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Packet-Based Power Allocation for
Forward Link Data Traffic

Peijuan Liu, Randall A. Berry, Member, IEEE, Michael L. Honig, Fellow, IEEE,
and Scott Jordan, Member, IEEE

Abstract— We consider the allocation of power across forward-
link packets in a wireless data network. The packets arrive
according to a random (Poisson) process, and have fixed length
so that the data rate for a given packet is determined by the
assigned power and the channel gain to the designated user.
Each user’s service preferences are specified by a utility function
that depends on the received data rate. The objective is to
determine a power assignment policy that maximizes the time-
averaged utility rate, subject to a constraint on the probability
that the total power exceeds a limit (corresponding to an outage).
For a large, heavily loaded network, we introduce a Gaussian
approximation for the total transmitted power, which is used
to decompose the power constraint into three more tractable
constraints. We present a solution to the modified optimization
problem that is a combination of admission control and pricing.
The optimal trade-off between these approaches is characterized.
Numerical examples illustrate the achievable utility rate and
power allocation as a function of the packet arrival rate.

Index Terms— Resource allocation, utility, pricing, power as-
signment.

I. INTRODUCTION

EFFICIENT allocation of radio resources, such as trans-
mission power, is essential for supporting diverse appli-

cations over wireless networks. Here we investigate power
allocation for the forward link in a wireless network with
rate adaptive data traffic. We consider a code division multiple
access (CDMA) system that simultaneously transmits to all ac-
tive flows; the available transmission power must be allocated
among these flows. A utility-based approach is adopted, in
which the service preferences of each packet are specified by
a utility function. The network objective is to maximize a time
average utility. It is well-known that such utility functions can
capture many common definitions of fairness within a network
[1], [2] and can provide for different priorities among users.

Power control in cellular CDMA systems based on utility
maximization has been studied for both the reverse link [3]–
[8] and the forward link [9]–[15]. In the forward link, the
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typical problem is to maximize the aggregate utility subject to
constraints on the total available resources. For example, [11]
considers a constraint on the transmitted power, while [13]
considers constraints on both the available spreading codes and
power. The solution to these problems can often be interpreted
in a pricing framework, where prices are announced for the
constrained resources and users maximize their net benefit
(utility minus cost). The optimal allocation of resources can
be found by choosing the appropriate resource prices. In
most of this work, a static situation is assumed, where the
set of active users is fixed. In this paper, the set of active
users is dynamically varying over the time period during
which resources are allocated. Random traffic variations must
therefore be taken into account when allocating resources.

We consider a model in which packets arrive to the base
station according to a Poisson process. The packets are des-
ignated for different users with random channel gains, and
the time to transmit a packet depends on the power allocation
and the associated channel gain. Here a “packet” could also
represent fixed length flow or session for a particular user as
in [19]. An orthogonal signaling scheme is assumed, in which
multiple packets are simultaneously transmitted to different
users, and the packets do not interfere with each other. Each
transmitted packet contributes a utility to the designated user,
which depends only on the transmission time (equivalently, the
data rate). Our problem is to determine a policy for allocating
power to each packet, which maximizes the time-average
utility rate (i.e., total accumulated utility per unit time), subject
to a constraint on the total power transmitted by the base
station.

Since the number of active users is randomly varying,
the total power transmitted by the base-station is a random
process. We consider an outage constraint on this process,
in which the total power can exceed a given value with
some small probability.1 We characterize the solution to this
problem for a system with a large number of users, so that the
transmitted power can be approximated as a Gaussian random
process. In that case, the outage constraint can be decomposed
into three simpler constraints. The solution to this simplified
problem can be viewed in a pricing framework as in [13];
however, there are several fundamental differences. First, in
addition to pricing, explicit admission control is also needed.
Second, the price is not the conventional (linear) price for the

1Here we assume that power is the limiting resource, and that there is
sufficient bandwidth to support non-interfering (orthogonal) transmissions to
all active users.
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constrained resource, which is the transmit power. Instead, the
total charge is the price times the product of the transmission
power times energy. This can be viewed as a price for power
times energy, or as a non-linear price for the required power.

Our focus is on the situation where traffic variations occur
on a much faster time-scale than that over which resource
allocation is performed. Specifically, we assume power is
allocated to each packet based on the user’s channel gain
and utility, and this assignment is fixed for the duration
of the packet. The power allocation does not depend on
the instantaneous system state (e.g., the number of active
requests), but only on long-term statistics (e.g., packet arrival
rates). An alternate approach may take into account the current
system state and reallocate resources at every arrival and
departure (e.g., see [16], [17]). Clearly, allocating resources
on a faster time scale may improve the resulting utility rate.
However, such an approach may not be feasible, due to various
system constraints, and leads to a more complicated allocation
policy. Also, since the allocation considered here is not state
dependent, each designated user derives a fixed utility rate
upon admission. In contrast, with state dependent reallocations
the utility associated with a packet can vary depending on
future events.

We also assume that the channel varies on a slower time-
scale than the traffic requirements. Specifically, the channel
gain does not change during the time required to serve a
packet. If this were not the case, the performance could be
improved by utilizing an opportunistic scheduling algorithm,
such as the proportional fair rule for the CDMA 1xEVDO
system [18], [19]. We note that many opportunistic scheduling
algorithms can also be viewed in terms of maximizing an
aggregate utility rate [20]–[22].

The rest of the paper is organized as follows. In Section II,
we introduce a model for the forward link of a single cell. In
Section III, we formulate a constrained optimization problem
where the objective is to maximize the time-averaged utility
rate subject to a stochastic constraint on the total power. In
Section IV, a solution to the simplified problem is presented
in which the power constraint is decomposed into three more
tractable constraints. We then characterize the optimized sys-
tem behavior. Numerical results, which illustrate the accuracy
of the Gaussian approximation for the power distribution, and
optimized power allocations, are presented in Section V.

II. SYSTEM MODEL

We consider a model for the forward link within a single
cell, where the base station transmits simultaneously to all
active users, and transmissions to different users are assumed
to be orthogonal. For example, this models a CDMA system
with orthogonal spreading codes.2 Suppose that a user with
channel gain h is allocated transmission power P (h). The
received Signal-to-Interference Plus Noise Ratio (SINR) for
this user is given by SINR = hP/σ2, where σ2 is the total
noise plus interference power. We assume that the received
data rate for a user is a function of the received power,

2We assume that the number of orthogonal codes, or equivalently, the
available bandwidth is not a limiting resource. A bandwidth constraint could
be introduced in what follows by adding a constraint on the number of
simultaneous transmissions.

utility 

rate 

Fig. 1. Example utility function for data traffic.

or equivalently received SINR; this relationship is given by
R(h) = C(hP ), where C(·) is an increasing function.

Packets arrive to the base station according to a Poisson
process with overall rate λ. Each packet has a fixed length of
L (bits).3 We consider a system with a large number of users,
and assume that each packet corresponds to a new user. The
channel gain for each user is assumed to be distributed on the
interval H = [hmin, hmax], where hmin ≥ 0 and hmax <
∞, with continuous density function fH(h). This density can
be used to model the users’ geographic distribution within
the cell, and also various propagation effects such as random
shadowing. The channel gain corresponding to each arrival is
chosen independently according to this distribution and stays
fixed during the entire transmission of the packet.

A utility function is associated with each packet, which
reflects the designated user’s desired quality of service. We
assume that the utility depends only on the transmission rate
R. Since each packet has a fixed length, this is equivalent
to defining utility as a function of the transmission time
for a packet. In this paper, we assume that all users have
the same utility function, U(R); however, this formulation
can be extended to scenarios with multiple utility classes.
We assume that U(0) = 0 and that U(R) is increasing,
concave and continuously differentiable with respect to R,
for R ≥ 0. These are common assumptions for so-called
“elastic” traffic, which describes many data applications [1].
An example utility function, U(R), with these characteristics
is depicted in Figure 1.

The power allocated to a user depends only on the utility
function U(·) and the associated channel gain h. For each
h ∈ H, it will be useful to define the function Ũh(P ), which
relates the utility received by a user with channel gain h to
the transmitted power P . This function is given by

Ũh(P ) = U(C(hP )). (1)

Notice that Ũh(P ) is different for users with different channel
gains even though U(R) is the same for those users.

3The following can be extended to the case where the length of each request
is random, but we will not address this extension here.



2896 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 8, AUGUST 2007

III. PROBLEM FORMULATION

Our objective is to allocate transmission power to maximize
the utility rate given a constraint on the total transmission
power. A power allocation is specified by a function P : H �→
R

+ that indicates the power used to transmit a packet to a
user with channel gain h ∈ H. If P (h) = 0, the corresponding
packet is considered blocked and not transmitted. If P (h) > 0,
the corresponding packets are transmitted with a transmission
time given by

T (h) =
L

C(hP (h))
.

Let {Hi}∞i=1 be a sequence of independent and identically
distributed random variables representing the channel gain of
the ith arrival, and let K(t) denote the number of arrivals
in the interval [0, t). For a given power allocation, the time
average utility rate is given by

lim
t→∞

1
t

K(t)∑
i=1

ŨHi(P (Hi)) (2)

= lim
t→∞

K(t)
t

⎛
⎝ 1

K(t)

K(t)∑
i=1

ŨHi(P (Hi))

⎞
⎠ (3)

= λEH

{
ŨH(P (H))

}
, (4)

assuming the system is ergodic, where the expectation is an
average over fH .

Let A(t) denote the set of active transmissions at time t. The
cardinality of A(t) is N(t), which is the number of the current
active packet transmissions. The total power transmitted at
time t can then be written as

Psum(t) =
∑

i∈A(t)

P (Hi). (5)

This is a stochastic process with statistics that depend on the
power allocation and the channel distribution. We assume that
under any power allocation, Psum(t) → Psum in distribution
as t → ∞, where Psum is a random variable with the steady-
state distribution. For any power allocation, we constrain the
steady-state total power, given that the system is not empty
(N(t) > 0), to be no greater than some value, P̄ , with
probability 1 − q0, i.e., Pr(Psum > P̄ |Psum > 0) ≤ q0

where q0 > 0 is a small constant. Assuming that the system
is ergodic, this constraint implies that the fraction of time the
total power is greater than P̄ , when the system is not empty,
is no greater than q0, which can be viewed as a target outage
probability.

The resource allocation problem can be formally stated as
Problem MAXU:

maximize
P :H�→R+

λEH(ŨH(P (H))) (6)

subject to Pr(Psum > P̄ |Psum > 0) ≤ q0 (7)

Note that conditioning on Psum > 0 (the system not being
empty) is needed to avoid the impulsive solution in which each
packet is transmitted with infinite power and has infinitesimal
duration.

Solving Problem MAXU directly appears to be difficult
in general. In the next section we simplify the problem by

approximating Psum as a Gaussian random variable. This can
be justified when the number of active users contributing to
Psum is large. To see when this is likely to be true, consider
the special case in which all users within the system have
the same channel gain h. With this assumption the solution
to MAXU is given by a single value P . For the sake of this
example, we further assume that the utility function is given
by U(R) = 1 − e−μR.

Since each active user is assigned the same power, the
average utility is given by

Uavg = λ
(
1 − e−μ L

T

)
where T is the transmission time for a packet of length L, and
λ is the arrival rate for transmission requests. Clearly, we wish
to choose P to minimize T . Hence we select the largest value
of P , which satisfies the constraint (7). Assuming Poisson
arrivals, and noting that T is the same for all packets, the
number of active (transmitting) users, N , is the occupancy
of an M/D/∞ queue, which is Poisson with parameter λT .
Hence the probability that the system is not empty is Pr[N >
0] = Pr[Psum > 0] = 1 − e−λT , and

Pr[Psum > P̄ |Psum > 0]

=
1

1 − e−λT

∞∑
n=0

Pr[Psum > P̄ |N = n] Pr[N = n]

=
1

1 − e−λT

∞∑
n=0

In>P̄/P Pr[N = n]

=
1

1 − e−λT

∞∑
n=n0

e−λT (λT )n

n!

≤ q0

where IV is the indicator function for the event V , and n0 =
� P̄

P 	 is the minimum number of active users, which causes the
total power to exceed P̄ . Given any q0 > 0, we can choose
P small enough (equivalently, n0 large enough) to satisfy the
preceding outage constraint. The objective is then to find the
smallest n0, and the corresponding largest P , such that the
constraint is satisfied.

If λT is large enough, then Pr[Psum > 0] = 1 − e−λT ≈
1 and the Poisson random variable N can be accurately
approximated as Gaussian. In that case, the constraint (7) can
be replaced by the constraint Pr[Psum > 0] < q0, where
Psum is Gaussian. To see how λT depends on the target
outage probability q0, Fig. 2 shows Pr[Psum > P̄ |Psum > 0]
vs. λT for different ratios n0/λT (i.e., n0 is normalized
by the average number of active users λT = E[N ]). The
discontinuities in the plots are due to the ceiling function used
to define n0. As n0/(λT ) increases, Pr[Psum > P̄ |Psum > 0]
must increase, as shown in the figure. Furthermore, the figure
shows that given a target q0 (e.g., < 5%), we must have
n0/(λT ) > 1 and λT > 5. The Gaussian approximation for
Psum is therefore accurate in this scenario.

Verifying the accuracy of the Gaussian approximation by
solving MAXU directly becomes significantly more difficult
with more general channel distributions. However, the pre-
ceding analysis indicates that when P (h) is optimized, the
number of active users should be relatively large when Psum
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Fig. 2. Pr[Psum > P̄ |Psum > 0] versus λT for different ratios n0/λT .

is close to P̄ . Hence for the analytical results, which follow,
we will assume that the distribution of Psum has a Gaussian
tail. We remark that the accuracy of the Gaussian assumption
also depends on the choice of utility function. In particular, it
is less accurate for a logarithmic utility function, as discussed
in Section V.

IV. UTILITY BASED POWER ALLOCATION

A. Decomposition of Power Constraint

Let δh be a small constant such that hmax −hmin = Kδh,
for some integer K . For i = 0, . . . , K , define hi = hmin +
iδh. For i = 0, . . . , K − 1, let N(i) be a random variable
representing the number of active users in steady-state with
channel gain in [hi, hi+1). The steady-state total power, Psum,
can then be approximated as:

Psum ≈
K−1∑
i=0

P (hi)N(i).

Taking expected values, we have

E (Psum) ≈
K−1∑
i=0

P (hi)N̄(i),

where N̄(i) is the expected number of active users with
channel gains in [hi, hi+1). Since arrivals are Poisson with
overall rate λ, N(i) is the occupancy of a M/G/∞ queue
with arrival rate ≈ λfH(hi)δh and service time ≈ T (hi).
Therefore N(i) is approximately Poisson distributed, and

N̄(i) ≈ λfH(hi)δhT (hi) = N̄(hi)δh, (8)

where N̄(hi) = λfH(hi)T (hi). Assuming that P (h)N̄(h) is
Riemann integrable, then letting δh → 0, we have

E (Psum) =
∫
H

P (h)N̄(h) dh. (9)

Likewise, since N(i), i = 0, · · · , K − 1 are independent, the
second moment of Psum is given by

E(P 2
sum) =

∫
H

P 2(h)N̄(h) dh. (10)

For a large number of active users, Psum can be approx-
imated as a Gaussian random variable. As discussed in the
preceding section, we therefore rewrite the constraint (7) as

Pr
[
Psum > P̄ |Psum > 0

] ≈ Q

(
P̄−E(Psum)√

Var(Psum)

)
≤ q0

where Q(x) =
∫ ∞

x
1
2π e−t2/2dt is the complementary

Gaussian cumulative distribution function (c.d.f.).
This constraint reduces to∫

H
P (h)N̄(h) dh + k1

√∫
H

P 2(h)N̄(h) dh ≤ P̄ , (11)

where k1 = Q−1(q0).
Since N̄(h) = λfH(h)T (h), we have∫

H
P (h)N̄(h) dh = λEH [E(H)], (12)

and ∫
H

P 2(h)N̄(h) dh = λEH [P (H)E(H)], (13)

where E(h) = P (h)T (h) is the energy consumed by user with
channel gain h. An inactive user is allocated zero energy.

Substituting (12) and (13) into (11), constraint (7) can be
approximated by

λEH(E(H)) + k1

√
λEH(P (H)E(H)) ≤ P̄ . (14)

Finally, this can be further decomposed into the three con-
straints⎧⎨
⎩

λEH(E(H)) ≤ E average energy
EH(P (H)E(H)) ≤ G average power × energy
E + k1

√
λG ≤ P̄ tradeoff of E vs. G

(15)

We will refer to Problem MAXU when (7) is replaced with
(15) as Problem MAXUA. A solution to Problem MAXUA is
provided next. This is accomplished in two steps. First, we
find the utility maximizing power assignment subject to the
first two constraints in (15) for given values of E and G. Next,
the combination of E and G that yields the highest utility rate
is derived.

B. Solution with Fixed E and G

Given values for E and G, consider the following problem:
Problem P1:

maximize
P :H�→R+

λEH(ŨH(P (H))) (16)

subject to λEH(E(H)) ≤ E (17)

EH(P (H)E(H)) ≤ G (18)

To gain insight into this problem, we consider each of the
constraints separately. First, we examine the problem with only
the energy constraint, i.e.,

Problem P2:

maximize
P :H�→R+

λEH(ŨH(P (H)))

subject to λEH(E(H)) ≤ E .

From (9) and (12), E(Psum) = λEH(E(H)), so that Problem
P2 is equivalent to constraining the average sum power.
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To continue, we assume that the transmission rate is pro-
portional to the received power, i.e.,

C(hP (h)) = k0hP (h) (19)

where k0 is a constant.4 It follows directly from (19) that the
energy consumed by a user depends only on whether a user’s
transmission power is nonzero, and not on the specific power
level, i.e.,

E(h) =
{

P (h)T (h) = L/k0h, for P (h) > 0,
0, for P (h) = 0.

(20)

Since utility is strictly increasing in received power, it follows
from (20) that the solution to Problem P2 is for each packet
to be either denied transmission (blocked) or transmitted
with infinite power. If no users are blocked and the energy
constraint (17) is violated, then admission control is required
to block some users. This solution is stated as the following
lemma.

Lemma 1: A power allocation, which achieves the maxi-
mum average steady-state utility in Problem P2, satisfies

P (h) =
{ ∞, for h > he,

0, for h < he,
(21)

where he is the minimum value in H such that (17) is satisfied.
The lemma follows from the preceding discussion and by

noting that the energy required by a user decreases with
the channel gain. Hence, blocking those users with smallest
channel gains minimizes the number of blocked users and
maximizes (6). We note that if U(R) is unbounded, then
the solution to Problem P2 is also unbounded, so that an
arbitrary set of users can be blocked. The Lemma implies
that Psum(t) = 0 with probability one (i.e., for almost all
t), and Psum(t) = ∞ whenever a new request arrives.5 Of
course, this power assignment is not realistic. This type of
behavior is eliminated by adding the constraint (18).

Next we consider Problem P1 with only constraint (18).
Problem P3:

maximize
P :H�→R+

λEH(ŨH(P (H)))

subject to EH(P (H)E(H)) ≤ G.

This is a standard optimization problem with a concave
objective and linear constraints,6 and is mathematically equiv-
alent to the problem studied in [13]. As in [13], the solution
can be attained via a pricing scheme.

Lemma 2: Consider the following pricing scheme: a
channel-dependent price per unit transmit power of the form
αp(h) = αE(h) is announced; users respond by requesting
power to maximize their surplus (utility minus cost), i.e.,

P ∗(h) = arg max
P (h)

{Ũh[P (h)] − αE(h)P (h)}. (22)

4This linear relationship between rate and power is a reasonable approxi-
mation for many practical systems, e.g., with low SNR and/or high bandwidth.
For large enough rates, capacity considerations imply that this is optimistic.

5This type of flash signaling also arises in the context of ultra-wideband
communications [23], in which case the assumed linear rate-power relation
is valid.

6Note, we are still assuming the linear relationship between rate and power,
in which case E(H) can be viewed as a constant independent of P (H).

If α is set such that (18) is satisfied with equality, then this
pricing scheme provides a power allocation that is the solution
to Problem P3.

This lemma follows directly from the Kuhn-Tucker optimal-
ity conditions, where α corresponds to a Lagrange multiplier
for constraint (18). The set of active users and the assigned
power levels are determined by α, which can be interpreted as
a fixed unit price on the product of power times energy. For
each active user, the marginal utility with respect to power
equals the price per unit power, dŨh(P (h))

dP (h) = αp(h). Inactive
users have lower marginal utility than the price at zero power,
i.e., dŨh(P (h))

dP (h) |P (h)=0< αp(h). Since Ũh(P (h)) is concave,
dŨh(P (h))

dP (h) is decreasing with P (h). Hence for inactive users,
a positive power assignment provides less utility than the cost
(negative surplus). We call those inactive users intimidated
due to a combination of high price and small initial slope of
Ũh(P ).

Assuming all users have the same U(·) and that (19) holds,
the set of users that are intimidated can be characterized as
follows:

Theorem 1: There exists a threshold hi ∈ H such that the
optimal power allocation to Problem P3 satisfies P (h) > 0 if
and only if h > hi. The threshold hi satisfies:

dU(R)
dR

∣∣∣∣
R=0

=
α(hi)
k0hi

.

The theorem follows directly from the fact that dU(R)
dR =

dŨh(P )
dP

dP
dR and that αp(h) is decreasing in h. This theorem

implies that given two users with different channel gains, the
user with the smaller channel gain is penalized twice. First,
that user requires more power to achieve a target SINR, and
second, the user is charged a higher unit price per power.
Notice that as G increases, α decreases and P (h) increases
for all active users. This in turn increases the utility for each
active user, and hence results in a higher utility rate. Also
notice that the constraint in Problem P3 does not depend on
the traffic intensity λ, but only on the channel distribution,
fH(h). It follows that changes in the arrival rate, for a fixed
fH(h), do not effect the optimal price in Theorem 1.

Now we return to Problem P1. The solution to this problem
is a combination of admission control, as in Lemma 1, and the
pricing procedure stated in Lemma 2. The resource allocation
can be accomplished in two steps. First, the admission control
step specifies an active channel set Ha = {h : P (h) > 0}.
That is, users with h /∈ Ha are blocked. Second, the pricing
step determines the power assignments across users in the
active set. Note that some users not blocked in the first step
still may be intimidated in the second step.

Suppose that the average energy is λEH(E(H)) = Ê for
some Ê ∈ [0, E ]. Conditioned on this, the solution to Problem
P1 is given as follows:

1) Assume P (h) > 0 for any h. Given fH(h) and E(h) in
(20), check if λEH(E(h)) ≤ Ê . If so, admit all users.
Otherwise, block users with channel gains h ≤ he(Ê)
where he(Ê) is selected to satisfy

λEH(E(H)|H > he(Ê)) Pr(H > he(Ê)) = Ê .
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2) Find α so that (18) is binding for the set of active
users taking into account that users blocked in the
previous step are assigned zero power. The optimal
power allocation across active users is given by (22).

Finally, the solution to Problem P1 can be found by searching
for the value Ê ∈ [0, E ] that maximizes the total utility rate
λE{Ũh[P (h)]}.

For a fixed Ê , users with the lowest channel gains are
blocked because they derive the lowest utility for any given
α. Therefore, there exists an energy induced threshold he(Ê)
such that users with h ≤ he(Ê) are blocked via admission
control. Recall that following Lemma 1, we concluded that
blocked users should have the worst channels. This conclu-
sion assumed only an energy constraint and bounded utility
functions. Here we have shown that this conclusion is valid
with both energy and power-times-energy (G) constraints, and
any increasing concave utility function. We note that at the
optimum, (18) is always binding, whereas (17) might not be
binding.

Note that lowering Ê may decrease the size of the active
set, but also increases the average utility derived per active
packet.7 A complete solution to Problem P1 requires finding
the optimal Ê ∈ [0, E ] to balance this tradeoff. Next we
show that this search is simplified when we include the last
constraint in Problem MAXUA.

C. Optimal Admission Control/Pricing Trade-off

Given E and G, we have shown that the optimal solution to
P1 consists of a combination of admission control and pricing.
Returning to problem MAXU, notice that any pair of values,
E and G, that satisfy

E + k1

√
λG ≤ P̄ (23)

results in a solution to Problem P1 that is also a feasible power
allocation for Problem MAXUA. The solution to Problem
MAXUA is given by the combination that maximizes the
utility rate.

Theorem 2: The power allocation which solves Problem
MAXUA satisfies both (17) and (18) with equality.

Proof: As noted previously, the constraint (18) is tight under
an optimal power allocation. From this it can be seen that the
utility rate in Problem P1 increases monotonically with G.
Suppose the energy constraint (17) is loose. Then E can be
decreased to the point where the energy constraint is tight,
resulting in a larger G in (23), which in turn gives a higher
utility rate. �

To solve Problem MAXUA, we can therefore use the

following procedure. First, for each pair (E , G = 1
λ

(
P̄−E
k1

)2

),
a feasible solution to Problem P1 can be found via the previous
steps 1 and 2 with Ê = E . Letting U(E) be the resulting
utility rate, the solution to Problem MAXUA is then given
by the solution to Problem P1, where E is replaced by E∗ =
arg max{U(E), 0 ≤ E ≤ P̄}. That is, the solution to MAXUA
is achieved with E = E∗. This is because for each pair (E , G),
for which the utility is evaluated, Theorem 2 implies that there
is no need to search for the optimal Ê ∈ [0, E ].

7Given an arrival rate λ, Ê may change over a range in which all users
remain active.

The set of users blocked through admission control and
intimidation is determined by the channel gain thresholds
he(E) and hi(E), respectively. We distinguish the following
3 cases:

C1: he ≥ hmin and he ≥ hi. (Active users are determined
by he.)

C2: hmin > he and hmin ≥ hi. (All users are active.)
C3: hi > he and hi > hmin. (Active users are determined by

hi.)

The next theorem characterizes the transition between these
cases.

Theorem 3: Consider Problem P1 with constraints (E , G =
1
λ

(
P̄−E
k1

)2

). As E increases from 0 to P̄ , the optimal power
allocation transitions through the cases C1, C2, C3 in one of
the following sequences: C1 → C2 → C3 or C1 → C3.

Proof: Let A1 denote the set of values of E where the
optimal solution to P1 is in C1. Define A2 and A3 similarly.
At E = 0, he = hmax and hi = 0; therefore 0 ∈ A1. As E
increases, G decreases; this results in he decreasing with E
and hi increasing. This implies that if E ∈ A1 then E ′ ∈ A1
for all E ′ ≤ E and likewise, if E ∈ A3 then E ′ ∈ A3 for all
E ′ ≥ E . When E = P̄ , G = 0, in which case hi = ∞, thus,
P̄ ∈ A3. Therefore the only possible sequences are C1 → C2
→ C3 or C1 → C3. Which of these occurs depends on whether
or not hmin ≤ he(Ẽ), where Ẽ satisfies he(Ẽ) = hi(Ẽ). (See
Figure 6.) �

Corollary: The optimal E∗ ∈ A1.
This follows from the observation that A1 is the only region

where both constraints are tight. In A2 or A3, the energy
constraint is always loose.

V. NUMERICAL RESULTS

In this section, we present numerical results to illustrate
the optimization described in the preceding section. The
results that follow assume the exponential utility function
U(R) = 1 − exp(−μR) for μ > 0, which is concave,
increasing, and has U(0) = 0. The channel density is given
by fH(h) = 1

4h− 5
4 for h ∈ (1,∞). This corresponds to

a channel gain h(r) = r−4, where r is the distance of a
user from the base station, and each user’s location is chosen
uniformly in the interval (0, 1). We assume the file length
is normalized so that L = k0, the scale factor in (19), which
relates transmission rate to received power. That is, one unit of
received power results in a completion time of one unit. From
(22), the surplus maximizing power assignment for active
packets with h > max(1, he, hi) and price α is given by

P (h) = 1
μk0h ln

(
k2
0h2μ
αL

)
.

A. Accuracy of Gaussian Approximation

We first illustrate the accuracy of the Gaussian approxi-
mation, which is used to estimate the outage probability.8

8The comparisons with simulation results shown here illustrate how close
the simulated outage probability is to that obtained with the Gaussian
approximation given specific model parameters. These comparisons do not
illustrate how well the solution to MAXUA approximates the solution to the
problem MAXU, since as discussed in Section III, solving MAXUA directly
appears to be difficult.



2900 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 8, AUGUST 2007

0 2 4 6 8 10
0.02

0.03

0.04

0.05

0.06

0.07

0.08

Exponential utility function parameter: μ

O
ut

ag
e 

pr
ob

ab
ili

ty

0 2 4 6 8 10
0

20

40

60

80

100

120

Exponential utility function parameter: μ

A
ve

ra
ge

 n
um

be
r o

f a
ct

iv
e 

us
er

s

λ = 10
λ = 25
λ = 50
λ = 100
Gaussian Approx

λ = 10      
λ = 25      
λ = 50      
λ = 100     
Gaussian Approx

(a) (b) 

Fig. 3. (a) Outage probability vs. μ with different arrival rates; (b) Average
number of active packet vs. μ with different arrival rates.

Figure 3(a) compares the simulated outage probability with the
Gaussian approximation as a function of the utility parameter
μ, assuming a target outage probability q0 = 0.05 and average
power P̄ = 10. For the same parameters, Figure 3(b) shows
the average number of active packets from simulation and
using the Gaussian approximation, as a function of μ. In both
cases, simulated curves are shown for different packet arrival
rates λ. In the simulation model, packets arrive according to a
Poisson process, and are either blocked (h < he), intimidated
(h < hi), or served at the rate k0hP (h). The simulated
outage probability is then the fraction of time for which
Psum(t) > P̄ . The analytical curves are obtained using the
optimal (E∗, G∗) for each parameter setting.

In Figure 3(a), the simulated outage probability approaches
the target q0 as either λ or μ increases. The gap is more
sensitive to the arrival rate λ than the utility parameter μ.
Figure 3(b) shows that the simulated and analytical values of
the average number of active packets are nearly identical. As μ
and λ increase, the average number of active users increases.
Furthermore, the results show that the average number of
active packets in the system increases more rapidly with λ
than with μ.

Figure 3(b) shows that the average number of active packets
N̄ varies approximately linearly with μ. To see why, from the
analysis in Section IV-A, we can write

N̄ =
∫ ∞

max{1,he,hi}
N̄(h)dh

=
∫ ∞

max{1,he,hi}
λfH(h)T (h)dh. (24)

With the exponential utility function, we have T (h) =
L/k0hP (h) = μL

log(
μk2

0h2

αL )
, and combining this with (24) gives

N̄ = λμL

∫ ∞

max{1,he,hi}
fH(h)

1

log(μk2
0h2

αL )
dh. (25)

The integral varies slowly with respect to λ and μ, so that N̄
is nearly proportional to λμ.
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Fig. 4. The empirical p.d.f. of Psum from simulation and the Gaussian
approximation (mG = E∗, σG =

√
λG∗) for λ = 25 and 100.

From these results we conclude that the Gaussian ap-
proximation is accurate when the average number of active
users is relatively large, i.e., greater than ten. Furthermore,
the approximate Gaussian mean mG = E(Psum) = E∗

and standard deviation σG =
√

V ar(Psum) =
√

λG∗ must
satisfy mG = cσG with c � 3. This is due to the fact that
Psum ≥ 0, hence a Gaussian distribution with significant mass
in the negative region cannot be a good approximation for the
distribution of Psum. (We have observed that the ratio mG/σG

tends to increase with μ and λ.) To illustrate this point,
Figure 4 shows the empirical density function for the total
power Psum with two different arrival rates.9 The Gaussian
distribution with mean mG = E∗ and variance σ2

G = λG∗

is also shown. When λ = 100, the Gaussian and empirical
densities are nearly identical. The approximation is not as
accurate with λ = 25, although it is still reasonable.

The accuracy of the Gaussian approximation also depends
on the assigned utility functions. Additional results in [24]
show similar trends to those shown here for a piecewise linear
utility function with one breakpoint. In contrast, the Gaussian
approximation is typically not accurate for the logarithmic
utility function U(R) = log(1 + μR). Namely, the empirical
p.d.f. has a much heavier tail than the Gaussian p.d.f., due
to the fact that the assigned power P (h) = k0h

αL − 1
μk0h

approaches infinity as the user gets close to the base station.

B. Utility and Optimized Power Allocations

In this section we show numerical results for utility rate and
power allocations based on the Gaussian approximation. Fig-
ure 5 shows how the average utility per user, EH ŨH [P (H)],
varies with λ and E (and therefore G) when P̄ = 10 and
q0 = 0.01. The classification of the resulting allocation, as in
Theorem 3, is also indicated on the figure. The maximum point
is always in A1, as stated in the Corollary. As E increases,
the solution transitions from C1 → C2 → C3 when λ is small

9This is computed from a histogram of the total powers seen at packet
arrivals.
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Fig. 6. Channel thresholds he, hi vs. E for different λ’s.

(i.e., λ = 1, 10, 20). For larger λ, the allocation transitions
directly from C1 to C3.

Figure 6 shows how he(E) and hi(E) vary with E given
different arrival rates λ. The minimum channel gain hmin = 1
is also shown. For he(E) < hmin, we choose he to satisfy
λ

∫ hmax

he(E)
1
4h− 5

4 L
k0h dh = E so that the curve is extended

continuously from where he(E) ≥ hmin. As expected, he(E)
decreases with E , whereas hi(E) increases with E . When
λ = 10, the system transitions from C1 to C2 when he falls
below hmin, and from C2 to C3 when hi increases above
hmin. When λ = 40, the intersection point of he and hi is
larger than hmin; in this case the solution transitions directly
from C1 to C3.

The resulting optimal power allocation is shown in Figure
7(a) as a function of the designated user’s distance from the
base station with λ = 20, 30, 50. The closer a user is to the
base station, the better the channel. The received power, which
is proportional to the data rate, is also shown in Figure 7(b).
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Fig. 7. Optimal power allocation: (a) Transmission power vs. distance from
the base station; (b) Received power vs. distance from the base station.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

q
0

A
ve

ra
ge

 u
til

ity
 p

er
 u

se
r

Utility vs. threshold q
0

λ = 1~10
λ = 20
λ = 30
λ = 40
λ = 50

Fig. 8. Maximum average utility per user, EH{ŨH [P (H)]}, versus the
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The active radius shrinks slightly as λ increases. As the traffic
intensity increases, the optimal allocation blocks the users
with the worst channels while trying to maintain the received
power level for the remaining active users (see Figure 7(b)).
Apparently, this blocking strategy yields a higher utility rate
than offering a relatively degraded service to all users.

Figure 8 shows the maximum average utility per user
EH{Ũh[P (h)]} versus the target outage probability q0 with
different arrival rates. As λ increases, the average util-
ity per user decreases; however, the overall utility rate
λEH{Ũh[P (h)]} increases. A smaller q0, or equivalently, a
tighter power constraint, results in a lower utility per user.
Notice that the average utility per user is insensitive to q0

when λ is small (< 10). This is because the exponential utility
U(R) = 1 − e−R is relatively flat (close to one) when R
becomes large. When λ is small, the optimal power allocation
to active users is quite large, so that the corresponding
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transmission rates (R) are also large. Therefore, the average
utility per user is close to one.

VI. CONCLUSIONS

We have studied forward link power allocation for stochas-
tically varying data traffic. Each power assignment remains
constant for the duration of the packet, and along with
the channel gain and associated utility function, determines
the utility for transmitting the packet. The objective is to
determine a power assignment policy that maximizes the time
average utility rate. We introduced an outage constraint on
the total power in order to derive a simple power assignment
policy, which depends only on steady-state system properties.
Specifically, this policy depends only on the distribution of
channel gains, packet arrival rate, and utility functions. Each
power assignment then depends only on the designated user’s
channel state and associated utility function.

By approximating the steady-state total power as a Gaussian
random variable, the outage constraint was decomposed into
simpler constraints on energy and power times energy. This
approximation is accurate provided that the average number
of packets being simultaneously transmitted in steady-state
is large enough, corresponding to a heavily loaded system.
A procedure for maximizing the time-averaged utility rate
was presented, which enforces those constraints, respectively
through a combination of admission control and pricing of
power times energy. The optimal combination depends on the
system characteristics, namely, the packet arrival rate, assigned
utility functions, and distribution of channel gains. Numerical
results were presented to illustrate the effect of the constraints,
the optimal power allocation, and the corresponding utility
rate. The results show that it can be beneficial to block users,
rather than use pricing only to enforce the constraints.
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[23] S. Verdú, “Spectral efficiency in the wideband regime”, IEEE Trans. Inf.
Theory, vol. 48, no. 6, pp. 1319–1343, June 2002.

[24] P. Liu, “Utility-based resource allocation for wireless networks in
static and dynamic environments,” Ph.D. Thesis, Northwestern University,
Evanston, IL, December 2003.

Peijuan Liu (S’00-M’04) received her B.S. degree
in electrical engineering from Shanghai Jiao Tong
University, Shanghai, China, in 1998, and her M.S.
and Ph.D. degrees in electrical engineering from
Northwestern University, Evanston, IL, in 2000 and
2003, respectively. She has over 3 years experience
working at Rosetta Wireless Corp. and Motorola
Inc. in areas of wireless resource allocation and
performance analysis.

Randall Berry received the B.S. degree in Electrical
Engineering from the University of Missouri-Rolla
in 1993 and the M.S. and PhD degrees in Elec-
trical Engineering and Computer Science from the
Massachusetts Institute of Technology in 1996 and
2000 respectively. In 2000 He joined Northwestern
University, where he is currently an associate pro-
fessor in the Department of Electrical Engineering
and Computer Science. In 1998 he was on the
technical staff at MIT Lincoln Laboratory in the
Advanced Networks Group. His primary research

interests include wireless communication, data networks, and information
theory. He is the recipient of a 2003 NSF CAREER award.



LIU et al.: PACKET-BASED POWER ALLOCATION FOR FORWARD LINK DATA TRAFFIC 2903

Michael L. Honig received the B.S. degree in elec-
trical engineering from Stanford University in 1977,
and the M.S. and Ph.D. degrees in electrical engi-
neering from the University of California, Berkeley,
in 1978 and 1981, respectively. He subsequently
worked at Bell Laboratories and moved to Bell-
core (now Telcordia) before joining Northwestern
University in Fall 1994, where he is a Professor
in the Electrical Engineering and Computer Science
Department. He has held visiting scholar positions
at Princeton University, the University of California,

Berkeley, and the University of Sydney, and has served as an editor for
the IEEE Transactions on Information Theory and the IEEE Transactions
on Communications, and as a member of the Board of Governors for the
Information Theory Society. He is a Fellow of IEEE, the recipient of a
Humboldt research award for senior U.S. scientists, and the co-recipient of the
2002 IEEE Communications Society and Information Theory Society Joint
Paper Award.

Scott Jordan (S’86-M’90) received the B.S./A.B.,
the M.S., and Ph.D. degrees from the University
of California, Berkeley, in 1985, 1987, and 1990,
respectively. From 1990 until 1999, he served as a
faculty member at Northwestern University. Since
1999, he has served as a faculty member at the
University of California, Irvine. During 2006, he
served as an IEEE Congressional Fellow, working
in the United States Senate on Internet and telecom-
munications policy issues. His research interests
currently include pricing and differentiated services

in the Internet, resource allocation in wireless multimedia networks, and
telecommunications policy.




