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Additional WKB Inversion Relations

. , *
Tor Bound-State and Scattering Problems

William H. Miller ¥
Inorganic Materials Reseoarch Division,
of the Lawrence Radiation ILaboratory,
and the Department of Chemistry,
University of California,
Berkeley, California

ABSTRACT

New inversion relations for the diatom system (elastic
scattering of two atoms by a single potential, or a bound
diafémic molecule) are preseﬁted. Thej are exact within
the WKB approximation for the relevant quéhtities and are
closeiy related to the well-known RKR expressions. Ex-
plicit formulae are given for bound-State and scattering

input.
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I. Introduction

There has been a greaﬁ deal of interest recently in ilhe development
of inversion.methodsl—3--that is,'methods'for delermining iqtcrmolecular
potentials difeétly from experimental data, rather than assuming some
parameterized form for the potential and adjusting the parameters to
fit the data. With regard to the elastic scattering of two atoms, for
example, one desires an explicit procedure whereby the experimentally
obtained cross section can be used to_générate the interatomic potential

V(r) which gives rise to the observed scattering.

In this paper some new inversion formulse for atom-atom systems
are presenﬁed, all of which are based on the WKB approximation for the

~

quantities involved; they are closely related to the Rydberg-Kein-Rees
(RKR)vmethodh for determining a potential well from its eigenvalues.
Section IT summarizes the RKR method and.presenté the new formulae

as they pertain to bound-state problems; Section III considers the form

taken by the inversion relations for the case of elastic scatlering.

In applying_any.of‘these formulae to igvert scaﬁtering data, the
principle difficultyvremaihs the.problem of extfacting the.scattering
phase shifté from ﬁhe observed cross sections; it is the phase shifts
which are reguired for the inversioﬁ formulae. It is,:in génerél,
possible to accomplish this? but very accurate data may be required.l
In some special cases it can be accomplished very easily; see, for,-

example, the application at the end of Section III.

II. Inversion from Eigenvalues

First we summarize the RKR methcx‘i.l’L The vibrétionaifrétational

eigenvalues E(n, £) for the diatomic molecule are assumed known from
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experiment; the prohicm is to determine the potential V(r).

) [
The WKB eigenvalve relation is”

* > =
» 2 2, 212 :
(n+ = f ar {2E - V(r)]1 1" - £/r } (1)
. &v’ : , - 1‘< : o L .
where r, = r<(E,£) are the zeros of the radicand--the classical turn-
‘ > > :

ing points. Equation (1) defines the function n(E,#) explicitly, which

is the inverse function of E(n, ). -

. s The function A(E, £) is defined by
. 7 | N _
A(R,2) = dE' o [n(E', £) + 3)/(E-E')? , - (2)
min
where Emm is that value of E for which n(E, 4)=-%. Equation (1) is
" substituted into Equation (2), and upon interchanging the order of

“intergrations and using the integral relations

_ ) l. . X | o
. x-a\2 fb-x\2 T
f ax (—6——}{) = / dax (;{.-—-—a.-) = 5 (b—a) (3)
a a
one finds that
| o | W > '
4 A(E,5) =T (?l?‘—‘) f ar [B-V(r) - 1205 om®] . (W)
> \3? .

\.") ' | .. v I‘<

Differentiation of Equation (U4) gives

(5a

Ry a

aA(l-zzi). - 1’(”/.*)1 (r_ - v
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Since the function A(E, 8),
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as defined by Equation (2), is calealevle

from the experimental CJgenvalues, the two equations for T and ¥y in

Equation ()) can be solved Lo obtain r_-and T

tential at r< and r

V(r§)

>

= T - o)
B gy /c./LI'§ .

< >, the value of the po-

is given by

2

This is the standard RKR methOd.6

(%)

(6)

The above procedufe has explOiﬁed the energy dependence of n(E, 2),

using the fact that the deperidence on E occurs in a manner such that

iﬁtggral_transforms based on Equation (3) can be employed. One may

also note, hOWever, that the /4 dependence occurs in a very similar

manner. Proceedlng aralogous]y, therefore, the function B(E z) is

deilned by

B(E, ) = J/‘ ast ez'1r[n(E LY + 2]/(z' - 17)2
2 .
vhere £ a# is that value of £ for which n(E, £) = - 3. Substituting

(7

hqpatlon (1) into Equation (7), 1nterchang1ﬂg the order of integration,

and using Equation (3) gives

B(E,2) =

mlﬂ

il

2p
2
1

T

>
) J/‘ dr r[E - V(z) - hgﬂg/e,LrQ]_ .

T<

(8)

W
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Differentiation with respect to E and £, therefore,. gives

OB(R,2) (22 2 .
i C S B
é}}%%’il =T (20) n (rfr) - | | | (9b)

Since.B(E,z) is'calcu15ble via Equation‘(7) from the known eigenvalues,
Equation (Q) provides two equations by which r<'and r, can be determined;

the value of the potential at r_ and r is given by Equation (6).

Equations(7), (9) and (6), therefore, provide an inversion scheme
analogous to the usual RKR scheme in Equations (2), (5) and (6). The
principal disadvantage of Equation (9) is that one cannot solve these

<

equations to obtain explicit expressions for r. and r, (due to the

logarithms).

To summarize all of these inversion formulae it is useful to carry

out the differentiations of A(E,2) and B(E,#) in Equations (2) and (7)
. A

the resulting expressions are

2 ‘he%‘ F In(E', £) -
- N U 1 n\bL ,%) RAY) '
g - T Tf‘(/“- / dB'ar S5 / (E-E') (10)
N E.
v min
N E
11 _2(epp L S YCUN) W :
r, T r “v( 2) ez/ e VERRACE (1)
< 1 ¥
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. _ h A max ’ ( ) .
» 2 2 = ‘h(m Y ’aﬂ .E') s 1 2 n/‘.‘? ; ”
I‘>v T T —,W <~2-—)f azt 24 W*-—'*a]';"“‘/(ﬂ - 1) (12)
2 : .

. | ’ 'zmé,x ( ) | 3
.. Y= 2 v on(B; 4! 12 2\s
£n(r>/r<) = -z / Y T /(e - 47)2 (13)

vwhere T, = r{(E,E); the value of the potential at\r< is given by -

> > v >
Equation (6){-

Any}ﬁwo of the four equations, Equétion (10)-(13), may be used in
conjgnétiOnvwith Equation (6) to provide an inversion scheme. For
bound-state problemé thefe is no éppé?ent reason why any pair of equa-
tions shoﬁld be easier to use than the usual RKR pair [Eqﬁatiéns (10)
and (ll)j. Equations (lé)-and (13) do give alternate inversion rela-

tions, however, which may be of use in some situations.

IIT. Inversion Relations for Potential Scattering

The experimental‘observable in an elastic scattering experimént is
the cross ééction-a(O,E)~—the differential cross section (or angular
‘distribution) at relative'collision enérgy E. Inversion schemés,
however, invariably start with the scattering phase shifts n(E,Z) as
a function of orbital angular momentun ¢ and collision energy E. The
phas¢ éhifts can in principle be deteri.:.zd from the cross section;8-9
but it is certainly not a trivial aspeci of the problem. Under semi-

‘classical conditions the most promising approach is to attempt to
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construct the classical deflection function from the differential cross
s L2, . . . . N . ;

section; the phase shift is easily obtained from the deflection

function. - This construction can be carried out at different energics,

so that one can obtain the phase shift as a funcltion of £ end E. There ~

are special circumstances in which particular phase shifts can be

obtained more;directly.lo

We assﬁme, therefore, that the phase shift n(E,£) is known, One

 of the many equivalent forms of WKB approximation for = is

1
2

L R | |
2(E, £) = / ar {2p£[E - V(x)1/n° - 47/x7}
: ‘ r_ ‘

(o]

=]

- ar {2,,}3/1&2 - ze/re} 3 s (1)
) ' '

~J
-y

where k =\J2;LE/h2 » Ty = ré(E,z) is the classical turning point, and

'R is & large value of r (the limit R - o is implied). Thisvexpression

fbr the phase shift, howéver, is quite similar to Equation (1) which

“given the radial (i.e.; vibrational) quantum number for a potential well

as a function of E and £. In fact,

2(E, 2) =1T[n(E,£)v— n (E,2)] , | (15)

~where n is the radial quantum number for a potential well which is the

actual effective potential V(r) +‘h222/2/Lr2plus an impenetrable verticle
wall imposed at r = R. (This is reminiscent of "box normalization" for

continuum states.ll) Likewise, n_ is the "unperturbed” radial gquantum
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nuuber for a4 potentisl well which is just lhe centiivgal polentind
T2 /2,1,1‘ plus the verticle wall at r = R. The phase shift, there-
fore is the shift (in units of w) in the radial quantum number caused

by the potential V(r).

Having observed this expression for the phase shift, the resuits
of Section II can be applied directly. For. n(E,£) one has e =T s

= R, and for nO(E,I,) re = l/k, r. = R. In terms of the phase shift,

TS >

therefore, the four inversion relations are

| 2 ‘hgé g 3n(E', 1) 3
ro=2/k—;’-;-(-2—p> /dE aL,’/(u)’
\ nin
5 hE‘% - , B!, 4 ne | (
-17(._2_ aE —ﬂﬁ——_a,, /(E-E) 1
0
1
1 2 ElS] . an(L 1) "
—I-;O—k/ﬁb-;,.(’ 57 deW /(EE
2 (2 1 aE" 5"(}‘3 f‘)/(L 51)? (17)
'v(,ﬁe) 24 :
0
2 £ ' 1
roe, = (4/x)° -,—); @74, fdz' 20" -aﬂg%;—.)-/(z'g-ﬂeﬁ - (28)
/ : |
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. B _ ” g / - -a‘-g(’]“;"el). ‘2 2 :-]_?. ( |
mor o= gn(s/k) + = /cu PR (0% 7). | (19)
| . .

where ?o = rb(E,ﬁ) is the ciaSsical turniné point; the value of the

potehtial at T, is therefore
v(r,)) = E - n 2px | , (20)

Any one of the four'equations,,Equations (16)-(19), used in conjunction

with Equation (20), provides an inversion scheme.

In Equations (16) and (17) it is seen that the bound-state eigen-
value function n(E,¢) is also required. (This is the same as in the
quantum’mechanicél solution--inversion based on the energy dependence
of the phase shift also requires information regarding the bound—sta.tes.l2

If the potential is purely rcpulsive, then the terms in Equations (16)

©and (17) involving the eigenvalue function are absent.

The only restrictions which must be imposed on the four equations

13

have to do with avoiding the situation of three classical turning points;

ie., E and £ must be restricted so that the threebturning point situation

~ does not arise. For Equations (18) and (19) this means that the energy

E must be greater than the maximum energy at which C1assica1 orbitting

, . : 5
can occur; i.e., E >:Eorb? where one can show that

E fex [V(r) + % r V' (x)]. . (21)

oxb = ¥
r

For equations (16) and (17) the requirement is that the value of £ be

o _ v
such that the effective potential V(r) + hgzé/2;xr2 does not posscss a

local maximum. This is achieved by requiring either that £ = 0, or
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that £ zﬂorb’ vhere one can show that ﬂorb (the maximum valve of f for

which classical obritting is possible) is given by

, ‘ ‘ 4
g B BBy wax [ POV()] (22)
orb 2 - : :
, g4l r : : i
. Y
Two.of the four equations will be recognized as previcusly known
. . . 1
results; Equation (19) is Firsov's formula,lJr and the £ = 0 version of
Equation (16) has been given previously by Miller-g Equations (17) and
(18) are new inversion relations for the phasc shift.
As an example of how these formulae may be used, consider Equation v
(17) for the case that the potential is purely repulsive (so that the
: . . » *
bound-state term is abéent) and with £ = 0. Thus
% = tim % K - %— (_e_g) de' o (5, 1)/(E-E")? (23)
o £-0 7| T \n%/ o
where we have used the fact that the déflection function 6 (E,E) is
related to the phase shift by
0 (B, 2) =2 an(B,2)/3¢ -
It is easy to show that the expression in square brackets in Equation
(23) goes to zcro as f - 0, so that LfHospital's rule is applicable; _
' ‘
thus '
‘ Ly
E 7.
> (2',2) ]
- = e o - 5 fontehiantt ' s .. . 2“‘
To em (‘1‘12> /dE o4 |I’~'—ZO /(E E ) ( )

0]

The deflection function at £ = 0, however, is closely related to the

i rrerantial erons section at g oo ol
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: o -7
'Q(WJjJ)_M }:é [-_‘8-7}-2-— £=OJ )
or
S 'n. | L
_§L§Lﬁ£¢£l = -1/ ko(m,E)2 . : o (25)

04 £=0

Substituting Equation (25) into Equation (24) gives

-

1 1 ' ' 1Y
Eatal= f ag' [o(m,E') B' (E-B')J? ,

and the value of the potential at r, is
Y(ro) =5 . -

These two equations can be combined to give the final expression

r(V) / / dE' [a(n;F') E* (V-E' )] . , | . ‘_ ‘i ] (26) R

. This gives r(V) explicitly, the inverse function 6f.which is v(r). Tﬁe'

potential_is obtained,‘therefore, in terms of thé enérgy dependence of
the.cross section for bgck scattering. A simple ekamplevfpr Qﬁich
Equation (é6) can be.checked.is'the repulsive Coulbmb potential;

V(r) = 1/r;'the cross section for back sCatterihg in.this‘case is

o(r,E) = 1/(4m)".
Iv. .Other Applications

A1) of_the ubove WK invdrsion relations are based on the fact tﬁat,

it is pdsSiBle to obtain phasé iﬁtegrals experimentally. In Section II
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thc.eigenvalﬁe funcition n{®, £) is recégnized as phace dnicgral, and
in Section ITIT the phase shift n(E,4) is similorly identificd as such.
The various integrul transforms of the known phuase intercols pormii Lhoe N
determination of the claésidal turning points and thus the value'of i
at which the potential has a definite value.

There are other»situatidnsAin which~phase'integralsvare obtainable
experimentally and on which inversion schemes utilizing Equations (10)-
(13) can be devised. Any time interference>feaﬂures are obsérved it is
possible to determine tﬁé E-ahd/or £ dependence of the pertinent phase

integral; the phase integral is the phase of the oscillatory structure. v

a. ¥Franck-Condon Transitions

Processes in molecular dynamics which'involvé electronic transi-
tions (such as absorption and emission of radiatibn, predissociation,
and molecular autoionization) are usually "Franck-Condon transitionS",
meaning that the elecﬁronic rearrangement takes place essentially
instantaneously with regard to nuclear mqtioﬁ. The relative intensity
of such.transitions is the product of a siowly.varying function and a
Franck-Condon factor (the overlap of the initial_and final ﬁuglear wavé—
functiohs). Measurement of these relative intensities is therefore a
vmeasurement of the Franck-Condon factor.

The fact which makes an iﬁversion scheme possible is that the *i»
Frank-Condon factor is intimately related to a phase integral; the
phasg integral in this case 1s associated with a potential well formed
by the intersection of the initial and final potential curves.ls Chi1d16
has utilized the energy dependence of this "Franck-Condon phasc integral",

through Equation (10) of Section II, to devise an inversion scheme for

~
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Franck-Condon data obtuined from predissociation intensities. I the
dependence of the Franck-Condon factor on rotational quantum number is
also determined, then one can also employ Equation (11), say, to deloer-

mine both r. and r_; if the dependence on vibrational quentum number is.-

~all that is known, it is only possible to use Equation (10) so that it

is necessary to assume that either r_ or T, is known in order to detler-

<

"mine the other.

b. Curve Crossing Probability

In’thclsemiclassical treatment17,of electronic transitions in
atom-atom collisions which take place via a érossing of the two poten-
tialvcurves,'the ﬁranéition‘probabilify is the product of a slowly
var&ing factor aﬁd an oscillatory factor. The phase of the oscillatory

factor is a phase integral; more specificaily, it is the difference in

'phase-infegrals on the initial and final potential curves from their

respective classical turning points to the crossing point. If the E
and £ dependence of this phase integral can be extracted from the dif-
ferential and/or total cross section for the electronic transition,

then the inversion formulae of Section II can be utilized to construct

~ the two potentials involved. If one of the potentials is known, then

it would be possible to determine the other by knowing either the E-

dependenée or the Z-dependence of the phase integral.
V._Conclusibns

Except for thevbound-state situation for which the experimental
data are the vibrational-rotational‘eigenvalues, the most difficult

aspect of inversion is the extraction of the E and £ dependence of the

pertinent phase integral from the experimental data (cross seclions,
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Franck-Condon foctors, transition probedbilitics, clc.). %o the extent.

to which this can be accomplished, inversion sclieines based on sowe,

or all of Equations (10)-(13) can be readily deviscd.

“
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