue δ13C (‰) Tissue δ15N (‰)
Food grouping Group n Protein Fat Carbohydrates Energy Protein Fat Carbohydrates Energy Bulk Protein Fat Carbohydrates Energy Bulk Protein
Terrestrial animals 24 83±12 16±12 1±3 17±12 43±12.7 12±12.1 0±4.2 13±12.7 -16.5±3.8 -14.8±3.8 -22.5±3.8 -16±3.8 -22.3±3.8 9.8±2.4 9.8±2.4
Marine animals 31 74±15 19±16 7±9 26±15 39±15.3 15±16.6 3±9.6 18±15.3 -14.6±2.9 -12.4±2.9 -20.6±2.9 -14.1±2.9 -19.5±2.9 20.9±3.4 20.9±3.4
C3 plants 17 10±5 5±4 84±7 89±5 5±6.9* 4±6.7 37±8.5 41±6.9 -23.7±2.0 -22.3±2.0 -29.7±2.0 -23.2±2.0 -23.8±2.0 8.6±5.4 8.6±5.4
C4/CAM plants 13 10±5 5±4 84±7 89±5 5±6.9* 4±6.7 37±8.5 41±6.9 -11.2±1.6 -9.8±1.6 -17.2±1.6 -10.7±1.6 -11.3±1.6 12±5.6 12±5.6
Legumes 4 24±2 2±1 71±3 72±2 13±5.6* 1±5.3 31±5.8 33±5.6 -23.5±1.7 -24.2±1.7 -29.5±1.7 -23.0±1.7 -23.2±1.7 0.7±3.0 0.7±3.0
* assumes 87.4% digestiblity of plant protein as compared to animal protein
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Sample Site Burial Collagen yield %C %N Atomic C:N d13Cco (‰) d15Nco (‰) d13Cap (‰) Δ13Cap-co (‰)
I-99* Ancachi UR-3 18.4% 39.6 13.6 3.4 -14.8 20.4 -11.6 3.2
I-100* Ancachi UR-3 23.9% 43.5 14.9 3.4 -15.1 17.9 -11.4 3.7
I-101* Ancachi UR-1 14.6% 38.6 12.0 3.7 -15.4 18.5 -10.5 4.9
I-102* Ancachi UR-6 24.5% - - - -15.3 16.9 -11.5 3.8
I-103* Ancachi UR-2 14.6% 39.6 13.4 3.4 -15.4 16.7 -11.8 3.6
I-105* Ancachi UR-4 20.2% 39.8 14.0 3.3 -14.6 16.9 -11.2 3.4
J-84* Quillagua Museo, caja 3-3 16.0% 44.4 15.6 3.3 -15.1 17.7 -11.6 3.5
J-86* Quillagua Torre 203, Qui.1, museo, exhibido 7.0% 41.9 13.6 3.6 -13.4 25.8 -10 3.4
J-92* Quillagua Torre 203, Qui 02 16.6% 44.9 16.3 3.2 -16.5 10.9 -11.5 5.0
J-93* Quillagua Qui. Res. 2013-1 3.2% 38.9 13.4 3.4 -17.1 11.2 -12.1 5.0
L-133 Ancachi 12140, 343, 399 7.8% 37.9 13.2 3.3 -16.4 16.8 -11.9 4.5
L-134 Ancachi 12146, 344, 400 5.7% 38.1 13.6 3.3 -15.1 17.5 -10.6 4.5
L-135 Ancachi 12065, 340, 401 13.4% 41.0 14.6 3.3 -14.7 17.7 -10.7 4.0
L-136 Ancachi 12141, 342, 403 11.1% 39.9 14.6 3.2 -17.1 16.0 -13.0 4.1
L-137 Ancachi 12137, 345, 402 16.8% 41.1 15.0 3.2 -14.8 20.2 -10.9 3.9
L-138 Ancachi 12139, 347, 398 15.1% 41.6 14.7 3.3 -16.0 15.3 -11.4 4.6
L-139 Ancachi 12148, 1899, 403 12.6% 40.7 14.8 3.2 -14.6 12.3 -10.1 4.5
L-140 Ancachi 12152, 348, 397 12.9% 41.0 14.7 3.2 -15.8 16.7 -12.1 3.8
L-141 Ancachi ANC16 16.7% 40.8 13.6 3.5 -16.0 19.0 -11.7 4.3
L-144 Ancachi ANC-30-I1 15.1% 42.2 15.0 3.3 -15.5 16.4 -11.7 3.9
L-148 Ancachi ANC12 7.4% 39.9 14.1 3.3 -16.0 16.5 -11.2 4.8
L-149 Ancachi ANC7 8.1% 42.2 14.1 3.5 -16.9 16.7 -12.5 4.4
L-150 Ancachi ANC6-I1 12.9% 41.4 14.3 3.4 -16.4 19.4 -12.9 3.5
L-151 Ancachi ANC13 10.8% 37.3 12.7 3.4 -15.4 19.1 -11.2 4.1
L-152 Ancachi ANC-2-I1 16.4% 42.2 15.1 3.3 -15.0 19.6 -9.8 5.2
* individuals were previously published in Pestle et.al 2019
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Sample Site Burial Terrestrial animals sd C3 plants sd C4/CAM plants sd Legumes sd Marine animals sd
I-99* Ancachi UR-3 8.4% 7.6% 39.6% 18.2% 7.7% 6.4% 16.7% 13.7% 27.6% 11.3%
I-100* Ancachi UR-3 12.3% 10.3% 38.0% 18.5% 8.7% 7.1% 20.1% 15.2% 20.9% 10.4%
I-101* Ancachi UR-1 11.0% 9.5% 36.2% 18.4% 9.6% 7.6% 20.0% 15.0% 23.2% 11.1%
I-102* Ancachi UR-6 13.0% 10.9% 36.8% 19.0% 8.8% 7.2% 22.9% 16.1% 18.5% 9.5%
I-103* Ancachi UR-2 13.3% 11.0% 37.9% 19.2% 8.3% 6.8% 23.1% 16.7% 17.3% 9.3%
I-105* Ancachi UR-4 14.0% 11.5% 34.4% 18.3% 9.8% 7.7% 22.5% 15.3% 19.3% 10.0%
J-84* Quillagua Museo, caja 3-3 12.7% 10.4% 38.5% 18.6% 8.4% 6.9% 20.4% 15.9% 20.0% 10.0%
J-86* Quillagua Torre 203, Qui.1, museo, exhibido 5.2% 4.6% 32.8% 14.7% 10.0% 8.0% 10.8% 9.4% 41.3% 11.7%
J-92* Quillagua Torre 203, Qui 02 13.4% 10.5% 30.8% 19.1% 9.6% 7.4% 38.5% 18.1% 7.7% 6.3%
J-93* Quillagua Qui. Res. 2013-1 13.9% 11.1% 30.9% 19.8% 8.3% 6.6% 39.2% 19.1% 7.7% 5.9%
L-133 Ancachi 12140, 343, 399 12.6% 10.7% 40.3% 19.1% 7.5% 6.3% 23.3% 17.2% 16.4% 9.1%
L-134 Ancachi 12146, 344, 400 13.4% 11.1% 33.7% 18.4% 9.8% 8.0% 22.0% 15.6% 21.0% 10.6%
L-135 Ancachi 12065, 340, 401 12.3% 9.9% 36.5% 18.4% 10.3% 8.1% 20.2% 15.1% 20.8% 10.1%
L-136 Ancachi 12141, 342, 403 11.7% 10.5% 45.3% 21.3% 6.2% 5.2% 23.1% 17.5% 13.7% 8.5%
L-137 Ancachi 12137, 345, 402 9.1% 8.6% 36.9% 17.5% 8.7% 7.1% 17.8% 13.8% 27.5% 11.0%
L-138 Ancachi 12139, 347, 398 14.5% 11.4% 37.1% 20.0% 8.8% 6.9% 25.3% 17.4% 14.4% 8.8%
L-139 Ancachi 12148, 1899, 403 19.8% 12.8% 28.5% 17.5% 13.0% 8.9% 28.1% 15.7% 10.7% 7.7%
L-140 Ancachi 12152, 348, 397 12.8% 10.8% 39.9% 20.3% 7.5% 6.3% 22.7% 16.7% 17.0% 9.3%
L-141 Ancachi ANC16 9.4% 8.5% 42.1% 18.6% 7.5% 6.4% 18.5% 14.6% 22.5% 10.7%
L-144 Ancachi ANC-30-I1 13.4% 11.1% 37.9% 19.7% 8.2% 6.5% 24.0% 16.9% 16.5% 9.0%
L-148 Ancachi ANC12 13.3% 10.8% 37.0% 19.1% 9.0% 7.3% 23.4% 16.4% 17.4% 9.5%
L-149 Ancachi ANC7 12.1% 11.1% 43.3% 20.1% 7.0% 5.8% 22.1% 16.3% 15.6% 8.9%
L-150 Ancachi ANC6-I1 8.8% 8.6% 46.2% 18.8% 6.4% 5.6% 17.5% 14.9% 21.1% 10.1%
L-151 Ancachi ANC13 10.0% 9.0% 38.4% 18.6% 8.5% 7.0% 19.6% 14.6% 23.6% 10.5%
L-152 Ancachi ANC-2-I1 10.6% 9.5% 32.3% 17.4% 10.3% 8.1% 19.9% 14.7% 26.9% 11.1%
* individuals were previously published in Pestle et.al 2019
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