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The field of distributed computability studies whether a task is solvable in a dis-

tributed system, as specified by communication channels, failure patterns, synchro-

nization instructions, etc. Tasks are analogs of functions in distributed computing,

which characterizes the coordination problems in a system with multiple processes.

Processes start with an input value in a task and then communicate with others to

decide an output value. Unlike classical computability theory, task solvability de-

pends on the model of the system. Determining whether a task is solvable in a given

model is usually argued on a case-by-case basis.

The celebrated asynchronous computability theorem (ACT) provides a topological

characterization of task solvability in the wait-free model. Since the development of

ACT, the topological method has achieved significant successes: ACT is generalized to

models with additional synchronization objects and models of resiliency. The general
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theory of distributed computability, however, has still not been established. It is not

clear whether ACT can be generalized for more general models.

In this dissertation, we study task computability in more general models. We

show that every set-consensus collection model is equivalent to a vector-set-consensus

model. For colorless task solvability, we derive ACT of the vector-set-consensus model.

For colored tasks in the k-set-consensus model, we present an alternative formulation

of ACT by introducing the notion of color-projection closed complex. For models

specified by resiliency, we study the general adversary model and derive the “wait-at-

beginning” ACT for colorless tasks. More specifically, we show that processes only

need the full power of the adversary at the beginning of a colorless task protocol. We

also present a sufficient topological condition to ensure that a task has a solution in

the vector-set-consensus model. Specifically, we show that if the task output complex

satisfies certain topological properties, it can be solved by the generalized convergence

algorithm as a universal protocol.

Our generalizations of ACT show that many models are equivalent to “restricted”

iterated immediate snapshot (IIS) models. Thus, this dissertation implies a potential

general framework for distributed computing analogous to the “Church-Turing” thesis.
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Chapter 1

Introduction

Classical computability theory studies whether a problem is decidable on the Turing

machine. Whether a problem is computable does not depend on what type of Turing

machine is being used. Moreover, according to Church-Turing thesis, it is independent

of the model used for computation.

In distributed computing, however, the computability of a problem differs from

one system to another. For example, in a synchronous model where processes com-

municate with others in a round-by-round manner without failure, the system can

compute any problem as solvable in a Turing machine. However, if the communica-

tion channel is unreliable, the coordinated attack problem illustrates that two parties

can never reach common knowledge.

The specification of a distributed model includes many aspects: the communica-

tion channels among processes, failure patterns, synchronization primitives, etc. The

challenge of solving problems in distributed computing is that a process may only have

partial knowledge of others, limited by the model’s specification. For example, in an

asynchronous system, the relative speed among different processes could be arbitrary.

In this case, one process may not rely on the communication or the computation of
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another process. Therefore, the more uncertainty a system has, the fewer problems

the system can solve. The theory of distributed computability quantifies this un-

certainty and determines problem solvability for different models. This dissertation

focuses on the distributed computability for models with additional synchronization

primitives and models with resiliency.

1.1 Task Solvability in Distributed Computing

The problems studied in distributed computing are called tasks. Tasks are coordi-

nation problems in distributed systems and analogous to functions in classical com-

putability theory. In a task, each process starts with an input value and then returns

an output value under the constraint of the task specification. The most famous and

fundamental example of tasks is consensus. This task requires that processes return

an input value such that every process chooses the same value. The seminal result

of the impossibility of consensus, proved by Fischer, Lynch, and Paterson [13], shows

that consensus is not solvable in the 1-resilient model, i.e., an asynchronous model

in which one process is allowed to fail. On the other side of task solvability, the

universality of consensus [23] shows that every task has a protocol in the wait-free

model if consensus can be solved.

Identifying task solvability helps system designers to program under the correct

system specification. However, it is usually difficult to check whether a task is solvable

in a distributed model. To show that a task is solvable, one needs to design an

algorithm to produce correct outputs in every admissible execution of the model,

which is usually a challenge because a model contains an infinite number of executions.

Moreover, formal verification methods only work for elementary models and require
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limiting the number of processes in practice. By contrast, to show that a task is

not solvable, one needs to demonstrate that for any protocol, there is an execution

such that the protocol fails to produce correct outputs. For example, the proof of the

impossibility of consensus [13] uses the bi-valency argument to show that there always

exists an infinite length execution for any consensus protocol, in which processes never

finish their computation and agree on the same output. Note that these types of

arguments are problem- and model-specific. Thus, developing a general framework

to characterize task solvability is appealing.

In 1993, three groups [4, 26, 37] independently used topological arguments to prove

that no protocol solves the k-set-agreement task in the t-resilient model. Moreover,

Borowsky and Gafni [4, 5] proposed the iterated immediate snapshot (IIS) model.

Since then, the IIS model has become the fundamental tool in distributed computabil-

ity. Studying task solvability in the IIS model provides many advantages. First, IIS

is equivalent to the wait-free model, the weakest distributed system in which it allows

all but one process to fail. Second, it has a round-by-round computation structure,

which significantly simplifies the analysis for computability. More importantly, the

IIS is closely related to algebraic topology: the executions of IIS can be represented

as the standard chromatic subdivision, a particular type of simplicial complex that is

extensively studied in algebraic topology. As a task can also be defined as simplicial

complexes, solving a task can be characterized topologically.

With this observation in mind, Herlihy and Shavit [27] prove the celebrated asyn-

chronous computability theorem (ACT) for wait-free task solvability. They showed

that the wait-free model can be characterized by the topological representation of the

IIS model: a task has a wait-free protocol if and only if there exists a specific simpli-

cial map from a subdivision of the input complex to output complex. Subsequently,
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Gafni and Borowsky [6] used an algorithmic approach to present an alternative proof

of ACT. Since then, topological methods have achieved remarkable success in dis-

tributed computability. Gafni et al. [20] proved the generalized ACT for models that

can be defined as a subset of infinite executions in IIS. Their characterization involves

the construction of an infinite sequence of complexes and simplicial maps. Saraph

et al. [38] proved the ACT for the t-resilient model where at most t processes can

fail in the system. Gafni et al. [17] showed the ACT for the k-set-consensus model.

By generalizing the ACT for the t-resilient model, Kuznetsov et al. [32] presented

the ACT for the fair-adversary model. These results [17, 32, 38] show that restricted

IIS models can characterize task solvability for many model. It is not clear, however,

whether this type of ACT can be extended in general.

In this dissertation, we make progress in this direction. We suspect that IIS may

be analogous to Turing machine for distributed computing. We show that many gen-

eral models can be considered as “restricted” IIS models for task solvability. More

specifically, we prove the ACT for models with additional access to a collection of dif-

ferent types of set-consensus objects and models with general failure patterns. Thus,

this dissertation provides insight into a potential unified distributed computability

theory: the problem of solving a task in any reasonable distributed model can be

analyzed in a restricted IIS model.

1.2 Our contribution

In this section, we briefly discuss our results and some related works.
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ACT for Set-Consensus Collection/Vector-set-consensus

The k-set-agreement task relaxes the consensus constrain by allowing k different out-

put values. The k-set-consensus model is a shared memory model that enables ev-

ery process to solve k-set-agreement by accessing the k-set-consensus object. More

generally, the (m, k)-set-consensus object allows up to m processes to solve the k-set-

agreement task. The set-consensus collection model [11] is a shared memory model

in that processes can access multiple types of set-consensus objects.

We show that, for tasks solvability, every set-consensus collection model is equiv-

alent to a vector-set-consensus model, in which for m = 1, 2, ...., n + 1, the model

consists of unlimited copies of (m, km)-set-consensus object. We prove the ACT of

the vector-set-consensus model solvability for colorless tasks, which is a broad class

of tasks that characterizes the input and output relation that does not depend on

processes ids. Our generalization of ACT shows that the vector-set-consensus model

is equivalent to an iterated model in which the protocol complex is a subcomplex

in the second chromatic subdivision. We also provide an alternative formulation

of ACT for k-set-consensus model [17]. Our construction introduces the notion of

color-projection and color-projection closed complex, which provides insight into the

connection between tasks and objects.

Colorless ACT for General Adversary

The t-resiliency is the model in which at most t processes can fail. However, in prac-

tice, the failure pattern in distributed systems is usually non-uniform, i.e., processes

may fail in a correlated way.

Delporte et al. [12] introduced the notion of general adversary to model the
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scenario that the failure of one process depends on other processes. An adversary

A is defined as a set of subsets of processes in the system, called lives sets. For

every execution in A , the set of correct processes in the execution is a live set. The

fair adversary is a restricted adversary that generalizes the t-resilient model and k-

obstruction freedom model. Kuznetsov et al. [32] proposed ACT for the fair adversary

model. However, the problem of characterizing the general adversary is not solved.

In this dissertation, we partially answer the question. We show that the color-

less task solvability in general adversary is related to its set-consensus power. By

demonstrating a protocol complex with the same set-consensus power, we prove the

“wait-at-beginning” colorless ACT for general adversary. The “wait-at-beginning”

property justifies a common intuition of a resiliency model: for colorless tasks, it is

enough to only use the set-consensus power at the beginning of a protocol and then

proceed in a wait-free manner.

A sufficient Topological Condition For Task solvability

ACTs provides a sufficient and necessary condition to determine whether a task is

solvable in a model. However, one must explicitly construct a simplicial map from

the iterated protocol complex to the task output complex to apply ACT, which is not

convenient from the viewpoint of verification.

Herlihy et al. [24] proved a sufficient topological condition that ensures a task

has a solution in the wait-free model. Their result shows that if the task output

complex has a certain topological connectivity, it has a wait-free solution. Their

proof, however, only indicates the existence of the protocol. Moreover, whether the

argument can be generalized to more general models is an open problem.

In this dissertation, we observed that the result by Herlihy et al. can be proved
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algorithmically using the convergence algorithm, which was proposed by Borowsky

and Gafni [6] to give an alternative proof of the wait-free ACT.

Borowsky [3] also sketched the generalized convergence algorithm for the active-

resiliency model and the set-consensus collection model. We extend the generalized

convergence algorithm for the vector-set-consensus model with a full proof. Using the

generalized convergence algorithm, we prove a sufficient topological condition for task

solvability in the vector-set-consensus model: a task is solvable if its output complex

has certain global and local connectivity.

1.3 Organization

The rest of this manuscript is organized as follows. Chapter 2 discusses the spec-

ification of distributed models and defines the notion of task solvability. We also

review some useful simulation techniques. Chapter 3 presents a summary of simpli-

cial complex and some basic results in algebraic topology. Chapter 4 introduces the

adaptive-set-agreement task and discusses the relation between the set-consensus col-

lection model and the vector-set-consensus model. In Chapter 5, we prove the colorless

ACT for vector-set-consensus model. We also provide an alternative formulation of

ACT for the k-set-consensus model. Chapter 6 presents the “wait-at-beginning” color-

less ACT for general adversary. Chapter 7 provides a sufficient topological condition

to ensure that a colored task has a solution in the vector-set-consensus model. We

conclude our results in Chapter 8 and propose some open problems in distributed

computability.
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Chapter 2

Distributed Computing Model

In this chapter, we present an overview of distributed computing models considered

in this dissertation. We introduce the notion of tasks and shared memory objects.

We also provide a summary of the IIS model and useful simulation techniques.

2.1 Processes and Communication Model

We consider a system of n + 1 processes, p0, p1, ..., pn, which processes communicate

with each other using shared memory. Processes take steps and communicate with

others asynchronously. There is no time bound for a process to take a step.

The shared memory model considered in this dissertation is the atomic-snapshot

memory [1], which consists of an array of n + 1 shared registers. Each process pi

writes exclusively to one register and atomically takes a snapshot of the array . It

is well known that the atomic-snapshot model can be wait-free implemented [1] from

standard single-writer multi-reader (SWMR) shared memory.

We also consider the Iterated Immediate Snapshot (IIS) model [4, 5], which has
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been extensively studied in theoretical distributed computing. In IIS, processes pro-

ceed through a sequence of independent shared memories IS1, IS2, .... In each round

r, the memory ISr is accessed by processes with a single Immediate Snapshot(IS) op-

eration: each process pi submits a value vir and returns a set Vir of submitted values,

satisfying the following properties:

1. Self-containment: vir ∈ Vir

2. Atomicity: for all i, j, Vir ⊆ Vjr or Vjr ⊆ Vir

3. Immediacy: for all i, j, if vir ∈ Vjr, then Vir ⊆ Vjr.

In IIS model, processes execute the full-information protocol. Every process writes

its initial value and uses the return value of ISr as the input value for ISr+1. In each

round, every process has the information of its local state and some other processes’

local state in previous rounds. After executing enough rounds, a process may apply

a decision function from its state to compute an output value.

It is shown in [6, 8] that the wait-free atomic-snapshot model is equivalent to the

IIS model. A run or an execution in IIS [20] can be considered a sequence of non-

empty sets of processes: S1, S2, ..., where each Si consists of processes that invoke

the ith iteration of immediate snapshot. Furthermore, each Sr is associated with an

ordered partition: Sr = S1
r ∪ ... ∪ Snrr where 1 ≤ nr ≤ n + 1. Processes in each S`r

invoke ISr concurrently. Thus, the order of this partition corresponds to the relative

ranking among processes that executes the rth immediate snapshot.
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2.2 Failure and Participation

A process is called faulty if it crashes and takes only a finite number of steps. Other-

wise, it is called correct. A process is participating if it takes at least one step. The

set of participating processes in an execution is called participating set.

The t-resilient model is the atomic snapshot model where at most t processes can

fail. When t = n, it is called the wait-free model, in which at least one process does

not fail.

The notion of adversary was first introduced by Delporte et al. [12] to capture the

non-uniform failure patterns in a distributed system. Formally, a general adversary

A is a set of live sets such that each live set S ∈ A is a non-empty subset of Π =

{0, 1, ..., n}. An infinite execution is called A-compliant if the set of correct processes

is a live set in A. Thus, an adversary A can be considered as a model that contains

all A-compliant executions.

Many distributed models can be characterized as an adversary. An adversary is

called superset-closed if for every S ∈ A and S ⊆ S ′ ⊆ Π, S ′ ∈ A. The symmetric

adversary contains every live set with the same size, i.e., if S ∈ A, then for any S ′ ⊆ Π

such that |S ′| = |S|, S ′ ∈ A. The k-obstruction-freedom is a symmetric adversary

such that every live set has a size less or equal to k. The t-resilient model is an

adversary that contains every set with size at least (n + 1 − t). Thus, t-resilience is

both superset-closed and symmetric.
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2.3 Task and Object

Task generalizes many coordination problems in distributed computing. It charac-

terizes the input-output relations among processes. A process invokes a task with an

input value and returns an output value so that the inputs and the outputs across

processes satisfy the task specification.

Formally, a task T = (I,O,Γ) is a triple, where I contains the input vectors,

O is the set of output vectors, and a total relation Γ : I → O associates each

input vector σ, with a set of valid output vectors Γ(σ) ⊆ O. Each input vector or

output vector γ is specified by a sequence of pairs γ = (0, val0), (1, val1), ..., (n, valn)

where each (i, vali) is associated to process pi and vali is some input or output value.

Usually, we require Γ to be monotonic: for all σ, τ ∈ I, if τ ⊆ σ, then Γ(τ) ⊆ Γ(σ).

The requirement can be interpreted as the nature of asynchronous models: if some

participating processes have decided their outputs, a process that starts later must

choose an output consistent with the decided ones.

The colorless task [24] is a large class of tasks in which a process is allowed to

adopt the input or output from another participating process. In other words, the

set of input values determines the set of output values. Formally, a colorless task is

defined as a task that is invariant under the colorless task transformation C, defined

as follows.

Let T = (I,O,Γ) be a task. Without loss of generality, we assume that every

output vector is associated to some input vector, i.e., O =
⋃
σ∈I Γ(σ). Let γ be an

input or output vector in T . The set Val(γ) = {vi | (i, vali) ∈ γ} consists of values

that appear in γ. We define a transformation C that turns a task T into another task

C(T ) = (I ′,O′,Γ′), defined as follows:
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1. I ′ = I

2. ∀σ ∈ I, Γ′(σ) = {τ ′ | ∃τ ∈ Γ(σ),Val(τ ′) ⊆ Val(τ)}

3. O′ =
⋃
σ′∈I′ Γ′(σ)

A colorless task T is a task such that T = C(T ). It is not hard to see that C(T ) =

C(C(T )) for any task T .

A task is called solvable in a model M , if there exists a protocol such that for

any input vector σ and any execution of the protocol in M , every correct process

calculates an output with respect to the task specification, i.e., their output values

forms an output vector in Γ(σ).

The k-set-agreement task [9] is one of the most important colorless tasks. The

input values are from a set of values V , and each process returns an input value

from V such that at most k different values are returned in total. The case of 1-

set consensus is called consensus [13]. Without loss of generality, we consider the

input-less k-set-agreement, in which processes use their process id as the inputs.

The (m, k)-set-consensus object is a one-shot shared memory object that allowsm

processes to solve k-set-agreement. Every process access the object at most once, and

at most m process can access in total. Each accessing process uses a single propose

operation: it submits a value to the object and gets a value such that the following

properties are satisfied:

1. Validity: every returned value is a value proposed by some process;

2. Agreement: at most k different values are returned

3. Termination: every correct process that proposes an input value gets a returned

value.
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We sometimes use the k-set-consensus object to denote the (n + 1, k)-set-consensus

object in a system of n+ 1 processes. The k-set-consensus model, is the shared mem-

ory model that processes can additionally access unlimited copies of k-set-consensus

objects.

2.4 Simulation

In distributed computability, it is not uncommon to show that one problem can be

reduced to another problem in a different model. In other words, one model can

simulate the protocol of another model. If two models can simulate from each other,

they are considered to be equivalent.

The BG simulation [4, 7], introduced by Borowsky and Gafni, allows a wait-

free model of (t + 1) processes to simulate the t-resilient model of n + 1 processes.

More precisely, consider a system that consists of simulators s0, ..., st and a t-resilient

model of processes p0, ..., pn. The BG simulation simulates a virtual execution of the

t-resilient protocol wait-free among t+ 1 simulators.

The center building block of the BG simulation is the safe-agreement protocol. It

allows processes to reach consensus at the cost of being possibly blocked by a faulty

process. A safe-agreement protocol consists of two parts: an unsafe section and a safe

section. Every process submits an input value and gets a return value such that the

following properties are ensured:

1. Validity: every decided value is a proposed value.

2. Agreement: every process decides on the same value.
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3. Weak termination: if no process fails in the unsafe section, every process even-

tually decides.

The original BG simulation only works for solving colorless tasks. It was later ex-

tended by Gafni [14] for colored tasks. The GG simulation, proposed by Gafni and

Guerraoui [16], allows a shared-memory model that solves k-set-consensus to simu-

late a wait-free model of k processes consistently. The technique was later extended

in [15, 17] to further make k simulated processes run the BG simulation. The com-

bination of two simulations is called BGG simulation. It allows a wait-free model

equipped with k-set-consensus objects to simulate the k-concurrency model, i.e., a

shared memory model of n+ 1 processes such that at most k processes are active at

any point of time. The BGG simulation can be used in an active-resilient model to

simulate the fair adversary model [30, 32]. A detailed description of BGG simulation

can be found in [17, 36].
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Chapter 3

Topological Preliminaries

Topology was first applied in distributed computing to prove the impossibility of k-

set-agreement [4, 26, 37] in 1993. Subsequently, it has achieved significant successes

in distributed computability. In this chapter, we quickly review some basic notions

in algebraic topology. We start with a short discussion of simplicial complex. Then,

we provide some useful facts in algebraic topology and discuss the framework of

topological methods in distributed computing. A complete treatment of this topic

can be found in [24, 34, 40].

3.1 Simplicial Complex

Let V be a set, and let K be a finite collection of non-empty subsets of V . K is an

abstract simplicial complex if it satisfies:

1. for any v ∈ V , {v} is in K;

2. if σ ∈ K, then σ′ ∈ K if σ′ ⊆ σ.
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Elements in V are called vertices, and every set in K is a simplex. A simplex σ′ is

called a face or a subsimplex if σ′ ⊆ σ. A subset of K′ is a subcomplex of K if K′ is

also a simplicial complex. The dimension of a simplex σ ∈ K is the size of σ minus

1. The boundary of a simplex σ, denoted by ∂σ, is the faces in σ with the dimension

of dim(σ) − 1. We use n-simplex to denote a simplex with dimension n. A simplex

is called a facet in K if it is not contained in any other simplex in K. A simplicial

complex K is pure of dimension n if all its facets have dimension n. The n-skeleton

of a complex K, denoted skelnK, is the subcomplex formed by all simplices in K

of dimension n or less. We usually use ∆n to represent the simplicial complex that

consists of the standard n-simplices and its faces.

Let K and L be simplicial complexes. A vertex map ϕ : K → L maps vertices in

K to L. We say ϕ is a simplicial map if it additionally carries simplices to simplices,

that is, for σ ∈ K, ϕ(σ) is simplex in L, where

ϕ(σ) =
⋃

ϕ({v}).

A simplicial map is non-collapsing or dimension-preserving if dim(σ) = dim(ϕ(σ)).

Let ∆n be a standard n-simplex with labeled vertices {0, 1, ..., n}. A chromatic

simplicial complex K of dimension n is a pure n-dimensional simplicial complex

equipped with a non-collapsing simplicial map χ : K → ∆n. Let K and L be chro-

matic simplicial complexes. A simplicial map ϕ : K → L is called color-preserving or

chromatic if for every v ∈ K, χ(v) = χ(ϕ(v)).

A carrier map Γ between K and L is a map

Γ : K → 2L,
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that maps each simplex σ in K to a subcomplex Γ(σ) in L monotonically. In other

words, if τ ⊆ σ, then Γ(τ) ⊆ Γ(σ). A carrier map Γ is rigid if dim(σ) = dim(Γ(σ)).

A carrier map Γ is chromatic if Γ is rigid and χ(σ) = χ(Γ(σ)). A simplicial map

ϕ : K → L is carried by a carrier map Γ or carrier-preserving if for every σ ∈ K,

ϕ(σ) ∈ Γ(σ). Fix a carrier map Γ : K → 2L, and let τ be a simplex in L, the carrier

of τ in K, denoted Car(τ,K) is a simplex σ ∈ K with the smallest dimension such

that τ ∈ Γ(σ).

Let X = {x1, ...,xn+1} be a set of n+ 1 affine independent points in an Euclidean

space. The convex hull of X, denoted by conv(X), is a point set such that every

point can be expressed by

v =
n∑
i=1

aixi

where 0 ≤ ai ≤ 1,
∑n

i=0 ai = 1. The standard geometric n-simplex |∆n| is the convex

of hull of n+ 1 points x1, ...,xn+1 in Rn+1 such that each xi has the coordinate

xij =


1 if j = i

0 if j 6= i

for i ∈ {1, ..., n + 1}. The interior of a simplex σ is defined by intσ = |σ| − |∂σ|. A

geometric simplicial complex |K| is a collection of geometric simplices such that

1. For every face σ of a simplex in K, σ ∈ K

2. For every two simplices σ, τ ∈ K, the intersection σ∩τ is a face of each of them.

Given a geometric simplicial complex |K| , we can define its underlying abstract

simplicial complex K as follows: the vertices in K is the union of vertices for every

simplex in |K|. The simplices in K are the sets of vertices in X for every simplex
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σ = conv(X) in |K|. Given an abstract simplicial complex K with finite vertices,

there exists many geometric simplicial complex |K| such that its underlying abstract

complex is K, called the geometric realizations of K.

The star of a simplex σ in K, denoted St(σ,K), is the simplicial complex that

consists of every simplex τ that contains σ and any face of τ . When K is clear from

the context, we use St(σ) to denote the star of σ in K. The open star St◦(σ) is the

interior of the geometric realization of St(σ).

The link of σ, denoted Lk(σ,K), is the simplicial complex that consists of simplices

in St(σ,K) that does not intersect with σ. We use Lk(σ) to represent the link of σ

when K is evident in the background.

Let K be a simplicial complex. A complex K′ is called a subdivision of K if

1. For each simplex τ ∈ K′, there is a simplex σ ∈ K such that τ ⊆ |σ|.

2. Every simplex σ ∈ K is the union of finitely many simplices of K′.

3. |K| = |K′|.

Let K be a geometric simplicial complex, its barycentric subdivision Bary(K), is in-

ductively constructed over the skeletons of K as follows: for the i-skeleton of K, insert

the barycenter bσ of each i-dimensional simplex σ, and connect bσ with the vertices

in Bary(∂σ). The barycentric subdivision can also be defined combinatorially. Let K

be an abstract simplicial complex, Bary(K) is an abstract simplicial complex whose

vertices are non-empty simplices of K. Every simplex in Bary(K) is a set {σ0, ..., σk}

that can be linearly ordered as σ0 ⊂ ... ⊂ σk. We use BaryN(K) to denote the Nth

iteration of the subdivision of K.

Let ∆n be a standard n-simplex equipped with a coloring χ. The standard chro-

matic subdivision Ch(∆n) is a subdivision of ∆n with a canonical coloring. The
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Figure 3.1: The second iteration of standard chromatic subdivision of ∆2

vertices in Ch(∆n) can be represented as a pair (i, σ), where σ is a face of ∆n and

i ∈ χ(σ). The simplices are the sets {(i0, σ0), ..., (ik, σk)} such that

1. elements can be linearly ordered as σ0 ⊆ ... ⊆ σk

2. if i ∈ χ(σj), then σi ⊆ σj.

The coloring of Ch(∆n) is defined by χ(i, σ) = i. Let |∆n| = conv(x0, ...,xn)

be the standard geometric n-simplex. The geometric realization of Ch(∆n) can be

constructed by identifying each vertex (i, σ) as a point

1

2k − 1
xi +

2

2k − 1

∑
j∈σ:
j 6=i

xj


in Rn+1, where k = dim(σ) + 1. Given a chromatic complex K, the chromatic subdi-

vision Ch(K) is constructed by applying Ch on each simplex σ in K. We use ChN(K)

to denote the Nth iteration of the chromatic subdivision of K. Note that subdivision

operators defines the carrier map Ch : K → Ch(K) and Bary : K → Bary(K).
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3.2 Results in Topology

In this section, we review some useful facts in point-set topology and algebraic topol-

ogy. The classical reference for the material can be found in [22, 33].

The pasting lemma says that continuous functions on two subspaces can be com-

bined into single one if they coincide on the intersection.

Theorem 3.1 (Pasting lemma). Let X = A∪B be a topological space, where A and

B are closed in X. Let f : A → Y and g : B → Y be continuous functions, and

f(x) = g(x) for x ∈ A ∩B. Then the function h : X → Y defined by

h(x) =


f(x) if x ∈ A

g(x) if x ∈ B

is continuous.

A simplicial map can be considered as the discrete version of a continuous map.

Definition 3.2. Let A and B be simplicial complexes, and let f : |A| → |B| be a

continuous map between their geometric realizations. A simplicial map φ : A → B

is a simplicial approximation of f if and only if for every vertex v of A, f(St◦(v)) ⊆

St◦(φ(v)).

In general, an arbitrary continuous map f : |A| → |B| may not admit a simplicial

approximation. However, if we replace A with a fine enough subdivision, we can

construct a simplicial approximation of f .

Theorem 3.3. Let A and B be simplicial complexes such that A is finite. Let f :

|A| → |B| be a continuous map. There exists an integer N such that for all n > N ,

f has a simplicial approximation φ : BaryN(A)→ B.
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Note that the barycentric subdivision in Theorem 3.3 can be replaced with stan-

dard chromatic subdivision ChN(A).

In topology, two spaces are considered to be equivalent if there is a homeomor-

phism between them.

Definition 3.4. Let X and Y be topological spaces. X is homeomorphic to Y if

there is a continuous map f : X → Y such that f has a continuous inverse.

In algebraic topology, one of the primary studies is a weaker equivalence relation,

called homotopy.

Definition 3.5. LetX and Y be topological spaces, and let f and g be two continuous

maps from X to Y . f is homotopic to g if and only if there is a continuous function

H : X × [0, 1]→ Y such that for all x ∈ X, H[x, 0] = f(x) and H[x, 1] = g(x).

Roughly speaking, being homotopic means one map can be continuously deformed

into another. Homotopy defines an equivalence relation among continuous maps from

X to Y . The notion of homotopy equivalence can be defined between two topological

spaces, a weaker but much broader relation than homeomorphism.

Definition 3.6. Let X and Y be topological spaces. X is homotopy equivalent to

Y , denoted by X ' Y , if there are continuous maps f : X → Y and g : Y → X, such

that f ◦ g ' idX and g ◦ f ' idY where idX and idY are identify maps on X and Y

respectively.

Another important topological invariant is n-connectedness. Let S` denote the

n-sphere and Dn denote the n-disk.

Definition 3.7. Let K be a simplicial complex. |K| is n-connected if for all 0 ≤ ` ≤ n,

any continuous map f : S` → |K| can be extended to a continuous map F : D`+1 →

|K|.
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We say K is (−1)-connected if it is nonempty. K is path-connected or 0-connected

if there is a path between any two points. An alternative definition of connectivity

uses homotopy groups. The nth homotopy group of a general topological space X

[22], roughly speaking, is the group that elements are homotopy equivalence classes

of maps from Sn to X. X is n-connected if and only if its first nth homotopy groups

are trivial. If X and Y are homotopy equivalent, they have isomorphic homotopy

groups. Consequently, they have the same connectivity.

Fact 3.8. Let X and Y be topological spaces and homotopy equivalent. X is n-

connected if and only if Y is n-connected.

Here are some useful facts about connectivity in simplicial complex [24].

Fact 3.9. The standard simplex ∆n is n-connected.

Fact 3.10. The k-skeleton of a n-simplex skelk(∆n) is (k − 1)-connected.

Many simplicial complexes have a local connectivity property, called link-connectivity.

Definition 3.11. Let K be a pure n-dimensional simplicial complex. K is link-

connected, if for all σ ∈ K, Lk(σ,K) is (n− dim(σ)− 2)-connected.

The following maps are important in topology.

Definition 3.12. Let A be a subspace of X. A continuous map f : X → A is a

retraction if f restrict to A is the identity map on A.

The notion of deformation retraction captures the process of continuously shrink-

ing a space into a subspace.
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Definition 3.13. A deformation retraction H of space X onto A is a homotopy

between the identity map and a retraction. Formally, H is a continuous map H :

X × [0, 1] → X such that H[−, 0] = idX and H[−, 1] = f where idX is the identity

map on X and f is a retraction onto A. We say A is a deformation retract of X if

such H exists.

Deformation retraction is a powerful tool to show homotopy equivalence between

two topological spaces.

Theorem 3.14. Let A ⊆ X be topological spaces. If there is a deformation retraction

of X onto A, then X and A are homotopy equivalent.

3.3 Topological Characterization of Task Solvability

Using the language of simplicial complex, we can define tasks topologically. A task

T = (I,O,Γ) is a triple such that the input complex I embeds the input vectors. For

every simplex σ = {v0, v1, ..., vn} in I, each vertex vi is identified as a pair (i, vali) in

the input vector. Similarly, the output complex O consists of all output vectors. It is

easy to verify that I and O are indeed simplicial complexes: for every simplex σ in

I and O, any face τ of σ is a simplex since τ corresponds to the configuration where

only a subset of processes in σ participates. The task specification Γ : I → 2O is a

carrier map that maps each simplex σ ∈ I to a subcomplex in O.

Given a model and an execution of a protocol in this model, we can embed the

local state of a process as a vertex. The set of compatible local states among different

processes is represented as a simplex. If we embed every possible execution of the

protocol as a simplex, the result representation is a simplicial complex, called the
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protocol complex. Some processes may share the same local states in two different

executions, which corresponds to a shared face between two simplices in the protocol

complex. The protocol complex gives a concise and topological representation of the

computation in a distributed model. To investigate task solvability, one can study

simplicial maps between the protocol complex and task output complex.

In the wait-free model, it is natural to consider the protocol complex of the atomic-

snapshot model. The drawback of this approach is that its protocol complex has a

complicated structure [27, 29] and may not be embedded in Rn+1 for a system of (n+1)

processes. However, the iterated immediate snapshot (IIS) model is easier to analyze

since it has a round-by-round structure. Moreover, the protocol complex of IIS can be

represented as iterated standard chromatic subdivision [24, 28]. If processes executeN

rounds immediate snapshot, then the protocol complex is ChN(I). The asynchronous

computability theorem [6, 27] reduces the wait-free task solvability to the existence

of a certain simplicial map from iterated chromatic subdivision to the task output

complex. This approach is later generalized to many other models [17, 31, 32, 38]. In

Chapters 5 and Chapter 6, we discuss how to apply this approach to extend ACT on

more general model.
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Chapter 4

Adaptive Set-Agreement Task and

Vector-Set-Consensus

The k-set-agreement is a task that processes synchronize to return at most k different

values from their inputs. Delporte et al. [11] and Kuznetsov et al. [30] considered solv-

ing set-agreement adaptively according to the participating set in the set-consensus

collection model and the fair adversary model.

In this chapter, we first discuss the adaptive set-agreement task, in which the

number of different outputs depends on the size of the participating set. Then,

we discuss the set-consensus collection model and introduce the vector-set-consensus

model. We prove that every set-consensus collection model is equivalent to a vector-

set-consensus model for task solvability. We also discuss the iterated adaptive set-

agreement task and present a protocol in the vector-set-consensus model.
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4.1 Adaptive set-agreement task

In the k-set-agreement task, every process chooses an output from the inputs of

participating processes such that the number of different output values is less or equal

to k. The adaptive set-agreement task generalizes the k-set-agreement, in which the

number of different outputs depends on the size of the participating set.

Definition 4.1. Let A = k1, k2, ..., kn+1 be a non-decreasing sequence, where for

each i = 1, 2, ..., n + 1, ki ∈ N and 1 ≤ ki ≤ i. The adaptive set-agreement TA is the

task such that every process has an input value and decides an output satisfying the

following properties:

1. Termination: Every correct process eventually decides an output value.

2. Validity: Every decided value is an input value of a participating process.

3. Adaptive-agreement: If km different outputs are decided at some point of

time t, the size of the participating set at t is at least m.

The motivation of the constrain 1 ≤ ki ≤ i is clear: if at most i processes partici-

pate, they can trivially solve i-set-agreement by letting every process choose its input

value. The strongest set-agreement that a model can solve is the 1-set-agreement,

also known as consensus. The standard k-set-agreement corresponds to the adaptive

set-agreement where each ki is the same constant number.

We also considered the iterated adaptive set-agreement task. An active process is

a participating process but not with an output. In iterated adaptive-set-agreement,

processes solve adaptive set-agreement round by round among active processes. Every

process pi submits a new input value in each round and chooses an output value.
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After one round, pi determines whether it halts or continues to the next adaptive

set-agreement. The number of different values chosen in each round depends on how

many active processes participate.

Definition 4.2. Let A = k1, k2, ..., kn+1 be an non-decreasing sequence such that

1 ≤ ki ≤ i for i = 1, 2, ..., n+ 1. The iterated adaptive set-agreement TA is an infinite

sequence of adaptive set-agreement tasks TA1 , TA2 , ... such that for r = 1, 2, 3..., the

following properties are satisfied:

1. Termination: Every correct process participates TAr eventually decides an

output value.

2. Validity: Every decided value in TAr is an input value of a process that par-

ticipates TAr .

3. Adaptive-agreement: If km different outputs for TAr are decided at some

point of time t, the number of processes that participate TAr at t is at least m.

4.2 Set-Consensus Collection and Vector-Set-Consensus

Set-Consensus Collection

Many distributed models use extra synchronization primitives. For example, in k-

set-consensus model, processes can use the k-set-consensus object in addition to

the shared memory. The set-consensus collection [11] generalizes k-set-consensus

model by including multiple types of set-consensus objects. Formally, a set-consensus

collection model is defined as a set of pairs SC = {(`1, j1), (`2, j2), ..., (`t, jt)} such
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that the system has unlimited copies of (`i, ji)-set-consensus object where each al-

lows `i processes to solve ji-set-agreement. Without loss of generality, we assume

`i < `i+1, ji < ji+1 and ji < `i

The agreement level ALSCm , introduced in [11], is the smallest number k such

that k-set-agreement can be solved among m processes in the set-consensus collection

model, while (k − 1)-set-agreement can not. It is shown in [11] that ALSCm is the

minimum number of
∑

i jixi under the constrain
∑

i `ixi ≥ m for m = 1, 2, ..., n+ 1.

Vector-set-consensus

To characterize task solvability in the set-consensus collection model, we introduce

the vector-set-consensus model.

Definition 4.3. The vector-set-consensus model VSC = (k1, k2, ..., kn+1) is a set-

consensus collection model such that the collection consists of (m, km)-set-consensus

objects for m = 1, 2, ...n+ 1, and the following property is satisfied:

• Optimality: For each m = 1, 2, ..., n+ 1, for any multiset

S = (a1, ka1), (a2, ka2), ..., (as, kas)

where each ai ∈ {1, 2, ...n+ 1}, we have
∑

i kai < km and
∑

i ai ≥ m.

Next, we prove some properties of the vector-set-consensus model.

Proposition 4.4. Let VSC = (k1, k2, ..., kn+1) be a vector-set-consensus model. For

each ki and kj where i < j, ki ≤ kj ≤ ki + (j − i).
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Proof. We first show ki ≤ kj. By way of contradiction, assume that ki > kj. The

optimality property is violated since processes can use (j, kj)-set-consensus objects to

solve (i, ki − 1)-set-agreement. To see kj ≤ ki + (j − i), notice that j processes can

solve ki+(j− i)-set-agreement using (i, ki)-set-consensus object: assign i processes to

access a (i, ki)-set-consensus object to solve the ki-set-agreement and let the remaining

(j − i) processes return its input values. By optimality property of VSC, we have

kj ≤ ki + (j − i).

`-safe-agreement

We now discuss the `-safe-agreement [10, 35], which generalizes the safe-agreement [7].

A `-safe-agreement protocol solves `-set-agreement but requires a weaker termination

property: a process may never return an output if ` processes fail.

Algorithm 1: `-safe-agreement for process pi
Shared Variables: SM[0..n], init ⊥ : single-writer multi-reader

memory

1 SM[i]← (vi, 1)

2 snap← snapshot(SM)

3 if ∃ snap[j] ∈ snap where snap[j] = (−, 2) then
4 snap[i]← (vi, 0)

5 else
6 snap[i]← (vi, 2)

7 repeat
8 snap← snapshot(SM)

9 t← |{j | snap[j] = (−, 1)}|
10 until t ≤ `− 1

11 return snap[j].vj where j is the smallest index such that
snap[j].level = 2
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The `-safe-agreement protocol is presented in Algorithm 1. The algorithm is a

generalization of the safe-agreement protocol in [7]. It uses a shared memory array

SM[0..n] where each SM[i] contains a pair (vi, leveli) that is uniquely written by

process pi. The unsafe region consists of lines 1-6. In the beginning, pi updates its

proposal and reaches level 1 at line 1. Then, pi takes a snapshot of the memory to

check whether there is a process at level 2 . If so, pi retreats to level 0; otherwise,

it advances to level 2 (lines 3-6). Next, at lines 7-10, pi repeatedly read the memory

and count the number of processes at level 1. If pi observes less than ` processes stay

at level 1, it returns a level-2 value with the smallest id in its snapshot.

Once a process exits the unsafe section, no other process can reach level 2. There-

fore, the correctness follows from the fact that each process only chooses a level-2

value as its output, and every process misses at most ` − 1 level-2 values when it

decides. To see the liveness property, notice that processes can only be blocked at

lines 7-10 when at least ` processes stay in the unsafe region. Hence, if at most `− 1

process fail, every process eventually terminates.

We now show that the set-consensus power of VSC is fully grasped by the sequence

(k1, k2, ..., kn+1).

Theorem 4.5. Let VSC = (k1, k2, ..., kn+1) be a vector-set-consensus model. For

m = 1, 2, ..., n+ 1, m processes can not solve (km − 1)-set-agreement task in VSC.

Proof. (Adapted from [11]) By way of contradiction, suppose there is a protocol for

m processes to solve (km− 1)-set-agreement. We use the BG simulation to construct

a wait-free (km − 1)-set-agreement protocol for km simulators, which contradicts the

impossibility of k-set-agreement [4, 26, 37]. Without loss of generality, we assume that

every process’s write in the VSC protocol is uniquely determined by its snapshots and

values returned from accessing set-consensus-objects. In BG simulation, simulators
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s1, s2, ..., skm repeatedly simulate steps of m processes p1, p2, ..., pm in a round-robin

manner.

1. The snapshot operation of pj is simulated by invoking the safe-agreement pro-

tocol.

2. Each simulator uses the `-safe-agreement to simulate the set-consensus objects

in VSC. It submits an estimate to the t-safe-agreement for each (t, kt)-set-

consensus object access. The t-safe-agreement guarantees at most t different

proposals are returned. Since simulators may get different values for simulating

the same access, they further use safe-agreement to agree on a returned value

for each access.

3. If the safe-agreement or the `-safe-agreement is not resolved for the simulation

of process pj, the simulator selects the next process in a round-robin way.

It is not hard to see the correctness of the simulation since the safe-agreement produces

a consistent snapshot simulation, and `-safe-agreement simulates a set-consensus-

object.

To show the liveness property, notice that the simulation may be blocked if simula-

tors fail in the execution of safe-agreement or `-safe-agreement. At most one simulated

process will be blocked if one simulator fails in the safe-agreement. At most t pro-

cesses may be blocked for accessing a (t, kt)-set-consensus object if kt simulators fail

in the corresponding kt-safe-agreement. Hence, it suffices to prove that at least one

simulated process is not blocked. By way of contradiction, assume m processes are

blocked. Then, there exists a multiset

{(t1, `1), (t2, `2)...(tq, `q)}
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such that each ti ∈ {1, 2, ...n + 1}, `i = kti . Each (ti, `i) represents a non-resolved

`i-safe-agreement and blocks ti simulated processes. Moreover, we have

∑
i

`i ≤ km − 1,
∑
i

ti ≥ m

since at most km− 1 simulators fail in the wait-free model. However, this contradicts

the optimality property of vector-set-consensus model. Therefore, at most (m − 1)

processes are blocked, and the simulation produces a wait-free set-agreement protocol.

In distributed computing, it is not uncommon to compare the power of solving

tasks between two models. We say a model M is as powerful as M ′, denoted by

M � M ′, if for every task T solvable in M , there exists a protocol solves T in

model M ′. If M � M ′ and M ′ � M , then M and M ′ are equivalent regarding task

solvability. Let VSC = (k1, k2, ..., kn+1),VSC ′ = (k′1, k
′
2, ..., k

′
n+1) be two vector-set-

consensus models. It is not hard to see that VSC � VSC ′ if ki ≥ k′i for i = 1, 2, ..., n+1.

Hence, � induces a partial order in vector-set-consensus models.

Given a set-consensus collection model SC, we can construct an equivalent vector-

set-consensus mode

Definition 4.6. Let SC be a set-consensus collection model. The corresponding

vector-set-consensus model VSC = (k1, k2, ..., kn+1) of SC satisfies that for each

m = 1, 2, ...n + 1, km = ALSCm where ALSCm denotes the agreement level of SC for

m processes.

It is not hard to see that SC and its corresponding VSC model have the same

power for solving tasks.
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Theorem 4.7. A task T is solvable in set-consensus collection model SC if and only

if T is solvable in the vector-set-consensus model VSC.

Proof. We show that the access of the set-consensus objects can be simulated from

each other. If a (m, km)-set-consensus object in VSC is included in SC, processes

access it verbatim. If it is not included in the SC, by definition of VSC, there exists

a multiset S = (a1, b1), (a2, b2), ..., (at, bt) where each (ai, bi) is a set-consensus object

in SC such that
∑

i bi = km and
∑

i ai ≥ m. Let each process pi access the (aj, bj)-

set-consensus object in SC with the smallest j ∈ {1, 2, ..., t} such that
∑t=j

t=1 aj ≥ i

to simulate the (m, km)-set-consensus object. The number of different outputs is

bounded by km since
∑

i bi = km.

The other direction is straightforward. For each (`, j)-set-consensus object in SC,

by optimality property, there is a (`, j′)-set-consensus object in VSC where j′ ≤ j.

Processes simply use (`, j)-set-consensus object instead of (`, j)-set-consensus objects

in SC. Since SC and VSC can simulate protocols from each other, two models solve

the same set of tasks.

Note that it is not always the case that two vector-set-consensus models are com-

parable. For example, consider a system with 6 processes. Let VSC and VSC ′

be the corresponding vector-set-consensus models for SC = {(3, 2)} and SC ′ =

{(5, 3)}. A straightforward calculation shows that VSC = (1, 2, 2, 4, 4, 4) and VSC ′ =

(1, 2, 3, 3, 3, 4, 5). They are incomparable since VSC can not solve (5, 3)-set-agreement

and there is no (3, 2)-set-agreement protocol in VSC ′.
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Solving Iterated Adaptive-set-Agreement

Let TA be an iterated adaptive-set-agreement such that A = k′1, k
′
2, ..., k

′
n+1. We show

that TA is solvable in the vector-set-consensus model VSC = (k1, k2, ..., kn+1) if ki ≤ k′i

for each i = 1, 2, ..., n+1. The protocol is presented in Algorithm 2, which is adapted

from [11]. Note that the algorithm solves one-shot adaptive set-agreement by making

every process terminates after the first round.

The shard memory SM[1..][0...n] stores the input value for each set-agreement

where SM[r][i] contains pi’s proposal at the rth round. V [1..][1...n+ 1] consists of the

set-consensus objects where each V [r][m] is a (m, km)-set-consensus object.

At lines 1-2, every process pi updates its input value for the current round r

with level ` = 0 and then takes a snapshot of the memory. Next, pi calculates the

participating set and adopts an input value vr from another process at the highest

level (lines 5-7). At line 8, pi proposes the input value to the (|part|, k|part|)-set-

consensus object and updates vr as an output estimation. Then, pi updates SM[r][i]

with (vr, |part|) to indicate it is at level ` = |part| and takes a snapshot of the memory

to recalculate the participating set (lines 9-11). If the new participating is the same as

the previous one, pi exits the loop and writes its output estimation in out[r] at line 13.

Otherwise, pi repeatedly executes the loop until it observes the same participating set

twice. At lines 14-15, pi determines whether it terminates the computation or solves

the next round adaptive set-agreement.

Lemma 4.8. Algorithm 2 satisfies the Termination property.

Proof. By way of contradiction, suppose that a process pi participates round r and

never writes its output value at line 13, pi must execute the loop (lines 4–12) infinitely

often. Hence, pi observed part′ 6= part at line 12 infinitely often. Notice that once
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Algorithm 2: Iterated adaptive-set-agreement algorithm: process pi
Shared Variables: SM[1..][0..n], init (⊥,⊥) : single-writer

multi-reader memory
V [1...][1..n+ 1]: vector-set-consensus objects

Local Variables: snap[1..][0..n], init (⊥,⊥)

out[1..]: adaptive-set-agreement ouput
part, part′ ⊆ {0, 1, ..., n}
vr: pi’s input at round r
r, l ∈ N, init 0

1 repeat
2 SM[r][i]← (vr, 0)

3 snap[r]← snapshot(SM[r])

4 repeat
5 part← {pj | snap[r][j] 6= (⊥,⊥)}
6 `← the greatest integer such that (−, `) is in snap[r]

7 vr ← any v such that snap[r][j] = (v, `)

8 vr ← propose v to the (|part|, k|part|)-set-consensus in
V [r][|part|]

9 SM[r][i]← (vr, |part|)
10 snap[r]← snapshot(SM[r])

11 part′ ← {pj | snap[r][j] 6= (⊥,⊥)}
12 until part′ = part

13 out[r]← vr
14 if Terminate(pi) = true then
15 return decide(pi)

16 r ← r + 1

17 forever
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SM[r][j] is updated by process pj with a non-⊥ value, it is never changed to (⊥,⊥).

Therefore, it must be the case that part ( part′ when pi evaluates line 12. However,

the growth of part′ is bounded since at most n + 1 processes participate round r.

Thus, pi executes lines 4–12 at most n+ 1 times, a contradiction.

Lemma 4.9. Algorithm 2 satisfies the Validity property.

Proof. Fix round r, let vr be the output value written by pi at line 13. Let part

be the participate set pi observed at line 11 before it exits the loop lines 4–12, and

let m = |part|. The value vr is either pi’s initial input value at line 2, an input

value adopted from another process pj at round r at line 7, or a value returned from

accessing the set-consensus object V [r][m] at line 8. By the inclusion property of

immediate snapshot, at most m processes observe a participating set of m in round

r. Therefore, at most m processes access the (m, km)-set-consensus object in round

r, and so, the value returned from the set-consensus object is a valid input value.

Hence, in either way, vr satisfies the validity property.

Lemma 4.10. Algorithm 2 satisfies the Adaptive-agreement property

Proof. Let pi be the first process that produces an output value vr at round r. In

other words, pi is the first process that observes part′ = part and exits the loop.

Assume pi takes the last snapshot at time t, and let parti be the participate set that

pi observed such that m = |parti|. Notice that at time t, the number of processes that

participate round r is m. Let Om be the set of values ever written in SM[r] at level

m, i.e., for every v ∈ Om, (v,m) is a value that appeared in SM[r] in the execution

of the algorithm. We say ps returns at level m in round r if ps participates round r

and observes a participating set parts of size m when it exits the loop at line 12.
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We show that if a value (v′, `′) was ever written SM[r] such that `′ > m, then

v′ ∈ Om. By way of contradiction, suppose that there is a process pj participates

round r and is the first to write a (v′, `′) in SM[r] such that `′ > m and v′ /∈ Om.

Before this write, pj calculates a participating set partj with a size greater than m

from its snapshot taken at line 3 or line 10. Notice that this snapshot is taken after

any process ps returns at level m. Since every such process ps writes a value (vs,m)

in SM[r] before it exits the loop, when pj calculates partj at line 5, it must observe

that m is the highest level in SM[r]. So, pj will adopt a value from Om at line 7,

and likewise, any value proposed to the set-consensus object in V [r][|partj|] is a value

taken from Om. Therefore, pj must write a value v′ ∈ Om in SM[r], contradicting the

hypothesis.

Since every value in Om is returned from the (m, km)-set-consensus object, there

are at most km different values in Om. Hence, the number of different outputs re-

turned at round r is bounded by km, which shows the algorithm satisfies the adaptive-

agreement property since km ≤ k′m.

Theorem 4.11. Let TA be an iterated adaptive set-agreement task specified by A =

k′, k′2, ..., k
′
n+1. Algorithm 2 solves TA in the vector-set-consensus model VSC =

(k1, k2, ..., kn+1) if for i = 1, 2, ..., n+ 1, ki ≤ k′i
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Chapter 5

Computability Theorem for

Vector-Set-Consensus

The celebrated asynchronous computability theorem (ACT) theorem [27] says that

the wait-free task solvability is equivalent to the existence of a certain simplicial map

from a chromatic subdivision to the task’s output complex.

Theorem 5.1. Let T = (I,O,Γ) be a colored task. T is solvable in the wait-free

model if and only if there is a chromatic subdivision of the input complex Div(I) and

a color-preserving simplicial map φ : Div(I)→ O carried by Γ.

An equivalent formulation of ACT was given by Borowsky and Gafni [6] using the

iterated standard chromatic subdivision instead of an arbitrary chromatic subdivision.

Theorem 5.2. Let T = (I,O,Γ) be a colored task. T is solvable in the wait-free

model if and only if there exists a number N ∈ N and a color-preserving simplicial

map φ : ChN(I)→ O carried by Γ.

As the iterated standard chromatic subdivision is the protocol complex of IIS,

this formulation provides insight into the connection between the operational argu-
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ment of solving tasks and their topological interpretations. Subsequently, ACT was

generalized to fault-tolerant models [32, 38] and k-set-consensus model [17].

In this chapter, we present ACT for colorless task solvability in vector-set-consensus

model. We first propose a protocol complex that characterizes solving (n+ 1, k)-set-

agreement in a shared memory model. Then, using it as a building block, we construct

the protocol complex that solves the adaptive set-agreement. We prove that solving

colorless tasks in the vector-set-consensus model can be characterized by iterating

this protocol complex: a task is solvable if and only if there exists a specific simplicial

map from the iterated protocol complex to the task output complex. We also provide

a characterization of the terminating iterated vector-set-consensus model.

Finally, for colored task solvability, we present an alternative formulation of ACT

for k-set-consensus model [17]. Our characterization introduces a novel notion of

color-projection, which shows an intriguing connection between tasks and objects.

5.1 Complex for (n + 1, k)-set-agreement

Recall that in the input-less k-set-agreement task, every process has the input of

its id and outputs a participating process id, such that the number of different ids

decided is less or equal to k. Formally, the (n + 1, k)-set-agreement is a task T =

(∆n, skelk−1(∆n),Γ) where the input complex is the standard n-simplex ∆n, and the

output complex is the (k − 1) skeleton of ∆n. For each simplex σ ∈ ∆n, the valid

output simplices are Γ(σ) = skelk−1(σ). It is easy to see that Γ fixes the (k − 1)

skeleton, i.e., Γ(skelk−1(∆n)) = skelk−1(∆n).

We now present a model in which protocol complex characterizes the (n + 1, k)-

set-agreement. The complex is defined in two stages. First, we define a subcomplex
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(a) Ch1(∆2) for (3, 1)-set-agreement (b) Ch2(∆2) for (3, 2)-set-agreement

Figure 5.1: Examples of protocol complex Chk(∆
n)

in the barycentric subdivision Bary(∆n). Then, we use it define the protocol complex

Chk(∆
n).

Definition 5.3. Let Bary(∆n) be the barycentric subdivision of the standard n-

simplex, and let k ∈ {1, ..., n+ 1}. The complex Baryk(∆
n) is defined as follows:

Baryk(∆
n) = {σ ∈ Bary(∆n) | ∀v ∈ σ, dim(Car(v,∆n) ≥ k))} .

Let |Baryk(∆
n)|and |Ch2(∆n)| be the standard geometric realization of Baryk(∆

n)

and Ch2(∆n). We now present the complex Chk(∆
n), which is the subcomplex of

Ch2(∆n) whose simplices do not intersect with |Baryk(∆
n)|.

Definition 5.4. The complex Chk(∆
n) is a subcomplex of Ch2(∆n), defined by

Chk(∆
n) =

{
σ ∈ Ch2(∆n) | |σ| ∩ |Baryk(∆

n)| = ∅
}
.

Operationally, the complex Chk(∆
n) can be considered as a subset of executions

of two rounds immediate snapshot. Let Mk be an iterated model where in each

round, the protocol complex is Chk(∆
n). We now prove that modelMk solves exactly
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(n + 1, k)-set-agreement: Mk solves (n + 1, k)-set-agreement but not (n + 1, k − 1)-

set-agreement.

To construct a protocol for (n+ 1, k)-set-agreement, we show that there is a con-

tinuous map from |Chk(∆
n)| to | skelk−1(∆n)| carried by the (n+ 1, k)-set-agreement

carrier map Γ. Then, we turn the continuous map into a carrier-preserving simplicial

map from the iterated protocol complex to output complex, which can be interpreted

as a protocol in Mk operationally .

We first define a subspace in |∆n|, which is useful for our construction.

Definition 5.5. The topological space |∆n|k is the subspace of |∆n| by removing

points in |Baryk(∆
n)|, defined by |∆n|k = |∆n| − |Baryk(∆

n)|.

Here is the intuition behind this definition. In general, we can extend the definition

of Chk(∆
n) in any iteration of standard chromatic subdivision. Indeed, for N =

1, 2, 3..., let Chk,N(∆n) be the complex defined by

Chk,N(∆n) =
{
σ ∈ ChN(∆n) | |σ| ∩ |Baryk(∆

n)| = ∅
}
.

It is not hard to see that Chk(∆
n) = Chk,2(∆n), and the sequence

|Chk,1(∆n)|, |Chk,2(∆n)|, ...

converges to |∆n|k. We now show that the space | skelk−1(∆n)| is a retract of |∆n|k.

Lemma 5.6. There exists a retraction r : |∆n|k → | skelk−1(∆n)|.

Proof. For 0 ≤ i ≤ n, let | skeli(∆n)|k be the subspace of |∆n|k restrict to the ith

skeleton of ∆n, i.e.,

| skeli(∆n)|k = |∆n|k ∩ | skeli(∆n)|.
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Specifically, we have |∆n|k = | skeln(∆n)|k and | skelk−1(∆n)| = | skelk−1(∆n)|k. Our

strategy is to show that, for k ≤ i ≤ n, there is a sequence of retractions

ri : | skeli(∆n)|k → | skeli−1(∆n)|k.

By composing each retraction ri, we obtain the desired retraction

r = rk ◦ rk+1... ◦ rn.

We construct each retraction by downward induction. For the base case n, we apply

the radial projection from the barycenter of |∆n|, denoted b∆. For every point x ∈

|∆n|k, let Lx be the line that connects x and b∆. By definition of |∆n|k, we have b∆ /∈

|∆n|k and therefore, Lx is well defined. The radial projection is thus the continuous

map

rn(x) = Lx ∩ | skeln−1(∆n)|k,

that maps x to the intersection of Lx and the boundary of |∆n|, which is a unique point

in | skeln−1(∆n)|k. Clearly, this defines a retraction since rn restrict to | skeln−1(∆n)|k

is the identity map. To verify the image of rn is | skeln−1(∆n)|k, notice that for

any x′ in | skeln−1(∆n)| such that x′ /∈ | skeln−1(∆n)|k, the line Lx′ is contained in

|Baryk(∆
n)|, which is not in |∆n|k.

For the inductive step, we construct a retract from | skeli(∆n)|k to | skeli−1(∆n)|k

. Let {σ} be the enumeration of facets in | skeli(∆n)|. Let bσ be the barycenter of the

each facet |σ|, and let

|σ|k = |σ| ∩ | skeli(∆n)|k.

Consider the radial projection ri,σ from bσ, the projection is well defined on |σ|k since
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bσ /∈ | skeli(∆n)|k. Moreover, ri,σ is a retraction

ri,σ : |σ|k → | skeli−1(σ)|k

since it fixes the boundary of σ. For two facets σ, τ ∈ | skeli(∆n)| that have a non-

empty intersection, it is obvious that ri,σ and ri,τ agree on |σ|k ∩ |τ |k. By Theorem

3.1 and a simple induction, we construct ri by gluing ri,σ for each facet σ, which

completes the inductive step.

Note that the induction argument in Lemma 5.6 stops at i = k − 1 since for each

(k−1)-simplex σ in ∆n, we have |σ| = |σ|k as Baryk(∆
n) does not contain any vertex

in Bary(σ). We now show that Mk solves (n+ 1, k)-set-agreement.

Theorem 5.7. There is a protocol that solves k-set-agreement in model Mk.

Proof. By Lemma 5.6, there is a continuous map

r : |∆n|k → | skelk−1(∆n)|

such that r restrict to | skelk−1(∆n)| is the identify map. Since |Chk(∆
n)| is a sub-

space of |∆n|k, r restricts to |Chk(∆
n)| is a continuous map carried by the k-set-

agreement carrier map Γ. Applying Theorem 3.3, there exists a number N and a

carrier-preserving simplicial map

φ : ChN(Chk(∆
n))→ skelk−1(∆n).

Without loss generality, we can assume N is an even number. Let N ′ = (N + 2)/2.

Since ChN
′

k (∆n) is a subcomplex of ChN(Chk(∆
n)), we can restrict φ on ChN

′

k (∆n)
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and obtain a carrier-preserving simplicial map

φ′ : ChN
′

k (∆n)→ skelk−1(∆n).

The simplicial map φ′ implies a k-set-agreement protocol:

1. Every process pi executes N ′ rounds in model Mk, and obtains a vertex in

ChN
′

k (∆n).

2. pi calculates v = φ′(v), a vertex in skelk−1(∆n).

3. pi returns process pj where χ(v) = pj.

The correctness of the algorithm follows from fact that φ′ is simplicial and carrier-

preserving.

To showMk does not solve (n+1, k−1)-set-agreement, we will need the following

useful result from [24].

Theorem 5.8 (Herlihy et al.). Let M be a distributed computing model in which

protocol complex is (k−2)-connected for any participating set. Then M can not solve

(k − 1)-set-agreement.

To prove that the protocol complex Chk(∆
n) is (k − 2)-connected, we first show

that |∆n|k is (k − 2)-connected and then prove |Chk(∆
n)| and |∆n|k are homotopy

equivalent.

Lemma 5.9. The space |∆n|k is (k − 2)-connected.

Proof. We show that |∆n|k is homotopy equivalent to | skelk−1(∆n)|. Then, by Fact

3.8 and 3.10, |∆n|k is (k − 2)-connected.
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Our strategy is to transform the retractions defined in Lemma 5.6 to deformation

retractions from |∆n|k onto | skelk−1(∆n)|. Let ri : | skeli(∆n)|k → | skeli−1(∆n)|k be a

retraction in the proof of Lemma 5.6. For i = k, k + 1, ..., n, we construct a sequence

of deformation retraction

Hi : | skeli(∆n)|k × [0, 1]→ | skeli−1(∆n)|k.

defined by

Hi(x, t) = x+ t(ri(x)− x).

It is easy to verify that H
i
(x, 0) is the identify map, and H

i
(x, 1) = ri. Moreover, Hi

is continuous. Hence, we can construct a deformation retraction

H : |∆n|k × [0, 1]→ | skelk−1(∆n)|

defined by

H(x, t) = Hi(x, (n− k + 1)(t− i+ k))

when t ∈ [ i−k
n−k+1

, i−k+1
n−k+1

]. Applying Theorem 3.14, we conclude that |∆n|k is homotopy

equivalent to | skelk−1(∆n)|, and therefore, |∆n|k is (k − 2)-connected.

Lemma 5.10. The protocol complex Chk(∆
n) is (k − 2)-connected .

Proof. We first show that |∆n|k is homotopy equivalent to |Chk(∆
n)|. Then, |Chk(∆

n)|

is (k − 2)-connected is a simplex consequence of Theorem 3.14.

The idea is that we can iteratively apply the radial projections in the proof of

Lemma 5.6 and then modify them to deformation retractions as in Lemma 5.9. Let

|∆n|′k be the space after applying the radial projection in Lemma 5.6. We check

whether |∆n|′k =|Chk(∆
n)|. If not, then there exists a simplex σ ∈ Ch2(∆n) such
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that σ /∈ Chk(∆
n) and |∆n|′k contains an interior point of |σ|, i.e.,

intσ ∩ |∆n|′k 6= ∅.

Moreover, there exists a vertex v ∈ |σ| such that v ∈ Baryk(∆
n) and so, v /∈ |∆n|′k.

We define a radial projection rv as follows. Let Lv,x be the line that connects each

point x ∈ |∆n|′k and v. Let rv(x) be point of the intersection of Lv,x and the boundary

of |Chk(∆
n)|. Then, we transform rv to be a deformation retraction using the method

in Lemma 5.9 and then obtain a subspace

|∆n|′′k ⊂ |∆n|′k.

Clearly, we have

|σ| ∩ |∆n|′′k ⊆ |Chk(∆
n)|

since the radial projection is defined on v and |σ| is convex. Then, we iteratively

apply this procedure until the space is equivalent to |Chk(∆
n)|. In other words,

we construct a sequence of subspaces |∆n|′k, |∆n|′′k, ..., |Chk(∆
n)| and a sequence of

deformation that continuously shrink |∆n|′k to |Chk(∆
n)|. Notice that the sequence

has a finite length since there are only finitely many simplices removed in the definition

of Chk(∆
n). By Theorem 3.14, |∆n|k is homotopy equivalent to |Chk(∆

n)|.

Applying Theorem 5.8, we characterize the set-consensus power of Mk.

Theorem 5.11. There is no protocol for (k − 2)-set-agreement in model Mk.
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5.2 Task Solvability of Vector-Set-Consensus Model

In this section, we generalize the complex in the previous section to characterize the

colorless task solvability in the vector-set-consensus model. We define a protocol com-

plex that solves the adaptive-set-agreement task, which generalizes the construction

of protocol complex for (n + 1, k)-set-agreement. Then, we present a computability

theorem in the vector-set-consensus model: a colorless task is solvable in the vector-

set-consensus model if and only if there exists a certain simplicial map from the

iterated protocol complex to the task output complex.

5.2.1 Protocol Complex

Let VSC = (k1, k2, ..., kn+1) be a vector-set-consensus model. By Theorem 4.5, VSC

solves the adaptive set-agreement

TA = (∆n, skelkn+1−1(∆n),ΓA)

, where A = (k1, k2, ..., kn+1). The input complex of TA is the standard n-simplex,

and its output complex is the (kn+1 − 1)-skeleton of the n-simplex. For each simplex

σ ∈ ∆n, where dim(σ) = m− 1, the task specification is

ΓA(σ) = skelkm−1(σ).

To see ΓA is indeed a carrier map, notice that ΓA is monotonic since km ≤ km′ .

We are now ready to define the protocol complex that characterizes TA. The idea is

that we can apply the construction in the previous section to characterize (m, km)-

set-agreement in m− 1 skeleton.
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Definition 5.12. For each simplex σ ∈ ∆n, where dim(σ) = m, define the subcom-

plex

BaryV,m(∆n) = {τ ∈ Bary(skelm(∆n)) | ∀v ∈ τ, dim(Car(v,∆n) ≥ km+1))}.

Let BaryA(∆n) denote the complex

BaryV (∆n) =
n⋃

m=0

BaryV,m(∆n)

For each σ ∈ ∆n where dim(σ) = m, we define BaryV,m(σ) = Bary(σ)∩BaryV,m(∆n).

Notice that there is a containment relation among different BaryV,m.

Proposition 5.13. Let m,m′ ∈ {1, 2, ..., n+ 1} such that km+1 = km′+1 and m < m′.

BaryV,m is a subcomplex of BaryV,m′.

Proof. Let σ, σ′ ∈ ∆n be two simplices such that σ ⊆ σ′ and dim(σ) = m < m′ =

dim(σ′). Let τ be a simplex in BaryV,m. Since τ ∈ Bary(skelm
′
(∆n)) and ∀v ∈

τ, dim(Car(v,∆n)) ≥ km+1 = km′+1, we have BaryV,m ( BaryV,m′ .

For each ` = 1, 2, ..., kn+1, let m` be the largest number such that km` = `. By

Proposition 5.13, BaryV (∆n) is completely characterized by BaryV,m` , that is,

BaryV (∆n) =

kn+1⋃
`=1

BaryV,m`(∆
n).

We are now ready to define the protocol complex ChV (∆n) that characterizes the

adaptive set-agreement TA.
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Figure 5.2: Example of ChV (∆2) for VSC = (1, 1, 2)

Definition 5.14. The complex ChV (∆n) is a subcomplex of Ch2(∆n), defined by

ChV (∆n) = {σ ∈ Ch2(∆n) | |σ| ∩ |BaryV (∆n)| = ∅}.

Let MV be the iterated model that in each round, every process gets a view of

two rounds immediate snapshot such that processes’ views correspond to a simplex in

ChV (∆n). We now show that model MV solves precisely the adaptive set-agreement

TV . As in the previous section, we define a subspace that will be useful in our proof.

Let | skelm(∆n)|V,m denote a subspace in the (m− 1)-skeleton of |∆n|, defined as

| skelm(∆n)|V,m = | skelm(∆n)| − |BaryV,m(∆n)|.

Lemma 5.15. For m = 1, 2, ..., n + 1, model MV can solve km-set-agreement task,

when m processes are participating.

Proof. Notice that | skelm−1(∆n)|V,m−1 is a subspace of |∆n|km in Definition 5.5. By

Lemma 5.6, there is a continuous map:

f : | skelm−1(∆n)|V,m−1 → | skelkm−1(∆n)|
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carried by ΓA. When m + 1 processes are participating, the protocol complex is

ChV (skelm(∆n)), which geometric realization is a subspace of |∆n|V,m−1. Thus, con-

sidering f restricted on |ChV (skelm−1 ∆n)|, we obtained a carrier-preserving contin-

uous map

f ′ : |ChV (skelm−1 ∆n)| → | skelkm−1(∆n)|.

Applying the simplicial approximation theorem (Theorem 3.3), there exists a number

N and a carrier-preserving simplicial map

ϕ : ChN ChV (skelm−1(∆n))→ skelkm−1(∆n).

Without loss of generality, we can assume N is an even number. Let N ′ = (N + 2)/2,

we obtain the following simplicial map

ϕ′ : ChN
′

V (skelm−1(∆n))→ skelkm−1(∆n).

Therefore, model MV solves km-set-agreement: every process pi executes N ′ rounds

in model MV , and gets a vertex

vi ∈ ChN
′

V (skelm−1 ∆n) ⊆ ChN ChV (skelm−1(∆n)).

Then, pi calculates the vertex wj = ϕ(vi) ∈ skelkm−1(∆n) and return process pj

where χ(wj) = pj. The correctness follows from the fact that ϕ is simplicial and

carrier-preserving.

The next Lemma shows that we can combine each (m, km)-set-agreement to solve

set-agreement adaptively.

Lemma 5.16. There is a protocol in Model MV that solves adaptive-set-agreement
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TA.

Proof. The protocol complex of MV can be identified as a subset of executions in

two rounds of immediate snapshot. Therefore, MV can simulate the atomic-snapshot

model using the simulation in [21]. To solve the adaptive-set-agreement TA, processes

use Algorithm 2 in Chapter 4. More specifically, the set-consensus object access at

line 8 in Algorithm 2 in Chapter 4 is replaced by the (m, km)-set-agreement protocol

in Lemma 5.15. The correctness follows from the fact that the algorithm solves set-

agreement adaptively, given the fact that each (m, km)-set-agreement can be solved

when only m processes are participating.

For the other direction, we show that model MV can not solve (m+ 1, km+1 − 1)-

set-agreement when (m+ 1) processes are participating.

Lemma 5.17. The complex ChV (skelm(∆n)) is (km+1 − 2)-connected .

Proof. The protocol complex is ChV (skelm(∆n)) when (m+ 1) processes participate.

Our strategy is to show that ChV (skelm(∆n)) is (km+1 − 2)-connected, and then the

claim is a simple consequence of Theorem 5.8.

First, we define a space that characterizes the topological property of ChV (skelm(∆n)).

Let | skelm(∆n)|V denote a subspace in | skelm(∆n)|, defined as

| skelm(∆n)|V = | skelm(∆n)| − |BaryV (∆n)|.

Define the point set

X =
m−1⋃
`=0

BaryV,`(∆
n).

We have

| skelm(∆n)|A = | skelm(∆n)|V,m −X.
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Note that X only contains points on the boundary of | skelm(∆n)|V,m. Let X ′ be

the closed ε neighborhood of X in | skelm(∆n)|V,m for a sufficiently small ε > 0.

There is a deformation retraction from (X ′ − X) onto the boundary of X ′ and

thereby a deformation retraction from | skelm(∆n)|V to a space that is homeomor-

phic to | skelm(∆n)|V,m. By Theorem 3.14, | skelm(∆n)|V is homotopy equivalent to

| skelm(∆n)|V,m. Since | skelm(∆n)|V,m is (km+1 − 2)-connected by Theorem 5.9, and

by Fact 3.8, | skelm(∆n)|V is (km+1 − 2)-connected

To see that | skelm(∆n)|V characterizes the protocol complex ChV (skelm(∆n)),

notice that there is deformation retraction from | skelm(∆n)|A to |ChV (skelm(∆n))|

by iteratively applying radial projections from points in X in the same way as in

the proof of Lemma 5.10. Consequently, |ChV (skelm(∆n))| is homotopy equivalent

to | skelm(∆n)|V , and therefore, is (km+1 − 2)-connected.

We conclude the set-consensus power of MV as follows.

Theorem 5.18. ModelMV solves the adaptive-set-agreement TA but not (m+1, km+1−

1)-set-agreement when m processes participate.

5.2.2 Computability Theorem

We now prove the main theorem in this chapter which characterizes the colorless task

solvability in the vector-set-consensus model.

Theorem 5.19. Let VSC = (k1, k2, ..., kn+1) be a vector-set-consensus model. A

colorless task T = (I,O,Γ) is solvable in VSC if and only if there exists a number N

and simplicial map φ : ChNV (∆n)→ O carried by Γ.
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For the necessity part of Theorem 5.19, we will show that modelMV can simulate a

colorless task protocol in the vector-set-consensus model. Since the protocol complex

of MV is ChV (∆n), the simulation implies the desired simplicial map φ.

Simulation

The simulation of the VSC is a variant of the BGG simulation [17, 30]. The set-

consensus objects simulation is similar to the proof in Theorem 4.5. Without loss of

generality, we assume that each process can perform three types of operations: writes

a value, takes a snapshot of the memory, or requests a (m, km)-set-consensus object.

We also assume that every process executes a full information protocol, in which every

write is uniquely determine by the snapshots and the access of set-consensus objects.

Hence, it suffices to simulate snapshot operations and set-consensus-object access.

Suppose that m processes are participating in MV . In the simulation, processes

solve the adaptive-set-agreement using the Algorithm in Lemma 5.16 and then execute

the GG simulation [16] to emulate km simulators s1, s2, ..., skm . The simulators then

further use the BG simulation to simulate the snapshot operations and set-consensus

objects in the VSC model. Specifically, each simulator si repeated executes the fol-

lowing steps.

1. Takes a snapshot of the current participating processes in MA and obtains the

input values for simulated processes.

2. Simulate one step of the participating processes in a round-robin way.

(a) The snapshot operation of process pj is simulated by invoking the safe-

agreement protocol.
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(b) For any (m′, km′)-set-consensus object access, si use km-safe-agreement to

calculate an estimate of the returned value for each access by process pj.

Since simulators may get different estimates for each access, to ensure

consistency, they further use safe-agreement to agree on the returned value.

3. If a safe-agreement or the `-safe-agreement associated to process pj is blocked,

simulator si selects the next participating process to simulate in a round-robin

manner.

If a process in MV notices some output is produced in the BG simulation, it imme-

diately adopts the output and terminates.

Lemma 5.20. The BGG simulation produces a valid an execution of a colorless task

protocol in the VSC model.

Proof. The correctness of the snapshot follows from the agreement property of the

safe-agreement. To show the access of set-consensus objects is correctly simulated,

notice that for each access of (m′, km′)-set-consensus, simulators get at most km′ esti-

mated value from km′-safe-agreement. Therefore, at most km′ values are proposed for

each (m′, km′)-set-consensus simulation. Moreover, the returned values for each ac-

cess is synchronized by executing the safe-agreement. Since every step is consistently

simulated, it produces a valid execution in the VSC model.

To show the simulation eventually terminates, it suffices to prove that at least one

output will be produced eventually. Since every process immediately adopts another

process’s output, every correct process eventually gets an output, and thus solves the

colorless task.

Without loss of generality, suppose that m processes are participating. By prop-

erties of GG simulation [16], there are at most km simulators such that at least one
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is always alive. If one simulator fails in the safe-agreement, at most one simulated

process will be blocked. If kt simulators fail in the simulation of (t, kt)-set-consensus

object, at most t processes will be blocked. Hence, we only need to show that at least

one simulated process is not blocked. By way of contradiction, assume m processes

are blocked. Then, there exists a multiset

{(t1, `1), (t2, `2)...(tq, `q)}

such that each ti ∈ {1, 2, ...n + 1}, `i = kti . Each (ti, `i) represents a non-resolved

`i-safe-agreement and blocks ti simulated processes. Since at most km − 1 simulator

can fail, we have ∑
i

`i ≤ km − 1,
∑
i

ti ≥ m.

However, this contradicts the optimality property of the VSC. Hence, at least one

process is simulated infinitely often and eventually outputs, which shows the liveness

property of the simulation.

For the sufficiency part of Theorem 5.19, we will show that VSC can solve the

colorless simplex agreement on ChV (∆n). Formally, (∆n,ChV (∆n),ChV ) is a task

such that for each σ ∈ ∆n, the valid output is any simplex in ChV (σ). Before we

construct a protocol that solves this task, we first prove that there exists a certain

continuous map if the task complex is sufficiently connected.

Lemma 5.21. Let T = (I,O,Γ) be a colorless task such that for each σ ∈ I,

dim(σ) = m − 1, Γ(σ) is (km − 2)-connected. There exists a continuous map f :

| skelkm−1(I)| → |O| carried by Γ.

Proof. Let τ be a simplex of I where dim(τ) = m− 1. We inductive define a contin-
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uous map

f t : | skelt(τ)| → |Γ(τ)|

for t = 0, 1, ..., km − 1.

For the base case t = 0, since |Γ(τ)| is (km−2)-connected and km ≥ 1, |Γ(τ)| is at

least (−1)-connected, or non-empty. For each v ∈ skel0(τ), define f 0(v) = v′ where

v′ is an arbitrary vertex in |Γ(τ)|. Hence, we obtain a map

f 0 : | skel0(τ)| → |(Γ(τ))|

carried by Γ, and f 0 is clearly continuous since it is a map between vertices. Assume

that we have defined f t for t ≤ km − 2. For the inductive step, let {ωi} be the

enumeration of the facets in skelt+1(τ), and let ∂ωi be the boundary of ωi. Let f t|∂ωi
denote the map f t restricted to ∂ωi. Observe that |Γ(τ)| is t-connected since |Γ(τ)|

is (km − 2)-connected and t ≤ km − 2.

Since |∂ωi| is homeomorphic to t-sphere and |ωi| is homeomorphic to (t+ 1)-disk,

and by |Γ(τ)| is t-connected, f t|∂ωi can be extended into a continuous map

f tωi : |ωi| → |Γ(τ)|.

Let ωi and ωj be two facets in skelt+1(τ). f tωi and f
t
ωj

agree on |ωi|∩|ωj|. Applying the

pasting lemma (Theorem 3.1), we can glue {f tωi} together and get a carrier-preserving

continuous map

f t+1 : | skelt+1(τ)| → |Γ(τ)|,
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which completes the inductive step. By induction, for τ ∈ skelkm−1(I), there is a

continuous map

fτ : |τ | → |Γ(τ)|.

Moreover, for any two simplices τ, σ ∈ skelkm−1(I), fτ and fσ agree on |τ |∩|σ|. Apply

pasting lemma again, we obtain the desired carrier-preserving continuous map

f : | skelkm−1(I)| → |O|.

We now show that VSC can solve the colorless simplex agreement on ChV (∆n).

Lemma 5.22. There is a protocol in the vector-set-consensus model VSC that solve

the colorless simplex agreement (∆n,ChV (∆n),ChV ).

Proof. Assume m processes participate, and let σ ∈ ∆n be the corresponding input

simplex such that dim(σ) = m − 1. By Lemma 5.17, the output complex ChV (σ) is

(km − 2)-connected. By Lemma 5.21, there is a carrier-preserving continuous map

f : | skelkm−1(∆n)| → |ChV (∆n)|.

Applying the simplicial approximation theorem (Theorem 3.3), there exists a number

N ∈ N and a carrier-preserving simplicial map

ϕ : BaryN(skelkm−1(∆n))→ ChV (∆n).

Thus, we obtain the following protocol:
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1. Every process pi solves the adaptive-set-agreement and gets a vertex vi ∈

skelkm−1(∆n).

2. pi executes N rounds immediate snapshot with the input vi. Processes remove

ids in their views in each round. The view of the Nth immediate snapshot is

identified as a vertex v′i ∈ BaryN(skelkm−1(∆n)).

3. pi applies the simplicial map to calculate v = ϕ(v′i), and then returns the vertex.

The correctness of the protocol follows from the fact that VSC solves the adaptive-

set-agreement, and ϕ is a carrier-preserving simplicial map.

We are now able to prove Theorem 5.19.

Proof. For sufficiency, by Lemma 5.20, model MV can simulate any protocol in the

VSC model. By Kőnig’s lemma, if a VSC protocol solves a task, every process pro-

duces an output in a bounded number of steps. Hence, the simulation in MA termi-

nates in a bounded number of rounds. Since the protocol complex inMA is ChNA (∆n),

the simulation implies a carrier-preserving simplicial map φ : ChNV (∆n)→ O.

In the other direction, by Lemma 5.22, processes in VSC can solve N rounds of

colorless simplex agreement (∆n,ChV (∆n),ChV ) and obtain a vertex in ChNV (∆n).

Then, every process applies φ on its vertex and gets an output in O. The correctness

follows from the fact that φ is simplicial and carrier-preserving.

5.2.3 Tasks solvability of terminating iterated vector-set-consensus

model

Consider the iterated shared memory model that processes execute an immediate

snapshot in each round and access the vector-set-consensus. In this model, once a

58



process has obtained an output, it simply terminates and stops the communication

with other processes. We call this model the terminating iterated vector-set-consensus

model. In each iteration, the set-consensus power of this model depends on the

number of active processes, i.e., participating processes that do not have output.

We now present a task solvability characterization of this model by introducing the

terminating iterated complex, which generalizes the idea of terminating subdivision

in [20].

Let ChV be the induced operator for the vector-set-consensus model VSC =

(k1, k2, ..., kn+1). Let I be an arbitrary chromatic simplicial complex, and let N be a

natural number. A N round terminating iterated complex is a specified by a sequence

of chromatic complexes C̃h0
V (I), C̃h1

V (I), ...., C̃hNV (I) and a sequence of subcomplex

Σ0 ⊆ Σ1 ⊆ ... ⊆ ΣN such that for i ≥ 0:

1. Σi is a subcomplex of C̃hiV (I)

2. C̃h0
V (I) = I, and ˜Chi+1

V (I) is inductively constructed from C̃hiV (I) by partially

applying ChV on simplices in ChiV (I). Formally, we apply ChV on a simplex

σ ∈ C̃hiV (I) that is not in Σk, and then connect vertices in ChV (σ) with vertices

in Σk to turn it into a chromatic simplicial complex. The idea of the definition

is that simplices in Σk are considered “fixed”. In other words, processes with

local states that can be identified to vertices in Σ terminate their computation.

Additionally, we require that ΣN =
⋃
i Σi = C̃hNV (I).

We are now ready to characterize the task solvability in the terminating iterated

vector-set-consensus model.

Theorem 5.23. Let T = (I,O,Γ) be a task. T is solvable in the terminating iter-

ated vector-set-consensus model VSC = (k1, k2, ..., kn+1) if and only if there exists a
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terminating iterated complex C̃hNV (I) for some number N and a chromatic simplicial

map φ : C̃hNV (I)→ O carried by Γ.

Proof. Suppose there exists a protocol in the terminating vector-set-consensus model

that solves T . Without loss of generality, assume every process obtains an output

after N rounds. We inductively construct a terminating iterated complex C̃hNV (I)

and a simplicial map φ as follows. Let C̃h0
V (I) = I for N = 0. At the ith stage

of the construction, for each vertex v ∈ C̃hiV (I), we check process pj’s local state

that can be identified as vertex v. If pj has calculated an output valj for the task

in the protocol, we add v in Σk and set φ(v) = valj. Then, we construct ˜Chi+1
V (I)

based on the subcomplex Σk. Since every process obtains an output at the Nth

round, the construction stops at C̃hNV (I) and φ is a well-defined simplicial map on

C̃hNV (I). The correctness follows from the fact that ChV (∆n) solves the adaptive

set-agreement (Lemma 5.16), and simplices in C̃hNV (I) correspond to executions of

IIS in which processes depart once obtained an output in the terminating iterated

vector-set-consensus model.

For the other direction, suppose there exists a terminating iterated complex C̃hNV (I)

and a carrier-preserving chromatic simplicial map φ : C̃hNV (I) → O. We construct a

protocol in the terminating iterated vector-set-consensus model by inductively solving

the simplex agreement on C̃hiV (I). The simplex agreement on C̃h0
V (I) = I is trivial

for the base case. Assume that the simplex agreement on the ith stage is solved,

process pi obtains a vertex v ∈ C̃hiV (I) and then checks whether v in a vertex in Σi.

If so, pi calculates its output value vali = φ(v) and terminates. Otherwise, pi uses

the algorithm in Lemma 5.22 to solve the simplex agreement on ChV (σ) where σ is

the simplex in C̃hiV (I) that includes vertex v. Since processes in Σi terminates, pi

gets a vertex in ˜Chi+1
V (I). The protocol terminates after N round, and every process

60



obtains an output since ΣN = C̃hNV (I). The correctness of the protocol follows from

the fact that φ is simplicial and carrier-preserving.

5.3 Task Solvability of k-set-consensus Model

In the previous section, we characterized the colorless task solvability of the vector-

set-consensus model. Gafni et al [17] presented ACT for colored task solvability in

the k-set-consensus model. In this section, we provide an alternative characterization

of k-set-consensus model using the notion of color-projection.

Color-Projection

Recall in section 5.1, we defined a protocol complex that characterizes the (n+ 1, k)-

set-agreement. In the k-set-consensus model, a set of processes m processes can

request a k-set-consensus object to solve k-set-consensus among themselves when

more than m processes are participating. In this case, the (m, k)-set-agreement is not

a colorless task since processes cannot adopt a decision value from another process

that is not one of these m processes. Therefore, to characterize the colored task

solvability in the k-set-consensus model, the protocol complex should be able to solve

(m, k)-set-agreement regardless of the size of participating set.

In this section, we introduce the notion of color-projection. Suppose a subset Q

of m participating processes wants to solve the (m, k)-set-agreement among processes

in Q. They can reduce their views by recursively eliminating the views of processes

that are not in Q. Every process in Q obtains a view from a reduced execution in

which only processes in Q participate. Thus, they can solve (m, k)-set-agreement if

such a protocol exists when only m processes participate.
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The idea is formalized as a simplicial map from a standard chromatic subdivision

to its faces that only contains vertices with colors in Q. Recall that in the definition

of Chk(∆n), each vertex v ∈ Chk(∆n) can be identified as a tuple

v = (χ(v),Car(v,Chk−1(∆n)).

Further, we define Ch0(∆n) = ∆n. To simplify the notation, assume the empty set ∅

is included as a simplex in any simplicial complex. Let Q ⊆ {0, ..., n} be a subset of

processes. Let σ ⊆ ∆n be the face in n-simplex corresponds to Q, that is, χ(σ) = Q.

Definition 5.24. For N = 0, 1, 2, ..., the Nth color-projection on to Q, is a vertex

map

ΠN
Q : ChN(∆n)→ ChN(σ),

defined as follows:

1. For v ∈ ∆n, Π0
Q(v) =


v if χ(v) ∈ Q

∅ if χ(v) /∈ Q

2. When k ≥ 1, for v ∈ ChN(∆n)

ΠN
Q (v) =


(χ(v), {ΠN−1

Q (w) | w ∈ Car(v,ChN−1(∆n)) ∧ χ(w) ∈ Q}) if χ(v) ∈ Q

∅ if χ(v) /∈ Q

The Nth color-projection onto Q is a vertex map that sends a vertices v to a vertex

v′ such that χ(Car(v′,∆n)) ⊆ Q. We use ΠQ be denote the Nth color-projection when

N is clear from the context. Next, we show that the map Πk
Q is indeed a simplicial

map, and moreover, it preserves the execution order of immediate snapshots.
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Proposition 5.25. The vertex map ΠN
Q is a simplicial map and preserves the linear

order of immediate snapshots among processes in Q. Formally, let γ be a simplex in

ChN(∆n), and let γ′ = ΠN
Q (γ). γ′ is a simplex in ChN(σ). Moreover, ∀vi, vj ∈ γ such

that vi = (pi, τi) and vj = (pj, τj), let v′i = ΠN
Q (vi) = (pi, τ

′
i), and let v′j = ΠN

Q (vj) =

(pj, τ
′
j), then the following properties are satisfied:

1. (self-inclusion) pi ∈ χ(τ ′i)

2. (containment) τi ⊆ τj ⇒ τ ′i ⊆ τ ′j

3. (immediacy) pi ∈ χ(τj)⇒ pi ∈ χ(τ ′j) and τ ′i ⊆ τ ′j

Proof. We prove that ΠN
Q satisfies three properties by induction. The base case of

N = 0 is easy to check, since Π0
Q(vi) = vi if χ(vi) ∈ Q and γ′ is simplex of σ. The

self-inclusion property is satisfied, and the containment and immediacy properties are

vacuously true. Assume ΠN−1
Q is simplicial and satisfies three properties. Consider

the case of N , since γ is a simplex in ChN(σ) satisfies the self-inclusion property,

pi ∈ χ(τi). Let vertex wi be a vertex in ChN−1(σ), wi ∈ τi and χ(wi) = pi. Since

pi ∈ Q, w′i = ΠN−1
Q (wi) 6= ∅, we have w′i ∈ τ ′. Therefore, pi ∈ χ(τ ′i). For containment

property, if τi ⊆ τj, τ ′i and τ ′j are simplices in ChN(σ) by the induction hypothesis.

τ ′i ⊆ τ ′j follows from the definition of ΠN
Q . To see ΠN

Q satisfies the immediacy property,

notice that if pi ∈ χ(τj), then τi ⊆ τj by the immediacy of ChN−1(σ). Since ΠN
Q

preserves the containment property, we have τ ′i ⊆ τ ′j. Moreover, there exists a vertex

w′i ∈ τ ′i where χ(w′i) = pi and so, w′i ∈ τ ′j and pi ∈ χ(τ ′j). Hence, γ′ = ΠN
Q (γ) is a

simplex in ChN(σ) and satisfies the three properties, which completes the inductive

step.

In order to let processes in Q use color-projection to execute protocols for a re-

stricted participating set, we need to ensure the projection of any simplex is valid in
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the protocol complex. In other words, the protocol complex needs to be closed under

color-projection.

Definition 5.26. Let K be a pure n-dimensional subcomplex in ChN(∆n). Its color-

projection closed subcomplex K̂ = skeln(K̂), is inductively defined as follows:

1. skel0(K̂) = skel0(K)

2. for i = 1, 2, ..., n, skeli(K̂) = {σ ∈ skeli(K) | ∀Q ⊆ χ(σ),ΠQ(σ) ∈ skeli−1(K̂)}

From the definition, it is easy to verify that K̂ is closed under color-projection,

i.e., ̂̂K = K̂.

Colored Task Solvability in k-set-consensus model

Gafni et al [17] proved the ACT for k-set-consensus model using the following protocol

complex.

Definition 5.27. The k-set-consensus protocol complex Rk, is defined by

Rk =
{
σ ∈ Ch2(∆n) | ∀τ ⊆ σ : (∀v, v′ ∈ τ,Car(v,∆n) = Car(v′,∆n))⇒ dim(τ) < k

}
The complex Rk can be operationally identified as a subset of executions of two

round IS such that no more than k+ 1 processes see each other in their views. In [17]

, the authors showed that a colored task is solvable if and only if there is a number

N and a color-preserving simplicial map φ : RN
k (I)→ O carried by Γ.

We now present an alternative k-set-consensus protocol complex which is a color-

projection closed. First, we present a different protocol complex that solves the

(n+ 1, k)-set-agreement than the one in Section 5.1.
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Definition 5.28. Chk(∆
n)′ is a subcomplex in Ch2(∆n), defined as

Chk(∆
n)′ =

{
σ ∈ Ch2(∆n) | ∃v ∈ σ, dim(Car(v,∆n)) ≤ k − 1

}

It is easy to check that every simplex in Chk(∆
n)′ intersects with skelk−1(∆n).

The following lemma shows the set-consensus power of Chk(∆
n)′.

Lemma 5.29. The protocol complex Chk(∆
n)′ can solve (n+ 1, k)-set-agreement.

Proof. We present an algorithm that solves (n+ 1, k)-set-agreement:

1. Every process pi executes one round and gets a vertex vi ∈ Chk(∆
n)′.

2. Let IS1
i and IS2

i be the first and second immediate snapshot view corresponding

to vertex vi. pi returns the process pj such that j is the smallest index in which

IS1
j ∈ IS2

i and |IS1
j | ≤ k.

The validity of the protocol follows from the fact that IS1
j ∈ IS2

i , and pj is a partici-

pating process. For the agreement property, note that for each simplex σ ∈ Chk(∆
n)′,

at least one vertex is in Ch2(skelk−1(∆n)). Let τ ⊆ σ be the maximum dimensional

face that intersects Ch2(skelk−1(∆n)). Let L = χ(τ). For every process pj ∈ L, we

have |IS1
j | ≤ k and |IS2

j | ≤ k.

We now argue that for every process pi, there exists a IS1
j ∈ IS2

i and |IS1
j | ≤ k.

Clearly, processes in L see at least one |IS1
j | ≤ k because of the self-inclusion property

of immediate snapshot. Every process pi that is not in L sees at least one process in

L in its second immediate snapshot. Hence, every process returns some pj such that

|IS1
j | ≤ k. Moreover, the number of different processes returned is bounded by k since

at most k processes have |IS1| ≤ k.
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Let ̂Chk(∆n) be the color-projection closed complex constructed from Chk(∆
n),

and let M̂k be the iterated model such that the protocol complex is ̂Chk(∆n) in

each round. The following lemma shows that model M̂k can solve k-set-agreement

regardless of the size of participating set.

Lemma 5.30. Let P be the set of participating processes, |P | = m, and let Q ⊆ P

be a subset of participating processes where |Q| = m′ < m. There is a (m′, k)-set-

agreement protocol for processes in Q in model M̂k.

Proof. Let τ, σ be simplices in ∆n such that χ(σ) = P and χ(τ) = Q. Every process

pi in Q executes one round of M̂k and obtains a vertex vi in Ĉhk(σ). Then, pi applies

the color-projection on Q, and gets the vertex v′i = ΠQ(vi). By Proposition 5.25, the

set of vertices {v′i | i ∈ τ} forms a simplex in Ĉhk(τ). Since Ĉhk(τ) is a subcomplex

in Chk(τ)′, processes in Q use the protocol in Lemma 5.29 to solve the (m′, k)-set-

agreement.

We now prove the ACT of the k-set-consensus model for colored task solvability.

The proof is adapted from [17].

Lemma 5.31. There exists a simulation of k-set-consensus model in model M̂k.

Proof. Without loss of generality, we assume that every process in the k-set-consensus

model repeatedly executes the following three types of operations: writes a value,

takes an atomic snapshot of the shared memory, or access a k-set-consensus object.

It suffices to simulate the atomic snapshot memory and k-set-consensus object since

they determines each write.

We use the simulation in [21] to simulate the atomic snapshot(AS) model in M̂k

since its protocol complex can be identified as a subset of executions of IIS. By Lemma
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5.30, there is a protocol that solves k-set-agreement among any subset of participating

processes, and therefore, M̂k can directly simulates k-set-consensus objects access in

a colored task protocol.

The AS and k-set-consensus objects simulations are further combined using the

generic scheme in [17, 36]. The combined simulation is lock-free, and at least one pro-

cess without outputs is simulated for infinitely many steps, finishing either a pending

write, an atomic snapshot operation, or a k-set-consensus object access. Since a

correct process eventually produces an output in the k-set-consensus model, every

simulated process eventually terminates in the simulation.

In the other direction, we show that k-set-consensus model solves the simplex

agreement on Ĉhk(τ).

Lemma 5.32. The k-set-consensus model can solve the simplex agreement on Ĉhk(τ).

Proof. For task solvability, the k-set-consensus model is equivalent to a k-concurrent

shared memory model [15, 17], i.e., a shared memory model that at most k processes

are active at any point of time. We show that in k-concurrency model, an execution

of two rounds of immediate snapshot (IS) solves the simplex agreement on Ĉhk(τ).

By way of contradiction, let σ denote the simplex corresponds to an k-concurrent

execution of two rounds of IS such that σ /∈ Ĉhk(τ). For any set Q ⊆ χ(σ), we

have ΠQ(σ) ∩ skelk−1(∆n) 6= ∅. Otherwise, every process in Q observed more than k

processes in its view of two round IS and thus, there exists a set U ⊆ Q such that

|U | ≥ k + 1 and every process in U sees each other in their views. However, this

implies that at least k + 1 processes are concurrently executing IS, contradicting the

specification of k-concurrency model.
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We characterizes the colored task solvability in k-set-consensus model in the fol-

lowing theorem.

Theorem 5.33. A task T = (I,O,Γ) is solvable in the k-set-consensus model if and

only if there exists a number N and a color-preserving simplicial map φ : ĈhNk (I)→ O

carried by Γ.
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Chapter 6

Computability Theorem for General

Adversary

In the previous chapter, we proved the colorless ACT for the vector-set-consensus

model. Deplore et al. [12] proposed the general adversary to capture the non-uniform

failure pattern in a distributed system. Vikram et al. [38] presented the ACT for

the t-resilient model, which can be considered as an adversary containing all live sets

with a size more than n+ 1− t. Kuznetsov et al. [32] later extended the result to fair

adversaries, which generalizes the superset-closed and symmetric adversaries. The

problem of characterizing task solvability for the general adversary, however, is still

not settled.

This chapter partially answers this question by presenting a colorless ACT for

general adversaries. Surprisingly, solving a task in the general adversary is not for-

mally defined before. We close this gap by providing the first definition. Next, we

show that the power of solving colorless tasks in an adversary is fully grasped by its

ability to solve adaptive set-agreement. With this observation in mind, we prove the

"wait-at-beginning" ACT for general adversary. The “wait-at-beginning” property of
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our characterization captures the intuition that it is enough to use the set-consensus

power at the beginning of a colorless task protocol.

6.1 Task Solvability and Set-Consensus Power

Task Solvability

Historically, the notion of solving a task in a general adversary is not formally defined.

Once processes get outputs, it is unclear what the specification of processes behavior in

the adversary is. The problem of whether processes stay or depart in the computation

is a longtime issue. This leads to a more confusing question: if a process obtains an

output but fails, should this output satisfy the task specification?

To clarify this confusion, we require that processes do not fail. A task is solvable

in an adversary if a protocol exists such that it eventually produces outputs for every

participating process under certain liveness condition. Let P ⊆ {0, 1, ..., n} be a

participating set, and let Q ⊆ P be the set of processes that have obtained an output

for the task. The adversary A restricted to a participating set P is the sub-adversary

A|P = {S ∈ A | S ⊆ P}.

We also define the sub-adversary

A|P,Q = {S ∈ A|P | S 6⊆ Q}.

A|P,Q characterizes the liveness condition when a subset of processes obtained outputs.

Formally, solving a task in an adversary is defined as follows.
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Definition 6.1. Let T = (I,O,Γ) be a task. Let P denote the set of participating

processes, and let Q ⊆ P be a set of processes obtained outputs. A task T is solvable

in the adversary A if there exists a protocol such that

1. For any P and Q, the protocol eventually produces an output for every process

in a live set S ∈ A|P,Q .

2. The outputs produced by the protocol satisfy the task specification Γ.

Set-consensus power

The set consensus power of the general adversary is defined by Gafni and Kuznetsov

[19] to capture the best set-agreement that can be solved in the adversary. Let

A|P,ā = {S ∈ A|P | a /∈ S} denote the subadversary of A that consists of live sets in

A|P that do not contain the element a.

Definition 6.2. The number setcon(A) is recursively defined as follows:

1. If A = ∅, then setcon(A) = 0.

2. Otherwise, setcon(A) = maxS∈Amina∈S setcon(A|P,ā) + 1.

It is not difficult to see that setcon(A) is the size of its minimum hitting set H(A)

for superset-closed adversaries, i.e., the minimum cardinality set that intersects with

every live set in A. For symmetric adversary, setcon(A) equals the number of different

set sizes inA. Moreover, Gafni and Kuznetsov proved [19] thatA can solve setcon(A)-

set-agreement but not (setcon(A) − 1)-set-agreement. Kuznetsov and Rieutord [30]

used the notion of agreement function to capture the adaptive set-consensus power

of the adversary. For every participating set P , the agreement function calculates
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kP as the lowest number such that kP -set-agreement can be solved. Kuznetsov and

Rieutord also [30] proposed an algorithm that solves (P, kP )-set-agreement adaptively

in an adversary in which kP = setcon(A|P ).

6.2 Protocol Complex for General Adversary

In this section, we present a protocol complex that characterizes the set-consensus

power of the general adversary. The construction generalized the protocol complex

for the vector-set-consensus model in Chapter 5.

In the following discussion, we will abuse the notation σ ∈ ∆n as a participating

set when solving set-agreement. Let kσ denote the set-consensus power associated to

σ, i.e., kσ = setcon(A|P ) where P = χ(σ), and let k = setcon(A). We first define a

subcomplex in the barycentric subdivision of a standard n-simplex.

Definition 6.3. For any simplex σ ∈ ∆n, let BaryA,σ(∆n) be a subcomplex of

Bary(σ), defined by

BaryA,σ(∆n) = {τ ∈ Bary(σ) | ∀v ∈ τ, dim(Car(v,∆n) ≥ kσ))} .

Define the subcomplex

BaryA(∆n) =
⋃
σ∈∆n

BaryA,σ(∆n).

The protocol complex for adversary A is a subcomplex in Ch2(∆n) that does not

intersect with BaryA(∆n).

72



Definition 6.4. The complex ChA(∆n) is a subcomplex of Ch2(∆n), defined as

ChA(∆n) = {σ ∈ Ch2(∆n) | |σ| ∩ |BaryA(∆n)| = ∅}

It is easy to see that ChA(∆n) generalizes the protocol complex of vector-set-

consensus model in Chapter 5. Indeed, let VSC = (k1, k2, ..., kn+1) be a vector-

set-consensus model, its protocol complex ChV(∆n) is equivalent to the symmetric

adversary AV that consists of all live sets with sizes in {k1, k2, ..., kn+1}.

Let MA be an iterated model such that the protocol complex has the form of

ChN ChA(∆n) for some number N . Operationally, model MA is a restricted IIS

model such that the executions of the first two rounds correspond to a simplex in

ChA(∆n). For any round r ≥ 2, MA is equivalent to the ordinary IIS model. We now

prove that ChA(∆n) characterizes the set-consensus power of A. Let ChA(σ) = {τ ∈

Ch2(σ) | τ ∈ ChA(∆n)} be the complex that applies ChA on a simplex σ ∈ ∆n.

Lemma 6.5. For any simplex σ ∈ ∆n, model MA solves (σ, kσ)-set-agreement adap-

tively.

Proof. Let σ ∈ ∆n be an input simplex such that kσ ≥ 1. Observe that |ChA(σ)| is

a subspace of |∆n|kσ (Definition 5.5). By Lemma 5.6, there exists a continuous map

f : |ChA(σ)| → | skelkσ−1(σ)|

carried by (σ, kσ)-set-agreement task specification. Since for every τ ⊆ ChA(σ) such

that dim(τ) ≤ kσ, f restrict to |τ | is the identity map. Applying Theorem 3.3, there

exists a number Nσ and a carrier-preserving simplicial map

ϕσ : ChNσ ChA(σ)→ skelkσ−1(σ).
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Thus, for each participating set P , there is a protocol in MA that solves the (σ, kσ)-

set-agreement. Let

N = max
σ∈∆n

Nσ,

and we obtain a simplicial map

ϕ : ChN ChA(∆n)→ skelk−1(∆n)

such that ϕ restrict to σ agrees with ϕσ. Therefore, MA solves (σ, kσ)-set-agreement

adaptively.

The following lemma characterizes the connectivity of ChA(∆n) .

Lemma 6.6. For any simplex σ ∈ ∆n, ChA(σ) is (kσ − 2)-connected.

Proof. Fix a simplex σ ∈ ∆n, define the topological space

|σ|A = |σ| − |BaryA(∆n)|.

Observe that the set-consensus power of general adversary is monotonically increasing.

In other words, for any participating set P, P ′ such that P ⊆ P ′, setcon(A|P ) ≤

setcon(A|P ′). Let |σ|kσ = |σ| − |BaryA,σ(∆n)|, and let

X =
⋃
τ⊆σ:
kτ<kσ

|BaryA,τ |.

We have

|σ|A = |σ|kσ −X.
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Notice that X is on the boundary of |σ|kσ and removing X from |σ|kσ does not change

its connectivity intuitively. Indeed, applying the argument in Lemma 5.17, it is not

hard to see that |σ|A is homotopic equivalent to |σ|kσ , and |σ|A is homotopy equivalent

to |ChA(σ)|. By Theorem 5.9, |σ|kσ is (kσ − 2)-connected and therefore, ChA(σ) is

(kσ − 2)-connected.

6.3 “Wait-at-beginning” Colorless ACT

This section presents the “wait-at-beginning” colorless ACT for general adversary. We

show that for colorless task solvability, an adversary A is equivalent to MA. Since

MA is equivalent to an ordinary IIS except for the first two iterations, the “wait-at-

beginning” property justifies the following phenomenon: processes only need the full

power of the adversary at the beginning of a protocol and then proceed in a wait-free

manner.

Theorem 6.7. Let A be a general adversary. A colorless task T = (I,O,Γ) is

solvable in A if and only if there exists a number N and a carrier-preserving simplicial

map φ : ChN ChA(I)→ O

Simplex Agreement

For the sufficiency of Theorem 6.7, it suffice to show that the general adversary A can

solve the colorless simplex agreement (∆n,ChA(∆n),ChA). In this task, every process

starts with a vertex in ∆n and then convergence on a simplex τ ∈ ChA(σ) where σ is

the corresponding input simplex in ∆n. The protocol is presented in Algorithm 3.

Let σ ∈ ∆n be the input simplex such that χ(σ) is the participating set. In

Algorithm 3, every process pi starts to write its id in Part and then waits to see a
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Algorithm 3: SimplexAgreement
(
∆n,ChN ChA(∆n),ChN ChA

)
Shared Variables: SM[0..N − 1][0..n], init ⊥ : single-writer

multi-reader memory
Part[0...N − 1], init ⊥

1 Part[i]← i

2 repeat
3 snap← snapshot(Part)

4 parti ← {j | snap[j] 6= ⊥}
5 until ∃S ∈ A : S ⊆ parti
6 bi ← barycenter of the simplex S : S ∈ A, S ⊆ parti
7 b′i ← adaptiveSetAgreement(bi)

8 sview0
i ← {b′i}

9 for `← 0 to NA − 1 do
10 Immediate
11 SM[`][i]← sview`

i

12 snap← snapshot(SM[`])

13 sview`+1
i ← {sview`

j | sview`
j ∈ snap}

14 vi ← ϕ(sviewNA
i )

15 return vi
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participating set that contains at least one live set (lines 1-5). At line 6, it selects

a live set S ∈ A that is contained in the current participating set. Then, pi choose

a vertex bi, the barycenter of a face in σ which can be identified as the live set S.

Next, pi uses the algorithm in [30] to solve the adaptive set-agreement with the input

vertex bi and obtains a vertex b′i. Thus, every process gets a vertex in the complex

LA(σ), defined by

LA(σ) = {τ ∈ Bary(σ) | ∀v ∈ τ,Car(v, σ) ∈ A}.

Note that LA(σ) is a subcomplex of the barycentric subdivision of σ such that the

carrier of every vertex represents a live set in A. Since at most kσ vertices are returned

from the adaptive-set-agreement, the set of vertices {b′i} chosen by participating pro-

cesses at line 7 forms a (kσ−1)-dimensional simplex in LA(σ). At lines 8-13, pi writes

its vertex b′i and repeatedly executes immediate snapshots NA times. By ignoring pro-

cesses’ ids in each immediate snapshot, the view of the final immediate snapshot can

be identified as a vertex in BaryNA(LA(σ)). Then, pi applies a simplicial map ϕ to

obtain a vertex vi ∈ ChA(σ) as the output for the simplex agreement.

Lemma 6.8. Algorithm 3 solves the colorless simplex agreement on ChA(∆n) in

adversary A.

Proof. It is not hard to see that processes eventually terminate since processes exit the

loop at lines 2-5 in an A-compliant execution. Hence, it suffices to show the existence

of NA and ϕ in Algorithm 3. Notice that processes start with a (kσ − 1)-dimensional

simplex in LA(σ). By Lemma 5.17, the complex ChA(σ) is (km+1 − 2)-connected.

Applying Lemma 5.21, there exists a carrier-preserving continuous map

f : | skelkσ−1(LA(σ))| → |ChA(σ)|
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By Theorem 3.3, there exists a number NA ∈ N and a carrier-preserving simplicial

map

ϕ : BaryNA(skelkσ−1(∆n))→ ChA(σ).

Therefore, the number NA and the simplicial map ϕ are indeed well defined.

General Adversary Simulation

For the necessity of Theorem 6.7, we show that model MA can simulate a colorless

task protocol for a general adversary.

Algorithm 4: BGG simulation algorithm for process pi
Local Variables: valin: pi’s input value for task T

P , init ⊥: participating set
valout, init ⊥: task output value

1 valin ← adaptiveSetAgreement(valin)
2 P ← current participating set in A
3 repeat
4 run one step BG simulation using valin and participating set P
5 if ∃pj : Outputed(pj) = true then
6 valout ← an output value produced in the BG simulation
7 until valout 6=⊥
8 return valout

The idea is to use a modified BGG simulation to produce an A-compliant execu-

tion in MA, which combines the simulation schemes in [16] and [19]. The code of the

simulation is presented in Algorithm 4 and Algorithm 5. In the beginning, processes

solve the adaptive set-agreement using the algorithm in Lemma 6.5. Every process

pi proposes its task input value valin and adopts a new input value from the adaptive

set-agreement (line 1). The number of different input values returned is bounded by

the set-consensus power of the current participating set. At line 2, pi takes a snapshot
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Algorithm 5: Code for BG simulator with valin and participating set P
Local Variables: S1, S2, ..., Sk, init ⊥ : simluiated live sets

b1, b2, ...bk, init ⊥: blocked processes
L, init 1 : current level of simulation
P : participating set in adversary A
valin: input value of the task

1 S1 ← the first live set S ∈ A|P such that setcon(A|S) = setcon(A|P )

2 L← 1

3 repeat
4 `← 1

5 while ` < L and the simulation of b` is still blocked do
6 `← `+ 1

7 if ` < L then L← `

8 pj ← the process in SL with the least number of simulated steps
9 if pj is not initiated then

10 run safe-agreement with input valin to initialize pj
11 else
12 run BG simulation to simulate the next step of pj
13 if the safe-agreement in the simulation of pj is blocked and

L < setcon(A|P ) then
14 bL ← pj
15 SL+1 ← the first live set S ∈ A|SL,bL such that

setcon(A|S) ≥ setcon(A|P )− L
16 L← L+ 1

17 forever
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of the memory and calculates a participating set P . Then, pi repeatedly executes the

BG simulation (described in Algorithm 5) using the updated input value valin and

participating set P .

In Algorithm 5, the BG simulation is implemented by values. Simulators ignore

ids in their snapshots. Thus, two processes with the same initial values act as a single

simulator .

Every simulator simulates a live set S under the participating set P using the input

value valin. The order of the simulation is based on the recursive structure of the set-

consensus power. In line 1, a simulator starts the level 1 simulation by selecting a live

set S1 ∈ A|P with the set-consensus power setcon(A|S) = setcon(A|P ). The existence

of S1 follows from the definition of setcon. Additionally, S1 is chosen deterministically

by some prefixed order.

Then, the simulator selects a process pj in S1 to simulate a step (lines 9-10).

If the safe-agreement in the simulation is not resolved, the simulator sets pj as the

blocked process in the level 1 simulation (line 14). In this case, the simulator pro-

ceeds to level 2 simulation and chooses a different live set S2 ∈ A|P,pj such that

setcon(A|S2) ≥ setcon(A|P ) − 1. The existence of the choice of S2 follows from the

fact that setcon(A|P,pj) ≥ setcon(A|P ) − 1. Then, the simulator repeatedly simu-

lates processes in S2 until a new process is blocked. If the simulation of one step is

finished, the simulator goes back to level 1 simulation to check whether the blocked

safe-agreement is resolved. If so, the simulator selects S1 to simulate again. Other-

wise, it goes to the lowest level simulation that is not blocked.

At lines 3-7 in Algorithm 4, process pi repeatedly runs one step BG simulation

and checks whether a task output is produced in the simulation. If so, pi immediately

terminates the simulation and adopts the task output (line 8). Otherwise, it executes
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one round BG simulation again.

Lemma 6.9. The BGG simulation presented in Algorithm 4 and 5 simulate an A-

compliant execution of the protocol.

Proof. In the BG simulation, every simulated process is initialized with an input value

from some participating set. Therefore, the correctness of the simulation follows from

the fact that every step is consistently simulated by running the safe-agreement.

To see the liveness of the simulation, we will show that there exists a live set S ∈ A

such that S is a subset of the participating set P , and processes in S is simulated

infinitely often. Therefore, the simulation produced an A-compliant execution, and

every simulated process in S eventually get an output. As soon as some outputs

are produced in the simulation, other processes immediately adopt these outputs and

then terminate.

Notice that the BG simulation in Algorithm 5 is implemented by values, processes

that get the same input values from the adaptive-set-agreement act as a single sim-

ulator. When the set of participating processes is P , by Lemma 6.5, processes select

at most kP different input values. Hence, there are at most kP different simulators

such that most kP − 1 of them are faulty.

In Algorithm 4, at least one process pi observes the participating P and starts

the BG simulation by selecting a live set from A|P . In the simulation, each faulty

simulator can block only one simulated process. Since at most kP − 1 simulators are

faulty, pi observes at most kP − 1 levels of the simulation are blocked. Thus, in line

13 of Algorithm 5 , pi always evaluates L < setcon(A|P ) to be true and selects a live

set SL ∈ A|P such that no safe-agreement in SL is blocked forever. Since the live set

SL is simulated for infinitely many steps, the simulation produces an A-compliant

execution, and therefore, the simulation terminates eventually.
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We are now ready to prove Theorem 6.7.

Proof. For sufficiency, suppose there exists a number N and a simplicial map φ :

ChN ChA(I) → O. By Lemma 6.8, for any input simplex σ ∈ I, there is a protocol

in A that solves the colorless simplex agreement on ChA(σ). To solve task T , every

process pi in A first solves the simplex agreement on ChA(σ), and then executes N

round immediate snapshot in a wait-free manner to get a vertex vi in ChN ChA(σ).

Next, pi applies the simplicial map to get an output value ϕ(vi) in O. The correctness

follows from the fact that φ is simplicial and carrier-preserving.

For the other direction, assume T is a colorless task, and there exists a protocol in

A that solves T . By Lemma 6.9, Algorithm 4 simulates an A-compliant execution of

the protocol in model MA. Since the simulation eventually terminates, every process

in MA terminates after N rounds for some N > 0. Since ChN ChA(I) is the N

round protocol complex of MA, the simulation implies the desired carrier-preserving

simplicial map φ : ChN ChA(I)→ O.
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Chapter 7

A Sufficient Topological Condition for Task

Solvability in Vector-Set-Consensus Model

The original ACT [6, 27] reduces the wait-free task solvability problem to the existence

of a specific simplicial map from a chromatic subdivision to the task output complex.

However, showing a task is solvable requires an explicit construction of the subdivision

and a simplicial map, which is usually not convenient. Herlihy et al. [24] proved a

sufficient topological condition to ensure a task has a wait-free protocol. In practice,

this characterization is more convenient for verification purposes as it only requires

checking the output complex.

Theorem 7.1. [24, Theorem 11.5.2] Let T = (I,O,Γ) be a colored task. If for each

σ ∈ I, Γ(σ) is (dim(σ)− 1)-connected, and O is link-connected. Then, there exists a

wait-free protocol that solves T .

In the proof of Theorem 7.1, the authors first show that there exists a chromatic

subdivision Div(I) and a color-preserving simplicial map

ϕ : Div(I)→ O.
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According to wait-free ACT(Theorem 5.1), there exists a wait-free protocol that solves

T.

Borowsky and Gafni [6] presented an alternative proof of ACT in an algorithmic

way. In particular, their proof uses the convergence algorithm, which provides an

algorithmic construction of the chromatic simplicial map

ϕ : ChN(I)→ Div(I)

for some N ∈ N . The original appearance of the convergence algorithm was sketchy,

and no proof was given. Later, Vikram et al. [39] provided a detailed presentation of

the algorithm and proof of correctness.

Observe that the convergence algorithm can be used as a universal wait-free pro-

tocol for a task if the topological condition in Theorem 7.1 is satisfied.

Theorem 7.2. Let T = (I,O,Γ) be a colored task. If for each σ ∈ I, Γ(σ) is

(dim(σ)− 1)-connected, and O is link-connected, then T can be solved by the conver-

gence algorithm in the wait-free IIS model.

Borowsky [3] proposed a generalized version of the convergence algorithm in the

active-resiliency model and set-consensus collection model. Furthermore, Borowsky

presented a sufficient topological condition on task solvability in the set-consensus

collection model.

Theorem 7.3 (Borowsky). Let S = {(m1, `1), (m2, `2), ..., (mt, `t)} be a set-consensus

collection model such that for i = 1, ..., n + 1, if mk ≤ i and ∀mh ≤ i, it holds

mk/`j > mh/`h. Then recursively define k0 = 0, and ki = (i/mk)`k + ki1 where i1 = i

mod mk. Let T = (I,O,Γ) be a task such that for each σ ∈ I, dim(σ) = m, Γ(σ) is
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(km − 2)-connected and Lk(τ,Γ(σ)) is (k(m−c) − 2)-connected. Then T is solvable in

the set-consensus collection model.

However, the topological condition in Theorem 7.3 is not tight since the power of

the set-consensus collection model is not fully utilized. In this chapter, we present

a new sufficient topological condition to ensure a task is solvable in the vector-set-

consensus model. Our result generalizes Theorem 7.2 and improves the result of

Borowsky as our criteria is topologically weaker. Moreover, the generalized conver-

gence algorithm formulated in [3] is still sketchy and missing a complete proof. We

close the gap by presenting a full description and proving its correctness. We also

present an application of the generalized convergence algorithm in chromatic loop

agreement.

7.1 The Generalized Convergence Algorithm in Vector-

Set-Consensus Model

In this section, we present the generalized convergence algorithm in the vector-set-

consensus model. Given a colored task, we show that the algorithm solves the task if

the output complex satisfies certain topological properties.

Theorem 7.4. A task T = (I,O,Γ) can be solved by the generalized convergence

algorithm in the vector-set-consensus model VSC = (k1, k2, ..., kn+1) if the following

properties are satisfied: for each σ ∈ I, dim(σ) = m, Γ(σ) is (km+1 − 2)-connected

and for every τ ∈ Γ(σ) where dim(τ) = c, Lk(τ,Γ(σ)) is (k(m−c) − 2)-connected.

We present the generalized convergence algorithm in Algorithm 6. The algorithm

proceeds round by round. In each round, each process solves a colorless task using a
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subroutine, and then determines whether it terminates or participates the next round.

If a process decides, it chooses a vertex in the output complex with a matching color.

Otherwise, it continues to the next round to solve a new colorless task.

In the first round, every process pi starts with an input corresponding to vertex

viin and writes its input vertex in Part[i] (lines 1-2). Then, pi solves the simplex

agreement on the barycentric subdivision of the output complex, defined as follows.

Definition 7.5. The Bary-Simplex agreement task TB = (I,Bary(O),ΓB) is a color-

less task such that the input complex is the same as T , and the output complex is the

barycentric subdivision Bary(O). For any simplex σ ∈ I, the valid output complex

is ΓB(σ) = Bary(Γ(σ)).

In Algorithm 7, processes start with solving the adaptive set-agreement (line 1)

using Algorithm 2. Every process pi proposes its input vertex and gets a return

vertex. Then, pi executes NB rounds of immediate snapshot. In each round, pi

ignores processes’ id and only uses the set of views from the previous round (line 11).

Next, it applies a decision map based on its view and obtains a vertex in Bary(O).

The number of rounds NB and the decision map ϕ depends on the output complex

O and will be justified later. The vertex v in Bary(O) is identified as a simplex in O,

and used as the input in an immediate snapshot (line 5-6). At line 7, pi checks the

simplices that appear in its snapshot. If every simplex σ1
j in pi’s snapshot contains a

vertex ṽi with the matching color, pi returns ṽi and terminates. Otherwise, pi prepares

for round 2 by calculating view1
i , an estimate of simplex that processes converged (line

10). view1
i is computed as the union of simplices σ1

j appears in pi’s snapshot snap1
i ,

by removing any vertex with the same color as pi.

At the beginning of round r ≥ 2, process pi recalculates the current participating

set and then computes coreri , an estimate of decided vertices in previous rounds (lines
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Algorithm 6: The generalized convergence algorithm: process pi
Shared Variables: Part[0..n], init ⊥

Simplexes[1..n+ 1][0..n], init ⊥ : single-writer
multi-reader memory
View[1...n+ 1][0..n], init ⊥

1 viin ← the vertex in I corresponds to pi with input vali
2 Part[i]← viin
3 σ1

i ← BarySimplexAgreement(viin, I,Bary(O))

4 Immediate
5 Simplexes[1][i]← σ1

i

6 snap1
i ← snapshot(Simplexes[1])

7 if ∃ṽi : ṽi ∈
⋂

σ1
j∈snap1

i

σ1
j and χ(ṽi) = pi then

8 return ṽi
9 else

10 view1
i ←

⋃
σ1
j∈snap1

i

σ1
j −

ṽi | χ(vi) = pi, vi ∈
⋃

σ1
j∈snap1

i

σ1
j


11 for r ← 2 to n+ 1 do
12 Immediate
13 View[r][i]← viewr−1

i

14 snapViewr
i ← snapshot(View[r])

15 partri ← snapshot(Part)

16 coreri ←
⋂

j∈snapViewri

viewr−1
j

17 σri , coreri ← LinkBarySimplexAgreement(coreri , partri , I,O,Γ)

18 Immediate
19 Simplexes[r][i]← (σri , coreri )

20 snapri ← snapshot(Simplexes[r])

21 if ∃ṽi : ṽi ∈
⋂

j∈snapri

σrj and χ(ṽi) = pi then

22 return ṽi
23 else

24 viewr
i ←

 ⋃
j∈snapri

σrj

⋃ ⋂
j∈snapri

coreri

−ṽi | χ(vi) = pi, vi ∈
⋃

σ1
j∈snapri

σrj
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Algorithm 7: BarySimplexAgreement(viin, I,Bary(O))

Shared Variables: SM[0..N − 1][0..n], init ⊥ : single-writer
multi-reader memory

1 v′ ← adaptiveSetAgreement(vi)

2 sview0
i ← {v′}

3 for `← 0 to NB − 1 do
4 Immediate
5 SM[`][i]← sview`

i

6 snap← snapshot(SM[`])

7 sview`+1
i ← {sview`

j | sview`
j ∈ snap}

8 vout ← ϕ(sviewNB
i )

9 σ ← the simplex in O identified with vout ∈ BaryO
10 return σ

Algorithm 8: LinkBarySimplexAgreement(coreri , partri , I,O,Γ)

Shared Variables: SM[0..N − 1][0..n], init ⊥
// single-writer multi-reader memory

1 Lkri ← Lk(coreri ,Γ(partri ))

2 vi ← a vertex v : v ∈ Lkri , χ(v) = pi
3 v′, core′, part′ ← adaptiveSetAgreement(vi, coreri , partri )

4 coreri ← coreri ∩ core′; partri ← partri ∪ part′

5 sviewi
0 ← {v′, coreri , partri}

6 for `← 0 to Nr − 1 do
7 Immediate
8 SM[`][i]← sview`

i

9 snap← snapshot(SM[`])

10 sview`+1
i ← {sview`

j | sview`
j ∈ snap}

11 coreri ←
⋂

corerj∈sviewNi

corerj ; partri ←
⋃

partrj∈sviewNi

partrj

12 vout ← φ(sviewN
i )

13 σri ← the simplex in Lk(coreri ,Γ(partri ))) identified with vout
14 return σri , coreri
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12-16). coreri is defined as the intersections of all view1
j appeared in pi’s snapshot.

Next, pi executes Algorithm 8 to solve the Link-Bary-Simplex agreement (line 17).

Roughly speaking, in the Link-Bary-Simplex agreement, processes converge on the

barycentric subdivision of the link of decided vertices. The input complex and the

output complex are determined dynamically based on previous rounds.

In Algorithm 8, pi uses the updated participating set and core to calculate its

convergence link

Lkri = Lk(coreri ,Γ(partri ))

where Γ(partri ) denotes the valid output subcomplex, defined as

Γ(partri ) = Γ(τi)

where τi is the input simplex observed by pi in partri .

Note that processes may compute different cores and links at the beginning. How-

ever, we will later show that at least one process calculates the largest link, i.e., the

link of the decided vertices in previous rounds. Moreover, every Lkri is a subcomplex

of the largest link and is related by containment. Fix round r, the Link-Bary-Simplex

agreement is formally defined as follows.

Definition 7.6. The Link-Bary-Simplex agreement TL = (IL,OL,ΓL) is a colorless

task such that the input complex IL is a subcomplex of

skel0(O)×O ×∆n

where skel0(O) consists of the vertices in O. Each process pi’s initial state is a triple

that contains an initial vertex viin chosen from its convergence link, its initial core

and the participating set it observed. The output complex OL is the barycentric
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subdivision Bary(O). The task specification requires that processes converge on a

simplex in Bary(O) which is a simplex in the barycentric subdivision of the link of

intersections of the cores. In other words, for each input simplex σ ∈ I such that

σ = {(vi, coreri , partri )},

ΓL(σ) = Lk

(⋂
i

coreri ,Γ(P )

)
where P =

⋃
i partri .

Algorithm 8 solves the Link-Bary-Simplex agreement. In line 3, pi submits its

initial configuration and solves the adaptive-set-agreement. pi adopts a new vertex

and then runs Nr rounds immediate snapshot. As in the first round, processes ignore

ids and only record the set of views. Next, pi updates its participating set and its

coreri by the intersection of the cores observed in the snapshot (line 11). After that, pi

applies a decision map based on its Nrth immediate snapshot view and gets a vertex

vout in the barycentric subdivision of the link. Then, pi returns a simplex σri in O

which can be identified as vout.

With simplex σri and updated core, pi executes an immediate snapshot again in

round r. If there exists a vertex ṽi that appears in every simplex in its snapshot,

pi chooses ṽi as its output and terminates. Otherwise, pi calculates viewr
i and then

enters round r + 1.

7.2 Proof of Correctness

We now prove the correctness of the generalized convergence algorithm. Throughout

this section, we assume that the vector-set-consensus model VSC = (k1, k2, ..., kn+1) is
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fixed beforehand. Also, the output complex of T = (I,O,Γ) satisfies the topological

condition in Theorem 7.4.

Lemma 7.7. Let m processes participate Algorithm 7. After processes execute the

loop N rounds (line 3-7) , the set of views

{sviewN
0 , ..., sviewN

m−1}

forms a simplex in BaryN(skelkm−1(I)).

Proof. Let p0, p1, ..., pm−1 be the participating processes, and let σ be the correspond-

ing input simplex. We show that for each round r, the set of views

sviewr = {sviewr
0, ..., sviewr

m−1}

forms a simplex in Baryr(skelkm−1(σ)). The proof is by induction, the base case r = 0

is trivial. In line 1, every process submits its initial vertex and solves adaptive-set-

agreement. The number of different vertices in sview0 is bounded by km. Hence,

sview0 forms a simplex in

skelkm−1(σ) = Bary0 skelkm−1(σ).

For the inductive step, by definition, sviewr
i is a subset of sviewr−1. By con-

tainment property of immediate snapshot, sets in sviewr can be linearly ordered by

inclusion. Since sviewr−1 is a simplex τ in

Baryr−1(skelkm−1(σ))
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by induction hypothesis, each sviewr
i can be identified with a subsimplex of τ and can

be ordered by containment. By definition of Barycentric subdivision, sviewr can be

identified with a simplex in Bary(τ), which is a simplex in Baryr(skelkm−1(σ)).

We now prove that Algorithm 7 solves the Bary-Simplex agreement TB. Note that

the output complex |Bary(O)| is homeomorphic to|O| and therefore, they have the

same connectivity. It suffices to show that there is a carrier-preserving continuous

map f : |I| → |Bary Γ(σ)|.

Lemma 7.8. Algorithm 7 solves the Bary-Simplex Agreement TB = (I,Bary(O),ΓB).

Proof. Without loss of generality, assume m processes p0, p1, ..pm−1 participate. Let

σ be the corresponding input simplex such that dim(σ) = m− 1. By Lemma 5.21,

there exists a carrier-preserving continuous map

f : | skelkm−1(σ))| → |Bary Γ(σ)|.

Applying Theorem 3.3, there exists a number NB ∈ N and a simplicial map

ϕ : BaryN(skelkm−1(σ))→ Bary Γ(σ)

carried by ΓB. By lemma 7.7, after executing the loop (line 3–7) NB rounds, the set

sviewN = {sviewN
0 , ..., sviewN

m−1} forms a simplex in BaryN(skelkm−1(I)). Hence, each

process applies the simplicial map ϕ and yields a vertex in Bary(O). The correctness

follows from the fact that ϕ is simplicial and carrier-preserving.

At the end of Algorithm 7, every process returns a simplex σi in O, which is

identified with its output vertex in Bary-Simplex agreement. Moreover, by definition
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of barycentric subdivision, the set of returned simplices {σi} can be ordered by in-

clusion. We now show that if a vertex is decided in some round r, it will be observed

in subsequent rounds.

Lemma 7.9. If a process pi decides vertex ṽi at round r where χ(ṽi) = pi, ṽi appears

in all viewr′

j and corer
′+1
j for every process pj that participates round r′, where r′ ≥ r.

Proof. The proof is by induction. For the base case r′ = r, let pj be a process that

does not decide at round r. We have two cases. Assume pj takes the immediate

snapshot at line 4 or 18 before pi. In order for pi to decide ṽi, by line 21, pi must

observe ṽi appear in σrk for every process pk that executes line 4 or 18 before pi.

Therefore, we can conclude that ṽi ∈ σrj . Since χ(ṽi) 6= pj, ṽi is included in viewr
j .

In the other case, pj takes the immediate snapshot after pi and includes σri in its

snapshot snaprj . Since ṽi ∈ σri , viewr
j must contain ṽi. Therefore, ṽi is included in

viewr
j for every process pj that does not decide at round r. Since corer+1

j is calculated

as the intersection of all viewr
k ∈ snapr+1

j , we have ṽi ∈ corer+1
j .

Assume ṽi appears in viewr′

j and corer
′+1
j for r ≤ r′. For the inductive step, assume

pj participates round r′ + 1 and does not decide. Observe that corer
′+1
i is calculated

as the intersection of corer
′+1
j . Since the view of pj is calculated by

viewr′+1
i ←

 ⋃
j∈snapr

′
i

σ1
j

⋃ ⋂
j∈snapr

′
i

corer
′
i

−
ṽi | χ(vi) = pi, vi ∈

⋃
σr

′
j ∈snapr

′
i

σ1
j

 ,

ṽi is included in viewr′+1
i . As corer

′+2
j is calculated as the intersection of viewr′+1

k for

every pk that participates round r′ + 2, we can conclude that ṽi ∈ corer
′+2
j , which

completes the inductive step.
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The following lemma shows that if a process pi does not decide at some round r,

it must compute a valid convergence link in Link-Bary-Simplex agreement.

Lemma 7.10. If pi does not decide on round r, then viewr
i , corer+1

i does not contain

any vertex vi where χ(vi) = pi, and Lkr+1
i contains a vertex vi such that χ(vi) = pi.

Proof. At line 10 or 24, pi calculates viewr
i by taking the union of simplices in its

snapshot and removing any vertices vi with color pi. As corer+1
i is calculated as

the intersection of viewr
j for processes that participate round r + 1, corer+1

i does not

contain any vertex vi such that χ(vi) = pi. Since partri contains pi’s initial vertex viin

and O is chromatic, Lkr+1
i = Lk(coreri ,Γ(partri )) must contain a vertex vi such that

χ(vi) = pi.

In each round r, every process pi calculates the coreri as an estimate of the decided

vertices in previous rounds. Every core is a superset of decided vertices, and different

processes may calculate different cores. However, the following lemma shows that at

least one process calculates a core which is precisely the set of decided vertices.

Lemma 7.11. Let τ be the the set of vertices decided in the first r rounds. At round

r + 1, at least one process pi calculates corer+1
i = τ .

Proof. Let τr be the set of vertices decided at first r rounds, and let pi be the last

process executes the immediate snapshot at lines 12-15 in round r + 1. By Lemma

7.9, τr ⊆ viewr
j for every pj that participates round r + 1, and so, we conclude that

τr ⊆ corer+1
i . On the other hand, by way of contradiction, assume corer+1

i 6⊆ τr, then

there exists a vertex v′, such that v′ ∈ corer+1
i and v′ /∈ τr. Let pk be the process

such that χ(v′) = pk. Since v′ /∈ τr, pk does not decide in the first r rounds and thus

participates round r + 1. By Lemma 7.10, we have v′ /∈ viewr
k. However, corer+1

i is
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the intersection of every view in round r, it must be the case that v′ /∈ corer+1
i , a

contradiction.

We now show that the Link-Bary-Simplex agreement is well defined.

Lemma 7.12. In each Link-Bary-Simplex Agreement, the convergence links {Lkri}

can be linearly ordered by inclusion.

Proof. The convergence link is calculated as

Lkri = Lk(coreri ,Γ(partri )).

By definition of link and monotonicity of Γ, it suffices to prove that partri is linearly

ordered by inclusion and coreri is reversely linear ordered. For every pi that partici-

pates round r, partri and snapViewr
i are linearly ordered as the order of executing the

immediate snapshot (IS) at line 12-15. Notice that pi calculates

coreri =
⋂

j∈snapViewri

viewr−1
j

at line 16. Hence, the coreri is reversely linear ordered with respect to snapViewr
i .

We are now ready to show that Algorithm 8 solves the Link-Bary-Simplex agree-

ment.

Lemma 7.13. Algorithm 8 solves the Link-Bary-Simplex agreement TL = (IL,OL,ΓL).

Proof. Without loss of generalization, let m processes participate T , and let σ ∈ I

be the corresponding input simplex. Let p0, p1, ..., pc−1 be processes that terminated

in first r − 1 rounds, and let τ be the decided simplex. Processes pc, pc+1, ..., pm−1
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participate round r. By Lemma 7.12, Lkrc,Lkrc+1, ...,Lkrm−1 can be linearly ordered by

containment. By Lemma 7.11, at least one process pi calculates the largest conver-

gence link, i.e.,

Lkri = Lk(τ,Γ(σ)).

Let Lkr denote Lk(τ,Γ(σ)). Notice that Lkr is (k(m−c)− 2) connected, and therefore,

Bary(Lkr) is (k(m−c)− 2)-connected since |Bary(Lkr)| is homeomorphic to |Lkr |. By

Lemma 5.21, there is a carrier-preserving continuous map

f : | skelkm(∆m)| → |Bary(Lkr)|.

Applying Theorem 3.3, there exists a number Nr and a carrier-preserving simplicial

map

φr : BaryNr(skelkm(∆m))→ Bary(Lkr).

In Algorithm 8, processes that participate round r first solve the adaptive-set-agreement

and then execute Nr rounds immediate snapshot. By Lemma 7.7, each process ob-

tains a vertex in BaryNr(skelkm(∆m)) and then apply φr to get the output. The

correctness follows from the fact that φr is simplicial and carrier-preserving.

We are now ready to prove the termination and validity property of the generalized

convergence algorithm.

Theorem 7.14. Algorithm 6 terminates after at most n+ 1 rounds.

Proof. We will prove that in each round r, at least one process decides. By Lemma

7.8 and 7.13, each process pi that participates round r returns a simplex σri ∈ O. Let
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the set {σri } denote simplices returned from Bary-Simplex agreement or Link-Bary-

Simplex agreement in round r. By definition of barycentric subdivision, simplices in

{σri } can linearly ordered by containment.

Consider the set

Vr =
⋂
i

σri ,

which contains vertices that appears in every σri . Let Ur be the set of processes with

matching color in Vr, i.e., Ur = χ(Vr). For each process pj ∈ Ur, it must evaluate line

10 or line 21 to be true and then terminate since there is a vertex vj ∈ Vr such that

χ(vj) = pj.

Therefore, processes in Ur terminate at round r. Since {σri } can be linearly ordered

and it is not empty, Vr is also not empty. Therefore, at least one process decides in

each round, and the algorithm terminates in at most n+ 1 rounds.

Theorem 7.15. Let σ be the input simplex in I corresponding to the participating

set. The set of decided vertices forms a simplex in Γ(σ).

Proof. For r = 1, 2, ...n+ 1, let τr be the set of vertices decided at round r, and let

τ̃r =
r⋃
i=1

τi

be the set of decided vertices in the first r rounds. We show that τ̃r is a simplex in

Γ(σ) by induction. For the base case r = 1, by Lemma 7.8, τ̃1 consists of vertices in

simplices of Γ(σ) related by containment. By downward closure of simplicial complex,

τ̃1 is a simplex of Γ(σ).

Assume that τ̃r is a simplex in Γ(σ). For the inductive step, consider τ̃r+1 =

τ̃r ∪ τr+1. By Lemma 7.13, processes participate round r + 1 solve the Link-Bary-
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Simplex agreement and return simplices in Lk(τ̃r,Γ(σ)) which can be ordered by

containment. Let σr+1
` be the largest simplex chosen at round r+ 1. By definition of

link, the set

σr+1
` ∪ τ̃

is a simplex of star st(τ̃r), and therefore, is a simplex in Γ(σ). Since vertices in τr+1 is

a subset of σr+1
` and by downward inclusion, τ̃r+1 = τ̃r∪τr+1 is a simplex. Notice that

σr+1
` is simplex in Γ(σ) because of the specification of Link-Bary-Simplex agreement.

Therefore, τ̃r+1 is a simplex in Γ(σ), which completes the induction step.

By Theorem 7.14 and 7.15, the generalized convergence algorithm solves task T ,

which completes the proof of Theorem 7.4.

7.3 Application

In this section, we present an application of the generalized convergence algorithm on

chromatic loop agreement.

Gafni and Koutsoupias [18] introduced the chromatic loop agreement, in which

three processes solve the simplex agreement on a 2-dimensional chromatic simplicial

complex K constrained by a look in K. If one process pi participates, then it decides on

a predefined vertex in the loop. If pi and pj participate, they decide on a simplex in an

edge path of the loop. If three processes participate, they converge on an arbitrary

2-dimensional simplex in K. Herlihy and Rasjbaum [25] introduced the colorless

loop agreement task, which extends the chromatic loop agreement for more than 3

processes. It is a well-known fact that the solvability of chromatic loop agreement and

its colorless version is generally undecidable in the wait-free model [18, 25]. However,
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Herlihy et al. [24] showed that in a model that solves 2-set-agreement, the solvability

of colorless loop agreement is decidable.

We show that the chromatic loop agreement task is decidable in the vector-set-

consensus model VSC = (1, 2, 2). Also, we show that the vector-set-consensus model

VSC = (1, 1, 2) is universal for chromatic loop agreement, i.e., it solves any chromatic

loop agreement.

Let K be a 2-dimensional chromatic simplicial complex and let v0, v1 be vertices

in K such that χ(v0) = p0 and χ(v1) = p1. A simple chromatic edge path e01 is a

sequence of distinct vertices v0 = u0, u1, ..., um = v1, where{ui, ui+1} is a 1-simplex

in K and χ(ui) ∈ {p0, p1} for 0 ≤ i ≤ m. A chromatic triangle loop is defined as a

6-tuple ` = (v0, v1, v2, e01, e12, e20) where eij is a simple chromatic edge path between

vi and vj.

Definition 7.16. Let ∆2 be the standard chromatic 2-dimensional simplex, and let

O be a path-connected1 chromatic simplicial complex. The chromatic loop agreement

task T = (∆2,O,Γ, `) is a colored task for three processes, together with a predefined

chromatic triangle loop `. The carrier map Γ is defined by

Γ(σ) =


{vi} σ = {pi}, i = 0, 1, 2

eij σ = {pi, pj}, 0 ≤ i < j ≤ 2

O σ = {p0, p1, p2}

.

The following theorem show that the solvability of the chromatic loop agreement

is decidable in some vector-set-consensus model.
1Here is the intuition of requiring O to be path-connected: when two processes are participating,

they decide a simplex in the chromatic loop. If the third process participates after the first two
processes decided, their outputs must form a simplex in the path-connected component that contains
the chromatic loop.
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Theorem 7.17. Let T = (∆2,O,Γ) be a chromatic loop agreement. Whether T is

solvable in the vector-set-consensus model VSC = (1, 2, 2) is decidable .

Proof. Assume m + 1 processes are participating, and let σ be corresponding the

input simplex such that dim(σ) = m. Since O is path-connected, we conclude that

Γ(σ) is (km+1− 2)-connected. To check whether T satisfies the condition in Theorem

7.4, it remains to check whether the Lk(v,O) is path-connected for any vertex v ∈ O.

Notice that this problem is equivalent to determine whether there is a path in Lk(v,O)

connecting any two vertices, which is the st-connectivity problem in an undirected

graph.

The following theorem shows that the vector-set-consensus model VSC = (1, 1, 2)

is universal for chromatic loop agreement.

Theorem 7.18. Let T = (∆2,O,Γ) be a chromatic loop agreement. T is solvable in

the vector-set-consensus model VSC = (1, 1, 2).

Proof. By definition, O is a path-connected chromatic simplicial complex, and there-

fore, Lk(v,O) is (−1)-connected. Hence, the condition in Theorem 7.4 is satisfied,

and therefore, the generalized convergence algorithm solves T in VSC = (1, 1, 2).
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Chapter 8

Conclusion and Open Problems

In this dissertation, we generalized ACT for more general models. We present the

colorless ACT for the vector-set-consensus model. We rephrased the ACT for colored

task solvability in the k-set-consensus model using the notion of color-projection. We

also proved the "wait-at-beginning" colorless ACT for the general adversary model,

which shows that the full power of the adversary is only needed at the beginning of

a colorless task protocol. For task solvability in the vector-set-consensus model, we

show a sufficient topological condition in an algorithmic way.

Our generalizations of ACT reaffirms the phenomenon that many models are

equivalent to “restricted” IIS models. Thus, we infer that the IIS model is analo-

gous to Turing machine in a unified distributed computability theory: solving a task

in any reasonable distributed system can be analyzed in a “restricted” IIS model.

Colored ACT for vector-set-consensus

In Chapter 5, we show that to characterize colored task solvability in the vector-set-

consensus model, the protocol complex should enable processes to solve set-agreement
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regardless of the participating set. We use the color-projection closed complex to char-

acterize the k-set-consensus model. It is natural to try to apply the same method

for vector-set-consensus protocol complex ChV (∆n). However, it is not hard to see

that this approach does not work for every vector-set-consensus model. For example,

in the vector-set-consensus model VSC = (1, 1, 2), the color-projection-closed com-

plex ̂ChV (∆n) does solve (2, 1)-consensus and (3, 2)-set-consensus regardless of the

participating set. However, this approach fails in the model VSC = (1, 1, 1, 2). In

particular, the color-projection closed complex ̂ChV (∆3) is not path-connected, which

implies that (4, 1)-consensus can be solved, contradicting the set-consensus power of

the model.

Thus, if there exists a color-projection closed complex with the same connectiv-

ity as ChV (∆n), it characterizes the colored task solvability of vector-set-consensus

model. However, our experience suggests that there is no such complex in Ch2(∆n).

It is an intriguing problem whether such protocol complex exists in more iterations

of the standard chromatic subdivision.

Problem 8.1. Given a vector-set-consensus model VSC, is there a pure n-dimensional

color-projection closed complex K̂ ⊆ ChN(∆n) with the same connectivity as ChV (∆n)

for some N ≥ 2?

Theorem 7.4 shows a topological “upper bound” for solving a task in the vector-

set-consensus model. We ask whether there exists a protocol complex in ChN(∆n)

which connectivity is precisely the “upper bound”.

Problem 8.2. Let VSC = (k1, k2, ..., kn+1) be a vector-set-consensus model. Is there

a pure n-dimensional complex K ⊆ ChN(∆n) that satisfies exactly the topological

condition in Theorem 7.4 ? In other words, is there a complex such that for m =

102



0, 1, ..., n, K∩ChN(skelm(∆n)) is (km+1−2)-connected but not (km+1−1)-connected,

and for any simplex τ ∈ K where dim(τ) = c, Lk(τ,K∩ChN(skelm(∆n))) is (k(m−c)−

2)-connected but not (k(m−c) − 1)-connected?

ACT theorem for Objects

It is a well-known fact that a shared-memory object can be classified by the consen-

sus number and set-consensus number [2, 23]. For example, the test-and-set object

has the consensus number 2, and the test-and-set model can be characterized by a

complex in Ch(∆n) [31]. We believe that every meaningful deterministic object can

be characterized by a complex in ChN(∆n) for some N .

General Adversary Structure

Gafni and Kuznetsov [19] showed that, for superset-closed adversary, the set-consensus

number is the size of the minimal hitting set of A. However, it is not clear how to

extend this observation to general adversary. We provide a combinatorial conjecture

on the structure of a generalized adversary.

A partially ordered set or a poset, is a pair (P,≤) that consists of a set P together

with a relation ≤ that satisfies the following properties:

1. for any x ∈ P , we have x ≤ x.

2. for any x, y ∈ P , if x ≤ y and y ≤ x, then x = y.

3. for any x, y, z ∈ P , if x ≤ y and y ≤ z, then x ≤ z.

For any x, y ∈ P , we say that y covers x, denoted by x ≺ y, if there is no z ∈ P such

that x ≤ z ≤ y. For any y ∈ P , let C(y) denote the set of elements that are covered
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by x, i.e., C(y) = {x ∈ P | x ≺ y}. An adversary A is a poset ordered by inclusion.

We say an adversary A is regular if for every set S ∈ A, C(S) satisfies one of the two

following properties.

1. (subset structure) For any set S ′ ⊆ Sv such that |S ′| = |S| − 1, S ′ ∈ A

2. (binary structure) C(S) = {U1, U2} such that for i = 1, 2, |Ui| ≥ |U |/2, and

U1, U2 is a partition of U .

The intuition behind the definition is that an adversary is regular if the live sets are

related by mixing the subset and binary structures. We conjecture that any general

adversary A contains a regular sub-adversary.

Problem 8.3. For any general adversary A such that setcon(A) = k, does A contains

a regular subadversary A′ such that setcon(A′) = k?
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