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Learning Language via Perceptual/Motor Experiences

Michael G. Dyer
3532 Boelter Hall,
Computer Scicnce Department,
University of California
Los Angeles, CA 90024
E-mail: Dyer@cs.ucla.edu

Abstract

We postulate that early childhood language semantics
is "grounded” in perceptual/motor expericnces. The
DETE model has been constructed to explore this
hypothesis. During learning, DETE's input consists
of simulated verbal, visual and motor sequences.
After learning, DETE dcmonstrates its language
understanding via two tasks: (a) Verbal-to-
visual/motor association -- given a verbal sequence,
DETE generates the visual/motor sequence being
described. (b) Visual/motor-to-verbal association --
given a visual/motor sequence, DETE generates a
verbal sequence describing the visual/motor inpult.
DETE'’s learning abilities result from a novel ncural
network module, called katamic memory. DETE is
implemented as a large-scale, parallel, ncural/
procedural hybrid architecture, with over 1 million
virtual processors executing on a 16K processor CM-
2 Connection Machine.*

Language Learning in the Blobs World
Task Domain

We postulate that early childhood language semantics
is "grounded” in perceptual/motor experiences.
While observing and interacting in the world, each
child attends simultaneously to the utterances of
caregivers and, over time, learns to extract their
structures and meanings. This acquisition process
occurs successfully, in spite of wide-ranging
differences among languages.

Here we describe DETE (Nenov, 1991; Nenov
and Dyer, 1992), a system constructed to explore
aspects of this language grounding problem. DETE

* This research was supported in part by an

interdisciplinary research grant from the W, M, Keck
Foundation to the first author. The CM-2 Connection
Machine, on which the model is implemented, was
acquired through NSF equipment centers grant
#BBS-87-14206 and maintained through both the W,
M. Keck Foundation grant and NSF grant #DIR-90-
24251. The CM-2 is managed by the UCLA
Cognitive Science Research Program.

Valeriy L. Nenov
Division of Neurosurgery,
School of Medicine, 74-140 CHS,
University of California
Los Angeles, CA 90024-6901
E-mail: Nenov@ncurosurg.medsch.ucla.edu

is a massively parallel, procedural/neural hybrid
model that consists of over 1 million virtual
processors, executing on a 16K processor CM-2
Connection Machine. [/nierface modules (i.e. that
map simulated visual/verbal input to learning/
memory subsystems) are parallel, array-processing
procedures, while core memory modules themselves
are modeled as highly structured neural networks
(termed “katamic” memories) composed of novel
ncural clements.

DETE receives all visual/motor input via a
simulated Visual Screcn (VS), consisting of 64 x 64
(i.e. 4096) "pixels". On this screen there appears a
sequence of scenes. Each scene contains 1 1o 5 blobs
-- i.e., mono-colored, homogeneous (and somewhat
noisy) 2-D shapes, such as circles, squares, and
triangles. DETE has a single, circular retina (EYE)
through which it sees a given portion of the VS at any
given time. DETE can also move a FINGER icon on
the VS in order 1o touch or push a blob.

Sequences of VS frames simulate both moving
and stationary blobs of different sizes, shapes, colors,
locations, speeds and directions of motion. At the
same time, DETE may receive sequences of
commands that move its FINGER and EYE (and
zoom EYE in/out). DETE’s learning task is 10
associate sensory/motor sequences with concurrent
verbal sequences that describe the visual input.
DETE then demonstrates its comprehension, via two
performance tasks: (1) Verbal-to-[visual/motor|
association -- Given only verbal input, DETE must
generate (i.e. “imagine”) a corresponding visual/
motor sequence and (2) (Visual/motor]-to-verbal
association -- Given only visual/motor input, DETE
must generate a verbal sequence describing what it
sees. Figure 1 shows DETE generating images (in ils
“Mind’s Eye”) when given only verbal input. As
DETE receives verbal input, it generates
corresponding visual “images” (i.e., internal
representations in neural memory, that are then
interpreted to produce the images in Figure 1),

DETE is designed so it can learn different
language subsets. To demonstrate this ability, DETE
was trained on two simplified subsets of English:
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Figure 1: Performance of Verbal-to-visual association
(after language learning phase). Here, "red” induces
a blob with a red color; “triangle” specifies shape;
“moves” activates the representation of motion with
most common (default) speed and direction. Motion is
shown here schematically by an arrow (which does
not actually appear on the VS). "up” further specifies
motion direction while “hits” induces the
representation of another blob located on the motion
path of the triangle. The words "blue”, “circle” further
refine this blob. Finally, "bounces” induces an abrupt
change of motion direction of the triangular blob
(indicated schematically by arrow painting down).

FIRLAN and SECLAN. These differ in: (a) Syntax
-- for example, in FIRLAN, blob location and
motion descriptors occur after blob shape, while in
SECLAN the order is reversed. (b) Semantics --
these language subsets have different vocabularies
and descriptive categorizations of the perceptual
world. For example, SECLAN only distinguishes
position in terms of either "in_middle" or
"on_periphery" while FIRLAN includes terms such
as "left_of/right_of™, "above/below", and "near/far".

DETE has also been taught noun/adjective gender
agreement for a small, restricted subset of Spanish
(e.g. "pelota roja” [ball red]).

Representation of Visual/Motor Input

All visual/motor input is mapped (by interface
routines) o regions of active neurons over a set of
Feature Planes (FPs). The 5 visual FPs are: Shape
(SFP), siZe (ZFP), Color (CFP), Location (LFP) and
Motion (MFP). Each FP is composed of a 2-D array
of 16 x 16 (256) neurons. Different active regions
represent different values for that feature. An active
neuron is one that oscillates, i.e. it fires periodically
(with output 1) and is silent the rest of the time
(output 0). FPs have raster-linear or topographic
layouts. The LFP and MFP have topographic layouts.
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If a blob is in the lower right commer of the VS, then
its position is represented by a region of acrive
neurons in the lower right corner of the LFP. On the
MFP, the speed of a blob is represented by distance
from the center, with stationary objects at the center
and more rapidly moving objects toward the
periphery. There are also FPs for FINGER and EYE
dynamics. Figure 2 illustrates how the motions of 4
different blobs on the VS are mapped onto the
Moton Feature Plane (MFP),

Motivation for Feature Planes

Feature Planes (FPs) are used as representational
constructs for three reasons: (1) Neuropsychological
and Neurophysiological Support: FPs correspond
roughly to known neurophysiological and
neuropsychological studies (Kandel and Schwartz,
1985) indicating both topographic mappings and that
shape, position, etc. are processed in different regions
of the brain and then reintegrated. (2) Spatial
Representational Analog: Topographic layouls
supply simplified, yet direct analogs for spatial
features, and thus make representing space and
motion easier. For example, a word like “moves” can
be represented by activity anywhere away from the
center of the MFP while directions of motion termed
“diagonal” can be represented simply by activity
anywhere in the diagonal regions of the MFP. FPs
also support smooth generalization. If an object near
the center of the MFP is moving slowly then objects
mapped near to it will tend to be moving at about the
same speed/direction. (3) Combinatorial Learning
and Generalization Capability: Blob relationships
and motions can be represented as a pattern of
activity distributed over all FPs as they change
sequentially in time. For example, the word
"accelerate” can be represented and learned as a
sequence of activations, going from the MFP's center
toward its periphery. Independence of FPs also
supports immediate generalization to novel
combinations of known words.

Binding Features and Selective Attention

DETE can have up to 5 blobs on the Visual Screen
(VS) at the same time. Multiple blobs creates a
"visual binding problem” when there are separate
feature planes. To avoid cross-talk, regions of
activity (representing the same blob) must be "bound"
across all feature planes. The solution used in DETE
is one suggested in the neuroscientific literature (von
der Malsburg and Singer, 1988); namely, that neurons
behave as oscillators and that neurons be bound in the
temporal dimension by oscillating in phase. All
neurons in DETE oscillate at the same frequency;
however, neuronal oscillations can be shifted in
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Figure 2: Motion Feature Plane (MFP). Simultaneous
representation of the motions of four different objects
on the Motion Feature Plane. There are two
stationary blobs and another blob moving slowly to the
left. The fourth blob is moving quickly in a North-East
direction. The arrows do not appear on the VS but
are used here simply to indicate the direction/speed of
motion of blobs as their positions change over
successive inputs on the VS. lllustrated also are 2
distinct motion-to-verbal mappings DETE has learned
(in separate experiments): (1) In FIRLAN (i.e. words
immediately surrounding the MFP), the stationary
objects are described as “still” and the larger triangle
as moving “fast North-East” (2) In SECLAN (words
shown in bold), the small square and triangle are
described as “stationary” while the large triangle and
circle are simply described as “moves”. Thus,
SECLAN does not discriminate among different
speeds or directions of movement.

phase. For example, if there are 3 blobs on the retina
at the same time, there will be three distinct phases
across all feature planes (i.e. one for each blob). In
order for DETE to attend to one of these objects,
there is a need for a mechanism that will focus
attention on it. DETE has a (non-neural) Selective
Attention Mechanism (SAM), which (a) assigns
distinct phases to each blob on the VS and (b) makes
any blob that is at the center of the EYE be in the
focus of attention. DETE is designed so that only
those neurons oscillating in phase with the current
focus-of-attention phase can be updated. Thus,
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402

oo

BIAN  BORRNIARI NI 00 B BRI RRIARI BRI RRIRRERNN)

PESAYO/BR0I 2420 /BYRI 2340/ 8YIN 23456 /8900123468501 23456 /89601234

L L e L L R e LRy

WO RN BRI BRI RN RN BRI AR IR IR SRR AR BB RE

QINNR NN I RN BN IBR IR IBNIN

IO I BRI RBINBINNI

Figure 3: Gra-phonemic encoding of “red ball”. For
simplicity, each gra-phoneme is shown as only one
64-bit wide pattern. In DETE, each gra-phoneme is
actually presented for 5 B-cycles (basic cycle of
neural updating/firing), and so appears as a sequence
of 5§ such patterns. Pauses between words consist of
5 B-cycles of zero patterns (4th pattern here).

DETE lecarns about the retina-centered blob.
However, the same learning mechanism allows
DETE to learn also about retina-peripheral blobs,
which provides a visual context.

Representation of Verbal Input/Qutput

Verbal input to DETE consists of a sequence of gra-
phonemes which encode both orthographic and
phonemic information. There are 26 different gra-
phonemes, one for each letter (i.e. grapheme) in the
English alphabet. The one-to-one correspondence
between letters and gra-phonemes allows DETE to
process textual input. [Each gra-phoneme is
represented as a pattern of active neurons over a bank
of 64 "verbal' neurons. Each pattern encodes the
frequencies (in Hz) of the first three formants (F1, F2,
F3). Each location (loc) in the verbal bank represents
a sound frequency window of 40 Hz, ranging from
270 Hz (loc 1) to 2790 Hz (loc 64). For instance, if
the loc-1 neuron fires, then it represents a gra-
phoneme whose first formant has an average
frequency in the range of 270 to 310 Hz. Figure 3
shows how a 2-word sequence is represented.

Although gra-phonemes lack many features of real
phonemes (e.g. varying duration, distinct onset vs.
termination) they allow DETE to process the internal
structure of words, such as inflections on verbs, and
prefixes/suffixes on adjectives and adverbs (e.g.
gender agreement in Spanish).

Katamic Memory

To handle dynamic tasks (such as language, vision
and motion), it is important to be able to learn, recall,
and recognize sequences. Also of importance are the
abilities to: (a) cluster related sequences, (b)
generalize to novel (yetsimilar) sequences, and (c)
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Figure 4: Katamic Memory with 4 predictrons (P),
(versus 64 in verbal memory and 256 in each visual
memory module in DETE model). Only 6 DCPs
(vertical ovals) are shown (versus 128 in DETE
model). Associated with each predictron is a
recognitron (R) that samples its own pred-ictron's
output and that of neighbors. Each predictron's output
is passed through its recognitran's DCs and Bi-Stable
Switch (BS) to connect to the DCPs of other
predictrons, thus being distributing spatially (across
predictrons) and temporally (across DCPs of a given,
single predictron).

recall and generate complete sequences [rom
onlypartial cues. DETE's sequence processing
abilities are based on a unique, specially designed
neural network achitecture, termed “katamic
memory”, composed of novel, artificial neurons
(Nenov, 1990). Katamic neurons have also been
given special names, 1o distinguish them from other
types of artificial neurons and neural network
memory models. Each katamic memory module is
constructed out of ensembles consisting of 3 neural
elements: Predictrons (predicting neurons),
Recognitrons (recognition neurons) and Bi-Stable
Switches (BSSs). Figure 4 shows a small katamic
memory.

Predictrons are like real neurons in the following
ways: (a) they fire a single action potential at a time
(producing a stream of binary output), (b) they
contain dendritic compartments (DCPs) (analogous to
part of the dendritic tree between two branching
points) that hold long-term memory information, and
(c) they act as temporal delay lines, as the result of
short-term information in the DCPs being shifted
toward the soma (body of the neuron) over time.
Thus, it takes longer for signals to reach the soma
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Figure 5: Spiral connectivity pattern among Motion
Feature Memory (MFM) predictrons. Only 256 pixels
of the VS are shown out of a total of 4096.
Predictrons forming the MFM are shown as vertical
bars. The DCPs of each predictron are arranged
along the Z axis. Only 8 DCPs per predictron are
shown here (for simplicity, recognitrons and BSSs are
not shown). Each blob in the VS activates 4 units in
the MFP, that then pass information to the
corresponding 4 predictrons (i.e. a column) in the
MFM.

from more distant DCPs, Katamic memory is
organized so that each predictron generates a 0 or 1
ateach B-cycle (basic cycle), based on the spatio-
temporal relation of that output to all other bits,
distributed spatially across all predictrons, and

distributed temporally, across all DCPs within a
predictron. The function of the Recognitrons and
BSSs is to determine when to do internal pattern
sequence completion, based on how correct were
their neighboring predictrons’ predictions. Katamic
memory acts as a robust spatio-temporal (i.e.
sequence) associator where the prediction of each
next pattern is based on traces of all past histories of
all previous patterns. The firing/learning B-cycle of
katamic memory neurons consists of 9 steps, modeled
by 16 equations; consequently, there is not enough
space to discuss them here. For details, see (Nenov
1991; Nenov and Dyer 1992).

Numerous experiments on Katamic memory,
reported in (Nenov 1991), show that Katamic
memory has the following very useful properties: (1)
Rapid learning. On average, only 4-6 exposures (o a
pauern sequence are sufficient for learning. This is
3-4 orders of magnitude improvement over recurrent
PDP networks (Elman, 1990). (2) Flexible memory



capacity. Multiple sequences of different lengths can
be stored and the model is easily scalable to larger
input patterns and/or sequences of greater length. (3)
Sequence completionirecall. A short sequence (i.c.
cue) is sufficient to discriminate and retrieve a
previously recorded sequence. (4) Fault and noise
tolerance. Missing bits can be tolerated and the
memory can interpolate/extrapolatec from existing
data. (5)Integrated learning and performance: The
Katamic memory can switch automatically from
leaming mode to performance mode on a bit-by-bit
and pattem-by-pattern basis.

DETE Architecture

The core of DETE's architecture consists of over 80
interconnected katamic modules, each with slightly
different internal connectivity and parameler settings.
Associated with each Feature Plane (FP) is a katamic
module termed a “Feature Memory™ (FM). For cach
position, e.g., in the Shape Feature Planc (SFP) there
is a corresponding predictron in the Shape Fecature
Memory (SFM). The task of cach visual FM is 10
encode memory traces of all sequences of aclivity
coming in from the corresponding visual Feature
Planes. How each predictron is connected to its
neighboring predictrons varies with the type of
feature information being encoded. For instance, in
Motion Feature Memories (MFM), the predictrons
are connected to one another in a spiral formation.
Figure S shows this arrangement for the MFM.

Spiral connectivity, (along with phase-locking)
provides a polar coordinate scheme so that the speed
and direction of each blob in the VS can be uniquely
represented. (Memory traces of gra-phoneme
sequences are also stored via katamic memory,
however, with a different connectivity configuration.)

DETE Language Learning Performance

DETE must be taught incrementally since multi-word
sequences rely on single-word-to-visual associations
formed earlier. First, DETE was taught the names of
blobs by being given scenes of blobs with a single
shape, but with varying colors, sizes, locations and
motions. As a result, DETE extracts whalt is invariant
(i.e. shape) and forms the strongest associations
between the gra-phoneme sequence (e.g., “circle”)

and the modified DCPs of the predictrons in the
Shape Feature Memory (e.g., in the region for round
objects). In verbal-to-visual learning of words
“circle”, "square” and "triangle", DETE formed its
first correct associations for each after only 4-5
presentations. To get 100% of the training data
correct, however, requires 169-181 trials, mainly
because irrelevant features must be varied so that the
strongest associations are made for the invariant
feature. Using this same approach, DETE next

Figure 6: Activation generated on predictron somas
of MFM for "moves”. Activity appears everywhere
except in the center (where stationary blobs are
represented). This activity pattern is DETE's
reconstructed visual memory for the word “moves”.
Greater activity in the lower left corner represents a
default direction and velocity. When the MFE is fed to
a winner-take-all network (WTA), the default is
extracted and used to assign a direction/velocity for
whatever blob (i.e. shape, color, etc.) is currently
being imagined in DETE's “Mind's Eye”, e.g. as in
Figure 1.

learned the meanings of words for color, size,
location with respect to center of the VS (e.g."above", ,
“right”, "in_center”, "far", etc.). Next, DETE leamed
single words for actions/events -- i. e. when there is
change in one or more visual features as visual
frames are updated. Such words include: “moves”,
"accelerates”, "turns”,"bounces”, and "shrinks" (i.e.
change in blob size). Once these words were learned,
DETE was tested by presenting it with gra-phoneme
input only, and seeing what activity appears on the
corresponding FP (Figure 6). DETE has also been
trained/tested on multi-word sequences (e.g. the word
sequence shown in Figure 1).

Current Implementation Status and
Future Directions

DETE currently runs on a 16K processor CM-2 in
*Lisp with a Sun 4/830 as a front end. It uses over 1
million virtual processors (vps) and 7/8 of available
heap (16K processors x .5 Mbits stack per processor)

Each of the 5 visual Feature Memories (FMs) are
mapped onto a 3-D data structure with dimensions 16
x 16 predictrons (i.e. the size of each Feature Plane) x
64 (the number of per predictron) for 5 x 256 x 64 =
81,920 vps. For each FM there are 16 x 16 = 256
recognitrons. Verbal, Temporal Memories (which
allow DETE to learn past/future tenses) and other
modules result in a total of 1,310,720 vps.

In spite of DETE's capabilities, it has numerous
limitations, including lacking the following: (1)
verbal-to-verbal association -- needed to define
abstract words in terms of known words, (2) sense of
self versus others -- to learn indexicals like “you” vs.



“me”, (3) goals/plans -- to learn words like “wants”,
“intends”, and (4) model-level vision (i.e. structured
objects (e.g. “chair”) and composite actions (e.g.
“eat”, “walk”). These current, major limitations
constitute directions for future research.

Conclusions

We have explored, with the DETE system, several
aspects of the "Language Grounding Problem"-- a
task increasingly recognized as fundamental, e.g.
(Dresher, 1991; Feldman et al. 1990; Suppes et al.,
1991). The supcrior adaptive learning and
performance capabilities of the DETE system (e.g.
over simple recurrent networks) are largely due to its
much more complex architecture (e.g. the existence
of separate feature planes; the use of neurons with
more complex temporal dynamics, such as shift-delay
dendritic inputs and phase-locked outputs; the
connectivity within and among katamic memory
modules, etc.). We belicve that this use of more
complex necural architecture is well justified, both
computationally (i.e. to reduce what would otherwise
be an enormous adaptive-learning search space) and
neuroscientifically (i.e. the brain, as the rcsult of
selectional pressures over millions of years, has
evolved numerous architectural structures -- each
more complex than, e.g., that of a simple recurrent
PDP network).

There currently remains a very large gap between
the performance capabilities of symbolic natural
language processing systems -- with their infinite
generative capacity and sophisticated, human-
engineered knowledge and processing constructs (€.g.
capable of limited argument and belief analysis
(Alvarado, 1990)), and a perceptually grounded,
adaptive learning neural architecture like DETE. To
bridge this gap will require, not only insights from
computational neuroscience (Churchland and
Sejnowski, 1992), but also the development of
structured (Lange and Dyer 1989; Lange et al. 1991)
and distributed connectionist networks specifically
designed to support high-level cognition (Dyer, 1990,
1991; Miikkulainen and Dyer 1991; Sumida and
Dyer, 1992).
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