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Abstract

Introduction: Historical reservations regarding stereotactic radiosurgery (SRS) for small-cell lung cancer (SCLC) brain metastases
include concerns for short-interval and diffuse central nervous system (CNS) progression, poor prognoses, and increased neurologi-
cal mortality specific to SCLC histology. We compared SRS outcomes for SCLC and non-small cell lung cancer (NSCLC) where SRS is
well established.

Methods: Multicenter first-line SRS outcomes for SCLC and NSCLC from 2000 to 2022 were retrospectively collected (n¼ 892 SCLC,
n¼ 4785 NSCLC). Data from the prospective Japanese Leksell Gamma Knife Society (JLGK0901) clinical trial of first-line SRS were ana-
lyzed as a comparison cohort (n¼ 98 SCLC, n¼ 814 NSCLC). Overall survival (OS) and CNS progression were analyzed using Cox pro-
portional hazard and Fine-Gray models, respectively, with multivariable adjustment for cofactors including age, sex, performance
status, year, extracranial disease status, and brain metastasis number and volume. Mutation-stratified analyses were performed in
propensity score–matched retrospective cohorts of epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK)
positive NSCLC, mutation-negative NSCLC, and SCLC.

Results: OS was superior for patients with NSCLC compared to SCLC in the retrospective dataset (median OS ¼ 10.5 vs 8.6 months;
P< .001) and in the JLGK0901 dataset. Hazard estimates for first CNS progression favoring NSCLC were similar in both datasets but
reached statistical significance in the retrospective dataset only (multivariable hazard ratio ¼ 0.82, 95% confidence interval ¼ 0.73 to
0.92, P¼ .001). In the propensity score–matched cohorts, there were continued OS advantages for NSCLC patients (median OS ¼ 23.7
[EGFR and ALK positive NSCLC] vs 13.6 [mutation-negative NSCLC] vs 10.4 months [SCLC], pairwise P values< 0.001), but no statisti-
cally significant differences in CNS progression were observed in the matched cohorts. Neurological mortality and number of lesions
at CNS progression were similar for NSCLC and SCLC patients. Leptomeningeal progression was increased in patients with NSCLC
compared to SCLC in the retrospective dataset only (multivariable hazard ratio ¼ 1.61, 95% confidence interval ¼ 1.14 to 2.26,
P¼ .007).

Conclusions: After SRS, SCLC histology was associated with shorter OS compared to NSCLC. CNS progression occurred earlier in
SCLC patients overall but was similar in patients matched on baseline factors. SCLC was not associated with increased neurological
mortality, number of lesions at CNS progression, or leptomeningeal progression compared to NSCLC. These findings may better
inform clinical expectations and individualized decision making regarding SRS for SCLC patients.

International guideline statements recommend stereotactic radio-
surgery (SRS) for limited brain metastases (BrM) arising from most
tumor histologies (1-4) due to the results of randomized trials that
demonstrate similar overall survival (OS) and improved cognition
and quality of life with SRS alone vs strategies incorporating
whole-brain radiotherapy (WBRT) (5-9). Small-cell lung cancer
(SCLC) patients, however, were systematically excluded from the
landmark trials establishing SRS alone, and WBRT has remained
the standard of care for SCLC BrM (10,11).

Our group previously published a large international retrospec-
tive analysis, the First-line Radiosurgery for Small-Cell Lung Cancer
(FIRE-SCLC) study, comparing SRS vs WBRT that demonstrated
superior intracranial disease control with WBRT without a result-
ing improvement in OS (12). Those observations suggested that the
trade-offs associated with SRS in SCLC BrM may be similar to other
tumor histologies where SRS is well established and supported the
development of an ongoing cooperative group phase III randomized
trial of SRS vs hippocampal-avoidant WBRT for SCLC BrM
(NCT04804644).

Modern trends in SCLC management including decreases in
prophylactic cranial irradiation, increases in central nervous sys-
tem (CNS) surveillance with high-resolution magnetic resonance
imaging (MRI), and longer OS with the addition of immunotherapy
are expected to lead to the identification of more SCLC patients
with limited BrM who are potential candidates for SRS (10,11,13-
17). However, due to the historical paucity of data on first-line
SRS in SCLC, concerns remain regarding the potential for short-
interval and diffuse CNS progression, poor prognoses, and
increased neurological mortality specific to SCLC histology (18-
20). Most of the data regarding the CNS predilection of SCLC rela-
tive to other tumor histologies have characterized the incidence
of BrM from diagnosis through the natural disease course (21-26),
whereas very limited comparative data are available on post-SRS
outcomes in patients who have already developed BrM (27). The
purpose of this analysis was to provide a detailed comparison of
SRS outcomes in SCLC relative to the established benchmark of

SRS in non-small cell lung cancer (NSCLC), which represents the

most common cause of BrM and the most frequent tumor histol-

ogy for patients treated in the landmark clinical trials establishing

SRS alone (6,9,28).

Methods
The Comparison of First-line Radiosurgery for SCLC and NSCLC

Brain Metastases (CROSS-FIRE) study included patients treated

with first-line SRS without prior WBRT or prophylactic cranial irra-

diation. Two separate analytic cohorts were included: a retrospec-

tive dataset and a comparison prospective dataset from the

published Japanese Leksell Gamma Knife Society (JLGK0901) trial

(29).
Details regarding the data collection for the retrospective SCLC

cohort were previously described (12), with new centers, updated

follow-up, and additional endpoints included for this analysis.

SCLC data were collected from 30 centers in Japan, the United

States, Canada, France, Taiwan, Switzerland, and Germany, and a

comparison NSCLC cohort was collected from 7 centers in Japan,

Germany, and the United States (Supplementary Table 1, available

online). Participation was supported by the International

Radiosurgery Research Foundation (IRR-F.org). Participating cen-

ters obtained local institutional review board approval with

informed consent exemptions due to the minimal risk of harm.

Included patients had tissue-confirmed SCLC or NSCLC and

received first-line single-fraction or multi-fraction SRS for BrM

from years 2000 to 2022. SRS was defined per a consensus defini-

tion modified to allow up to 6 SRS fractions (30).
JLGK0901 was a single-arm prospective study of first-line sin-

gle-fraction SRS for 1-10 BrM from mixed tumor histologies.

Inclusion criteria, consent procedures, SRS details, follow-up pro-

tocols, and endpoints were previously described (29). Among the

1194 patients enrolled at 23 centers in Japan, 912 (76%) had BrM

from lung cancer and were included in this analysis.
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Statistical analysis
The primary endpoints of interest were OS, first CNS progression
(FCP), distant CNS progression (DCP) (ie, new brain lesions), and local
CNS progression (LCP) in SRS-treated lesions. LCP and DCP were
independently tracked, with local control followed beyond isolated
distant progression without censoring and vice versa. Secondary
endpoints evaluated in patients with available data included neuro-
logical mortality, leptomeningeal disease (LMD) progression, num-
ber of lesions at FCP, rates of salvage therapy, and treatment-
related adverse effects. Detailed time-to-event outcome definitions
and censoring procedures are displayed in Supplementary Table 2
(available online). Neurological mortality included cases of likely or
possible death due to BrM in the retrospective dataset, and in
JLGK0901 this was assigned by the treating investigator with uncer-
tain causes of death counted in the neurological mortality group.

Time-to-event outcomes were measured from SRS delivery.
Median follow-up was calculated using the reverse Kaplan-Meier
method (31). The OS hazard ratio (HR) and 95% confidence interval
(CI) comparing SCLC and NSCLC were estimated with Cox propor-
tional hazard regression. Kaplan-Meier curves were used to esti-
mate medians. For the other time-to-event outcomes, the hazard
ratio and 95% confidence interval were analyzed with Fine-Gray
models to account for the competing risk of death. The cumulative
incidence function was used to estimate the 12-month and 24-
month incidence rates. Multivariable models in the retrospective
dataset were adjusted for region (Asia vs North America and
Europe), year, sex, Karnofsky Performance Status, extracranial
metastases outside the thoracic tumor and regional lymph nodes,
presence of BrM at diagnosis (synchronous vs metachronous), BrM
number, and total BrM volume. Models were adjusted on similar
factors in the JLGK0901 dataset with the exceptions of inapplicable
region, unavailable data on year and presence of BrM at diagnosis,
and extracranial disease control was used rather than unavailable
data on the presence of extracranial metastases. The hazard ratio
and 95% confidence interval for all time-to-event outcomes were
modeled with multivariable adjustment for the factors above
except for the propensity score-matched analyses described below,
where the matching procedures controlled for baseline variables.
Cumulative treatment-related adverse events were compared
with Fisher’s exact test because low event rates precluded multi-
variable modeling. Salvage therapy rates were analyzed with mul-
tivariable logistic regression models.

The first stage of the analysis compared SCLC patients with all
NSCLC patients for the outcomes above in the retrospective and
JLGK0901 datasets. Then subset analyses were performed with
propensity score matching (PSM) that compared SCLC patients
with NSCLC patients in the retrospective cohort that were further
stratified into those with epidermal growth factor receptor (EGFR)
mutated or anaplastic lymphoma kinase (ALK) gene-rearranged
NSCLC vs mutation-negative NSCLC. All molecularly stratified
analyses were limited to years 2005 and after following the land-
mark publications establishing the sensitivity of EGFR mutated
NSCLC to tyrosine kinase inhibitors (TKIs) targeting EGFR (32-34).
Direct molecular data were unavailable in JLGK0901, but data
regarding EGFR-directed TKIs (gefitinib and erlotinib) delivered
during or after SRS were prospectively collected. Stratified PSM
analyses were performed in the JLGK0901 dataset using TKI
receipt as a surrogate for EGFR status in NSCLC patients (EGFR
TKI positive vs negative). For the mutation and TKI-stratified anal-
yses, 3-way (1:1:1) PSM was performed to create cohorts balanced
for the same baseline factors as the multivariable models
described above using the methods described by Rassen et al (35).

The matched groups were compared for OS and the primary CNS
control outcomes (Supplementary Methods, available online).

All hypothesis tests were 2-sided, and P less than .05 was con-
sidered statistically significant. All analyses were performed in R
version 4.1.2 (R Foundation for Statistical Computing) and SAS
version 9.4 (SAS Institute) by the University of Colorado Cancer
Center Biostatistics Core.

Results
The retrospective dataset included 892 SCLC and 4785 NSCLC
patients treated with SRS from years 2000 to 2022. JLGK0901
included 98 SCLC and 814 NSCLC patients treated with SRS
from 2009 to 2012. Compared with NSCLC, patients with SCLC
had a higher total BrM volume, had older age, were more fre-
quently male, had higher rates of controlled extracranial dis-
ease, and had treatment in later years (Table 1). Most patients
were treated in Asia, predominately Japan, and the percentage
treated in Asia was higher in the retrospective NSCLC cohort
compared to the SCLC cohort. Most of the patients in the retro-
spective dataset (95.7%) were treated with single-fraction SRS,
and the radiation doses delivered were similar, although
slightly higher for NSCLC. The median follow-up was
61.9 months and 49 months in the retrospective and JLGK0901
datasets, respectively.

SCLC vs NSCLC: OS and CNS progression
In the retrospective dataset, OS was superior for patients with
NSCLC over SCLC (median OS, 10.5 vs 8.6 months; multivariable
HR ¼ 0.79, 95% CI ¼ 0.73 to 0.86, P< .001). Multivariable Fine-Gray
models for CNS progression demonstrated a statistically signifi-
cant reduction in the hazard of FCP for NSCLC vs SCLC (multi-
variable HR ¼ 0.82, 95% CI ¼ 0.73 to 0.92, P¼ .001) and DCP
(multivariable HR ¼ 0.82, 95% CI ¼ 0.73 to 0.93, P¼ .002). No stat-
istically significant differences were observed in LCP on multi-
variable analysis (Figure 1; Table 2).

In JLGK0901, OS was superior for NSCLC over SCLC (median
OS ¼ 13.0 vs 8.7 months; multivariable HR ¼ 0.68, 95% CI ¼ 0.54
to 0.85, P¼ .001). Multivariable analyses of CNS progression in
JLGK0901 returned similar hazard ratio estimates for FCP, DCP,
and LCP for NSCLC vs SCLC compared with the retrospective
dataset, but none of these comparisons reached statistical signifi-
cance in the JLGK0901 dataset (Figure 1; Table 2).

SCLC vs NSCLC stratified by mutation and TKI
status
In the retrospective dataset, 3-way PSM was performed to create
SCLC, EGFR or ALK-positive NSCLC, and mutation-negative
NSCLC cohorts balanced for baseline factors with 428 patients
per group (1284 total; Supplementary Table 3, available online).
Compared with SCLC, OS was superior for both mutation-
negative NSCLC and mutation-positive NSCLC (median OS ¼ 10.4
vs 13.6 vs 23.7 months, respectively; Figure 2). CNS progression
models demonstrated no statistically significant differences
between SCLC and either mutation-negative or mutation-positive
NSCLC for FCP, DCP, or LCP (Figure 2; Supplementary Table 4,
available online).

In JLGK0901, 3-way matching created balanced SCLC, EGFR
TKI-positive NSCLC, and TKI-negative NSCLC cohorts with 84
patients per group (252 total; Supplementary Table 5, available
online). Compared with SCLC, no differences in OS were observed
with TKI-negative NSCLC, whereas OS was statistically signifi-
cantly improved with EGFR TKI-positive NSCLC (median OS ¼ 8.8
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vs 8.9 vs 27.8 months, respectively; Supplementary Figure 1,

available online). CNS progression models returned no statisti-

cally significant differences in FCP, DCP, or LCP (Supplementary
Figure 1; Supplementary Table 4, available online).

Neurological mortality and LMD progression
Analyses of neurological mortality and LMD progression were

performed in all JLGK0901 patients and in retrospective patients
with available data (neurological mortality: 831 SCLC, 4456

NSCLC; LMD: 468 SCLC, 1144 NSCLC). On multivariable analysis,

no differences in neurological mortality were observed between
SCLC and NSCLC in either the retrospective dataset (multivari-

able HR ¼ 0.98, 95% CI ¼ 0.80 to 1.20, P¼ .83) or JLGK0901 (multi-

variable HR ¼ 1.35, 95% CI ¼ 0.56 to 3.26, P¼ .50) (Figure 3;

Supplementary Table 6, available online).
The risk of LMD was increased in patients with NSCLC com-

pared to SCLC in the retrospective dataset (multivariable HR ¼
1.61, 95% CI ¼ 1.14 to 2.26, P¼ .007), whereas no statistically sig-

nificant differences were observed in JLGK0901 (Figure 3;

Supplementary Table 6, available online). Mutation-based subset
analyses in the retrospective dataset demonstrated an increased

risk of LMD in patients with EGFR or ALK-positive NSCLC vs SCLC

(multivariable HR ¼ 2.19, 95% CI ¼ 1.42 to 3.39, P< .001) but not
in patients with mutation-negative NSCLC vs SCLC (multivariable

HR ¼ 1.10, 95% CI ¼ 0.66 to 1.85, P¼ .71).

Number of lesions at first CNS progression
Data were available on the number of BrM at first CNS progres-
sion in 193 SCLC and 620 NSCLC patients in the retrospective

dataset only. Full results for the comparison of SCLC vs NSCLC

are presented in Supplementary Table 7 (available online). No

statistically significant differences were observed in the number

of BrM at CNS progression (SCLC vs NSCLC; median 2 vs 3; mean

5.6 vs 5.1, P¼ .83) or rates of progression with extensive (>10) BrM

(16.6% [SCLC] vs 14.5% [NSCLC], P¼ .49). Analyses stratified by

the number of BrM treated with first-line SRS (1, 2-4, 5-10, �11)

also demonstrated no statistically significant differences.

Similarly, analyses stratified by NSCLC mutation status also

returned no statistically significant differences between SCLC

and either EGFR or ALK-positive NSCLC or mutation-negative

NSCLC (Figure 4).

Adverse events and salvage therapy
Among the 449 SCLC and 1131 NSCLC patients in the retrospec-

tive dataset with available data, the rates of treatment-related

necrosis of any grade were 7.8% and 9.4%, respectively (P¼ .38).

In JLGK0901, data were available in all patients for pooled rates of

any Common Terminology for Adverse Events treatment-related

toxicities, and the rates of any grade toxicity for SCLC and NSCLC

were 5.1% and 9.6%, respectively (P¼ .19).
In the retrospective dataset, for SCLC and NSCLC the salvage

SRS rates were 36.7% and 36.9%, respectively (P¼ .38), and the

salvage WBRT rates were 15% and 7.3%, respectively (P< .001). In

JLGK0901, for SCLC and NSCLC, the salvage SRS rates were 39.8%

and 44.1%, respectively (P¼ .58), and the salvage WBRT rates

were 20.4% and 10.9%, respectively (P< .001).

Table 1. Patient characteristics

Retrospective JLGK0901

Variable Level NSCLC (n¼4785) SCLC (n¼892) P Level NSCLC (n¼814) SCLC (n¼98) P

Age, y Median (IQR) 67 (60, 74) 68 (62, 74) <.001a Median (IQR) 67 (60, 74) 70 (62, 75) .09a

Sex Female 1734 (36.2%) 239 (26.8%) <.001b Female 280 (34.4%) 15 (15.3%) <.001b

Male 3051 (63.8%) 653 (73.2%) Male 534 (65.6%) 83 (84.7%)
Year Median (IQR) 2010 (2005, 2015) 2013 (2006, 2017) <.001c Years 2009-2012 2009-2012 NA
Region Asia 4230 (88.4%) 639 (71.6%) <.001b Asia 814 (100%) 98 (100%) NA

N. Am, Europe 555 (11.6%) 253 (28.4%)
KPS �90 2828 (59.1%) 505 (56.6%) .08d �90 599 (73.6%) 77 (78.6%) .42d

70-80 1532 (32.0%) 318 (35.7%) 70-80 192 (23.6%) 20 (20.4%)
�60 425 (8.9%) 69 (7.7%) �60 23 (2.8%) 1 (1.0%)

Extracranial status ECM Absent 2446 (51.1%) 487 (54.6%) .06b Controlled 540 (66.3%) 76 (77.6%) .03b

ECM Present 2339 (48.9%) 405 (45.4%) Uncontrolled 274 (33.7%) 22 (22.4%)
BrM at diagnosis No 3026 (63.2%) 591 (66.3%) .09b — — NAe

Yes 1759 (36.8%) 301 (33.7%) — —
BrM, No. Median (IQR) 3 (1, 7) 3 (1, 6) .41c Median (IQR) 2 (1, 4) 2 (1, 4) .70c

Total BrM volume (cc) Median (IQR) 2.9 (0.8, 8.3) 4.5 (1.2, 11.9) <.001c Median (IQR) 1.4 (0.5, 3.5) 2.3 (0.7, 4.9) .004c

SRS fractions Median (IQR) 1 (1, 1) 1 (1, 1) <.001c Fractions 1 (all) 1 (all) NA
1 Fraction 4611 (96.4%) 822 (92.2%)
�2 Fractions 174 (3.6%) 70 (7.8%)

SRS dose Median (IQR) 21 (20, 23) 20 (20, 22) <.001c Median (IQR) 22 (22, 22) 22 (20, 22) .002c

Mean (SD) 21 (3) 20 (3) Mean (SD) 22 (1) 21 (1)
Post-SRS brain MRIf Yes 4088 (85.4%) 760 (85.2%) .88b Yes 735 (90.3%) 87 (88.8%) .59b

No 697 (14.6%) 132 (14.8%) No 79 (9.7%) 11 (11.2%)
Vital status, last FU Alive/censor 770 (16.1%) 142 (15.9%) NA Alive/censor 112 (13.8%) 6 (6.1%) NA

Deceased 4015 (83.9%) 750 (84.1%) Deceased 702 (86.2%) 92 (93.9%)

a P values calculated via t test. BrM¼brain metastases; ECM¼ extracranial metastases (outside of the thoracic tumor and regional lymph nodes);
IQR¼ Interquartile range; JLGK ¼ Japanese Leksell Gamma-Knife Society; KPS ¼ Karnofsky performance status; NA¼not applicable; N. Am¼North America;
NSCLC ¼ non-small cell lung cancer; SCLC ¼ small-cell lung cancer; SRS ¼ stereotactic radiosurgery. FU ¼ follow up.

b Fisher exact test.
c Nonparametric Kruskal-Wallis.
d Pearson v2.
e Data regarding the presence of BrM at diagnosis were unavailable in JLGK0901.
f Includes patients with at least 1 documented follow up brain MRI after completing first-line SRS.
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Discussion
Survey data demonstrate that physicians are increasingly willing
to consider first-line SRS in select SCLC patients (18), although
concerns remain regarding the potential for short-interval and
diffuse CNS progression, poor prognoses, and increased neurolog-
ical mortality specific to SCLC histology. The CROSS-FIRE study,
including over 6500 international patients, was designed to eval-
uate these considerations by comparing first-line SRS in SCLC
with the established benchmark of SRS in NSCLC.

Median OS was 1.9 months longer for NSCLC over SCLC
patients in the retrospective dataset and 4.3 months longer in
JLGK0901. On PSM analyses stratified by NSCLC mutation status,

median OS was superior for EGFR or ALK-positive NSCLC, fol-
lowed by mutation-negative NSCLC, and then SCLC (23.7, 13.6,
and 10.4 months, respectively). In analyses stratifying NSCLC
patients by receipt of EGFR-directed TKIs as a surrogate for EGFR
status in JLGK0901, OS was similar between TKI-negative NSCLC
and SCLC, suggesting that the larger OS differences in JLGK0901
were driven primarily by the NSCLC patients who received EGFR-
directed TKIs. The stratified survival outcomes observed after
SRS demonstrating superior OS in EGFR or ALK-positive NSCLC
and more similar OS for SCLC and mutation-negative NSCLC are
consistent with existing prognostic data, such as the Graded-
Prognostic-Assessment, for patients managed with various

Figure 1. Overall survival (OS) and central nervous system (CNS) progression after first-line SRS for patients with small-cell lung cancer (SCLC) vs non-
small cell lung cancer (NSCLC). A) Retrospective dataset, OS. B) Retrospective dataset, first CNS progression (FCP). C) Retrospective dataset, distant CNS
progression (DCP). D) Retrospective dataset, local CNS progression (LCP). E) Japanese Leksell Gamma Knife Society (JLGK0901) (prospective dataset), OS. F)
JLGK0901, FCP. G) JLGK0901, DCP. H) JLGK0901, LCP. The hazard ratio (HR) and 95% confidence interval (CI) for OS analyses were modeled using
multivariable Cox proportional hazard regression (CoxPH). Hazard ratio and 95% confidence interval were modeled for CNS progression analyses using
multivariable Fine-Gray models treating death as a competing risk. Multivariable models were adjusted for cofactors as described in the methods section.
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treatment strategies, including WBRT (36). Neurological mortality
was uncommon overall, and no statistically significant differen-
ces between SCLC and NSCLC were observed on multivariable
analyses in either the retrospective or JLGK0901 datasets. These
observations challenge historical concerns for higher rates of
neurological mortality after SRS specific to SCLC histology.
Moreover, because cognitive and quality of life advantages with
SRS alone (without WBRT) have been demonstrated in clinical

trials with a median OS of 7-12 months (6-8), the observed
median OS of 8.6-10.4 months for SCLC patients in this study sug-
gests that many SCLC patients achieve survival outcomes that
are sufficient to potentially benefit from a first-line SRS treat-
ment paradigm.

Detailed CNS progression analyses demonstrated shorter
time-to-event outcomes for FCP and DCP for SCLC compared
with NSCLC patients in the retrospective dataset overall. Similar

Table 2. Overall survival (OS) and central nervous system (CNS) progression

Dataset Outcomes Group Median,
mo (95% CI)

12-mo %
(95% CI)

24-mo %
(95% CI)

Multivariable
HRa

95% CI P

Retrospective
SCLC (N¼ 892) OS SCLC 8.6 (8.1 to 9.7) — — Reference
NSCLC (N¼ 4785) NSCLC 10.5 (10.1 to 11.0) — — 0.79 0.73 to 0.86 <.001

FCP SCLC — 44.8% (41.4 to 48.1) 48.8% (45.4 to 52.2) Reference
NSCLC — 31.5% (30.2 to 32.9) 39.3% (37.9 to 40.7) 0.82 0.73 to 0.92 .001

DCP SCLC — 39.7% (36.4 to 43) 43.1% (39.7 to 46.4) Reference
NSCLC — 28.4% (27.1 to 29.7) 35.2% (33.8 to 36.6) 0.82 0.73 to 0.93 .002

LCP SCLC — 10.5% (8.5 to 12.7) 12.5% (10.3 to 14.9) Reference
NSCLC — 5.8% (5.1 to 6.5) 8.3% (7.5 to 9.2) 0.83 0.66 to 1.04 .11

JLGK0901
SCLC (N¼ 98) OS SCLC 8.7 (7.6 to 11.6) — — Reference
NSCLC (N¼ 814) NSCLC 13.0 (11.7 to 13.9) — — 0.68 0.54 to 0.85 .001

FCP SCLC — 59.2% (48.7 to 68.2) 65.3% (54.8 to 73.9) Reference
NSCLC — 49.8% (46.3 to 53.1) 59.6% (56.2 to 62.9) 0.83 0.63 to 1.08 .16

DCP SCLC — 57.1% (46.6 to 66.3) 62.2% (51.7 to 71.1) Reference
NSCLC — 45.0% (41.5 to 48.3) 54.8% (51.3 to 58.2) 0.8 0.61 to 1.05 .11

LCP SCLC — 10.2% (5.2 to 17.2) 13.3% (7.4 to 20.9) Reference
NSCLC — 6.8% (5.2 to 8.7) 9.2% (7.4 to 11.4) 0.74 0.42 to 1.33 .32

a Overall survival (OS), first CNS progression (FCP), distant CNS progression (DCP), local CNS progression in SRS-treated lesions (LCP). OS was evaluated with
multivariable Cox proportional hazards regression, and CNS progression was modeled with multivariable Fine-Gray models. Multivariable models were adjusted
for cofactors as described in the Methods section. The Kaplan-Meier method was used to calculate median OS, and the cumulative incidence function was used to
estimate the 12-month and 24-month incidence rates for CNS progression outcomes as described in the Methods.

Figure 2. Propensity score-matched (PSM) analyses in the retrospective dataset with NSCLC stratified by EGFR and ALK status. A) Overall survival (OS).
B) First central nervous system (CNS) progression (FCP). C) Distant CNS progression (DCP). D) Local CNS progression (LCP). Three-way (1:1:1) PSM was
performed to create cohorts balanced for number of brain metastases (BrM), cumulative BrM volume, extracranial metastases, Karnofsky Performance
Status, extracranial metastases, presence of BrM at diagnosis, sex, year, and region. Patient characteristics displayed in Supplementary Table 3
(available online). The hazard ratio (HR) and 95% confidence interval (CI) for overall survival analyses were modeled using Cox proportional hazard
regression (CoxPH). The hazard ratio and confidence interval were modeled for CNS progression analyses using Fine-Gray models treating death as a
competing risk. Small-cell lung cancer (SCLC) represents the reference (HR ¼ 1) for the OS and CNS progression models. EGFR ¼ Epidermal growth
factor receptor; ALK ¼ Anaplastic lymphoma kinase.
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Figure 3. Neurological mortality and leptomeningeal disease (LMD) progression after first-line SRS. A) Retrospective dataset, neurological mortality. B)
Japanese Leksell Gamma Knife Society (JLGK0901) (prospective dataset), neurological mortality. C) Retrospective dataset, LMD progression. D)
JLGK0901, LMD progression. The hazard ratio (HR) and 95% confidence interval (CI) for overall survival analyses were modeled using multivariable Fine-
Gray models treating any death as competing risk for LMD and nonneurological mortality as a competing-risk for neurological mortality. Multivariable
models were adjusted for cofactors as described in the methods section.

Figure 4. Number of lesions at first central nervous system (CNS) progression with non-small cell lung cancer (NSCLC) stratified by mutation status.
Horizontal lines within the shaded boxes represent the median. Shaded boxes represent the interquartile range (IQR). Vertical thin solid lines
(whiskers) extending above and below boxes represent quartile 3 þ 1.5*IQR and quartile 1 � 1.5*IQR, respectively. Crosses above the vertical lines
represent individual patient outliers. Six outliers above the y-axis are not shown due to display limitations (3 SCLC patients with 2-4 mets treated with
first-line stereotactic radiosurgery (SRS) who had 32, 40, and 58 lesions at CNS progression and 3 non-mutated [no mut] NSCLC patients with 1 [n¼1]
and 2-4 [n¼2] mets treated with first-line SRS who had 46, 33, and 50 lesions at CNS progression, respectively). The molecularly stratified analyses
above were limited to patients treated in years 2005 and later as described in the methods. For statistical analyses: for comparison of all patients a log-
linear regression was used and adjusted for number of lesions treated with SRS, for comparisons stratified by the number of lesions treated with SRS (1,
2-4, 5-10, >10 lesions) the Wilcoxon rank sum test was used, and for extensive (>10 lesions at CNS progression) comparisons a Fisher exact test was
used. EGFR ¼ Epidermal growth factor receptor; ALK ¼ Anaplastic lymphoma kinase.

932 | JNCI: Journal of the National Cancer Institute, 2023, Vol. 115, No. 8



hazard estimates for CNS control outcomes were observed
between the retrospective dataset and JLGK0901 (Table 2), but
these did not reach statistical significance in JLGK0901, which
may be attributable to differences in the sample sizes of the data-
sets. In the PSM datasets matched for baseline factors notably
controlling for BrM volume, a negative prognostic factor for CNS
control (37) that was higher among SCLC patients (Table 1), no
statistically significant differences were observed in any CNS pro-
gression outcomes. Local control was encouraging and similar
across comparisons of SCLC and NSCLC, and the predominate
pattern of CNS failure was distant. Differences in the rates of FCP
between SCLC and NSCLC in both the retrospective and JLGK0901
datasets tended to be larger at 12 months (9.4%-13.3%) than at
24 months (5.7%-9.5%) (Table 2), with CNS progression events
plateauing during this period due to the competing risk of death.
These data suggest that post-SRS SCLC progression events tend
to occur earlier than in NSCLC overall, but the differences in rates
of CNS progression become smaller over time and may be com-
parable in patients matched for baseline clinical factors.

Analyses of the number of lesions at CNS progression demon-
strated no statistically significant differences between SCLC and
NSCLC in number or rates of extensive (>10) BrM. These observa-
tions challenge the historical concern for substantially higher
rates of diffuse CNS progression after SRS specific to SCLC histol-
ogy. Limitations of the analysis of lesions at CNS progression
include available data only in the retrospective dataset and miss-
ing data in a subset of patients with known CNS progression
(Supplementary Table 7, available online). Although uncommon
overall, salvage WBRT rates were higher for SCLC patients, which
may, in part, reflect the fact that WBRT was standard for SCLC
during the study period. Although no differences in LMD were
observed in JLGK0901, LMD was increased for NSCLC compared
to SCLC patients in the retrospective dataset. LMD was increased
primarily in mutation-positive NSCLC, which is consistent with
data demonstrating higher rates of LMD in EGFR-positive NSCLC
patients (38). Reassuringly, there was no signal of increased SRS-
related adverse events for SCLC patients in either dataset.

To our knowledge, the only prior study comparing SCLC and
NSCLC outcomes after SRS was published by Serizawa et al. in
2002 (27). That analysis compared 34 SCLC and 211 NSCLC
patients and reported no statistically significant differences in
OS, local control, or distant brain control. Although histological
comparisons are limited, 2 meta-analyses of retrospective data
reported superior OS after first-line SRS over WBRT for SCLC
(39,40), and randomized trials of SRS vs WBRT are ongoing (NRG-
CC009 [NCT04804644], ENCEPHALON [NCT03297788]). Notably,
the SCLC outcomes in the meta-analyses for OS (median 8-
9 months), 12-month distant brain failure (41%-42%), and local
failure (7%-22%) are consistent with the retrospective observa-
tions in this analysis. The higher rates of distant CNS progression
for both SCLC and NSCLC in JLGK0901 may be attributable to the
protocol of brain MRI surveillance every 3 months vs heteroge-
nous institutional practices that represent an inherent limitation
of the retrospective dataset (29).

Additional limitations of this analysis include the retrospec-
tive design and the unplanned nature of the secondary analysis
of JLGK0901. Because WBRT was standard for SCLC during the
study period, selection biases that differ between SCLC and
NSCLC are expected, and these may be incompletely accounted
for among the available cofactors. The retrospective NSCLC data-
set included fewer contributing centers, which could introduce
uncontrolled institution-related selection biases. Molecular data
were only available for a subset of the retrospective dataset;

because the timeline of ALK-NSCLC discovery to the first US Food
and Drug Administration TKI approval occurred between 2007
and 2011 (41), patients with ALK-positive NSCLC before 2012 are
expected to be underidentified. In the TKI-stratified analyses of
JLGK0901, data were unavailable on TKIs entirely delivered before
SRS, and some patients with EGFR mutations would have been
analyzed in the no-TKI group and vice versa. Other than TKI
receipt in JLGK0901, the analyses did not control for other sys-
temic therapies, including chemotherapy, immunotherapy, and
TKIs in the retrospective dataset that could influence OS and
CNS control outcomes. In the retrospective dataset, incomplete
data for endpoints including lesions at CNS progression, LMD,
toxicity, and neurological mortality could introduce uncontrolled
confounding. Extracranial progression data were not collected.
Data were absent for other meaningful cofactors, including
NSCLC mutations other than EGFR or ALK, NSCLC histologic sub-
types, and programmed death ligand 1 (PD-L1) status.

Strengths of the analysis include the independent retrospec-
tive and JLGK0901 analytic cohorts, substantial sample size,
international participation, granular CNS outcome data, adjust-
ments for multiple established prognostic factors in multivari-
able models and matched datasets, and subgroup analyses
controlling for EGFR and ALK. To our knowledge, this is also the
first dedicated report of SRS outcomes for SCLC patients treated
on a prospective clinical trial. Because it is not possible to ran-
domly assign patients to a tumor histology, data from SCLC and
NSCLC patients treated on the same prospective JLGK0901 study
represent a high level of evidence for this comparison. Moreover,
the generally consistent hazard estimates for OS and CNS-
specific outcomes in the retrospective and JLGK0901 datasets
support the validity of the observations.

In conclusion, this international analysis of first-line SRS char-
acterizes SCLC outcomes in the context of NSCLC, where SRS is
firmly established. After SRS, SCLC was associated with shorter
OS compared with NSCLC. CNS progression occurred earlier in
SCLC overall but was similar in patients matched on baseline fac-
tors. SCLC histology was not associated with increased neurologi-
cal mortality, LMD, number of lesions at CNS progression, or
adverse events after SRS compared to NSCLC. This analysis pro-
vides robust data addressing the historical concerns regarding
SRS specific to SCLC histology. These data may better inform
clinical expectations and individualized decision making for
SCLC patients.
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