
UC Riverside
2017 Publications

Title
Development and Evaluation of an Evolutionary Algorithm-Based OnLine Energy 
Management System for Plug-In Hybrid Electric Vehicles

Permalink
https://escholarship.org/uc/item/29g7s7fg

Journal
IEEE Transactions on Intelligent Transportation Systems, 18(8)

ISSN
1524-9050 1558-0016

Authors
Qi, Xuewei
Wu, Guoyuan
Boriboonsomsin, Kanok
et al.

Publication Date
2017-08-01

DOI
10.1109/TITS.2016.2633542
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/29g7s7fg
https://escholarship.org/uc/item/29g7s7fg#author
https://escholarship.org
http://www.cdlib.org/


IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 8, AUGUST 2017 2181

Development and Evaluation of an Evolutionary
Algorithm-Based Online Energy Management
System for Plug-In Hybrid Electric Vehicles

Xuewei Qi, Member, IEEE, Guoyuan Wu, Senior Member, IEEE, Kanok Boriboonsomsin, Member, IEEE,
and Matthew J. Barth, Fellow, IEEE

Abstract— Plug-in hybrid electric vehicles (PHEVs) have been
regarded as one of several promising countermeasures to
transportation-related energy use and air quality issues. Com-
pared with conventional hybrid electric vehicles, developing an
energy management system (EMS) for PHEVs is more chal-
lenging due to their more complex powertrain. In this paper,
we propose a generic framework of online EMS for PHEVs that
is based on an evolutionary algorithm. It includes several control
strategies for managing battery state-of-charge (SOC). Extensive
simulation testing and evaluation using real-world traffic data
indicates that the different SOC control strategies of the proposed
online EMS all outperform the conventional control strategy. Out
of all the SOC control strategies, the self-adaptive one is the most
adaptive to real-time traffic conditions and the most robust to
the uncertainties in recharging opportunity. A comparison to
the existing models also employing short-term prediction shows
that the proposed model can achieve the best fuel economy
improvement but requiring less trip information.

Index Terms— Plug-in hybrid electric vehicle, intelligent
transportation system, energy management, evolutionary
algorithm.

I. INTRODUCTION

A IR pollution and climate change impacts associated with
the use of fossil fuels have motivated the electrification

of transportation systems. In the realm of powertrain electri-
fication, groundbreaking changes have been witnessed in the
past decade in terms of research and development of hybrid
electric vehicles (HEVs) and electric vehicles (EVs) [1].
As a combination of HEVs and EVs, plug-in hybrid electric
vehicles (PHEVs) can be plugged into the electrical grid to
charge their batteries, thus increasing the use of electricity and
achieving even higher overall fuel efficiency, while retaining
the internal combustion engine that can be called upon when
needed [2].
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In comparison to conventional HEVs, the energy manage-
ment systems (EMS) in PHEVs are significantly more complex
due to their extended electric-only propulsion (or extended
all-electric range capability) and battery chargeability via
external electric power sources. Numerous efforts have been
made in developing a variety of EMS for PHEVs [3], [4].
From the control perspective, existing EMS can be roughly
classified as rule-based [5] and optimization-based [6]. This is
discussed in more detail in Section II.

In spite of all these efforts, most of the existing PHEVs’
EMS have one or more of the following limitations:

1) Lack of adaptability to real-time information, such as
traffic and road grade. This applies to rule-based EMS
(either deterministic or using fuzzy logic) whose para-
meters or criteria have been pre-tuned to favor certain
conditions (e.g., specific driving cycles and route eleva-
tion profiles) [3]. In addition, most EMS that are based
on global optimization off-line assume that the future
driving condition is known [2]. Thus far, only a few
studies have focused on the development of on-line EMS
for PHEVs [7].

2) Dependence on accurate (or predicted) trip information
that is usually unknown a priori. Many of the exist-
ing EMS require at a minimum the trip duration as
known or predicted information prior to the trip [20].
Furthermore, it is reported that the performance of EMS
is largely dependent on the time span of the trip [20].
There are very few studies analyzing the impacts of trip
duration on the performance of EMS for PHEVs.

3) Emphasis on a single trip level optimization without
considering opportunistic charging between trips. The
most critical feature that differentiates PHEVs from
conventional HEVs is that PHEVs’ batteries can be
charged by plugging into an electrical outlet. Most of
the existing EMS are designed to work on a trip-by-trip
basis. However, taking into account inter-trip charging
information can significantly improve the fuel economy
of PHEVs [2].

To address these limitations, we herein propose a generic
framework of on-line EMS for PHEVs that uses an evo-
lutionary algorithm (EA) to optimize vehicle fuel economy
in real time. For the purpose of on-line implementation,
the optimization is conducted on a sliding time window basis
rather than on an entire trip basis. Meanwhile, two types of
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state-of-charge (SOC) control strategies (i.e., SOC reference
control and self-adaptive control), which govern the utilization
of vehicle battery power to achieve optimal fuel efficiency for
the vehicle without the knowledge of trip duration, are pro-
posed within the framework and compared with conventional
binary control strategies.

The major contributions of this paper include: 1) develop-
ment of a generic framework of on-line EMS for PHEVs;
2) exclusion of trip duration as required information for
PHEVs’ energy management; 3) quantification of the perfor-
mance of the proposed EMS with respect to different trip
durations; and 4) consideration of the impacts due to inter-trip
charging opportunities.

The remainder of this paper is organized as follows:
Section II presents background information on PHEVs, in par-
ticular some of the existing EMS strategies. We then formulate
the PHEV’s EMS problem and develop an EA-based on-line
EMS framework in Section III. Next, we propose a variety of
SOC control strategies, including a self-adaptive implementa-
tion which does not require the knowledge of trip duration in
Section IV and extensively evaluate the proposed on-line EMS
in Section V using data collected in the real world. Lastly,
Section VI concludes this paper along with further discussion
on future work.

II. BACKGROUND & RELATED WORKS

A. PHEV Modeling

Typically, there are three major types of PHEV powertrain
architectures: a) series, b) parallel, and c) power-split
(series-parallel). This study is focused on the power-split
architecture where the internal combustion engine (ICE) and
electric motors can, either alone or together, power the vehicle
while the battery pack may be charged simultaneously through
the ICE. Different approaches with various levels of complex-
ity have been proposed for modeling PHEV powertrains [21].
However, a complex PHEV model with a large number of
states may not be suitable for the optimization of PHEV energy
control. A simplified but sufficiently detailed power-split pow-
ertrain model has been developed in MATLAB and used in this
study. For more details, please refer to [2].

B. Operation Mode and SOC Profile

During the operation of a PHEV, the SOC may vary with
time, depending on how the energy sources work together to
provide the propulsion power at each instant. The SOC profile
can serve as an indicator of the PHEV’ operating modes,
i.e., charge sustaining (CS), pure electric vehicle (EV), and
charge depleting (CD) modes [3], as shown in Fig. 1.

The CS mode occurs when the SOC is maintained at a
certain level (usually the lower bound of SOC) by jointly
using power from both the battery pack and the ICE. The pure
EV mode is when the vehicle is powered by electricity only.
The CD mode represents the state when the vehicle is operated
using power primarily from the battery pack with supplemental
power from the ICE as necessary. In the CD mode, the ICE is
turned on if the electric motor is not able to provide enough
propulsion power or the battery pack is being charged (even

Fig. 1. Basic operation modes for PHEV.

when the SOC is much higher than the lower bound) in order
to achieve better fuel economy.

C. EMS for PHEVs

The goal of the EMS in a PHEV is to satisfy the propul-
sion power requirements while maintaining the vehicle’s per-
formance in an optimal way. A variety of strategies have
been proposed and evaluated in many previous studies [4].
A detailed literature review on EMS for PHEVs is provided
in this section. Broadly speaking, the existing EMS for PHEVs
can be divided into two major categories:

• Rule-based EMS are fundamental control schemes oper-
ating on a set of predefined rules without prior knowledge
of the trip. The control decisions are made according
to the current vehicle states and power demand only.
Such strategies are easily implemented but the resultant
operations may be far from being optimal due to not
considering future traffic conditions.

• Optimization-based EMS aim at optimizing a predefined
cost function according to the driving conditions and
behaviors. The cost function may include a variety of
vehicle performance metrics, such as fuel consumption
and tailpipe emissions.

For Rule-based EMS, deterministic and fuzzy control strate-
gies (e.g., binary control) have been well investigated. For
Optimization-based EMS, the strategies can be further divided
into three subgroups based on how the optimizations are
implemented: 1) off-line strategy which requires a full knowl-
edge of the entire trip beforehand to achieve the global optimal
solution; 2) prediction-based strategy or so called real-time
control strategy which takes into account predicted future
driving conditions (in a rolling horizon manner) and achieves
local optimal solutions segment-by-segment. This group of
strategies are quite promising due to the rapid advancement
and massive deployment of sensing and communication tech-
nologies (e.g., GPS) in transportation systems that facilitate the
traffic state prediction; and 3) learning-based strategy which is
recently emerging owing to the research progress in machine
learning techniques. In such a data-driven strategy, a dynamic
model is no longer required. Based on massive historical
and real-time information, trip characteristics can be learned
and the corresponding optimal control decisions can be made
through advanced data mining schemes. This strategy fits very
well for commute trips. Figure 2 presents a classification tree
of EMS for PHEVs and the typical strategies in each category,
based on most existing studies.
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Fig. 2. Basic classification of EMS for PHEV.

TABLE I

CLASSIFICATION OF CURRENT LITERATURE

In addition to the classification above, Table I highlights
several important features which help differentiate the afore-
mentioned strategies. Example references are also included
in Table I.

D. PHEVs’ SOC Control

For a power-split PHEV, the optimal energy control is,
in principle, equivalent to the optimal SOC control. Most of
the existing EMS for PHEVs implicitly integrate SOC into the
dynamic model and regard it as a key control variable [18],
while only a few studies have explicitly described their SOC
control strategies. A SOC reference control strategy is pro-
posed in [15] where a supervisory SOC planning method is
designed to pre-calculate an optimal SOC reference curve.
The proposed EMS then tries to follow this curve during
the trip to achieve the best fuel economy. Another SOC
control strategy is proposed in [19] where a probabilistic
distribution of trip duration is considered. More recently,
machine learning-based SOC control strategies (e.g., [6]) have
emerged, where the optimal SOC curves are pre-calculated
using historical data and stored in the form of look-up tables
for real-time implementation. A common drawback for all
these strategies is that accurate trip duration information is
required in an either deterministic or probabilistic way. In real-
ity, however, such information is hard to be known ahead of
time or may vary significantly due to the uncertainties in traffic
conditions. To ensure the practicality of our proposed EMS
for PHEVs, we employ a self-adaptive SOC control strategy
in this study which does not require any information about the
trip duration (or length).

Fig. 3. Flow chart of the proposed on-line EMS.

Fig. 4. Time horizons of prediction and control.

III. PROBLEM FORMULATION

A. Proposed On-Line EMS Framework for PHEVs

In this paper, we propose an on-line EMS framework
for PHEVs, using the receding horizon control structure
(see Fig. 3). The proposed EMS framework consists of infor-
mation acquisition (from external sources), prediction, opti-
mization, and power split control. With the receding horizon
control, the entire trip is divided into segments or time hori-
zons. As shown in Fig. 4, the prediction horizon (N sampling
time steps) needs to be longer than the control horizon
(M sampling time steps). Both horizons keep moving for-
ward (in a rolling horizon style) while the system is operating.
More specifically, the prediction model is used to predict the
power demand at each sampling step (i.e., each second) in the
prediction horizon. Then, the optimal ICE power supply for
each second during the prediction horizon is calculated with
this predicted information.

In each control horizon, the pre-calculated optimal control
decisions are inputted into the powertrain control system
(e.g., electronic control unit (ECU)) at the required sampling
frequency. In this study, we focus on the on-line energy
optimization, assuming that the short-term prediction model
is available (which is one of our future research topics).
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B. Optimal Power-Split Control Formulation

Mathematically, the optimal (in terms of fuel economy)
energy management for PHEVs can be formulated as a
nonlinear constrained optimization problem. The objective is
to minimize the total fuel consumption by ICE along the entire
trip.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{∫ T

0 h (ωe, qe, t) dt
}

subject to :
˙SOC = f (SOC, ωMG1, qMG1, ωMG2, qMG2)

(ωe, qe) = g (ωMG1, qMG1, ωMG2, qMG2)

SOCmin ≤ SOC ≤ SOCmax

ωmin ≤ ωe ≤ ωmax

qmin ≤ qe ≤ qmax

(1)

where T is the trip duration; ωe, qe are the engine’s
angular velocity and engine’s torque, respectively;
h

(
ωe, T qe

)
is ICE fuel consumption model; ωMG1, qMG1

are the first motor/generator’s angular velocity and
torque, respectively; ωMG2, qMG2 are the second
motor/generator’s angular velocity and torque, respectively;
f (SOC, ωMG1, qMG1, ωMG2, qMG2) is the battery power
consumption model; For more details about the model
derivations and equations, please refer to [2].

Such formulation is quite suitable for traditional mathemat-
ical optimization methods [11] with high computational com-
plexity. In order to facilitate on-line optimization, we herein
discretize the engine power and reformulate the optimization
problem represented by (1) as follows:

min
∑T

k=1

∑N

i=1
x (k,i) Peng

i

/
η

eng
i (2)

subject to:

∑ j

k=1
f

(

Pk−
∑N

i=1
x (k,i) Peng

i

)

≤ C∀ j= 1, . . . ,T (3)

∑N

i=1
x (k,i) = 1∀k (4)

x (k,i) = {0, 1} ∀k,i (5)

where N is the number of discretized power level for the
engine; k is the time step index; i is the engine power level
index; C is the gap of the battery pack’s SOC between the
initial and the minimum; Peng

i is the i -th discretized level for
the engine power and η

eng
i is the associated engine efficiency;

and Pk is the driving power demand at time step k.
Furthermore, if the change in SOC ( �SOC ) for each

possible engine power level at each time step is pre-calculated
given the (predicted) power demand, then constraint (3) can
be replaced by

SOCini −SOCmax ≤
∑ j

k=1
x (k,i)�SOC (k,i)

≤ SOCini −SOCmin

∀ j = 1, . . . , T (6)

where SOCini is the initial SOC; and SOCmin and
SOCmax are the minimum and maximum SOC, respectively.

Fig. 5. Example solutions of power-split control.

Fig. 6. Estimation and sampling process of EA.

Therefore, the problem is turned into a combinatory opti-
mization problem whose objective is to select the optimal
ICE power level for each time step given the predicted
information in order to achieve the highest fuel efficiency for
the entire trip. Fig.5 gives three example ICE power output
solutions. The solution represented by the blue line has a lower
total ICE power consumption (i.e., 40 units) than the red line
(i.e., 90 units), while the green line represents an infeasible
solution due to the SOC constraint.

C. Evolutionary Algorithm (EA) Based On-Line Optimization

The motivations for applying EA are: 1) compared to the
traditional derivative or gradient-based optimization methods,
EAs are easier to implement and require less complex mathe-
matical models; 2) EAs are very good at solving non-convex
optimization problems where there are multiple local optima;
and 3) it is very flexible to address multi-objective optimiza-
tion problems using EAs.

Theoretically, in the proposed framework, any EAs can be
used to solve the optimization problem for each prediction
horizon described in Fig. 4. A typical EA is a population-based
and iterative algorithm which starts searching for the optimal
solution with a random initial population. Then, the initial
population undergoes an iterative process that includes mul-
tiple operations, such as fitness evaluation, selection, and
reproduction until certain stopping criteria are satisfied. The
flow chart of an EA is provided in Fig. 6.

Among many EAs, the estimation distribution
algorithm (EDA) is very powerful in solving high-dimensional
optimization problems and has been successfully applied
to many different engineering domains [20]. In this study,
we choose EDA as the major EA kernel in the proposed
framework due to the high-dimensionality nature of the



QI et al.: DEVELOPMENT AND EVALUATION OF AN EA-BASED ONLINE EMS FOR PHEVS 2185

TABLE II

REPRESENTATION OF ONE EXAMPLE INDIVIDUAL

PHEV energy management problem. This selection is
justified by experimental results in the following sections.

In the problem representation of EDA, each individ-
ual (encoded as a row vector) of the population defined in
the algorithm is a candidate solution. For the PHEV energy
management problem, the size of the individual (vector) is the
number of time steps within the trip segment. The value of the
i-th element of the vector is the ICE power level chosen for that
time step. In the example individual in Table II, the ICE power
level is 3 (or 3 kW) for the 1st time step, 0 kW (i.e., only
battery pack supplies power) for the 2nd time step, 1 for the
3rd time step, and so forth.

It is very flexible to define a fitness function for EAs. Since
the objective is to minimize fuel consumption, the fitness
function herein can be defined as the summation of total ICE
fuel consumption for the trip segment defined by Eq. (5) and
a penalty term

f (s) = C f uel + P (7)

where s is a candidate solution; C f uel is fuel consumption;
and P is imposed penalty that is the largest possible amount
of energy that can be consumed in this trip segment. The
penalty is introduced to guarantee the feasibility of solution,
satisfying Constraint (3) which means that the SOC should
always fall within the required range at each time step. Then,
all the individuals in the population are evaluated by the fitness
function and ranked by their fitness values in an ascending
order since this is a minimization problem. A good evaluation
and ranking process is crucial in guiding the evolution towards
good solutions until the global optima (or near optima) is
located.

Furthermore, EDA assumes that the value of each element
in a good individual of the population follows a univariate
Gaussian distribution. This assumption has been proven to
be effective in many engineering applications [21], although
there could be other options [22]. For each generation, the top
individuals (candidate solutions) with least fuel consumption
values are selected as the parents for producing the next
generation by an estimation and sampling process [26].

The flow chart of the proposed EDA-based on-line EMS
is presented in Fig. 7. t0 is the current time; N is the length
of the prediction time horizon and M is length of the control
time horizon. The block highlighted by the red dashed box is
the core component of the system and more details about this
block is given in section IV.

D. Optimality and Complexity

Evolutionary algorithms are stochastic search algorithms
which do not guarantee to find the global optima. Hence, in the
proposed on-line EMS, the optimal power control for each trip

Fig. 7. EDA-based on-line energy management system.

segment is not guaranteed to be found. Moreover, EAs are also
population-based iterative algorithms which are usually criti-
cized due to their heavy computational loads [23], especially
for real-time applications. Theoretically, time complexity of
EAs is worse than θ(m2 ∗ log(m)) where m is the size of
the problem [24]. However, we apply the receding horizon
control technique in this study, where the entire trip is divided
into small segments. Therefore, the computational load can
be significantly reduced since the EA-based optimization is
applied only for each small segment rather than the entire trip.
In this sense, the proposed framework can be implemented in
“real-time”, as long as the optimization for the next prediction
horizon can be completed in the current control horizon
(see Fig. 4). As previously discussed, the rule-based EMS can
run in real-time but the results may be far from being optimal
while most of the optimization-based EMS have to operate
off-line. Therefore, the proposed on-line EMS would be a
well-balanced solution between the real-time performance and
optimality.

IV. SOC CONTROL STRATEGIES

An appropriate SOC control strategy is critical in achieving
the optimal fuel economy for PHEVs [25]. In the previ-
ously presented problem formulation, the major constraint
for SOC is defined by Eq.(6), which means that at any
time step the SOC should be within the predefined range
(e.g., between 0.2 and 0.8) to avoid damage to the battery
pack. However, this constraint only may not be enough
to accelerate the search for the optimal solution. Hence,
additional constraint(s) on battery use (e.g., reference bound
of SOC) should be introduced to improve the on-line EMS.
To investigate the effectiveness of different SOC control strate-
gies within the proposed framework, two types of SOC control
strategies, i.e., reference control and self-adaptive control, are
designed and evaluated in this study.

A. SOC Reference Control (Known Trip Duration)

When the trip duration is known, a SOC curve can be pre-
calculated and used as a reference to control the use of battery
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Fig. 8. SOC reference control bound examples.

power along the trip to achieve optimal fuel consumption.
We propose three heuristic SOC references (i.e., lower bounds)
in this study (see Fig. 8 for example): 1) concave downward;
2) straight line; and 3) concave upward. These SOC minimum
bounds are generated based on the given trip duration infor-
mation by the following equations, respectively:

• Concave downward control: (lower bound 1)

SOCmin
i = (SOCinit − SOCmin)

T − (i ∗ M)
∗ N + SOCinit (8)

• Straight line control :( lower bound 2)

SOCmin
i = −(SOCmin

i − SOCmin)

T
· ((i − 1) · M + N)

+ SOCinit (9)

• Concave upward control :( lower bound 3)

SOCmin
i = −(SOCend

i−1−SOCmin)

T −(i ∗ M)
∗ N +SOCend

i−1 (10)

where i is the segment index; SOCmin
i is the minimum SOC

at the end of i -th segment; and SOCend
i−1 is the SOC at the

end of last control horizon. It is self-evident that the concave
downward bound (i.e., lower bound 1) is much more restrictive
than a concave upward bound (i.e., lower bound 3) in terms
of battery energy use at the beginning of the trip.

A major drawback for these reference control strategies is
that they assume that the trip duration (i.e., T ) is given, or at
least can be well estimated beforehand. As mentioned earlier,
this assumption may not hold true for many real-world appli-
cations. Therefore, a new SOC control strategy without relying
on the knowledge of trip duration would be more attractive.

B. SOC Self-Adaptive Control (Unknown Trip Duration)

In this study, we also propose a novel self-adaptive SOC
control strategy for real-time optimal charge-depleting control,
where trip duration information is not required. Unlike those
SOC reference control strategies which control the use of
battery by explicit reference curves, the self-adaptive control
strategy controls the battery power utilization implicitly by
adopting a new fitness function in place of the one in Eq. (7):

f (s) = R f uel + Rsoc + P
′

(11)

where R f uel and Rsoc are the ranks (in an ascending order)
of ICE fuel consumption and SOC decrease, respectively,
of an individual candidate solution s in the current population;

TABLE III

EXAMPEL FITNESS EVALUATION BY DIFFERENT FITNESS FUNCTIONS

TABLE IV

ABBREVIATIONS OF DIFFERENT SOC CONTROL STRATEGIES

COMPARED IN THIS STUDY

and P
′

is the added penalty when the individual s violates the
constraints given in Eq.(6). The penalty value is selected to be
greater than the population size in order to guarantee that an
infeasible solution always has a lower rank (i.e., larger fitness
value) than a feasible solution in the ascending order by fitness
value. Compared to the fitness function adopted for SOC
reference control (see Eq. (7)), this new fitness function tries
to achieve a good balance between two conflicting objectives:
least fuel consumption and least SOC decrease. For a better
understanding of the differences between these two fitness
functions, Table III provides an example of fitness evaluation
of the same population. In this case, the population size is 100.
As we can see in the table, Individual 2 which has a better
balance between fuel consumption and SOC decrease is more
favorable than Individual 3 in the ranking by Eq. (11) than
that by Eq.(7).

C. EDA-Based On-Line EMS Algorithm With SOC Control

Details of the proposed EDA-based on-line EMS algorithm
with SOC control are summarized in the Algorithm 1 below.
This algorithm is implemented on each prediction horizon
(N time steps) within the framework presented in Fig. 8 (see
the box with red dashed line).

In the following section, we compare the performance of the
proposed self-adaptive SOC control with other SOC control
strategies. For convenience, we list the abbreviations of all
the involved strategies in Table IV.

V. CASE STUDY

A. Synthesized Trip Information

To validate the proposed EMS for PHEVs, we use
real-world data collected on January 17th, 2012, along I-210
between I-605 and Day Creek Blvd in San Bernardino,
California, as a case study (see Fig. 9). Please refer to [2] for
more detailed description of data collection and specifications
of the power-split PHEV model if interested.
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Algorithm 1 Algorithm 1 EDA-Based on-Line EMS With
SOC Control
1: Initialize a random output solution Ibest (N time steps)
2: Pcurrent <= Generate initial population randomly
3: While iteration_number ≤ Max_iterations, do
4: For each individual s in Pcurrent

5: Calculate fuel consume C f uel using eq. (1).
6: Calculate SOC decrease using eq. (5)
7: Obtain the rank index of s: R f uel

8: Obtain the rank index of s:Rsoc

9: If SOC reference control is adopted
10: Calculate the lower bound using eqs.(8)(9)(10)
11: If individual s violates eq.(6)
12: P = P0;//largest fuel consumption in

N steps
13: Else
14: P=0;
15: End If
16: Calculate the fitness value for susing eq.(7)
17: Else If SOC self-adaptive control is adopted
18: If individual s violates eq.(6)
19: P

′ = S
20: Else
21: P

′=0;
22: End If
23: Calculate the fitness value for susing

eq.(11)
24: End If
25: End For
26: Rank Pcurrent in ascending order based on fitness
27: Ptop<= Select topα individuals from Pcurrent

28: E <= Estimate a new distribution from Ptop
29: Pnew <= Sample N individuals from built model E
30: Evaluate each individual in Pnew using line 5 to 14
31: Mix Pcurrent and Pnew to form 2N individuals
32: Rank 2N individuals in ascending order by fitness
33: Pcurrent <= Select top N individuals
34: Update Ibest if a better one is identified.
35: Iteration_number ++
36: End While
37: Output Ibest

Based on the collected traffic data along with road grade
information, second-by-second vehicle velocity trajectory and
power demand have been synthesized as described in [2].
As pointed out earlier, it is impractical to have a priori
knowledge of the exact vehicle velocity trajectory. In this
study, we focus on the development of the optimal power-split
control, assuming perfect prediction of vehicle velocity trajec-
tory. Research on improving the prediction of vehicle velocity
trajectory in real time is part of our future work.

B. Off-Line Optimization for Validation

To justify the selection of EDA as the kernel of the proposed
framework, we first test EDA on the full-trip off-line optimiza-
tion. The results are compared with those obtained from two

Fig. 9. Example trip along I-210 in Southern California used for evaluation.

other popular evolutionary algorithms: genetic algorithm (GA)
and particle swarm optimization (PSO). The fitness (i.e., total
ICE energy consumption) of EDA-based off-line optimization
obtains better fuel economy (0.346 gallons) than the other
two (0.364 gallons for GA and 0.377 for PSO, respectively),
at the same computational expense (i.e., same population size
and same number of iterations) [26]. In addition, the result
from EDA is much closer to the global optimum (0.345 gallons
in this case) with the difference being less than 1%.

C. Real-Time Performance Analysis and Parameter Tuning
As aforementioned, a necessary condition for on-line imple-

mentation of the proposed EMS is that the optimization for
the next prediction horizon has to be finished within the
current control horizon (see Fig.4). In our study, for example,
the optimization for a prediction horizon of 50 seconds can
be completed within 1.1 seconds (with Intel Core i7 3.4GHz,
RAM 4G, and 64bit-Matlab 2012). In addition, one of our
previous work [26] has shown that the lengths of predic-
tion horizon and control horizon may significantly affect the
algorithm performance. The best combination of these two
parameters is found to be N = 250 and M = 10 in this case.

Unlike the conventional MPC whose optimization has to
be implemented along each prediction horizon, our proposed
EA based online EMS (see Fig.7) can take advantage of
the optimal results from previous prediction horizons, which
avoids a new optimization starting from scratch and there-
fore saves a lot of computational overhead. As can be seen
in Fig. 10, part of the optimal decisions from previous
prediction optimization horizon is adopted as the seed for
initial population of current prediction horizon optimization.
For example, when the control horizon is 3s and predic-
tion/optimization horizon is N, only 3 control decisions need
to be randomly initialized and optimized in the second
prediction/optimization horizon. This allows the optimiza-
tion or search to be much more efficient, compared to the
same process over entire prediction horizon. To further validate
this computational performance, we designed an EA based
MPC (EAMPC) which activates a complete new optimiza-
tion for each prediction/optimization horizon and compared
it with our proposed model. The computation time track
in Fig.11 shows that for a 50-seconds prediction horizon,
the conventional MPC takes around 1.1 seconds for each
optimization horizon but our proposed model can take only
less than 0.1s to finish the optimization from the second
prediction horizon.
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Fig. 10. Population initialization from the second prediction horizon
(i.e., t≥ 2).

Fig. 11. Comparison on computation time.

D. On-Line Optimization Performance Comparison

To fully evaluate the performance of the proposed on-line
EMS strategies, we compare them to the conventional binary
control (implementable in real-time) strategy as well as the
off-line global optimal control strategy (with the use of
dynamic programming [9]). The comparisons are carried out
on both the single trip scenario and multiple trips scenario.

When tested on a single (westbound) trip, the fuel consump-
tion and SOC profiles by different strategies are illustrated
in Fig. 12. It is shown that the proposed S-A algorithm
achieves the lowest fuel consumption (0.3515 gallons) which
is only 1.56% worse than that of global optima obtained
by the off-line optimization (0.3460 gallons). These results
can be explained by the shape of the resultant SOC pro-
files. For instance, SOC decreases very quickly in the B-I
strategy, and reaches the lower bound (i.e., 0.2) at around
1,200 seconds because the use of battery power is always
prioritized whenever available. Therefore, ICE has to supply
most of the demanded power after 1,200 seconds. This is
very similar to the cases of the B-A and C-U strategies
where the battery power is also consumed aggressively at
the beginning of the trip with very loose constraints. On the
other hand, the S-L and C-D strategies perform better since
their battery power is used more cautiously along the trip.
These findings are consistent with the conclusions of many
other studies [19], [25] in that a smoother distribution of
battery power usage along the trip would result in higher fuel
efficiency.

In order to know the statistical significance of the differ-
ent EMS strategies, we test them on 30 randomly selected
trip profile data extracted from the same road segment on
12 different days. The results are also compared to the binary
control and dynamic programming (D-P) strategies. For the
purpose of comparison, we set the fuel consumption obtained
by the binary control strategy as the baseline and calculate

Fig. 12. SOC trajectories resulted from different control strategies.

Fig. 13. Box-plot of fuel savings on 30 trips.

the percentage of fuel savings achieved by the other EMS
strategies. As we can see in Fig. 13, the D-P strategy achieves
the best fuel savings with an average of 19.4% and the least
variance simply because it is an off-line optimization strategy.
The proposed S-A strategy achieves an average of 10.7% fuel
savings which is higher than all other on-line strategies and
consistent with the result of the single trip test. An interesting
observation is that the S-L strategy has better average fuel
savings (i.e., 9.3%) than the C-D and C-U strategies which
is not consistent with the test result of the single trip test.
A possible reason is that the C-D strategy performs better on
some trips in which the power demand is higher in later stages
of the trip but the C-U strategy performs better on the trips
in which the power demand is higher in earlier stages. On the
other hand, the S-L strategy balances the SOC control between
these two types of trip pattern, and therefore has better average
performance.

For further validation, the proposed S-A strategy with the
best performance is compared with other existing PHEV EMS
strategies that employ short-term prediction. Although these
strategies were proposed to handle powertrain models with
different fidelity as well as different data set for validation,
they all used the binary control strategy as a benchmark (the
same as in this work). This provides us a chance to compare
all models in a relatively fair manner. The comparison results
are listed in table V, which proves that our model achieves
the largest improvement of fuel efficiency (with regard to the
binary control strategy) but requires less trip information.

E. Analysis of Trip Duration

In this section, we analyze and compare the effectiveness of
the proposed on-line EMS for longer trips. These longer trips
are constructed by concatenating multiple trip profiles and the
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TABLE V

COMPARISONS WITH EXISTING MODELS

Fig. 14. Fuel savings for trips with different duration, compared to B-I.

Fig. 15. Resultant SOC curve when trip duration is 5,000 seconds.

results are shown in Fig. 14. As can be observed, the B-I
strategy has the best fuel economy when the trip duration is
shorter than 1,500 seconds. For these short trips, the PHEV can
mostly rely on battery energy. However, as the trip duration
becomes longer, especially when longer than 2,500 seconds,
the S-A strategy outperforms all the others.

To further explain this finding, the resultant fuel con-
sumption and the corresponding SOC profiles for the longest
trip (5,000 seconds) are provided in Fig. 15. According to the
figure, the S-A strategy has the lowest fuel consumption and
its SOC profile is a combination of the CD mode (defined
in Fig. 1) before 2,000 seconds and the CS mode after
2,000 seconds. This contradicts with most of the existing
studies, which report that an optimal fuel economy for the
trip can be achieved by operating solely in the CD mode [20].
Here, we present evidence that it is not always the case,

Fig. 16. SOC track with known or unknown charging opportunity.

and that the CD+CS operation can result in optimal fuel
efficiency for long trips. Furthermore, this finding also implies
the potential for the proposed S-A strategy to adapt to different
trip durations.

F. Performance With Charging Opportunity

Considering the plug-in capability of PHEVs, we evaluate
the performance of the proposed strategies at the tour level.
More specifically, we consider the commute trips of the case
study as a tour and assume that there is a charging oppor-
tunity (to a full charge) between the end of the westbound
trip and the beginning of the eastbound trip. We then com-
pare the different SOC control strategies under the following
two scenarios:
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TABLE VI

INCREASED FUEL CONSUMPTION

1) Scenario I: The proposed EMS with a priori knowledge
of the charging opportunity;

2) Scenario II: The proposed EMS without a priori knowl-
edge of the charging opportunity. In this case, a conser-
vative strategy is applied by assuming that there is no
charging station available in between the trips.

The results are illustrated in Fig.16. They show that the
knowledge of the charging opportunity information has great
influence on the resultant SOC profiles for the deterministic
SOC reference control strategies but no influence on the
SOC self-adaptive control strategy. Table VI presents the
increased fuel consumption due to the lack of knowledge of
the charging opportunity prior to the tour. As shown in the
table, the C-D, S-L, and C-U strategies all have 13% or more
increase in fuel consumption if the charging opportunity
information is unknown, while the B-I and S-A strategies are
not affected because the trip duration is not considered in their
decision-making process. But S-A strategy is able to achieve
31.5% fuel savings comparing to B-I strategy when consider-
ing charging opportunities. These findings further emphasize
the advantage of the proposed SOC self-adaptive control
strategy in terms of robustness to the level of knowledge about
charging availability.

VI. CONCLUSIONS

In this study, we develop the framework of an on-line energy
management system for plug-in hybrid electric vehicles. The
framework applies the self-adaptive strategy to control the
vehicle’s state-of-charge (SOC) in a rolling horizon manner
for the purpose of real-time implementation. The control of
the vehicle’s SOC is formulated as a combinatory optimization
problem that can be efficiently solved by the estimation dis-
tribution algorithm (EDA). The proposed energy management
system is comprehensively evaluated using a number of trip
profiles extracted from real-world traffic data. The results show
that the self-adaptive control strategy used in the proposed
system statistically outperforms the conventional binary con-
trol strategy with an average of 10.7% fuel savings without
considering charging opportunity and 31.5% fuel savings when
considering charging opportunity.

The real-time performance analysis shows that the proposed
mode is very computationally efficient and can be imple-
mented in real-time by taking the advantage of evolutionary
optimization.

Another important advantage of the proposed energy
management system is that, unlike other existing systems,
it does not require a priori knowledge about the trip dura-
tion. This allows the proposed system to be robust against
real-world uncertainties, such as unexpected traffic congestion
that increases the trip duration significantly, and changes in
inter-trip charging availability.

REFERENCES

[1] U.S. Department of Transportation, ITS Research
Archive, accessed on Jan. 5, 2015. [Online]. Available:
http://www.its.dot.gov/research/vehicle_electrification_smartgrid.htm

[2] G. Wu, K. Boriboonsomsin, and M. J. Barth, “Development and evalu-
ation of an intelligent energy-management strategy for plug-in hybrid
electric vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 3,
pp. 1091–1100, Jun. 2014.

[3] S. G. Wirasingha and A. Emadi, “Classification and review of control
strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh.
Technol., vol. 60, no. 1, pp. 111–122, Jan. 2011.

[4] A. Panday and H. O. Bansal, “A review of optimal energy management
strategies for hybrid electric vehicle,” Int. J. Veh. Technol., vol. 2014,
p. 19, 2014. [Online]. Available: http://dx.doi.org/10.1155/2014/160510

[5] H. Banvait, S. Sohel, and Y. Chen, “A rule-based energy management
strategy for plug-in hybrid electric vehicle (PHEV),” in Proc. Amer.
Control Conf., St. Louis, MO, USA, Jun. 2009, pp. 3938–3943.

[6] Q. Gong, Y. Li, and Z.-R. Peng, “Trip based optimal power manage-
ment of plug-in hybrid electric vehicles using gas-kinetic traffic flow
model,” in Proc. Amer. Control Conf., Seattle, WA, USA, Jun. 2008,
pp. 3225–3230.

[7] L. Tribioli, M. Barbieri, R. Capata, E. Sciubba, E. Jannelli, and G. Bella,
“A real time energy management strategy for plug-in hybrid electric
vehicles based on optimal control theory,” Energy Procedia, vol. 45,
pp. 949–958, Dec. 2014.

[8] N. Denis, M. R. Dubois, and A. Desrochers, “Fuzzy-based blended
control for the energy management of a parallel plug-in hybrid electric
vehicle,” IET Intell. Transp. Syst., vol. 9, no. 1, pp. 30–37, Feb. 2015.

[9] X. Wang, H. He, F. Sun, X. Sun, and H. Tang, “Comparative study
on different energy management strategies for plug-in hybrid electric
vehicles,” Energies, vol. 6, no. 11, pp. 5656–5675, 2013.

[10] W. Jian, “Fuzzy energy management strategy for plug-in HEV based on
driving cycle modeling,” in Proc. Control Conf. Chin. (CCC), Jul. 2014,
pp. 4472–4476.

[11] L. Tribioli and S. Onori, “Analysis of energy management strategies in
plug-in hybrid electric vehicles: Application to the GM Chevrolet Volt,”
in Proc. Amer. Control Conf. (ACC), Jun. 2013, pp. 5966–5971.

[12] H. Yu, M. Kuang, and R. McGee, “Trip-oriented energy management
control strategy for plug-in hybrid electric vehicles,” IEEE Trans.
Control Syst. Technol., vol. 22, no. 4, pp. 1323–1336, Jul. 2014.

[13] F. Tianheng, Y. Lin, G. Qing, H. Yanqing, Y. Ting, and Y. Bin,
“A supervisory control strategy for plug-in hybrid electric vehicles based
on energy demand prediction and route preview,” IEEE Trans. Veh.
Technol., vol. 64, no. 5, pp. 1691–1700, May 2015.

[14] V. Larsson, L. J. Mårdh, B. Egardt, and S. Karlsson, “Commuter route
optimized energy management of hybrid electric vehicles,” IEEE Trans.
Intell. Transp. Syst., vol. 15, no. 3, pp. 1145–1154, Jun. 2014.

[15] C. Liu and Y. L. Murphey, “Power management for plug-in hybrid
electric vehicles using reinforcement learning with trip information,”
in Proc. IEEE Transp. Electrific. Conf. Expo (ITEC), Jun. 2014,
pp. 1–6.

[16] C. Sun, S. J. Moura, X. Hu, J. K. Hedrick, and F. Sun, “Dynamic
traffic feedback data enabled energy management in plug-in hybrid
electric vehicles,” IEEE Trans. Control Syst. Technol., vol. 23, no. 3,
pp. 1075–1086, May 2015.

[17] M. P. O’Keefe and T. Markel, “Dynamic programming applied to
investigate energy management strategies for a plug-in HEV,” Nat.
Renew. Energy Lab., Golden, CO, USA, Tech. Rep. NREL/CP-540-
40376, 2006.

[18] Z. Chen, C. C. Mi, R. Xiong, J. Xu, and C. You, “Energy management
of a power-split plug-in hybrid electric vehicle based on genetic algo-
rithm and quadratic programming,” J. Power Sour., vol. 248, no. 15,
pp. 416–426, Feb. 2014.

[19] X. L. Banvait, H. Anwar, and S. Y. Chen, “Optimal energy management
for a plug-in hybrid electric vehicle: Real-time controller,” in Proc. Amer.
Control Conf. (ACC), Jul. 2010, pp. 5037–5042.



QI et al.: DEVELOPMENT AND EVALUATION OF AN EA-BASED ONLINE EMS FOR PHEVS 2191

[20] C. Hou, L. Xu, H. Wang, M. Ouyang, and H. Peng, “Energy management
of plug-in hybrid electric vehicles with unknown trip length,” J. Franklin
Inst., vol. 352, no. 2, pp. 500–518, Feb. 2015.

[21] M. Vajedi, M. Chehrehsaz, and N. L. Azad, “Intelligent power manage-
ment of plug–in hybrid electric vehicles, part I: Real–time optimum SOC
trajectory builder,” Int. J. Electr. Hybrid Veh., vol. 6, no. 1, pp. 46–67,
2014.

[22] M. Hauschile and M. Pelican, “An introduction and survey of esti-
mation of distribution algorithms,” Dept. Math. Comput. Sci., Univ.
Missouri–St. Louis, St. Louis, MO, USA, MEDAL Rep. 2011004, 2011.

[23] X. Qi, K. Rasheed, K. Li, and W. D. Potter, “A fast parameter setting
strategy for particle swarm optimization and its application in urban
water distribution network optimal design,” in Proc. Int. Conf. Genetic
Evol. Methods (GEM), 2013, pp. 1–7.

[24] X. Qi, Swarm Intelligence Inspired Engineering Optimization: Concepts,
Modeling, Evaluation. Germany: Lambert Academic Publishing House,
2014.

[25] A. E. Eiben, Introduction to Evolutionary Computing. USA: Springer,
2007.

[26] P. S. Oliveto, J. He, and X. Yao, “Time complexity of evolutionary
algorithms for combinatorial optimization: A decade of results,” Int. J.
Autom. Comput., vol. 4, no. 3, pp. 281–293, Jul. 2007.

[27] D. Kum, “Modeling and optimal control of parallel HEVs and plug-in
HEVs for multiple objectives,” Ph.D. dissertation, Dept. Mech. Eng.,
Univ. Michigan, Ann Arbor, MI, USA, 2010.

[28] X. Qi, G. Wu, K. Boriboonsomsin, and M. J. Barth, “An on-line
energy management strategy for plug-in hybrid electric vehicles using an
estimation distribution algorithm,” in Proc. IEEE 17th Int. Conf. Intell.
Transp. Syst. (ITSC), Oct. 2014, pp. 2480–2485.

[29] M. Vajedi, A. Taghavipour, N. L. Azad, and J. McPhee, “A comparative
analysis of route-based power management strategies for real-time
application in plug-in hybrid electric vehicles,” in Proc. Amer. Control
Conf. (ACC), Portland, OR, USA, Jun. 2014, pp. 2612–2617.

[30] Z. Chen, W. Liu, Y. Yang, and W. Chen, “Online energy management
of plug-in hybrid electric vehicles for prolongation of all-electric range
based on dynamic programming,” Math. Problems Eng., vol. 2015, 2015,
Art. no. 368769.

[31] S. J. Moura, H. K. Fathy, D. S. Callaway, and J. L. Stein, “A stochastic
optimal control approach for power management in plug-in hybrid
electric vehicles,” IEEE Trans. Control Syst. Technol., vol. 19, no. 3,
pp. 545–555, May 2011.

[32] X. Qi, G. Wu, K. Boriboonsomsin, M. J. Barth, and J. Gonder, “Data-
driven reinforcement learning–based real-time energy management sys-
tem for plug-in hybrid electric vehicles,” Transp. Res. Rec., J. Board,
vol. 2572, Feb. 2016, pp. 1–8, doi: 10.3141/2572-01.

Xuewei Qi (M’13) received the Ph.D. degree in
electrical and computer engineering from Univer-
sity of California at Riverside, Riverside, in 2016
and the M.S. degree in engineering from Univer-
sity of Georgia, Athens, in 2013. He is a Post-
Doctoral Researcher with the Center for Environ-
mental Research and Technology, College of Engi-
neering, University of California at Riverside. His
recent research focuses on connected and automated
vehicles/electric vehicles, intelligent and sustain-
able transportation system, evolutionary optimiza-

tion, and machine learning. He is also a member of the IEEE Intelligent
Transportation System Society, the IEEE Computational Intelligence Society,
the IEEE Internet of Things Society, the Institute of Transportation Engineers,
the IEEE Young Professionals, and the Chinese Overseas Transportation
Association.

Guoyuan Wu (M’09–SM’15) received the Ph.D.
degree in mechanical engineering from University of
California at Berkeley, Berkeley, in 2010. From 2005
to 2010, he had been a Graduate Student Researcher
with the California Partners for Advanced Trans-
portation Technology. He currently holds an assistant
research engineer position with the Center for Envi-
ronmental Research and Technology, Transportation
Systems Research Group, Bourns College of Engi-
neering, Center for Environmental Research and
Technology, University of California at Riverside.

His research focuses on intelligent and sustainable transportation system
technologies, optimization and control of transportation systems, and traffic
simulation. He is a member of the Institute of Transportation Engineers and
the Chinese Overseas Transportation Association.

Kanok Boriboonsomsin (M’14) received the Ph.D.
degree in transportation engineering from the Uni-
versity of Mississippi, Oxford, MS, USA, in 2004.
He is an Associate Research Engineer with the
Center for Environmental Research and Technology,
College of Engineering, University of California
at Riverside. His research interests include sus-
tainable transportation systems and technologies,
intelligent transportation systems, traffic simulation,
traffic operations, transportation modeling, vehicle
emissions modeling, and vehicle activity analysis.

He is a member of the Transportation and Air Quality Standing Committee of
Transportation Research Board, the Institute of Transportation Engineers, and
the Intelligent Transportation Society of America. He serves as an Associate
Editor for IEEE Intelligent Transportation Systems Magazine.

Matthew J. Barth (M’90–SM’00–F’14) received
the Ph.D. degree in electrical and computer engineer-
ing from University of California at Santa Barbara,
Santa Barbara, in 1990. He is currently the Yeager
Families Professor with the College of Engineering,
University of California at Riverside. He is also
serving as the Director for the Center for Envi-
ronmental Research and Technology, UCR’s largest
multidisciplinary research center.

His research interests include ITS and the envi-
ronment, transportation/emissions modeling, vehicle

activity analysis, advanced navigation techniques, electric vehicle technology,
advanced sensing and control, applying engineering system concepts and
automation technology to transportation systems, and in particular how it
relates to energy and air quality issues.

Dr. Barth was the IEEE Intelligent Transportation Systems Society (ITSS)
Vice-President for Conferences from 2011 to 2012, the President-Elect for
2013, and serving as the IEEE ITSS President for 2014 to 2015. He is active
in the IEEE Intelligent Transportation System Society for many years, partic-
ipating in conferences as a Presenter, an Invited Session Organizer, a Session
Moderator, a Reviewer, and an Associate Editor of IEEE TRANSACTIONS

ON INTELLIGENT TRANSPORTATION SYSTEMS, and a member of the IEEE
ITSS Board of Governors.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




