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Eric 1.M. Rignot, Ronald Kowk, John C. Curlander, and Shirley S. Pang 
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove M e ,  Pasadena, CA 91109 

ABSTRACT: The synergistic utilization of data from a suite of remote sensors requires multi-dimensional analysis of the 
data. Prior to this analysis, processing is required to correct for the systematic geometric distortions characteristic of 
each sensor, followed by a registration operation to remove any residual offsets. Furthermore, to handle a large volume 
of data and high data rates, the registration process must be fully automated. A conceptual approach is presented that 
integrates a variety of registration techniques and selects the candidate algorithm based on certain performance criteria. 
The performance requirements for an operational algorithm are formulated given the spatially, temporally, and spec- 
&ally varying factors that influence the image characteristics and the science requirements of various applications. 
Several computational techniques are tested and their performance evaluated using a multisensor test data set assembled 
from the Landsat TM, Seasat, SIR-B, TIMS, and SPOT sensors. The results are discussed and recommendations for future 
studies are given. 

matching of scene features across the different images to be 
coregistered. An assessment of each technique's performance 
is made using this multisensor test data set. The paper con- 
cludes with a discussion of the results and recommendations 
for future work. 

1 

1 
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CHARACTERIZATION OF THE INPUT DATA 

INTRODUCTION 

I N FUTURE YEARS a number of spaceborne remote sensing in- 
struments for global monnitoring will become operational 

(NASA, 1987). These instruments -will gather data over a broad 
range of the electromagnetic spectrum, allowing scientists to 
study the physical, chemical, and electrical properties of the 
Earth's environment on a global scale and over an extended 
period of time. To derive geophysical parameters of interest for 
each of the planned science applications, the data collected by 
these sensors must be combined and analyzed in a multidi- 
mensional manner. However, the sensors may be on different 
platforms and in different orbits, each having different physical 
characteristics, viewing geometries, and data collection and 
processing systems. Consequently, systematic and nonsyste- 
matic registration errors will exist between coincident multisen- 
sor data samples. It is a prerequisite for synergistic analysis of 

A number of spatially, temporally, and spectrally varying fac- 
tors influence the image characteristics and the registration ac- 
curacy. 

The position and attitude of a sensor are usually known to 
some precision. The predicted image pixel location based on 
the knowledge of these platform parameters will result in an 
absolute location error. Similarly, uncertainty in the platform 
attitude will cause geometric distortion within an image frame. these data to estimate and correct for these errors. 

Furthermore, because of the anticipated large data volume 
and high data rates of these future high resolution sensors, the 
traditional approach of visual identification of tiepoints to de- 
termine the deformation field is not an acceptable solution. It 
is necessary to develop an automated multisensor registration 
system that requires little or no operator supervision. 

Although considerable experience has already been accu- 
mulated in the operational registration of Landsat data @M, 

Depending on the Gtabiity of the platform and on the-accuracy 
of estimate of the vlatform ephemeris and attitude. such errors 

1 

can typically be removed b> the use of tiepoint;. However, 
nonsystematic errors and tiepointing errors result in a residual 
error in the image location and, therefore, a final step of refined 

1978; Grebowsky, 1979; NASA, 1981), these techniques were 
designed to register multitemporal image data from passive 

; sensors operating in the visible and near-visible part of the elec- 
tromagnetic spectrum. These techniques are not well adapted 
to the registration of image data from multiple sensors of sig- 
nificantly different characteristics operating at different wave- 
lengths. This paper specifically addresses the problem of 
developing a robust and adaptable automated multisensor reg- 
istration technique that accomodates a wide variety of data types. 

This paper is structured as follows. We first present a can- 
didate set of performance requirements for development of an 
operational algorithm. These requirements are derived from the 
needs of several key science applications (Butler, 1984) as well 
as a review of practical limitations given the image character- 
istics. We then describe the multisensor test data set that has 
been assembled for evaluation of our registration algorithms. 

image registratiGn is necessary to obtain a ~ u b - ~ i x i l  level reg- 
istration accuracv. Furthermore, we would prefer to eliminate 

Several computational techniques that fit within this structure 
are tested. One technique uses high resolution digital elevation 
maps @EM) of the areas to be registered. Others, which operate 
in the absence of ancillary data, are based on the extraction and 

any operator ideractive tiepokting in the ;egistration proce- 
dure. 

Sensor specific geometric distortion of remotely sensed data 
may also result from the particular viewing geometry of the 
instrument. In the present of topography in the observed scene, 
perspective distortions are observed in off-nadir passive imag- 
ing. For an active sensor like a synthetic aperture radar (SAR), 
the terrain induced geometric distortions are quite different and 
are dominated by two phenomena: foreshortening and layover 
(Lewis and MacDonald, 1970). Rectification of these distortions 
is essential before registration of the data. As an illustration, a 
perspective view of geocoded and rectified multisensor imagery 
is shown in Figure 1 using a technique described by Kowk et 
al. (1987). 

For sensors on different platforms and in different orbits, the 
acquired data are initially sampled to grids that are natural to 
the sensor geometry. A common grid for image coregistration, 
such as an Earth-fixed grid, is required. The process of mapping 
image data into this grid is known as geocoding and has been 
developed for a variety of sensors including SAR (Curlander et 
al., 1987). 

PHOTOGRAM~TRIC ENGINEERING & REMOTE SENSING, 
Vol. 57, No. 8, August 1991, pp. 1029-1038. 

0099-1112~9l/5708-1029$03.W0 
01991 American Society for Photogrammetry 

and Remote Sensing 



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1991 

FIG. 1. Perspective views of multisensor geocoded and rectified images of an area near Los Angeles, California: (a) Seasat SAR image; @) Landsat 
TM, Band 4, Image. 

The data collected by different sensors may also have signif- 
icantly different spatial resolutions. As an example, the reso- 
lution of the suite of imaging sensors on the NASA Earth 
Observing System (EOS) platforms will range from tens of metres 
(SAR, HLRIS) to kilometres (MODIS, HMMR) (NASA, 1987). Because 
spatial resolution defines the ability of a system to discriminate 
objects within a scene, it establishes a limit for the achievable 
registration accuracy. Furthermore, depending on the range of 
spatial resolutions in the multisensor data to be coregistered, 
coarse to fine techniques of registration may be adaptively se- 
lected. 

System noise (i.e., thermal noise, quantization noise, bit error 
noise, etc.) is another important factor affecting registration ac- 
curacy because many of the computational techniques used for 
registration are very sensitive to noise. While all sensors are 
corrupted by additive noise from the receiver electronics, SAR 
images are additionally corrupted by multiplicative noise known 
as image speckle. Thus, the multisensor registration techniques 
must be robust to a variety of noise sources of different statis- 
tical characteristics. 

Finally, an additional consideration in any registration scheme 
is the scene composition. In cases where only a few features 
can be positive identified across the various sensors, the reg- 
istration accuracy may be seriously impaired. Furthermore, 
identifiable features are inherently space, time, and frequency 
dependent. Therefore, it is necessary to develop robust auto- 
mated techniques for selection of invariant features across the 
multisensor data. 

In view of the above remarks, the input and output data 
requirements for an operational algorithm can be formulated. 
They define the operational domain and conditions under which 
the multisensor algorithm is expected to operate, and can be 
used as a basis for the evaluation of candidate algorithms. 

The input data are assumed to be corrected from the geometric 
distortions characteristic of each sensor using the best information 
available, geocoded onto a preselected grid common to all sensors 

(e-g., UTM), and resampled to the same pixel spacing. We further 
assume that the signal-to-noise ratio of the data is better than 
5 dB, and the geodetic accuracy of the input images is better 
than 500 metres or 10 to 50 pixels (it is expected that most 
sensors will do better than this, given the accuracy of the available 
on-board positioning systems). 

The output products should have a registration accuracy better 
than one resolution element. 

This requirement is derived from a subset of applications that 
are candidates for multisensor data analysis. Depending on the 
specific application, this accuracy requirement may be adjusted. 
For example, in the case of change detection, sub-pixel accuracy 
may be desired to compare the response of individual pixel 
elements. Depending on the scene characteristics (i.e., presence 
of identifiable features), this requirement may be indeed very 
difficult to achieve. In other cases, such as the global study of 
hydrological cycles (which includes tasks such as sea-ice 
identification and dynamics, determination of moisture content 
of soil and vegetation, vegetation identification, areal extent and 
growth, etc.), a registration of accuracy of several hundred metres 
may be sufficient. 

It is important to point out that, although the accuracy 
requirements have typically been well defined for each individual 
inshument, little or no accuracy requirements have yet been 
clearly defined for multisensor registration by the scientific 
community. More work is clearly needed in this area for each 
interdisciplinary science application. 

MULTISENSOR TEST DATA 

A multisensor test data set has been assembled using image 
products from Seasat SAR, SIR-B, Landsat TM, SPOT, and TIMS 
(Kwok et al., 1989). Information on each sensor-including look 
angle, spectral range, polarization, and spatial resolution-is given 
in Table 1. Geocoding of the images to a common UTM Earth- 
grid has been performed and the data have resampled to the 
same pixel spacing of 25 metres. Several sub-images of reduced 
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size (512 by 512, 1024 by 1024 pixels) were selected f rom the the number of selected sub-images, and the type of map pro- ! areas where the sensors have coincident coverage. The char- jection used for coding. A summary l ist o f  the natural features 
acteristics of the original image data and o f  the selected sub- present in the imaged scenes is also indicated. 
images are presented in Table 2. This table includes information For each selected sub-image, manual registration was per- 
about the geographic location of the data, the initial sample formed, resulting in a n  estimated relative misregistration un- 
spacing and size, the revolution number and date of acquisition, certainty of less than -c 2 pixels, roughly equal to  the largest 

TABLE 1. DESCRIPTION OF THE CHARACTERISTICS OF THE DIFFERENT SENSORS ~NVOLVED IN THE C O N S T ~ ~ ~ ~ O N  OF THE MULTISENSOR TEST DATA SET. 

i 

SPOT 

NAME OF SENSOR TYPE FREQUENCY 

SEASAT SAR L BAND, HH POLARIZATION 
ACT'VE 23 LOOK-ANGLE 

SIR-B SAR L BAND, HH POLARIZATION 
ACTIVE 15 TO 60 O LOOK-ANGLE 

TlMS THERMAL-INFRARED 
PASSIVE 

7 BANDS 

LANDSAT TM OPTICAL 
SPECTRAL RANGE: 

1 . a r m  - . a p m  6 1 . M p m - 1 . 2 6  
PASSIVE 2 m r m  - . m ~ m  r m  

3 .ss r m  - .se , 7 20811 m  - 2.~6 
. 7 8 p m -  . B O ~ ~ ~  )r m  
.l.m r m  - 1.76 p  m  

3 BANDS 
OPTICAL SPECTRAL RANGE: 
PASSIVE 1  ~ ~ ~ r m - d ~ p m  

2 ~ l r m - f l ~ l p m  

3 . i ' s ~ m - g B r m  
7 

TMLE 2. DESCRIPTION OF THE MUL~~SENSOR TEST DATA SET. 

RESOLUTION 

( ORIGINAL DAT3 ) 

25 m 

25 

30 m 

28.5 m 
( pixel spacing ) 

IFOV 

-- 

20 m 

( pixel spacing ) 
IFOV 

IMAGE FRAMES SEASAT LANDSAT LOCATION SPOT 

Rev : 407 Date: Jul 84 Date: Sept 84 

ALTAMAHA Date: JuI 78 Size: 3 K x 4 K Size: 3 K x 5 K 

RIVER, Size: 5 K x 5 K Rotated to Nortb Rotated to Nortb 

GEORGIA Map Proj. : UTM # of patches # of patches 
# of patches selectec selected for selected for 

( Pixel sue - 20 m ) for testing: 12 testing: 12 testing: 12 

Rev : 781 Date: Jun 84 
Date: Aug 78 Size: 5 K x 5 K 'IVER size: 5 K x 5 K Rotated to North 

BASIN* Map Proj. : UTM # of patches WYOMING 
# of patches selected selected for 

( pixel size - 30 m  ) for testing: 5 testing: 13 

Rev : 681 Date: Jun 84 
Date: Aug 78 Size: 3 K x 4 K 

'YUMA, Size: 3 K x 3 K Rotated to North 

TlMS 

Date: Jul 83 
Size: 1 K x 1 K 
Rotated to North 
# of patches 
selected for 
testing: 4 

ARIZONA 

( Pixel slze - 25 m  ) 

DEATH VALLEY, 
CALIFORNIA 

( pixel size - 25 m ) 

FEATURES IN 
PATCHES 

Rivers, Lakes, 
Fields, Roads. 
Coasts. 

Mountains, 
Rivers, Lakes, 
Fields, Roads, 
Cities, 

Mountains, 
Rivers, 
Fields, Roads, 
Cities, Dunes. 

Mountains, 
Fields. 

Map Proj. : UTM 
# of patches 
for testing: 13 
Rev : 882 
Date: Aug 78 
Size: 5 K x 5 K 
Map Proj. : UTM 
# of patches 
for testing: 

# of patches 
selectedselected for 

testing: 13 

Date: Nov 82 
Size: 3 K x 4 K 
Rotated to North 
# of patches 

selectedselected for 
testing: 4 
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resolution element (40 metres). This uncertainty results pri- unambiguously identified across the entire multisensor image 
marily from the differences in resolution between the various data set. Candidate features include rivers, lakes, coast-lines, 
sensors. This estimate is used as a basis for the true registration roads, or scene-dominant man-made or natural structures. One 
to evaluate the performance of the various automated registra- possible technique was desriied in Davis and Kenue (1978) where 
tion techniques. binary edge maps were used to compute a figure of merit for 

candidate control points. The results obtained with images from 
AUTOMATED MULTISENSOR REGISTRATION different sensors are then cross correlated to retain valid 

The structure of the candidate multisensor registration algo- 
rithms is presented in Figure 2. The input data satisfy the re- 
quirements as formulated in the previous section. The first 
processing step consists of automatically selecting sub-frames 
from each input image to define local areas of multisensor coin- 
cident coverage where precision registration can be performed 
with a high confidence of success. Depending on the availability 
of ancillary data @EM or topographic maps), a registration mode 
is selected. For the case where a DEM is available, the multisen- 
sor data are coregistered to the common grid provided by the 
DEM. Otherwise, invariant features are extracted from the sub- 
images and correspondence is established across the data to be 
registered. To reduce the computational complexity of the al- 
gorithm and obtain several estimates of the misregistration per 
sub-image, feature matching is performed at multiple locations 
and the results are then filtered to evaluate their relative spatial 
consistency within the selected patch (local constraints). If the 
match can be labeled as statistically significant (e.g., satisfies 
some goodness measure), the misregistration error of the se- 
lected sub-image is estimated and the multisensor data are then 
registered. Otherwise, the result is rejected and the selection 
and matching process is repeated with different parameters. At 
a higher level of processing, the combined results from different 
features and from registered neighborhood patches can be used 
to produce a more accurate and more reliable solution. In effect, 
a cooperative process can be established where the results from 
different stages of the processing are used as reinforcements 
for the entire process. 

Several candidate techniques which are effective within this 
structure are presented in the remainder of this section. They 
have been selected based on compatibility, robustness, and 
adaptivity to the various sensors. Each matching algorithms' 
performance is assessed using the multisensor test data set de- 
scribed in the last section. 

candidates. 

Our approach is to simulate multisensor imagery from a digital 
elevation map (DEM) of the area where the sensors have a 
coincident coverage and register this simulated imagery with 
the actual imagery, thereby inducing coregistration of the 
multisensor data on the common grid provided by the DEM. 

Using elevation data, viewing geometry, and a model of the 
scene reflectance, the appearance of the scene for any given sun 
angle and viewing angle can be simulated as in Horn and 
Bachman (1978), Woodham (1980), Little (1980), and Frew (1984) 
for passive sensors operating in the visible and near-visible part 
of the spectrum. An example of a simulated image generated 
using this technique is shown in Figure 3. The illumination 
parameters were matched to Landsat TM image data acquired 
over the same area. A qualitative sense of how well the simulated 
image predicts the real image can be obtained by visually 
comparing the two figures. A simple matching technique (area- 
correlation) is then used to establish the correspondence between 
the images. Visual tiepointing of identifiable features in areas 
away from the registered images was performed to assess errors 
in the registration. The registration error is approximately 80 
metres for the images shown. A more elaborate matching scheme 
using features derived from the simulated and actual imagery 
was proposed by Little (1980); however, no error analysis was 
performed. 

Our approach to generate simulated SAR image from the DEM 
is similar to that descnied above. The sensor imaging geometry, 
the elevation data, and a model of the radar backscatter are all 
required to produce the image shown in Figure 4 (Kwok et al., 
1989). The imaging geometry simulates that of a Seasat image 
acquired over the same area. Except for the speckle noise which 
is apparent in the actual image, the geometry of the simulated 
data appears identical to the actual image. An area correlation 
scheme is then used to match the radar and simulated images. 
Using tiepoint measurements of identifiable features not witin Selection of the patches where fine registration is desired must the image shown, a misregistration error of 60 metres was be based on the extraction of stable features that can be obtained. Again, more elaborate schemes to select ground points 
most probable for matching could be implemented to optimize 
this procedure. 

MPUT IMAGE DATA Several potential error sources affect the registration accuracy. 
(AFTER GEOMETRIC CORRECllON, 

GEOCODMC AND RESAMPLING) 
First is the uncertainty in the actual imaging geometry which 
causes geometric distortion in the simulated image relative to 

v the actual image. Second is the geometric accuracy of the DEM 
AUTOMATED 

SELECTION OF SUB-IMAGES data. In both cases, the simulation of the radiometric (incidence 

+ angle calculations) and the geometric distortions are dependent 
FINE REGISTRATION on the absolute and relative height accuracies. The terrain data 

MODE SELECTION used for the simulation were digitized from existing topographic 
maps with 50 metre contour intervals. Thus, there are digitization 

ANCILLARY DATA c FEATURE EXTRACTION errors as well as sampling errors associated with each digital 

4 elevation sample point. Higher quality elevation data derived 
from aerial photographs (e-g., from UsGS 24,000-scale maps) 

FEATURE MATCHING may be more appropriate for image data with the resolutions 
of HIRIS, SAR, or SPOT. A third error source results from the 

1 1  
reflectance model used for the visible wavelength data and the 
absence of atmospheric attenuation effects. 

COMPUTATIONAL APPROACHES 
MISREGISlUAnON ESTIMATE 

! 
In the absence of reference maps, elevation data, geograph- 

FIG. 2. Flow chart of the multisensor registration algoriihm. ical information, or correlative ground truth information, blind 
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(a) 
FIG. 3. Comparison of simulated versus actual Land 

(a) (b) 
FIQ. 4. Comparison of simulated versus actual Seasat SAR image; (a) simulated image; (b) actual image. 

techniques based on the identification of invariant features of our algorithm are presented in this section. Their perform- 
across the data can be used for image registration. Several ance is assessed and compared using the multisensor test 
candidate techniques which are effective within the structure data set. 



Feature Extraction 
Candidate features commonly used in digitaI imagery include 

edges, regions, lines, vertices of h e  intersection, shapes, etc. 
These features must be robust to change in sensor geometry, 
wavelength, signd-tenoise ratio (SMR), and noise statistics. Two 
particular types of features-region boundaries and edges-were 
examined using our multisensor data set. The result of the 
corresponding segmentation techniques are discussed next. 

RWG & REMOTE SENSING, 1991 

Multisensor Region Boundary Extraction 

The brightness response (i.e., reflectance, thermal signature, 
backscatter coefficient, etc.) of a homogeneous area (or region) 
depends on multiple parameters, such as look angle, frequency, 
polarization, physical and electrical characteristics of the surface, 
chemical composition, meteorological conditions, etc As a result, 
it may vary considerably from one instrument to another, 
rendering impractical techniques based on region brightness 
cross correlation. However, the shape, spatial extent, or location 
in the image plane of regions of similar homogeneous statistical 
properties may still be largely preserved across multisensor data. 
Region boundaries are probably the simplest low-level features 
that can be used to characterize the misregistration. 

Even though many unsupervised segmentation techniques 
exist for optical images, most of them are not effective for SAR 
images because of the presence of speckle noise. One 
unsupervised technique that seems to work reasonably well is 
a scheme based on a ilustering algorithm to segment the images 
into several repions of similar intensitv and texture (Kwok et. 
al., 1989). The 7egion boundaries are then established where a 
class transition occurs. 

The resulting segmentation map, using three classes, is shown 
in Figure 5 together with the original images from Seasat, Landsat, 
and SPOT. A 3- by %pixel window was used at each pixel location 
to compute the mean grey level and grey level texture by means 
of a simple standard deviation measure. Larger windows produce 
more homogeneous regions with smoother boundaries but 
decrease the localization accuracy of the boundary elements. 
The results obtained by matching these region boundaries are 
usually less accurate than those obtained with other techniques. 
However, region segmentation can still be refined, especially 
in the case of SAR imagery, to provide information that 
complements results from other techniques. 

Multisensor Edge Detection 

Extensive literature exists on the subject of edge detection in 
optical imagery. However, in the case of SAR images the detection 
process is complicated because the images are corrupted by 
speckle noise. Techniques based on an approximation of the 
first and second directional derivatives, (e-g., Sobel or Robert 
operators) perform poorly, especially in terms of localization of 
the edges because they tend to produce large responses. Statistical 
edge operators such as those by Touzi et al. (1988) and Frost et 
al. (1982) in a lot of cases suffer from the same limitation. 

This problem is solved by regularization techniques, specifically 
using a two-dimensional Gaussian smoothing operator such as 
a Marr-Hildreth operator (Marr and HiIdreth, 1980) or a Canny 
edge detector (Canny, 1986). These operators have (1) good 
detection properties, (2) good localization properties, and (3) no 
multiple responses to a single edge, the three performance criteria 
for evaluation of edge detection algorithms. In the Marr-Hildreth 
approach, the edges are marked at the zero-crossings of the 
Laplacian of a Gaussian-smoothed image. In the Canny operator 
they are marked at the maxima of the gradient magnitude of 
the Gaussian-smoothed image. The detector is a simple 
approximation to an optimal operator and is based on an 
optimization between the three aforementioned criteria of good 
detection. Theoretically, these techniques are compatible with 

almost all types of remote sensor data. Their performance with 
optical data have been documented in the literature (Marr and 
Hildreth, 1980; Canny, 1986). 

The performance of these two operators was quantitatively 
compared in Kwok and Rignot (1989) for the case of synthetic 
SAR images as well as actual SAR images. It was shown that the 
gradient operator outperforms the Laplacian operator in both 
detection and localization of edges in image speckle, thus 
iflustratinn that the Marr-Hildreth overator is sensitive to high 
spatial frevquencies such as by speckle noise, wher&s 
the directional gradient remains fairly robust. 

Significant improvements in the performance of the VG 
operator can result from optimizing the parameter selection 
(Kwok, et al., 1989). In particular, the value of the filter spatial 
width a must be adapted to the spatial resolution of the different 
sensors. Typically, the smallest width compatible with the spatial 
resolution produces the best results. Automatic thresholding is 
another important factor. However, because no a priori 
information about the actual presence, location, and strength 
of edges in the imaged scene is available, an optimal strategy 
is difficult to establish. In our implementation, a threshold with 
hysteresis (Canny, 1983) is used to eliminate insignificant edges. 
Because the gradient magnitude distribution varies with the 
sensor (e-g., Gaussian distribution for an optical image and 
Rayleigh distribution for a SAR image), the threshold values 
need to be adaptable. Good results were obtained when the 
thresholds were set based on the computed mean and the 
standard deviation of the gradient magnitude. 

Further post-processing such as thinning and contour-filling 
techniques have been shown in Kwok et al. (1989) to improve 
the quality of subsequent matches. Another possible 
improvement of the edge detector uses multiple operator widths 
and combines the resulting edges using a technique called feature 
synthesis, where the responses of the smaller operators are used 
to predict the response of a large operator. Results with optical 
images have been presented by Canny (1983) where it was noted 
that most of the edges are actually determined by the smaller 
operator. 

For illustration, one example of edge-map using Seasat, Landsat 
TM and SPOT data and the Canny edge detector with a spatial 
width of 2 pixels (40 m) and adaptive thresholding is presented 
in Figure 6. 

Feature Matching 

Candidate feature matching techniques include binary cross 
correlation, distance transform and Chamfer matching, dynamic 
programming, and structural or symbolic matching. 

In the case of region boundaries and edges, a convenient 
binary representation of the feature maps can be used: a grey 
level of one at location of a feature point and zero otherwise. 
This representation reduces the computational complexity of 
feature matching because computational cost becomes 
proportional to a linear dimension as opposed to area correlation 
where computational cost is proportional to an area. 

Binary Correlation 

The binary feature maps of each of the images to be registered 
can be cross correlated for various relative image shifts. The 
shift corresponding to the peak of the cross correlation will be 
an estimate of the actual misregistration between the images. 
The process is fast and can be efficiently implemented on an 
array processor or vectorizing computer. 

Distance Transform and Chamfer Matching 

The distance transform and Chamfer matching techniques are 
described in Barrow et al. (1977). In this method feature points 
are matched by minimizing a generalized distance between them. 
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FIQ. 5. unsupervised segmentation of optical and SAR images from an area near the Altamaha River, Georgia. (a) Seasat, (b) Landsat TM, 
and (c) SPOT images are segmented into three regions represented in (d), (e), and (0, respectively. The corresponding images of region 
boundaries are (g), (h), and (i), respectively. 

A distance transform is first applied to a binary feature map, The relative shift that produces the smallest total distance 
arbitrarily referred to as the source image. The result of this corresponds to an estimate of the actual relative misregistration 
transformation is a distance map where the grey level of each between the images to be registered. 
pixel is a measure of the distance between the pixel and the This method is more robust to distortion or residual rotation 

1 nearest feature point. For various values of the relative shift effects than a binary correlation method. 
between the source and the target images, the total distance 
between the feature points of the two images can be computed. z:,*:r OF 'INARy CORREml'ON AND CHmFER 
This measure is the sum of the distance values read from the 
source image at each location of a feature point in the target A comparison of the performance of the two techniques has 

1 image. If matching were perfect, this distance would be zero. lead to the following observations. 
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obtained from Canny's edge detector are represented in (d), (e), and (f), respectively. 

The time of computation of the binary correlation is less than 
the time of computation of Chamfer matching, typically in the 
ratio 1 to 4 for a search area of 100 by 100 pixels using a 512 by 
512 pixel image. 

The tolerance to residual rotation effects is 1 degree in the 
case of the binary cross correlation based on a maximum 
registration accuracy of 2 pixels. This tolerance is improved to 
3 degrees when thicker edges are used (e.g., 3 pixels) (Wong, 
1977). In the case of Chamfer matching the rotation tolerance 
is 3 degrees. 

Better registration results (10 to 20 percent) were consistently 
obtained by binary correlation as compared to Chamfer matching. 
The reason is that the quality metric used during Chamfer 
matching does not perform as well as expected with multisensor 
data due to the presence of non-matchable edges across the 
data, i.e., edges that appear in one image and not in the other. 
Their presence biases the total distance between feature points 
and significantly affects the accuracy, whereas the binary cross 
correlation is not affected by non-matchable edges. 

This iterative method, combined with an autoregressive model 
(AR), was used in this work by Maitre and Wu (1989) to register 
severely distorted optical images to a reference map without a 
priori knowledge of the distortion. The two processes work at 
different levels. At the lower level, dynamic programming 
optimizes the search for best registration of an ordered set of 
features (e.g., edges) extracted from the source image with a 

comparable set of features extracted from the reference map. At 
a higher level, the AR model defines the deformation of the 
image at a pixel scale. The technique is robust to non-matchable 
edges and good results are shown in Maitre and Wu (1989) 
using NOAA-7 satellite data. 
This method has not yet been tested using our multisensor 

test data set, but offers good potential. A simpler deformation 
model could be used for fine registration of multisensor data. 
One limitation is the complexity of the process, which is 
proportional to the number of feature points (typically several 
thousand are required in practical applications). Additionally, 
the process would be difkdt  to implement on a parallel machine 
because feature points are tracked sequentially. 

Constraint Filtering 
In practice, matching is performed on small areas to minimize 

the distortion. Thus, the time of computation is also reduced 
and the number of independent estimates of the misregistration 
between the two images is increased. The resulting data must 
therefore be filtered to eliminate false matches. A clustering 
technique can be used where the cluster centroid corresponds 
to the estimated misregistration of the images. For our test 
dataset, the 512 by 512pixel patches extracted from actual 
multisensor images were divided into four sub-patches of size 
256 by 256. When three or four local shifts were consistent (i.e., 
within + 4 pixels), the match was assumed correct and the 
mean of the resulting cluster of the consistent sub-patches defined 
our estimate of the global shift. Otherwise, matching was 
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assumed incorrect and the segmentation was repeated with 
different parameters or other features were used in the original 
segmented image. 

A more robust approach would combine results obtained from 
various low level processing techniques. A number of techniques 
could be cooperatively combined to improve clustering of the 
data. Results from neighborhood patches could also be included. 

EXPERIMENTAL RESULTS 

The expected relative shift of each pair of images is zero with 
an uncertainty typically of -c 2 pixels. If we assume normally 
distributed zero-mean error sources, 

where u,,, is the actual standard deviation of the registration 
error, a, is the standard deviation of the shift estimation error 
by the Gorithm, and u,,,, is the standard deviation of the 
manual registration error. For a measurement error of 2 pixels, 
knowing that = 3 pixels, we determine the standard de- 
viation of the regstration error to be of 2 pixels. 

Twelve 512 by 512-pixel images corresponding to three dif- 
ferent geographic areas were registered. Each image was di- 
vided into four sub-blocks, and the search area for the local 
registration shift was 101 by 101 pixels in each sub-block, corre- 
sponding to a maximum expected shift of 50 pixels both along 
the vertical and along the horizontal directions. 

Using a binary correlation of edges, Seasat and SPOT images 
were coregistered with a rate of success of 87 percent before 
constraint filtering and 92 percent after, and no false matches. 
Using the same technique, Seasat and Landsat TM images were 
coregistered with a rate of success of 85 percent before con- 
straint filtering, and 86 percent after. Registration was qualita- 
tively more difficult in that latter case because of the lower 
resolution of the Landsat images as compared to SPOT images, 
and also because a few additional scenes whose content made 
registration more difficult were used. 

The achievability of sub-pixel accuracy seemed difficult to es- 
tablish by visual inspection of our multisensor test data set. This 
is certainly a limiting factor when comparing digital imagery 
from multiple remote sensors. 

CONCLUSIONS AND RECOMMENDATIONS 

With the advent of an era of diverse sets of remote sensors 
on common platforms (e-g., EoS), it is of considerable impor- 
tance to develop automated multisensor registration tools for 
synergistic use of the data. A high level algorithm for multisen- 
sor registration that integrates a variety of techniques in a sys- 
tematic manner was discussed in this paper. Low level techniques 
used by this algorithm were tested using a limited multisensor 
data set. A more complete study would require that this data 
set be enlarged to include more instruments and more scene 
types, and that the performance of additional feature extraction 
and feature matching techniques be evaluated. 

We insisted that the performance of a multisensor registration 
algorithm is dependent on application specific science require- 
ments as well as on the instrument characteristics, the nature 
and composition of the imaged surface, and the environmental 
conditions. The task of automated multisensor registration was 
described as very complex and not solvable using a single tech- 
nique. It requires the combination of multiple techniques that 
work in a competitive-cooperative mode of interaction. For this 
reason, a rule-based artifical intelligence approach may be nec- 
essary for a more advanced high-level algorithm to automati- 
cally select optimal techniques and parameters from a particular 
multisensor application. 
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