UC Berkeley Archaeological X-ray Fluorescence Reports

Title

SOURCE PROVENANCE OF OBSIDIAN ARTIFACTS FROMFIVE SITES IN SOUTHWEST UTAH

Permalink

https://escholarship.org/uc/item/29h1q5v4

Author

Shackley, M. Steven

Publication Date 2021-06-21

GEOARCHAEOLOGICAL X-RAY FLUORESCENCE SPECTROMETRY LABORATORY 8100 Wyoming Blvd., Ste M4-158 Albuquerque, NM 87113 USA

SOURCE PROVENANCE OF OBSIDIAN ARTIFACTS FROM FIVE SITES IN SOUTHWEST UTAH

Obsidian at the Wild Horse Canyon source, Mineral Mountains, Utah. Photo courtesy of Joe Moore. Note the mahogany (red) colored nodules debitage of which is present in this assemblage

by

M. Steven Shackley, Ph.D., Director Geoarchaeological XRF Laboratory Albuquerque, New Mexico

Report Prepared for

Envirosystems Flagstaff, Arizona

21 June 2021

INTRODUCTION

The analysis here of 63 obsidian artifacts (three are not obsidian) from five sites in southwestern Utah, indicates a source provenance assemblage with artifacts mainly produced from two sources in southwestern Utah, Modena in Iron County and Wild Horse Canyon in Beaver County, and the Kane Springs source in Lincoln County, Nevada (Haarklau et al. 2005; see cover image, Tables 1 and 2, and Figures 1 and 2). One small piece of debitage was produced from the Obsidian Cliff source in the Yellowstone Plateau of northwestern Wyoming (source data at laboratory). Obsidian Cliff obsidian does occur in early contexts throughout the West and into the Middle West (Beck and Jones 2011; Davis et al. 1995; Scheiber and Finley 2011; Shackley 2014, 2017). See source discussion below.

LABORATORY SAMPLING, ANALYSIS AND INSTRUMENTATION

All archaeological samples are analyzed whole. The results presented here are quantitative in that they are derived from "filtered" intensity values ratioed to the appropriate x-ray continuum regions through a least squares fitting formula rather than plotting the proportions of the net intensities in a ternary system (McCarthy and Schamber 1981; Schamber 1977). Or more essentially, these data through the analysis of international rock standards, allow for inter-instrument comparison with a predictable degree of certainty (Hampel 1984; Shackley 2011).

All analyses for this study were conducted on a ThermoScientific *Quant'X* EDXRF spectrometer, located at the Geoarchaeological XRF Laboratory, Albuquerque, New Mexico. It is equipped with a thermoelectrically Peltier cooled solid-state Si(Li) X-ray detector, with a 50 kV, 50 W, ultra-high-flux end window bremsstrahlung, Rh target X-ray tube and a 76 μ m (3 mil) beryllium (Be) window (air cooled), that runs on a power supply operating from 4-50 kV/0.02-1.0 mA at 0.02 increments. The spectrometer is equipped with a 200 l min⁻¹ Edwards vacuum pump, allowing for the analysis of lower-atomic-weight elements between sodium (Na) and titanium (Ti). Data acquisition is accomplished with a pulse processor and an analogue-to-digital converter. Elemental composition is identified with digital filter background removal, least

squares empirical peak deconvolution, gross peak intensities and net peak intensities above background.

Trace Element Analysis

The analysis for mid Zb condition elements Ti-Nb, Pb, Th, the x-ray tube is operated at 30 kV, using a 0.05 mm (medium) Pd primary beam filter in an air path at 100 seconds livetime to generate x-ray intensity $K\alpha_1$ -line data for elements titanium (Ti), manganese (Mn), iron (as Fe₂O₃^T), cobalt (Co), nickel (Ni), copper, (Cu), zinc, (Zn), gallium (Ga), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), lead (Pb), and thorium (Th). Not all these elements are reported since their values in many volcanic rocks are very low. Trace element intensities were converted to concentration estimates by employing a linear calibration line ratioed to the Compton scatter established for each element from the analysis of international rock standards certified by the National Institute of Standards and Technology (NIST), the US. Geological Survey (USGS), Canadian Centre for Mineral and Energy Technology, and the Centre de Recherches Pétrographiques et Géochimiques in France (Govindaraju 1994). Line fitting is linear (XML) for all elements. When barium (Ba) is analyzed in the High Zb condition, the Rh tube is operated at 50 kV and up to 1.0 mA, ratioed to the bremsstrahlung region (see Davis 2011; Shackley 2011). Further details concerning the petrological choice of these elements in North Amerian obsidians is available in Shackley (1988, 1995, 2005, 2019b; also Mahood and Stimac 1991; and Hughes and Smith 1993). Nineteen specific pressed powder standards are used for the best fit regression calibration for elements Ti-Nb, Pb, Th, and Ba, and include G-2 (basalt), AGV-2 (andesite), GSP-2 (granodiorite), SY-2 (syenite), BHVO-2 (hawaiite), STM-1 (syenite), QLO-1 (quartz latite), RGM-1 (obsidian), W-2 (diabase), BIR-1 (basalt), SDC-1 (mica schist), TLM-1 (tonalite), SCO-1 (shale), NOD-A-1 and NOD-P-1 (manganese) all US Geological Survey standards, NIST-278 (obsidian), U.S. National Institute of Standards and Technology, BE-N (basalt) from the Centre de Recherches Pétrographiques et Géochimiques in France, and JR-1 and JR-2 (obsidian) from the Geological Survey of Japan (Govindaraju 1994).

Statistical and Graphical Source Assignment.

The data from the WinTraceTM software were translated directly into Excel for Windows software for manipulation and on into SPSS ver. 27 and JMP 12.0.1 for statistical analyses. In order to evaluate these quantitative determinations, machine data were compared to measurements of known standards during each run. RGM-1 a USGS obsidian standard is analyzed during each sample run of \leq 19 for obsidian artifacts to check machine calibration (Table 1).

Source assignments were made by reference to the laboratory database (see Shackley 2005) and the Skinner/Shackley North American Obsidian Database. Further information on the laboratory instrumentation and source data can be found at: <u>http://www.swxrflab.net</u>. Trace element data exhibited in Table 1 and Figure 2 are reported in parts per million (ppm), a quantitative measure by weight.

SOURCE DISCUSSION

While the obsidian source assemblage was not too diverse, the sources commonly recovered in archaeological contexts, the short descriptions below will have some utility.

Kane Springs Wash Caldera, Lincoln County, Nevada

This source, as well as many others in the western Great Basin has received intensive study recently (Johnson and Wagner 2005). About 14 Ma, the Kane Springs caldera collapsed creating an ash flow tuff that quenched rhyolite to obsidian and distributed it over hundreds of square kilometers (Noble 1968; Novak 1984; Novak and Mahood 1986). Similar to the Valles Caldera event in the Jemez Mountains of northern New Mexico, subsequent and final ring eruptions created moat rhyolite domes that quenched to produce obsidian. The earlier and later events that produced obsidian exhibit slightly differing Sr and Ba concentrations, but the sample size in the archaeological assemblage here is too small to discriminate, so no attempt here is made to discriminate the two reported varieties of Kane Springs obsidian (Johnson and Wagner 2005: 36-40). Kane Spring obsidian occurs throughout the Great Basin, although the nodule size at that age are relatively small (marekanites). Its presence in this assemblage seems reasonable

3

(see Figure 1). Artifacts produced from this source were present at sites 5140 and 5354 and comprised 7.9% of the total assemblage (see Table 2 and Figure 1).

Panaca Summit-Modena Area, Nevada and Utah

This source, often called simply Modena occurs in a number of alluvial deposits east of Panaca, Lincoln County, Nevada into Utah (Johnson and Haarklau 2005:127). It appears to be eroding out of the Steamboat Mountain Formation near Prohibition Spring (Rowley et al. 2002). This formation dates to 11-13 Ma. Cobble size obsidian occurs at this source, and Modena is one of the more commonly recovered sources in this region, and comprises 65.1% of the total assemblage and was present at all sites (see Table 2 and Figure 1).

Wild Horse Canyon and Pumice Hole Mine, Beaver County, Utah

The second most common source recovered from these sites, Wild Horse Canyon obsidian erupted between 800 and 500 ka along the crest of the Mineral Mountains (Lipman et al. 1978). Two chemically distinct compositions are evident, particularly in Zr and can be readily seen in Figure 2 here. Wild Horse Canyon obsidian is present throughout the eastern Great Basin and northern Southwest sites, and was present in Crow Canyon Basketmaker sites (see Shackley 2014, 2017). This source comprised 25.4% of the assemblage and was present in all sites (see Table 2 and Figure 1).

The Obsidian Cliff Plateau Obsidian Source, Yellowstone Volcanic Field, Northeast Wyoming

Probably the most well known source of archaeological obsidian in North America, the Obsidian Cliff source has been recovered throughout North America, at least as far east in Mississippian Period contexts in the North American Midwest (Holmes 1879; Davis et al. 1995). Part of the Quaternary Canyon Rhyolite formation, it is directly related to the Yellowstone Caldera event and is one of the largest single blocks of obsidian on earth (Boyd 1961; Christiansen and Blank 1972; Iddings 1888). The event occurred based on K-Ar dating at 183±0.003 ka and the obsidian covers an area of approximately 14.5 km² with an exposed thickness of 30 m (Schmitt 1995 in Davis et al. 1995). The sheer size of quenching to glass of

4

this structure was due to eruption into the continental glacier that at that time was over 2 km thick. The ice facilitated quenching the rhyolite at a very rapid rate. The one piece of debitage here from site 4098 comprises only 1.6% of the assemblage. It is likely that that piece of debitage is the result of production or rejuvenation of a biface.

Procurement Range/Social Networking

I found it intriguing that there were no artifacts produced from Jemez Mountain or Mount Taylor obsidian sources of northern New Mexico. These sources are common in Archaic through PIII sites in the region, particularly in the later periods. It could be sampling error, but the assemblage indicates a relatively local procurement range or social network focused to the west and north.

REFERENCES CITED

- Beck, Charlotte and George T. Jones, 2011, The Role of Mobility and Exchange in the Conveyance of Toolstone During the Great Basin Paleoarchaic. In R. E. Hughes (Ed.) Perspectives on Prehistoric Trade and Exchange in California and the Great Basin, pp. 55-82. The University of Utah Press, Salt Lake City, Utah.
- Boyd, F.R. 1961, Welded tuffs and flows in the rhyolite plateau of Yellowstone Park, Wyoming. *Geological Society of America Bulletin* 72:387-426.
- Christiansen, R.L. and H.R. Blank, 1972, Volcanic stratigraphy of the Quaternary rhyolite plateau in Yellowstone National Park. U.S. Geological Survey Professional Paper 729-B.
- Davis, L.B., S.A. Aaberg, J.G. Schmitt, and A. M. Johnson, 1995, *The Obsidian Cliff Plateau Prehistoric Lithic Source, Yellowstone National Park, Wyoming.* National Park Service, Division of Cultural Resources Selection Series 6, Denver, Colorado.
- Davis, M.K., T.L. Jackson, M.S. Shackley, T. Teague, and J. Hampel, 2011, Factors Affecting the Energy-Dispersive X-Ray Fluorescence (EDXRF) Analysis of Archaeological Obsidian. In M.S. Shackley (Ed.) X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology, pp. 45-64. Springer, New York.

Govindaraju, K., 1994 , 1994 Compilation of Working Values and Sample Description for 383 Geostandards. *Geostandards Newsletter* 18 (special issue).

Hampel, Joachim H., 1984, Technical Considerations in X-ray Fluorescence Analysis of Obsidian. In R.E. Hughes (Ed.) Obsidian Studies in the Great Basin, pp. 21-25. Contributions of the University of California Archaeological Research Facility 45. Berkeley.

Haarklau, L, L. Johnson, and D.L. Wagner, 2005, *Fingerprints in the Great Basin: The Nellis Air Force Base Regional Obsidian Sourcing Study*. U.S. Army Corps of Engineers, Fort Worth District.

- Hildreth, W., 1981, Gradients in Silicic Magma Chambers: Implications for Lithospheric Magmatism. *Journal of Geophysical Research* 86:10153-10192.
- Holmes, W.H. 1879, Notes on an extensive deposit of obsidian in the Yellowstone National Park. *American Naturalist* 13:247-250.
- Hughes, Richard E., and Robert L. Smith, 1993, Archaeology, Geology, and Geochemistry in Obsidian Provenance Studies. In J.K. Stein and A.R. Linse (Eds.) Scale on Archaeological and Geoscientific Perspectives, pp. 79-91. Geological Society of America Special Paper 283.
- Iddings, J.P. 1888, *Obsidian Cliff, Yellowstone National Park*. Seventh Annual Report of the U.S. Geological Survey, Washington, DC.

- Johnson, L., and D.L. Wagner, 2005, Obsidian source characterization study. In Haarklau, Johnson, and Wagner (Eds.), *Fingerprints in the Great Basin: The Nellis Air Force Base Regional Obsidian Sourcing Study*. U.S. Army Corps of Engineers, Fort Worth District, pp. 25-50.
- Lipman, P.W., P.D. Rowley, H.H. Mehnert, S.H. Evans Jr., W.P. Nash, and F.H. Brown, 1978, Pleistocene rhyolite of the Mineral Mountains, Utah-Geothermal and Archaeological Significance. *Journal of Research, U.S. Geological Survey* 6:133-147.
- Mahood, Gail A., and James A. Stimac, 1990, Trace-Element Partitioning in Pantellerites and Trachytes. *Geochemica et Cosmochimica Acta* 54:2257-2276.
- McCarthy, J.J., and F.H. Schamber, 1981, Least-Squares Fit with Digital Filter: A Status Report. In K.F.J. Heinrich, D.E. Newbury, R.L. Myklebust, and C.E. Fiori (Eds.) *Energy Dispersive X-ray Spectrometry*, pp. 273-296. National Bureau of Standards Special Publication 604, Washington, D.C.
- Noble, D.C. 1968, Kane Springs Wash volcanic center, Lincoln County, Nevada. In E.B. Eckel (Ed.), *Nevada Test Site*, Geological Society of America Memoir 110, pp. 109-116.
- Novak, S.W. 1984, Eruptive history of the rhyolitic Kane Springs Wash volcanic center, Nevada. *Journal of Geophysical Research* 89(B10):8603-8615.
- Novak, S.W., and G.A. Mahood, 1986, Rise and fall of a basalt-trachyte-rhyolite magma system at the Kane Spring Wash caldera, Nevada. *Contributions to Mineralogy and Petrology* 94:352-373.
- Rowley, P.D., F.W. Lytle, M.B. Lytle, and K.R. Stever, 2002, Geology of the Modena Obsidian Source, Lincoln County, Nevada. Report on file at BLM, Ely Field Office.
- Schamber, F.H., 1977, A Modification of the Linear Least-Squares Fitting Method which Provides Continuum Suppression. In T.G. Dzubay (Ed.) X-ray Fluorescence Analysis of Environmental Samples, pp. 241-257. Ann Arbor Science Publishers.
- Scheiber, Laura L., and Judson B. Finley, 2011, Obsidian Source Use in the Greater Yellowstone Area, Wyoming Basin, and Central Rocky Mountains. *American Antiquity* 76:372-394
- Shackley, M.S., 1988, Sources of Archaeological Obsidian in the Southwest: An Archaeological, Petrological, and Geochemical Study. *American Antiquity* 53:752-772.
- Shackley, M. S., 1995, Sources of Archaeological Obsidian in the Greater American Southwest: An Update and Quantitative Analysis. *American Antiquity* 60(3):531-551.
- Shackley, M.S., 2005, *Obsidian: Geology and Archaeology in the North American Southwest*. University of Arizona Press, Tucson.
- Shackley, M.S., 2011, An Introduction to X-Ray Fluorescence (XRF) Analysis in Archaeology. In X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology, M.S. Shackley (Ed.), pp. 7-44. Springer, New York.
- Shackley, M.S., 2014, Source Provenance of Obsidian Artifacts from Various Sites in the Goodman Point Project, Montezuma County, Southwest Colorado. Report prepared for Crow Canyon Archaeological Center, Cortez, Colorado.

Shackley, M.S., 2017, An Energy-Dispersive X-Ray Fluorescence Analysis of Obsidian Artifacts from Four Sites in Southwestern Colorado. Report prepared for Crow Canyon Archaeological Center, Cortez, Colorado.

Table 1. Elemental concentrations	and source assignments for	or the archaeological	samples and USGS I	RGM-1 rhyolite	standard.	All measurement in
parts per million (ppm).	-	_	-	-		

Sample	Site 42WS383	Ti 102	Mn	Fe	Rb	Sr	Y	Zr	Nb	Ва	Ce	Pb	Th	Source
1	6 42WS383	 7 119	283	9447	196	85	27	124	18	541	46	27	40	Modena, UT Wild Horse Canyon.
2	6 42WS383	5 123	372	9448 1017	216	46	28	119	24	227	8	32	18	UT
3	6 42WS383	3	322	4	214	89	30	122	23	564	67	28	31	Modena, UT
4	6 42WS383	113 3 127	323	6	209	90	21	130	18	532	50	28	35	Modena, UT Wild Horse Capyon
5	6 42WS383	127 5	379	9661	217	43	21	124	25	189	35	32	19	UT Wild Horse Canyon
6	6 42WS383	137	382	9498 1068	218	47	25	128	26	206	47	34	28	UT
7	6 42WS383	4 107	388	0	200	70	28	141	27	364	0	30	21	Modena, UT Wild Horse Canvon
8	6 42WS383	2 118	375	9382 1045	209	50	23	121	22	224	38	28	20	UT
9	6 42WS383	122	352	1015 6 1024	203	87	30	121	20	572	34	30	34	Modena, UT
10	6 42W5383	5	344	9	211	87	31	134	26	614	37	32	31	Modena, UT Wild Horse Canvon
11	6 42WS383	6 125	345	9045 1025	195	45	24	114	26	174	51	28	26	UT
12	6 42WS383	8 121	323	9	216	85	28	137	22	598	41	29	26	Modena, UT Wild Horse Canvon.
13	6 42WS383	2 119	388	9400	208	47	26	119	28	227	35	37	32	UT Wild Horse Canvon.
14	6 42WS383	8 112	403	9398 1007	205	42	23	121	29	207	15	26	31	UT
15	6 42WS383	5 109	325	5	210	88	35	126	20	574	43	28	37	Modena, UT
16	6 42WS383	0 121	335	9805	210	89	34	132	20	581	43	27	31	Modena, UT Wild Horse Canvon.
17	6 42WS409	 4 143	340	9637 1147	199	48	29	117	25	203	50	28	24	UT
18	8 42WS409	5	389	5	246	98	28	120	14	414	5	37	25	Modena, UT Wild Horse Canvon.
19 20	8 42WS409	1 126	260 351	5 1059	184 226	22 94	43 27	160 135	39 20	49 555	70 33	20 27	30 34	UT* Modena, UT

	8	7		0											
	42WS409	108													Wild Horse Canyon,
21	8	4	374	9331	204	50		24	117	20	218	49	30	29	UT
	42WS409	121		1040											
22	8	6	313	9	222	86		28	130	23	575	44	34	34	Modena, UT
	42WS409			1306											
23	8	899	320	9	259	12		63	195	46	0	27	40	38	Obsidian Cliff, WY
	42WS409	121		1025											,
24	8	9	342	2	209	79		29	126	20	559	58	33	43	Modena, UT
	42WS409	134	0	1081											
25	8	4	330	2	218	90		34	125	19	464	43	33	28	Modena, UT
	42WS513	107		_				•							
26	3	- 0,	323	9597	204	84		26	129	13	602	86	26	33	Modena UT
20	42WS513	113	525	5557	201	01		20	125	10	002	00	20		
27	3	8	300	0183	194	80		32	125	20	649	109	25	29	Modena UT
27	J 12W/5513	122	500	1058	134	00		52	125	20	045	105	25	25	Wild Horse Canyon
28	3	200	306	2010	204	51		26	113	20	213	54	35	22	
20	J 1211/5513	123	590	2	204	51		20	115	20	215	74	55	55	Wild Horse Canyon
20	4210212	125	127	0878	211	53		25	115	24	217	0	22	22	
29	J 1211/5512	124	427	1060	211	55		25	115	24	217	0	25	22	01
20	42113313	124	25/	2000	222	00		21	122	22	521	20	22	22	Modona UT
50	J 1211/0512	112	554	Z	222	65		54	152	25	221	50	52	52	Modella, OT
21	42113313	112	221	0777	206	07		วว	12/	25	650	96	20	11	Modona UT
51		116	221	1026	200	07		52	154	25	020	00	20	41	Modella, OT
22	42005514	110	240	1020	200	06		24	1 7 1	22	FEF	20	20	24	Madana UT
32		102	548	8	200	80		54	131	22	202	58	28	24	Modena, UT
22	42005514	103	210	0450	200	00		20	105	21	601	50	26	22	
33	0	4	310	9459	200	83		30	125	21	601	59	26	32	Kane Springs, NV
24	42005514	110	071	1127	204	40		~~	1	27	200	50	22	24	Wild Horse Canyon,
34	0	9	271	8	204	49		32	157	27	306	52	22	34	UI
25	42WS514	114	254	1017	010			~ 1	100	~~	501	~ ^	~ ~ ~	25	
35	0	3	354	5	219	86		31	133	28	591	64	34	35	Modena, UI
	42WS514	11/		1027						~~		~ .			
36	0	/	312	2	216	85		33	128	22	615	34	26	20	Modena, UI
Sample	Site	Ti	Mn	Fe	Rb	Sr	Y		Zr	Nb	Ва	Ce	Pb	Th	Source
	42WS514	110		1014											
37	0	7	328	7	217	91		35	136	21	568	29	29	26	Modena, UT
	42WS514	122													
38	0	0	338	9540	175	69		24	133	23	355	37	26	19	Modena, UT
	42WS514	130		1040											Wild Horse Canyon,
39	0	7	437	9	218	45		27	112	27	185	24	35	29	UT
	42WS514	113													
40	0	4	312	9949	209	89		33	129	22	570	47	26	29	Modena, UT
	42WS514	124		1067											
41	0	8	371	6	222	88		32	128	18	593	38	32	36	Modena, UT

								129						
	42WS514	114		1007										
42	0	4	347	4	215	87	37		17	588	58	28	36	Modena, UT
	42WS514	123		1041										
43	0	6	341	5	220	92	26	125	24	584	43	29	37	Modena, UT
11	42WS514	110	210	0401	105	00	26	120	21	502	67	77	20	Madana UT
44	0	100	510	9401	195	60	20	120	21	292	07	27	20	Modella, OT
45	42W3514	5	314	9499	195	83	27	119	24	577	68	26	27	Modena IIT
	42WS514	107	514	5455	155	05	21	115	27	577	00	20	27	Modella, of
46	0	2	322	9503	203	86	34	118	22	602	49	29	27	Modena, UT
	42WS514	116												
47	0	7	332	9865	205	88	26	127	21	562	53	25	37	Kane Springs, NV
	42WS514	115		1203										Wild Horse Canyon,
48	0	0	309	2	216	50	41	156	23	329	34	27	38	UT
40	42WS514	124	222	1017	214	07	22	174	10	600	F 2	27	47	Madana UT
49		0 112	332	/	214	87	33	134	18	609	52	27	41	Modena, UI
50	42VV5514 0	8	300	0878	212	88	28	127	17	614	34	32	30	Modena IIT
50	0 42WS514	114	505	1055	212	00	20	127	17	014	54	52	50	Modella, OT
51	0	6	355	3	218	91	29	127	18	516	29	27	38	Modena. UT
-	42WS514	120		•		-		;		010				
52	0	6	311	9508	200	86	29	120	20	566	74	27	39	Modena, UT
	42WS535	133												Wild Horse Canyon,
53	4	3	354	9075	192	40	22	114	21	183	16	29	13	UT
	42WS535	108												
54	4	2	315	9530	202	84	36	122	27	604	95	29	34	Modena, UT
EE	42005535	122	224	1002	200	00	20	100	10	600	40	24	22	Madana UT
22	4 12\N/\$535	112	554	5 1176	209	09	20	125	19	000	40	54	22	Modella, OT
56	42005555	0	300	4	205	50	40	158	25	332	49	22	35	Kane Springs NV
50	42WS535	105	500	1155	205	50	10	100	25	552	15	~~		Rune opinigo, nv
57	4	4	313	8	203	46	36	156	31	313	43	22	28	Kane Springs, NV
	42WS535	111		1153										
58	4	1	279	5	205	51	37	161	24	345	62	23	37	Kane Springs, NV
	42WS535	127		1044										
59	4	6	396	9	211	86	31	128	26	603	75	29	34	Modena, UT
60	42WS535	103	222	0276	100	00	20	122	22	621	07	27	25	Madana UT
60	4	2	322	9376	198	82	29	132	22	621	97	27	35	Modena, UI
61	42VV5555 1	753	153	5672	0	21	1	16	1	36	16	_1	Л	not obsidian
01	4 42WS535	114	133	5072	0	21	-	10	-	50	10	-1	-	
62	4	2	324	9400	199	80	28	135	20	620	111	23	30	Modena, UT
	42WS535	—										-		,
63	4	776	158	5986	5	27	6	27	4	20	20	2	4	not obsidian
							1	11						

	42WS535													
64	4	765	150	5861	0	18	5	17	3	30	15	2	6	not obsidian
	42WS535	119												
65	4	4	301	9548	204	83	30	125	23	638	44	27	25	Modena, UT
	42WS535	128												
66	4	8	365	9843	200	68	28	148	32	454	59	31	29	Modena, UT
RGM1-		148		1307										
S4		0	305	7	149	105	24	217	7	813	45	23	26	standard
RGM1-		156		1311										
S4		8	294	6	153	105	25	221	11	822	18	16	16	standard
RGM1-		159		1332										
S4		6	294	3	150	107	26	219	12	826	49	21	15	standard
		-	-	_		-	-	-		-	-		-	

				Sou	irce		
			Kane Springs, NV	Modena, UT	Obsidian Cliff, WY	Wild Horse Canyon, UT	Total
Site	42WS383	Count	0	9	0	8	17
	6	% within Site	0.0%	52.9%	0.0%	47.1%	100.0%
		% within Source	0.0%	22.0%	0.0%	50.0%	27.0%
		% of Total	0.0%	14.3%	0.0%	12.7%	27.0%
	42WS409	Count	0	5	1	2	8
	8	% within Site	0.0%	62.5%	12.5%	25.0%	100.0%
		% within Source	0.0%	12.2%	100.0%	12.5%	12.7%
		% of Total	0.0%	7.9%	1.6%	3.2%	12.7%
	42WS513	Count	0	4	0	2	6
	3	% within Site	0.0%	66.7%	0.0%	33.3%	100.0%
		% within Source	0.0%	9.8%	0.0%	12.5%	9.5%
		% of Total	0.0%	6.3%	0.0%	3.2%	9.5%
	42WS514	Count	2	16	0	3	21
	0	% within Site	9.5%	76.2%	0.0%	14.3%	100.0%
		% within Source	40.0%	39.0%	0.0%	18.8%	33.3%
		% of Total	3.2%	25.4%	0.0%	4.8%	33.3%
	42WS535	Count	3	7	0	1	11
	4	% within Site	27.3%	63.6%	0.0%	9.1%	100.0%
		% within Source	60.0%	17.1%	0.0%	6.3%	17.5%
		% of Total	4.8%	11.1%	0.0%	1.6%	17.5%
Total		Count	5	41	1	16	63
		% within Site	7.9%	65.1%	1.6%	25.4%	100.0%
		% within Source	100.0%	100.0%	100.0%	100.0%	100.0%
		% of Total	7.9%	65.1%	1.6%	25.4%	100.0%

Table 2. Crosstabulation of source by site. Non-obsidian samples not included (see Table 1).

Figure 1. Location of identified obsidian sources (capitals) in southwest Utah and southeast Nevada.

Figure 2. Ba/Zr (left) and Sr/Fe (right) bivariate plots of all samples. Confidence ellipses at 90%. Asterisked Wild Horse Canyon was a very small sample that otherwise fit the source composition, but is probably too small to confidently assign to source (see Davis et al. 2011).