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Additional WKB Inversion Relat:i.ons 
·lE­

for Bound-State and Scattcrinc; Problems 

* \'lillirun H. Miller 

Inorganic Materials Research Division, 
of the Lawrence Radiation IJaboratory, 

and the Department of Chemistry, 
University of California, 

Berkeley, California 

ABSTRACT 

UCRL-20374 

New inversion relations for the diatom system (elastic 

scattering of tv1o atoms by a single potential, or a bound 

diatomic molecule) are presented. They are exact within 

the WKB approximation for the relevant quantities and are 

closely related to the well-kno\m RKR expressions. Ex-

plicit formulae are given for bound-state and scattering 

input. 
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I. Introdtwtion 

'l'here bas been a great d0al of interest recently in tl1r~ develc,pmcnt 

of inversion methodsl-3 --that is, metlJOds tor dctcrmininc; :lntenJ:olecular 
I 

potentials directly from experimental data, :rathe:r than assuminG some 

parameterized form for the pot<:mtial and a.d;jusU.ng the parameters to 

fit the data. With regard to the elastic .scattering of bvo atoms, for 

example, one desires an explicit procedure wherel1y the experimentally 

obtained cross section can be used to generate the interatomic potential 

V(r) which gives rise to the observed scattering. 

In this paper some new inversion formulae for atom-atom systems 

are presented, all of which are based on the mrn approximation for the 

quantities involved; they are closely related to the Rydberg-Kein-Rees 

(RKR) method
4 

for determining a potential well from its eigenvalues. 

Section II summarizes the RKR method arid-presents the new formulae 

as they pertain to bound-state. problems; Section III considers the form 

taken by the inversion relatione for the case of elastic scattering. 

In applying any of these formulae to invert scattering data, the 

principle difficulty remains the problem of extractine; the scattering 

phase shifts from the observed cross sections; it is the phase shifts 

which are required for the inversion formulae. It is, in general, 
. 2 1 

possible to accomplish this, but very accurate data may be required. 

In some special cases it can be accomplished very easily; see, for 

example, the application at the end of Section III. 

II. Inversion from Eigenvalues 

First we swnmarize the mm method. 4 The vibrationaJ~r6tationnl 

eigenvalues J!:(n, .e) for Uw diatondc molecule are assumed known from 

• 
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cxperiraent ;. the proh:Le:r1 i.s to deternri ne the rotenti:1.l V(:r.). 
c:: 

'l'h~ \'lliB e:Le;cnvalne relation is/ 

1 

(n + 1-hr"" 
2 2 2l 2 

{2p{E- V(r)] fi - t /r f 

''~here r< = r<(E, ..e) are the zeros of the radicand--the classical turn-
. > > 

(l) 

ing points. Equation (1) defines the function n(E,£) explicitly, which 

is the inverse function of E(n,£). 

The function A(E,t) is defined by 

A(E, £) := I 1 

dE' 17" [n(E', .e) + ! J/ (E-E' )2 , 

m1n 

where E . is that value of E for which n(E, £) = -!· Equation (1) is mln 

substituted into Equation (2), and upon·interchv.nsing the order of 

· intergrations and using the integral relations 

one finds that 

= "!! (b-a) 
2 

A(F., £) = ~ (!ft) ! j> dr [E-V(r) - t>
2l /2JII:

2
] 

r< 

Differentiation of Equation ( l~) gives 

{2) 

{3) 

{~) 

\ 

(5a) 



Since the function A(E,£), as defined by Equation (2L is eal\:cd.o.1..i1C 

from the· experimental eigenvalues, the bt1o equations for r < and r> in 

Equation ( 5) can be solved to obtain r < and r>; the valtle of the po-

tential at r < and r> is given by 

This i.s tl1e standard RKR metl1od. 
6 

(6) 

The above procedure has exploited the energy dependence of n(E,£), 

using the fact that the dependence on E occurs in a manner such that 

int~gral transforms based on Equation (3) can be empJoyed. One may 

also note, however, that the £ dependence occurs in a very similar 

manner. Proceeding analogously, therefore, the function B(E,£) is 

defined by 

£max 
B(E,£)- f d£' 2£' 17"[n(E,£') + ~-J/(.e• 2 - ly!- (7) 

£ 

where £max is that value of £ for which n(E, £) = - ~-. Substituting 

Equation ( 1) into Equation (7), interchangine; the order of' integra.tion, 

and using Equation (3) gives 

~; (;,r) (8) 

• 

• 
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Differentiation H:i.th r(~spect to E and.£, therefore, given 

(9a) 

(9b) 

Since B(E,.t) is calculable via Equation (7) from the known eigenvalues, 

Equation (9) provides two equations by lThich r< and r> can be determined; 

the value of the potential at r< and r> is given by Equation (6) . 

Equations('1), {9) and {6), therefore, provide an inversion sc~1eme 

analogous to the usual RKR scheme in Equations (2), (5) ru•d (6). The 

principal disadvantage o~ Equation (9) is that one cannot solve these 

equations to obtain e)..'":plicit e>.·:pressions for r< and r> (due to the 

logarithms). 

To summarize all of these inversion fo1~ulae it is useful to carry 

out the differentiations of A(E,.t) and B(E,.t) in Equations (2) and (7) 

- explicitly; 7 the resulting expressions are 

r>- r< "~(~~:r ~ (10) 

mJ.n 

1 E 
::: _g (gp.)2 l_ f d.E' Cln(E'' .e) /(E-E' )t 

r< Tr 
11

2 2£ 11 
(H ~ 

E . 

1 (11) 

m1n 
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where r< = r<(E,£); 
> > 

Equation ( 6). 

0nt dn(E,.~')j(nt2 
LXI Tf'------ XI -() }; 

£ 2 ·jmd~' ()n(E:,£') 
--TI" x,Tr. ;§p,t /(£'2- l)~-

£ 

the value of the potential at_ r < is given by 
> 

( ];.: ) 

(13) 

Any two of the four equations, Equation ( 10)- ( 13), may be 1.1.s ed in 

conjunction with Equation (6) to provide an inversion scheme. For 

bound-state problems there is no apparent reason >vhy any pair of equa.­

tions should be easier to use than the usual RKR pair [Equations (10) 

and (11)]. Equations (12) and (13) do give alternate inversionrela-

tions, however, v.rhich may be of use in some situations. 

III. Inversion Relations for Potential Scattering 

The experimental observable in an elastic scattering eA.'J)eriment is 

the cross section u(O,E)--the differential cross section (or angular 

distribution) at relative collision energy E. Inversion schemes, 

hm.,rcver, invariably start with the scattering phase shifts T1 (E, £) as 

a function of orbital angular momentum e and colJjsion cnere;y E. The 

8-9 phase shifts can in principle be deten· .. ;: ,:,d from the cross section, 

but it is certainly not a trivial aspec:. nf the problem. Under semi-

classical conditions the mof;t promtsinr; [cpproach is to attc!mpt 'to 

f . ., 

I I 

~· 

• 
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construGt the class:i.cal deflection functi.on from the diff'm.·ent:ial cross 

section; l, 
2 

the phase shift is easily obtai11ed :rrom the deflection 

function. This conGt:ruction can be carried out at different energies, 

so that one can obtain the phase shift a.s a function of £ rmd }~. 'I'here 

are special circumstances in which particular pha;;;e shifts c&.n be 

obtained more directly. 10 

We assume, therefore, that the phase shift 11 (E, £) is knm·1n, One 

of the many equivalent forms of WKB approxjmation for l1 is 

•(E,£) " ~ dr j2JL[E- V(r}J/~2 - t
2/r2j ~ 

: 

r 
0 

R 

f 1 2 2/21-
.dr { 2p;~ 11 - £ r } 2 

£/k 

, 

where k = ~2 uE/'h
21

, r = r (E, ..e) is the classical turning point; and r o o 

R is a large value of r (the limit R ~ ~ is implied). This expression 

for the phase shift, hovrever, is quite similar to Equation (1) \vhich 

-given the radial (i.e., vibrational) quantum number :for a potential \vell 

as a function of E and ..e. In_ fact, 

q(E,£) =w[n(E,..e) - n (E,..e)] 
0 

(15) 

where n is the radial quantum number for a potential vrell v.1hich is the 

actual effective potential V(r) +'fl
2 t 2

/2f'r
2
plus an impenetrable verticle 

wall imposed at r = R. 

continuum states.
11

) 

(This is reminiscent of "box normalization" for 

Likmvise, n is the "unperturbed" radial quantum 
0 
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nuJill>er f'o1· a JJutcnLio.l -v:eJ.l·which is ,ja~:L l.i1v cr.:nl:i.ii!~>'J :i'j:.c.~,:.i_.:L 

? 2 2 
-h·-.e /2p.r- plu::. the verticle wall at r = 1\. The phase shj_ft, t.hc:r·t~·-

fore is the shift (in units of 7r) in the radial quantum mmiber caused 

by the potential V(r). 

Havine; observed this expression for the phase shift, the results 

of Section II can be applied directly. For. n(E,£) one has r = r < o' 

r> ""' R, and for n
0

(E, :e) r< = P./k, r> = R. In terms of the phase shift, 

therefore, the four inversion relations are 

-~ (~~t J a~~E',:e) l 

dE' /(E-E' )2 (16) 
()E' 

0 

1 
k/ :e - _g e:;/ 1 J dE' 1r Cn(E' 1 E)/(E-E' )b 

r .,. ;112 2.ll d£ 
0 E . 

IDln 

- _g (~~ 
E 

1 f dE' 
;jry(E'' :e)/ (E-E' )~ (17) 

., -n2 2£ a:e 
0 

1'12 
00 

2 (£/k)2 4 
fd:e' .rt'l~E :e') /C.e'2-l)~ (18) r = .,. 2fL 

2£ I 
0 

.e 

·,.; 

~ 
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An r -· tn.( t/k) 
0 

2 
+­

Tr 

where r = r (E,.£) is the classical turning point; the value of the 
0 0 

potential at r is therefore 
0 

2 2 2 V(r ) = E - i'l £ /2ILr o r- o 

(19) 

(20) 

Any~ of the four equations, Equations (16)-(19), used in conjunction 

with Equation (20), provides an inversion scheme • 

In Equations (16) and (17) it is seen that the bound-state eigen­

value function n(E,£) is also required. (This is the same as in the 

quantum mechanical solution--inversion based on the energy dependence 

of the phase shift also requires information regarding the bound-states. 12 

If the potential is purely repulsive, then the terms in Equations (16) 

and (17) involving the eigenvalue function are absent. 

The only restrictions which must be :iiDposed on the four equations 

have to do vrith avoiding the situation of three classical turning points; 13 

~e., E and £must be restricted so that the three turning point situation 

does not arise. For Equations (18) and (19) this means that the energy 

E must be greater than the maximum energy at v1hich classical orbi tting 

can occur; i.e., E > E b' where one can show2 that or · 

Eo:rb =Hax (V(r) +~rV'(r)]. 
.r 

(21) 

For equations (16) and (17) the requirement is that the value of £be 

such that the effective potential V( r) + h 2£
2
/2 p,.r2 does not possess a 

local maximum. This is achieved by requiring either that Jl, = 0, or 
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tlv:~t P, > £ 
1

, \:here one can d10w tlJn.t. £ (tlw maximum v<:duc of f', foT 
-- or J orb 

which clasdcal obrittine; is possible) is given by 

£ 2 - ( ?;:: ) 
orb 

Two. of the four eq_uations will be recognized as previously lmcnm 
I 

ll.f. 
results; Equation (19) is Firsov's formula, and the £ = 0 version of 

Equation (16) has been given previously by Miller.
2 

Equatiol'ls (17) ancl 

(18) are nc1·1 inversion relations for the phase shift. 

As an example of hovl these formulae may be u::;ed, cons:i dl:r Equatior' 

(17) for the case that the potential is purely repulsive (so that the 

bound-state te~m is absent) and vlith £ = 0. Thus 

1 £. 
= lffi 

r 
0 P,->-0 

: [k -l 
!U 211" 

6 (E',t)/(E-E')"'] 

where we have used the fact that the deflection function 0 (E, f.) is 

related to the phase shift by 

e (E,.e) = 2 al7(E,.e)/a.e 

(23) 

It is easy to show that the expression in square brackets in Equation 

(23) goes to zero as£ ->0, so that JJ'HospitaJ.'s rule is applicable; 

thus 

E 
l l C"l I dE' 

_g_Q.JE'' £) 
l 

I (E..,E' )2 

r 2rr i/ ;j£ f,:c~O 
0 0 

The deflection function at .e = 0, hov1ever, is closely related to the 

• 

\ 
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or 

1 
= --2 

k 

•[5} 0 (E,.e) I ] -2 
() .£ £=.:0 ' 

Substituting Equation (25) into Equation (24) gives 

E 

; = ~v f dE' 
0 0 

_1 
(o-(1r,E') E' (E-E')J?. , 

and the value of the potential at r is 
0 

V(r ) = E 
0 

These two equations can be combined to give the final expression 

r(V) = 2~ f V dE' (u(.,E') E' (V-E') f ~ 
0 

; 
. 0'•, 

(25) 

(26), 

This gives r(V) explicitly, the inverse function of which is V(r). The 

potential is obtained, therefore, in terms of the energy c1.ependence of 

the cross section for back scattering. A simple example for which 
. ' 

Equation (26) can be checked is the repulsive Coulomb potential, 

V(r) = 1/r; the cross section for back scattering in this case is 

IV. Other A!)Plicat:i.ons 

All of tho above Hiill invcrsi.on relations are based on the fact that . 

it is ponsible to obtain phase inter;rals experimentu.Jly. In Section II 



-12- UCRL-20374 

:in Section III the phase .shift 71 (F.,.£) is sim:iJ nxly ichmtifi ul a:; :;vch. 

determination of the classical tm·ning points and thus the: value of r 

at which the l)(Jtential has a definite value. 

There a.re other situations in 1-Jhich- phase intee;roJs are obtainable 

experimentally and on which inversion schemes utilizing Equa.tions (10)-

(13) can be devised. Any time interference featur·es are observed. it is 

possible to determine the E and/or .£ dependence of the pertinent phase 

integral; the phase integral is the phase of the oscillatory structure. 

a~ Franck-Conclon 'rransi tions 

Processes in molecular dynamics which involve electronic transi-

tions (such as absorption and emission of radiation, predissociation, 

and molecular autoionization) are usually "Franck-Condon transitions", 

meaning that the electronic rearrangement takes place essentially 

instantaneously with regard to nuclear motion. The relative intensity 

of such transitions is the product of a slowly varying function and a 

Franck-Condon factor (the overlap of the initial and final nuc;Lear wave-

functions). Measurement of these relative intensities is therefore a 

measurement of the Franck-Condon factor. 

The fact which makes· an inversion scheme possible is that the 

Frank-Condon factor is intimately related to a phase integral; the 

phase integral in this case is associated with a potential well formed. 

by the intersection o'i' the initial and final potential curves. 15 Child
16 

has utilized the energy dependence of this "Franck-Condon ph2cse inte[~ral", 

through Equation (10) of Section II, to devise an inversion scheme for 

() 
) 

u 

(; 

·-\ 
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Franck~Cond.on dn.ta obt: . .t.lncd !'rom y,r(~dissocj_at:lon intem:ltif~s. If the 

dependence of the Frand:~-Cond.on i'actor on rotaUonal quantum r.UJr,ber ir; 

also determined, then one can also employ Equation (11), r,ay, to deter­

mine both r < and r>; if the dependence on vibrational quantum number is · 

all that is kno"m, it is only possible to use Equation (10) so that it 

:i.s necessary to assume that either r < or r> is kno'm in order to deter­

mine the other. 

b. Curve Crossing Probability 

In the semiclassical treatment17 of' electronic transitions in 

atom-atom collisions which take place via a crossing of the two poten­

tj.al curves, the transition probability is the product of a slm-rly 

varying factor and an oscillatory factor. The phase of the oscillatory 

fae;tor is a phase integral; more specifically, it is the difference in 

phase integrals on the initial and final potential curves from their 

respective classical turning points to the crossing point. If the E 

and £ dependence of this phase integral can be extracted from the dif­

ferential and/or total cross section for the electronic transition, 

then the inversion formulae of Section II can be utilized to construct 

the two potentials involved. If one of the potentials is known, then 

it would be possible to determine the other by knm-<ing either the E­

dependence ~ the £-dependence of the phase integral. 

v. Conclusions 

Except for the bound-state situation for which the CA~erimental 

data are the vibrational-rotational-eigenvalues, the most difficult 

aspect of inversion is the extraction of the E and £ dependence of the 

pertinent phase inter.,ral from t.he experimental data (cross sections, 
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to v1hich thi.s can be accornpl:i.shecl, ilNersion scltemt~S based on 

or all of Equations (10)- (13) can be reu.t~_ily dcvise:d. 
,) 

) 
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